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A MODEL-THEORETIC GENERALIZATION OF THE
ELEKES-SZABÓ THEOREM

ARTEM CHERNIKOV AND SERGEI STARCHENKO

Abstract. We prove a generalizations of the Elekes–Szabó theo-
rem [5] for relations definable in strongly minimal structures that
are interpretable in distal structures.

1. Introduction and preliminaries

Our notation is mostly standard. For n ∈ N we denote by [n] the
set [n] = {1, . . . , n}. If X is a set and n ∈ N, then we write A ⊆n X to
denote that A is a subset of X with |A| ≤ n. Given a binary relation
E ⊆ X × Y and a ∈ X , we write Ea = {b ∈ Y : (a, b) ∈ E} to denote
the fiber of E at a. Similarly, given b ∈ Y , we write Eb = {a ∈ X :
(a, b) ∈ E} to denote the fiber of E at b.
As usual, for functions f, g : N → R we write

• f(n) = O(g(n)) if there is positive C ∈ R and n0 ∈ N such that
f(n) ≤ Cg(n) for all n > n0;

• f(n) = Ω(g(n)) if there is positive C ∈ R and n0 ∈ N such that
f(n) ≥ Cg(n) for all n > n0.

We will use freely some standard model-theoretic notions such as
saturated models, algebraic closure (by which we will always mean the
algebraic closure in Meq) and Morley rank (see e.g. [9, 15]).

Definition 1.1. (1) We say that a subset F ⊆ X × Y is cartesian if
I × J ⊆ F for some infinite I ⊆ X, J ⊆ Y .

(2) We say that a subset F ⊆ S1 × S2 × · · · × Sk is cylindrical if it is

cartesian as a subset of Si×Ŝi for some i ∈ [k], where Ŝi =
∏

j 6=i Sj.

Let M be a sufficiently saturated first order structure and let X, Y, Z
be strongly minimal sets definable in M. Let F ⊆ X × Y × Z be a
definable set of Morley rank 2. As usual, we say that ā = (a1, a2, a3) ∈

Chernikov was supported by the NSF Research Grant DMS-1600796, by the NSF
CAREER grant DMS-1651321 and by an Alfred P. Sloan Fellowship.

Starchenko was supported by the NSF Research Grant DMS-1500671.
1

http://arxiv.org/abs/1801.09301v1


2 ARTEM CHERNIKOV AND SERGEI STARCHENKO

F is generic in F over a set of parameters C ⊆ X×Y ×Z if RM(ā/C) =
RM(F ) = 2.

Definition 1.2. We say that a relation F as above is group-like if there
is a group G of Morley rank 1 and degree 1 (hence, abelian) definable
in M over a small set C, elements g1, g2, g3 ∈ G, and α1 ∈ X , α2 ∈ Y ,
α3 ∈ Z such that αi and gi are inter-algebraic over C for all i ∈ [3] (i.e.
αi ∈ acl(giC) and gi ∈ acl(aiC)), ᾱ = (α1, α2, α3) ∈ F is generic in F
over C and g1 · g2 · g3 = 1 in G.

We can now state our main result.

Theorem 1.3 (Main Theorem). Let X, Y, Z be strongly minimal sets
definable in a sufficiently saturated structure M and let F ⊆ X×Y ×Z
be a definable set of Morley rank 2. Assume in addition that M is
interpretable in a distal structure. Then one of the following holds.

(a) There is ε > 0 such that for all A ⊆n X,B ⊆n Y, C ⊆n Z we have

|F ∩ A× B × C| = O(n2−ε).

(b) F is group-like.
(c) F is cylindrical.

Remark 1.4. Theorem 1.3 can be viewed as a generalization of the
Elekes-Szabó Theorem [5] which established it for M the field of com-
plex numbers (a strongly minimal structure), which is interpretable in
the field of reals — a distal structure.

Remark 1.5. Various improvements of the Elekes-Szabó theorem, in-
cluding explicit bounds on ε, have been obtained [4, 12, 17]. In our
general situation we don’t optimize the bounds, even though they can
be calculated explicitly in terms of the size of the available distal cell
decomposition, see Section 2.1.

Remark 1.6. It can be shown that if the Morley degree of F is 1, then
the three cases in Theorem 1.3 are mutually exclusive.

The proof of Theorem 1.3 consists of three main ingredients: a bound
on the number of edges for non-cartesian relations in our context (i.e.
Theorem 2.15 established in Section 2 using local stability and the dis-
tal cutting lemma from [1]); Hrushovski’s group configuration theorem
in stable theories; and the construction of the group configuration in the
cartesian case connecting the two aforementioned results. In Section
3 this last part is reduced to a certain dichotomy for binary relations
between sets of rank 2, which this dichotomy is proved in Section 4).
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2. Bounds for non-cartesian relations

2.1. Zarankiewicz for distal relations. In this section we demon-
strate that the proof of the incidence bound due to Elekes and Szabó
in [5] generalizes to arbitrary graphs definable in distal structures. Dis-
tal structures constitute a subclass of purely unstable NIP structures
[14] that contains all o-minimal structures, various expansions of the
field Qp and the valued differential field of transseries (we refer to the
introduction of [3] for a general discussion of distality and references).
It is demonstrated in [1, 3] that many of the results in semialgebraic
incidence combinatorics generalize to relations definable in distal struc-
tures.
The following definition abstracts the conclusion of the cutting lemma

in incidence geometry.

Definition 2.1. Let U, V be infinite sets, and E ⊆ U × V . We say
that E is admits cuttings with exponent D if there is some constant
c ∈ R satisfying the following. For any A ⊆n U and any r ∈ R with
1 < r < n there are some sets V1, . . . , Vt ⊆ V covering V with t ≤ crD

and such that each Vi is crossed by at most n
r
of the fibers {Ea : a ∈ A}

(as usual, we say that Ea crosses a set V ′ ⊆ V if both Ea ∩V ′ 6= ∅ and
V ′ 6⊆ Ea).

For our application here, we will only need the following result about
distality.

Fact 2.2. (1) [1, 2] Assume that E is definable in a distal structure.
Then it admits a distal cell decomposition with exponent D for
some D ∈ N (in the sense of [1, Definition 2.6]).

(2) [1, Theorem 3.1] Assume that E admits a distal cell decomposition
with exponent D. Then E admits cuttings with exponent D.

As usual, given s, t ∈ N we say that a bipartite graph E ⊆ U × V is
Ks,t-free if it does not contain a copy of the complete bipartite graph
Ks,t with its parts of size s and t, respectively.

Fact 2.3. Let G = (U, V, E) be a finite Ks,t-free bipartite graph. Then:

(1) [8] |E| ≤ s
1

t |U |1−
1

t |V |+ t|U | = O(|U |
t−1

t |V |+ |U |);
(2) every complete bipartite subgraph of E has at most O (|U | + |V |)

edges.

The following theorem is similar to [5, Theorem 9].

Theorem 2.4. Let E ⊆ U × V be Ks,t-free and assume that E admits
cuttings with exponent D. Then for any 0 < ε < t−1

t(Dt−1)
and α :=



4 ARTEM CHERNIKOV AND SERGEI STARCHENKO

D(t−1)
Dt−1

− ε, β := t (1− α) = t(D−1)
Dt−1

+ tε, we have

|E ∩A×B| ≤ c
(

|A|α |B|β + |A|+ |B| log (2 |A|)
)

for all finite A ⊆ U,B ⊆ V and some c = c (s, t, ε,D).

Proof. We follow closely the proof of [5, Theorem 9].
Let s, t, D, ε be given by assumption. We fix a sufficiently large r to

be determined later. Let A ⊆m U,B ⊆n V be given.
Case 1. If m ≤ r, then |E ∩A×B| ≤ mn ≤ rn, so the bound

holds with any c ≥ r.

Case 2. Assume r
D

1−αm ≥ nt. By Fact 2.3(1),

|E ∩ A× B| ≤ c1

(

|A|+ |A|1−
1

t |B|
)

for some c1 = c1 (s, t). Hence in this case

|E ∩A×B| ≤ c1

(

m+m1− 1

t

(

r
D
β m

1

t

))

= c1

(

1 + r
D
β

)

m

— which satisfies the bound with c large enough compared to r.

Case 3. In the remaining case we have r < m < r
−D
1−αnt.

As E admits cuttings with exponent D, there is some constant c2 =
c2 (E) and a covering V1, . . . , VM of V by M ≤ c2r

D parts, such that
each part is cut by at most m

r
of the sets from {Ea : a ∈ A}.

We have

(∗) m < r−Dmαnt(1−α) = r−Dmαnβ.

Let Bi := B ∩ Vi, Ai := {a ∈ A : Ea cuts Vi}, ni := |Bi| , mi := |Ai|.
Then M ≤ c2r

D,
∑

ni = n and mi ≤
m
r
for all i.

Assume that b ∈ Ea for some b ∈ Bi and a /∈ Ai. Then Ea doesn’t
cut Bi, hence Bi ⊆ Ea. Hence, by Fact 2.3(2), for every i ≤ M we have
|E ∩ (A \ Ai)×Bi| ≤ c3 (|A \ Ai|+ |Bi|) ≤ c3 (m+ n). Besides, for
every i, we may estimate |E ∩ Ai × Bi| by the inductive assumption.
Putting it all together and using the inductive assumption, we have:

|E ∩A× B| =
M
∑

i=1

|E ∩ Ai × Bi|+
M
∑

i=1

|E ∩ (A \ Ai)×Bi|

≤
M
∑

i=1

c
(

mα
i n

β
i +mi + ni

)

+Mc3 (m+ n) ,

and the proof can be concluded following the final estimate in the proof
of [5, Theorem 9] verbatim. �
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Remark 2.5. The proof goes through under the weaker assumption that
the combinatorial dimension of E is ≤ t, as in [5], but we won’t need
it here.

Corollary 2.6. If E admits cuttings with exponent D for some D ∈ N

and E is Ks,2-free for some s ∈ N, then there is some δ = δ (E) > 0

such that for all A ⊆n U,B ⊆n V we have |E (A,B)| = O(n
3

2
−δ).

Proof. By Theorem 2.4 with t = 2, we get 3
2
−(α+ β) = 1

2(2D−1)
−ε := δ,

hence taking 0 < ε < 1
2(2D−1)

we can choose a sufficiently large constant

c that works. �

This applies in particular to relations definable in C, giving a version
of the theorem of Tóth [16] with a weaker bound.

2.2. Local stability. For the rest of Section 2 we assume that M is
a sufficiently saturated structure, Ỹ , Z̃ are definable subsets, and that
Φ ⊆ Ỹ × Z̃ is a stable relation.
As usual, by a Φ-definable set we mean a subset B ⊆ Ỹ that is a

finite Boolean combination of sets defined by Φ(y, c), c ∈ Z̃. We write
Φ∗ ⊆ Z̃ × Ỹ for the relation obtained from Φ by exchanging the roles
of the variables. Similarly we have a notion of Φ∗-definable subsets of
Z̃. We denote by SΦ(M) the set of all complete Φ-types on Ỹ over
M (equivalently, the set of all ultrafilters on the Boolean algebra of
all Φ-definable subsets of Ỹ ), and similarly we denote by SΦ∗(M) the

set of all complete Φ∗ types on Z̃. If U is an elementary extension of
M, then for an M-definable set V we will denote by V (U) the set of
elements of U realizing a formula defining V . We say that a Φ-type
p(y) is non-algebraic if in some elementary extension of M it has a
realization outside of M .
The following are some basic facts from local stability, all of which

can be found in e.g. [11, Chapter 1, Sections 1–3].

Fact 2.7. For p(y) ∈ SΦ(M), the set {c ∈ Z̃ : Φ(y, c) ∈ p} is uniformly
Φ∗-definable.
Similarly, for q ∈ SΦ∗(M), the set {b ∈ Ỹ : Φ(b, z) ∈ q} is uniformly

Φ-definable.

Fact 2.8. Let U be an elementary extension of M, β ∈ Ỹ (U) and
γ ∈ Z̃(U). Then tpΦ(β/Mγ) is finitely satisfiable in M if and only if
tpΦ∗(γ/Mβ) is finitely satisfiable in M .

Definition 2.9. For an elementary extension U of M, β ∈ Ỹ (U) and
γ ∈ Z̃(U) we say that β and γ are Φ-independent over M if tpΦ(β/Mγ)
is finitely satisfiable in M .
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The following is a consequence of the fundamental theorem of local
stability (it was also used in e.g. [6]).

Fact 2.10. For types p(y) ∈ SΦ(M), q ∈ SΦ∗(M) the following condi-
tions are equivalent.

(1) There are realizations β |= p(y) and γ |= q(z) that are Φ-independent
over M and such that |= Φ(β, γ).

(2) For any realizations β |= p(y) and γ |= q(z) that are Φ-independent
over M we have |= Φ(β, γ).

(3) dΦp (z) ∈ q(z), where dΦp (z) is a formula that defines the set {c ∈

Z̃ : Φ(y, c) ∈ p(y)}.
(4) dΦ

∗

q (y) ∈ p(y).

For types p(y) ∈ SΦ(M) and q(z) ∈ SΦ∗(M) we write Φ(p, q) if one
of the equivalent conditions of Fact 2.10 holds.

2.3. Cartesian relations and populated types.

Proposition 2.11. The relation Φ is cartesian if and only if |= Φ(p, q)
for some non-algebraic types p(y) ∈ SΦ(M) and q(z) ∈ SΦ∗(M).

Proof. Let B ⊆ Ỹ , C ⊆ Z̃ be infinite sets with B × C ⊆ Φ. By
compactness, there is a non-algebraic type p(y) ∈ SΦ(M) with Φ(y, c) ∈
p for all c ∈ C. Hence the set dΦp (z) is infinite, and we can take q(z) to
be any non-algebraic type containing this formula.
The converse is easy since for Φ-independent realizations we have

finite satisfiability in M in both variables. �

The following definition is inspired by [13].

Definition 2.12. A non-algebraic type p(y) ∈ SΦ(M) is called popular,
or pop, if the set {c ∈ Z̃ : Φ(y; c) ∈ p(y)} is infinite.
Similarly, a non-algebraic type q(z) ∈ SΦ∗(M) is popular if the set

{b ∈ Ỹ : Φ(b; z) ∈ q(z)} is infinite.

Lemma 2.13. (1) A non-algebraic type p(y) ∈ SΦ(M) is pop if and
only if there is a non-algebraic type q(z) ∈ SΦ∗(M) with |= Φ(p, q).

(2) A non-algebraic type q(z) ∈ SΦ∗(M) is pop if and only if there is a
non-algebraic type p(y) ∈ SΦ(M) with |= Φ(p, q).

Proof. Assume that p(y) is pop, then the definable set dΦp (z) is infinite
and we can take q to be any non-algebraic type containing this set.
Assume |= Φ(p, q) for some non-algebraic q(z) ∈ SΦ∗(M). Since q(z)

contains dΦp (z), the set defined by dΦp (z) must be infinite. �

Combining, we have the following equivalence.
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Proposition 2.14. The following conditions are equivalent.

(1) The relation Φ is cartesian.
(2) There is a pop type p(y) ∈ SΦ(M).
(3) There is a pop type q(z) ∈ SΦ∗(M).

2.4. Bounds on the number of edges in non-cartesian relations.
The following theorem is a generalization of Theorem 1.3 in [10].

Theorem 2.15. Let M be a sufficiently saturated structure eliminating
∃∞, and let Ỹ and Z̃ be definable sets in M , both of Morley rank 2
and degree 1. Let Φ ⊆ Ỹ × Z̃ be an M-definable set such that for every
β ∈ Ỹ the fiber Φβ = {z ∈ Z̃ : (β, z) ∈ Φ} has Morley rank at most 1.
Then the following conditions are equivalent.

(1) Φ is not cartesian.
(2) Φ is Kk,k-free for some k ∈ N.

(3) For all B ⊆n Ỹ , C ⊆n Z̃ we have

|Φ ∩ (B × C)| = O(n3/2).

If, in addition, Φ admits cuttings (with some exponent D), then we
also have

(4) There is some δ > 0 such that for all B ⊆n Ỹ , C ⊆n Z̃ we have

|Φ ∩ (B × C)| = O(n3/2−δ).

Proof. (1) implies (3). Assume that Φ is not cartesian.

Assume first that that there is some b ∈ Ỹ for which there are some
pairwise distinct (bi : i ∈ N) in Ỹ such that RM(Φb ∩ Φbi) ≥ 1 (hence
= 1) for all i ∈ N. Then each of these sets contains a complete Φ∗-
type of Morley rank 1. By the definition of Morley rank, there are
only finitely many complete Φ∗-types q1, . . . , qs ∈ SΦ∗ (M) with Φb ∈ qi
and RM(qi) = 1. But then one of these types must contain Φbi for
infinitely many different i, hence it is a pop type — contradicting the
assumption by Proposition 2.14.
Thus there is no b ∈ Ỹ as above. Using that T eliminates ∃∞, there

is some r ∈ N such that for every b ∈ Ỹ , there are at most r many
b′ ∈ Ỹ such that Φb ∩ Φb′ is infinite.
Given a finite set B ⊆ Ỹ , consider the graph with the vertex set

B and the edge relation E defined by bEb′ ⇐⇒ Φb ∩ Φb′ is infinite.
Then the graph (B,E) has degree at most r by the previous paragraph,
and so it is r + 1 colorable by a standard result in graph theory. Let
Bi ⊆ B be the set of vertices corresponding to the ith color. Then
B =

⊔

1≤i≤r+1Bi and, by elimination of ∃∞ again, there is some t ∈ N
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depending only of Φ such that |Φb ∩ Φb′ | ≤ t for any b, b′ ∈ Bi and
1 ≤ i ≤ r + 1.
Now if C is a finite subset of Z̃, we have that Φ ↾ (Bi×C) is K2,t-free

for each 1 ≤ i ≤ r + 1. Then, using Fact 2.3 with s = 2, we have

|Φ ∩ (B × C)| ≤
r+1
∑

i=1

|Φ ∩ (Bi × C)| ≤ (r + 1)cn
3

2 .

Hence taking c′ := (r + 1)c depending only on Φ does the job. When
Φ admits cuttings, we use Corollary 2.6 instead of Fact 2.3.
Finally, (3) implies (2) and (2) implies (1) are straightforward. �

Remark 2.16. Theorem 2.15(4) is the only palce where the assumption
of the existence of a distal expansion is used. It is necessary to get a
bound strictly less than n

3

2 , as the points-lines incidence relation on
the plane in an algebraically closed field of characteristic p (a strongly
minimal structure) demonstrates. However, this δ > 0 improvement is
crucial for our proof to give a non-trivial statement.

3. Reducing Main Theorem to a dichotomy for binary

relations

To prove the main theorem we introduce some notions and make
some reductions. Since we are only interested in definable subsets of
products of strongly minimal sets, we may and will assume that M
has finite Morley rank and eliminates the quantifier ∃∞.

Assumption 1. For the rest of this section (Section 3) we assume
that M is a sufficiently saturated structure of finite Morley rank that
eliminates the quantifier ∃∞.
We fix strongly minimal sets X, Y, Z definable in M.
We also fix an M-definable set F ⊆ X × Y × Z of Morley rank 2.
We assume that X, Y, Z and F are definable over the empty set.

Notice that writing F as a union F = ∪k
i=1Fi and applying Theo-

rem 1.3 to each Fi, it is sufficient to consider only the case when F has
Morley degree 1.

Assumption 2. In addition, for the rest of Section 3, we assume that
F has Morley degree 1.

3.1. ∆-algebraic relations.

Definition 3.1. Let S1, S2, S3 be sets and G ⊆ S1 × S2 × S3 be a
subset. We say that G is ∆-algebraic if there is some d ∈ N such that
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for {i, j, k} = {1, 2, 3} we have

|= ∀yi∈Si ∀yj∈Sj ∃
≤dyk∈Sk G(y1, y2, y3).

Assume, in addition to Assumptions 1 and 2, that F ⊆ X × Y × Z
is not cylindrical. Then, since Z is strongly minimal, the set {(a, b) ∈
X×Y : ∃∞zF (a, b, z)} is finite (otherwise we can find infinite sequences
ai ∈ X, bi ∈ Y such that F (ai, bi, Z) is cofinite, hence

⋂

i∈N F (ai, bi, Z)
is infinite using saturation of M — so F is cylindrical). Thus there are
co-finite X0 ⊆ X , Y0 ⊆ Y such that

|= ∀x∈X0 ∀y∈Y0 ∃
<∞zF (x, y, z).

Applying the same argument for every partition of the coordinates
of F we conclude that if F is not cylindrical then there are co-finite
X0 ⊆ X , Y0 ⊆ Y , Z0 ⊆ Z such that the restriction of F to X0×Y0×Z0

is ∆-algebraic.
It is not hard to see that passing to co-finite subsets does not change

the clauses (a), (b) and (c) in Theorem 1.3, hence Theorem 1.3 follows
from the following theorem.

Theorem 3.2. Assume, in addition to Assumptions 1 and 2, that F
is ∆-algebraic and also that M is interpretable in a distal structure.
Then one of the following holds.

(a) There is ε > 0 such that for all A ⊆n X,B ⊆n Y, C ⊆n Z we have

|F ∩ A× B × C| = O(n2−ε).

(b) F is group-like.

Assumption 3. For the rest of Section 3 we assume in addition that
the relation F is ∆-algebraic and d ∈ N is as in Definition 3.1.

3.2. On acl-diagrams. We say that three elements p1, p2, p3 of M
form an acl-triangle if RM(pi/∅) = 1 for i ∈ [3], RM(p1p2p3/∅) = 2,
and for all {i, j, k} = {1, 2, 3} we have pi ∈ acl(pjpk) (hence also pi |⌣ pj
for all i 6= j ∈ {1, 2, 3}).
Since F is ∆-algebraic of Morley rank 2, we have the following claim.

Claim 3.3. Let (a, b, c) be generic in F , i.e. (a, b, c) ∈ F with RM(abc/∅) =
2. Then a, b, c form an acl-triangle.
In particular, b and c are independent generics in Y and Z, respec-

tively; and, by stationarity (as Y × Z has Morley degree 1), for any
independent generics b′ ∈ Y , c′ ∈ Z we have some x ∈ X such that
(x, b′, c′) ∈ F and (x, b′, c′) is generic in F ).
Similarly, for any independent generics a′ ∈ X, b′ ∈ Y we have

M |= ∃z F (a′, b′, z).
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In this paper we will consider some simple diagrams, where by a
diagram we mean a collection of elements of M and lines between them
(subsets of the given elements).

Definition 3.4. We say that a given diagram is an acl-diagram if

(1) RM(p/∅) = 1 for every point p in the diagram;
(2) Every three collinear points form an acl-triangle;
(3) RM(pqr/∅) = 3 for any three non-colinear points p, q, r.

3.3. The 4-ary relation G. Our next goal is to restate Theorem 3.2
in term of a 4-ary relation G. (We continue to use Assumptions 1-3.)

Let G ⊆ Y 2 × Z2 be the definable relation

G = {(y, y′, z, z′) ∈ Y 2 × Z2 : ∃ x∈X((x, y, z)∈ F & (x, y′, z′)∈F )}.

We first observe some basic properties of G.

Claim 3.5. For (b1, b2) ∈ Y 2 and c1 ∈ Z the set

{z ∈ Z : (b1, b2, c1, z) ∈ G}

has size at most d2.
Similarly, For (c1, c2) ∈ Z2 and b1 ∈ Y the set

{y ∈ Y : (b1, y, c1, c2) ∈ G}

has size at most d2.

Proof. Let b1, b2, c1 be fixed. As F is ∆-algebraic, by the choice of d
there are at most d elements x ∈ X such that (x, b1, c1) ∈ F , and for
each such x, there are at most d elements z ∈ Z such that (x, b2, z) ∈ F .
Hence, by definition of G, there are at most d2 elements z ∈ Z such
that (b1, b2, c1, z) ∈ G. �

Corollary 3.6. For any b̄ = (b1, b2) ∈ Y 2 the Morley rank of the fiber
Gb̄ = {z̄ ∈ Z2 : (b̄, z̄) ∈ G} is at most 1.
Similarly, for any c̄ = (c1, c2) ∈ Z2 the Morley rank of the fiber

Gc̄ = {ȳ ∈ Y 2 : (ȳ, c̄) ∈ G} is at most 1.

Corollary 3.7. The Morley rank of G is 3.

Proof. It follows from the additivity of Morley rank and Corollary 3.6
that RM(G) ≤ RM(Y 2) + 1 = 3.
On the other hand, let b1, b2 ∈ Y, c1 ∈ Z be independent generics,

hence RM(b1b2c1/∅) = 3. By Claim 3.3, there is a generic a ∈ X with
M |= F (a, b1, c1). Applying Claim 3.3 to a and b2 (as a ∈ acl(b1c1) and
b1c1 |⌣ b2, we have a |⌣ b2) we get c2 ∈ Z with M |= F (a, b2, c2). Since
M |= G(b1, b2, c1, c2) we have RM(G) ≥ 3.

�
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Lemma 3.8. Let (b1, b2, c1, c2) be generic in G. Then there is a ∈ X
such that the diagram

•
a

•
b1

•
c1

•b2

•c2

is an acl-diagram with M |= F (a, bi, ci).

Proof. By the definition of G we can find a ∈ X with

M |= F (a, b1, c1) &F (a, b2, c2).

We claim that for this a the diagram above is an acl-diagram.
First notice that RM(p/∅) ≤ 1 for any point p.
Secondly, by ∆-algebraicity of F , if p, q, r are three non-colinear

points then every point of the diagram is in acl(pqr); in particular,
since RM(b1b2c1c2/∅) = 3, we have RM(pqr/∅) = 3.
Finally, given any two distinct non-collinear points (p, q) we can find

a point r such that p, q, r are non-collinear (so RM(p, q, r/∅) = 3),
hence RM(pq/∅) = 2 by additivity of Morley rank.
It follows then that any three collinear points, after reordering, form

a generic realization of F , and hence, by Claim 3.3, an acl-triangle. �

3.4. The clause (a) in Theorem 3.2. In this section we state a
property of the relation G that implies the clause (a) in Theorem 3.2.
First we need some basic counting properties.

Corollary 3.9. For any b̄ ∈ Y 2 and a finite set C ⊆ Z we have

|G ∩ ({b̄} × C2)| ≤ d2|C|.

Similarly, For any c̄ ∈ Z2 and a finite set B ⊆ Y we have

|G ∩ (B2 × {c̄})| ≤ d2|B|.

Proof. Follows from Claim 3.5 �

The following bound is similar to [13, Lemma 2.2].

Proposition 3.10. Let A ⊆ X,B ⊆ Y, C ⊆ Z be finite. Then for
F ′ = F ∩ (A× B × C) and G′ = G ∩ (B2 × C2) we have

|F ′| ≤ d|A|1/2|G′|1/2.

Proof. Let W ⊆ X × Y 2 × Z2 be the definable set

W = {(x, y, y′, z, z′) ∈ X × Y 2 × Z2 : (x, y, z) ∈ F & (x, y′z′) ∈ F},

and let W ′ = W ∩ (A× B2 × C2).
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As usual, for a set S ⊆ A×D and a ∈ A we denote by Sa the fiber
Sa = {u ∈ D : (a, u) ∈ S}.
Notice that |F ′| =

∑

a∈A |F ′
a|, and |W ′| =

∑

a∈A |F ′
a|

2. By the
Cauchy-Schwarz inequality

|F ′| ≤ |A|1/2
(

∑

a∈A

|F ′
a|

2
)1/2

= |A|1/2|W ′|1/2.

For a point g ∈ G′, the fiberW ′
g has size at most d as F is ∆-algebraic,

hence |W ′| ≤ d|G′| and |F ′| ≤ d|A|1/2|G′|1/2 �

The next proposition shows that the bound O(n3/2−δ) for G trans-
lates to the bound O(n2−ε) for F .

Proposition 3.11. Let Ỹ = Y 2, Z̃ = Z2, and we view G as a subset
of Ỹ × Z̃. Assume that there are definable sets Y0 ⊆ Ỹ and Z0 ⊆ Z̃
of Morley rank at most 1 such that for some δ > 0 for all B′ ⊆m

Ỹ \ Y0, C
′ ⊆m Z̃ \ Z0 we have |G ∩ (A′ × B′)| = O(m3/2−δ). Then F

satisfies the clause (a) of Theorem 3.2.

Proof. We fix Y0 ⊆ Ỹ and Z0 ⊆ Z̃ of Morley rank at most 1, c0 ∈ R and
δ > 0 such that for all m large enough and for all B′ ⊆m Ỹ \ Y0, C

′ ⊆m

Z̃ \ Z0 we have |G ∩A′ ×B′| ≤ c0m
3/2−δ.

Since Y0 has Morley rank at most 1, using elimination of ∃∞, it is
not hard to see that there is k1 ∈ N such that for any finite B ⊆ Y we
have |B2 ∩ Y0| ≤ k1|B|.
Similarly, there is k2 ∈ N such that for any finite C ⊆ Z we have

|C2 ∩ Z0| ≤ k2|C|.
Given A ⊆n X , B ⊆n Y , C ⊆n Z, let B′ = B2 ∩ (Ỹ \ Y0) and

C ′ = C2 ∩ (Z̃ \ Z0). Obviously |B′| ≤ n2 and |C ′| ≤ n2.
We have

|G ∩ (B2 × C2)| ≤

|G ∩ (B′ × C ′)|+ |(B2 ∩ Y0)× C2|+ |(B2 × (C2 ∩ Z0)|.

By our assumptions |G ∩ (B′ × C ′)| ≤ c0n
3−δ. Since |B2 ∩ Y0| ≤ k1n,

from Corollary 3.9, we get |(B2 ∩ Y0) × C2| ≤ k1d
2n2; and similarly

|(B2 × (C2 ∩ Z0)| ≤ k2d
2n2.

Thus |G ∩ (B2 × C2)| ≤ c1n
3−ε, where c1 > 0 and ε > 0 do not

depend on n,A,B, C.
Applying Proposition 3.10, we obtain

|F ∩ (A× B × C)| ≤ d(nc1n
3−ε)1/2 = O(n2−ε/2).

�
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Combining this with Theorem 2.15, we obtain a property of G that
implies the clause (a) in Theorem 3.2.

Proposition 3.12. Let Ỹ = Y 2, Z̃ = Z2, and we view G as a subset of
Ỹ × Z̃. Assume in addition that G admits cuttings. Assume also that
there are definable sets Y0 ⊆ Ỹ and Z0 ⊆ Z̃ of Morley rank at most 1
such that the restriction of G to (Ỹ \ Y0) × (Z̃ \ Z0) is not cartesian.
Then F satisfies the clause (a) of Theorem 3.2.

3.5. The clause (b) of Theorem 3.2. We also fix a saturated ele-
mentary extension U of M.

Proposition 3.13. Assume there are β = (β1, β2) ∈ Y 2(U) and γ =
(γ1, γ2) ∈ Z2(U) with (β, γ) ∈ G(U), such that RM(β/M) > 0, RM(γ/M) >
0, β |⌣M

γ and acl(β) ∩ acl(γ) 6⊆ acl(∅) Then F is group-like.

Proof. Choose t ∈
(

acl(β)∩acl(γ)
)

\acl(∅). We first list some properties
of β, γ and t.

(i) Since β |⌣M
γ, and t ∈

(

acl(β) ∩ acl(γ)
)

we have

t ∈ M.

(ii) Since t ∈ acl(β) \ acl(∅) we have

β 6 |⌣
∅

t;

and, similarly,
γ 6 |⌣

∅

t.

(iii) From (i) and (ii), since RM(β/∅) ≤ 2 and RM(β/M) > 0, we
obtain

RM(β/∅) = 2 and RM(β/t) = RM(β/M) = 1;

and, similarly,

RM(γ/∅) = 2 and RM(γ/t) = RM(γ/M) = 1.

(iv) Since t ∈ acl(β) \ acl(∅) and β /∈ acl(t) we have RM(t/∅) = 1.
(v) Since β and γ are independent over M we have RM(βγ/M) = 2,

and since β 6 |⌣∅
M , we have RM(βγ/∅) = 3, i.e. (β, γ) is generic

in G(U).
(vi) It follows from (v) and Lemma 3.8 that βi /∈ acl(γ) and γi /∈

acl(β) for i ∈ [2].

We also have that both {β1, β2, t} and {γ1, γ2, t} are acl-triangles.
Indeed, for example, since RM(β1β2t/∅) = 2, to show that {β1, β2, t}
is a triangle it is sufficient to check that t 6∈ acl(βi) for i = 1, 2. But if
t ∈ acl(βi), then βi ∈ acl(t), hence βi ∈ acl(γ) — contradicting (vi).
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By Lemma 3.8 there is α ∈ X(U) such that the diagram

(3.1)

•
α

•
β1

•
γ1

•γ2

•β2

is an acl-diagram with U |= F (α, βi, γi).
We claim that

(3.2)

•
α

•
β1

•
γ1

•γ2

•β2

• t

is an acl-diagram.
We already have that every three colinear points form an acl-triangle,

and it is sufficient to check that for three non-colinear points {p, q, r}
we have RM(pqr/∅) = 3. If t /∈ {p, q, r} then it follows from the
diagram (3.1). Assume t ∈ {p, q, r}, say {p, q, r} = {t, α, β1}. Then
{t, β1} is inter-algebraic with {β1, β2} and hence

RM(tαβ1/∅) = RM(β2αβ1/∅) = 3.

The same argument works for any three non-collinear points containing
t.
Thus the diagram (3.2) is an acl-diagram. It follows from the Group

Configuration Theorem in stable theories (see [7, Theorem 6.1] and the
discussion in [7, Section 6.2]) that F is group-like. �

4. Dichotomy for binary relations

In this section we prove a dichotomy theorem for binary relations
between sets of Morley rank 2. By Propositions 3.12 and 3.13, Theo-
rem 3.2 follows from Theorem 4.1 applied with Φ := G, Ỹ := Y 2, Z̃ :=
Z2 as in Section 3.

Theorem 4.1. Let M be a sufficiently saturated structure of finite
Morley rank that eliminates quantifier ∃∞.
Let Ỹ and Z̃ be M-definable sets of Morley rank 2 and Morley degree

1. Let Φ ⊆ Ỹ × Z̃ be a definable subset of Morley rank 3. Then one of
the following holds.



A MODEL-THEORETIC ELEKES-SZABÓ THEOREM 15

(a) There are definable sets Y0 ⊆ Ỹ and Z0 ⊆ Z̃ of Morley rank at

most 1 such that the restriction of Φ to (Ỹ \ Y0)× (Z̃ \ Z0) is not
cartesian.

(b) There are β ∈ Ỹ (U) and γ ∈ Z̃(U) with (β, γ) ∈ Φ(U), such that
RM(β/M) > 0, RM(γ/M) > 0, β |⌣M

γ and acl(β) ∩ acl(γ) 6⊆
acl(∅).

Proof of Theorem. As usual, for a Φ-type p(y) ∈ SΦ(M) we denote by
RM(p(y)) the Morley rank of p as an incomplete type.
We assume that (a) doesn’t hold, and show that then (b) must hold.

For a definable set Ỹ ′ ⊆ Ỹ we say that Ỹ ′ is large in Ỹ if RM(Ỹ \ Ỹ0) ≤
1; and the same for a subset Z̃ ′ ⊆ Z̃. Notice that in the proof we can
freely replace Ỹ and Z̃ by their large subsets.
Let p(y) ∈ S(M) be the generic type on Ỹ , it is the unique type on

Ỹ of Morley rank 2 (as Ỹ has Morley degree 1 by assumption).
Since Φ has Morley rank 3, the set {c ∈ Z̃ : Φc ∈ p} is definable (by

Fact 2.7) and has Morley rank at most 1 by additivity of Morley rank.
Thus we can throw away this set and assume that the Morley rank of
Φc is at most 1 for all c ∈ Z̃. Similarly, we may assume that the Morley
rank of Φb ⊆ Z̃ is at most 1 for all b ∈ Ỹ .
Assume that p is a pop type for Φ (see Definition 2.12). Then

RM(p) = 1 (RM(p) ≥ 1 as p is non-algebraic, and RM(p) ≤ 1 as
Φc ∈ p for some c by definition of pop-types, and RM(Φc) = 1 by the
previous paragraph). If there are only finitely many pop types for Φ,
then we can throw away finitely many definable sets of Morley rank
1 (one in each of the pop types), and pass to a large subset on which
there are no pop types (hence, obtaining (a) using Proposition 2.14).

Thus we can assume that there are infinitely many pop types on Ỹ .
Let P be the set of all pop types on Ỹ and Q be the set of all pop

types on Z̃.
For p ∈ SΦ(M) we denote by [p] ∈ Meq the canonical parameter of

the Φ∗-definable set dΦp = {c ∈ Z̃ : Φc ∈ p}; and for q ∈ SΦ∗(M) we will

denote by [q] ∈ Meq the canonical parameter for dΦ
∗

q .
Clearly both maps p 7→ [p] and q 7→ [q] are injective.

Claim 4.2. (1) The set {[p] : p ∈ P} is type-definable.
(2) The set {[q] : q ∈ Q} is type-definable.

Proof. Using that M eliminates ∃∞, the desired set {[p] : ∃∞zdΦp (z) ∧
∧

n∈N(∀z1 . . .∀zn(
∧n

i=1 d
Φ
p (zi) → ∃∞y

∧n
i=1Φ(y, zi)} is type-definable.

�

Claim 4.3. If p ∈ P and c ∈ dΦp then [p] ∈ acl(c).
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Similarly, if q ∈ Q and b ∈ dΦ
∗

p then [q] ∈ acl(b).

Proof. As for any c ∈ Z̃ there are only finitely many Φ-types of Morley
rank 1 containing Φc. �

Claim 4.4. For any p ∈ P there are only finitely many q ∈ Q with
|= Φ(p, q), and vice versa.

Proof. Let β ∈ U realize p. It is not hard to see that, for q ∈ Q, if
|= Φ(p, q) then the Morley rank of the partial type {Φ(β, z)} ∪ q(z) is
1. Since the Morley rank of Φ(β, z) is 1, there only finitely many such
q. �

Since the set P is infinite, we can find a pop type p ∈ P such that
[p] /∈ acl(∅). Choose q ∈ Q with |= Φ(p, q).
Choose some β |= p(y) and γ |= q(z) independent over M .
We have [p] ∈ acl(γ), [q] ∈ acl(β) with [p] and [q] inter-algebraic over

the empty set. Hence (b) holds. �
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