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Abstract

Systems that provide powerful transaction mechanisms

often rely on write-ahead logging (WAL) implementa-

tions that were designed with slow, disk-based systems

in mind. The emerging class of fast, byte-addressable,

non-volatile memory (NVM) technologies (e.g., phase

change memories, spin-torque MRAMs, and the mem-

ristor), however, present performance characteristics very

different from both disks and flash-based SSDs. This pa-

per addresses the problem of designing a WAL scheme

optimized for these fast NVM-based storage systems. We

examine the features that a system like ARIES, a WAL al-

gorithm popular for databases, must provide and separate

them from the implementation decisions ARIES makes to

optimize for disk-based systems. We design a new NVM-

optimized WAL scheme (called MARS) in tandem with

a novel SSD multi-part atomic write primitive that com-

bine to provide the same features as ARIES does with-

out any of the disk-centric limitations. The new atomic

write primitive makes the log’s contents visible to the ap-

plication, allowing for a simpler and faster implementa-

tion. MARS provides atomicity, durability, and high per-

formance by leveraging the enormous internal bandwidth

and high degree of parallelism that advanced SSDs will

provide. We have implemented MARS and the novel

visible atomic write primitive in a next-generation SSD.

This paper demonstrates the overhead of the primitive is

minimal compared to normal writes, and our hardware

provides large speedups for transactional updates to hash

tables, b-trees, and large graphs. MARS outperforms

ARIES by up to 3.7× while reducing software complex-

ity.

1 Introduction

Emerging fast non-volatile memory (NVM) technologies,

such as phase change memory, spin-torque transfer mem-

ory, and the memristor, are orders of magnitude faster than

existing storage technologies (i.e., disks and flash). Such a

dramatic improvement shifts the balance between storage,

system bus, main memory, and CPU performance and will

force designers to rethink storage architectures to maxi-

mize application gains and exploit memory performance

and parallelism. While recent work focuses on optimizing

read and write performance for storage arrays based on

these memories [5, 6], systems must also provide strong

guarantees about data integrity in the face of failures.

File systems, databases, persistent object stores, and

other applications that rely on persistent data structures

must provide strong consistency guarantees. Typically,

these applications use some form of transaction to move

the data from one consistent state to another. Most sys-

tems implement transactions using software techniques

such as write-ahead logging (WAL) or shadow paging.

These techniques are based on complex, disk-based op-

timizations designed to minimize the cost of synchronous

writes and leverage the sequential bandwidth of disk.

NVM technologies provide very different performance

characteristics compared to disk, and exploiting them re-

quires new approaches to implementing application-level

transactional guarantees. NVM storage arrays provide

parallelism within individual chips, between chips at-

tached to a memory controller, and across memory con-

trollers. In addition, the aggregate bandwidth across the

memory controllers in an NVM storage array will outstrip

the interconnect (e.g., PCIe) that connects it to the host

system.

We develop a novel WAL scheme, called MARS, op-

timized for NVM-based storage. The design of MARS
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reflects an examination of ARIES [21], a popular WAL-

based recovery algorithm for databases. We separate the

features ARIES must provide from the architectural deci-

sions it is built on that optimize for disk-based systems.

MARS uses a multi-part atomic write primitive to imple-

ment ACID transactions on top of a novel NVM-based

SSD architecture. As we will show, multi-part atomic

writes simplify the implementation of ARIES by remov-

ing disk-centric optimizations. They are also a useful

building block for other transaction mechanisms and ap-

plications that must provide strong consistency guaran-

tees.

The multi-part atomic write interface supports atomic

writes to multiple portions of the storage array without

alignment or size restrictions, and the hardware shoulders

the burden for logging and copying data to enforce atom-

icity. This interface exposes the logs to the application and

allows the user to manage the log space directly, provid-

ing greater flexibility for software to implement transac-

tions. In contrast, recent work on atomic write support for

flash-based SSDs [23, 22] hides the logging in the flash

translation layer (FTL), restricting user interaction with

the logs.

Our design achieves high performance by distributing

logging, commit, abort, and recovery functions across

multiple memory controllers to leverage the internal band-

width of the storage device. Shifting support for logging

and commit into hardware relieves pressure on the PCIe

link and minimizes operating system overhead, since is-

suing an atomic write requires just a single IO request and

a single DMA transfer.

We implemented our design in a prototype PCIe storage

array [5]. Microbenchmarks show that our atomic writes

reduce latency by 2.9× compared to using normal syn-

chronous writes to implement a traditional logging pro-

tocol, and our atomic writes increase effective bandwidth

by between 2.0 and 3.8× by eliminating overhead. Com-

pared to non-atomic writes, atomic writes reduce effective

bandwidth just 1-8% and increase latency by just 30%.

We use the atomic write primitive to accelerate

database-style logging, simple on-disk persistent data

structures, and common cloud computing “NoSQL” ser-

vices. MARS improves performance by 3.7× relative to

our baseline version of ARIES. We also implement ACID

key-value stores based on a hash table and a B+tree as well

as an application that simultaneously updates and queries

a large scale-free graph. On average, atomic writes im-

prove performance by 1.4× compared to software-based

implementations of the same ACID guarantees and reduce

performance by only 15% compared to non-transactional

versions. Finally, we integrate our key-value store imple-

mentation into MemcacheDB [8], replacing Berkeley DB,

and find that using atomic writes increases performance

by up to 3.8×.

The remainder of this paper is organized as follows. In

Section 2, we describe the memory technologies and stor-

age system that our work targets. Section 3 examines ex-

isting transaction mechanisms in the context of fast NVM-

based storage, deconstructs ARIES, and proposes MARS

as an alternative for fast NVM-based storage. In Sec-

tion 4, we describe a new set of IO primitives that support

multi-part atomic write operations for MARS and other

applications. Section 5 places this work in the context of

prior work on support for transactional storage. Section 6

describes the hardware architecture in detail. Section 7

evaluates our multi-part atomic write support and its im-

pact on the performance of MARS and other persistent

data structures. Section 8 summarizes our contributions.

2 Storage technology

Fast NVMs will catalyze changes in the organization of

storage arrays and how applications and the OS access

and manage storage. Storage will soon look and behave

more like DRAM than flash memory, and this motivates

our redesign of transaction mechanisms to take advantage

of fast NVMs with a novel multi-part atomic write inter-

face. This section describes the memories and architec-

ture of the storage system that our work targets. Section 6

describes our implementation in more detail.

Fast non-volatile memories such as phase change mem-

ories (PCM) [4], spin-torque transfer [13] memories,

and memristor-based memories differ fundamentally from

conventional disks and from the flash-based SSDs that are

beginning to replace them. NVMs’ most important fea-

tures are their performance (relative to disk and flash) and

their simpler interface (relative to flash).

Predictions by industry [16] and academia [4, 13] sug-

gest that NVMs will have bandwidth and latency char-

acteristics similar to DRAM. This means they will be be-

tween 500 and 1500× faster than flash and 50,000× faster

than disk.

Our baseline storage array is the Moneta SSD [5]. It

spreads 64 GB of storage across eight memory controllers

connected via a high-bandwidth ring. Each memory con-

troller provides 4 GB/s of bandwidth for a total internal

bandwidth of 32 GB/s. An 8-lane PCIe 1.1 interface pro-

vides a 2 GB/s full-duplex connection (4 GB/s total) to the

host system. The prototype runs at 250 MHz on a BEE3

FPGA prototyping system [2].

The Moneta storage array emulates advanced non-

volatile memories using DRAM and modified memory

controllers that insert delays to model longer read and

write latencies. We model phase change memory (PCM)

in this work and use the latencies from [18] (48 ns and

150 ns for array reads and writes, respectively).

Unlike flash, PCM (as well as other NVMs) does not

2



require a separate erase operation to clear data before a

write. This makes in-place updates possible and, there-

fore, eliminates the complicated flash translation layer

that manages a map between logical storage addresses and

physical flash storage locations to provide the illusion of

in-place updates. PCM still requires wear-leveling and er-

ror correction, but fast hardware solutions exist for both of

these in NVMs [24, 25, 27]. Moneta uses start-gap wear

leveling [24]. With fast, in-place updates, Moneta is able

to provide low-latency, high-bandwidth access to storage

that is limited only by the interconnect (e.g. PCIe) be-

tween the host and the device.

3 Revisiting Transaction Support

This section examines existing transaction mechanisms,

focusing on ARIES write-ahead logging. We describe the

features that a system like ARIES must provide to im-

plement flexible ACID transactions. We analyze the de-

sign decisions that make ARIES a good fit for disk but

are not well-suited for fast NVM-based storage. Then, we

propose MARS, a novel WAL architecture that takes ad-

vantage of the multi-part atomic writes provided by our

prototype storage array. MARS provides the features re-

quired by ARIES while exploiting the performance of fast

NVMs.

3.1 Transaction mechanisms

Transaction implementations differ depending on the re-

quirements of the application and the underlying storage

technology. For many applications, relational databases

are a good fit because they provide full ACID semantics

and accomodate a wide variety of data formats and op-

erations on that data. Many databases are built on top

of ARIES (Algorithm for Recovery and Isolation Exploit-

ing Semantics) [21], a powerful algorithm for providing

strong consistency guarantees. ARIES-style transactions

are scalable and support different levels of isolation.

For web services or file systems, simpler approaches

are often the best option because the class of transactions

they must support is narrower. Transaction size is often

fixed or bounded, and transactions often need not have

the flexibility to read back or update data multiple times.

Previous systems [14, 23, 22] provided an atomic write

interface that is limited to these types of transactions. The

systems batched writes up in memory and sent them to

the storage array in a single IO operation. Our multi-part

atomic write interface, on the other hand, allows trans-

actions to be specified in multiple IO requests, offering

scalability and better programmability. Also, this inter-

face provides visibility to each logged part of a transaction

prior to commit.

Transaction implementations typically include a con-

currency control scheme (e.g. two-phase locking [3]),

some form of data versioning, and a recovery algorithm.

The most common ways to implement data versioning are

either by using write-ahead logging and updating data in-

place or by using shadow paging, techniques that opti-

mized heavily for disk. With this in mind, we now re-

examine existing transaction mechanisms in the context

of fast NVM-based storage and the high-level features that

applications demand.

3.2 Deconstructing ARIES

We focus on ARIES because it influenced the design of

many industrial-strength databases and is a key building

block in providing fast, flexible, and efficient ACID trans-

actions. ARIES uses WAL and has been tuned to exploit

the sequential write performance of disk. In Table 1, we

list several of the important features that ARIES provides

to higher-level software (e.g., the rest of the database) and

that make it useful to a variety of applications. For ex-

ample, ARIES offers flexible storage management since

it supports objects of varying length. It also allows trans-

actions to scale with the amount of free disk storage space

rather than with available main memory. Features like op-

eration logging and fine-grained locking improve concur-

rency. Recovery independence makes it possible to re-

cover some portion of the database even when there are

errors. Independent of the underlying storage technol-

ogy, ARIES must export these features to the rest of the

database.

To provide these features and achieve high perfor-

mance, ARIES incorporates a set of design decisions (Ta-

ble 2) that exploit the properties of disk: They optimize

for long, sequential accesses and avoid short, random ac-

cesses whenever possible. Also, because disk drives are

effectively serial devices, these design decisions optimize

for a single write stream. These design decisions are a

poor fit for advanced, solid-state storage arrays which pro-

vide fast random access, high internal bandwidth, and a

high degree of parallelism. Below, we describe the de-

sign decisions ARIES makes that optimize for the proper-

ties of disk and show how they limit the performance of

ARIES on an NVM-based storage device.

No-force In ARIES, the system writes log entries to the

log in storage before any changes to an object are writ-

ten to storage. Then, if a crash occurs, ARIES can redo

the partially completed operation. To hide the latency of

random writes to disk, ARIES implements a no-force pol-

icy, which means the system writes updated pages back to

disk after commit. ARIES flushes redo log entries to disk

in a synchronous sequential write during commit, making

the updates available for the recovery routine to reapply

in case of a failure. In fast NVM-based storage, how-
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Feature Benefits Available in MARS?

Flexible storage management Supports varying length data Yes

Fine-grained locking High concurrency Yes

Partial rollbacks via savepoints Robust and efficient transactions Yes

Operation logging High concurrency lock modes Out of scope

Recovery independence Simple and robust recovery Out of scope

Table 1: ARIES features ARIES-style WAL provides the above features to the rest of the system regardless of storage

technology.

Design option Advantage for disk Implementation Alternative for MARS

No-force Eliminate synchronous Flush redo log entries Force in hardware

random writes to storage on commit at memory controllers

Steal Reclaim buffer space Write undo log entries before Hardware does in-place updates

Eliminate random writes writing back dirty pages Log always holds latest copy

Avoid false conflicts

Pages Simplify recovery and Perform updates on pages Hardware uses pages

buffer management Page writes are atomic Software operates on objects

Log Sequence Simplify recovery Order updates to storage Hardware enforces ordering

Numbers (LSNs) Enable high-level features using LSNs with commit sequence numbers

Table 2: ARIES design decisions ARIES relies on a set disk-centric optimizations to maximize performance on

conventional storage systems. However, these optimizations are a poor fit for the characteristics of storage based on

fast, non-volatile memories.

ever, random writes are no more expensive than sequential

writes, so the value of a no-force policy is much lower.

Steal A steal policy allows the buffer manager to write

dirty pages back to disk before commit. While stealing

greatly improves the performance of ARIES running on

disk, it provides little to no benefit for fast NVM-based

storage. By writing pages back early, the buffer man-

ager can reclaim buffer space during transaction execution

(supporting larger transactions), group writes together to

take advantage of sequential disk bandwidth, and avoid

data races on pages shared by overlapping transactions.

Stealing requires undo logging because it is only safe to

write back dirty pages if copies of old values have been

written to disk. After a crash or abort, the system may use

the undo log entries to recreate the overwritten data.

For disk, the performance benefits greatly outweigh the

overhead of the extra logging. With fast NVMs, because

the performance of random writes and sequential writes

is the same, the overhead of undo logging can actually

hurt overall performance. The cost of writing a log en-

try to storage before making an update occurs on every

udpate, but the benefit of writing pages back early occurs

far less frequently. While stealing eliminates costly seek

time for disk, writing pages back early as part of a larger

write to fast NVM-based storage only helps amortize the

setup/completion cost of an IO request.

Pages and LSNs In ARIES, disk pages are the basic unit

of recovery and each page contains a log sequence num-

ber (LSN). LSNs provide an ordering on disk updates. At

recovery, ARIES uses LSNs to decide which updates to

reapply to bring the system into a consistent state. While

the design of ARIES is not restricted to pages per se,

pages simplify the implementation of recovery. The sys-

tem assumes single page writes are atomic and uses them

as a foundation for larger atomic writes. When the sys-

tem logs an update, it writes the LSN in the same page

as its matching log record, guaranteeing that the two are

updated atomically. To be useful for recovery, LSNs must

be generated with a unique order and must be written out

to disk in that order [17]. This adversely affects perfor-

mance. It also complicates situations where objects span

multiple pages or multiple objects fit in a single page.

Recent work [29] proposes segments as an alternative to

pages, making it possible to efficiently handle objects of

various sizes and copy them directly between the applica-

tion and storage array.

Pages and LSNs are even more restrictive for fast

NVM-based storage arrays because they limit parallelism,

waste bandwidth, and increase latency. Maintaining head-

ers in log records and forcing log records out to disk

in LSN order serializes execution, resulting in under-

utilization of the storage array. Because objects may share

pages, LSNs may artificially order updates when the sys-

tem could in fact perform those updates in parallel. Also,

when objects consume less than a page of storage, the sys-
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tem must pay the additional cost in IO processing to up-

date an entire page. This is particularly wasteful because

fast NVM-based storage has no sector or page restriction

on access size and can handle arbitrarily-sized requests

efficiently.

3.3 Building MARS

We now describe the design of MARS, an alternative

transaction mechanism based on ARIES but adapted to

the characteristics of fast NVM-based storage. MARS re-

lies on our multi-part atomic write primitive, presented in

Section 4, and ensures that the most recent copy of an ob-

ject is always directly accessible, whether the most recent

copy lives at the object’s home location or somewhere in

a log. Using multi-part atomic writes, MARS can elim-

inate the need for pages and LSNs. MARS replaces the

no-force and steal policies designed for disk with more ef-

ficient mechanisms that utilize the internal bandwidth of

the storage array and the flexible interface of our IO prim-

itive. For each design option in Table 2, we propose an

alternative method better suited to fast NVM-based stor-

age.

No-force Instead of performing in-place update asyn-

chronously from software, we implement a force policy

in hardware at the memory controllers. This takes ad-

vantage of Moneta’s large internal bandwidth—32 GB/s

at the memory controllers compared to 4 GB/s PCIe link

bandwidth—and eliminates the extra IO requests required

for commits and write backs. Also, moving write backs

into hardware has other benefits: It eliminates the need

for checkpointing the log, and the system immediately re-

claims the log space. We choose a force policy over no-

force because it allows our hardware to utilize idle cycles,

make better use of limited hardware transaction resources,

and minimize the amount of work needed to be done at re-

covery time.

Steal Instead of writing dirty pages back early, we pro-

pose simply dropping pages from the buffer pool to ac-

quire free space when needed. Our multi-part atomic

write architecture makes this possible: The system first

writes an update out to the log and then proceeds to update

the buffer pool page. Unlike other systems [14, 23, 22],

we do not wait to flush the log at commit. Consequently,

the system can page in the updates from the log later as

needed. To do this, the system must maintain a mapping

of buffer pool pages to log entries, which is possible us-

ing our atomic write interface because software controls

the placement of log entries in the log files.

Pages and LSNs Because fast NVM-based storage di-

rectly supports updates of arbitrary sizes and our IO primi-

tive makes those updates atomic, MARS can eliminate the

use of pages as the basic unit of update. Instead, MARS

can maintain the same contiguous layout of application-

level objects in both storage and main memory. This has

two advantages. First, it avoids the cost of translating

objects back and forth between pages and their native,

in-memory format. Second, because software no longer

needs to intervene on a per-page basis, it enables the use

of DMA and zero-copy IO operations [29].

Our multi-part atomic write interface eliminates the

need for software managed and enforced LSNs. Instead,

the storage array maintains ordering in hardware by as-

signing a unique commit sequence number to a transac-

tion at commit time. This effectively removes the serial-

ization of write requests due to LSNs, allowing log writes

from different transactions to proceed in parallel.

With an implementation based on multi-part atomic

writes, MARS provides the features (shown in Table 1)

that ARIES exports to higher-level software while signif-

icantly reducing software complexity. MARS provides

flexible storage management and fine-grained locking by

making objects directly accessible. Partial rollbacks are

achieved using an abort function provided by our hard-

ware that can rewind to any point in the log. Operational

logging and recovery independence are currently out of

the scope of our atomic write primitive, requiring cus-

tomizations to the interface specific to ARIES. However,

they are a possible topic for future work.

4 Multi-part atomic write architec-

ture

To take advantage of storage array architectures based on

fast NVMs, we present a novel multi-part atomic write

interface that provides efficient and safe updates to stor-

age. Multi-part atomic writes offer a simple, flexible,

and general-purpose way to implement transactions at the

application-level. This section describes our atomic write

interface, highlighting how transactions execute and how

the interface makes the log visible to the application. We

discuss the rationale behind our design.

4.1 The transaction model and interface

Our system provides the means to group multiple write

operations into transactions and ensure they execute atom-

ically and durably. To achieve full ACID semantics, the

application implements consistency and isolation in soft-

ware. The writes in a transaction can be scattered through-

out the storage array and be of any size or alignment. The

total size of data that a transaction can update is limited

only by the space available for storing the log in the stor-

age array.

Applications create and execute transactions using the

commands in Table 3. Each application accessing the
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Command Description

LogWrite(TID, file, offset, data, len, logfile, logoffset) Record a write to the log at the specified log offset.

After commit, copy the data to the offset in the file.

Commit(TID) Commit a transaction.

Abort(TID) Cancel the transaction entirely, or perform a

Abort(TID, logfile, logoffset) partial rollback to a specified point in the log.

AtomicWrite(TID, file, offset, data, len, logfile, logoffset) Create and commit a transaction containing a

single write.

Table 3: Multi-part atomic write commands These commands allow the application to perform atomic and durable

updates to the storage array. LogWrite returns a TID to the user that must be used on subsequent operations in the

same atomic write.

Committed 

Free 

Pending 

LogWrite 

LogWrite or 

Abort(partial) 

Commit 

WriteBack 

Abort 

AtomicWrite 

Figure 1: Transaction state diagram The system tracks

the state of each transaction to guarantee that updates are

atomic and durable.

storage device has a private set of 64 transaction IDs

(TIDs), and the application is responsible for tracking

which TIDs are in use. The commands in the table move

a transaction between three possible states: FREE, PEND-

ING, or COMMITTED (Figure 1).

To create a new transaction with TID T , the applica-

tion issues a LogWrite command with T as the first

parameter. LogWrite records the data, size, and tar-

get location for the write in a log. The user provides a

log file descriptor and a log offset to indicate the desired

position to store the log record. This operation does not

actually modify the contents of the target location. After

the first LogWrite, the state of the transaction changes

from FREE to PENDING, indicating that the transaction

is in progress but not committed. Additional calls to

LogWrite add new writes to the transaction.

The writes in a transaction are not visible to other trans-

actions until after commit. However, the transaction can

see its own writes prior to commit by keeping track of the

log offsets that it associates with each piece of data. After

an initial log write for a particular piece of data, a transac-

tion may update that data again before commit simply by

writing to the correct log location.

To complete a transaction, the application issues

Commit(T ). The storage array assigns the transaction

a commit sequence number that determines the commit

order of this transaction relative to others. When the com-

mand completes, the transaction has logically committed,

and the transaction moves to the COMMITTED state. If

a failure should occur after a transaction logically com-

mits but before the system writes the data back, then the

recovery mechanism will replay the log to successfully

complete the in-place updates.

The hardware can notify the application that the

Commit is complete before the hardware copies the con-

tents of log into their target locations, but during the com-

mit process, reads and writes to the affected areas stall.

This ensures that from the perspective of any application

accessing the storage array, commit occurs atomically.

When the copy is complete, the TID returns to FREE and

the hardware notifies the application that the transaction

finished successfully. At this point, it is safe to read the

updated data from its target locations.

The application can also Abort a transaction, freeing

any log entries associated with it and returning it to FREE.

Our model supports partial rollbacks of transactions by

allowing the user to specify an Abort command with

an offset into the log. The log offset acts as a savepoint:

Any log entries starting from the log offset and going up

through the most recent log entry log will be freed, effec-

tively canceling those updates.

Our system provides flexibility by allowing the ap-

plication to specify atomic write operations in multiple

parts. However, this interface adds some overhead be-

cause each operation requires a separate IO request. To

mitigate this cost, AtomicWrite combines LogWrite

and Commit requests into a single request, allowing the

system to quickly execute transactions that comprise a sin-

gle write or to avoid the separate Commit when it can

identify the final write in a transaction.

The system stores the logs as regular files in the stor-

age array, and the logs may expand or shrink in size as the

working sets of transactions demand. Conventional stor-
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age systems must allocate space for logs as well, but they

often use separate disks to improve performance. Our sys-

tem relies on the log being internal to the storage device,

since our performance gains stem from utilizing the inter-

nal bandwidth of the storage array’s independent memory

banks.

The application manages log space by operating on the

log files directly with POSIX file IO. For example, the

log file can be extended by writing past the end of the

file with write(), and the log can be truncated with

ftruncate().

4.2 Design rationale

Our simple multi-part atomic write model strikes a bal-

ance between implementation complexity and functional-

ity. Our model does not provide full ACID transactions,

only atomicity and durability. In particular, our system

does not provide isolation between transactions or any

locking facilities to mediate access to shared data. The

application must implement those if needed. However,

our system does provide facilities (e.g., updateable log

entries) to make implementing these features easier by

letting the application access and manage the log space

directly. Consequently, transactions may grow in size as

needed and they see the results of their own previous but

uncommitted updates. This is a key feature for supporting

scalable ARIES-style transactions in MARS.

The algorithm our implementation uses to manage and

commit transactions is simple. We use redo logging alone

and always update the target location on commit (i.e.,

we use no-steal and force policies in the memory con-

trollers). The high internal bandwidth of our storage array

and NVMs’ fast random access performance minimizes

the impact of using such a simple logging protocol. It

also simplifies the hardware, since replaying the logs of

committed transactions is sufficient for recovery. Finally,

it avoids the remapping of addresses in hardware that a

steal or no-force policy would require to hide uncommit-

ted updates.

We could implement a more complex transaction model

with conflict detection, locking, roll back, etc., but craft-

ing a one-size-fits-all solution to those problems is not

possible. Atomic writes, however, can accelerate and/or

simplify ARIES- and shadow-page-style schemes that

provide full-fledged ACID transactions in existing appli-

cations. Section 7.2 explores and evaluates this idea in

detail.

5 Related Work

Atomicity and durability are critical to storage system de-

sign, and system designers have explored many different

approaches to providing these guarantees. These include

approaches targeting disks, flash-based SSDs, and non-

volatile main memories (i.e., NVMs attached directly to

the processor) using software, specialized hardware, or a

combination of the two. Below, we describe existing sys-

tems in this area and highlight the differences between

them and the system we describe in this work.

5.1 Disk-based systems

Most disk-oriented systems provide atomicity and dura-

bility via software with minimal hardware support. Many

systems use ARIES-style [21] write-ahead logging to pro-

vide durability, atomicity, and to exploit the sequential

performance that disks offer. Our system uses write-ahead

logging at the memory controllers. ARIES-style logging

is ubiquitous in storage and database systems today.

Recent work on segment-based recovery [29] revisits

the design of write-ahead logging for ARIES with the

goal of providing efficient support for application-level

objects. By removing LSNs on pages, segment-based re-

covery enables DMA or zero-copy IO for large objects

and request reordering for small objects. Our system

can take advantage of the same optimizations because the

hardware manages logs without using LSNs and without

modifying the format or layout of logged objects.

Traditional implementations of write-ahead logging are

a performance bottleneck in databases running on paral-

lel hardware. Aether [17] implements a series of opti-

mizations to lower the overheads arising from frequent

log flushes, log-induced lock contention, extensive con-

text switching, and contention for centralized, in-memory

log buffers. Fast NVM-based storage only exacerbates

these bottlenecks, but our system eliminates them almost

entirely. Because we offload logging to hardware, we

remove lock contention and the in-memory log buffers.

With fast storage and a customized driver, our system

minimizes context switching and log flush delays.

Stasis [28] uses write-ahead logging to support build-

ing persistent data structures. Stasis provides full ACID

semantics and concurrency for building high-performance

data structures such as hash tables and B-trees. It would

be possible to port Stasis to use our atomic write support,

but achieving good performance would require significant

changes to its internal organization.

Our system provides atomicity and durability at the de-

vice level. The Logical Disk [12] provides a similar inter-

face and presents a logical block interface based on atomic

recovery units (ARUs) [14] – an abstraction for failure

atomicity for multiple writes. Like our system, ARUs

do not provide concurrency control. Unlike our system,

ARUs do not provide durability, but they do provide iso-

lation.

File systems including WAFL [15] and ZFS [11] use
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shadow paging to perform atomic updates. Although fast

NVMs do not have the restrictions of disk, the atomic

write support in our system would help make these tech-

niques more efficient. Recent work on BPFS [10] extends

shadow paging to work in systems that support finer-grain

atomic writes. They target non-volatile main memory (see

below), but our atomic write support could implement

their scheme as well.

Researchers have provided hardware-supported atom-

icity for disks. Mime [7] is a high-performance storage ar-

chitecture that uses shadow copies for this purpose. Mime

offers sync and barrier operations to support ACID se-

mantics in higher-level software. Like our system, Mime

is implemented in the storage controller, but its implemen-

tation is more complex since it maintains a block map for

copy-on-write, and maintains more metadata to keep track

of the resulting versions.

5.2 Flash-based SSDs

Flash-based SSDs offer improved performance relative to

disk, making latency overheads of software-based sys-

tems more noticeable. They also include complex con-

trollers and firmware that use remapping tables to provide

wear-leveling and to manage flash’s idiosyncrasies. The

controller provides a natural opportunity to provide atom-

icity and durability guarantees, and several groups have

done so.

Transactional Flash (TxFlash) [23] extends a flash-

based SSD to implement atomic writes in the SSD con-

troller. TxFlash leverages flash’s fast random write per-

formance and the copy-on-write architecture of the FTL

to perform atomic updates to multiple, whole pages with

minimal overhead using “cyclic commit.” In contrast,

fast NVMs are byte-addressable and SSDs based on

these technologies can efficiently support in-place up-

dates. Consequently, our system logs and commits re-

quests differently and the hardware can handle arbitrarily

sized and aligned requests.

Recent work from FusionIO [22] proposes an atomic-

write interface in a commercial flash-based SSD. Their

system uses a log-based mapping layer in the drive’s FTL,

but it requires that all the writes in one transaction be con-

tiguous in the log. This prevents them from supporting

multiple, simultaneous transactions.

5.3 Non-volatile main memory

The fast NVMs that our system targets are also candidates

for non-volatile replacements for DRAM, potentially in-

creasing storage performance dramatically. Using non-

volatile main memory as storage will require atomicity

guarantees as well, and several groups explored options

in this space.

Recoverable Virtual Memory (RVM) [26] provides per-

sistence and atomicity for regions of virtual memory. It

buffers transaction pages in memory and flushes them to

disk on commit. RVM only requires redo logging because

uncommitted changes are never written early to disk, but

RVM also implements an in-memory undo log so that it

can quickly revert the contents of buffered pages without

rereading them from disk when a transaction aborts. Rio

Vista [19] builds on RVM but uses battery-backed DRAM

to make stores to memory persistent, eliminating the redo

log entirely. Both RVM and Rio Vista are limited to trans-

actions that can fit in main memory.

More recently, Mnemosyne [30] and NV-heaps [9] pro-

vide transactional support for building persistent data

structures in byte-addressable, non-volatile memories.

Both systems map NVMs attached to the memory bus

into the application’s address space, making it accessible

by normal load and store instructions. Our atomic write

hardware support could help implement a Mnemosyne- or

NV-Heaps-like interface on a PCIe-attached storage de-

vice, but the details of the implementation would be very

different.

6 Implementation

In this section, we present the details of the implementa-

tion of our interface described in Section 4, including how

we issue commands to the array, how our software layer

makes logging flexible and efficient, and how the hard-

ware implements a distributed scheme for redo logging,

commit, and recovery. We also discuss testing the system.

6.1 Software support

To make logging transparent and flexible, we leverage

the existing software stack. First, we extend a user-space

driver to implement our transaction API (see Section 4).

In addition, we utilize the file system to manage the logs,

exposing them to the user and providing an interface that

lets the user dictate the layout of the log in storage.

User-space driver Our SSD provides a highly-

optimized (and unconventional) interface for accessing

data [6]. It provides a user-space driver that allows the ap-

plication to communicate directly with the array via a pri-

vate set of control registers, a private DMA buffer, and a

private set of 64 tags that identify in-flight operations. To

enforce file protection, the user space driver works with

the kernel and the file system to download extent and per-

mission data into Moneta, which then checks that each

access is legal. As a result, accesses to file data do not

involve the kernel at all in the common case. Modifica-

tions to file metadata still go through the kernel. Appli-

cations can use the new interface without modification,
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or even recompilation, since the library interposes on file

access calls via LD PRELOAD. The user space interface

lets Moneta perform IO operations very quickly: 4 kB

reads and writes execute in ∼7 µs.

Our system uses this user space interface and includes

the hardware permission checks on file accesses. We

modify the user-space driver to implement our transac-

tion API and provide each application with a private set

of 64 virtual transaction IDs (TIDs), eliminating synchro-

nization across applications. As a result, applications is-

sue LogWrite, Commit, Abort, and AtomicWrite

requests to the storage array from user space, avoiding

costly interaction with the operating system.

File system managed logs Our system creates and man-

ages a log for each transaction through the file system and

exposes these logs to the user. Our system uses two types

of files to maintain a log: a log file and a metadata file.

The log file contains redo data as part of a transaction

from the application. The user creates a log file and can

extend or truncate the file, based on the application’s log

space requirements, using regular file IO.

The metadata file records information about each up-

date including the target location for the redo data upon

transaction commit. A trusted process called the metadata

handler creates and manages metadata files. By commu-

nicating with this process, the user space driver can “in-

stall” and “remove” metadata files for the channel as the

sizes of transactions scale. An install operation allocates

space for the system to record transaction metadata. When

an application ends, the user space driver removes all in-

stalled metadata files, releasing them back to the metadata

handler.

The system protects the metadata files from modifica-

tion by an application. If a user could manipulate the

metadata, the log space could become corrupted and un-

recoverable. Even worse, the user might direct the hard-

ware to update arbitrary storage locations, circumventing

the protection of the OS and file system.

Separating the metadata from the redo data allows ap-

plications to access the redo data in the same manner as

accessing regular application data. In addition, using files

to store metadata enables scalable transactions by obviat-

ing the need for partitioning the storage device.

To take advantage of the parallelism and internal band-

width of Moneta, the user space driver ensures the data

offset and log offset for LogWrite and AtomicWrite

requests, when translated from logical to physical ad-

dresses, target the same memory controller in the storage

array. We can make this guarantee by forcing the file sys-

tem to allocate space in extents that are aligned to and in

multiples of Moneta’s 64 kB stripe width. With XFS, we

achieve this by setting the stripe width parameter (meant

for RAID devices) with mkfs.xfs.

6.2 Hardware support

The implementation of our atomic write interface divides

functionality between two types of hardware components.

The first is a logging module, which we call the logger

(the gray boxes to the right of the dashed line in Figure 2),

that resides at each of the system’s eight memory con-

trollers and handles logging for the local controller. The

second is a set of modifications to the central controller

(the gray boxes to the left of the dashed line in Figure 2)

that orchestrates operations across the eight logging mod-

ules. Below, we describe the layout of the log and the

components and protocols the system uses to coordinate

logging, commit, and recovery.

Log structure Figure 3 shows an example log for a

transaction at a logger. An entry in a transaction table

points to an entry in a metadata file. Each metadata en-

try contains information about an entry in a log file and a

pointer to the next metadata entry.

When the metadata handler installs a metadata file, the

hardware divides it into 32 B metadata entries. Each

metadata entry contains information about a log entry.

Each metadata entry contains an address to the next meta-

data entry for the same transaction. Therefore, the log for

a particular transaction is simply a linked list of metadata

entries.

The system reserves a small portion (2 kB) of the stor-

age at each memory controller for a transaction table. The

transaction table stores the state for up to 64 transactions.

Each entry in the transaction table includes the status of

the transaction, a sequence number, the address of the

head metadata entry in the log, and the number of entries

in the log.

Distributed logging Each logger module independently

performs logging, commit, and recovery operations and

handles accesses to the 8 GB of NVM storage at the mem-

ory controller.

The logger implements LogWrite, AtomicWrite,

Commit, Abort, and log recovery operations. The log-

ger sits between the ring interface and the memory con-

troller, allowing it to intercept operations and issue re-

quests to the memory controller to manipulate log data

and metadata.

Before an application can make a LogWrite or

AtomicWrite request, it must first direct the metadata

handler to install a metadata file. The logger maintains a

free list of metadata entries for each channel in storage.

When the logger divides the metadata file into metadata

entries, it creates a linked list of metadata entries in stor-

age by writing the pointer field for each metadata entry.

The logger only maintains the points to the head and tail

of the free list for each channel and, therefore, can scale

with the number of metadata entries.

To begin a new transaction, an application must
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Figure 2: SSD controller architecture To support transactions, our system adds hardware support (gray boxes) to
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a scoreboard to track the status of in-flight transactions. Eight loggers perform distributed logging, commit, and

recovery at each memory controller.
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TID 54 is in the FREE state.
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have access to a previously created log file. As men-

tioned in Section 6.1, the application maintains the log

file and specifies a log offset for each LogWrite or

AtomicWrite request.

For each LogWrite request, the logger allocates a

metadata entry, copies the data to the log offset, records

the request information in the metadata entry, and then

appends the metadata entry to the log.

For an AtomicWrite operation, the logger writes the

data to the log and immediately marks the transaction

COMMITTED, avoiding the extra delay required to coor-

dinate across multiple memory controllers (see next sub-

section).

The logger implements Commit by waiting for all out-

standing writes to the log area to complete and then mark-

ing the transaction as COMMITTED.

There are two kinds of Abort operations that the log-

ger performs: complete and partial. For a complete

Abort operation, the logger clears the transaction status

and deallocates the metadata entries. On a partial Abort,

the logger frees the metadata entries until the specified

savepoint and makes the savepoint the new head of the

transaction’s metadata linked list.

A transaction is fully committed when all loggers have

marked the transaction as COMMITTED in their transac-

tion tables. The central controller (see next subsection)

then directs each logger to apply their respective log. To

apply the log, the logger reads each metadata entry in the

log linked list. The transaction table indicates the meta-

data entry at the head of the linked list, as well as the

number of entries in the list. For each metadata entry,

the logger copies the redo data from the log offset to its

destination address. During log application, the logger

suspends other read and write operations to make log ap-

plication appear atomic. At the end of log application, the

logger deallocates the transaction’s metadata entries.

Since logging and data updates occur locally at each

memory controller, logging and commit bandwidth scale

with the number of controllers.

The central controller A single transaction may re-

quire the coordinate efforts of one or more memory

controllers. The central controller (the left hand por-

tion of Figure 2) coordinates the concurrent execution of

LogWrite, AtomicWrite, Commit, Abort, and log

recovery commands across the loggers. The central con-

troller also handles AtomicWrite commands. If an

AtomicWrite specifies a write that is within a stripe

of 8 kB at a single memory controller, then the central

controller sends the AtomicWrite directly to the tar-

get logger. Otherwise, the central controller breaks the

AtomicWrite up into the appropriate LogWrite com-

mands followed by a Commit. In the first case, the cen-

tral controller avoids the extra latency to coordinate the

commit across memory controllers. In either case, system

avoids an extra IO request for an explicit Commit.

Three hardware components work together to imple-

ment transactional operations. First, the TID manager

maps virtual TIDs from application requests to physical

TIDs and tracks the transaction commit sequence number

for the system. Second, the transaction scoreboard tracks

the state of each transaction and enforces ordering con-

straints during commit and recovery. Finally, the trans-

action status table exports a set of memory-mapped IO

registers that the host system interrogates during interrupt

handling to identify completed transactions.

The central controller assigns a physical TID to in-

coming LogWrite and AtomicWrite requests, unless

they have already received a physical TID from a previous

request.

To perform a LogWrite the central controller

breaks up requests along stripe boundaries, sends local

LogWrites to affected memory controllers, and awaits

their completion. To maximize performance, our system

allows multiple LogWrites from the same transaction to

be in-flight at once. If the LogWrites are to disjoint ar-

eas, they will behave as expected. However, if they over-

lap, the results are unpredictable because parts of two re-

quests may arrive at loggers in different orders. In those

cases, the application can enforce an ordering by issuing a

barrier command that will force outstanding LogWrite

requests to finish before proceeding.

On Commit, the central controller increments the

global transaction sequence number and broadcasts a

commit command with the sequence number to the mem-

ory controllers that received LogWrites. The loggers

respond as soon as they have completed any outstanding

LogWrite operations and have marked the transaction

as committed. When the central controller receives all re-

sponses, it signals the loggers to begin applying the log

and simultaneously notifies the application that the trans-

action has committed. Notifying the application before

the loggers have finished applying the logs hides part of

the log application latency. This is safe since only a mem-

ory failure (e.g., a failing NVM memory chip) can prevent

log application from eventually completing. In that case,

we assume that the entire storage device has failed and the

data it contains is lost (see Section 6.3).

Implementation complexity Adding support for atomic

writes to the baseline system required only a modest in-

crease in complexity and hardware resources. The Ver-

ilog implementation of the logger required 1372 lines, ex-

cluding blank lines and comments. The changes to the

central controller are hard to quantify. Once placed and

routed on the FPGAs, adding the eight loggers and chang-

ing the central controller increased hardware consumption

by 26%.
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6.3 Recovery

Our system coordinates recovery operations in the kernel

driver rather than in hardware to minimize complexity.

There are two problems it needs to solve: The first is that

some memory controllers may have marked a transaction

as COMMITTED while others have not. In this case, the

transaction must abort. Second, the system must apply the

transaction in the correct order (as given by their commit

sequence numbers).

On boot, the driver scans the transaction tables at each

memory controller to assemble a complete picture of

transaction state across all the controllers. It identifies the

TIDs and sequence numbers for the transactions that all

loggers have marked as COMMITTED and sorts them by

sequence number. The kernel then issues a kernel-only

WriteBack command for each of these TIDs that trig-

gers log replay at each logger. Finally, it issues Abort

commands for all the other TIDs. Once this is complete,

the array is in a consistent state, and the driver makes the

array available for normal use.

6.4 Testing and verification

To verify the atomicity and durability of our multi-part

atomic write interface, we added hardware support to em-

ulate system failure and performed failure and recovery

testing. This presents a challenge since the DRAM our

prototype uses is volatile. To overcome this problem, we

added support to force a reset of the system, which imme-

diately suspends system activity. During system reset, we

keep the memory controllers active to send refresh com-

mands to the DRAM in order to emulate non-volatility.

We assume the system includes capacitors to complete

memory operations that the memory chips are in the midst

of performing, just as many commercial SSDs do. To test

recovery, we send a reset from the host while running a

test, reboot the host system, and run our recovery pro-

tocol. Then, we run an application-specific consistency

check to verify that there were no partial writes are visi-

ble.

We used two workloads during testing. The first work-

load consists of 16 threads each repeatedly performing an

AtomicWrite to its own 8 kB region. Each write com-

prises a repeated sequence number that increments with

each write. To check consistency, the application reads

each of the 16 regions and verifies that they contain only

a single sequence number and that that sequence num-

ber equals the last committed value. In the second work-

load, 16 threads continuously inserting and deleting nodes

from our B+tree. After reset, reboot, and recovery, the ap-

plication runs a function to verify the consistency of the

B+tree.

We ran the workloads over a period of a few days, in-

terrupting them periodically. The consistency checks for

both workloads passed after every reset and recovery.

7 Results

This section measures the performance of our multi-part

atomic write primitive and evaluates its impact on MARS

as well as other applications that require strong consis-

tency guarantees. We first evaluate our system through

microbenchmarks that measure the basic performance

characteristics. Then, we present results for MARS rel-

ative to a traditional ARIES implementation, highlight-

ing the performance improvement in a database setting.

Finally, we show results for a set of three complex per-

sistent data structures and MemcacheDB [8], a persistent

key-value store for web applications.

7.1 Latency and bandwidth

Implementing atomic writes in hardware reduces the over-

head of the multi-phase write algorithms (e.g., writing a

log entry and then marking it with a commit record) that

applications traditionally use to write reliably to disk.

Figure 4 shows the latencies of each stage of a

512 B atomic write implemented three different ways:

Using multiple, synchronous non-atomic writes (“Sof-

tAtomic”), using LogWrite followed by a Commit

(“LogWrite+Commit”), and using AtomicWrite. As

a reference, we include the latency breakdown for a nor-

mal write. For SoftAtomic we buffer writes in memory,

flush the writes to a log, write a commit record, and then

write the data in place. We used a modified version of

XDD [31] to collect the data.

The figure shows the transitions between hardware and

software and two different latencies for each operation.

The first is the commit latency between command initi-

ation and when the application learns that the transaction

logically commits (marked with “C”). For applications us-

ing atomic writes to implement transactions (e.g., writing

to a log), the commit latency is the critical latency. The

second latency, the write back latency is from command

initiation to the completion of the write back (marked with

“WB”). At this point the TID becomes available for use

again.

The largest savings (41.4%) come from reducing the

number of DMA transfers from three for SoftAtomic to

one for the others (LogWrite+Commit takes two IO op-

erations, but the Commit does not need a DMA). Using

AtomicWrite to eliminate the separate Commit oper-

ation reduces latency by an additional 41.8%. Because

an aligned 512 B access targets a single memory con-

troller, the hardware can perform the atomic update at a
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Figure 4: Latency breakdown for 512 B atomic writes Performing atomic writes without hardware support (top)

requires three IO operations and all the attendant overheads. Using LogWrite and Commit reduces the overhead

and AtomicWrite reduces it further by eliminating another IO operation. The latency cost of using AtomicWrite

compared to normal writes is almost negligible.
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Figure 5: Transaction throughput By moving the log

processing into the storage device, our system is able to

achieve transaction throughput nearly equal to normal,

non-atomic write throughput.
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Figure 6: Internal bandwidth Hardware support for

atomic writes allows our system to exploit the internal

bandwidth of the storage array for logging and devote the

PCIe link bandwidth to transferring useful data.

13



single logger, eliminating the coordination overhead with

the central controller.

Figure 5 plots the effective bandwidth (i.e., excluding

writes to the log) for atomic writes ranging in size from

512 B to 512 kB. Our scheme increases throughput by be-

tween 2 and 3.8× relative to SoftAtomic. The data also

show the benefits of AtomicWrite for small requests:

transactions smaller than 4 kB achieve 92% of the band-

width of normal writes in the baseline system.

Figure 6 shows the source of the performance improve-

ment for multi-part atomic writes. It plots the total bytes

read or written across all the memory controllers inter-

nally. For writes, internal and external bandwidth are the

same. SoftAtomic achieves the same internal bandwidth

because it saturates the PCIe bus, but roughly half of that

bandwidth goes to writing the log. LogWrite+Commit

and AtomicWrite consume much more internal band-

width (up to 5 GB/s), allowing them to saturate the PCIe

link with useful data and better utilize the memory con-

trollers.

7.2 MARS Evaluation

This section evaluates the benefits of MARS compared to

a baseline implementation of ARIES. For this experiment,

our benchmark transactionally swaps objects (pages) in a

large database-style table.

The baseline implementation of ARIES performs the

undo and redo logging required for steal and no-force. It

includes a checkpoint thread that manages a pool of dirty

pages, flushing pages to the storage array as the pool fills.

Our MARS implementation uses multi-part atomic

writes to eliminate no-force and steal. The hardware im-

plements a force policy at the memory controllers and we

rely on the log to hold the most recent copy of an ob-

ject prior to commit, giving us the benefits of a steal pol-

icy without requiring undo logging. Using a force pol-

icy in hardware eliminates the extra IO requests needed to

commit and write back data. Removing undo logging and

write backs reduces the amount of data sent to the storage

array over the PCIe link by a factor of two.

Figure 7 shows the throughput, measured in transac-

tions per second, for between 1 and 16 threads concur-

rently swapping objects of between 4 and 64 kB. The solid

lines show the performance of MARS using atomic writes

and the dashed lines show the performance of the baseline

implementation of ARIES. For small transactions, where

logging overheads are largest, our system outperforms

ARIES by as much as 3.7×. For larger objects, the gains

are smaller—3.1× for 16 kB objects and 3× for 64 kB. In

these cases, ARIES makes better use of the available PCIe

bandwidth, compensating for some of the overhead due to

additional logs writes and write backs. MARS also scales

better than ARIES: We see 1.6× speedup going from 4
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Figure 7: Comparison of MARS and ARIES Because

fast NVMs have good random write performance, there is

little benefit to no-force and steal transactions. With hard-

ware support, MARS eliminates undo logging and write

backs in order to maximize bandwidth and minimize re-

source contention.

threads to 8 threads for 4 kB objects, compared to a 0.5%

performance loss for ARIES.

7.3 Persistent data structure performance

We evaluate our system’s impact on several light-weight

persistent data structures designed to take advantage of

our user space driver and transactional hardware support:

a hash table, a B+tree, and a large scale-free graph that

supports “six degrees of separation” queries.

The hash table implements a transactional key-value

store. It resolves collisions using separate chaining, and

it uses per-bucket locks to handle updates from concur-

rent threads. Typically, a transaction requires only a sin-

gle write to a key-value pair. But, in some cases an update

requires modifying multiple key-value pairs in a bucket’s

chain. The footprint of the hash table is 32 GB, and we

use 25 B keys and 1024 B values for this experiment. Each

thread in the workload repeatedly picks a key at random

within a specified range and either inserts or removes the

key-value pair depending on whether or not the key is al-

ready present.

The B+tree also implements a 32 GB transactional key-

value store. It caches the index, made up of 8 kB nodes,

in memory for quick retrieval. To support a high degree of

concurrency, it uses Bayer and Scholnick’s algorithm [1]

based on node safety and lock coupling. The B+tree is a

good case study for our system because transactions can

be complex: An insertion or deletion may cause splitting

or merging of nodes throughout the height of the tree.

Each thread in this workload repeatedly inserts or deletes
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Figure 8: Workload performance Each set of lines compares the throughput of our (a) B+tree, (b) hash table, and (c)

Six Degrees workloads for Unsafe, AtomicWrite, and SoftAtomic versions as we scale the number of threads.

a key-value pair at random.

Six Degrees operates on a large, scale-free graph repre-

senting a social network. It alternately performs Dijkstra’s

algorithm to find six-edge paths and modifies the graph by

inserting or removing an edge. We use a 32 GB footprint

for the undirected graph and store it in adjacency list for-

mat. Rather than storing a linked list of edges for each

node, we use a linked list of edge pages, where each page

contains up to 256 edges. This allows us to read many

edges in a single request to the storage array. Each trans-

actional update to the graph acquires locks on a pair of

nodes and modifies each node’s linked list of edges.

Figure 8 shows the performance for three implementa-

tions of each workload running with between 1 and 16

threads. The first implementation, “Unsafe,” does not

provide any durability or atomicity guarantees and repre-

sents an upper limit on performance. For all three work-

loads, adding ACID guarantees in software reduces per-

formance by between 28 and 46% compared to Unsafe.

For the B+tree and hash table, our atomic write support

sacrifices just 13% of the performance of the unsafe ver-

sions on average. Six Degrees, on the other hand, sees

a 21% performance drop with atomic writes because its

transactions are longer and modify multiple nodes. Us-

ing atomic writes also improves scaling slightly. For in-

stance, the AtomicWrite verion of HashTable closely

tracks the performance improvements of the Unsafe ver-

sion, with only an 11% slowdown at 16 threads while the

SoftAtomic version is 46% slower.

7.4 MemcacheDB performance

To understand the impact of hardware transactional sup-

port at the application level, we integrated our hash

table into MemcacheDB [8], a persistent version of

Memached [20], the popular key-value store. The orig-

inal Memcached uses a large hash table to store a read-

only cache of objects in memory. MemcacheDB supports

safe updates by using Berkeley DB to make the key-value

store persistent. MemcacheDB uses a client-server archi-

tecture, and, for this experiment, we run it on a single
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Figure 9: MemcacheDB performance Adding hardware

support for atomicity increases performance by 1.7× for

eight clients, and comes within 15% of matching the per-

formance of an unsafe version that provides no durability.

computer acting as both clients and server.

Figure 9 compares the performance of Mem-

cacheDB using our hash table as the key-value store

(AtomicWrite) to versions that use volatile DRAM, a

BDB database (labeled “BDB”), an in-storage key-value

store without atomicity guarantees (“Unsafe”), and a

SoftAtomic version. For eight threads, our system is 41%

slower than DRAM and 15% slower than the Unsafe

version. It is also 1.7× faster than the SoftAtomic im-

plementation and 3.8× faster than BDB. Note that BDB

provides many advanced features that add overhead but

that MemcacheDB does not need and our implementation

does not provide. Beyond eight threads, performance

degrades because the application uses a single lock for

updates.

8 Conclusion

Existing transaction mechanisms such as ARIES were de-

signed to exploit the characteristics of disk, making them

a poor fit for storage arrays of fast, non-volatile memo-

ries. We presented a redesign of ARIES, called MARS,

that provides the same set of features to the application
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but utilizes a novel multi-part atomic write operation that

takes advantage of the parallelism and performance in fast

NVM-based storage. We demonstrated MARS and multi-

part atomic writes in our prototype storage array. Com-

pared to transactions implemented in software, our sys-

tem increases effective bandwidth by up to 3.8× and de-

creases latency by 2.9×. When applied to MARS, multi-

part atomic writes yield a 3.7× performance improvement

relative to a baseline implementation of ARIES requir-

ing both redo and undo logging of pages. Across a range

of persistent data structures, multi-part atomic writes im-

prove operation throughput by an average of 1.4×.
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