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Irvine Computational Intelligence Project 
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Abstract 

Incremental learning from examples in a noisy domain is a difficult problem in Machine Learning. In this 
paper we divide the task into two subproblems and present a combination of numeric and symbolic approaches 
that yields robust learning of boolean characterizations. Our method has been implemented in a computer 
program, and we plot its empirical learning performance in the presence of varying amounts of noise. 

1 Introduction 

A learning engine in an unconstrained, active environment faces a difficult task, for it must be able to 

accurately predict the outcomes of its actions. Moreover, there are a large number of features in the 

environment, the environment is occasionally inconsistent, and the learner must adapt its performance · 

in a continuous manner. This is a task for which neither numeric or symbolic learning methods alone 

appear to be sufficient. Existing Machine Learning approaches have various shortcomings: either they are 

non-incremental [e.g., Michalski and Stepp 1983J, requiring a large number of instances before learning 

can occur; they require an explicit theory of the domain [Mitchell 1985] or a benevolent tutor; or as 

many do [e.g., Winston 1970, Mitchell 1982}, they have significant trouble with inconsistent instances or 

don't learn at all in the presence of noise. Section 4 discusses this related work. in more detail. 

In this paper we describe an alternative approach for learning from examples that combines numeric 

and symbolic learning methods. Each characterization under consideration by the program is assigned 

a measure of effectiveness as a result of a statistical summarization process. Instances are not compared 

with other instances, but with this summary of past instances. The summary is also used to guide forma

tion of new compound characterizations through the exponential space of possibilities while remaining 

within reasonable memory limitations. Because the algorithm is incremental and does not rely on a 

large memory of accrued instances, it is able to track changes in the environment over time and remains 

extremely robust with respect to noise. 

2 Salience assignment 

The domain considered in the context of this paper consists of simple, non-relational blocks, a traditional 

domain for AI systems. Blocks may be described in terms of their size, color and shape (e.g., a large red 

circle). The proper characterization of the concept to be learned may involve a conjunction across slots 

This research was supported in part by the Office of Naval Research under grant N00014-84-K-0391, the National Science 
Foundation under grant IST-81-20685, and by the Naval Ocean Systems Center under contract N66001-83-C-0255. 

A shorter version of this paper will appear in the proceedings of the International Machine Learning workshop 1985. 
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(e.g., Size[large) and Color[red]) a disjunction of fillers within a slot (Color[red or blue]), a disjunction 

between slots (Size[large) or Color[red]), or the negation of any of the above. 

There are two subproblems an algorithm in this domain must solve: which of the features are the 

significant ones (the salience assignment problem) and which of the possible boolean functions over the 

features should be formed (the composition problem). 

The outputs of the salience assignment problem are a classification of each of the characterizations 

into one of three roles: an accurate predictor of positive instances, a accurate predictor of negative 

instances or an 'uncorrelated' characterization which does not enable an accurate prediction of either 

kind. 

The inputs for this problem may be divided into one of four logical possibilities: a characterization 

is present in a positive instance (prediction), present in a negative instance (an error of commissi'on), 

absent in a positive instance (an error of omission), or absent in a negative instance (non-prediction). 

The first and last possibilities indicate a positively predictive characterization. Errors of commission and 

omission indicate a negative or uncorrelated cue. 

Positive instance Negative instance 

Feature present ++ +-
Prediction Error of Commission 

Feature absent -+ --
Error of Omission Non-prediction 

Table 1: Possible combinations of features and instances 

A constraint from psychology helps identify an appropriate algorithm. Specifically, animal exper

iments [Rescorla 1968) clearly identify a necessary condition for learning an association between two 

events El and E2: the likelihood of E2 must be greater following El than it is without El. Formally, 

p(E2jEl) > p(E2IE1). This is called the law of contingency. This principle is~ contrast to approaches 

which simply strengthen an association whenever El and E2 are paired together and weaken it when 

·they are not (e.g., when Color[red) (El) is tagged as a positive or negative instance (E2)). 

Bayesian statistics (see e.g., Duda et. al. [1979)) provide similar formulae for the calculation of two 

values in inductive logic: Logical Sufficiency (LS), which indicates the extent to which the presence of 

one event predicts another particular event; and, reciprocally, Logical Necessity (LN), which represents 

the extent to which the absence of an event decreases expectation or prediction of the second event. Our 

algorithm makes use of an incremental method of calculating approximations of these two values, via a 

simple formula composed of precisely the four possible categories of pairwise feature occurrences given 

above. 
LS=s(n+o) 
· o(s+c) 

LN = c(n+ o) 
n(s + c) 

where s is the count of successful predictions, c is errors of commission, o is errors of omission, and n 

denotes non-predictions. 

Our algorithm utilizes these approximations of LS and LN to assign a role to each of the character

izations in an incremental manner. The role assigned is based on the interpretation of the LS and LN 

values. LS and LN values range from 0 to oo, with high LSs corresponding to a characterization strongly 
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Propose When error of commission 

Not[A) LN(A) >> 1, A present 

And[A,BJ LN(A) << 1, A present 

LN(B) << 1, B absent 

When error of omission · 

Or[A,B] LS(A) >> 1, A present 

LS(B) >> 1, B absent 

Table 2: Composition proposers 

predictive of positive instances and very low LSs corresponding to the case where the characterization 

implies a negative instance. When the value of LS is approximately 1 then the characterization is consid

ered uncorrelated. LN values are interpreted reciprocally. That is, high LN values indicate a necessary 

characterization for a negative instance; LN value about equal to 1, a lack of correlation; and LN values 

much less than 1, the necessity of a characterization for a positive instance. 

3 Composition 

Learning in a complex domain necessitates noting useful combinations of characterizations. For instance, 

a conjunction of the size and color may indicate a positive instance while neither the size nor the color 

alone do. 

Our algorithm for the composition problem is failure driven and, upon an error, it compares an 

instance with the classifications of characterizations provided by the salience assignment algorithm in 

the process of composing new characterizations.1 When the algorithm makes an error of omission, it 

is behaving as if the characterizations as a whole are too specific; as a result,· a new characterization 

is formed which is the disjunction of the most significant characterizations (measured by sufficiency, 

i.e., LS). Upon an error of commission (behaving too generally) a new characterization may be formed 

which is the conjunction of two significant characterizations. The measure of necessity, or LN, is used to 

determine the best candidates. Negations are also proposed following an error of commission. 

3.1 Limiting the growth of memory 

This algorithm does not continue to form new characterizations without bound. Two mechanisms serve 

to limit this growth. The first is simply that new characterizations are only introduced following a failure. 

1 Given the specific algorithm presented above, this amounts to comparing an instance against a statistical summary 

of the previous instances. This is in contrast to approaches which compare instances with other instances (see e.g., 

[Langley 1983]), or instances with symbolic generalizations of other instances (e.g., [Mitchell 1982]). Utilizing this 
methodology allows the algorithm to propose disjunctions and retain tolerance to noise. 
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In an environment without inconsistent instances this alone can be quite effective. 

Secondly, this algorithm utilizes competition between a newly introduced characterization and its 

components. When a new characterization outperforms its components, the latter are deactivated. 

Measuring the predictiveness of each characterization is done by comparing LS and LN values. When a 

new characterization is introduced it is assigned an LS threshold if it is a conjunction or negation and 

an LN threshold if it is a disjunction.2 These thresholds are set at the maximum of the LS values of 

the components or the minimum of the LN values for conjunction/negation and disjunction respectively. 

The original characterizations are deactivated when the significance of the new characterization exceeds 

its threshold. Until this time the new characterization cannot be combined with others. 

Utilizing this mechanism has the additional advantage that this algorithm can (1) correct some 

erroneous characterization formations and (2) follow changes in the true characterization of the concept 

(i.e., if the environment changes). When a characterization falls below its threshold, the characterizations 

that led to its formation are reactivated and now compete with the ineffective characterization. H the 

ineffective characterization fails to perform well, it is deactivated and the reactivated characterizations 

are free to form new combinations. 

3.2 Run time output 

The preceeding algorithms were encoded in a program written in Franz Lisp on a VAX-11/750 under Uni.X. · 

In the following transcript the concept to be characterized is (Size(small) and Color[red)). Annotations 

are separated from actual output by semicolons. 

Instance features: Size[small], Color[red], Shape[square]. 
strongly expecting a SMALL-AND-RED (odds= 166.88 >> 1). 

Positive instance of SMALL-AND-RED. This is a successtul 
updating contingency 

marking successes 
marking omissions 

classitication. 

Here is a list ot the initial characterizations 
the program begins with. The characterization 
small ? ? is considered satisfied it the size 
is small. Each characterization has counts 
which summarize the instances seen thus tar. 
Note that no compositions ot characterizations 
have yet been proposed. 

Characterizations ot SMALL-AND-RED: 

Size, Color, Shape I ++ +- -+ ls 11 ln 

-------------------------------------------------------+ 
small ? ? I s 1 1 1 1.e1 11 o.33 

-------------------------------------------------------+ 
2 An LS threshold is chosen for conjunctions since a more restrictive clause is falseness-preserving [Michalski 1983] and thus 

LN is guaranteed to be as good. A similar argument follows for disjunction. 
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medium ? ? I 1 1 6 0.6 II 3.0 

-------------------------------------------------------+ 
large ? ? I 1 1 6 0.6 II 3.0 

-------~-----------------------------------------------+ 
? blue ? I 1 1 6 1 0.6 11 3.0 

-------------------------------------------------------+ 
? green ? I 1 1 6 1 0.6 II 3.0 

-------------------------------------------------------+ 
? red ? I s 1 1 1.67 11 o.33 

-------------------------------------------------------+ 
? ? circle I 1 1 6 0.6 II 3.0 

-------------------------------------------------------+ 
? ? square I 3 1 3 1.0 II 1.0 

-------------------------------------------------------+ 
? ? triangle I 3 1 3 1 1.0 II 1.0 

Instance teatures: Size[small], Color[green], Shape[triangle]. 
strongly expecting a SMALL-AND-RED (odds = 26.78 >> 1). 

Negative instance ot SMALL-AND-RED. Th.is is an error ot 
updating contingency commission. 

marking commissions 
marking non-predictions 

introducing new characterizing cue: 
small red ? 

introducing new characterizing cue: 
? (blue v red) ? 

small is present and has 
an LN value below 1; red 
is absent, LN below 1. 

Instance features: Size[medium], Color[green], Shape[circle]. 
not expecting a SMALL-AND-RED (odds= 0.03 << 1). 

Negative instance ot SMALL-AND-RED. When. nothing happens, none 

Instance features: Size[small], Color[blue], 
strongly expecting a SMALL-AND-RED (odds 

Negative instance ot SMALL-AND-RED. 
updating contingency 

marking commissions 
marking non-predictions 

establishing characterizing cue: 
small red ? 

deactivating characterizing cue: 
small ? ? 

deactivating characterizing cue: 
? red ? 

introducing new characterizing cue: 
? (green v red) ? 

of the learning 
mechanisms are updated. 

Shape [square] . 
= 4 .66 » 1). 
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Th.is is another error 
of commission. 

small and red has proved 
to be more predictive than 
either small or red alone. 
The program removes each 
of these characterizations 
in order to keep memory 
within reasonable bounds. 
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Figure 1: Performance as a function of noise. 

During a given instance confidence is calculated by multiplying together the LS values of each char

acterization that is present and the LN values of each characterization that is ·absent. This confidence 

measure is then interpreted in terms of odds: much less than 1 indicates that a negative instance is ex

pected; about 1 indicates uncertainty; much greater than 1 indicates that a positive instance is expected. 

In the example above, Size[small] has an LN value below 1, as does Color[redJ, and an error of 

commission occurs where Size[smallJ is present and Color(redJ iS absent; the program hypothesizes that 

Size(small] and Color[redJ together might be a better predictor than either alone. 

3.3 Program performance 

Real-world environments invariably entail some degree of noise, so a learning algorithm must be able to 

tolerate inconsistent instances. We have been pleasantly surprised by the performance of our program. 

Figure 1 depicts the performance of our program when trained for the concept Color[red or blue} with 

various rates of inconsistency (the ratio of incorrectly identified instances to ali instances). As the rate of 

inconsistency approaches 0.2, the performance falls toward a chance level of 50%. As one would expect, 

inconsistency rates in excess of 0.5 cause the program to acquire the opposite of the concept and perform 

at less than a chance level. 3 

The program's tolerance of inconsistent instances is partly due to the smoothness of the salience 

3 The performance curves for disjunction and conjunction between slots are similar. 
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assignment function. However, we found that the robustness depends critically on the introduction of 

composed characterizations. With no noisy instances, the program performs well with the composition 

algorithm disabled, but when even a small number of inconsistent instances are introduced, performance 

falls off precipitously unless combination characterizations are proposed. This is due to the higher 

predictive value of a combination of characterizations as compared to its components and correspondingly 

smaller influence of inconsistent instances on that value. Methods which rely on an implicit encoding of 

the compound characterizations will not perform as well in presence of noise as those that use an explicit, 

composed encoding. 

4 Related work 

There has been a significant amount of work done in Machine Learning on the task of learning from ex

amples. Numeric techniques (e.g. [Samuel 1963]) tend to be tolerant with respect to noise but have some 

difficulty exploring the exponential composition space of characterizations. Michalski and Stepp (1983] 

address the larger task of conceptual clustering and deal effectively with the space of characterizations 

and noise. However, their algorithm is non-incremental and processes the instances in a 'batch' manner. 

Symbolic techniques, on the other hand, have been used successfully by a number AI learning pro

grams though they fail to tolerate noise [Mitchell 1982] and may require specific instances to maximize 

learning [Winston 1970]. Recent analytic approaches minimize the number of instances required to ac

curately characterize a concept [Mitchell, Mahadevan, and Steinberg 1985], yet they rely heavily on 

a nearly complete domain theory, which restricts the applicability of this work only to domains and 

problems which offer pre-built-in domain theories. 

Cognitively oriented Machine Learning researchers have focussed on developing psychologically plau

sible models of learning. In the ACT* family of programs [Anderson 1983], the basic associational unit, 

the production rule, is strengthened when it is reinvented and when it is activated through the spread of 

activation in memory. Rules are weakened by negative feedback. Though this scheme for assigning rule 

strength may be empirically valuable, it does not appear to be consistent with basic psychological data 

concerning contingency (see Section 2). 

IPP [Lebowitz 1983) learns while parsing English newspaper stories. Features present in stories are 

used to form groups of predictive features which may be used to aid further parsing. These feature 

groups are strengthened (or weakened) by a prespecified amount given positive (or negative) instances. 

The program improves its pa.z:sing of story texts, but again this method is inconsistent with psychological 

contingency data. Secondly, as Lebowitz notes, IPP has some difficulty when subset of features in a group 

are predictive while any single one isn't. Lacking a representation for explicit boolean functions prohibits 

IPP from assigning predictiveness only to a subset of features. 

5 Conclusions: Constraints and heuristics from cognition 

Our work on the problems of learning addressed in this paper arose from our twin concerns with ac

curately modeling human and animal learning behavior, and generating useful AI learning algorithms. 

We began by examining a number of results from the literature on animal learning psychology. An 
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experimental result of specific ·interest gave a precise quantification of a necessary condition for animal 

learning [Rescorla 1968] called contingency. Pursuing the implications of this class of experiments, we 

found that a large number of algorithms currently in use in AI systems which are based on a simple 

'strengthening and weakening' scheme (strengthen when it works, weaken when it doesn't) are clearly 

inconsistent with these experimental data. 

Although this is a valuable observation for cognitive modelling efforts, it wasn't immediately obvious 

what impact this would have on researchers in Machine Learning. However, this is an area in which 

results from AI and Cognitive Science converge: analysis of the relevant experimental data led us to a 

highly robust algorithm for the salience assignment task (Granger, Schlimmer and Young 1985]; one that 

it is doubtful we would have otherwise considered. 

We plan to continue to investigate algorithms that account for existing psychological results and 

incorporate those that yield effective solutions into our ongoing work on Machine Learning. 
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