UC Berkeley UC Berkeley Previously Published Works

Title

Moiré photonics and optoelectronics

Permalink https://escholarship.org/uc/item/4w9922zh

Journal Science, 379(6639)

ISSN 0036-8075

Authors

Du, Luojun Molas, Maciej R Huang, Zhiheng <u>et al.</u>

Publication Date 2023-03-31

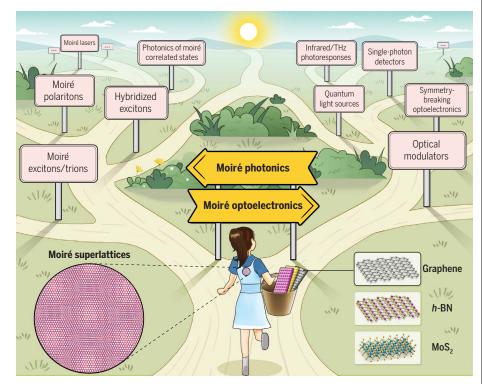
DOI

10.1126/science.adg0014

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

Peer reviewed


REVIEW SUMMARY

MOIRÉ PHOTONICS Moiré photonics and optoelectronics

Luojun Du*, Maciej R. Molas, Zhiheng Huang, Guangyu Zhang*, Feng Wang, Zhipei Sun*

BACKGROUND: Moiré pattern refers to a new. long-length scale of structure arising from the interference between two or more periodic templates. The scientific and engineering value of moiré patterns was firstly appreciated by the physicist Lord Rayleigh in 1874. Thereafter, the study of moiré patterns enabled the birth of moiré techniques for a wide variety of practical applications, e.g., precision measurement and positioning, automatization, and strain measurements. In condensed-matter physics, moiré patterns (also referred to as moiré superlattices) can be formed by vertically stacking two or more two-dimensional (2D) layered materials with a tiny twist angle and/or a slight lattice mismatch. Over the past decade, moiré superlattices have made a spectacular appearance with a cornucopia of previously unachieved new phenomena and distinct functionalities, transforming the landscape of fundamental solidstate physics, materials science, and engineering. **ADVANCES:** Moiré superlattices introduce a new length-scale potential much larger than the crystal periodicity of the constituent 2D layers, providing a powerful strategy for engineering electronic band structures and hence resulting in a plethora of emergent quantum phenomena. For example, the long-wavelength moiré periodic potential can fold the electronic band structure into a mini-Brillouin zone, giving rise to the formation of flat bands and a rich phase diagram of correlated states, such as unconventional superconductivity, orbital magnetism, Mott insulator states, and topological multiferroic orders.

When moiré superlattices meet light, they provide a powerful platform for discovering emergent photonic and optoelectronic phenomena and device architectures. In early 2019, four research groups independently demonstrated the pronounced effects of moiré potential on excitons of transition-metal dichalcogenide

Moiré photonics and optoelectronics. Moiré superlattices introduce a paradigm to engineer the band structures of collective excitations and light-matter interaction for a plethora of emergent photonic and optoelectronic phenomena, such as moiré excitons, moiré polaritons, photonics of moiré correlated electronic states, intelligent infrared sensing, quantum light sources, single-photon detection, and symmetry-breaking optoelectronics.

real and momentum spaces. The new de of freedom afforded by using moiré superlattices provides possibilities for engineering the exciton band structures and light-matter interactions for numerous applications, such as versatile quantum light sources, new quantum many-body physics, and long-sought boson crystals. These breakthroughs in the study of moiré excitons have excited tremendous interest in moiré photonics and optoelectronics. Indeed, a rich diversity of emergent moiré photonic and optoelectronic properties have been witnessed with unprecedented speed over the past few years-properties covering collective moiré excitations, moiré polaritons, photonics of moiré correlated electronic states, giant mid- and farinfrared photoresponses, tunable bulk photovoltaic effect, and so forth. Notably, the moiré bulk photovoltaic effects are ultrastrong and much larger than previous demonstrations, enabling the demonstration of intelligent infrared sensors with merely a subwavelength footprint potentially for next-generation nonlinear photonics and optoelectronics.

heterostructures from the perspective of l

OUTLOOK: Currently, all measurements of moiré photonics and optoelectronics are performed in the far-field limit with a collection of signals from more than 10.000 moiré cells. Therefore, developing advanced techniques that can simultaneously probe the photonic and optoelectronic properties in an individual moiré supercell and evaluate the moiré potential landscape will be valuable for advancing our understanding. Meanwhile, current research efforts on moiré photonics and optoelectronics mainly focus on twisted graphene and twisted transition-metal dichalcogenides. Exploring new moiré systems, such as moiré superlattices composed of 2D ferroelectric, magnetic, or multiferroic crystals, and moiré devices involving two or multiple single moiré superlattices, will initiate research directions of moiré photonics and optoelectronics. Furthermore, engineering the moiré photonics and optoelectronics through external means (e.g., electric or magnetic field, strain, and ultrafast optical excitations) has the potential to spark the next "gold rush" for technical innovations (e.g., quantum nonlinear optics, ultracompact optical modulators, and terahertz single-photon devices). We are just starting down the path of exploring moiré photonics and optoelectronics, and there will be many more surprises to come.

The list of author affiliations is available in the full article online. *Corresponding author. Email: zhipei.sun@aalto.fi (Z.S.); luojun.du@iphy.ac.cn (L.D.); gyzhang@iphy.ac.cn (G.Z.) Cite this article as L. Du *et al.*, *Science* **379**, eadg0014 (2023). DOI: 10.1126/science.adg0014

READ THE FULL ARTICLE AT

https://doi.org/10.1126/science.adg0014

REVIEW

MOIRÉ PHOTONICS Moiré photonics and optoelectronics

Luojun Du^{1,2,3}*, Maciej R. Molas⁴, Zhiheng Huang^{2,3}, Guangyu Zhang^{2,3,5}*, Feng Wang⁶, Zhipei Sun^{1,7}*

Moiré superlattices, the artificial quantum materials, have provided a wide range of possibilities for the exploration of completely new physics and device architectures. In this Review, we focus on the recent progress on emerging moiré photonics and optoelectronics, including but not limited to moiré excitons, trions, and polaritons; resonantly hybridized excitons; reconstructed collective excitations; strong mid- and far-infrared photoresponses; terahertz single-photon detection; and symmetry-breaking optoelectronics. We also discuss the future opportunities and research directions in this field, such as developing advanced techniques to probe the emergent photonics and optoelectronics in an individual moiré supercell; exploring new ferroelectric, magnetic, and multiferroic moiré systems; and using external degrees of freedom to engineer moiré properties for exciting physics and potential technological innovations.

wo-dimensional (2D) layered materials have ushered in a new era of fundamental research and technological innovation, owing to the electronic, photonic, and optoelectronic properties that are unattainable in their bulk counterparts (1-3). Today, over 2000 atomically thin 2D materials have been uncovered, ranging from widebandgap insulators (e.g., h-BN), semiconductors (e.g., MoS₂), and polar metals (e.g., Ga) to superconductors (e.g., NbSe₂), ferromagnets (e.g., CrI_3), and quantum spin liquids (e.g., $RuCl_3$) (1, 4-7). Notably, 2D atomic layers with diverse properties can be stacked together to form van der Waals (vdW) heterostructures without the constraint of lattice matching in conventional heterostructures. This enables opportunities to combine the best characteristics of different ingredients in one ultimate synthetic quantum material and thus leads to the realization of numerous electronic, photonic, magnetic, and topological functionalities that were previously impossible (1, 2, 8, 9).

Intriguingly, a geometrical moiré superlattice emerges as a result of the interference between the constituent 2D atomic layers with a slight lattice mismatch and/or a small rotational twist (Fig. 1A) (*10*, *11*). This moiré superlattice introduces a new length and energy

*Corresponding author. Email: zhipei.sun@aalto.fi (Z.S.); luojun.du@iphy.ac.cn (L.D.); gyzhang@iphy.ac.cn (G.Z.)

scale, and provides a platform to engineer the band structures (including both single-particle states and collective excitations, Fig. 1B) and the light-matter interaction for exotic quantum phenomena (12-16). Triggered by the discovery of correlated insulating states and unconventional superconductivity in magic-angle twisted bilayer graphene (TBG) (17, 18), a plethora of exciting electronic, optical, and optoelectronic properties have been discovered in moiré superlattices (Fig. 1C), including moiré excitons (19-22), versatile quantum light sources (23), orbital ferromagnetism (24-26), Wigner crystal states (11, 27, 28), stripe phases (29, 30), topological multiferroic order (31), boson exciton crystals (32), and intelligent infrared sensing (33).

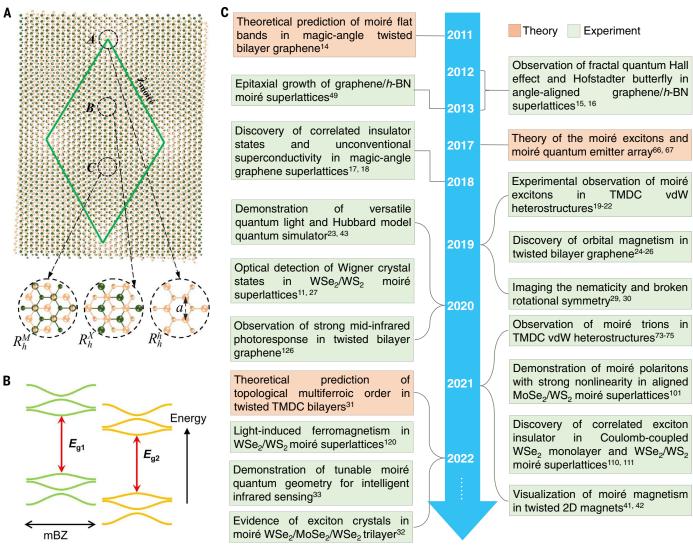
We present an overview of the recent progress on emerging moiré photonics and optoelectronics, such as moiré neutral and charged excitons, resonantly hybridized excitons, moiré polaritons, emergent optical responses of moiré correlated electronic states, reconstructed collective excitations, terahertz single-photon detection, strong mid- and far-infrared photoresponses, symmetry-breaking optoelectronics, etc. We also provide an outlook on the major challenges and future opportunities in this field, as well as the implications for potential new technological innovations. With a particular focus on moiré photonics and optoelectronics, our aim is to complement other recent reviews that discuss the fabrication (34), correlated electronic states (10, 13), and excitonic physics (12, 35, 36).

Fabrication and visualization of moiré superlattices

The controlled fabrication and direct visualization of moiré superlattices are essential for unlocking their intriguing electronic and optical properties and future on-demand application development.

Fabrication of moiré superlattices Top-down methods

One top-down method for preparing highquality homobilayer moiré superlattices is the "tear-and-stack" technique (37, 38). This technique is based on the deterministic pickup and transfer, and consists of selectively picking up a section of a 2D material and then transferring it onto the remaining section, which has been rotated by a user-designed angle (34, 38). Because the two constituent layers initially have exactly the same crystal orientation, the twist angle can be controlled with a subdegree resolution. By predetermining the principal crystallographic directions of 2D materials, moiré heterostructures with controllable twist angles can also be fabricated via the deterministic pick-up and transfer technique (34). Until now, we have had at our disposal a wide variety of moiré homo- and heterostructures, such as twisted transitionmetal dichalcogenide (TMDC) homobilavers (39, 40), twisted bilayer CrI₃ (41, 42), MoSe₂/ WSe₂ (19, 21), and WS₂/WSe₂ (20, 43). It is noteworthy that an automated robotic pick-up and transfer technique has been recently developed, enabling the rapid manufacture of moiré superlattices with deliberate design and angle control (44, 45). We envision that the advanced robotic assembly, through integration with wafer-scale 2D material growth, machine learning, and computer-vision algorithms (46, 47), could help realize the full potential of moiré superlattices for new physics and technological advances in photonics and optoelectronics.


Bottom-up methods

Developing direct growth methods for synthesizing large-scale and uniform moiré superlattices is important for future technological applications. One of the effective bottom-up methods is the vdW epitaxy (48). For example, a vast assortment of moiré superlattices with ultraclean interfaces has been epitaxially grown, such as graphene/h-BN (49), WS₂/ WSe_2 (50), and MoS_2/WSe_2 (51). Typically, high-symmetry-stacking configurations with the smallest formation energy are preferably deposited during the vdW epitaxial growth (48, 50). Therefore, it is very challenging to obtain moiré superlattices with on-demand twist angles, especially the metastable samples (e.g., magic-angle TBG) that show strong electron-electron correlation and new optoelectronic phenomena. Breaking the energy tendency and realizing the scalable fabrication of moiré superlattices with controllable twist angles and layer-by-layer epitaxy would greatly promote the progress of the field.

Dynamic manipulation

For the "tear-and-stack" technique or vdW epitaxial growth, the final moiré superlattice

¹QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150 Espoo, Finland. ²Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. ³School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China. ⁴Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. ⁵Songshan-Lake Materials Laboratory, Dongguan, Guangdong Province 523808, China. ⁶Department of Physics, University of California at Berkeley, Berkeley, CA, USA. ⁷Institute of Photonics and Photon Technology, Northwest University, Xi'an 710069, China.

Fig. 1. Moiré superlattices and timeline of key developments in the study of moiré physics. (A) Top: Illustration of the moiré superlattice formed by a nearly 0°-angle–aligned TMDC heterobilayer. The moiré unit cell is outlined in the green diamond. Bottom: Close-ups of the three high-symmetry points (A, B, and C). Atomic registry R_h^{μ} denotes an *R*-type stacking, with the μ site of the top layer vertically aligned with the hexagon center (*h*) of the bottom layer. (**B**) Schematic of the flat moiré bands in mini Brillouin-zone (mBZ) for moiré heterostructures with type II band alignment. E_{g1} and E_{g2} stand for the bandgap

of the two constituent TMDC layers. (**C**) The timeline of selected key developments in the study of moiré physics. Over the past few years, the field of moiré superlattices has grown substantially with a series of new discoveries, such as orbital magnetism, Wigner crystal states, electronic nematic phase, tunable spin-polarized correlated states, simulation of Hubbard model physics, continuous Mott transition, quantum anomalous Hall effect, moiré excitons/polaritons, strong mid-infrared photoresponse, light-induced ferromagnetism, and highly tunable bulk photogalvanic effects. [Adapted with permission from (A) (66)]

usually has a fixed twist angle. Therefore, it is often challenging to characterize the twistangle–dependent behavior. Owing to the superlubricity of vdW interfaces, moiré superlattices with dynamically controllable twist angles can be obtained through mechanical, optical, thermal, and magnetic manipulation (52-56). This enables the feasibility to uncover the intrinsic twist-angle–dependent properties. For example, with the atomic force microscope tip manipulation technique, the twist-angle driven evolution of electronic, optical, and mechanical responses in graphene/h-BN moiré superlattices has recently been revealed (53).

Visualization of moiré superlattices

Direct visualization of moiré superlattices is fundamentally valuable for the comprehensive understanding and control over emergent moiré physics. In principle, atomic-resolution techniques, such as scanning tunnelling microscopy (STM) and transmission electron microscopy (TEM), offer the opportunity to directly image various moiré superlattices [e.g., magicangle TBG (29), twisted bilayer WSe₂ (57), and aligned WS₂/WSe₂ (20, 50)]. Specifically, STM can also probe the magnitude of moiré potential in situ, offering key insight for understanding the moiré physics. Although STM and TEM are powerful in the visualization of moiré superlattices, the special sample preparation and complex operating environment (e.g., ultrahigh vacuum and cryogenic temperature) are not conducive to establishing a clear correlation between the direct imaging of moiré structures and the emerging electrical and optical properties.

Because of the broken symmetry and sizable strain gradients at domain walls, moiré superlattices can show nonvanishing electromechanical responses and hence be imaged by piezoresponse force microscopy (PFM) (*58*). In particular, PFM provides a simple, universal Table 1. Comparison between the visualization methods of moiré superlattices.

	Pros	Cons
Atomic-resolution techniques (such as TEM and STM)	 Directly image the local displacement vector. Direct visualization of the structural relaxation, disorder, and strain fields. Directly visualize the magnitude of the moiré potential (for STM). 	 Require specialized sample preparation. Require extreme conditions (e.g., ultra-high vacuum and low temperature). Incompatible with most device fabrication techniques and optical/transport measurements.
AFM-based techniques (such as PFM, SKPM and conductive AFM)	 Simple, room-temperature, ambient method. Universal applicability. Provide the key information of flexoelectricity (for PFM), surface potential (for SKPM), and interlayer hybridization (for conductive AFM). 	 Require direct contact with the active area and is incompatible with encapsulated samples. Cannot image the local displacement vector. Require conducting substrates (for conductive AFM)
Near-field techniques (such as SNOM, sMIM, and tip-enhanced Raman)	 Ambient conditions. Compatible with functional electronic devices. 	Cannot image the local displacement vector.
Secondary electron imaging technique	 Compatible with encapsulated samples and optical/transport measurements. Universal applicability. 	 Cannot image the local displacement vector. Cannot give the local stacking order.

technique to visualize various moiré superlattices under room-temperature and atmospheric conditions (58). However, PFM requires direct contact with the active area and thus prevents the use of *h*-BN encapsulation and top gates, which are typically required for most optical and transport measurements. Recent studies demonstrate that channeling modulated secondary electron imaging technique can be used to visualize the fully h-BN encapsulated, dual-gated moiré superlattice devices (59). With the help of this advanced technique, the local moiré structures and the exotic photonic properties have been successfully correlated with each other (59), deepening our understanding. Additionally, moiré superlattices can also be visualized by conductive atomic force microscopy (AFM) (60), scanning near-field optical microscopy (SNOM) (61), scanning microwave impedance microscopy (sMIM) (62), scanning Kelvin probe microscopy (SKPM) (63), and hyperspectral Raman imaging (64). Table 1 briefly compares the advantages and disadvantages of different visualization techniques of moiré superlattices.

Moiré photonics

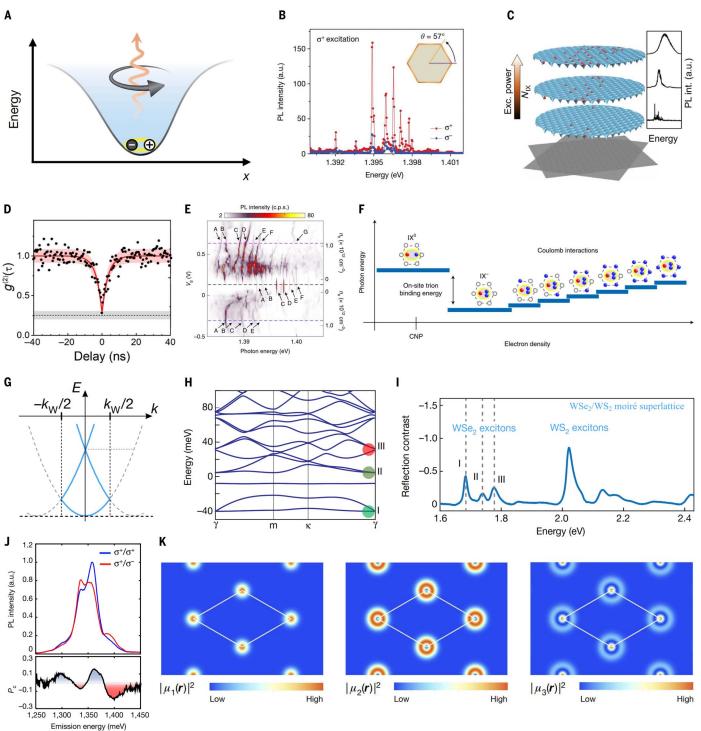
Moiré superlattices with a long-wavelength periodic potential landscape offer opportunities to engineer the elementary excitations and light-matter interaction for fascinating photonic phenomena. In this section, we review the state-of-the-art moiré photonics, which mainly covers moiré neutral and charged excitons, resonantly hybridized excitons, moiré polaritons, moiré phonons, and reconstructed collective excitations.

Moiré neutral and charged excitons

The exciton, a Coulomb-bound electron-hole pair, dominates the optical properties of a

material and hence underlies the development of emerging photonic and optoelectronic applications (65). Recent studies demonstrate that the moiré superlattices open up new avenues for modulating excitonic quasiparticles in both real and momentum spaces, resulting in quantum-dot-like moiré excitons and Braggumklapp moiré excitons, respectively (12).

Quantum-dot-like moiré excitons


From the perspective of real space, moiré superlattices impose a spatially periodic potential landscape on the excitons (66, 67). Therefore, excitons would likely be trapped at the moiré potential minima (Fig. 2A), forming a lattice of quantum-dot-like moiré excitons, a solid-state analog of a bosonic quantum gas in an optical lattice that is of interest for quantum photonics (19, 66). Recently, moiré-trapped quantumdot-like interlayer excitons (IXs), evidenced as a series of discrete photoluminescence (PL) emission lines with ultranarrow linewidths (e.g., ~100 µeV), have been demonstrated in MoSe₂/WSe₂ heterostructures (Fig. 2B) (19, 68, 69). In particular, the moiré potential minima are located at high-symmetry sites that maintain threefold rotational symmetry (19, 66, 69). Consequently, moiré-trapped excitons can inherit valley-contrasting properties and exhibit strong circular polarization (Fig. 2B), a feature that distinguishes them from quantum emitters localized by random extrinsic potential (19, 70). In addition, owing to the quantum-dot-like confinement, moirétrapped excitons could provide a platform for single-photon sources and quantum photonics, as demonstrated by the photon correlation experiments (Fig. 2D) (23).

Notably, quantum-dot-like moiré IXs show multiple discrete narrow PL lines at low excitation powers but transform into a broad emission peak as the excitation power increases (Fig. 2C) (19, 69). This feature can be understood as follows: At low excitation powers (e.g., a few nanowatts), the number of the photonexcited IXs are around two orders of magnitude smaller than the number of moiré sites, and thus are trapped at different moiré sites (Fig. 2C), because of the dipolar exciton-exciton interactions (69). Absent disorder, only one PL line is expected, as the potential minima in different moiré supercells would be degenerate. However, the ubiquity of inhomogeneity and disorder breaks the degeneracy, leading to spectral isolation of moiré-trapped IXs and a series of PL emission lines (19, 69, 71). As the excitation power increases, more IXs are excited, and thus more moiré trapping sites are populated, resulting in an ensemble band of moiré-trapped IXs with a broad linewidth (Fig. 2C) (69). When the exciton density is high enough, moiré traps would be filled up, and excitons approach the regime of free-particle behavior (19, 72, 73).

Moiré-trapped trions

Upon doping of moiré superlattices, moirétrapped neutral excitons would interact with the excess charge carriers that are also localized at the moiré sites, forming the moiré charged excitons (i.e., moiré-trapped trions) (74, 75). Recently, moiré-trapped IX trions have been demonstrated in MoSe₂/WSe₂ heterostructures (69, 73–75). In these experiments, new sets of quantum-dot–like IX trion emission lines with ultranarrow linewidths appear about 7 meV below the moiré-trapped neutral excitons upon electrostatic doping (Fig. 2E) (74, 75).

Moiré-trapped trions, because of their charged nature, can couple with the electrons or holes in nearest-neighbor moiré sites via long-range Coulomb interactions. And because the charge

Fig. 2. Moiré excitons and trions. (A) Representation of an exciton trapped at the moiré potential minima. (**B**) Circularly polarized PL spectra of moirétrapped IXs of 57° MoSe₂/WSe₂ heterostructures. (**C**) Schematic of the occupation of moiré sites by IXs with increasing excitation power. (**D**) Secondorder photon correlation statistics of moiré-trapped IXs. The antibunching indicates the single-photon nature. (**E**) PL map as a function of doping. At electron or hole doping, moiré-trapped trions with lower energy emerge. The prominent IX emissions are labeled as A to G. (**F**) Schematic of the moirétrapped IX energy against electron density. Successive filling of nearest-

neighbor moiré sites leads to a Coulomb staircase. (G) Sketch depicting the exciton band folding by umklapp scattering off moiré potential. (H and I) Calculated WSe₂ A exciton dispersion of WS₂/WSe₂ moiré superlattices, with three optically allowed transitions denoted I to III (H), which are observed by reflectance contrast spectra (I). (J) Helicity-resolved PL spectra of 1° $MoSe_2/WSe_2$ heterobilayers, with alternating circular polarization. (K) Real-space map of the center-of-mass wave functions for the first three umklapp moiré IXs. [Adapted with permission from (A and B) (19), (C) (69), (D) (23), (E and F) (74), (H and I) (20), (J and K) (21)]

carriers are also moiré-trapped, the six nearestneighbor moiré sites are filled sequentially (Fig. 2F) (74). This creates a discrete repulsive Coulomb interaction between moiré-trapped trions and the charge carriers in nearestneighbor moiré sites. Consequently, moirétrapped trions show a staircase-like blueshift of energy (Fig. 2F), providing a noninvasive, local optical technique to characterize the Coulomb interactions and local disorder in moiré superlattices (74). In addition, moirétrapped trions exhibit distinctive valley properties. For example, the valley polarization can be switched from large cocircular polarization under electron doping to negligible crosscircular polarization under hole doping (74, 75). and the valley polarization time can reach ~1 µs, three orders of magnitude longer than that of conventional trions in monolayer TMDCs (75, 76). This opens up possibilities for opto-valleytronic applications and emerging nanophotonic devices, such as spin-valley optical transistors and chiral light-emitting diodes.

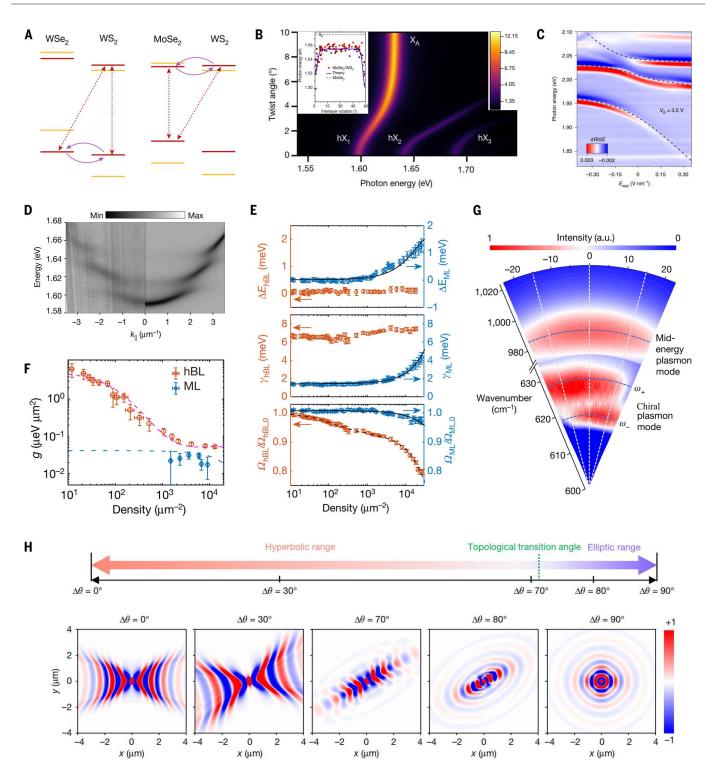
Bragg-umklapp moiré excitons

From the perspective of momentum-space, Bragg-umklapp scattering off the long-period moiré potential can fold the dark exciton states with momentum k = $k_{\rm M}$ (where $k_{\rm M}$ is the moiré reciprocal lattice vectors) into the center of the mBZ, resulting in the formation of new excitonic minibands with optical activity (Fig. 2G) (12, 22, 67, 77-80). Figure 2H illustrates the WSe₂ A exciton dispersion of aligned WSe₂/WS₂ superlattices and clearly shows three optically active excitons at the mBZ center (I, II, and III) (20, 67). Experimentally, Bragg-umklapp intralayer moiré excitons have been demonstrated by both absorption spectroscopy in WSe₂/WS₂ heterobilayers (Fig. 2I) (20, 43) and PL measurements in MoSe₂/MoS₂ heterostructures (81). Notably, the cutting-edge exciton band structure calculations reveal that different intralayer moiré excitons exhibit distinct hallmarks (82). In WSe₂/WS₂ moiré superlattices, the lowestenergy moiré resonance I is characterized by a Wannier-type exciton with the tightly correlated electron and hole, whereas the highestenergy moiré exciton peak III is described by an intralayer charge-transfer exciton with spatially separated electron and hole (82). Such distinct characters provide unparalleled insight into the unusual doping responses and magneto-optical responses of moiré excitons (20, 82).

For IX species, Bragg-umklapp moiré exciton transitions have also been uncovered by PL spectra in MoSe₂/WSe₂ superlattices (Fig. 2J) (*21, 83*). Owing to the strongly modified exciton center-of-mass wave function in real space, Bragg-umklapp moiré IX resonances exhibit alternating positive and negative circular polarization. Figure 2K shows the real-space distribution of center-of-mass wave functions for the first three Bragg-umklapp moiré IX resonances of MoSe₂/WSe₂ heterostructures, which correspond to s-, p- and d-wave symmetry, respectively (21, 79). Because of an additional angular momentum \hbar (2 \hbar), Bragg-umklapp moiré IX with the p-waveform (d-waveform) has the opposite (same) optical selection rule as the first s-wave symmetry one, leading to alternating co- and cross-circularly polarized PL (21).

In the presence of itinerant electrons or holes, Bragg-umklapp moiré trions can appear in moiré superlattices (*84*). Besides excitons and trions, Bragg-umklapp scattering off the moiré potential can also activate other elementary excitations, such as phonons, magnons, and polaritons. For example, Bragg-umklapp moiré phonons have been uncovered in TBG (*85, 86*), graphene/*h*-BN superlattices (*86, 87*), and twisted bilayer TMDCs (*64, 88*).

We remark that quantum-dot-like moiré excitons from the real-space perspective and Bragg-umklapp moiré excitons from the momentum-space perspective should be unified in principle. For instance, theoretical calculations show that the first few Braggumklapp moiré excitons with low energy are localized at the moiré potential minima and thus should also belong to the quantum-dotlike moiré states (21, 78, 79). Alternatively, quantum-dot-like moiré excitons observed under ultralow excitation power should correspond to the Bragg-umklapp moiré excitons with the lowest energy. However, quantumdot-like moiré excitons and Bragg-umklapp moiré excitons demonstrated by current experimental measurements seem to exhibit distinctly different behaviors. For example, the linewidths of Bragg-umklapp moiré excitons are more than two orders of magnitude wider than those of quantum-dot-like moiré excitons. These discrepancies may stem from the ubiquity of disorder, strain, or twist-angle inhomogeneity in actual real-world moiré superlattices and deserve further studies to establish a unified understanding.


Resonantly hybridized excitons

Usually, the effects of moiré superlattices on excitons are regarded as a harmonic perturbation potential, then the intralayer excitons and IXs are discussed separately as independent objects (such as the previous section) (66, 67). Such a view holds true for moiré superlattices with a large band-edge offset. On the contrary, when the conduction and/or valence band edges of the constituent layers are aligned in both momentum and energy, the resonant interlayer hybridization can strongly enhance the moiré superlattice effects and mix the intralayer excitons and IXs through spin-conserving interlayer hopping, resulting in the resonantly hybridized excitons (12, 22, 89). Resonantly hybridized excitons combine the merits of both intralayer excitons (e.g., large oscillator strength) and IXs (e.g., appreciable out-of-plane dipole moment), and thus represent an advantageous scenario for nanophotonic and optoelectronic applications (90, 91). Resonantly hybridized excitons have been demonstrated in TMDC homobilayer moiré superlattices with intrinsically aligned band edges (40, 89, 92-94), MoSe₂/WS₂ moiré heterostructures with nearly degenerate conduction-band edges (Fig. 3A, right panel) (22, 89-91), and WSe₂/WS₂ moiré superlattices where the upper valence band of WS2 and the lower valence band of WSe2 are closely aligned (Fig. 3A, left panel) (91). Furthermore, according to the available electron band parameters in the literature (95), we envision that resonantly hybridized excitons can also appear in MoS₂/WS₂, MoSe₂/WSe₂, MoSe₂/ MoTe₂, MoTe₂/WS₂, and MoTe₂/WSe₂ moiré superlattices.

Resonantly hybridized excitons display a sharp energy modulation against the twist angle (Fig. 3B) (22, 89, 90) and manifest energylevel anticrossing under the applied electric fields (Fig. 3C) (89, 91, 92). It is instructive to understand these features using a two-level coupled-oscillator model with Hamiltonian $\begin{pmatrix} c_{\rm X} & {}^{\rm M}\\ \Omega & \epsilon_{\rm IX} \end{pmatrix}$, where the off-diagonal element Ω denotes the coupling constant and the diagonal elements $\epsilon_X\left(\epsilon_{\rm IX}\right)$ describe the energy of uncoupled intralayer exciton (IX). Because the band minimum of IX is located at the corners of mBZ, IXs that can hybridize with optically bright intralayer excitons should have energy $\varepsilon_{\text{IX}} = \varepsilon_{\min} + \frac{\hbar^2 q^2}{2M_{\text{IX}}}$, where M_{IX} is the total mass of IX, ε_{\min} is the IX energy at band minimum, and q denotes the momentum of mBZ corners (22, 79, 89, 90). Given that q increases linearly with twist angle, ε_{IX} and hence resonantly hybridized excitons exhibit a sharp energy modulation (Fig. 3B) (22, 89, 90). Meanwhile, IX shows a linear energy shift with applied electric fields due to the quantumconfined Stark effect, leading to the electrically tunable resonantly hybridized excitons (91, 96, 97). When the energy of IX is tuned to resonate with $\varepsilon_{\rm X}$, resonantly hybridized excitons would show avoided crossing of the energy level, as demonstrated by absorption and PL spectra (Fig. 3C) (91, 92). For WSe₂/WS₂ moiré superlattices, the extracted coupling constants Ω can reach ~40 meV, much larger than the exciton linewidths (~10 meV). This indicates that the system is in the exciting strongcoupling regime and provides opportunities for engineering various emerging many-body states, such as Bose-Einstein condensation and polariton superfluidity (91, 98).

Moiré polaritons

Polaritons, a hybrid quasiparticle excitation of part-light and part-matter, enable the fine

(middle), and normalized coupling strength (lower) for lower polaritons (LPs) of MoSe₂/WS₂ moiré superlattices (denoted as hBL) and monolayer MoSe₂ (denoted as ML). (**F**) Nonlinear coefficient, *g*, as a function of carrier density for moiré hBL LPs (red) and ML LPs (blue). (**G**) Extinction mapping of chiral Berry plasmons against wave number and polarization detection angle, demonstrating the magnetic-field–free Faraday effect. (**H**) Topological transitions triggered by the twist angle from open (hyperbolic) to closed (elliptical) dispersion contours in bilayers of α -MoO₃. [Adapted with permission from (B) (*22*), (C) (*91*), (D to F) (*101*), (G) (*104*), (H) (*108*)]

control of light at the nanoscale across a broad spectral range, promising the prospect of new technological applications in nanophotonics and optoelectronics (*99, 100*). Recent studies show that moiré superlattices offer an opportunity for polariton engineering and photonic quantum technologies. Here, we provide an overview of the state-of-the-art moiré exciton-, plasmon-, and phonon-polaritons.

Moiré exciton-polaritons

Because of appreciable oscillator strengths and in-built electric dipoles, resonantly hybridized moiré excitons hold great promise for polaritons with quantum nonlinearity and cooperative effects. MoSe₂/WS₂ moiré superlattices with resonantly hybridized moiré excitons are integrated into a microcavity (101). In place of the resonantly hybridized moiré excitons or the bare cavity photons, three new light-matter hybrid modes with anticrossing of the dispersion curve emerge (Fig. 3D) (101). This demonstrates the moiré exciton-polaritons and the effective coupling between resonantly hybridized excitons and cavity photons. Moreover, the coupling strengths Ω (~10 meV) of moiré exciton-polaritons satisfy $\Omega > \frac{(\gamma_X + \gamma_p)}{2}$

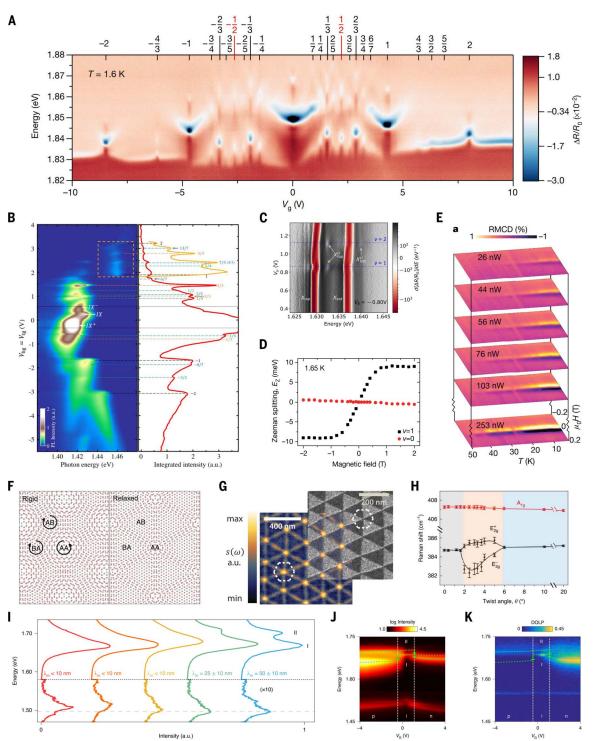
 $(\gamma_X/\gamma_p$ are the linewidths of the resonantly hybridized excitons and cavity mode), indicating the strongly coupled regime of lightmatter interactions (*98*, *101*).

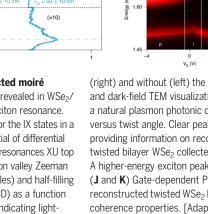
Moiré exciton-polaritons exhibit radically different excitation density responses than polaritons formed with the constituent monolayer excitons (Fig. 3E) (101). For example, with increasing excitation density, the moiré excitonpolaritons (monolaver exciton-polaritons) show a strong drop in coupling strength by up to 20% (negligible change in coupling strength), but no measurable exciton energy shift or line broadening (considerable blueshift and line broadening). This suggests the strong exciton blockade and suppressed excitation-induced dephasing for moiré exciton-polaritons, and indicates that the resonantly hybridized exciton involved in the polariton formation should be a moiré-trapped 0D-like exciton (101). Benefiting from the moiré quantum confinement effect, moiré exciton-polaritons can show a nonlinearity up to ~6 μ eV· μ m², more than two orders of magnitude larger than typical monolayer TMDC exciton-polaritons (Fig. 3F) (101). Moiré exciton-polaritons combine strong quantum nonlinearity and large coupling strength, opening a huge swath of possibilities for quantum photonics and optoelectronics.

Moiré plasmon-polaritons

Plasmon-polaritons are coupled excitations of photons and charge carriers that offer the possibility of manipulating and guiding light at subwavelength scales (*99, 100*). The ability to control plasmon-polaritons is central to

modern information and communication technologies, such as subdiffraction imaging, optical sensing, infrared detectors, light-harvesting devices, and electro-optical modulators (99, 100). Moiré superlattices provide a powerful platform for engineering new plasmon-polaritons because of the interlayer quantum coupling and radically altered electronic structures (e.g., the emergence of flat bands). For example, owing to additive contribution from the interband transition between superlattice minibands, plasmon-polaritons in graphene/h-BN moiré superlattices show enhanced scattering amplitudes (102). For TBG moiré superlattices, an exotic interband plasmon-polariton mode originating from the optical transitions between flat minibands is observed, which is radically different from the conventional intraband plasmon in monolayer graphene (103). By using nanostructured surface plasmon resonators, two new plasmon modes are identified in TBG moiré superlattices: a chiral Berry plasmon mode from uncompensated Berry flux, and a slow plasmon mode from interband transitions between nested subbands (104). In particular, because of the nontrivial Berry curvature, the chiral plasmon mode can show the magnetic-field-free Faraday effect with a polarization rotation of $\sim 15^{\circ}$ (Fig. 3G) (104). Such a large Faraday rotation angle is comparable to the conventional Faraday effect accessible by a static magnetic field of 7 T, highlighting the great potential of magneticfield-free Faraday rotators (104). The slow plasmon mode is within the highly soughtafter mid-wave infrared spectral window and would open up opportunities for new photonic devices, such as infrared devices, without fundamental damping and phonon scattering processes (104). It is noteworthy that numerous plasmon-polaritons, such as intrinsically undamped plasmon modes (105), quasi-flat plasmonic bands (106), and plasmonic Dirac cone (107), have been predicted in moiré superlattices and deserve further exploration.


Moiré phonon-polaritons


Phonon-polaritons, collective oscillations that result from the hybridization of photons and optical phonons in polar crystals, can bestow a wealth of valuable applications, such as nanoscale light propagation, ultramicroscopy, and coherent thermal emission (99, 100). Experimental studies have demonstrated that in twisted stacks of vdW crystal α -MoO₃, the interlayer twist angle enables fine control of the dispersion of phonon-polaritons and therefore triggers a topological transition from hyperbolic (open) to elliptical (closed) wavefront geometries (Fig. 3H) (108, 109). Such a transition is determined by a topological quantity and becomes resilient to perturbations, impurities, or disorder. When the topological number is two (four), the dispersion of phonon-polaritons is hyperbolic (elliptical) (*108, 109*). At the twist angle at which the topological transition occurs (dubbed as photonic magic angles), the dispersion becomes flattened, supporting highly collimated, directive, and diffractionless canalized phonon-polaritons for various applications, such as quantum nanophotonics, superlens, nanoimaging, biosensing, and radiative energy transfer (*108*).

Photonics of moiré correlated electronic states

Moiré superlattices, with enhanced electronelectron correlations in the flat minibands, provide opportunities for a large portfolio of correlated electronic states, such as Mott insulators, Wigner crystal states, charge density waves, charge-transfer insulators, and exciton insulators (*11, 27, 28, 110–113*). For example, nearly two dozen correlated insulating states have been unveiled at the commensurate filling fractions of WSe₂/WS₂ moiré superlattices via an optical sensing technique (Fig. 4A) (*11*). Certainly, these moiré correlated electronic states would have profound effects on the elementary optical excitations, resulting in a number of photonic responses.

First, owing to the gapped nature of moiré correlated electronic states, free carrier screening of the exciton interactions is largely quenched. This would result in the enhancement of oscillator strength and the blueshift of exciton resonance energy for photonics (Fig. 4B) (30, 114, 115). Second, moiré correlated electronic states at commensurate fractional fillings belong to charge-ordered states, e.g., Wigner crystals and charge density waves. Consequently, there is an additional periodic potential for collective excitations, which can fold dark states back to the light cone by Braggumklapp scattering and thus brighten new optical transitions (Fig. 4C) (80, 116). Third, for moiré correlated electronic states at some specific fillings (e.g., $v = \pm \frac{1}{2}, \pm \frac{3}{5}$), electrons are arranged in alternating lines with a preferential orientation along the high-symmetry axes of the moiré superlattice (11, 30, 112). Such stripe nature of these moiré correlated electronic states spontaneously breaks the threefold rotational symmetry, enabling the anisotropic optical responses (30, 117). Last but not least, moiré correlated electronic states can facilitate a wide range of magneto-optical phenomena, such as strongly enhanced valley Zeeman splitting, magnetic circular dichroism, Faraday effect, and Kerr rotation (43, 118, 119). For example, a nearly two-orders-of-magnitudeenhanced exciton valley Landé g-factor has been observed for moiré correlated electronic states at v = -1 (Fig. 4D), opening up possibilities for opto-valleytronic applications (43, 118). By optically tuning the spin exchange interactions between moiré-trapped holes, ferromagnetic order emerges at $v = -\frac{1}{3}$ Wigner state of WSe₂/WS₂ moiré superlattice, giving

Downloaded from https://www.science.org at University of California Berkeley on November 01, 2022

Fig. 4. Photonics of moiré correlated states and reconstructed moiré superlattices. (**A**) An abundance of correlated insulating states revealed in WSe₂/ WS₂ moiré superlattices by optical sensing technique with 2s exciton resonance. (**B**) Gate-dependent PL map (left) and integrated intensity (right) for the IX states in a WS₂/WSe₂ moiré superlattice. (**C**) Dependence of chemical potential of differential reflectance differentiated with respect to energy. Umklapp exciton resonances XU top and XU bot can be clearly observed at v = 1 and v = 2. (**D**) Exciton valley Zeeman splitting as a function of the magnetic field at zero filling (red circles) and half-filling (black squares). (**E**) Reflective magnetic circular dichroism (RMCD) as a function of magnetic field and temperature at selected excitation power, indicating lightinduced ferromagnetism. (**F**) Schematic cartoon of TBG moiré superlattices with

(right) and without (left) the lattice reconstruction. (**G**) Infrared nano-imaging (left) and dark-field TEM visualization (right) of TBG moiré superlattices, demonstrating a natural plasmon photonic crystal. (**H**) The energies of intralayer phonon modes versus twist angle. Clear peak splitting of E_{2g} mode can be observed at $2^{\circ} \le \theta < 6^{\circ}$, providing information on reconstructed collective excitations. (**I**) PL spectra of twisted bilayer WSe₂ collected from the locations with different moiré wavelengths. A higher-energy exciton peak (type II) emerges with increasing moiré wavelength. (**J** and **K**) Gate-dependent PL intensity (J) and linear polarization (DOLP) of reconstructed twisted WSe₂ bilayers (K), showing distinct gate tunability and valley coherence properties. [Adapted with permission from (A) (11), (B) (114), (C) (116), (D) (43), (E) (120), (F) (121), (G) (61), (H) (124), (I to K) (59)]

rise to the exotic magnetic circular dichroism (Fig. 4E) (120). Additionally, giant Kerr rotations, over an order of magnitude larger than those observed in typical materials, are predicted in moiré correlated electronic states (119). Nevertheless, coupling strongly correlated electronic states in moiré superlattices with light provides an exciting platform to create, probe, and manipulate strongly correlated states and new light-matter hybrids (e.g., photon-mediated superconductivity, ferroelectricity, or ferromagnetism; optically driven topological phenomena; highly correlated lightmatter states; and optical spin Hall effect).

Reconstructed collective excitations

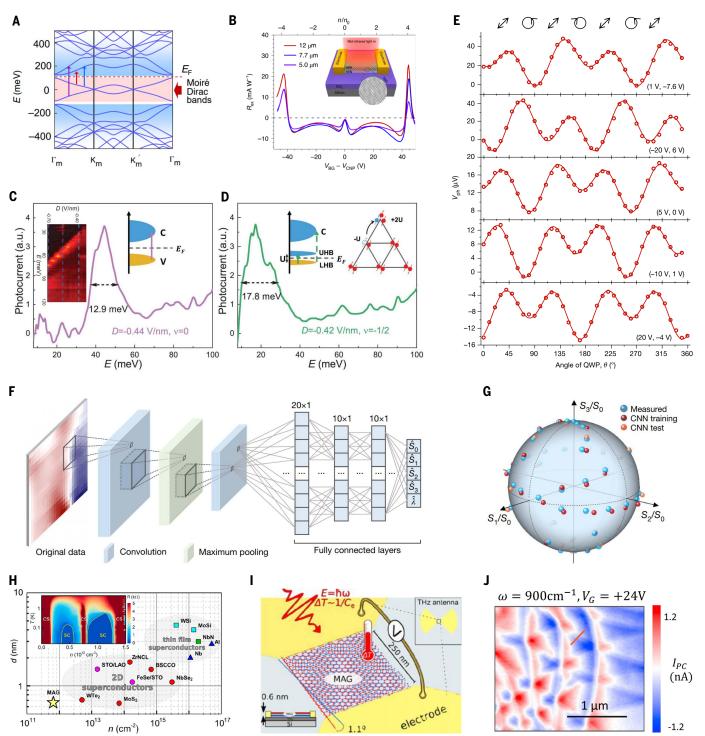
In the prior discussion, the influence of moiré superlattices on optical properties is based mainly on a rigid lattice model (Fig. 4F, left panel). By contrast, for moiré superlattices with a large period, the interlayer vdW interaction can compete with the intralayer lattice distortion and favor interlayer commensurability to minimize the misalignment energy, resulting in lattice reconstruction and thus breaking down the rigid lattice picture (60, 121, 122). For instance, a tessellated pattern of AB/BA triangular domains, separated by a network of narrow strain solitons, is formed in marginally twisted graphene and TMDC homobilayers (Fig. 4F, right panel) (60, 121, 122). Undoubtedly, the reconstructed moiré superlattices would cause renormalization of the electronic and optical properties. It was reported that the domain-wall solitons of marginally TBG are topologically protected chiral states and can strongly reflect the plasmon-polaritons (Fig. 4G) (61, 123). Consequently, a regular pattern of plasmon-polariton scatterers with a periodicity close to its wavelength is formed, transforming the TBG moiré superlattice into a natural nano-light photonic crystal (61). Crucially, such moiré photonic crystals are lithography-free and electrically tunable, representing an advantageous scenario for optical and optoelectronic telecommunications, as well as controllable quantum optical circuits.

In addition, the domain-wall solitons and soliton interceptions have considerable strain, facilitating strain-engineered photonics. For example, the emergence of strain in reconstructed graphene or MoS₂ moiré superlattices distorts the hexagonal unit cell, leading to the splitting of the doubly degenerate $E_{2,g}$ phonon mode (Fig. 4H) (124, 125). The reconstructed moiré superlattices also have profound impacts on symmetry-breaking photonics. For near-0°twist-angle TMDC homobilayers, atomic reconstruction leads to the formation of energetically favorable AB and BA stacking. Owing to the simultaneous breaking of inversion and mirror symmetries, rhombohedral AB and BA stacking configurations show out-of-plane ferroelectric polarization, but with opposite signs. Therefore, the layer symmetry in reconstructed TMDC moiré superlattices is broken, enabling the emergence of two spatially alternating exciton species with distinct gate tunability and valley coherence properties (Fig. 4, I to K) (40, 59). In addition, reconstructed TMDC moiré superlattices open up new avenues to realize tunable exciton arrays and 1D localized exciton states with electrons and holes residing at opposite sides of the domain-wall solitons for applications such as quantum optoelectronics (59).

Moiré optoelectronics

Optoelectronics involves the study and applications of electronic devices that can generate, modulate, detect, interact with, or control light, including photodetectors, light-emitting diodes, photovoltaics, modulators, and so on. Moiré superlattices with combined intriguing electronic and optical properties point to new avenues for cutting-edge optoelectronic applications. In this section, we briefly review the recent developments in state-of-the-art moiré optoelectronics.

Strong mid- and far-infrared photoresponses


In general, moiré superlattices are expected to show strong light-matter interaction and large photoresponses. First, the formation of flat minibands with a large density of states can enhance the dynamical conductivity. Second, the emergence of superlattice bandgap and correlated insulating gap on the order of tens of millielectronvolts can lead to resonance interband transition and thus favor strong photoresponses in the long-sought midand far-infrared and even terahertz ranges. When the Fermi level lies in the superlattice bandgap (Fig. 5A), the interband transition between the top of the moiré Dirac band and the bottom of the empty band leads to the resonance-enhanced dynamical conductivity and hence strong mid-infrared photoresponses in TBG moiré superlattices (Fig. 5B) (126). A giant extrinsic photoresponsivity of $\sim 26 \text{ mA W}^{-1}$ at the mid-infrared wavelength of 12 µm is achieved in 1.81° TBG, which is almost a factor of 20 larger than the photoresponsivity of natural bilayer graphene $(<1.5 \text{ mA W}^{-1})$ (126). As a result, TBG moiré superlattices provide an attractive material platform for the long-sought-after mid-infrared optoelectronic devices.

By using the optical transition between moiré flat minibands, strong far-infrared photocurrent responses have been seen in ABC trilayer graphene/*h*-BN moiré superlattices (Fig. 5C) (*127*). Owing to the electrically tunable moiré minibands, including both the bandwidth and bandgap, the photocurrent responses show high tunability over 80 meV in external electric fields (Fig. 5C, inset) (*127*). Upon doping the flat moiré miniband to form correlated insulating states, optical transition across the emerging Mott gap can largely enhance the dynamical conductivity and result in strong far-infrared photoresponses. For example, large photoresponses centered at ~18 meV are recently demonstrated at v =±1/2 Hubbard-Mott insulating states of ABC trilayer graphene/*h*-BN moiré superlattices (Fig. 5D) (*127, 128*). We highlight that the strong far-infrared photocurrent responses induced by a correlated insulating gap in moiré superlattices can favor exotic optoelectronics and technological advances (e.g., detectors, sensors, and modulators).

Symmetry-breaking optoelectronics

Moiré superlattices with strong electron correlations usually display various symmetrybreaking [e.g., broken inversion symmetry, broken time-reversal symmetry, and broken U(1) gauge symmetry] and thus provide a powerful platform for symmetry-breaking optoelectronics, such as bulk photovoltaic effect (BPVE), optovalley Hall effects, and chiral light-emitting diodes (3, 34, 129). For example, it was shown that because of moiré-induced symmetry breaking and quantum geometrical properties, strong BPVE at ~5 and 7.7 µm can occur in twisted double bilayer graphene moiré superlattices (Fig. 5E) (33). The moiré quantum geometry strongly depends on the displacement field and Fermi level, resulting in electrically tunable BPVE (e.g., the photovoltage amplitude and phase) in twisted double bilayer graphene superlattices. In addition, the midinfrared BPVE in twisted double bilaver graphene is surprisingly strong and reaches $\sim 3.7 \,\mathrm{V \, W^{-1}}$ at 7.7 µm, much larger than previous demonstrations (33). We envision that the ultrastrong mid-infrared BPVE in moiré superlattices will stimulate next-generation applications in nonlinear optics and optoelectronics, such as intense terahertz sources, biological sensing, energy harvesting, and alloptical transistors.

The gate-tunable BPVE in twisted double bilayer graphene moiré superlattices, together with its dependence on incident optical polarization states, power, and wavelength, provides the possibility for the simultaneous decipherment of full-Stokes polarimetry and wavelength. Indeed, using the tunable mid-infrared BPVE in twisted double bilayer graphene as an encoder and a trained convolutional neural network as a decoder (Fig. 5F), a compact intelligent infrared sensor with merely a subwavelength footprint is achieved (33). After proper training of the convolutional neural network, the intelligent infrared sensing can identify the fingerprint of light, including the full Stokes parameters and the wavelength (Fig. 5G) (33), a pathway for future intelligent sensing technologies in an extremely compact, on-chip manner.

Fig. 5. Moiré optoelectronics. (A) Calculated band structure of 1.81° TBG, showing superlattice-induced bandgaps below and above moiré Dirac bands. **(B)** Photoresponses of TBG moiré superlattices at 5.0-, 7.7-, and 12-μm light illumination. Inset: Schematic diagram of the moiré superlattice device for photocurrent measurement. **(C** and **D)** The photocurrent spectra of ABC trilayer graphene/*h*-BN moiré superlattices at zero-filling (C) and half-filling of the flat valence band (D). Photocurrents in (C) and (D) are dominated by a sharp peak at ~45 meV and a broad peak at ~18 meV, respectively, corresponding to excitation between moiré conduction and valence minibands or to excitation across the emerging Mott gap, as illustrated by the inset. The inset on the right in (D) shows the optical transition across the Mott gap. **(E)** Photovoltage against the angle of a

quarter-wave plate (QWP) at different gate voltage biases. (**F**) Schematic diagram of the convolutional neural network used for detection of the full-Stokes and wavelength. (**G**) Comparison of the polarization states obtained from convolutional neural network (CNN) outputs (red or orange spheres for training or test data) with those directly measured values (blue spheres), showing high accuracy. (**H**) Comparison of carrier density and thickness between super-conductor magic-angle TBG and 2D, thin-film superconductors below 10 nm. Inset: Phase diagram of magic-angle TBG. (**I**) Schematic cartoon of magic-angle TBG superconducting single-photon nanocalorimeter. (**J**) Nano-imaging photocurrent of a TBG moiré superlattice. [Adapted with permission from (A and B) (126), (C and D) (127), (E to G) (33), (H and I) (134), (J) (135)]

Apart from the mid-infrared BPVE in twisted double bilayer graphene (33), it was also shown that the symmetry of TBG close to the second magic angle (~ 0.6°) is reduced to point group C_1 , breaking both the inversion and rotational symmetries, and enabling the exotic BPVE in the terahertz region (130). It is expected that highly tunable BPVE can also emerge in other moiré superlattices and is worthwhile to explore, especially for rotationally aligned graphene/*h*-BN, hetero-, and homo-TMDC bilayers, in which electron correlation-triggered symmetry breaking and giant second-order nonlinear responses have recently been uncovered by electrical transport (131, 132).

Single-photon detection

The detection of light at the single-photon level is crucial for a host of theoretical, experimental, and technological advances, such as quantum information processing, quantum sensing, quantum key distribution, and radio astronomy (70). By using heat-induced breaking of the superconducting states in nanostructured superconductors, advanced single-photon detectors with operation wavelengths in the range between visible and near-infrared have been well developed and even commercialized. However, because of high electron density and thus large heat capacity in traditional superconductors, single-photon detector technologies in the ultralow photon energy regions (e.g., mid-infrared and terahertz frequencies) are extremely difficult to achieve. Notably, magic-angle TBG moiré superlattices can show dome-shaped superconducting states at a record-low electron density ($\sim 10^{12} \text{ cm}^{-2}$), and thus, an extremely small heat capacity (e.g., a few hundred times the Boltzmann constant) (Fig. 5H) (133, 134). Consequently, a single photon, even with ultralow energy, can cause a sizable temperature increase to break down the superconducting state, offering extraordinary opportunities for single-photon detection in previously unattainable mid-infrared and even terahertz range (Fig. 5I) (17, 133, 134). Indeed, by quantifying the calorimetric photoresponses, it was demonstrated theoretically that magic-angle TBG can have an ultrabroad detection range of light at the single-photon level from the visible to sub-terahertz with an exceptionally fast response time of ~4 ns as well as a high energy resolution better than 1 THz (134). Further efforts are required to experimentally demonstrate such exciting single-photon devices.

In close resemblance to reconstructed photonics, moiré superlattices with lattice reconstruction would also lead to the renormalization of optoelectronic properties, such as the formation of photocurrent patterns (Fig. 5J) (*135*, *136*). In addition, by integrating moiré superlattices with other structures, such as waveguides, cavities, plasmonics, and ring resonators, a large portfolio of fascinating optoelectronic devices with superior performance would emerge, e.g., single photon light-emitting devices, optical modulators, photoinduced valley currents, etc.

Perspectives and conclusions

The field of moiré photonics and optoelectronics is progressing rapidly. A diverse series of moiré photonic and optoelectronic phenomena have been witnessed in the span of less than 5 years, including but not limited to moiré excitons and polaritons, resonantly hybridized excitons, reconstructed collective excitations, strong mid-infrared photoresponses, intelligent light sensors, and terahertz single-photon detection. This not only opens up exciting possibilities for a wide range of new frontiers in basic scientific research, but also outlines a bright vision for various sophisticated physical phenomena and emerging technological innovations. Moreover, the dizzying pace of recent achievements suggests that we have only seen the tip of the iceberg, and there will be many more surprises to come in moiré photonics and optoelectronics.

Advanced scanning probe techniques

One future direction is to develop new, advanced scanning probe techniques with an ultrahigh spatial resolution (e.g., <5 nm), and therefore that can probe the photonic and optoelectronic properties in an individual moiré supercell. Currently, the measurements of moiré photonics and optoelectronics are based on far-field techniques with a spot size of ~1 µm. As a consequence, the detected results are a collection of signals from more than 10,000 moiré unit cells. Owing to the ubiquity of twist-angle inhomogeneity and strain from the fabrication of devices, the observed results are often highly complex and lack reproducibility. For instance, some moiré photonic and optoelectronic phenomena have been reported by only a single group and are yet to be reproduced by others. Developing new techniques that can locally probe the photonic and optoelectronic properties of different highsymmetry points within a single moiré unit cell [such as 4D scanning TEM spectroscopy (137) and near-field scanning (61)] will undoubtedly advance our understanding of the current conundrums and contradictions and greatly facilitate the further development of moiré photonics and optoelectronics.

New moiré systems

Considering that there are thousands of 2D crystals and the current research on moiré photonics and optoelectronics is only focused on twisted graphene and twisted TMDCs, one of the particularly intriguing directions is to explore the exotic photonic and optoelectronic phenomena of new moiré systems, such as

those moiré superlattices composed of 2D ferroelectric, magnetic, and multiferroic crystals. In particular, recent studies reveal that magnetic moiré superlattices can display a pattern of nanoscale domains that alternate with layered antiferromagnetic and ferromagnetic states (41, 42). Consequently, magnetic moiré superlattices enable the control of magnetic order, symmetry breaking, and interlayer hybridization on the nanoscale (138), opening a huge swath of possibilities for engineering photonic and optoelectronic properties-for example, nonreciprocal second-harmonic generation (139), magnon-exciton coupling (140), and inelastic light scattering (141). Beyond the single moiré, a moiré landscape involving two or multiple single moiré superlattices provides another direction and has the potential to spark the next "gold rush" of new moiré photonics and optoelectronics. For instance, the long-sought boson exciton crystals have been recently evidenced in a WSe₂/MoSe₂/WSe₂ heterotrilayer consisting of two single moiré patterns, paving a way toward the exploration of quantum optoelectronics and quantum coherent phenomena (32). Further, moiré superlattices beyond 2D materials, such as 1D vdW moiré superlattices (142), and moiré artificial metamaterials (143, 144) could also offer promising avenues for engineering moiré photonics and optoelectronics, e.g., localizationto-delocalization transition of light (143), magicangle lasers (144), and optical solitons (145).

Engineering moiré photonics and optoelectronics

Another crucial direction is to control moiré photonic and optoelectronic properties through different external degrees of freedom (such as ultrafast optical excitations, electric and magnetic field, strain, twist angle, doping, pressure, and Floquet engineering). For instance, it has been theoretically elucidated that because of different local static dipole moments, the electric field can switch the global moiré potential minima from one high-symmetry point to another high-symmetry point via the quantum-confined Stark effect, enabling the possibilities of programming the spatial locations and optical selection rule of moiré-trapped excitons on demand (66). Experimentally, it has also been demonstrated that strain can play a role in tailoring the moiré potential landscape and optoelectronic response (146). To name a few, uniaxial strain can tune the array of quantum dot-like 0D traps into parallel stripes of 1D quantum wires, breaking the threefold rotational symmetry and changing the optical selection rule of moiré exciton from circular to linear (146). It was shown that the itinerant excitons excited by light can highly tune the spin-spin exchange interactions between moiré-trapped carriers and result in ferromagnetic order in WS₂/WSe₂ moiré superlattices, outlining the possibility of all-optical control of emergent moiré photonic and optoelectronic phenomena (120).

Technical innovations

Particularly interesting fields where moiré optoelectronics have the potential to trigger new on-chip applications include, but are not limited to, high-performance moiré lasers, quantum simulation of the Bose-Hubbard model, and programmable quantum light sources. Recently, by integrating MoS₂/WSe₂ superlattices with a silicon topological nanocavity, ultralow-threshold broadband excitonic lasing at the technologically important telecommunication O-band (1260 to 1360 nm) has been achieved at room temperature (147). The moiré excitonic laser shows the highest spectral coherence of <0.1-nm linewidth among all 2D material-based laser systems studied so far, facilitating high-performance on-chip photonics and optoelectronics (e.g., electrically pumped wavelength-tunable moiré lasers) (147). Further, owing to enhanced Coulomb interactions, moiré superlattices offer opportunities to create a regular array of spatially ordered quantum emitters. In the case of moiré interlayer excitons with long lifetime and strong dipolar interactions, the perfect arrays provide a promising paradigm for the realization of quantum simulation of Bose-Hubbard model. It is noteworthy that the Bose-Hubbard model, which underlies rich bosonic states of matter and quantum phase transitions, is challenging to achieve in solidstate systems. Theoretically, a wide variety of bosonic quantum matter phases and quantum phase transition associated with quantumdot-like interlayer excitons have been predicted in moiré superlattices, such as exciton supersolid, superfluid-insulator phase transition, and bosonic Mott insulator (148, 149). Experimentally, exciton Mott insulator and exciton density waves have been recently reported in WSe₂/WS₂ and Coulomb-coupled WS₂/bilayer WSe₂/WS₂ dual moiré superlattices, respectively (150, 151).

In addition, in the case of intralayer excitons with high quantum efficiency and relatively low sensitivity to disorder in the surrounding dielectric, the spatially ordered moiré exciton array could serve as a superbright quantum light source (12, 66). In particular, moiré quantum light sources show high programmability with polarization configuration and wavelength controlled by optical pumping, electric field, and strain. Such programmable quantum light sources would provide a firm basis for the exploration of coherent quantum phenomena of optical bosons and the development of various quantum technologies (70), such as the generation of polarization-entangled photon pairs, Dicke superradiance, spin-photon interfaces, quantum information processing, encryption, and sensing. In addition, moiré superlattices, by integrating with other optical systems (e.g., optical cavities, resonances, silicon-based waveguides, and fibers), will undoubtedly outline a bright vision for numerous emerging photonic and optoelectronic applications, such as quantum nonlinear optics, lasers, imaging arrays, modulators, switches, and polarization devices.

REFERENCES AND NOTES

- K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and van der Waals heterostructures. *Science* 353, aac9439 (2016). doi: 10.1126/science.aac9439; pmid: 27471306
- C. Jin et al., Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018). doi: 10.1038/s41565-018-0298-5; pmid: 30397296
- L. Du et al., Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021). doi: 10.1038/s42254-020-00276-0
- B. Huang *et al.*, Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. *Nat. Mater.* 19, 1276–1289 (2020). doi: 10.1038/s41563-020-0791-8; pmid: 32948831
- N. Briggs et al., Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020). doi: 10.1038/s41563-020-0631-x; pmid: 32157191
- Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nat. Nanotechnol.* 7, 699–712 (2012). doi: 10.1038/ nnano.2012.193; pmid: 23132225
- L. Du et al., 2D proximate quantum spin liquid state in atomic-thin α-RuCl3. 2D Mater. 6, 015014 (2018). doi: 10.1088/2053-1583/aaee29
- A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). doi: 10.1038/nature12385; pmid: 23887427
- Y. Liu et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). doi: 10.1038/ natrevmats.2016.42
- E. Y. Andrei et al., The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021). doi: 10.1038/s41578-021-00284-1
- Y. Xu et al., Correlated insulating states at fractional fillings of moiré superlattices. *Nature* 587, 214–218 (2020). doi: 10.1038/s41586-020-2868-6; pmid: 33177668
- N. P. Wilson, W. Yao, J. Shan, X. Xu, Excitons and emergent quantum phenomena in stacked 2D semiconductors. *Nature* 599, 383–392 (2021). doi: 10.1038/s41586-021-03979-1; pmid: 34789905
- K. F. Mak, J. Shan, Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022). doi: 10.1038/ s41565-022-01165-6; pmid: 35836003
- R. Bistritzer, A. H. MacDonald, Moire bands in twisted doublelayer graphene. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 12233–12237 (2011). doi: 10.1073/pnas.1108174108; pmid: 21730173
- L. A. Ponomarenko *et al.*, Cloning of Dirac fermions in graphene superlattices. *Nature* **497**, 594–597 (2013). doi: 10.1038/nature12187; pmid: 23676678
- C. R. Dean et al., Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013). doi: 10.1038/nature12186; pmid: 23676673
- Y. Cao *et al.*, Unconventional superconductivity in magicangle graphene superlattices. *Nature* **556**, 43–50 (2018). doi: 10.1038/nature26160; pmid: 29512651
- Y. Cao et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. *Nature* 556, 80–84 (2018). doi: 10.1038/nature26154; pmid: 29512654
- K. L. Seyler *et al.*, Signatures of moiré-trapped valley excitons in MoSe₂/WSe₂ heterobilayers. *Nature* **567**, 66–70 (2019). doi: 10.1038/s41586-019-0957-1; pmid: 30804526
- C. Jin *et al.*, Observation of moiré excitons in WSe₂/WS₂ heterostructure superlattices. *Nature* **567**, 76–80 (2019). doi: 10.1038/s41586-019-0976-y; pmid: 30804525
- K. Tran *et al.*, Evidence for moiré excitons in van der Waals heterostructures. *Nature* 567, 71–75 (2019). doi: 10.1038/ s41586-019-0975-z; pmid: 30804527
- E. M. Alexeev et al., Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567,

81-86 (2019). doi: 10.1038/s41586-019-0986-9; pmid: 30842637

- H. Baek et al., Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020). doi: 10.1126/sciadv.aba8526; pmid: 32917702
- A. L. Sharpe *et al.*, Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. *Science* 365, 605–608 (2019). doi: 10.1126/science.aaw3780; pmid: 31346139
- G. Chen *et al.*, Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. *Nature* 579, 56–61 (2020). doi: 10.1038/s41586-020-2049-7; pmid: 32132694
- M. Serlin *et al.*, Intrinsic quantized anomalous Hall effect in a moiré heterostructure. *Science* **367**, 900–903 (2020). doi: 10.1126/science.aay5533; pmid: 31857492
- E. C. Regan *et al.*, Mott and generalized Wigner crystal states in WSe₂/WS₂ moiré superlattices. *Nature* **579**, 359–363 (2020). doi: 10.1038/s41586-020-2092-4; pmid: 32188951
- X. Huang et al., Correlated insulating states at fractional fillings of the WS₂/WSe₂ moiré lattice. Nat. Phys. 17, 715–719 (2021). doi: 10.1038/s41567-021-01171-w
- Y. Jiang et al., Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. *Nature* 573, 91–95 (2019). doi: 10.1038/s41586-019-1460-4; pmid: 31365921
- Jin et al., Stripe phases in WSe₂/WS₂ moiré superlattices. Nat. Mater. 20, 940–944 (2021). doi: 10.1038/ s41563-021-00959-8; pmid: 33767398
- M. Haavisto, J. Lado, A. O. Fumega, Topological multiferroic order in twisted transition metal dichalcogenide bilayers. *SciPost Phys.* 13, 052 (2022). doi: 10.21468/ SciPostPhys.13.3.052
- Y. Bai et al., Evidence for Exciton Crystals in a 2D Semiconductor Heterotrilayer. arXiv:2207.09601 (2022).
- C. Ma et al., Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022). doi: 10.1038/s41586-022-04548-w; pmid: 35418636
- C. N. Lau, M. W. Bockrath, K. F. Mak, F. Zhang, Reproducibility in the fabrication and physics of moiré materials. *Nature* **602**, 41–50 (2022). doi: 10.1038/s41586-021-04173-z; pmid: 35110759
- D. Huang, J. Choi, C.-K. Shih, X. Li, Excitons in semiconductor moiré superlattices. *Nat. Nanotechnol.* **17**, 227–238 (2022). doi: 10.1038/s41565-021-01068-y; pmid: 35288673
- E. C. Regan *et al.*, Emerging exciton physics in transition metal dichalcogenide heterobilayers. *Nat. Rev. Mater.* **7**, 778–795 (2022). doi: 10.1038/s41578-022-00440-1
- K. Kim et al., van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Lett. 16, 1989–1995 (2016). doi: 10.1021/acs.nanolett.5b05263; pmid: 26859527
- R. Frisenda et al., Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018). doi: 10.1039/C7CS00556C; pmid: 29111548
- L. Wang *et al.*, Correlated electronic phases in twisted bilayer transition metal dichalcogenides. *Nat. Mater.* **19**, 861–866 (2020). doi: 10.1038/s41563-020-0708-6; pmid: 32572205
- J. Sung *et al.*, Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe₂/MoSe₂ bilayers. *Nat. Nanotechnol.* **15**, 750–754 (2020). doi: 10.1038/s41565-020-0728-z; pmid: 32661373
- T. Song *et al.*, Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. *Science* **374**, 1140–1144 (2021). doi: 10.1126/science.abj7478; pmid: 34822270
- Y. Xu et al., Coexisting ferromagnetic-antiferromagnetic state in twisted bilayer Crl₃. Nat. Nanotechnol. 17, 143–147 (2022). doi: 10.1038/s41565-021-01014-y; pmid: 34845332
- Y. Tang *et al.*, Simulation of Hubbard model physics in WSe₂/WS₂ moiré superlattices. *Nature* **579**, 353–358 (2020). doi: 10.1038/s41586-020-2085-3; pmid: 32188950
- A. J. Mannix *et al.*, Robotic four-dimensional pixel assembly of van der Waals solids. *Nat. Nanotechnol.* **17**, 361–366 (2022). doi: 10.1038/s41565-021-01061-5; pmid: 35075299
- S. Masubuchi et al., Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018). doi: 10.1038/ s41467-018-03723-w; pmid: 29650955
- Q. Wang et al., Layer-by-layer epitaxy of multi-layer MoS₂ wafers. Natl. Sci. Rev. 9, nwac077 (2022). doi: 10.1093/nsr/ nwac077; pmid: 35769232
- P. Solís-Fernández, H. Ago, Machine Learning Determination of the Twist Angle of Bilayer Graphene by Raman Spectroscopy: Implications for van der Waals

Heterostructures. ACS Appl. Nano Mater. 5, 1356-1366 (2022). doi: 10.1021/acsanm.1c03928

- P. Chen, Z. Zhang, X. Duan, X. Duan, Chemical synthesis of 48 two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47, 3129-3151 (2018). doi: 10.1039/C7CS00887B; pmid: 29528342
- hexagonal boron nitride. Nat. Mater. 12, 792-797 (2013). doi: 10.1038/nmat3695; pmid: 23852399
- diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 19, 617-623 (2020). doi: 10.1038/s41563-020-0670-3; pmid: 32393806
- 2D electronic superlattices in MoS₂/WSe₂ hetero-bilayers. Sci. Adv. 3, e1601459 (2017). doi: 10.1126/sciadv.1601459; pmid: 28070558
- MoS₂/graphene heterostructures via interlayer twisting angle. Appl. Phys. Lett. 111, 263106 (2017). doi: 10.1063/1.5011120
- 53. R. Ribeiro-Palau et al., Twistable electronics with dynamically rotatable heterostructures. Science 361, 690-693 (2018). doi: 10.1126/science.aat6981
- M. Liao et al., Ultra-low friction and edge-pinning effect in 54. large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 21, 47-53 (2022). doi: 10.1038/s41563-021-01058-4; pmid: 34354215
- 55. S. M. Akkanen, H. A. Fernandez, Z. Sun, Optical Modification of 2D Materials: Methods and Applications. Adv. Mater. 34, e2110152 (2022). doi: 10.1002/adma.202110152; pmid: 35139583
- 56. D. Wang et al., Thermally Induced Graphene Rotation on Hexagonal Boron Nitride, Phys. Rev. Lett. 116, 126101 (2016). doi: 10.1103/PhysRevLett.116.126101; pmid: 27058087
- 57 Z. Zhang et al., Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093-1096 (2020). doi: 10.1038/s41567-020-0958-x
- 58. L. J. McGilly et al., Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580-584 (2020). doi: 10.1038/ s41565-020-0708-3; pmid: 32572229
- 59 T. I. Andersen et al., Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480-487 (2021). doi: 10.1038/s41563-020-00873-5; pmid: 33398121
- 60 A. Weston et al., Atomic reconstruction in twisted bilavers of transition metal dichalcogenides, Nat, Nanotechnol, 15, 592-597 (2020). doi: 10.1038/s41565-020-0682-9; pmid: 32451502
- S. S. Sunku et al., Photonic crystals for nano-light in moiré 61 graphene superlattices. Science 362, 1153-1156 (2018). doi: 10.1126/science.aau5144; pmid: 30523109
- K. Lee et al., Ultrahigh-resolution scanning microwave impedance 62. microscopy of moiré lattices and superstructures. Sci. Adv. 6, eabd1919 (2020). doi: 10.1126/sciadv.abd1919; pmid: 33298449
- J. Yu et al., Imaging Graphene Moiré Superlattices via 63. Scanning Kelvin Probe Microscopy. Nano Lett. 21, 3280-3286 (2021). doi: 10.1021/acs.nanolett.1c00609; pmid: 33749279
- 64. K.-Q. Lin et al., Large-Scale Mapping of Moiré Superlattices by Hyperspectral Raman Imaging. Adv. Mater. 33, e2008333 (2021). doi: 10.1002/adma.202008333; pmid: 34242447
- 65. G. Wang et al., Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018). doi: 10.1103/RevModPhys.90.021001
- 66. H. Yu, G.-B. Liu, J. Tang, X. Xu, W. Yao, Moiré excitons: From programmable quantum emitter arrays to spin-orbitcoupled artificial lattices. Sci. Adv. 3, e1701696 (2017). doi: 10.1126/sciadv.1701696; pmid: 29152568
- 67. F. Wu, T. Lovorn, A. H. MacDonald, Topological Exciton Bands in Moiré Heterojunctions. Phys. Rev. Lett. 118, 147401 (2017). doi: 10.1103/PhysRevLett.118.147401; pmid: 28430504
- 68 M. Brotons-Gisbert et al., Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630-636 (2020). doi: 10.1038/s41563-020-0687-7; pmid: 32451512
- 69 M. Brotons-Gisbert et al., Moiré-Trapped Interlayer Trions in a Charge-Tunable WSe2/MoSe2 Heterobilayer. Phys. Rev. X 11, 031033 (2021). doi: 10.1103/PhysRevX.11.031033
- M. Turunen et al., Quantum photonics with layered 2D 70. materials. Nat. Rev. Phys. 4, 219-236 (2022). doi: 10.1038/s42254-021-00408-0
- 71. S. Zhao et al., Excitons in mesoscopically reconstructed moiré hetersotructures, arXiv:2202.11139 (2022).

- 72. J. Wang et al., Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe₂/WSe₂ Heterobilayers. Phys. Rev. Lett. 126, 106804 (2021). doi: 10.1103/ PhysRevLett.126.106804; pmid: 33784140
- E. Liu et al., Signatures of moiré trions in WSe2/MoSe2 73. heterobilayers. Nature 594, 46-50 (2021). doi: 10.1038/ s41586-021-03541-z; pmid: 34079140
- H. Baek et al., Optical read-out of Coulomb staircases in a 74 moiré superlattice via trapped interlaver trions. Nat. Nanotechnol. 16, 1237-1243 (2021). doi: 10.1038/ s41565-021-00970-9; pmid: 34556832
- 75. X. Wang et al., Moiré trions in MoSe₂/WSe₂ heterobilayers. Nat. Nanotechnol. 16, 1208-1213 (2021). doi: 10.1038/ s41565-021-00969-2; pmid: 34531556
- 76. K. F. Mak, D. Xiao, J. Shan, Light-valley interactions in 2D semiconductors, Nat. Photonics 12, 451-460 (2018). doi: 10.1038/s41566-018-0204-6
- H. Yu, Y. Wang, Q. Tong, X. Xu, W. Yao, Anomalous Light 77. Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. Phys. Rev. Lett. 115, 187002 (2015). doi: 10.1103/PhysRevLett.115.187002; nmid: 26565491
- S. Brem, C. Linderälv, P. Erhart, E. Malic, Tunable Phases of 78 Moiré Excitons in van der Waals Heterostructures. Nano Lett. 20, 8534-8540 (2020). doi: 10.1021/acs.nanolett.0c03019; pmid: 32970445
- F. Wu, T. Lovorn, A. H. MacDonald, Theory of optical 79 absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018). doi: 10.1103/PhysRevB.97.035306
- 80. T. Smoleński et al., Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53-57 (2021). doi: 10.1038/s41586-021-03590-4; pmid: 34194018
- N. Zhang et al., Moiré Intralayer Excitons in a MoSe₂/MoS₂ 81. Heterostructure, Nano Lett. 18, 7651-7657 (2018). doi: 10.1021/acs.nanolett.8b03266; pmid: 30403876
- 82. M. H. Naik et al., Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52-57 (2022). doi: 10.1038/s41586-022-04991-9; pmid: 36045239
- 83 A. Ciarrocchi et al., Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131-136 (2019). doi: 10.1038/s41566-018-0325-y; pmid: 30886643
- E. Marcellina et al., Evidence for Moiré Trions in Twisted 84. MoSe₂ Homobilavers, Nano Lett. 21, 4461-4468 (2021). doi: 10.1021/acs.nanolett.1c01207: pmid: 33970625
- 85 A. Righi et al., Graphene moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B Condens. Matter Mater. Phys. 84, 241409 (2011). doi: 10.1103/ PhysRevB.84.241409
- 86 G. S. N. Eliel et al., Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures Nat. Commun. 9, 1221 (2018). doi: 10.1038/s41467-018-03479-3; pmid: 29572537
- 87. A. Eckmann et al., Raman fingerprint of aligned graphene/ h-BN superlattices. Nano Lett. 13, 5242-5246 (2013). doi: 10.1021/nl402679b; pmid: 24156357
- 88. M. Liao et al., Precise control of the interlayer twist angle in large scale MoS₂ homostructures. Nat. Commun. 11, 2153 (2020). doi: 10.1038/s41467-020-16056-4; pmid: 32358571
- 89 D. A. Ruiz-Tijerina, V. I. Fal'ko, Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019). doi: 10.1103/PhysRevB.99.125424
- 90. L. Zhang et al., Twist-angle dependence of moiré excitons in WS₂/MoSe₂ heterobilavers, Nat. Commun. 11, 5888 (2020). doi: 10.1038/s41467-020-19466-6; pmid: 33208738
- Y. Tang et al., Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52-57 (2021), doi: 10.1038/s41565-020-00783-2; nmid: 33139934
- Y. Shimazaki et al., Strongly correlated electrons and hybrid 92. excitons in a moiré heterostructure. Nature 580, 472-477 (2020). doi: 10.1038/s41586-020-2191-2; pmid: 32322064
- 93. H. Yu, W. Yao, Luminescence Anomaly of Dipolar Valley Excitons in Homobilayer Semiconductor Moiré Superlattices. Phys. Rev. X 11, 021042 (2021). doi: 10.1103/ PhysRevX.11.021042
- S. Brem et al., Hybridized intervalley moiré excitons and flat 94. bands in twisted WSe2 bilayers. Nanoscale 12, 11088-11094 (2020). doi: 10.1039/D0NR02160A; pmid: 32400821
- 95 C. Zhang et al., Systematic study of electronic structure and band alignment of monolayer transition metal

dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2016). doi: 10.1088/2053-1583/4/1/015026

- 96 P. Rivera et al., Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004-1015 (2018). doi: 10.1038/s41565-018-0193-0; pmid: 30104622
- 97 Y. Zhao et al., Interlayer exciton complexes in bilayer MoS2. Phys. Rev. B 105, L041411 (2022). doi: 10.1103/ PhysRevB.105.I 041411
- 98 C. Schneider, M. M. Glazov, T. Korn, S. Höfling, B. Urbaszek, Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 9, 2695 (2018). doi: 10.1038/s41467-018-04866-6; pmid: 30002368
- D. N. Basov, M. M. Fogler, F. J. García de Abajo, Polaritons in van der Waals materials. Science 354, aag1992 (2016). doi: 10.1126/science.aag1992; pmid: 27738142
- 100. T. Low et al., Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182-194 (2017). doi: 10.1038/nmat4792; pmid: 27893724
- 101. L. Zhang et al., Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61-65 (2021). doi: 10.1038/s41586-021-03228-5; pmid: 33658695
- 102. G. X. Ni et al., Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217-1222 (2015). doi: 10.1038/nmat4425; pmid: 26413987
- 103. N. C. H. Hesp et al., Observation of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162-1168 (2021). doi: 10.1038/s41567-021-01327-8
- 104. T. Huang et al., Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 605, 63-68 (2022). doi: 10.1038/s41586-022-04520-8; pmid: 35508778
- 105. C. Lewandowski, L. Levitov, Intrinsically undamped plasmon modes in narrow electron bands. Proc. Natl. Acad. Sci. U.S.A. 116, 20869-20874 (2019). doi: 10.1073/pnas.1909069116; pmid: 31562197
- 106. T. Stauber, H. Kohler, Quasi-Flat Plasmonic Bands in Twisted Bilayer Graphene. Nano Lett. 16, 6844-6849 (2016). doi: 10.1021/acs.nanolett.6b02587; pmid: 27776411
- 107. L. Brey, T. Stauber, T. Slipchenko, L. Martín-Moreno, Plasmonic Dirac Cone in Twisted Bilayer Graphene. Phys. Rev. Lett. 125, 256804 (2020). doi: 10.1103/PhysRevLett.125.256804; pmid: 33416378
- 108. G. Hu et al., Topological polaritons and photonic magic angles in twisted α-MoO₃ bilayers. Nature 582, 209-213 (2020). doi: 10.1038/s41586-020-2359-9; pmid: 32528096
- 109. M. Chen et al., Configurable phonon polaritons in twisted α-MoO₃. Nat. Mater. 19, 1307-1311 (2020). doi: 10.1038/ s41563-020-0732-6; pmid: 32661384
- 110. Z. Zhang et al., Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/ WSe2. Nat. Phys. 18, 1214-1220 (2022). doi: 10.1038/ s41567-022-01702-z
- 111. J. Gu et al., Dipolar excitonic insulator in a moiré lattice. Nat. Phys 18, 395-400 (2022). doi: 10.1038/s41567-022-01532-z
- 112. H. Li et al., Imaging two-dimensional generalized Wigner crystals. Nature 597, 650-654 (2021). doi: 10.1038/ s41586-021-03874-9; pmid: 34588665
- 113. L. Ma et al., Strongly correlated excitonic insulator in atomic double lavers. Nature 598, 585-589 (2021), doi: 10.1038/ s41586-021-03947-9; pmid: 34707306
- 114. E. Liu et al., Excitonic and Valley-Polarization Signatures of Fractional Correlated Electronic Phases in a WSe2/WS2 Moiré Superlattice. Phys. Rev. Lett. 127, 037402 (2021). doi: 10.1103/PhysRevLett.127.037402; pmid: 34328773
- 115. S. Miao et al., Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun. 12, 3608 (2021). doi: 10.1038/ s41467-021-23732-6; pmid: 34127668
- Y. Shimazaki et al., Optical Signatures of Periodic 116. Charge Distribution in a Mott-like Correlated Insulator State. Phys. Rev. X 11, 021027 (2021). doi: 10.1103/ PhysRevX.11.021027
- 117. L. Du et al., Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus. Nat. Commun. 12, 4822 (2021). doi: 10.1038/s41467-021-25104-6; pmid: 34376660
- 118. A. J. Campbell et al., Exciton-polarons in the presence of strongly correlated electronic states in a MoSe₂/WSe₂ moiré superlattice. npj 2D Mater. Appl. 6, 79 (2022). doi: 10.1038/ s41699-022-00358-w
- 119. J. Liu, X. Dai, Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Computat. Mater. 6, 57 (2020). doi: 10.3390/ma14010057

- 49. W. Yang et al., Epitaxial growth of single-domain graphene on
- 50. L. Yuan et al., Twist-angle-dependent interlayer exciton
- 51 C. Zhang et al., Interlayer couplings, Moiré patterns, and
- L. Du et al., Modulating PL and electronic structures of 52

- X. Wang et al., Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022). doi: 10.1038/ s41586-022-04472-z; pmid: 35444320
- H. Yoo *et al.*, Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. *Nat. Mater.* 18, 448–453 (2019). doi: 10.1038/s41563-019-0346-z; pmid: 30988451
- 122. V. V. Enaldiev, V. Zólyomi, C. Yelgel, S. J. Magorrian, V. I. Fal'ko, Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. *Phys. Rev. Lett.* **124**, 206101 (2020). doi: 10.1103/PhysRevLett.124.206101; pmid: 32501062
- L. Jiang *et al.*, Soliton-dependent plasmon reflection at bilayer graphene domain walls. *Nat. Mater.* **15**, 840–844 (2016). doi: 10.1038/nmat4653; pmid: 27240109
- J. Quan *et al.*, Phonon renormalization in reconstructed MoS₂ moiré superlattices. *Nat. Mater.* **20**, 1100–1105 (2021). doi: 10.1038/s41563-021-00960-1; pmid: 33753933
- A. C. Gadelha et al., Localization of lattice dynamics in low-angle twisted bilayer graphene. *Nature* **590**, 405–409 (2021). doi: 10.1038/s41586-021-03252-5; pmid: 33597759
- B. Deng et al., Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics 14, 549–553 (2020). doi: 10.1038/s41566-020-0644-7
- J. Yang *et al.*, Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice. *Science* **375**, 1295–1299 (2022). doi: 10.1126/science.abg3036; pmid: 35298267
- G. Chen *et al.*, Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. *Nature* **572**, 215–219 (2019). doi: 10.1038/s41586-019-1393-y pmid: 31316203
- 129. Q. Ma, A. G. Grushin, K. S. Burch, Topology and geometry under the nonlinear electromagnetic spotlight. *Nat. Mater.* 20, 1601–1614 (2021). doi: 10.1038/s41563-021-00992-7; pmid: 34127824
- M. Otteneder et al., Terahertz Photogalvanics in Twisted Bilayer Graphene Close to the Second Magic Angle. Nano Lett. 20, 7152–7158 (2020). doi: 10.1021/acs. nanolett.0c02474; pmid: 32915581
- P. He et al., Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022). doi: 10.1038/s41565-021-01060-6; pmid: 35115723
- M. Huang et al., Giant nonlinear Hall effect in twisted bilayer WSe₂. Natl. Sci. Rev. 10.1093/nsr/nwac232 (2022). doi: 10.1093/nsr/nwac232
- X. Lu *et al.*, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. *Nature* **574**, 653–657 (2019). doi: 10.1038/s41586-019-1695-0; pmid: 31666722

- P. Seifert *et al.*, Magic-Angle Bilayer Graphene Nanocalorimeters: Toward Broadband, Energy-Resolving Single Photon Detection. *Nano Lett.* **20**, 3459–3464 (2020). doi: 10.1021/acs.nanolett.0c00373; pmid: 32315186
- S. S. Sunku *et al.*, Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. *Nat. Commun.* **12**, 1641 (2021). doi: 10.1038/s41467-021-21792-2; pmid: 33712611
- N. C. H. Hesp *et al.*, Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. *Nat. Commun.* 12, 1640 (2021). doi: 10.1038/s41467-021-21862-5; pmid: 33712606
- X. Yan *et al.*, Single-defect phonons imaged by electron microscopy. *Nature* 589, 65–69 (2021). doi: 10.1038/ s41586-020-03049-y; pmid: 33408374
- N. P. Wilson *et al.*, Interlayer electronic coupling on demand in a 2D magnetic semiconductor. *Nat. Mater.* **20**, 1657–1662 (2021). doi: 10.1038/s41563-021-01070-8; pmid: 34312534
- Z. Sun et al., Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer Crl₃. Nature 572, 497–501 (2019). doi: 10.1038/s41586-019-1445-3; pmid: 31367036
- 140. Y. J. Bae et al., Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). doi: 10.1038/ s41586-022-05024-1; pmid: 36071189
- B. Huang et al., Tuning inelastic light scattering via symmetry control in the two-dimensional magnet Crl₃. Nat. Nanotechnol. 15, 212–216 (2020). doi: 10.1038/s41565-019-0598-4; pmid: 31907441
- S. Zhao, R. Kitaura, P. Moon, M. Koshino, F. Wang, Interlayer Interactions in 1D Van der Waals Moiré Superlattices. *Adv. Sci. (Weinh.)* 9, e2103460 (2022). doi: 10.1002/ advs.202103460; pmid: 34841726
- 143. P. Wang et al., Localization and delocalization of light in photonic moiré lattices. *Nature* **577**, 42–46 (2020). doi: 10.1038/s41586-019-1851-6; pmid: 31853062
- 144. X.-R. Mao, Z.-K. Shao, H.-Y. Luan, S.-L. Wang, R.-M. Ma, Magic-angle lasers in nanostructured moiré superlattice. *Nat. Nanotechnol.* 16, 1099–1105 (2021). doi: 10.1038/ s41565-021-00956-7; pmid: 34400821
- Q. Fu et al., Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics 14, 663–668 (2020). doi: 10.1038/s41566-020-0679-9
- 146. Y. Bai et al., Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). doi: 10.1038/s41563-020-0730-8; pmid: 32661380
- 147. Q. Lin et al., A room-temperature moiré interlayer exciton laser. arXiv:2302.01266 (2023).

- 148. Y.-H. Zhang, D. N. Sheng, A. Vishwanath, SU (4) Chiral Spin Liquid, Exciton Supersolid, and Electric Detection in Moiré Bilayers. *Phys. Rev. Lett.* **127**, 247701 (2021). doi: 10.1103/ PhysRevLett.127.247701; pmid: 34951785
- 149. Z. Bi, L. Fu, Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide. *Nat. Commun.* 12, 642 (2021). doi: 10.1038/s41467-020-20802-z; pmid: 33510138
- R. Xiong *et al.*, Bosonic Mott insulator in WSe₂/WS₂ moiré superlattice. arXiv:2207.10764 [cond-mat.str-el] (2022).
- Y. Zeng et al., Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023). doi: 10.1038/ s41563-022-01454-4; pmid: 36635591

ACKNOWLEDGMENTS

We acknowledge numerous colleagues with whom we have had the opportunity to work and gain knowledge in the constantly growing field of moiré photonics and optoelectronics. Z.S. also thanks J. Bai and Z. Ren for discussion and assistance during his current visiting professorship at the Northwestern University, China. Funding: The authors gratefully acknowledge the financial support from the National Science Foundation of China (NSFC) (grant nos. 12274447, 61888102, and 11834017), the National Key Research and Development Program (grant no. 2021YFA1202900), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB3000000), and the Key-Area Research and Development Program of Guangdong Province (grant no. 2020B0101340001), the Academy of Finland (314810, 333982, 336144 333099 336818 352780 352930 and 353364) the Academy of Finland Flagship Programme (320167, PREIN), ERC (834742), the EU H2020-MSCA-RISE-872049 (IPN-Bio), the European Union's Horizon 2020 research and innovation program (965124, FEMTOCHIP), and the National Science Centre, Poland (grant no. 2018/31/B/ST3/02111). F.W. acknowledges the support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 (van der Waals heterostructure program KCFW16). Author contributions: L.D., G.Z, and Z.S. conceived the idea and led the writing. M.M., Z.H., and F.W. contributed substantially to the discussion of the content. All authors reviewed and edited the manuscript before submission. Competing interests: The authors declare no competing interests. License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/ science-licenses-journal-article-reuse

Submitted 28 November 2022; accepted 24 February 2023 10.1126/science.adg0014

Moiré photonics and optoelectronics

Luojun Du, Maciej R. Molas, Zhiheng Huang, Guangyu Zhang, Feng Wang, and Zhipei Sun

Science 379 (6639), eadg0014. DOI: 10.1126/science.adg0014

Patterning optoelectronics

Moiré patterns develop when two or more periodic lattices are overlaid over each other. These long-range patterns can also be seen in two-dimensional materials and give rise to rich physics within these quantum materials systems. Du *et al.* reviewed recent developments in moiré-patterned two-dimensional materials with a focus on the photonic and optoelectronic aspects and how the properties can be controlled by engineering the stacking order and twist angle between the layers. The wealth of properties seen indicates that these systems may be a powerful platform to develop an exotic optoelectronic device technology. —ISO

View the article online

https://www.science.org/doi/10.1126/science.adg0014 Permissions https://www.science.org/help/reprints-and-permissions

Use of this article is subject to the Terms of service

Science (ISSN 1095-9203) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works