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Optimized Transmission for Parameter

Estimation in Wireless Sensor Networks
Shahin Khobahi, Mojtaba Soltanalian, Member, IEEE, Feng Jiang, and A. Lee Swindlehurst,

Fellow, IEEE

Abstract

A central problem in analog wireless sensor networks is to design the gain or phase-shifts of the

sensor nodes (i.e. the relaying configuration) in order to achieve an accurate estimation of some parameter

of interest at a fusion center, or more generally, at each node by employing a distributed parameter

estimation scheme. In this paper, by using an over-parametrization of the original design problem, we

devise a cyclic optimization approach that can handle tuning both gains and phase-shifts of the sensor

nodes, even in intricate scenarios involving sensor selection or discrete phase-shifts. Each iteration of

the proposed design framework consists of a combination of the Gram-Schmidt process and power

method-like iterations, and as a result, enjoys a low computational cost. Along with formulating the

design problem for a fusion center, we further present a consensus-based framework for decentralized

estimation of deterministic parameters in a distributed network, which results in a similar sensor gain

design problem. The numerical results confirm the computational advantage of the suggested approach

in comparison with the state-of-the-art methods—an advantage that becomes more pronounced when the

sensor network grows large.

Index Terms

Distributed beamforming, fusion center, alternating direction method of multipliers (ADMM), con-

sensus algorithms, parameter estimation, signal recovery, wireless sensor networks, waveform design on
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I. INTRODUCTION

Analog vs. Digital? When it comes to wireless sensor networks (WSNs), analog WSNs exhibit a

significantly reduced level of distortion in parameter estimation compared to their digital counterparts

[2]. Consequently, analog WSNs have been recently subject to extensive study—see, e.g., [2]–[9], and

the references therein.

The task of collecting an estimated (or recovered) parameter (or signal) from measurements of the

sensor network is usually performed in a centralized manner, i.e. at a fusion center (FC). To further

improve the estimation or detection performance in WSNs, the FC can be configured with multiple

antennas [5], [7], [9]. Several measurement relaying strategies have been proposed, including amplify-

and-forward [4], [5], and phase-shift-and-forward schemes [7]. It was shown that the transmission gain

or phase-shift at the sensor nodes can be optimized in order to considerably reduce the estimation error at

the FC. On the other hand, due to the fact that in a WSN the sensors are usually located in geographically

different positions, the task of parameter estimation using a WSN requires the development of local signal

processing techniques as well as developing inter-sensor communication strategies to further facilitate the

estimation process. In addition, due to the limited bandwidth, cost, and energy budget available in WSNs,

one should also consider the design of efficient compression techniques for local observations of each

node so that it allows for low rate communications for node-to-node and node-to-FC transmissions. Hence,

it is of importance to develop distributed estimation algorithms that allow for a low rate, yet optimized,

communication strategy for both centralized and decentralized parameter estimation. To this end, we

attempt in this work to provide a unifying optimization framework in the context of sensor transmission

gain design for both centralized and decentralized parameter estimation in a WSN, and also propose a

novel compression and diffusion strategy for inter-sensor communications which relies not only on the

quality of the sensor observations but also the quality of the communication channel and observations of

the neighboring nodes as well.

There exists an extensive literature on the routing strategy optimization and sensor selection schemes

for distributed networks to increase the efficacy of the distributed system while maintaining the accuracy

of the estimation framework for both centralized or decentralized scenarios. The approaches used for

addressing the design of energy-efficient routing and relaying schemes for such systems are based on

convex and non-convex optimization techniques [10]–[12]. Researchers have looked at these problems

from different perspectives, e.g., reducing communication cost [13]–[15], joint optimization of the routing

and power allocating scheme [16]–[18], developing opportunistic-based routing protocols [19]–[21], joint
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optimization of resources and routing in a distributed manner [22], among others; interested reader may

consult [23], [24] and the references therein for further details. In an effort to extend the lifetime of

the network, several sensor selection algorithms were also proposed and studied in [7]. Furthermore, the

authors in [25] have considered the problem of energy efficient distributed parameter estimation in a WSN

and proposed a Fixed-Tree Relaxation-Based Algorithm (FTRA) in conjunction with a computationally

efficient iterative distributed algorithm to jointly optimize the sensor selection and routing scheme in

a WSN. In such scenarios, [25] shows that the well-known Shortest-Path Tree routing scheme is not

optimal if one wishes to consider both the total communication cost and the estimation accuracy, while

the authors provide a method with better trade-off when both of the criteria must be taken into account. In

[26], the authors considered the problem of distributed estimation of a vector-valued parameter in a WSN

with faulty transducers and proposed a diffusion-averaging distributed Expectation-Maximization (EM)

algorithm in order to perform the estimation task. Most notably, a class of distributed (but centralized)

linear estimators based on reduced-dimensionality observations were developed in [27] to tackle the

problem of estimating stationary random signals, and in particular, block coordinate descent based

iterations to handle the estimation task for correlated sensor observations were proposed.

In the centralized parameter estimation scenario, a central node (i.e., the fusion center) collects the data

from the sensor nodes in the network to perform the task of parameter estimation. Then, the FC applies an

inference algorithm (e.g., the maximum likelihood estimation method) on the raw data to obtain the final

estimate. However, if the data transmission to the FC is costly, the data processing and power limitations

can be alleviated via employing a decentralized/distributed communication and estimation model in which

each node performs the task of estimation locally while restricting the data exchange between neighboring

nodes. Another approach is to use low-resolution sampling techniques for addressing the power and data-

rate limitations [28]–[33]. Early works in the context of analog estimation include the study of algorithms

for data fusion in both centralized and decentralized scenarios. For instance, the authors in [34] have

proposed an average consensus-based decentralized estimation scheme for a network with both fixed and

time-varying topologies. In some recent efforts to achieve minimum estimation error, analog amplify-and-

forward and phase-shift-and-forward transmission schemes for signal transmission from sensor to fusion

center (FC) have been proposed in [3], [4], [5], [35], and [7], where the sensor gain optimization is

usually subject to a total power constraint. Moreover, a distributed parameter estimation algorithm based

on alternating direction method of multipliers (ADMM [36]) has been proposed in [37] and [38]. In

addition, an ADMM-based method for phase-shift-and-forward (i.e., unit-modulus beamforming) wireless

sensor networks aiming at estimating a deterministic parameter from noisy sensor measurements in a
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centralized manner has been proposed in [39]. In particular, the authors of [39] formulate the problem

of centralized parameter estimation as a uni-modular quadratic program (UQP) and tackle it using the

ADMM technique. Furthermore, the authors in [40] have considered the scenario of detection of a zero-

mean Gaussian signal in a centralized manner and propose a convex sensor gain optimization framework

by minimizing the ratio of the log probability of detection and log probability of false alarm under

a fixed-norm gain constraint. Nevertheless, our work differs from [39] and [40] due to the fact that

our proposed method can handle several practical scenarios (see Sec. III(A)-(B)) including, e.g., both

the unit-modulus beamforming scenario of [39] and fixed-norm gain design of [40] in centralized and

decentralized system architectures, and even more. For a more general overview of beamforming and

sensor gain design techniques, the reader is referred to [41] and [42].

Contributions: In this work, we first formulate the problem of parameter estimation for both cases

of centralized and decentralized data fusion models. Then, we derive the asymptotic variance of the

estimation for both cases and we propose an efficient framework that can deal with tuning both gains

and phase-shifts of the sensors for an optimized forwarding of the observed signal for node-to-node

and node-to-FC communication purposes, which effectively minimizes the final error variance of the

estimation, facilitating a better estimation accuracy for the parameter in both the decentralized and

centralized scenarios. Furthermore, we propose a novel data compression and communication strategy for

the decentralized estimation scenario, and further show that the centralized and decentralized estimation

frameworks can be viewed under a single unified optimization model. In addition, the corresponding

mean-squared-error (MSE) performance of the proposed estimation techniques for both scenarios are

derived in terms of the sensor gain vectors. In particular,

• The proposed algorithm can deal with the optimization of the complex gains of the sensors (i.e. both

phase-shifts and transmit gains) for both centralized and decentralized parameter estimation models.

In addition, our method offers an extremely low computational complexity compared to state-of-the-

art methods. In particular, in the centralized parameter estimation scenario, our proposed optimization

method demonstrates far better estimation accuracy compared to other methods. In addition, it is

superior in computational performance for large-scale distributed systems, compared to the state-of-

the-art SDP-based approaches.

• The proposed approach can be used for various types of sensor constraints including e.g., phase-shift

only and sensor selection cases.

• In the phase-shift only case, we propose a simpler alternative to our general framework.
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Organization of the Paper: The rest of the paper is organized as follows. In Section II, we give the

general problem formulation of the both decentralized and centralized parameter estimation schemes with

their associated data fusion algorithm. In Section III, we propose our efficient sensor gain optimization

technique which effectively minimizes the variance of the estimation methods for both the cases of decen-

tralized and centralized parameter estimation. In Section IV, we thoroughly investigate the performance

of our proposed sensor gain optimization for different scenarios and we compare our algorithm with

several state-of-the-art methods. Finally, Section V provides a summary that concludes the paper.

Notation: We use bold lowercase letters for vectors and bold uppercase letters for matrices. (·)T , and

(·)H denote the vector/matrix transpose, and the Hermitian transpose, respectively. 1 and 0 are the all-one

and all-zero vectors/matrices. ‖x‖n or the ln-norm of the vector x is defined as (
∑

k |x(k)|n)
1

n where

{x(k)} are the entries of x. The symbol � stands for the Hadamard matrix product. Diag(·) denotes the

diagonal matrix formed by the entries of the vector argument, and blkdiag(·) returns a block diagonal

matrix with matrices on its diagonal. ZQ denotes the set {0, 1, · · · , Q − 1}. We represent the topology

of the WSN by an undirected and connected graph G = (E ,V), consisting of a finite set of vertices

V = {1, . . . , n} (also called nodes), and a set of edges E ⊆ {{i, j} : i, j ∈ V}. We denote the edge

between node i and j as {i, j}, which indicates a bidirectional communication between the nodes i and j.

We further assume that the sensor connections in G are time-invariant and the transmissions are always

successful. We define the set of neighbors of node i including itself as Ni , {j ∈ V : {i, j} ∈ E}. The

degree of the ith node is given by di = |Ni|.

II. SYSTEM AND FUSION MODEL

In this section, we consider two different data exchange scenarios in a multi-agent network (e.g., a

WSN) where the ultimate goal is to achieve a maximum likelihood (ML) estimation of some observed

parameter. We will refer to the two scenarios as centralized and decentralized data exchange schemes.

We further present a consensus-based framework for decentralized estimation of deterministic parameters

in wireless sensor networks and further show that the error variance in this case converges to that of the

global maximum likelihood estimate of the parameter when a central node has access to all information

available in the network. Next, we propose an efficient sensor gain optimization technique to minimize

the overall error variance of the estimate derived in both centralized and distributed frameworks.
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Fig. 1. An intuitive illustration of the proposed data compression and diffusion strategy for a graph with N = 6 nodes. Purple

nodes represent the parent nodes at each data compression phase, while the red ones show the node that is assigned to carry

the information received from the corresponding parent node. Each node starts with an initialization of the information variable

Ii(0) for i = 1, . . . , N , and transmits this variable to its immediate neighbors. Next, each node (denoted by the color purple,

considered as a parent node in its neighborhood) assigns the node with the highest information value (red node) to incorporate

the parent node’s observation into its diffusion process.

A. Problem Formulation: Decentralized Estimation

We present a distributed consensus-based estimation framework for our problem and further derive the

error variance formulation for this case, which will be utilized as a metric to optimize the transmission

gains for our amplify and forward node-to-node data exchange protocol. We consider a network with

N single-antenna agents (nodes) each of which observes an unknown deterministic parameter θ ∈ C,

according to the following linear observation model:

zi = θ + vi, (1)

where i denotes the sensor index, and vi ∼ CN (0, σ2v,i) is additive Gaussian observation noise. We further

assume that the observation noise is independent from one node to another, and that the channel state

information (CSI) of the network is available at the nodes (at least for neighbors).

Our distributed data exchange protocol operates as follows. The ith agent amplifies its observation zi

with an adjustable complex gain ai ∈ C, and then, transmits this amplified observation to its immediate

neighbors (i.e., k ∈ Ni). Hence, the received vector at a generic node i from its neighbor node k can be

modeled as:

yi,k = hi,kakzk + ni. for k ∈ Ni (2)

where hi,k ∈ C denotes the complex gain of the channel between nodes k and i, and ni ∼ CN (0, σ2n) is

the zero-mean Gaussian communication noise which is assumed to be uncorrelated from one transmission
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to another. Let Si = {si1, . . . , si|Ni|} denote the ordered sequence of all nodes neighboring the i-th node.

This ordered set allows for a concise description of the estimation and system model in the rest of the

paper. Considering the generic node i to be a data sink point in the network, the vector of all observations

of its neighboring nodes prior to amplification can be modeled as,

zi = θ1 + vi, (3)

where zi = [zsi1 , . . . , zsi|Ni|
]T , and vi = [vsi1 , . . . , vsi|Ni|

]T denotes the vector of observation noise for all

nodes in the neighborhood of the i-th node (i.e., k ∈ Ni), for which the covariance of the aggregated

noise vector is given by

Rvi = E{vivHi } = Diag
(
σ2v,si1 , . . . , σ

2
v,si|Ni|

)
.

Consequently, the received vector of the amplified signal at node i from its neighbors can be expressed

as:

yi = HiDizi + ni = Hiaiθ + HiDivi + ni︸ ︷︷ ︸
,wi

, (4)

where ai = [asi1 , . . . , asi|Ni|
]T denotes the complex sensor gains to be optimized, Di = Diag(ai),

yi = [yi,si1 , . . . , yi,si|Ni|
]T whose elements are defined in (2), Hi = Diag

(
hi,si1 , . . . , hi,si|Ni|

)
, and ni

is complex Gaussian communication noise vector at the sink node i, with covariance matrix Rni =

E{ninHi } = σ2nI|Ni| . In addition, according to (4), we define wi , HiDivi + ni, as the combined

noise term for the communication noise and the amplified measurement noise. Clearly, the combined

noise term wi follows a zero-mean Gaussian distribution with covariance matrix

Rwi
= E{wiw

H
i } = HiDiRviD

H
i HH

i + Rni . (5)

B. Local Estimation Model

Let θ̂(t)i denote the local estimate of the unknown parameter at node i after t rounds of data exchange

in the network. Henceforth, according to (4) and after the first round of node-to-node communication

(data exchange via the amplify-and-forward scheme) in the network, each node can compute the initial

maximum likelihood estimate of the parameter based on the received information from its neighboring

nodes as

θ̂
(1)
i =

(
aHi HH

i R−1wi
Hiai

)−1
aHi HH

i R−1wi
yi, (6)

where the error variance of the above estimate is given by

Var
(
θ̂
(1)
i

)
=
(
aHi HH

i R−1wi
Hiai

)−1
. (7)
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A drawback of such a distributed amplify-and-forward scheme (governed by variable sensor gains) is

that all nodes neighboring a specific node i will receive the amplified noisy observation of that node,

yi,k for k ∈ Ni, and further incorporate that single noisy observation into their estimation model. In

such an approach, the aggregated global data of the entire network is correlated. In order to alleviate

this problem, and further reduce the diffusion of redundant information in the network, we propose the

following data compression strategy which results in a more efficient node-to-node communication in

that it allows the diffusion of the most useful (less contaminated) data in the network.

C. Data Compression and Diffusion Strategy

Each node starts an initial local information variable Ii(t) for i ∈ V , according to the following model

(where t denotes the discrete time index):

Ii(0) = aHi HH
i R−1wi

Hiai. (8)

Note that the above initialization scheme requires each node to have the (partial) channel state information,

the transmission gains, and the second-order noise statistics of its neighboring nodes, which we assume

are available at all nodes. Each node then transmits its initial local information variable Ii(0) to its

immediate neighbors. Furthermore, note that Ii(0) can be seen as a measure of information in that the

inverse of Ii(0) provides the local error variance of the maximum likelihood estimate (MLE) of the

unknown parameter at each node. After this round of information exchange, each node (which also can

be seen as a parent node in its local neighborhood) will select the node from its neighbors with the

highest information value and only the selected node will retain/use the received data from the parent

node; all other nodes will discard their associated received signal for that particular parent node. In

the case that more than one node has the highest information value, the parent node can choose either

one for relaying purposes (e.g., by random assignment) as our diffusion strategy is based on one-hop

information. In other words, assume that the j-th node has the highest information value among the i-th

node’s neighborhood. Then, all nodes k ∈ Ni\{j} will discard yi,k, except the j-th node.

In order to further clarify the above described data compression strategy, consider the toy graph example

with N = 6 nodes illustrated in Fig. 1. In this case, we assume that the initial information values of the

nodes are given by the vector I(0) = [2, 6, 5, 7, 1, 3]T , respectively. As it can be seen from the illustrated

graph, node 1 has only one immediate neighbor which is node 3, and thus, it has the highest information

value in N1. Therefore, node 1 assigns node 3 to carry the information received from node 1 in the graph.

Similarly, consider node 3 as the parent node where N3 = {1, 2, 4} with corresponding information values
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of [2, 6, 7] respectively. Consequently, node 4 now has the highest information value among the immediate

neighbors of node 3 (the parent node), and thus, node 3 assigns node 4 for processing the information

received from node 3 in N3, and all other nodes in the neighborhood of the parent node 3 will discard

the received data from it, i.e., the nodes N3\{4} = {1, 2}. Eventually, in a similar manner, the nodes

{3, 5, 6} assign node 4 as the carrier of their transmitted information, and the nodes {1, 2, 4} choose

node 3 as the carrier of their information.

The above local estimation and data compression scheme can be described as follows. Let {Ti}Ni=1

denote the row selection matrix associated with the i-th node, which points to the rows of the vector yi

that are to be retained according to the above data compression strategy. Thus, the aggregated received

data at each node and after applying the proposed compression strategy is given by

y′i = Tiyi.

For instance, in the toy example illustrated in Fig 1, node 4 is assigned to retain the information received

from the nodes {3, 5, 6}. Thus, its row selection matrix should be set as T4 = I3, where In denotes the

identity matrix of dimension n. On the other hand, nodes {1, 2, 5, 6} have not been chosen by any node

for information diffusion purposes, and therefore, their row selecting matrix is the all-zero square matrix

of dimension |Ni| for i ∈ {3, 5, 6}, respectively.

The compressed global observation vector collected from all nodes following the above described

compression strategy can be modeled as follows:

y = Haθ + HDv + Gn, (9)

where a = [a1, . . . , aN ]T is the vector of complex gains to be optimized, D = Diag (a), v =

[v1, . . . , vN ]T denotes the vector of observation noise at all nodes whose covariance matrix is given

by Rv = Diag(σ2v,1, . . . , σ
2
v,N ), G = blkdiag

(
{Ti}Ni=1

)
, and H = [T1Ω1, . . . ,TNΩN ]T where the

matrix Ωi is a |Ni| ×N matrix whose elements are defined as follows:

[Ωi]m,n =

hi,n if n ∈ Si and n = sim,

0 otherwise.
(10)

Moreover, we define the global combined noise term in (9) as

w = HDv + Gn, (11)

which is zero-mean Gaussian noise with covariance matrix

Rw = E{wwH} = HDRvDHHH + M, (12)
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where M = σ2nIM , and M = 2|E|−r, where r represents the total number of discarded communications

emanating from the proposed data compression strategy.

Following the global data model of (9), the maximum likelihood estimate of the unknown parameter

can thus be expressed as:

θ̂ML =
(
aHHHR−1w Ha

)−1
aHHHR−1w y (13)

=

(
N∑
i=1

aHi HH
i R−1wi

Hiai

)−1 N∑
i=1

aHi HH
i R−1wi

y′i, (14)

where, for the sake of simplicity, we assume that in (14), the local sensor gain vector ai, the diagonal

channel matrix Hi, and diagonal noise covariance matrix Rwi
only contain the values associated with

the nodes whose information has not been discarded as a result of suggested data compression strategy at

each node. Furthermore, note that the maximum likelihood estimate θ̂ML is unbiased (i.e., E{θ̂ML} = θ)

with variance,

Var(θ̂ML) =
(
aHHHR−1w Ha

)−1
=

(
N∑
i=1

aHi HH
i R−1wi

Hiai

)−1
. (15)

Remark 1: The maximum likelihood estimation of the parameter presented in (13) can be split into

the summation of N terms of the form (14) as a result of our data compression and diffusion strategy.

Namely, the proposed compression technique diffuses the information of each node in such a way that

each amplified observation only appears once in the network. Indeed, there exists only one node in

the neighborhood of a generic node i that incorporates the amplified observation of the i-th node into

its estimation model. Therefore, the amplified observations are uncorrelated across the whole network

resulting in the expressions (13) and (14). �

Our goal is to facilitate computing the global maximum likelihood estimate of the parameter presented

in (13) and (14) in a distributed manner. Namely, we employ an average-consensus scheme based on the

alternating direction method of multipliers (ADMM) [36] enabling us to asymptotically converge to the

global MLE of the parameter via local computations while allowing only communication between the

nodes and their immediate neighbors. Finally, we derive the error variance for the distributed estimation

algorithm which will be used as a metric for optimizing the complex sensor gains.

D. ADMM-Aided Distributed ML Estimation

We begin this part by describing the general consensus problem in a multi-agent system, and then, use

an ADMM-based average consensus algorithm to solve the maximum likelihood estimation of (14) in a

August 5, 2019 DRAFT



11

decentralized and distributed manner.

Consensus: Consider a group of agents i ∈ {1, . . . , N} each of which has access to a local variable xi

associated with its initial observation, and let x = [x1, . . . , xn]T denote the stacked column vector of the

variables for all agents. The aim of the distributed average-consensus algorithms is to find the average

of the local variables, e.g., xavg = 1
N 1Tx, in a distributed manner and via restricting collaborations to

be between adjacent agents. In addition, finding the average value of the local variables can be recast as

the unique solution of the following unconstrained least-squares program:

xavg = argmin
y

1

2

N∑
i=1

(y − xi)2 = argmin
y

1

2
||y1− x||22. (16)

The goal is next to compute (16) in a decentralized manner by allowing only local data-exchanges in

each neighborhood. In order to do so, the minimization of (16) can be further reformulated as a global

consensus probem via utilizing the underlying network (graph) connectivity structure. Namely, we first

decouple the unconstrained program of (16) by introducing local copies of the global variable y at each

node, and then, enforcing the local copies to be equal across the network. This reformulation of (16) can

be expressed as follows:

minimize
{yi},{ci,j}

N∑
i=1

1

2
(yi − xi)2

s.t. yi = ci,j , yj = ci,j ,∀(i, j) ∈ E , (17)

where yi is the i-th node’s local copy of the global variable y, and ci,j are auxiliary variables ensuring

consensus between the neighboring nodes. Note that for a connected graph where there exists at least

one path (a chain of edges) between any two nodes in the network, the two problems in (16) and (17)

are equivalent. It is noteworthy to mention that problem (16) is centralized in that it requires all of the

information (e.g., {xi}Ni=1) in the network to find the optimal solution xavg. On the other hand, the new

(equivalent) program in (17) requires each node i to find the local variable yi that is optimal for the

overall objective function R , (1/2)
∑

i(yi−xi)2, without having global knowledge of the observations

at other nodes.

Herein, we use the alternating direction method of multipliers (ADMM) to efficiently solve (17) in a

distributed manner. In particular, the following ADMM update equations were derived in [43] to efficiently
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solve (17) and to eventually achieve an average-consensus in the network:

yk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|yki + ρ

∑
j∈Ni

ykj − λki + xi

)
, (18)

λk+1
i = λki + ρ

(
|Ni|yk+1

i −
∑
j∈Ni

yk+1
j

)
, (19)

where k denotes the iteration number, yk+1
i is the local copy of the global variable at node i (which

will eventually converge to the average value of the initial observations xavg = (1/n)
∑n

i=1 xi), xi is the

initial observation of node i, and ρ > 0 is an arbitrary constant. As it can be seen from above update

equations, the updates of each node only depend on the local information, and the algorithm is hence

fully distributed. Next, we use this ADMM-based distributed average-consensus scheme to determine the

ML estimate of the unknown parameter, i.e., solving (14) using (18)-(19).

Distributed maximum likelihood estimation: In order to use the average-consensus algorithm to com-

pute the MLE of the parameter in a distributed and decentralize manner, we follow a similar approach

to the one proposed in [34], and first assign the following initial variables to each node, which will be

further used as the local observation of each node in the average-consensus algorithm:

Information Value: Ii(0) , aHi HH
i R−1wi

Hiai, (20)

State Information Value: Pi(0) , aHi HH
i R−1wi

y′i. (21)

Note that the MLE of θ in (14) is comprised of two terms: the inverse of the summation of the information

values at each node (
∑

i Ii(0))−1, multiplied by the summation of state information values
∑

i Pi(0).

Henceforth, each node can (asymptotically) compute the global ML estimate of the parameter θ defined

in (14) by separately applying the distributed average consensus in (18) and (19) on the local variables,

Ii(0) and Pi(0). More precisely, each node updates its information value and the state information value

according to (18)-(19) (by substituting xi in (18) with Ii(0) and Pi(0)), and will obtain a local estimate

of the parameter of interest at each iteration by computing

θ̂i(k) = Ii(k)−1Pi(k). (22)

The asymptotic behaviour of Ii(k) and Pi(k) in the averge-consensus algorithm can be calculated as

follows,

Ic , lim
k→∞

Ii(k) =
1

N

N∑
i=1

aHi HH
i R−1wi

Hiai, (23)

Pc , lim
k→∞

Ii(k) =
1

N

N∑
i=1

aHi HH
i R−1wi

y′i. (24)
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Therefore, the local ML estimate of the unknown parameter at each node (i.e., θ̂i(k)) will eventually

converge to that of the global MLE of θ defined in (14), i.e.,

θ̂iML = I−1c Pc =

∑N
i=1 a

H
i HH

i R−1wi
y′i∑N

i=1 a
H
i HH

i R−1wi
Hiai

. (25)

Note that the average scaling factor 1
N is eliminated in (22) and (25), and therefore, it will not affect

the ML estimate at each iteration. In addition, it can be easily shown that the variance of the estimate at

each node converges to that of the global ML etimation variance in (15), i.e.,

lim
k→∞

Var
(
θ̂iML(k)

)
=

(
N∑
i=1

aHi HH
i R−1wi

Hiai

)−1
=
(
aHHHR−1w Ha

)−1
. (26)

By further substituting (12) into (26), we have the following asymptotic expression for the error variance

at each node:

Var(θ̂ML) =
(
aHHH(HDRvDHHH + M)−1Ha

)−1
, (27)

where Var(θ̂ML) denotes the asymptotic estimation variance of each node after convergence (and after

reaching a consensus). Note that the proposed data compression and diffusion strategy plays a vital role

in decoupling the sensor observations throughout the network, and specifically, it paves the way for

optimizing the sensor gains without dealing with correlated data. On the other hand, the decentralized

ADMM algorithm described above together with the proposed compression technique enables us to derive

a closed form expression for the asymptotic variance of the estimation error based on the sensor gains,

while allowing the network to achieve a very fast consensus on the global ML estimate. In Section 3, we

devise a low-cost cyclic optimization approach to design the complex gains at each node via optimizing

(27).

E. Problem Formulation: Centralized Estimation

We now assume that there exists a fusion center aggregating the information received from the nodes

to perform the task of parameter estimation in a centralized manner. In this case, the derivation of the

error variance is straightforward and resembles the same structure as the decentralized case given in (27).

We consider a network of N sensors that observe an unknown parameter, where a maximum likelihood

(ML) estimate of the unknown parameter is formed at the FC with M antennas. As indicated earlier, it

was shown in [4], [5], and [7] that the parameter estimation performance at the FC can be significantly
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improved by a judicious design of the complex relaying gains of the sensors. The variance of the ML

estimate of the parameter is given by

Var
(
θ̂ML

)
=

(
aHHH

(
HDΣDHH

H
+ M

)−1
Ha

)−1
(28)

where θ is the parameter to be estimated, H ∈ CM×N denotes the channel matrix, Σ ∈ CN×N is the

covariance matrix of the sensor measurement noise, M ∈ CM×M denotes the covariance matrix of the

noise at the FC (similar to the communication noise in the decentralized case), a ∈ CN comprises the

adjustable complex gains of the sensors, and D = Diag(a). Moreover, we intentionally use the same

notation for the centralized estimation problem as for the decentralized one to emphasize the fact that

the two gain optimization problems boil down to the same formulation.

III. SENSOR GAIN OPTIMIZATION

Hereafter, we address the problem of designing the (possibly complex) sensor gains a ∈ CN in order to

minimize the variance of both the consensus-based distributed estimate given in (27), and the centralized

estimate scenario defined in (28). As shown in the previous section, for the decentralized MLE, the

variance of the estimation at each node asymptotically converges to that of the global ML estimate of the

unknown parameter. Furthermore, for the centralized estimation case, the error variance follows the same

structure as the decentralized case paving the way for proposing a general gain optimization framework

for both cases. It is worth mentioning that although we have considered the problem of estimating a

deterministic source signal θ in (1), our formulations are also valid for more complicated scenarios

such as multi-dimensional correlated sources [44]. In this paper, we assume that the source signal θ is

deterministic; however, in the case that the parameter of interest is probabilistic in nature, one can make

use of the available knowledge on the parameter of interest in the form of a prior distribution p(θ),

and approach the problem through a Bayesian framework. In this case, given the sensors observation

vector z = [z1, . . . , zN ], one can consider the maximum a posteriori (MAP) estimator framework and

evaluate argmaxθ p(θ|z) in a distributed manner where the posterior distribution is obtained by utilizing

the Bayes’ rule, i.e., p(θ|z) = p(z|θ)p(θ)/p(z) (sensor gains vector must be further incorporated in the

formulations).

Our goal here is to minimize Var(θ̂ML) by considering the sensor gain vector a as the optimiza-

tion variable in both cases of centralized and decentralized estimation. In particular, the sensor gain
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optimization problem for both scenarios can be formulated as:

max
a

aHHH
(
HDV DHH

H
+ M

)−1
Ha (29)

s. t. a ∈ Θ, (30)

where in the sequel, we denote the search space of the sensor vector a by Θ, and for a concise formulation

we denote the covariance matrix of the observation noise by V for both centralized and decentralized

scenarios. It must be mentioned that the variance for the centralized and decentralized case follows the

same mathematical structure, and although the structure of the channel matrix H and the noise covariance

matrices might be slightly different for the two scenarios, it does not affect the proposed formulation of

the gain optimization framework in (29). Briefly, the channel matrix used in the decentralized setting is a

compressed version of the complete channel state information, and it only contains the CSI of the nodes

chosen for diffusing information at each neighborhood. On the other hands, for the centralized scenario,

the matrix H contains the full CSI between the FC and the nodes.

Note that as D = Diag(a), the core matrix of the seemingly quadratic objective in (29) depends

on a. In the following, we will show that using a particular over-parametrization approach, the above

problem can be approached via a sequence of quadratic optimization problems.

Let η = η0−aHHH
(
HDV DHH

H
+ M

)−1
Ha, and suppose that η0 is sufficiently large to keep

η positive for all a.1 A detailed derivation of such an η0 can be found in Appendix A. We seek to solve

the following optimization problem:

min
a

η (31)

s. t. a ∈ Θ.

Now let

R ,


η0 | aHHH

−−−− −−−−−−−−−−

Ha | HDV DHHH + M

 , (32)

and note that eH1 R−1e1 = η−1 where e1 = (1 0 · · · 0)T . In order to tackle (31), let g(y,a) , yHRy

1To give an example of such η0, as shown in the appendix, one can consider the following (although conservative) criterion

to ensure the positivity of η: η0 >
N ‖H‖2F
λmin{M} .
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(where y is an auxiliary vector variable), and consider the optimization problem:

min
a, y

g(y,a) (33)

s. t. yHe1 = 1 (or equivalently y1 = 1), (34)

a ∈ Θ. (35)

The minimization of g(y,a) in (33) can be tackled via employing a cyclic optimization approach with

respect to a and y. Note that for fixed a, the minimizer y of (33) is given by (see Result 35 in [45, p.

354])

y =

(
1

eH1 R−1e1

)
R−1e1 (36)

which is the first column of R−1 scaled in such a way to satisfy (34). A fast approach to computation of

y in (36) is as follows: Observe that y is a scaled version of the solution to the linear system Ry = e1.

Consequently, y is a scaled version of the vector orthogonal to all rows but the first row of R. Therefore,

the direction of y can be easily obtained via the Gram-Schmidt process applied to the rows (excluding

the first row) of R. Once the direction vector of y (i.e. y/‖y‖2) is obtained, it can be scaled to achieve

the optimal y in (36) by simply making the first entry of y equal to one.

Interestingly, for a fixed y, the minimization of (33) with respect to a boils down to a quadratic

optimization; see the following. We first note that a feasible y in (33) can be partitioned as

y ,

 1

ỹ

 (37)

Then,

yHRy (38)

=

 1

ỹ

H


η0 | aHHH

−−− −−−−−−−−−

Ha | HDV DHHH + M


 1

ỹ


= C1+

 a

1

H


(
HH ỹỹHH

)
� V | HH ỹ

−−−−−−−−− −−−

ỹHH | 0


︸ ︷︷ ︸

,Q

 a

1
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where C1 = η0 + ỹHMỹ is invariant with respect to the sensor gain vector a, and we have used the

identity

ỹHHDV DHHH ỹ = aH
((

HH ỹỹHH
)
� V

)
a.

As a result, the minimization of (33) with respect to a can be recast as

min
a

 a

1

H

Q

 a

1

 (39)

s. t. a ∈ Θ .

Note that when Θ enforces a fixed-energy constraint for a (i.e. ‖a‖22 = N ), (39) is equivalent to

max
a

 a

1

H

Q̃

 a

1

 (40)

s. t. a ∈ Θ

where Q̃ , λIN+1 − Q, and λ > λmax(Q). Using the following power-method-like iterations, the

objective of (40) can be made to be monotonically increasing, and the objective of (33) monotonically

decreasing (see [46]- [48] for details):

min
a(t+1)

∥∥∥∥∥∥∥
 a(t+1)

1

H

− Q̃

 a(t)

1


∥∥∥∥∥∥∥
2

(41)

s. t. a ∈ Θ,

where t denotes the iteration number, and a(t) is the current value of a.

By calculating (36), it is now straightforward to verify that at the minimizer y of (33),

g(y,a) = η. (42)

Therefore, each step of the cyclic optimization of (33) with respect to y and a leads to a decrease of η.

More concretely, observe that if f(a) = η then

f
(
a(k+1)

)
= f

(
y(k+2),a(k+1)

)
(43)

≤ f
(
y(k+1),a(k+1)

)
≤ f

(
y(k+1),a(k)

)
= f

(
a(k)

)
where the index k denotes the iteration number.
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Remark 2: When Θ represents the finite-energy constraint, problem (33) is biconvex in (y,a), and

(40) is simply a quadratically constrained quadratic program (QCQP). In particular, our cyclic approach

described above boils down to an alternate convex search (ACS); see [49, p. 393] for details. �

In the following, we consider various practical constraints on the gain vector a and provide the

corresponding power method-like iterations for each case.

A. Practical Signal Constraints

In a practical model, the sensor gains should always be bounded by a finite-energy constraint. However,

the variance expression in (28) is a monotonically decreasing function of the energy of a (i.e. ‖a‖22)

which implies that (28) attains its minimum only if the sensor network employs the maximum energy

possible. In light of the latter observation, we consider a number of possible sensor signal constraints,

including:

(a) Finite or fixed energy:

‖a‖22 = N. (44)

(b) Phase-shift only:

|ai| = 1, i ∈ {1, · · · , N}. (45)

(c) Phase-shift only with quantized phase values:

ai ∈
{
ej

2π

Q
q : q ∈ ZQ

}
, i ∈ {1, · · · , N}. (46)

(d) Sensor selection: Only K < N of the sensors can transmit, viz. ‖a‖0 ≤ K which may be combined

with a finite-energy constraint, i.e. ‖a‖22 = N , or the phase-shift only constraint at the non-zero

entries of a.

In the following subsection, we provide the corresponding power method-like iterations for each

constraint—more on this below.

B. Constrained Solutions to (41)

Let â(t) denote the vector comprising the first N entries of Q̃

 a(t)

1

, viz. â(t) = (IN 0N×1) Q̃

 a(t)

1

 .

The solutions to (41) for different sensor gain constraints Θ are given by:

(a) Finite or fixed energy:

a(t+1) =
(√

N/‖â(t)‖2
)
â(t). (47)
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(b) Phase-shift only:

a(t+1) = exp
(
j arg

(
â(t)
))

. (48)

(c) Phase-shift only with quantized phase values:

a(t+1) = exp
(
jµQ

(
arg
(
â(t)
)))

(49)

where µQ(.) yields (for each entry of the vector argument) the closest element in the Q-ary alphabet.

(d) Sensor selection: Note that for the optimal a(t+1) of (41) we have that arg(a(t+1)) = arg(â(t)).

Therefore, we can exclude the phase variables while finding the absolute values of the entries of

the optimal a(t+1). In fact, without loss of generality, we can assume that both a(t+1) and â(t) are

real-valued and non-negative. Note that∥∥∥a(t+1) − â(t)
∥∥∥2
2

= C2 − 2aT (t+1)â(t), (50)

where C2 = ‖a(t+1)‖22 + ‖â(t)‖22 is constant. According to a theorem due to Hardy, Littlewood,

and Polya [53], the inner product of a(t+1) and â(t) can be maximal only if the elements of a(t+1)

are sorted to have the same order of magnitude as in â(t). Consider the K elements in â(t) with

maximum absolute values, and let s be a binary (0/1) vector that is one only in the corresponding

locations of these largest K elements, and is zero otherwise. Then the optimal a(t+1) of (41) becomes

a(t+1) =
√
N

 â(t) � s∥∥∥â(t) � s
∥∥∥
2

 . (51)

Similarly, if the non-zero entries of a(t+1) are to be constant-modulus (i.e., phase-shift only and

sensor selection scenario) then the optimal a(t+1) can be obtained as

a(t+1) =
√
N/K

(
exp

(
j arg

(
â(t)
))
� s
)
. (52)

Finally, the proposed method is summarized in Table I.

C. Phase-Shift Only Case—A Simplified Approach

We note that, in phase-shift only scenarios, the problem in (29) becomes a unimodular quadratic

program (UQP) [46] and we can deal with it more easily compared to the general case. Namely, (29)

can be rewritten as

max
a

aHBa (53)

s. t. |ai| = 1, i ∈ {1, · · · , N},
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TABLE I

THE PROPOSED SENSOR GAIN OPTIMIZATION APPROACH

Step 0: Initialize the auxiliary vector y with a random vector in

CN+1 such that y1 = 1. Initialize a ∈ Θ.

Step 1: Employ the quadratic formulation in (40), and particularly

the power method-like iterations in (41) to update the sensor gain

vector a (until convergence).

Step 2: Update y using (36), or by employing the fast approach

discussed below (36).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion

is satisfied, e.g.
∣∣∣f(a(k))− f(a(k+1))

∣∣∣ ≤ ξ for some ξ > 0,

where k denotes the outer-loop iteration number, and f(·) is the

criterion to be optimized (e.g., f(a) = η).
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Fig. 2. Comparison of (a) the runtime and (b) the estimation variance of the proposed method and the SDP-based approach

of [7], for the decentralized scenario. The proposed algorithm exhibits significantly lower computational cost, while achieving

a similar estimation variance.

in which B is not dependent on a. The power method-like iterations for (53) are simply given by

a(k+1) = exp
(
j arg

(
Ba(k)

))
(54)

and yield a monotonically increasing objective function in (53). We refer the interested reader to find

more details on the properties of power method-like iterations in [46]- [48].

Remark 3: A brief computational analysis of the proposed method (see Table I) is as follows. Employing
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Fig. 3. Convergence of the ADMM-based ML estimate.

the power method-like iterations for updating the sensor gain vector a has a complexity of O(LN2)

where L denotes the total number of iterations that are performed within each outer-loop iteration of

the proposed optimization method. On the other hand, the design of y using (36) has a O(M2.38)

complexity per-iteration while the proposed fast approach for computation of y described below (36) has

a complexity of O(M2). Hence, the optimization method (summarized in Table I) has a complexity of

O
(
max{LN2,M2}

)
per-iteration (if the proposed fast method is used for finding y at each iteration).

Further note that the proposed algorithm yields a monotonically decreasing objective function according

to (43). �

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed optimization framework, in this section, we present several

numerical examples for both centralized and decentralized estimation scenarios. For a fair comparison,

we set the parameters to the same values as those in [7]: The sensor nodes are configured with a single

antenna, and the FC is assumed to have four antennas. The wireless fading channel coefficient between

sensor node i and the FC is modeled as hi = ejγi/dαi , where the phase argument γi is uniformly

distributed over [0, 2π), di is the distance between the sensor node and FC, and the path loss exponent

α is set to 1. In all plots, the results are obtained by averaging the outcomes over 300 random channel

realizations.

A. Decentralized Parameter Estimation Scenario

In this part, we investigate the performance of our proposed sensor gain optimization algorithm for the

decentralized and distributed parameter estimation scenario. We compare our sensor gain optimization
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algorithm (Table I) with the SDP-based approach of [7].

Fig. 2(a) shows a comparison of the computational cost (machine runtime) between our algorithm

and the SDP-based approach in [7]. It is observed from Fig. 2(a) and Fig. 2(b) that although the two

algorithms yield similar estimation variance, our proposed optimization algorithm has a significantly

lower computational burden. For example, with N = 50 nodes, the runtime of our algorithm is less than

1% of the runtime associated with the SDP-based approach. This is particularly of importance in WSNs

since not only are the processing resources of the nodes limited, the environmental parameters (e.g., the

channels) might change and need frequent reassessment. Hence, it is important for the network to be

able to adapt to the new environment as quickly as possible with minimal cost.

Our proposed two-stage algorithm also enables the nodes to obtain the global ML estimate of the

parameter based on their local information by applying the distributed fusion algorithm described in

subsection 2.A. Fig. 3 illustrates the simulation results for this ADMM-based decentralized estimation

and the convergence of the proposed decentralized MLE algorithm to that of the global MLE for a

network with N = 16, and θ = 10. We see that the local estimate of each node θ̂iML(k) converges to

the global MLE of the parameter computed in (13), and a consensus is thus achieved quickly.

B. Centralized Parameter Estimation Scenario

We begin by comparing the estimation variance of different sensor phase (or gain) optimization meth-

ods, namely (i) the proposed gain optimization method (Table I) with finite (or fixed energy) constraint, (ii)

the proposed phase-shift only approach (subsection III-C), (iii) the phase-shift only solutions provided

by the semidefinite programming (SDP) approach of [7], and (iv) the no feedback case. For the no

feedback case, we assume that there is no feedback channel between the FC and sensor nodes and that

the vector a is set to a vector of all ones. The results are shown in Fig. 4. We see that after phase or

gain optimization the estimation error is considerably reduced (∼ by a factor of 10) compared to the

no feedback case. Moreover, our proposed phase-shift only approach can achieve an estimation variance

almost identical to that of the SDP-based approach of [7]. Although our proposed method and the SDP-

based approach exhibit the same performance in this scenario, we will later show that the proposed

power-method iterations have a significantly lower computational burden compared to that of the SDP-

based approach. To assess the quality of our design in the complex gain optimization case, we also resort

to comparison with (i) a general-purpose numerical search algorithm based on the active set method [55],

as well as (ii) solving the optimization problem in (40) by a general-purpose QCQP solver in lieu of

directly employing the power method-like iterations. In terms of the estimation variance, the performance
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of the proposed gain optimization appears to be identical to the numerical search. Additionally, the low-

complexity power method-like iterations can achieve the same performance as the QCQP solver, which

verifies the optimality of the results obtained by power method-like iterations—as expected due to the

convexity of (40) in the finite-energy scenarios.

A comparison of the computational cost (machine runtime) between the state-of-the-art SDP-based

approach of [7] and the proposed algorithm is presented in Fig. 5 (the results were obtained on a standard

PC with a 2.40GHz CPU and 3.5 GB memory). Due to the fact that the SDP-based approach can only

handle the phase-shift case, we consider a comparison with the phase shift-only method described in

subsection III-C. As shown earlier in Fig. 4, the two methods yield similar estimation variance. However,

according to Fig. 5, the computational cost of the proposed phase shift-only approach is significantly

smaller compared to the SDP-based method. More precisely, while for a small number of sensors (N ≤

10) the two methods have similar cost, the advantage of the proposed approach becomes more clear when

N grows large. For instance, with N = 60 sensors, the runtime of the proposed approach is less than

1% of that associated with the SDP-based method.

Finally, Fig. 6 investigates the performance of the sensor selection problem (with a fixed-norm sensor

gain) for a scenario in which 10 sensors are to be selected out of 35 sensor nodes for signal transmission.

We set the covariance matrix of the noise at the FC to M = σ2nI with variable noise variance σ2n. The

simulation results show that when the additive noise at the FC is small, the performance of the proposed

sensor selection method is close to the greedy or min-sensor-noise methods devised in [7], whereas, when

the additive noise grows large, its performance is superior to that of both the greedy and min-sensor-noise

methods. It is interesting to observe that, for large values of the FC noise variance, the performance of

the proposed sensor selection algorithm is relatively close to the case when all the 35 sensor nodes are

used for signal transmission.

V. CONCLUSIONS

In this work, we considered the problem of transmission gain optimization in a distributed wireless

sensor network for both centralized and decentralized parameter estimation scenarios. We proposed

an efficient sensor gain optimization framework which enables us to effectively reduce the parameter

estimation variance resulting in a far better estimation accuracy in both the centralized and decentralized

cases. The proposed optimization framework is based on the power method-like iterations and can deal

with the optimization of complex gains of the sensors, and furthermore, can handle various sensor gain

constraints including e.g., finite or fixed energy, phase-shift only (with a quantized phase values as a
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simple extension) and sensor selection cases, and was shown to exhibit a superior performance in large-

scale sensor networks. In addition, the suggested framework enjoys a low computational cost compared

to the SDP-based approach, and thus, can be a good candidate for large-scale sensor networks that may

need adaptive sensor gain optimization in real-time. Moreover, we extended our sensor gain optimization

algorithm to the decentralized parameter estimation scenario in which a consensus-based algorithm in

conjunction with graph signal processing methods are employed to perform the parameter estimation

with optimized transmission gains in a decentralized manner.

APPENDIX A

SELECTION OF η0

In order to ensure that η stays positive, we choose η0 such that

η0 > N λmax

{
HH

(
HDV DHH

H
+ M

)−1
H

}
. (55)

Note that

λmax

{
HH

(
HDV DHH

H
+ M

)−1
H

}
(56)

≤ tr

{
HH

(
HDV DHH

H
+ M

)−1
H

}
≤

tr
{
HHH

}
λmin {M}

=
‖H‖2F

λmin {M}
.

As a result, it would be sufficient if we choose

η0 >
N ‖H‖2F
λmin {M}

. (57)
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Fig. 4. Estimation performance of various sensor gain/phase-shift optimization approaches vs. number of sensors. The

comparison is performed with the SDP-based approach of [7], the no-feedback case (with a = 1), a numerical search approach,

as well as by employing a general-purpose QCQP solver for tackling (40) in lieu of the power method-like iterations.
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Fig. 5. Comparison of runtime for the proposed method and the state-of-the-art SDP-based approach of [7]. The proposed

method exhibits a significantly lower computational cost compared to the SDP-based approach, particularly when N grows large.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

FC noise variance, σ
n

2

e
s
ti
m

a
ti
o
n
 v

a
ri
a
n
c
e

 

 

Proposed gain optimization, N=35

Proposed sensor selection, N=10

Greedy sensor seelection, N=10

Min−sensor−noise selection, N=10

Fig. 6. Performance of various sensor selection algorithms (10 sensor nodes are selected out of 35 sensors). The greedy and

min-sensor-noise selection methods were proposed in [7].

August 5, 2019 DRAFT




