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Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California

Los Angeles, Los Angeles, CA, United States

Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation

at the maternal fetal interface. It is a relatively common complication of pregnancy

and can have devastating consequences including preterm labor, maternal infections,

fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this

review, we will discuss current understanding of the pathogenesis, immunobiology, and

mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of

ascending infection with relatively low-virulence organisms such as the Ureaplasma

species. Furthermore, recent vaginal microbiome studies suggest that there is a link

between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less

common, microorganisms invading the maternal-fetal interface via hematogenous route

(e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe

fetal inflammation and injury. We will provide an overview of the knowledge gleaned from

different animal models of acute chorioamnionitis and the role of different immune cells in

different maternal-fetal compartments. Lastly, we will discuss how infectious agents can

break the maternal tolerance of fetal allograft during pregnancy and highlight the novel

future therapeutic approaches.

Keywords: inflammation, infection, immune cells, animal model, fetal membrane

INTRODUCTION

Intrauterine infection or inflammation (IUI), also known as chorioamnionitis, is responsible for
∼40% of preterm labor cases (1). Prematurity, which affects nearly 10% of pregnancies world-wide,
is the most significant cause of perinatal mortality or morbidity (2).

In this paper, we explore the current knowledge of the mechanisms of IUI. In particular, we
review how inflammation is propagated in different tissue compartments at the maternal-fetal
interface, the role of resident cells interacting with immune cells at the interface, the role of
inflammatory mediators, and how host-microbe interactions affect pathology. Although sterile
inflammation (3, 4), environmental pollutants (5–7), cigarette smoke (8, 9), and other toxicants
play an important role in the pathogenesis of IUI, these considerations are beyond the scope of
this review.

Intraamniotic infection is an infection with resultant inflammation of any combination of the
amniotic fluid (AF), placenta, fetus, fetal membranes, or decidua. The amniotic sac is composed
of maternal (decidua) and fetal components (chorion and amniotic membranes) which surround
the fetus and represent one site of maternal/fetal immune interaction. The amnion is a fetal
tissue comprising a layer of epithelial cells and underlying mesenchymal cells, and an extracellular
matrix and collagen that has a high tensile strength. The chorion is composed of a reticular layer,
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basement membrane, and trophoblasts. The decidua, the
transformed maternal endometrium of pregnancy, is in direct
proximity with the chorion and consists of maternal immune
cells, decidual stromal cells, and extravillous fetal trophoblasts
(10). Placental villous and intervillous space have a specialized
architecture adapted for nutrient exchange and have distinct
immune cells. The cellular interactions within these layers and in
the placenta are important in coordinating the immune response
for maintaining a semi-allogeneic fetus (11, 12).

Intraamniotic infection and chorioamnionitis are commonly
used interchangeably; however, these two conditions are not the
same, as we will discuss below. Furthermore, chorioamnionitis
can be induced by sterile damage-associated molecules (13, 14).

Clinical Definitions
Most often, the diagnosis of chorioamnionitis is made clinically
based on the presence of fever, uterine tenderness, maternal
leukocytosis, purulent cervical drainage, or fetal tachycardia
(15). However, due to the vague nature of the definition and
heterogeneity of clinical manifestations, an NIH expert panel
proposed to replace the term “chorioamnionitis,” with a more
general, descriptive term, “Intrauterine Inflammation and/or
Infection,” abbreviated as Triple I (16). In this scheme, fever
alone during labor is classified separately, while “suspected
Triple I” is classified as fever with one or more of the
following symptoms: leukocytosis, fetal tachycardia, or purulent
cervical discharge. In order to be confirmed, “suspected Triple
I" should be accompanied by AF infection (e.g., positive
gram stain for bacteria, low AF glucose, high WBC count
in the absence of a bloody tap, and/or positive AF culture
results) or histopathological evidence of infection/inflammation
in the placenta, fetal membranes or the umbilical cord
vessels (funisitis).

Anatomy of Fetal Membranes
There are four fetal membranes early in fetal life: the chorion,
amnion, yolk sac, and allantois. The chorion and amnion
are derived from trophoblastic ectoderm and extraembryonic
somatic mesoderm. The yolk sac and allantois are derived
from endoderm and extraembryonic splanchnic mesoderm. In
humans, the yolk sac degenerates with fetal growth while the
allantois is vestigial and may regress, but the blood vessels persist
as umbilical arteries connect the embryo with the placenta (17).
The reproductive tissues of mammals have many features in
common but there are unique species-associated characteristics.
For example, the development of fetal membranes in rodents is
unique to those species and there are significant architectural
differences between rodent and human placenta, although both
have hemochorial placentation (18). Specifically, rodents have an
inverted yolk sac placenta, where the fetal endoderm lies between
the maternal tissue and the mesoderm, while in other species
the fetal mesoderm lies between the ectoderm and endoderm
(17, 19).

Abbreviations: IUI, Intrauterine Infection/Inflammation; TLR, Toll-like

receptor; PAMP, Pathogen-associated molecular pattern; VEGF, Vascular

endothelial growth factor; DAMPs, Damage-associated molecular patterns;

MMPs, matrix metalloproteinases.

Histopathological Definitions
Acute inflammation characterized by the infiltration of
neutrophils in the chorion and/or amnion is termed acute
chorioamnionitis (1), and can involve the placental and/or
extraplacental fetal membranes. “Maternal inflammation”
refers to the infiltration of largely maternal neutrophils and
macrophages in the fetal tissues of the chorion and amnion
(Figure 1). Inflammatory processes involving the umbilical
cord (umbilical vein, umbilical artery, and the Wharton’s
jelly) are referred to as acute funisitis, and constitutes fetal
inflammation or fetal inflammatory response syndrome
(FIRS). Placental inflammation affecting the villous tree is
called acute villitis. A widely used classification by Redline
(20) further divided the maternal and fetal inflammatory
response into stages and grades. The term “stage” refers to
the progression of the inflammatory process based on the
anatomical regions infiltrated by neutrophils; the term “grade”
refers to the intensity of the acute inflammatory process at
a particular site. Interestingly, the characteristic location of
initial neutrophil infiltration is the choriodecidual junction,
with invasion into the amnion denoting higher stages of
inflammation. The incidence of histologic chorioamnionitis
is inversely related to the gestational age at preterm delivery
(defined as delivery <37 weeks’ gestation) (21). Interestingly,
histologic chorioamnionitis is diagnosed in >70% of preterm
births occurring at <28 weeks’ gestation (22, 23) (Figure 2). The
precise reasons for different rates of chorioamnionitis at different
gestational ages are not clear. One possibility is gestational
dependence of immune function (24). Studies have shown
that the expression of innate immune receptors [e.g., Toll-like
receptors (TLRs)] in the placenta (24, 25) and fetal membranes
are increased after 20 weeks of pregnancy (26). The vast
majority of preterm deliveries occur in the late third trimester
with medically indicated preterm deliveries contributing to
∼30% of cases (22). This may also decrease the proportion of
prematurity attributable to infection/inflammation during the
late third trimester.

Microbiology
Ascending Infections

The most common route for microbes to cause intrauterine
infection is by ascending from the lower genital tract (1).
The most frequent microorganisms found in the amniotic
cavity are genital mycoplasmas, in particular the Ureaplasma
species (27). Of note, Group B Streptococcus (GBS) colonizes
the genitourinary tract in 20–30% of pregnant women (28)
and is associated with chorioamnionitis, preterm premature
rupture of amniotic membrane (PPROM) and preterm birth
(29–31). Other common organisms include Gardenella vaginalis,
Fusobacteria species (32–35), and E. coli (36). Although not
reported frequently, fungi can also cause chorioamnionitis.
Among the fungi, Candida species, particularly C. albicans
(37, 38) and less commonly C. glabrata (39, 40) have been
reported. Unlike invasive infections in other parts of the body,
polymicrobial invasion of the amniotic cavity is present in∼30%
of cases (41).
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FIGURE 1 | H&E histology of intrauterine inflammations. (A,B) Cross sections of human fetal membranes H&E histology showing neutrophil infiltration.

Chorioamnionitis is characterized by infiltration of (D) CD68+ macrophages and (F) neutrophils expressing Myeloperoxidase+ (MPO) predominantly located at the

choriodecidua junction. Note relatively much fewer CD68 or MPO expressing cells in the no chorioamnionitis group (C,E). Insets in (B,D,F) show higher power

magnification of demarcated area in white and demonstrate inflammatory cells including neutrophils and macrophages.

Hematogenous Infections

In a minority of cases, microorganisms can also invade
the placenta by the hematogenous route, and the profile
of organisms is different compared to the ascending route.
Microorganisms that invade the placenta by the hematogenous
route include Listeria monocytogenes (42), Zika virus (43, 44),
Treponema pallidum (45), Cytomegalovirus (46), Plasmodium
species (47), and microorganisms causing toxoplasmosis,
syphilis, varicella-zoster, parvovirus B19, Rubella, and Herpes
infections (TORCH) (48). These organisms gain access
through the maternal circulation to the intervillous space,

from where they invade the villi and fetal circulation. The oral
pathogen Fusobacter nucleatum can also cause IUI through
the hematogenous route (49). Indeed, bad oral hygiene and
multiple different oral pathogens have been implicated in IUI
and preterm births, although a randomized controlled trial
of treatment of periodontal disease did not reduce adverse
pregnancy outcomes (50). In contrast to the ascending infections
causing inflammation primarily in the choriodecidua and
amnion, organisms invading through the hematogenous
route cause inflammation primarily in the placental villi and
intervillous space.
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FIGURE 2 | Chorioamnionitis during second trimester. Higher documentation

of histologic vs. clinically diagnosed chorioamnionitis in the same mothers

whose Infants were born at 22–28 weeks Gestational Age (GA) in the NICHD

funded Neonatal Network database (2003-2007). Also note that

chorioamnionitis is more frequently diagnosed at earlier gestations (inverse

correlation of gestational age with incidence of chorioamnionitis). Adapted

from Stoll et al. (23).

Influenza Infection

Pregnant women are at increased risk of developing severe
disease with seasonal influenza, being hospitalized at a rate of
1–2/1,000, a risk that is 18-fold greater than that for healthy
non-pregnant women (51–55). Severe maternal infections such
as influenza—particularly pandemic infections (e.g., 1918 and
2009 pandemics and 2005 avian influenza), can lead to still
birth and preterm delivery, although the precise mechanisms
of the disease are not well-understood (56). Influenza vaccines
are one of the most effective interventions. An epidemiological
study suggests that vaccination against influenza virus protects
from preterm birth (57, 58). Generally, viruses may impact
maternal and fetal health by infecting gestational tissues and
modulating intrauterine immune responses (59, 60). However,
whether influenza virus infection can cause chorioamnionitis is
not known.

Priming Infections

Viral infections, such as influenza virus, can prime or accentuate
bacterial infection-mediated preterm labor and the intensity of
inflammatory response at the maternal-fetal interface (61–66).
Specifically, pathogen/pathogen-associated molecular pattern-
driven activation of type I Interferon (IFN)/IFN receptor
(IFNAR) was sufficient to prime for systemic and uterine
proinflammatory chemokine and cytokine production and
induction of preterm birth in mice (67). The synergy during
combined stimulation of different Toll-like receptors (TLRs) is
considered to be a “two-hit hypothesis” (68). These findings
might explain how subclinical type I IFN-producing systemic
infections (either virus or bacteria) act as initial inflammatory
triggers and increase susceptibility for secondary inflammatory
challenge-driven adverse pregnancy outcomes (67).

Vaginal Microbiome

Bacterial vaginosis (BV), a dysbiotic state of the vagina, is known
to be a risk factor for prematurity (69). Recent metagenomic

studies have shed light on normal composition of vaginal
microorganisms during the non-pregnant state and during
pregnancy in women of different racial groups. Compared to
the gastrointestinal (GI) microbiome, the vaginal microbiota
has much less alpha-diversity (different microbial species within
the vaginal ecosystem) (70). Notably, the vaginal microbiota
has a Lactobacillus predominance during pregnancy, different
from the GI microbiota, but the vaginal microbiota becomes
more similar to the GI microbiota during the postpartum
period with less Lactobacillus predominance (70). Five different
profiles of vaginal community states in non-pregnant women
of reproductive age were described (71). Type I profile is
dominated by L. crispatus, type II is dominated by L. gasseri,
type III is dominated by L. iners, type IV-A or IV-B are
characterized by high relative abundance of species of genus
Atopobium, Prevotella, Sneathia, Gardnerella, Ruminococcaceae,
Parvimonas, Mobiluncus, and other taxa previously shown to
be associated with bacterial vaginosis. Type V is dominated
by L. jensenii (71). Compared to vaginal microbiota of non-
pregnant women, the vaginal microbiota during pregnancy
tends to be relatively stable with a dominance of Lactobacilli
species (72). Recent microbiota studies have clarified that vaginal
Lactobacillus deficiency, particularly L. crispatum deficiency
and dominance of community state type IV accompanied
by elevated Gardnerella or Ureaplasma abundances (vaginal
dysbiosis) predisposes to prematurity (70, 73). Furthermore,
dysbiotic organisms have higher transcriptomic activity in
women delivering preterm compared to those delivering at
term (74). Lactobacillus predominance is important because
it is protective for increased vaginal microbiological diversity,
and growth of type IV organisms. Prematurity was associated
with increased abundance of pro-inflammatory cytokines in
vaginal wash (74), and dysbiotic vaginal flora was associated
with preterm premature rupture of membranes (PPROM),
chorioamnionitis, funisitis, and early onset neonatal sepsis
(73). Thus, vaginal dysbiosis appears to cause local vaginal
inflammation and increase the likelihood of an ascending
infection and chorioamnionitis, leading to increased risk for
prematurity. Studies in different racial groups have shown that
there are significant racial variations in the vaginal microbiota.
The association between the lower frequency of Lactobacillus and
higherGardnerellawith increased risk for PTBwas demonstrated
in Caucasian but not African American women. While a lower
abundance of Lactobacillus crispatus was associated with low risk
of preterm birth in both cohorts, the presence of Lactobacillus
iners was not associated with the risk for PTB (75). Thus, more
work is needed to understand how vaginal flora may play a role
in ascending infection and prematurity in different racial groups.

COMPARTMENTS WITHIN THE
INTRAUTERINE SPACE AND PATHWAYS
OF MICROBIAL INVASION

The intrauterine space has several sub-compartments that
although contiguous have distinct immune and functional
roles. The sub-compartments include the amniotic fluid, fetus,
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choriodecidua, amnion, villous placenta, and the uterus. One
particular cytokine, IL-6, was identified as a critical marker of
intrauterine inflammation (76) and a predictor of preterm birth
(77). Experimental evidence supports the crucial role of IL-
6 during parturition. In mice, IL-6 deficiency delayed normal
parturition (78), and protected from inflammation-driven
preterm birth (67). Normally, intrauterine infection is mainly a
localized inflammatory process. In humans, IL-6 levels are>100-
fold higher in the amniotic fluid compared to the maternal or
fetal blood during IUI (79, 80). This information is important
in interpreting the relevance of animal models of intrauterine
infection induced by intraperitoneal LPS in mice, which causes
systemic inflammation rather than amniotic fluid inflammation.
Data in the non-human primate demonstrate that infectious
agents confined to the choriodecidua induce preterm labor at
a much lower frequency compared to infection in the amniotic
fluid (81–83). Our data demonstrate that macromolecules such
as cytokines (IL1ra) do not efficiently cross the amniotic epithelial
barrier but readily cross the placenta from the mother to the fetus
(84). Thus, the evaluation of compartment-specific mechanisms
of inflammation is important. Indeed, differentially expressed
genes in spontaneous preterm birth compared to gestational
controls had different transcriptomic profiles in different tissues
(85). These results are consistent with different tissue-specific
roles in the intrauterine space. In a prospective study with
detailed phenotyping of preterm and term labor, the largest
difference in gene expression groups occurred at the maternal
fetal-interface in the decidua, chorion, and amnion (86).

During intrauterine infections, ascending organisms are
thought to spread diffusely through the choriodecidual or
the chorioamnion plane and then invade the amniotic cavity.
However, a study using molecular microbiologic techniques in
human placentae demonstrated that the initial event is a localized
choriodecidual infection, which then invades the amniotic cavity,
infecting the amniotic fluid and fetus prior to causing diffuse
choriodecidual inflammation (87).

ANIMAL MODELS

Several animal models have been reported for IUI (see Table 1

with representative references for each model). Each model
has some advantages but also important limitations. Mice are
commonly used in reproductive research, have the advantage
of being genetically modifiable to enable mechanistic studies,
and are also relatively inexpensive. Other species include rats,
rabbits, guinea pigs, sheep, non-human primates and others.
A major advantage of non-human primates, mice, rats, and
guinea pigs is that all of them have hemochorial placenta, while
sheep have epithelio-chorial placenta. In all of these animal
models, IUI can be induced by injecting different pathogen-
associated molecular pattern molecules (PAMPs), damage-
associated molecular patterns (DAMPs), or live microorganisms
(107). The characteristic features of acute chorioamnionitis
are diffuse infiltration of neutrophils into the chorion and
amnion membranes, and increased inflammatory cytokines and
chemokines (108).

TABLE 1 | Animal models for IUI.

Animal

model

Route of injection Pathogen/agonist References

Mouse i.p. TLR agonists: LPS, Poly I:C,

Pam3Cys, Pam2Cys, LTA;

Bacteria: E. coli, heat-killed

E. coli, GBS; Viruses:

MHV-68, LMCV; Parasites:

Toxoplasma gondii

(65, 67, 88–

92)

i.v. Listeria monocytogenes;

Salmonella Typhimurium;

Fusobacterium nucleatum;

Chalmydophiula abortus

(49, 67, 93–

95)

i.n. Influenza (67)

i.u. (surgery) LPS (96)

i.u.

(ultrasound-guided)

LPS (88)

i.a.

(ultrasound-guided)

LPS (97)

i.vag. E. coli, LPS (88, 98)

NHP i.a. LPS, Ureaplasma species,

GBS

(82, 84, 99)

Choriodecidual

space

GBS (82)

Subcutaneous, i.a.,

i.v.

ZIKV (100–102)

Sheep i.a. LPS, Ureaplasma species (103–105)

i.v. LPS (104)

Subchorionic LPS (106)

i.p., intraperitoneal; i.v., intravenous; i.n., intranasal; i.u., intrauterine; i.a., intraamniotic;

i.vag., intravaginal.

The route of injection is important since TLR activation
in different compartments elicits different responses. Systemic
(intravenous, intraperitoneal, or subcutaneous) injection of
agents will cause a systemic inflammatory response. In mice,
systemic inflammation can cause progesterone withdrawal due
to the regression of the corpus luteum, triggering preterm birth
(109). Localized intrauterine inflammation can be induced in
mice by injecting agents into the uterine horn between the
gestational sacs (88). Most commonly, this has been done by
mini-laparotomy to expose the uterine horns (96); however,
such procedure could induce adverse pregnancy outcomes due
to a rapid localized inflammatory response that surrounds the
incision area. In the last few years, new less-invasive techniques
have been developed, including ultrasound-guided intraamniotic
and intrauterine injection of TLR, thus minimizing the effects
of surgery (88). Similarly, ultrasound-guided intraamniotic
injection has been used in a variety of species. Other non-invasive
methods including intravaginal injection/inoculation have also
been used (88, 98).

In non-human primates, both intraamniotic or
choriodecidual injection/infusion of agents has been used.
In some studies, the animals are placed in a nylon jacket
and tether with the catheters/electrodes tracked through the
tether system (with 360

◦

mobility), requiring prior adaption
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of the animal and considerable animal handling skills (31).
Although sheep have been traditionally used for study of
fetal physiology and fetal inflammation, they are not suited
for preterm labor studies since they lack the decidua and the
placental architecture is considerably different from humans
(110). Thus, while interpreting and comparing studies, the
species used, route of injection, dosage of agents, and other
experimental details need to be carefully considered to correctly
interpret experimental data.

IMMUNE AND NON-IMMUNE CELLS AT
THE FETO-MATERNAL INTERFACE

Several distinct immune cells populate the normal maternal-
fetal interface with distinct homeostatic roles during normal
pregnancy (111). Immune cells in the choriodecidua have
distinct immunological profiles and functions compared to their
counterparts in blood (112). However, the repertoire of immune
cells changes during IUI and parturition (113) and will be
reviewed below (Table 2).

Neutrophils
Neutrophilic infiltration of choriodecidua and amnion is a
characteristic feature during IUI and forms the basis for the
pathological definition of chorioamnionitis (146). Neutrophils
infiltrating the choriodecidua are largely of maternal origin
(147, 148), while neutrophils in the amniotic fluid are largely
of fetal origin (149), although a recent study reported mixed
fetal/maternal origin of neutrophils in the amniotic fluid
(150). During normal pregnancy, there are small numbers of
neutrophils, but the numbers increase dramatically during
IUI presumably due to secretion of neutrophilic chemotactic
factors such as IL-8 by the amnion (84, 108). CD15+ neutrophils
represent the most abundant leukocyte population in AF
from women with intraamniotic infection/inflammation (151).
During IUI, the choriodecidual neutrophils predominantly
produce TNFα, IL-8, and MIP-1β/CCL4 (114, 116). Although
blood neutrophils have a short life-span, neutrophils in the
decidua have greatly increased survival, mediated in part by
up-regulating anti-apoptotic mediators including Bcl-2 family
members (e.g., Bcl2A1, called Bfl-1 in humans) (84, 152).
Neutrophils can amplify the inflammatory response and
neutralize microorganisms by releasing neutrophil extracellular
traps (NETs), producing antimicrobial enzymes such as
defensins, neutrophil elastase, and myeloperoxidase (MPO), and
releasing reactive oxygen species (ROS) (153–155). Neutrophil-
derived pro-inflammatory mediators can trigger preterm
labor and matrix metalloproteinases (MMPs) can weaken the
collagen scaffolding, resulting in preterm rupture of membranes
(156–158). However, studies in mice with systemic neutrophil
depletion did not protect against inflammation-induced
preterm birth (159, 160). Although the reasons for the apparent
contradiction are not clear, neutrophil depletion in mice causes
a systemic up-regulation of G-CSF, IL-17, and IL-23, leading
to hyper-cellular bone marrow as a homeostatic “neutrostat”
mechanism to restore the blood neutrophil pool (161, 162).

Thus, strategies other than neutrophil depletion are needed to
understand the role of neutrophils in triggering preterm labor.

Although neutrophils are classically considered to be pro-
inflammatory, regulatory neutrophils have been increasingly
recognized in different tissues (163). In the decidua, neutrophils
expressing anti-inflammatory indoleamine 2,3-dioxigenase 1
(IDO1) (116), and pro-angiogenic vascular endothelial growth
factor (VEGF) are previously postulated to play a role in cyclic
vascular proliferation in the endometrium (164, 165), and in
1st and 2nd trimester human decidua basalis (166, 167). Based
on peak neutrophil influx after the onset of normal labor, post-
partum uterus/decidua matrix remodeling and wound healing
function has been attributed to decidual neutrophils (113, 168–
170). Thus, there appears to be neutrophil heterogeneity and a
role for neutrophils in tissue homeostasis at the maternal-fetal
interface similar to that for other tissues (163, 171).

Monocytes/Macrophages
Monocytes/macrophages represent 20–30% of the leukocyte
population at the maternal-fetal interface. These include
macrophages of maternal origin in the decidua, and the
Hofbauer cells of fetal origin in the placental villi (172, 173).
Monocytes/macrophages in the amniotic fluid, especially in
cases of IUI, can be of mixed maternal/fetal origin (174).
Placental macrophages are essential for normal pregnancy as
genetic depletion of CD11b+ macrophages prevents embryo
implantation via regulation of corpus luteum development in
mice, and the csf1-deficient osteopetrosis mice have severe
infertility (175). Decidual macrophages play a key role in
angiogenesis, tissue remodeling, immune surveillance, host-
defense, antigen-presentation, and immune tolerance. For
example, decidual macrophages inhibit NK cell-mediated lysis
of human cytotrophoblasts by TGF-β1 secretion (176), and by
phagocytosis of apoptotic cells (177). Macrophages also play a key
role in decidualization, angiogenesis, uterine contraction, and
tissue remodeling (168, 173, 178).

Since decidual macrophages perform diverse functions, the
polarization varies from being largely pro-inflammatory (M1-
like) during the peri-implantation period, anti-inflammatory
(M2-like phenotype) during mid to late pregnancy, and
pro-inflammatory (M1-like phenotype) during parturition
(179). However, decidual macrophages cannot be strictly
phenotyped as either M1 or M2. Rather, Houser et al. described
two unique decidual macrophage populations based on
their CD11c expression (180). Recently, these observations
were further clarified with the description of three decidual
macrophage subsets, CCR2−CD11clow in the decidua parietalis,
and CCR2−CD11chi and CCR2+CD11chi in proximity of
extra villous trophoblasts during the first trimester of human
pregnancy. Although the three different subsets exhibit
phagocytic capacity, CCR2−CD11clow macrophages showed an
M2-like anti-inflammatory phenotype while CCR2+CD11chi

an M1-like pro-inflammatory phenotype, suggesting that those
different macrophage subsets contribute to maintaining an
inflammatory balance at the maternal-fetal interface (181).

During IUI, decidual macrophage numbers increase (84), with
a predominance of M2-like phenotype in humans (120). Similar
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TABLE 2 | Immune and non-immune cells at the feto-maternal interface during IUI.

Cell type Species Phenotype/mechanism References

Neutrophils Human In AF of women at term with acute chorioamnionitis neutrophils are the most abundant populations and

produced predominantly TNFα and MIP1-β/CCLA4

(114)

Human IL-8 and CXCL6-dependent migration of both maternal and fetal neutrophil into the chorioamniotic

membranes

(20, 115)

Non-human

primate

40% of choriodecidua neutrophils express IDO1 in IA-IL-1β injected animals (116)

Non-human

primate

IA LPS induced expression of the prosurvival factor BCL2A1/BFL1 in choriodecidua neutrophils is IL-1

dependent

(84)

Sheep Repeated LPS-exposure decreased numbers of fetal lung neutrophils and iNOS expression (117)

Mice Intrauterine infection with U. parvum causes an extensive neutrophilc infiltration undergoing necrosis and

responsible of fetal infection in BALB/c mice and not in C57BL/6 mice

(118)

Monocytes/

macrophages

Human Accumulation of CD14+CD163+DC-SIGN+ macrophages in fetal membranes during acute

chorioamnionitis

(119)

Human Higher frequency of CD16+CD206+Arg-1+ M2 macrophages compared to M1 macrophages in acute

chorioamnionitis

(120)

Human Placental macrophages infected ex vivo with GBS release extracellular traps containing MMPs and

capable of killing GBS cells

(121)

Non-human

primate

CD68+ macrophages accumulated in uterine tissues upon IA U. parvum-exposure (99)

Non-human

primate

Number of CD14+HLA-DR+ monocytes/macrophages increased during chorioamnionits caused by IA

injection of LPS

(84)

Sheep 7 days after IA LPS exposure blood and lung monocytes secreted high levels of IL-6 and H2O2 upon in

vitro LPS challenge compared with monocytes from control lambs

(117)

Mice Notch signaling induce the polarization of decidual macrophages toward CD11c+M1+ and

CD11c+M1+/CD206+M2+ double positive macrophages in intrauterine LPS-treated mice and

Peptoglycan+poly(I:C)-induced PTL.

(122, 123)

ILCs Human Increased proportion of total CD15−CD14−CD3−CD19−CD56−CD11b−CD127+ ILCs in the human

decidua parietalis associated with spontaneous preterm labor

(124)

Tregs Human Increased numbers of human cord blood FOXP3+ROR+IL-17+ Tregs in live birth neonates with acute

chorioamnionitis

(125, 126)

Human Cord blood Ki67+Tregs showed lower levels of suppression compared to term or preterm without or

with mild chorioamnionitis

(127)

Non-human

primate

Higher frequency of fetal spleen FOXP3+ IL-17+ IL-22+ Tregs in IA LPS model of chorioamnionits

compared to IA saline controls

(128)

Non-human

primate

Frequency of CD127-CD8-CD25+FOXP3+ choriodecidua Tregs did not change upon IA IL-1β-injection (84)

Sheep In IA IL-1α, U. parvum- or LPS-exposed lambs the numbers of FOXP3+ Tregs decreased in peripheral

blood and fetal lymphoid tissues, including spleen, lymph nodes, gut, and thymus

(104, 129–

132)

Mice The adoptive transfer of Tregs in IP LPS-injected mice at gd 17 significantly suppressed the LPS-induced

inflammatory response in the fetal brain by decreasing the expression of Foxp3, IL-6, and TLR-4

(133)

NK Human Increased frequency of CD16+NK cells in decidua basalis in women that underwent PTL with acute

chorioamnionits resulted from the recruitment of circulating NK cells

(134)

Human Decreased frequency of choriodecidua CD3-CD14-CD56+ NK cells in women who underwent preterm

with chorioamnionits compared to those ones who went preterm without chorioamnionits

(84)

Non-human

primate

In cord blood and fetal spleen IA U. parvum exposure did not alter the frquency of CD3–CD8–NKG2A+

NK cells

(99)

Non-human

primate

IA IL-1β or LPS injection at ∼80% of gestation did not alter the numbers of CD56+ dNK cells (84)

Mice IP LPS injection at gd 15 caused an up-regulation of activated CD69+CD49b+ NK cell proportion at

feto-maternal interface

(135)

DCs Human DEC-205+CD86+ DCs from women who underwent preterm birth with acute chorioamnionitis induced

proliferation of NK cells

(134)

Human Blood HLA-DR+CD11c+ IL-12/23p40+ DCs frequency does not change upon in vitro stimulation with

LPS in very preterm neonates with histological chorioamnionitis compared to term neonates or adult

have been reported

(136)

Non-human

primate

No changes in frequency as well as activation status of both pDCs and mDCs in peripheral blood and

lymphoid tissues of U. parvum exposed fetus

(99)

(Continued)
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TABLE 2 | Continued

Cell type Species Phenotype/mechanism References

Mice In IP LPS-injected mice at gd 17-18, the frequency of MHCIIlowCD11chi DCs was significantly elevated in

livers but not altered in lungs or spleens in postnatal day 2 pups

(137)

B cells Human Slight increase of decidual plasmablasts and B1 B cells in women who underwent labor at term or

preterm with chronic chorioamnionitis compared to those with acute chorioamnionitis or without it

(138)

Non-human

primate

CD19+CD20+ B cells numbers are ∼1.5-fold increase in choriodecidua of IA LPS-injected Rhesus

macaque compared to IA saline-injected controls

(84)

Mice B cells conferred resistance to inflammation-driven PTL independently of IL-10 in the third trimester in

mice

(139)

Mice IV injection of IL-10 producing B cells at gd8 to pregnant mice lacking of mature B cells before IP LPS

challenge (at gd10) restored tolerance

(140)

iNKT Human Increased frequency of CD3+CD56+Va24+ iNKT cells in women that underwent pre-term labor without

acute chorioamnionitis compared to those who went pre-term labor with chorioamnionitis

(134)

Human Accumulation of CD3+CD56+CD69+ NKT cells in the decidua basalis of women that underwent

preterm labor without intra-amniotic infection compared to those ones that deliver preterm without labor

(141)

Mice Depletion of iNKT In IP LPS-injected mice at 15dpc decreased expression of costimulatory molecules

CD40, CD80, and CD86 in decidual DCs, and suppressed the expansion and activation of decidual NK

cells

(142)

Mice Adoptive transfer through IV injection of decidual iNKT cells into LPS-stimulated Ja18−/− mice

significantly induced PTB by recruiting adopted iNKT cells into the decidua

(143)

Trophoblasts Human Increased villous trophoblast Fas-mediated apoptosis (144)

Non-human

primate

Pancytokeratin+ trophoblast cells did not produce CXCL8/IL-8 upon IA-LPS injection at ∼80% of

gestation

(116)

Mice Intraperitoneal Poly[I:C] injection on 16.5 dpc caused activation of trophoblast cells that produce KC,

GM-CSF, IL12p40, MIP-1α, MIP1-β, and this response was mediated through TLR3 expression and

function

(145)

to neutrophil NETs, macrophage extracellular traps were recently
reported in the decidua in response to group B Streptococcus
infection (121). These traps containing MMPs effectively kill
invading microorganisms, thereby protecting the host. Although
not a topic of this review, disruption of appropriate macrophage
polarization is also associated with other abnormal pregnancies,
including spontaneous abortions and preeclampsia (179).

T Cells
T cells play an important role in the setting of IUI and
are involved in the mechanisms responsible of induction of
labor (182–184). In vivo T cell activation by intraperitoneal
injection of αCD3ε antibody in late gestation causes pathological
inflammation and initiates innate and adaptive immune
responses which, in turn, lead to preterm labor and birth (185).
Our group recently reported an increase of CD3+ T cells
in uterine tissues after intraamniotic Ureaplasma exposure in
Rhesus macaques (99). T cells represent ∼20–30% of CD45+

cells at the maternal-fetal interface in a Rhesus model of LPS-
induced IUI as well as in human preterm pregnancy (84). In
humans, more CD45RO memory T cells accumulated in the
choriodecidua at term (regardless of the presence of labor)
than in preterm pregnancy without labor in a CXCL10/CCL5-
dependent manner (184, 186). These cells express high levels of
MMP-9, IL-1β, and TNFα (184), cytokines involved in the onset
of labor as well as mechanisms of membrane rupture (187).

During IUI, maternal CD8T cells are increased in both
the placenta and peripheral circulation and they express

CCR3, perforin, and granzyme B (188–190). CD8+ T cells
have the ability to kill fetal cells and therefore should be
excluded from the maternal-fetal interface. Indeed, Nancy et al.
showed that impaired effector T cell accumulation in the
decidua is partly mediated by epigenetic silencing of key T
cell-attracting inflammatory chemokines (11) during normal
pregnancy. However, after L. monocytogenes prenatal infection,
maternal CD8+ T cells with fetal specificity selectively upregulate
the expression of CXCR3, CXCL9 receptor, and are recruited
to the decidua by CXCL9-secreting neutrophils (93). CXCR3
blockade before or shortly after L. monocytogenes infection
correlated with fewer CD8+ T cells in the decidua and no fetal
death (93).

Maternal-Fetal Tolerance and Tregs
A number of protective mechanisms have been identified to
explain the immunologic paradox of maternal tolerance of the
semi-allogenic fetus (191). These include: (1) fetal cells in contact
with maternal cells expressing non-classical MHC antigens; (2)
maternal NK cells being less cytotoxic and recognizing the fetal
trophoblasts with non-classical MHC (192–194); (3) the role of
decidua stromal in local immunemodulation andmaintenance of
immune tolerance (11, 195); (4) a skew toward anti-inflammatory
macrophage phenotype; (5) disappearance of lymphatics from
the endometrium upon decidualization (196); and (6) chemokine
silencing to decrease trafficking of cytotoxic T-cells in the
decidua (11).
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Regulatory T-cells (Tregs) play a pivotal role in maternal-
fetal tolerance (197). Immature dendritic cells induce Treg
formation by secreting IDO and TGFβ (198, 199). Decidual
NK cells can also facilitate the generation of Tregs (199, 200).
Regulatory B cells (Bregs) are the B cells producing IL-10 under
the influence of gonadotropins. Bregs are increased in early
human pregnancy and suppress TNFα production by T cells (201,
202). Maternal Tregs, stimulated by chorionic gonadotrophins,
accumulate at the maternal-fetal interface during early gestation
(203, 204), peak in the second trimester (205), and mediate
tolerance to paternal antigens, facilitating embryo implantation
and preventing embryo resorption (206–209).

Immune tolerance of the fetus during pregnancy places the
mother at a higher risk for impaired host defense. Indeed,
Treg expansion in mouse models increased susceptibility to
Listeria and Salmonella infections during pregnancy (210). Apart
from fetal immune tolerance, Tregs also suppress activity of
other decidual immune cells. Indeed, Treg secretion of TGFβ
and IL10 downregulate decidual NK cell activation, and this
suppression is protective against pregnancy complications such
as pre-eclampsia and recurrent abortions (211, 212). However,
the numbers of CD3+CD8−FOXP3+ Tregs at the maternal-
fetal interface did not change upon intraamniotic LPS exposure
in Rhesus macaques (84). Treg phenotype in the fetus during
chorioamnionitis is discussed elsewhere in this journal.

NK Cells
In the first trimester, decidual natural killer cells (dNK)
cells comprise ∼70% of immune cells at the choriodecidua,
representing the largest population of leukocytes at the maternal-
fetal interface. Both immunological phenotypes and function
of decidua NK cells differ from their blood counterparts.
Compared with circulating CD56brightCD16+ NK cells,
CD56brightCD16−dNK cells present a lower cytotoxicity and
higher levels of killer immunoglobulin-like receptors (KIRs) and
natural killer group 2 (NKG2) receptors (192, 213). dNK cells
express exclusively CD151, CD9, and tetrasparan-5 compared
to peripheral NK cells in the first trimester of gestation (214).
After implantation, CXCR4+ NK progenitor cells migrate into
the uterus via a CCL3/CXCL12 gradient (215), and proliferate
in response to IL-15 (216). The number of the uterine NK cells
decreases significantly at gd 6 in mice (217), peaks at gd10 (218),
and decreases dramatically at d12, when the majority of NK
cells have become senescent (219). Uterine NK cell-derived IL-8,
CXCL10, IFNγ, and vascular growth factors are critically needed
for decidual spiral artery remodeling and successful pregnancy
outcomes 149, (220–222). Decidual NK cells play an important
role in recognizing paternal MHC on trophoblast cells via
killer-cell immunoglobin-like receptor interactions, mediating
tolerance (192–194). Furthermore, a cross-talk between dNK
and dCD14+IDO+ cells could promote the generation of Tregs,
thereby facilitating fetal immune tolerance (199, 200).

Despite important roles performed by NK cells during
normal pregnancy, the role of these cells is not clear in
the pathogenesis of chorioamnionitis. In mice, intraperitoneal
LPS injection increased the frequency of activated NK cells
CD69+CD49b+ at the maternal-fetal interface (135), while we

did not demonstrate changes in NK cell frequency in the
choriodecidua of Rhesus macaques given intraamniotic LPS
(84). In humans, both decidua basalis and parietalis showed an
increased frequency of CD56+NK cells in women that underwent
pre-term labor with acute chorioamnionitis compared to those
without chorioamnionitis (134). Although NK cells perform
homeostatic roles, under pathological conditions such as fetal
alloimmune thrombocytopenia, dNK cells can become activated
with prolonged survival, elevated NKp46 and CD107 expression,
and perforin release, and can induce trophoblast apoptosis and
placental pathology, leading to miscarriage (223).

Dendritic Cells (DCs)
DCs are instrumental for decidualization and angiogenesis in
mice because their depletion prevents blastocyst implantation
and formation of the decidua (224, 225). Large amounts of DEC-
205+ DCs accumulated in both the decidua basalis and parietalis
obtained from women who underwent preterm birth regardless
of the presence of acute chorioamnionitis (134). Peripheral
blood myeloid and plasmacytoid DCs numbers fall in the
second trimester but subsequently increase in the third trimester
(226, 227) and become more activated (228, 229). These DC
populations show lower levels of costimulatory molecules CD40,
CD80, and CD86 during pregnancy complications compared to
healthy pregnancy (230).

Little is known about the role of DCs during chorioamnionitis.
A number of studies in experimental models and humans
demonstrate minimal changes in circulating DCs during
chorioamnionitis (99, 136). Interestingly, DEC-205+ DCs
obtained from women who underwent preterm birth without
acute chorioamnionitis had a higher expression of the
costimulatory molecule CD86 and produced more IL-12. These
DCs preferentially enhanced the proliferation of iNKT cells in
vitro (134). On the contrary, DEC-205+ DCs from women who
underwent preterm birth with acute chorioamnionitis induced
proliferation of NK cells (134).

B Cells
Although B-cell deficient mice have normal pregnancies, IL10
producing B cells protected fetuses from intrauterine demise
when exposed to LPS (140). In human term and preterm
pregnancy, total CD19+ B cells represent a small fraction (<5%)
of decidual leukocytes in both the decidua parietalis and basalis
(138, 231). Furthermore, B cell frequency did not significantly
change during the course of pregnancy in decidua basalis even
during systemic inflammation (231). However, the frequency
of CD19+ B cells were higher in the decidua parietalis of
women who underwent preterm birth regardless of labor (138,
139). These results are consistent with our results of a ∼1.5-
fold increase in CD19+CD20+ B cells numbers in the decidua
parietalis in Rhesus macaque exposed to intraamniotic LPS
compared to IA saline controls (84). Functionally, B cells were
reported to be protective for preterm birth in mice via IL-33 and
progesterone-induced blocking factor, decreasing LPS induced
neutrophil recruitment (139), although this protective action has
been questioned in a recent study (138).
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Decidual B cells can secrete both pro-inflammatory IL-12
and IL-6, as well as immunosuppressive IL-35 (138) suggesting
multiple context-dependent roles for B cells during intrauterine
inflammation. Furthermore, CD19+CD24hiCD27+ B cells can
produce IL-10 under the influence of gonadotropins, and
these regulatory B cells (Bregs) are increased in early human
pregnancy and suppress TNFα production by T cells (201,
202). Additionally, adoptive transfer of IL-10 producing B cells
increased the number of uterine Tregs and protected against LPS-
induced adverse pregnancy effects by decreasing the production
of IL-17A and IL-6 by naïve CD4+CD25− T cells (140).

iNKT Cells
Invariant natural killer T cells (iNKT) specifically recognize
glycolipid antigens presented by MHC class I-related protein
CD1d and produce large amounts of both Th1 and Th2
cytokines upon stimulation (232). iNKT cells are present in both
human and mouse decidua (233–236), and their specific ligand
CD1d is expressed in human villous and invasive extra villous
trophoblast (EVT) (235). Indeed, injection of the CD1d ligand
α-galactosylceramide (αGalCer) resulted in iNKT cell-mediated
pregnancy loss that was dependent on gestational age, strain, and
route of administration (141, 233, 235). Furthermore, placenta
from women with non-infectious preterm delivery demonstrated
an increase in activated iNKT cells (134, 141, 237). Although the
mechanism is not clear, one possibility is that iNKT mediates
the activation of decidual DC, and increases the expression
of co-stimulatory molecules CD40, CD80, and CD86 (142).
Moreover, Jα18−/− mice lack iNKT cells and are resistant to LPS-
induced preterm birth. Further support of the role of iNKT in
inflammation-mediated preterm delivery in mice is that adoptive
transfer of decidual iNKT cells into LPS-stimulated Jα18−/−

mice significantly induced preterm birth by recruiting adopted
iNKT cells into the decidua (143). Overall, the results suggest
that activation of iNKT cells in the decidua may play a role in
triggering preterm birth of non-infectious etiology.

ILCs
Innate lymphoid cells (ILCs) are a group of immune cells
belonging to the lymphoid lineage, although they do not
express antigen-specific receptors. These cells are found at the
mucosal surface and are extremely important in innate immune
responses to infectious microorganisms and in the regulation
of homeostasis and inflammation (238). To date, three distinct
subsets of ILCs have been identified based on their different
phenotype and functions: ILC1s (dependent on the expression
of T-bet); ILC2s (dependent on the expression of GATA3 and
RORα); and ILC3s (dependent on the expression of RORγ) (239).
ILC2 cells are the most common ILCs expressed in preterm and
term decidua (124). However, their role in the context of acute
chorioamnionitis is not well-defined.

In preterm birth patients, an increase in both ILC2s and
ILC3s were observed in the decidua basalis and decidua parietalis,
respectively (124). Interestingly, ILC3s in the decidua from
women with spontaneous preterm labor were activated since they
expressed higher levels of IL-13 and IFNγ, cytokines normally
produced by ILC2s and ILC1s, respectively (124, 240). Further

studies are needed to elucidate the biology ILCs during normal
and complicated pregnancies.

Trophoblast Cells
The trophoblast cells in villous placenta include the
cytotrophoblast and syncytiotrophoblast. In extraplacental
fetal membranes, the trophoblast cells are called EVTs. Fetal
trophoblasts are a component of innate immune system
and play an important role in orchestrating the maternal
innate immune response to infection at the maternal-fetal
interface (241, 242).

Fetal trophoblasts employ several mechanisms to suppress
maternal immune cells: (1) HLA-G protects EVTs from NK-
cell mediated cytotoxicity (243); (2) HLA-G+ EVTs express
anti-inflammatory mediators including IDO (244), programmed
death ligand PDL-1 (245); IL-10 and TGFβ (246, 247); (3) EVTs
enhance the expansion of maternal Tim3+PD-1+CD8+ T cells
in the decidua which recognize PDL-1+ EVTs and downregulate
cytotoxicity (248); (4) HLA-G+ EVTs induces tolerogenic DCs
by disruption of the MHCII presentation pathway, inducing
differentiation of anergic and immunosuppressive CD4+ and
CD8+ effector T cells (249); (5) Cocultures of HLA-G+ EVTs
with sample matched decidual CD4+ T cells results in increased
number of Tregs (250). How these mechanisms are altered in the
context of IUI is not known.

Studies in experimental models clearly demonstrate that
the trophoblasts are capable of response to an inflammatory
challenge and modulate the immune response. In mice,
intraperitoneal poly[I:C] injection induces stimulation of
TLR3, and activates trophoblast cells through the production
of KC, GM-CSF, IL-12p40, MIP-1α, and MIP-1β (145).
In vitro, first trimester trophoblast cells can promote
monocyte migration through the production of GRO-α,
MCP-1/CCL2, and CXCL8/IL-8 in response to LPS (251, 252).
Interestingly, the trophoblast-activation response to LPS
was dose dependent. Compared to high doses of LPS, low
doses of LPS result in the lesser production of chemokines
and cytokines, and therefore less trophoblast activation
(251, 252). Trophoblast cells can also release high amounts
of IL-8 that triggers NET formation in preeclampsia (253).
On the other hand, trophoblast cells can inhibit neutrophil
activation, survival, NET formation, and ROS synthesis via
vasointestinal peptide and other glucose metabolism pathways
(254, 255).

Amnion
As the amnion is in contact with AF, it is strategically
located to transduce inflammatory signals in the AF to
mount the immune response (84). In a Rhesus macaque
model of IUI, the amnion upregulated phospho-IRAK1-
expressed neutrophil chemoattractants CXCL8 and CSF3 in
an IL-1-dependent manner (84). Moreover, amniotic cells
express a set of TLRs suggesting that the amnion plays an
important role as sentinel cells that recognize a wide variety of
pathogen derived molecular patterns (26, 256). When stimulated
or exposed to inflammatory signals, the amnion can also
secrete pro-inflammatory mediators including prostaglandins
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and cytokines/chemokines (256, 257). Thus, it appears that the
amnion may be a sensor and regulator of the inflammatory
response to infectious/inflammatory stimuli and play a role in
triggering preterm labor.

Decidua Stroma Cells
The decidual stromal cells express immune receptors that
respond to ascending infections during pregnancy (258). Stromal
cells are in contact with multiple different immune cells and

Amnion 

Amniotic  

fluid 

Chorion 

Decidua 

Intrauterine 

infection/inflammation Normal pregnancy 

Activation 

Amnion, Chorion 

IL-1/TNF-inhibition 

IL-8/CXCL-8, CSF3 

Neutrophil recruitment & activation 

IL-1/TNF-inhibition 

Intrauterine inflammation 

Cross-talk 

B cell 

T cell 

ILC 

Dendritic cell NK cell 

Macrophage 
T reg 

Stroma cells 
iNKT cell 

Microbes/microbial products 

Resting neutrophil 

Amniotic epithelium 

Mesenchimal cell 

Extravillous trophoblast 
Macrophage 

B cell 

T cell NK cell 

Dendritic cell 

Activated neutrophil 

Blood vessel 

Stroma cells 

iNKT cell 

T reg 

ILC 

Connective tissue 

FIGURE 3 | Model for pathogenesis of intrauterine infection/inflammation. Representative cells in the different tissue layers of fetal membrane are shown. The left

panel in figure depicts normal pregnancy and the right panel shows changes during IUI. Inflammatory products and microbial products (red dots) in the amniotic fluid

and choriodecidua activate the amnion and chorion, resulting in the release of neutrophil chemoattractant (CXCL-8/IL-8 and CSF3) in a IL-1 and TNF-dependent

manner. Neutrophils accumulate at choriodecidua junction, get activated, and greatly amplify the inflammation at the maternal-fetal interface with cross-talk with other

immune and resident cells.

Frontiers in Immunology | www.frontiersin.org 11 April 2020 | Volume 11 | Article 649

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cappelletti et al. Intrauterine Infection/Inflammation in Acute Chorioamnionitis

modify the decidual immune response. Their role in during
IUI needs to be better defined. In in vitro studies, decidual
stromal cells exerted a powerful inhibitory effect on NK cell
proliferation and DC differentiation (259). Decidual stromal
cells can also interact with macrophages in regulating the
immune response against pathogens through the release of
PGE2 and IL-8 (260, 261). Moreover, decidual stromal cells
also regulate the interplay between pro-inflammatory cytokines
and the reproductive endocrine system that may modulate
inflammation-mediated preterm birth (262). Thus, decidual
mesenchymal cells, like mesenchymal cells in other niches, can
both downregulate or upregulate the activity of decidual immune
cells in a context-dependent manner.

PATHOGENESIS OF CHORIOAMNIONITS
AND POTENTIAL THERAPEUTIC
STRATEGIES

As mentioned above, the pathological hallmark of
chorioamnionitis is neutrophil infiltration in the fetal
membranes, and is often associated with neutrophils in
the amniotic fluid. Although the mechanisms of neutrophil
recruitment at the maternal-fetal interface is not entirely
clear, the amnion may play an important role by secreting
chemoattractants (84). Neutrophils that accumulate at the
maternal-fetal interface are activated with increased survival
mediated by the anti-apoptotis factors belonging to the Bcl family
(84). The interplay between neutrophils, macrophages, Tregs,
CD8T cells, and the decidual stromal cells regulate the intensity
of inflammation, and secretion of cytokines, chemokines, and
prostaglandins (Figure 3). The net result is a feed-forward loop
of inflammation that can result in preterm labor and birth.
Viral infections or activation of the type-I interferon signaling
can further potentiate inflammation (61, 65, 67, 145). If the
inflammatory stimulus subsides, resolution of the inflammatory
process can also occur.

Antibiotics, the mainstay of the current treatment, are
largely ineffective in preventing IUI-associated morbidities (263,
264), partly because residual inflammation from the infection
can cause fetal and maternal injury (100, 128, 265, 266).
Therefore, the development of alternative therapeutic approaches
is essential (267).

The nuclear factor-κB (NF-κB) proteins are prototypic
molecules involved in inflammation and immune signaling.
Upon activation by a variety of stimuli including LPS, the
normally inactive NF-κB proteins retained in the cytoplasm by
IκB, are activated and translocate to the nucleus, where they
increase the transcription of target genes (268). Since NF-kB
plays a pivotal role in cellular inflammatory response, several NF-
kB inhibitors have been tested to block IUI. N-acetyl-cysteine
(NAC) inhibits inflammation in human fetal membranes in
vitro (269) and in vivo (270–272). In a clinical trial, NAC
administered to women between 16 and 18 weeks’ gestation
with previous preterm labor and bacterial vaginosis reduced
the recurrence of preterm birth (273). High concentrations of
sulfasalazine, another suppressor of NF-kB activity, reduced

inflammation but also induced apoptosis in the chorion in an
ex-vivo model of fetal membrane inflammation (274). Cytokine-
suppressive anti-inflammatory drugs (CSAIDs) specifically target
inflammatory signaling pathway such as NF-kB, and are therefore
candidates for the treatment of IUI. TPCA-1 and parthenolide
are selective inhibitors of the kinase complex that regulates the
NF-κB cascade, such as IKKβ. Both TPCA-1 and parthenolide
inhibited human choriodecidual IL-6 and TNFα production
and inflammatory gene expression in vitro (275). Similarly, in
an ovine model of IA LPS-induced chorioamnionitis, TPCA-1
and 5z-7-oxozeaenol abrogated the stimulatory effects of LPS
on prostaglandin production in the AF. However, fetal lung
inflammation was not affected by the treatment of those two
compounds, suggesting that the beneficial effects on the fetus
were minimal (276). Non-steroidal anti-inflammatory drugs
(NSAIDS) are another class of compounds used in the treatment
of inflammation with some success in Rhesus macaque models
(277, 278), but they are not without risks for the fetus (279).

TNFα is a major pro-inflammatory cytokine whose levels
are increased during IUI. TNFα blockade decreased adverse
pregnancy outcomes in rodents (280, 281). A small human study
demonstrated that TNFα-blockade can improve outcomes in
women with recurrent spontaneous abortions (282). However, a
concern with using the clinically approved anti-TNFα antibodies
is that the drug freely crosses placenta and is detectable in
the infant after birth since the half-life is several weeks, and
prolonged inhibition of TNFα can result in immune suppression.
Another important cytokine implicated in IUI is IL-1β (277, 283–
285). In a variety of animal models, inhibitors of IL1 signaling
such as Anakinra (recombinant IL-1 receptor antagonist) and
peptide inhibitors substantially reduced intrauterine neutrophil
infiltration and inflammation (84) and fetal inflammation (3, 128,
286–290). However, the efficacy of IL-1 inhibitors in preventing
preterm birth has been questioned (284, 291). An attractive
feature of the widely used clinical drug Anakinra (recombinant
IL-1 receptor antagonist) is that it has a short half-life, thus
decreasing the concern for prolonged immunosuppression of the
fetus. Anakinra is widely used as an anti-inflammatory agent
for Rheumatoid arthritis and other inflammatory diseases (292),
and classified as a class B drug during pregnancy by the US
FDA (No harm to the fetus in animal studies but lack of well-
controlled studies in humans). Anecdotal use during pregnancy
has been reported the drug to be safe but well-controlled trials are
lacking (293).

CONCLUSIONS

Although the link between chorioamnionitis and the risk for
maternal and fetal health has long been recognized, important
questions remain about the immunobiology of IUI. Multiple
lines of evidence from animal experiments and in humans have
convincingly demonstrated that different microorganisms can
cause IUI through various routes of invasion. Moreover, the
emerging concept of priming viral infections and polymicrobial
infection need to be further investigated.
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Among different immune cells, neutrophils infiltrating
the chorioamnion decidua tissue play a major role in the
pathogenesis of IUI. The mechanisms regulating neutrophil
recruitment to fetal membranes and their role in promotion of
IUI currently represent an area of active investigation.

Antibiotic therapy for IUI has been disappointing so far, likely
because of the residual intrauterine inflammation. There is a clear
need to develop new intervention strategies aimed at reduction of
the morbidity and mortality associated with IUI.

Lastly, more efforts are needed to build interdisciplinary
teams spanning reproductive biology, infectious diseases,
pharmacology and immunology, maternal and fetal health
that would allow a broad approach in the understanding of
the pathogenesis of chorioamnionitis and to develop new
therapeutics to prevent/cure IUI.
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