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When biological cells approach regions with high strain-rates, the membrane deformation can surpass the

yielding point, leading to cell lysis. In the interest of enhancing such e�ects, drop dynamics is studied. Here,

bending sti�ness and viscoelastic area compression of the membrane are not considered. Surface-tension

force is used to model planar tensile stresses instead. Breakup of drops has been shown to depend on the

type of �ow, the Reynolds number, Re, the capillary number, Ca, the viscosity ratio, λ, the density ratio,

γ, and the Stokes number (particulate �ows). In simple shear �ows at low Re and low Ca, breakup is not

possible. The main purpose of this work is to �nd conditions that enhance drop disruption under such

�ows. While the deformation of drops and elastic capsules in simple shear �ows and particulate �ows have

been subject of research, less attention has been given to the deformation of drops in particulate simple

shear �ows that are initially quiescent. The e�ects of rigid particles on drops are studied numerically for

several �ow conditions and the deformation is analyzed using the particle-particle distance. It is observed

a decrease in deformation as Re (moderate regime) increases for di�erent initial position of the particles.

Drop deformation increases with Ca, meanwhile larger and denser particles are preferred to induce drop

puncturing. Without particles, the conditions for drop breakup are found when the walls are closely located.

Similarly, a gravity-driven particulate �ow is studied and the dependence on the Bond number is shown. The

problem of drop splitting in sudden expansions is also analyzed, showing dependence on the expansion ratio.

The conservation laws are solved numerically using �nite volumes and the Crank-Nicolson scheme. Velocities

are corrected with SIMPLEC. The interface is tracked using the volume-of-�uid method, reconstructed with

the piecewise linear interface calculation algorithm (PLIC), and �uxed based on the de�ned donating region

(DDR). A High-Resolution technique (SMART) is employed to discretize advection terms. A continuum

surface force (CSF) models surface tension. Rigid particles are introduced in the domain with the Lagrange

multiplier method.
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Chapter 1

Introduction

1.1 Problem Description and Motivation

The problems of particle deformation, disruption, fragmentation and breakup, and particle-particle repulsion

and attraction (agglomeration) are phenomena commonly observed in many industrial applications and

natural processes, leading to vigorous research activity in a variety of �elds due to its multiphase nature

and the complexity of the dynamics of drops, bubbles and rigid/elastic/viscoelastic particles: oil recovery

and emulsions; dust control in the mining industry (drops); spraying and mixing in combustion systems

and propulsion; drug delivery and cell transport, analysis and manipulation (biology); locomotion of small

organism, among many others. Some of these processes involve the breakup of a jet to produce drops, or the

transport of drops/particles in micro-channels, or the disruption of a free surface due to instabilities. In the

case of liquids, the analysis of single drops, i.e. transport, orientation, deformation and breakup mechanisms,

provides useful information about the phenomena. One scenario where drop-drop interactions are limited is

in dilute emulsions. When drops do interact with each other in a given �ow, coalescence and/or fragmentation

could take place and such dynamics is complex. In the case of drop-wall or drop-particle interactions, the �ow

�eld can produce conditions of instability leading to breakup. In that sense, studying drop deformation in

shear and extensional �ows may improve the understanding of cell lysis happening naturally or mechanically

from a fundamental point of view.

Micro-channel �ow lysis, bead-beaten lysis and osmotic lysis are common methods used to break up

cell membranes (Abmayr et al., 1995). When cells are transported in capillary regions, or close to walls,

shear stresses are capable of deforming the membrane beyond the yield strength limit, where structural

failure takes place. This mechanism can be enhanced by the interaction and collision of glass beads in a

microfabricated lysis chamber. Another mechanism is the osmotic lysis, where changes in pressure jump
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across the interface modify the tensional stresses at the interface. This can be accomplished by creating an

extensional �ow with important variations in pressure, by injecting mass inside the cell, or by placing the

cell in a press. The objective of mechanical cell lysis is to extract DNA or proteins for further applications

and the amount of sample is normally a limiting factor. Therefore, any mechanism capable of enhancing the

rupture of the membrane is relevant.

If the cell membrane is relatively thick, or if its ultimate stress is considerable large, modeling the

membrane is justi�ed. Such membrane can behave as a viscoelastic solid, not only in tension or compression,

but also in bending. In the case of weak membranes, thin-membrane theory can be used, or even simpler,

the cell can be modeled as a droplet subject to surface tension.

Liposomes are vesicles composed of a lipid bilayer that can be modeled as a membrane. These vesicles

are commonly used to transport drugs and therefore subject to numerous research. The deformation of

liposomes was studied by Foo et al. (2006) to understand the e�ect of membrane biomechanical properties

on the shape. It was found that membrane tension contributes signi�cantly to the resistance during the

deformation, justifying the use of drop dynamics as a simpli�ed model. Cell membranes are semi-permeable

structures that resist tension, �ow under shearing and are capable of reducing the osmotic pressure by

transporting solvent in/out of the cell, characteristic that clearly di�erentiates a drop from a biological cell.

Other interesting problems are the magnetophoresis of nanoparticles (Lim et al., 2011) and nuclear

targeting of nanoparticles (Kang et al., 2010), used for imaging and drug delivery. Brownian motion and

electrochemical potential are of extreme relevance in these problems because the scale of the nanoparticles

is ∼ 10nm. In that sense, our work is incapable of studying those �ows (nanoscale), but some qualitative

descriptions can be captured.

The fundamental study of the interaction between particles in Newtonian, or viscoelastic �uids, and the

breakup of the interface has an impact on the mentioned problems.

1.2 Dynamic scales

Common eukaryotic cell have lengths ranging 10− 100µm, with a nucleus of the size 3− 10µm. Diameters

of capillaries, veins, and micropipettes range from 10µm − 1mm with velocities around 0.3 − 100mm/s,

leading to shear strain-rates of γ̇ = 30− 100s−1. Considering plasma or blood as the working �uid, dynamic

and kinematic viscosities are ηblood ∼ 3 · 10−3 Pa-s, νblood ∼ 3 · 10−6 m2/s (Cho and Kensey, 1991). The

surface-tension coe�cient of common liquids is in the order of σ = 2− 60 dyne/cm. Then, the �ow obeys a

small to moderate Reynolds number �ow, Reflow = 0.001−30, a moderate Reynolds number of the interface,

Reosc = 1.5 − 25 and very small to small capillary number, Ca = 1 · 10−5 − 0.015. The de�nition of these
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dimensionless number will be explained in the sections involving the dynamics of drops.

Deformable particles in low Re �ows will exhibit two types of interfacial motion: nonlinear oscillatory

and monotonically damped. The former is likely to happen for Reosc & 10, but requires a given initial

deformation. For low-to-moderate Re regimes and low Ca, shearing itself is incapable of producing disruption

because surface tension is su�ciently strong. In that sense, any perturbation on the shape will produce

restructuring forces that recover the steady-state shape. For that reason, one way to produce lysis is by

changing hydrodynamic forces with the presence of particles and therefore the importance of studying this

problem.

In order to study the e�ect of rigid particles on a deformable particle in viscoelastic �uids, a previous

understanding of how particles interact is very important. For instance, spheres in a simple shear �ow might

experience particle chaining or particle-particle repulsion. In the case of drops in a viscoelastic �uids, the

matrix e�ect is to stabilize the drop.

Plasma and whole blood are viscoelastic, with relaxation times λ = 1.5 − 2.6ms and λ = 7.8ms respec-

tively. Additionally, whole blood �uid is shear thinning with η0 = 0.0169Pa-s, specially for γ̇ < 40s−1, while

plasma is a Boger �uid with zero shear viscosity η0 = 1.34mPa-s (Brust et al., 2013). Deborah number is used

to characterize viscoelasticity by relating the relaxation time of the �ow with the time scale of the experiment.

For the same range of shear-strain-rate previously stated, the Deborah number is De = λγ̇ = 0.04 − 0.8,

which reveals an important e�ect of viscoelasticity in biological system �ows. Low values of De can be

modeled numerically, but De numbers approaching the unity or above require very �ne mesh resolutions

and convergence is normally lost or numerical breakdown could appear, typically around De ∼ 1, depending

on the �uid model employed. Considering that only the most complex viscoelastic models are capable of

representing viscoelastic �uids, and up to some extent in accuracy, the study of viscoelastic e�ects is limited

in this work.

Analyzing the relationship between Re, Ca, De, the viscoelastic elasticity Eviscoelastic, the elastic elas-

ticity, Eelastic and the conditions that lead to over-extension and breakup will allow for a complete under-

standing of the in�uence of a membrane, particles and the �ow itself. This could produce cost reductions or

improve safety by knowing how to induce breakup or how to avoid it.
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1.3 Outline of the Research Project

The overall progress of this PhD research is summarized in the following sections:

1. Development of an incompressible viscous �uid solver with the following additions and validations:

(a) We have incorporated a high-resolution technique for advective terms: Sharp and Monotonic

Algorithm for Realistic Transport (SMART) scheme. SMART provides third order accuracy on

uniform meshes. This approach is required to solve viscoelastic �ows.

(b) The rigidifying force of the distributed Lagrange multiplier method (DLM) was provided with sub-

grid velocity resolution at the interface, to set a real non-slip boundary condition. This method

produced incorrect drag forces, but smooth stresses. The appropriate approach is to perform a

multi-level discretization around the interface (multigrid). This is one of the reasons for the low

convergence of the DLM.

(c) The volume of �uid method together with the Flux Corrected Transport algorithm (FCT-VOF)

has been incorporated. The advection of the color function is computed using SMART, instead

of the conventional unbounded nth order polynomials, and advanced in time with a second order

�nite di�erence scheme, achieving a sharp interface and volume conservation.

(d) Validation of the code for di�erent �ows: Planar Poiseuille �ow (transient scheme), lid-driven

cavity �ow (advection and di�usion), �ow past a cylinder (viscoelastic drag) and settling of a

sphere (DLM for transient problems). Section 6.

2. We have found that recent investigations use the hybrid level-set volume-of-�uid method, giving better

results than level-set or VOF alone. Advances with VOF are the following:

(a) Our implementation of the FCT-VOF method shows dependence on the continuous surface force

model chosen (staggered, p-centered, cell averaged, density based, volume fraction based) and

the method used to compute the curvature (height functions, interface normal divergence). A

staggered-surface tension force without weighting (i.e. by density) produces a sharp interface,

compared to other methods, even for high density ratios. The curvature computed from the

divergence of the interface normal using a smoothed color function is the best method to compute

transient phenomena.

(b) The implementation of the PLIC algorithm using two levels of complexity for the calculation of

the donating zone. First, a simple and fast method denoted as BDR is shown to converge with

zero-to-�rst order in time and space. By changing the �uxing from area based to volume based and
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incorporating a volume redistribution algorithm, the BDR method shows a minimal apparition of

wisps and voids, but is not necessarily volume conserving. The second level of complexity is the

DDR scheme, which was implemented in 3D from the description of a 2D algorithm found in the

literature. This method solved the voids and is one of the most accurate methods that conserves

mass exactly, and converges with at least �rst order.

(c) Validation of the VOF code:

i. Static drop problem: we obtained the right pressure jump across the interface and an approx-

imate curvature. Section 6.4.1.

ii. Oscillation of a viscous drop: frequency and amplitude of the oscillation was reproduced.

Section 6.4.2.

iii. Drop deformation in a tube.

iv. Simple shear �ow problem.

(d) Using the height method allows for an accurate prediction of the curvature. We found that such

method is not accurate for advected-type VOF methods (no clear or sharp interface), but it

is su�ciently accurate for methods that resolves the interface with high accuracy (PLIC). Our

implementation of the HF method to compute curvatures is almost second order.

3. Drops deforming in simple shear �ows showed Taylor deformation parameters, angles of orientation

and drop half-lengths in good agreement with other studies. This study considered subcritical and

supercritical �ows for weak wall e�ects and strong wall e�ects. We found that bringing the walls closer

to the drops increase their stability slightly. We also found that for drops with close walls, the critical

capillary number increases for viscosity ratio 1.9, contrary to the results in the literature for weak

walls.

4. The phenomena of drop deformation in the presence of two particles in a simple shear �ow was studied

under moderate Reynolds number, Re, and Capillary number, Ca. For a su�ciently large Ca, the

drop shows large deformation and even hollowing, that is, the creation of a hole in the drop when two

particles approach each other in collision trajectory. We have introduced the particle Weber number

which indicates the degree of acceleration in the vertical direction of the particles, but such number

does not correlate with the deformations of drops. Instead, better correlation is found with the Laplace

parameter La = Re/Ca. A phenomoenological model is obtained for uniform properties and a �xed

initial condition. More work is required to obtain a general phenomenological model that includes

density ratio, viscosity ratio, particle-to-drop radius ratio and initial position. Larger particles are
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required to produce puncturing at low Ca and the density ratio has a minimal but positive e�ect on

the deformation.

5. Breakup of a viscoelastic membrane by two shearing particles is a problem that has not been addressed,

even though the shearing of a membrane has been studied extensively in the literature. We implemented

a model to characterize the deformation of elastic solids and used it in the �uid solver as an immerse

boundary. We found a relationship between drop deformation and the deformation of a solid. However,

the main di�erence is the oscillatory behavior of the elastic solid. More work is required on the �uid-

solid coupling and in the hyperelastic/viscoelastic models.

6. Particle Chaining: we have conducted many simulations to validate the viscoelastic model in order to

characterize the motion of interacting particles. Two particular problems we addressed are the sedi-

mentation and shearing of particles in viscoelastic �uids. Our main limitation is the radical di�erence

between viscous time and relaxation time, that set up an upper bound on the maximum resolution we

can a�ord, where accuracy is the trade-o�. The problem is fairly well understood for simple shear �ows

(recently), but there are multiple opinions about the conditions that produce attraction in side-by-side

sedimentation, since the e�ect of elasticity and shear-thinning is not known clearly. The problem of

the sedimentation of a sphere is selected in order to decide the required minimal resolution for future

simulations (i.e. R/∆r > 10). We had good agreement in former simulations with Oldroyd-B �uid,

but present simulations with Oldroyd-B, Giesekus and the extension to FENE-type �uids are required.

A simulation with a Giesekus �uid shows drafting of two particles settling side by side when De < 1.

This project was dropped because we found that models in the literature are in general incapable of

describing the experimental results with su�cient accuracy, only qualitatively at most.
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1.4 Present and Future Work

We have developed several models to address the transport of interfaces using VOF. We started with the

FCT model and SLIC, advanced to PLIC with a primitive form of BDR and then resolved the undesired

problems of mass conservation and wisps with the DDR-PLIC method. This �nal method coupled with

the height function model to compute curvatures and the �uid �ow solver allow us to analyze the process

of drop disruption, fragmentation and breakup in an accurate manner. Our understanding is that these

methods are already available in the literature. Even though the DDR method is presented theoretically to

describe more complex schemes, or to solve 2D problems, it is not commonly used in literature. We found

that such method complies with accuracy (up to second order), robustness (no wisps), consistency and is not

as computationally expensive as more advanced models. This code allowed for the study of sheared drops

under high con�nement, which gave us a better understanding of the mechanisms related to drop breakup.

To the best of our understanding, this problem has not been addressed numerically for very small Ca and

large Re, mainly due to numerical reasons: accuracy degrades with Re which enhances spurious currents.

To study the breakup of drops under the presence of rigid particles, we tested a wide range of capillary

number: Ca = 0.1− 30. Our results indicate that rigid particles do not produce drop breakup, but they can

create other phenomena: drop puncturing and large deformations. For large capillary numbers, Ca > 1, drop

puncturing can be achieved with uniform properties, however it is a challenge for small capillary numbers.

In order to observe large deformations under low capillary numbers, the rigid particles were required to

be considerably more dense and larger than the drop. We then introduced the particle weber number to

determine if such parameter correlated with the observations. It was found that considerably large values of

Wep were required to induce drop puncturing. By performing several simulations, we could generate a map

of Re against Ca that consider the limiting regions of di�erent regimes.

We wanted to study the e�ect of the �ow on membrane disruption of deformable particles as a closer

model to biological cells. The di�erence between the models when puncturing takes place is that a drop

recovers its shape and the elastic membrane may fracture. An actual cell may present a di�erent rupture than

the simplistic models. However, it allows us to understand the phenomena of simpler problems. The model

for the solid was observed to be unstable under rotations. A viscoelastic model for the stress tensor was not

fully included. A biological membrane can be modeled mathematically as a 2D thin membrane. Our model

is 3D and the required transformations were not performed. In order to characterize large deformations, the

nonlinear term of the strain must be computed following a gauss quadrature as done with the linear terms.

The actual coupling between the solid and the �uid is still unstable. One possible solution is the use of

adaptive multilevel methods, but due the complexity of such method, the code could not be completed on

7



time. To model the membrane, a mapping of a capsule and the particle-membrane collisional model are also

required. Preliminary simulations with the coupled model showed how solids deform in a damped-oscillatory

manner. More studies in this �eld will let understand the requirements on Re and particle size and location

to produce mechanic failure. The parameters for this study are the membrane elasticity, relaxation time and

ultimate strength. The extension of the work in simple shear �ow is the incorporation of particles, as it is

done with the drop.

The interaction of particles in viscoelastic �uids was studied. The DLM method requires several iterations

in order to converge. Our e�ort to reduce the amount of iterations and prescription of the boundary condition

was not successful. In order to obtain the right Lagrange multipliers, the rigidization force must be cleared

every iteration. This method imposes a relevant constraint on the computational time. One of the possible

solutions is the immerse boundary method, but the surface-force/stress model is not su�ciently accurate.

Literature shows that such method may have problems under supergrid and subgrid resolutions between the

interface and the medium mesh. This could be a relevant future work.

Viscoelastic �uids have a known numerical limitation when the Deborah number exceeds the unity, which

limits the amount of cases that can be studied. By increasing De, the mesh size is required to be decreased

exponentially to remain within a given accuracy. Two problems were studied, side-by-side sedimentation,

using Oldroyd-B and Giesekus �uids and end-to-end sedimentation. Because it is not possible to prescribe

the particles boundary conditions using DLM, the stress tensor around a cylinder or sphere shows large

�uctuations, fact that a�ects the results if the mesh is too coarse. This imposed another limiting problem,

the amount of cells required to achieve a given accuracy were excessively high. We also worked with the

FENE-P viscoelastic model, but the literature review indicated that in order to be able to predict natural

phenomena, even more advanced models were required. For these reasons, the study of these problems were

abandoned. What could be done in these type of problems is to compare di�erent cases for several Re and

De, and study shear-thinning e�ects in order to produce a criteria for attracting and repelling spheres.
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Chapter 2

Literature Survey

2.1 Interface dynamics

The dynamics of drops and bubbles in di�erent �ows has been subject to extensive research. Analytical

solutions have been obtained, from potential �ows and Stokesian �ows, to small deformation-perturbation

approximations, in order to establish the fundamentals that govern di�erent phenomena, where interface

breakup and instabilities are among them. Studying these problems may require balancing forces at the

interface, which are typically the following: surface tension, dependent on the surface-tension coe�cient and

local curvature; pressure gradients and viscous stresses in the neighborhood of the interface (hydrodynamic

forces acting); jump in pressure and viscous stresses across the interface; and inertia.

The simplest case is a droplet in a quiescent �uid for which the pressure jump across the interface can

be found with the Young-Laplace equation. A bubble can be studied with the Rayleigh-Plesset equation

where the pressure is obtained as a function of time. The settling velocity of a viscous drop in an in�nite

domain can be computed from the drag force developed by Hadamard and Rybczynski. The problem of the

rising bubble has been shown to be dependent on the Reynolds number, Re, and Eotvos number, Eo, which

categorizes the shapes as follows: spherical, spherical cap, skirted, dimpled ellipsoidal cap, wobbling; the

extension of this studies include non-Newtonian �uids and the phenomena has been reproduced numerically.

A very common problem is the Raleigh-Taylor instability and the shear layer instability. The oscillating

viscous drop due to an initial deformation is another example; the oscillation can be oscillatory-linear for

large Re and nonlinear oscillatory or dampened for low Re. Droplet dynamics in a simple shear �ow is

governed by Re, Ca, viscosity ratio λ and con�nement R/H; the deformation, orientation and possibility of

breakup into smaller drops is very well documented in the literature.
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2.1.1 Drop Oscillation

The interface of a drop is initially deformed and placed in a quiescent �ow evolves as a nonlinear oscillator

with a position proportional to e−βnt. A dimensional analysis performed on the region inside the drop shows

a dimensionless length and time of r∗ = r/a and t∗ = t/
√
ρda3/σ, respectively, and a dimensionless velocity

of u∗ = u/
√
σ/ (ρda), where a is the radius of equilibrium of the drop. Thereby, this �ow is governed by

Reynolds number Reosc =
√
ρdσa/ηd and Weber number We = 1 or capillary number Ca = ηd/

√
σρda. A

point of the interface could manifest an oscillatory, damped oscillatory, or aperiodic motion depending on the

real and imaginary values of βn, given by βn = b±
√
b2 − ω2, where ω is the frequency of the oscillation of an

inviscid liquid drop, ω = [n (n− 1) (n+ 2)]
1/2 (Rayleigh, 1879), and b is the damping constant for relatively

small viscosity (Re� 1), that in terms of the mode of the oscillation, n, is b = (n− 1) (2n+ 1) /Reosc (Lamb,

1932, Prosperetti 1980). Viscous e�ects dampen the oscillation at low Re, while under moderate-high Re

and small deformations, the motion is described by linear oscillations. For a damped oscillatory motion, the

position of the interface as a function of time can be predicted as x = a + δx0e
−bt cos

(√
ω2 − b2t

)
, where

δx0 is the initial deformation.

2.1.2 A Drop in Shearing and General Flows

The deformation of an isolated drop in simple shear �ow has been subject of numerous research in multiphase

�ow. One important phenomena is the deformation and breakup of an initially spherical drop. Depending

on the �ow conditions and the location of the boundaries, a drop can deform to a steady-state shape or

deform until it undergoes a pinching process. The �ow conditions are dependent on the Reynolds number

Re = ρmγ̇a
2

ηm
, the capillary number Ca = We

Re = ηmγ̇a
σ or the Weber number We = ργ̇2a3/σ, and the ratio

of the drop-medium properties, λ = ηd
ηm

, for a drop with undeformed radius a, viscosity ηd, density ρd,

within a liquid matrix or medium of viscosity ηm and density ρm. The end pinching process takes place

as an �elongative end pinching� or �retractive end pinching�; another terminology for both mechanisms are

fracture and tipstreaming, respectively. For low Re, when λ is less than four, there is a �critical capillary

number�, Cac, above which the drop continues to deform without reaching a steady shape. When λ = 1

and Re = 0, breakup is observed after Cac ≈ 0.41 Li et al. (2000). In the other hand, when surface

tension is relatively important, a drop could evolve into a steady shape and it can be analyzed using the

angle of orientation, θ, measured with respect to the horizontal, or using the Taylor deformation parameter,

D = (l − b) / (l + b), where l and b are the half-length and half-breadth of the drop, respectively. A small

perturbation deformation procedure to second order in Ca, gives the following equation for the orientation

angle (Barthès-Biesel and Acrivos, 1973),

10



θ =
π

4
− Ca (16 + 19λ) (3 + 2λ)

80 (1 + λ)

While the Taylor deformation parameter for a con�ned droplet has been found to be Shapira and Haber

(1990),

D =
19λ+ 16

8 (λ+ 1)
Ca

[
1 + Cs

2.5λ+ 1

λ+ 1

(
R

H

)3
]

sin θ cos θ

where Cs is a numerical factor that depends on the relative distance between the particle and the wall

(Cs = 5.6996 when the particle is halfway), and H is the separation of the plates.

Numerous research has been done numerically and experimentally for di�erent types of �ow (α) and

blockage ratios, as summarized in �gure 2.1. The parameter α is α = 0 in simple shear �ows and α = 1 in

plane hyperbolic �ows (irrotational and elongational). More information can be found in Stone (1994). A

conclusion from Clift et al. (1978) is that for equal shear rates, irrotational shear appears to produce more

e�ective breakup and dispersion than rotational shear, even at low viscosity ratios. Blockage ratio, R/h,

a�ects the critical capillary number and is dependent on the viscosity ratio, as shown.
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Figure 2.1: Breakup of a droplet and critical capillary number: (a) Stability regions as a function of viscosity
ratio, λ, and �ow parameter α (b) E�ect of con�nement for several λ, where the critical capillary number
is normalized with the critical value estimated by de Bruijn (1993). Reproduced from Almeida-Rivera and
Bongers (2012) and Minale (2008).
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2.1.3 Numerical Methods in Interface Dynamics

Challenges in the tracking moving interfaces brought the development several numerical approaches: bound-

ary integral method (BIM), level set (LS) (Sussman et al., 1994), volume of �uid (VOF), front tracking

(FT) (Unverdi and Tryggvason, 1992), smoothed particle hydrodynamics (SPH), lattice Boltzmann (LB)

and hybrid methods like the coupled level-set and VOF (CLSVOF) (Sussman, 2003), and the particle-level-

set (P-LS) (Enright et al., 2002), among others. Each method has its own limitations and improvements,

normally related to implementation time, accuracy of the solution, mass conservation capabilities and min-

imal resolution of subgrid structures. Rider et al. (1995) concluded that a level-set methodology does not

guarantee volume conservation in highly distorted �ows, giving rise to unacceptable errors. Front-tracking

methods are very accurate, but they exhibit loss of mass due to non-solenoidal velocity projections; ac-

curate advection of the front points tends to minimize the error produced by changes in the total mass.

Furthermore, changes in mass were found to be unacceptably high for long-term simulations involving many

bubbles or drops where the resolution of each particle is relatively low (Tryggvason et al., 2001). Additional

techniques aimed at improving computational performance have been successfully applied to compute the

surface-tension force and other properties across the interface, like the multi-level methods, formulations

based on adapted grids, and the use of unstructured meshes. This work is limited to VOF.

Despite all the advances in volume-tracking methods (VOF), there are several disadvantages. For exam-

ple, traditional and high-order/high-resolution techniques used to solve the advection equation have been

shown to degrade the interface thickness and shape, regardless of the order of the scheme (Rider et al.,

1995; Kothe et al., 1996; Kothe, 1998), unless special downwinding schemes or interface reconstructions are

employed, like in the �ux-corrected transport algorithm (FCT-VOF) of Rudman (1997) or the piecewise

parabolic method (PPM) of Miller and Colella (2002). First-order VOF methods su�er from the so-called

��otsams� or �wisps�, which are lumps of dispersed or matrix �uid not �uxed properly. This problem has

been mitigated by using redistribution algorithms (Harvie and Fletcher, 2000).

The surface-tension force acting on an interface has been successfully implemented with the continuum

surface force model (CSF) of Brackbill et al. (1992), where the interfacial force is expressed as a force per

unit volume. The extent of this force is determined by a discrete delta function which smooths the jump

conditions ideally present across an interface. An alternative technique based on the ghost �uid method

(GFM) and LS imposes a sharp boundary condition where surface-tension forces are present, but it was

shown to develop serious spurious currents and lack of mass conservation (Liu et al., 2000). A sharp surface-

tension force (SSF) was also implemented on a VOF method by using the reconstructed distance function

(Francois et al., 2006). Within a volume-tracking framework, the CSF method yields a continuous pressure
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distribution across the interface characterized by a �rst-order convergence in space, meanwhile the SSF

method yields a sharp jump which shows second-order convergence in space. However, both methods show

the same error of the spurious currents, which are arti�cial vortex-like structures created by a large body

force that leads to an increase in �ow acceleration, especially critical on the region with lower density, that

may disrupt the interface and conduce to a failure of convergence, even on grid re�nement. Additionally, for

the static-drop problem, it was shown how the magnitude of the spurious currents at the interface depends

on �uid properties, according to u ' Cσ/η, and the curvature model, but not on the surface-tension model

(CSF or SSF), meanwhile the error in pressure depends primarily on the surface-tension model. In the static

drop problem, the constant of proportionality C adopts values of 0.01 in the VOF method of Lafaurie et al.

(1994), 10−4 in the parabolic reconstruction method of Renardy and Renardy (2002) (both with uniform

properties), and 10−5 in the the connected marker method of Tryggvason and coworkers (Scardovelli and

Zaleski, 1999). The spurious currents also depend on other parameters, as it was shown to be slightly

smaller when the time step ∆t was reduced; they tended to increase slightly when the density ratio ρout/ρin

was increased (the converse test was not performed); and they were reduced considerably by increasing the

internal �uid density, following u ∼ σ∆tE (κ)
2
/ρin, where E is the error in curvature (Francois et al., 2006).

A simple analysis can show that the numerical imbalance between the surface-tension force and the pressure

gradients is the cause of the spurious currents. It was argued that these parasitic currents appear due to the

existence of nonparallel terms between the gradient of the curvature and the gradient of the volume fraction,

as shown from the nonzero curl components of the surface tension force, Fs, given by ∇×Fs = σ∇κ×∇F

(Kothe, 1998). If further reduction is desired, the gradient of the curvature must be parallel to the gradient

of volume fraction.

The e�ect of a surface-tension force dominating over inertial or viscous forces was discussed by Tong and

Wang (2007) for the relaxation dynamics of an elongated ligament and the droplet pinch-o� mechanism.

For a CSF approach, the spurious currents grew initially and then disappeared after inertia took place as a

dominant force. However, for the pressure boundary method (PBM), no spurious currents were observed at

any stage. Based on a di�erent approach, energy conservation, a method capable of eliminating the spurious

currents completely was developed by Jamet et al. (2002).

A comparison between several advection/transport techniques using VOF was performed by Rudman

(1997): the simpli�ed line interface calculation (SLIC, piecewise constant) method of Noh and Woodward

(1976), the VOF method of Hirt and Nichols (1981) (piecewise constant), the piecewise linear interface

construction method (PLIC) of Youngs (1982) and the �ux-corrected transport algorithm (FCT). The FCT-

VOF does not require approximate interface reconstructions and maintains sharp interfaces. Di�erent test

problems, like the linear advections, rigid-body rotations and shear �ows, show how the method originally
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proposed by Youngs was superior, while the FCT-VOF performed slightly better than SLIC and the method

of Hirt and Nichols.

Several multi-dimensional �uxing schemes have been proposed. The �rst-order de�ned donating region

(DDR) method of Harvie and Fletcher (2001) is a piecewise linear scheme that integrates cell boundary �uxes

geometrically and provides exact mass conservation. The second-order methods of Puckett et al. (1997) and

Rider and Kothe (1998) increases the complexity by extending the donating region to adjacent cells. Another

�uxing strategy is the Stream scheme of Harvie and Fletcher (2000), which is a fully multidimensional

boundary �ux integration technique based on the calculation of the volume of several streamtubes at a

control surface. The Stream scheme shows �rst to second-order convergence on mesh re�nement in the

single-vortex test, depending on the reconstruction method used. Several multidimensional schemes require

volume redistribution to conserve mass. High-order multidimensional �uxing schemes have been achieved,

like the fourth-order DRACS (donating region approximation by cubic splines) method of Zhang (2013).

Among various methods that reconstruct an interface following a case-by-case procedure in 2D are the

linear method of FLAIR Ashgriz and Poo (1991) and the second-order method of Kim and No (1998). Second-

order case-by-case reconstructions are in general avoided because of the excessive amount of cases. In 3D and

considering second-order reconstructions, the parabolic reconstruction of surface tension (PROST) method

of Renardy and Renardy (2002) was capable of predicting deformation and breakup of drops accurately.

When comparing PLIC-based methods, the accuracy is determined by the error incurred in the recon-

struction (calculation of the interface normal vector) and the �uxing. A su�cient condition to reconstruct

smooth interfaces with second-order accuracy is for the algorithm to reproduce linear/planar interfaces ex-

actly (Pilliod and Puckett, 2004). The method of Youngs computes the normal vector explicitly from the

volume fractions and is �rst-order accurate, while the full least-squares minimization or Swartz's method

is second-order (Rider and Kothe, 1998). Other methods that achieve second-order accuracy on smooth

interfaces are the minimization methods of LVIRA (Puckett, 1991) and ELVIRA (Pilliod, 1992). When the

interface presents sharp corners, second-order methods like ELVIRA reduce their accuracy to �rst order

(Zhang, 2013).

An important quantity that determines the accuracy of the solutions in multiphase �ows involving surface-

tension forces is the the curvature. Among di�erent techniques used to compute the curvature, the height

function (HF) method o�ers second-order convergence on mesh re�nement (Sussman, 2003; Francois et al.,

2006; Ferdowsi and Bussmann, 2008; Liovic et al., 2010). Despite the advances in the �eld with the HF

method since the work of Helmsen et al. (1997), hybrid methods, like the �best candidate� method of Liovic

et al. (2010) that selects the curvature from di�erent stencils/methods, seem to be the solution to overcome

the errors incurred when using the traditional HF methods. The largest error in curvature using the HF
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method was reported to occur in regions where the components of the normal vector at the interface are of

similar magnitude and when the radius of curvature is comparable or smaller than the grid size Cummins

et al. (2005). By advecting the normal vector, Raessi et al. (2007) introduces another approach that produces

curvatures with second-order convergence. In comparison, traditional level-set methods show no convergence.

Here, VOF methods are compared using classical problems involving viscous �ows. A simpli�ed method

to transport the volume fraction, denoted as BDR, is compared with the DDR method. The semi-analytical

DDR method here developed was tested for di�erent problems in 3D. The use of multi-step methods is

discussed. The static-drop problem is included to conclude on the accuracy of the pressure jump and the

curvature. The nonlinear oscillation of an initially-deformed drop is studied to determine the accuracy,

robustness and long-term stability when di�erent transport models are employed. Finally, the deformation

and breakup of a drop in a simple shear �ow is considered, for strong-wall e�ects.

2.1.4 Typical di�culties in VOF simulations

The principal concern in VOF is the methodology or set of models needed to transport di�erent phases in

a given �ow. Starting with the number of phases, the mixture model or the n-�uid model can be adopted.

For more than two phases, the complexity of the problem increases and certain simpli�cations must be made

in the submodels, which are expected to increase the numerical error. For instance, if advective-di�usive

schemes are employed, the subgrid location of each interface is not know, or if sharp schemes are used (i.e.

SLIC, PLIC, PROST), only an approximation of the interface is known. In the case of PLIC-like schemes,

the method used for the interface reconstruction plays a relevant role in the �nal error.

One typical problem in VOF is the wisp generation. Several techniques have been made to mitigate

the wisp generation, like volume redistributions, volume limiters, among others, but they could introduce

other problems, for instance, more computational e�ort and issues with mass conservation. Some of these

techniques are described in this work.

When surface-tension forces are considered, there are four main concerns: the undesired e�ects of the

parasitic currents which are velocities that appear due to numerical imbalances (not fully resolved, but can

be mitigated), the sharpness of the interface, that is, the number of cells associated with the jump in pressure

or volume fraction, the numerical di�usion or smearing of the volume fraction F , and the accuracy of the

force or the interface curvature. Another problem associated with the interface sharpness and accuracy is

the creation of stairs, which is common in low-order methods when the interfaces are inclined with respect

to the grid.

Spurious Currents are small as long as the Ohnesorge number is su�ciently large,
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Oh =
√
Ca/Re

where Ca is the capillary number, typically written as Ca = µU/σ, and Re is the Reynolds number,

de�ned as Re = ρUR/µ. The spurious currents do not disappear with mesh re�nement, leading to non

convergence of the method (Renardy, 2002). For low Re and moderate to large Ca, the spurious currents

are small, but they become a problem when Ca is small and large Re. Their growth is explained in section

2.1.3.

2.2 Particle Interaction and Viscoelastic Fluids

2.2.1 Viscoelastic �uids and Dimensionless Numbers

A viscoelastic �uid exhibits a combination of both elastic and di�usive properties which are time dependent.

Several models have been proposed to characterize this type of �uids, where their success is limited to the

complexity of the molecules in question. Because the elastic component is always present, it serves as a

reference among several models. The dimensionless numbers that scales with Maxwellian models are the

Deborah number De, Weissemberg number Wi, particle Reynolds number Rep, elasticity number E, and

viscoelastic Mach number M (Huang and Joseph, 2000), commonly de�ned as,

Dep = λ1Uo

a Dew = 2λ1Uo

W Wi = λ1γ̇

Rep =
2ρfUoa
ηo

E = Elastic Stress
Inertial Stresses = Wi

Re = λ1η0

2a2ρf

M = U
c

where λ1 is the relaxation time, a is the radius of a sphere, Uo is the characteristic velocity, c is the

viscoelastic wave speed, ηo is the zero shear viscosity and ρ is the density.

ForM � 1 the dynamics of linearized Maxwell models is determined by Re and De, and for supercritical

conditionsM � 1 it is useful to useM and E. For transcritical �ow the important dimensionless parameters

are Mach numberM and elasticity E (Joseph, 1990). For the Je�reys-like models, another set of parameters

should be added based on retardation to relaxation time ratio (λ2/λ1) and mobility factor (α).

2.2.2 Particle Migration

When a particle is let free in a viscoelastic �uid �ow the inertia of the particle during the start-up process has

the strong e�ect of changing normal stresses with respect to Newtonian case, producing particle migration

and agglomeration. In previous years, understanding the e�ect of the polymer stress was carried out with

the analysis of �ows around bodies in second order �uids(Joseph et al., 2007), using asymptotic analysis and
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constitutive equations, local similarity solution (Zheng et al., 1990), and numerical simulations in 2D (planar

and axisymmetric).

Numerical simulations of cylinders in viscoelastic shear �ow (D'Avino et al., 2010a) show how the mi-

gration of a particle always tend towards the closest wall; with a linear Maxwellian liquid the conclusion

is that normal stresses are the only responsible that causes the migration, irrespectively of any thinning of

the rheological properties. It was compared with a Newtonian case, where the absence of inertia produce no

migration while its presence could generate migration towards the channel center plane (Halow and Wills,

1970; Ho and Leal, 1974). The angular velocity of the particle decreases as the particle approaches the wall

and as the Deborah number increases (D'Avino et al., 2010b).

The same research group use numerical simulations of cylinders in Poiseuille �ow (Villone et al., 2011)

of viscoelastic �uid (Giesekus Model), showing a cross-streamline particle migration, where large Deborah

number and shear thinning speed up the migration velocity. If the particle is small compared to the gap

(small con�nement), then the particle migrates towards the channel centerline or the wall, depending on its

initial position. A critical value of con�nement for larger particles is reported (in agreement with (Huang

et al., 1997)), above which the channel centerline is no longer attracting and the particle is predicted to

migrate towards the closest wall when its initial position is not on the channel centerline. As the particle

approaches the wall, the translational velocity in the �ow direction is found to become equal to the linear

velocity corresponding to the rolling motion over the wall without slip.

Numerical simulations of particle migration in Couette, Poiseuille and settling �ows (2D) was performed

(Huang et al., 1997) and are in agreement with recent research. For a shear �ow it is shown that below

certain critical conditions given by a relationship between DeborahDe and Reynolds Re numbers, the particle

reaches an equilibrium position at the centerline of the channel, regardless of its initial position and velocity.

If the Reynolds number is increased, the particle is pushed away from the sidewall and moves toward the

centerline, very fast when inertia is strong. If the convective term is neglected (Stokes �ow) then the particle

stays very close to the wall. When De is increased, the particle tendency is to migrate towards the wall

and the motion is enhanced with shear thinning. This behavior is explained as a balance of lubrication

forces at the side near the wall and normal compressive stresses generated on the other side. This e�ect is

strengthened when the blockage is increased, while for small blockage, the wall attraction becomes minimal

and the normal stress generates a lift force that equilibrates at the centerline where the shear rate is zero.

More on the particle equilibrium can be found (Ko et al., 2006), where diagrams for unstable and stable

positions are show.
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2.2.3 Particle Chaining

Another branch of investigations are focused on demonstrating the chaining behavior of multi-particle-shape

systems. Experimental (Wang et al., 2004) and numerical results (Hao et al., 2009) show a particular

behavior of solid bodies within a non-Newtonian �uid when compared with a Newtonian one. For example,

long bodies settling in a viscoelastic �uid align the long side parallel to the stream, contrary to a Newtonian

�uid where they put their broadside perpendicular to the stream. A system of particles in a Newtonian �uid

exhibit the principal iterations described by the process of drafting, touching, tumbling and separation, and

in a viscoelastic �uids it is possible to have reorientation followed by particle chaining instead of separation,

since tensile forces keep the particles in contact (Joseph et al., 2007).

This behavior of a progressive draft combined with rotation that leads to the �nal end-to-end sedimen-

tation of two particles has been reproduced numerically using an Oldroyd-B �uid (Boger �uid) Hao et al.

(2009). When two spheres are released from rest in a Boger �uid, the spheres achieve a unique stable �nal

distance, independent of the initial separation distance, but determined by the point where the velocities

of the two sphere become the same. This stable arrangement is a result of the e�ect of an upper sphere

with an increased velocity, compared to a single sphere, which is more or less independent of the position of

the lower sphere, and the velocity of a lower sphere which is dependent on the actual separation distance,

i.e. the velocity is similar to that of a single sphere for large distances and it increases for small distances,

where the development of a wake is inhibited (tension is reduced on the backside region of the particle). The

stable separation distance increases with the Deborah number, De, and decreases with a/R Bot et al. (1998).

When the �uid is shear-thinning instead of Boger, spheres attract each other within a critical distance.

When a system of particles initially dispersed are subject to a shear �ow in a Boger �uid they keep

dispersed, but when shear thinning is considered, they form chains, showing how shear thinning should play

a key role in chaining even though the �rst normal stress di�erence may be responsible for the movement

across the main �ow direction Won and Kim (2004).

Numerical simulations were performed to analyze the interaction of particles in a viscoelastic Oldroyd-B

�uid (Boger �uid) subject to shear �ow, and it was found how two particles close enough shows a behavior

that can be described as a kissing-tumbling-tumbling phenomena: a continuous rotation around each other

(con�rmed in 2D and 3D) (Hwang et al. (2004), Yoon et al. (2012)). There are three mechanism found

depending on the initial separation and We: pass, tumbling and return, being tumbling in between a pass

and a return. The same group studied the alignment of particles in a con�ned shear �ow using a Giesekus �uid

(shear-thinning �uid) Choi and Hulsen (2012), and it was shown how particles form a string-like structure,

where the �nal state is independent of the initial particle distribution or the histories to reach the steady-state.
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As the Weissenberg number increases, particles can form longer strings, but the maximum obtainable length

of a string of particles is limited by the �uid rheology. Moderate wall con�nement promotes the alignment of

particles, however, too strong con�nement hinders the alignment by enhancing repulsive interaction between

particles (wall migration). The steady-state angular velocities of particles were compared with respect to the

length of strings. The the two end-particles shows larger angular velocity than those in between, and the non

end-particles share the same angular velocity. If the string length increases, for a string with more than 3

particles, the steady-state angular velocities of the two end-particles do not change signi�cantly, while those

of the non end-particles increase. Also, as the string length increases, the inter-particle distance increases.

The trajectory of particles in shear �ow could create close orbits, if the initial separation is not large,

for given Wi number. This might suggest that in a system of many particles, concentration of particles will

determine the level of chaining.

In the work of Yoon et al. (2012) two particles in a simple shear �ow have three mechanism of interaction

depending on the initial location of the particles: passing, tumbling and returning. The particles return

when they are relatively close to the centerline. As the vertical distance is increased, for a given horizontal

separation, there is a critical value for which the particles do no longer return. For Newtonian �uids,

the particles pass over each other after this critical point. For viscoelastic �uids, there is a range where

the particles exhibit tumbling. Increasing the vertical separation in viscoelastic �uids creates a second

critical point where tumbling changes to passing. The range between the initiation and ending of tumbling

for increasing initial separations is proportional to Weissenber number. These mechanisms can be the

explanation for the statistical creation of doublet, triplets and larger conglomeration of particles in shearing

�ows. The initial concentration will then determine the possibilities for any two particles to enter in tumbling

trajectories based on current trajectories and similarly for larger systems of particles.

The mechanisms described for two particles interacting in simple shear �ows of Newtonian �uids play an

essential role in describing their behavior when a drop is included.

2.2.4 Particulate Flows

In the case of numerical simulation of planar �ows and many particles under pressure driven planar �ows

(Huang and Joseph, 2000), it was observed that shear thinning has a large e�ect when the inertia or elasticity

is large, but only a small e�ect when they are small. At moderate Reynolds numbers, shear thinning causes

particles to migrate away from the centerline, creating a disk particle-free zone in the core of the channel.

In a viscoelastic �uid with shear thinning, particles migrate either toward the centerline or toward the walls,

creating an annular particle-free zone. With Re = 0.156, De = 2.5 and M = 0.625 and without shear

thinning it was shown that the particles move toward the centerline of the channel by the e�ect of forces
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arising from viscoelastic normal stresses. Since the particles are small, that is in agreement with the results

for one particle, where it should migrate toward the centerline.

2.2.5 Numerical Methods and Benchmarks

For an area of study with only a few numerical works in certain �ows it is important to rely on accurate

benchmarks and analytical solutions. For a Je�reys' like constitutive model, the proper set up of the boundary

conditions is an issue, commonly resolved with periodic boundaries, or by placing boundaries (inconsistent

with the viscoelastic model) away of the area if interest.

Available numerical solutions are the �ow past a cylinder, �ow past a sphere in a pipe with obstruction

β = 0.5, a �ow in a channel with a sudden contraction 4 : 1, the unbounded rotation of a sphere, settling

of a particle. The �ow over a sudden contraction is commonly the selected benchmark to study spatial

accuracy. It also possible to use the analytical solution of the starting �ow in a channel or a cylinder, where

the transient and spatial scheme can be compared. When studying particles, the common benchmarks are

�ow past a sphere (Lunsmann et al., 1993) and sedimentation of a sphere in a cylinder (Becker et al., 1994).

The breakdown of the numerical methods after a certain De has been related to the lack of positive

de�niteness preserving property of the conformation tensor at the discrete level during the entire time

integration (Hao et al., 2009). There are many techniques used to increase the breakdown Deborah number

Deb: the streamwise upwinding scheme (Crochet et al., 1984); streamline upwind Petrov-Galerkin (SUPG)

method; the Explicitly Elliptic Momentum Equation (EEME) method for Upper Convected Maxwell models

(UCM) with no solvent viscosity; the Elastic Viscous Split Stress formulation (EVSS) using di�erential

models or using integral methods (INT) (Rajagopalan et al., 1993, 1996) for �uids with Newtonian solvent,

like Oldroyd-B, Giesekus and Phan-Thien models.

2.2.6 Drop puncturing in shearing �ows

A numerical simulation using a �nite-volume algorithm simulated the deformation and breakup of a drops in

particulate shear �ows (Ardekani et al., 2008). The results show that the presence of particles leads to larger

droplet deformation. In some cases a perforation occurs in the center of the droplet as particles approach

toward each other. The perforation is shown to depend on the Stokes number. The critical value of the

Stokes number correlates linearly with with the inverse of the capillary number and viscosity ratio. Large

values of the capillary number are needed to have puncturing.
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Chapter 3

Objectives

General Objective:

Study the breakup and interaction of rigid and deformable particles in shearing �ows for Newtonian and

viscoelastic �uids using numerical simulations.

Speci�c objectives:

� Development of a numerical code to simulate transient multiphase and multi-physic phenomena of

non-Newtonian �uids and rigid/elastic/viscoelastic solids.

� Analyze the accuracy of the sub-models employed.

� Study the e�ects of Reynolds number, Capillary number, viscosity ratio, elasticity, viscoelasticity and

blockage ratio on the breakup of deformable particles surrounded by rigid particles after applying a

simple shear �ow (cell lysis).

� Study the viability of breaking up drops in abrupt expansions and gravity driven �ows.

� Study the e�ect of membrane elasticity and fracture strength on the deformation and breakup of a

punctured deformable particle due to a rigid particle (not completed).

� Study the e�ect of shear thinning and viscoelasticity on the motion of two particles settling side-by-side

in a viscoelastic Oldroyd-B or FENE-type �uids: drafting or separation (dropped objective).
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Hypothesis

� Rigid particles that are large enough and critically localized can deform and break drops under low

Reynolds number, Re, and low Capillary number, Ca, for a simple shear �ow (Solved). Also, viscoelas-

tic membranes can deform and break up for low dimensionless shear rate number, G, when relatively

large particles are included (Partially solved).

� Two particles sedimenting side by side can experience attraction only for a range of Re and De, or E

and M (Not solved).

� Shear-thinning e�ects speed up the drafting process between two particles settling side-by-side (Not

solved).
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Chapter 4

Problem formulation

The problem of an isothermal incompressible, immiscible and viscous drop and rigid particles is modeled

with a classical two-�uid mixture model, where an interface divides the dispersed phase, denoted by �d�, from

the medium �m�. In this model, the velocity �eld is a mixture-averaged velocity, instead of the velocity for

each phase. Fluid properties are functions of the volume fraction, F , de�ned as F = Vd/Vcv, where V is the

volume of the dispersed phase or the control volume. The domain Ω is union of the domain of the medium,

Ωm, with the domain of the drop, Ωd, the rigid particles, Ωp, and/or the membrane, ΩM , depending on

the case. The motion of the drop interface is obtained by solving the conservation laws, together with the

advection equation of the volume fraction. The motion of the rigid particles is determined after balancing

the rigidifying forces that complies with the rigid body motion constrain and the hydrodynamic forces. In

the case of the membrane, the dynamics of an elastic solid is coupled with the �uid motion using natural

boundary conditions.

4.1 Governing equations

In general, conservation of mass is given by,

∂ρ

∂t
+∇ · (ρu) = 0

which reduces to the continuity equation for incompressible �uids,

∇ · u = 0 on Ω (4.1)

In the case of a two �uid mixture, density is given by ρ = ρ1 + (ρ2 − ρ1)F . The volume fraction or color
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function, F , is transported by the advection equation, written in conservative form as,

∂F
∂t +∇ · (Fu) = F∇ · u on Ω (4.2)

Conservation of linear momentum can be written in conservative form as,

∂(ρu)
∂t = ∇ · (−ρuu + τ )−∇p+ fCSF + fDLM + ρg on Ω (4.3)

where u, τ , p, fCSF and fDLM are the mixture velocity, viscous-stress tensor, pressure, surface-tension force

per unit volume and rigidifying force per unit volume, respectively. For a Newtonian �uid the viscous stress or

extra stress tensor is given by τij = 2ηγ̇ij , where the strain-rate tensor is given by ˙̇γij = 1
2

(
∂ui

∂uj
+

∂uj

∂ui

)
. For a

mixture, the viscosity can be weighted using a linear pro�le or the arithmetic mean as η = ηm+(ηd − ηm)F ,

or using the harmonic mean as η =
(
F
ηd

+ 1−F
ηm

)−1

. For a non-Newtonian �uid, the extra stress tensor can be

decoupled into the polymer, τ p, and the solvent, τ s, contribution (Bird et al., 1977) as τ = τ s + τ p, where

the solvent stress behaves like a Newtonian �uid and the polymer extra-stress depends on the viscoelastic

�uid in consideration.

In the case of an incompressible solid, a material or Lagrangian frame of reference is employed and the

equations of motion are,

∂(ũ)
∂t = ṽ ρo

∂(ṽ)
∂t = ∇ · S + fext o + ρog on ΩM (4.4)

where ũ is the displacement, ṽ is the material velocity, S is the second Piola-Kirchho� stress tensor, which

reduces to the Cauchy stress tensor, σ, for in�nitesimal deformations, the subindex o indicates the reference

con�guration and fext includes any external force like the hydrodynamic forces. Body forces per unit volume

are included as ρg for the solid and the �uid.

The boundary conditions are prescribed velocity,

ui = Ui(x) on ∂Ω (4.5)

prescribed pressure with normal velocities,

∂ui

∂xn
= 0

p = P (x)
on ∂Ω (4.6)

and symmetry,
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un = 0

∂ut

∂xn
= 0

∂p
∂xn

= 0

on ∂Ω (4.7)

where n and t denote normal and tangential direction, respectively.

4.1.1 Surface-Tension Force

The surface-tension force exerted on two immiscible �uids divided by interface was formulated by Brackbill

et al. (1992) in terms of a force per unit volume as FCSF =
´
σκ (xs) n̂ (xs) δ (x− xs) dV, where σ is the

surface-tension coe�cient, κ is the local curvature, n̂ is the unit-normal vector at the interface, xs is the

location of the interface, x is the position, and δ is the distance function related to the jump condition

[F ] = 1. Following the continuum surface force model (CSF), the force per unit volume at the interface is

Francois et al. (2006),

fCSF = σκ
∇F
[F ]

(4.8)

Two typical methodologies to mollify the CSF force include the scaling by density or volume fraction.

The density-scaled CSF can be used for high density ratios and is given by,

f̄CSF =
ρ

ρ̄
fCSF

while the volume-fraction-scaled model can be used to treat the spurious currents and is given by van

Sint Annaland et al. (2005),

fCSF = 2Fσκ∇F

4.1.2 The Distributed Lagrange Multiplier Method

Rigid particles are introduced into the domain with the Distributed Lagrange Multipliers method (DLM). In

this method, a rigidifying force is added as an external force in such a way that the local domain, Ωp, moves

as a rigid body. The bene�t of this method is that it avoids the necessity of re-meshing every time step and

the calculation of the hydrodynamic forces acting on boundary of the solid. The penalty for simplicity is

the accuracy of the velocity �eld and therefore, the viscous stress acting on the solid region. The particle is

considered to be rigid or non-deformable and it shares the velocity �eld of the �uid u (Eulerian framework)

by means of the particulate volume-fraction �eld, φs, which permits the calculation of the particle position

25



and velocity. Hydrodynamic forces and torques that determine the motion of the particle cancel with its

reaction when the weak formulation for the combined �uid-particle system is formulated (Yu et al., 2002). For

simplicity, the stress tensor and pressure �eld are uni�ed in the whole �eld. The method of the distributed

Lagrange multipliers (Ardekani et al., 2008) is used to rigidify the particle i. The new stress for the body is,

σS i = −pI + D (λ) (4.9)

This model for the particles gives rise to a stress �eld in Ωp i that is a function of the Lagrange Multipliers

λi. The problem is constrained in such that each particle i satis�es a rigid body motion in a body-�xed

frame of reference that is located at the center of mass. The velocity of the particle �i� is given by,

up i = ucm i + ωi ×
(
rΩp − rcm i

)
(4.10)

that is ucm = ucm (t) and ω = ω (t). On the interface, the non slip conditions between the surrounding �uid

and the particle de�nes the constrain,

vi
(
rSp i

)
= u

where rΩp
denotes any material position of the domain Ωp seen from the main system and is bounded by

the interface Sp i = ∂Ωp i.

The rigidifying force converts subspace Ωm into Ωp. This force is given by,

fmDLM =

m∑
j=1

δfDLM j (4.11)

δfDLM =


C (u− uR) on Ωp

0 on Ωm

(4.12)

where m is the last corrected sub-step, C is a constant, u is the velocity �eld and uR is the relative velocity

between the �uid and the particle,

uR = (1− φs)u + φsup (4.13)

Notice how fDLM vanishes for u = uR = up regardless of φs. The position rcm, the velocity ucm, the

angular velocity ωcm and moment of inertia Icm of the center of mass are expressed as,
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rcm = 1
mp

´
Ω
ρφsrdV

ucm = 1
mp

´
Ω
ρφsudV

Icm · ωcm =
´

Ω
ρφsrp × udV

Icm = 1
mp

´
Ω
ρφs

[
rp · rp 1− rTp rp

]
dV

The mass of each particle is obtained by the integration mp =
´

Ωp
ρφsdV. Then, motion of the particle

�i� is given by,

mp iai = Fh i + FDLM i +
∑
j

(Fc ij + Fl ij) (4.14)

where a is the acceleration of the uni�ed domain, Fh is the hydrodynamic force, FDLM =
´

Ω
fDLMdV is the

rigidifying force, Fc is the collisional force and Fl is the lubrication force between particles i and j.

Collision and lubrication force

In lubrication theory, two smooth interfaces moving towards each other will never touch. As the distance

diminishes, the force on the objects increases and physical contact is avoided. When this phenomena is

modeled numerically, the discretization in time and space introduces error. The surface also presents a

rugosity, which can deform and trap �uids as the interfaces get closer. To overcome the complexity of

this problem, two typical forces are included: collisional forces, where a region of overlapping geometry is

considered, and the lubrication force.

Using a discrete element method (DEM), the collision force is given by a linear mass-spring-dashpot

model (Cundall and Strack, 1979). Considering that we encountered su�cient elastic reduction just from

the transformation from DEM to DLM when the gap between particles is relatively small (less than 4 cells),

only the elastic contribution is used,

Fc ij =


kδrij for i 6= j

0 for i = j

(4.15)

where δrij = (Rp i +Rp j + ε− |rcm i − rcm j |) r̂c is the overlapping displacement between two solids, r̂c =

(rcm i − rcm j) / |rcm i − rcm j | and k is the rigidity that determines the degree of deformation. Large over-

lapping regions are present for relatively small values of k. In the other hand, the stability of the numerical

method is compromised when k is relatively large. The constant k is estimated as K 〈ρ〉U2
ij 〈Rp〉, where

K = 1− 100.
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When two interfaces are approaching each other and the separation between them is around or less than

the size of a cell, the pressure is in large error. To compensate for a such problem, a lubrication force can

be added to compensate for the errors in pressure.

Fl ij =


− 3

2πηR
2
p [(ui − uj) · r̂c]

(
1

δhl ij
− 1

εl

)
r̂c δhl ij < εl

0 δhl ij ≥ εl
(4.16)

where εl = 2
3∆x and δhl ij = |rcm i − rcm j | − (Rp i +Rp j).

Boundary conditions

The boundary conditions are not automatically satis�ed by the Equation (4.12) because the cell velocity is

given by the contributions of the �uid and the solid and those velocities are not necessarily the same, only for

special cases. This problem introduces considerable errors that a�ect the stress at the interface. Our early

attempts to included interface interpolating techniques showed lack of mass conservation and were avoided.

A simple solution is then adopted, the �uid and the particle share the same velocity in a mixed region.

Thereby, Equation (4.12) can be used. A better solution for this problem should be based on geometric

�uxing, but it was not researched (only partially employed on the drops).

The constant K determines the stability and convergence of the method. The convergence increases for

larger values of C, but convergence is lost if K is too large.

4.1.3 Viscoelastic Models

Oldroyd-B is the viscoelastic model used to describe Boger �uids, which is characterized by a rheology

where shear-thinning e�ects are absent. It is preferred in shear �ows, since its elongational viscosity is

unbounded, thus not suitable for extensional �ows when De & 1. The mathematical model of the solvent

and polymer extra-stress of an incompressible solution are Bird et al. (1977),

τ s = ηsA (4.17)

τ p + λ1
∇
τ p = ηpA (4.18)

where λ1is the relaxation time and λ2 is the retardation time; η0, ηs,ηp are the zero shear, solvent and

polymer viscosities, respectively, following the relations η0 = ηs + ηp, ηs = η0λ2/λ1, ηp = η0 (1− λ2/λ1)

and λ2 = λ1ηs
ηp+ηs

; A is the �rst Rivlin-Ericksen tensor, A = 2D = L + LT and L is the velocity gradient
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L = (∇u)
T; the lower triangle represents the upper convected time derivative,

∇
τ =

dτ
dt
− L · τ − τ · LT (4.19)

Giesekus model can be applied to extensional �ows, since its elongational viscosity is bounded, contrary

to Oldroyd-B model, but one must retain the solvent e�ect, that is, some retardation λ2 is required. The

di�erence with Oldroyd-B �uid is the shear-thinning term, determined by the mobility factor α. Following

the de�nitions from Oldroyd-B constitutive model, the polymer extra-stress for the Giesekus model is Bird

et al. (1977),

τ p + λ1
∇
τ p + α

λ1

ηp
[τ p · τ p] = ηpA (4.20)

FENE-P A constitutive di�erential equation for dilute polymer mixtures that considers the interaction

of dumbbells molecules (bead-spring) is given by the �nite extension nonlinear elastic model, provided with

the Peterlin's closure (FENE-P) Bird et al. (1977),

Zτ p + λ1
∇
τ p − λ1

(
τ p + (1− εb) ηpIλ1

)
D lnZ
Dt = (1 + εb) ηpA

where Z = 1 +
(

3
b

) (
1 + λ1

trτp

3ηp

)
and ε = 2

b(b+2) .

4.1.4 Elastic and viscoelastic solid

The simplest model for the stress tensor of a solid is the elastic model, which is isotropic and linear with

respect to the Eulerian-Almansi elastic strain ε(e),

σ = Dε(e) (4.21)

where D for an elastic material is given by the Lamé equations (3D),

D =
E

(1 + ν) (1− 2ν)



1− ν ν ν

ν 1− ν ν 0

ν ν 1− ν

1− 2ν

0 1− 2ν

1− 2ν


where E and ν are the Young modulus and Poisson ratio, respectively. If plasticity takes place,

ε(e) = ε(T ) − ε(P ) ε(T ) = 1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
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where ε(T ) is the total in�nitesimal strain, ε(P ) is the plastic strain and xi is the actual con�guration, in

contrast with the initial con�guration Xi.

For �nite strain deformations, it is required to use the appropriate transformation between the undeformed

or reference con�guration with respect to the deformed or actual con�guration. The total Green-Lagrangian

strain given in terms of the displacement is,

E
(T )
ij =

1

2

(
∂ũi
∂Xj

+
∂ũj
∂Xi

+
∂ũk
∂Xi

∂ũk
∂Xj

)
(4.22)

Now, the elastic strain is E(e) = E(T ) −E(P ). The constitutive equation for an elastic solid reduces to,

S =
E

(1 + ν)

[
ν

1− 2ν
%I + E(e)

]
% = ∇ · ũ = tr (E) (4.23)

If plasticity is neglected, then equation 4.23 reduces to 4.21, but the strain is given by equation 4.22.

Hyperelastic solid A biological cell membrane is capable of sustaining tension, and it �ows under shear.

On thicker membranes, or non-homogeneous membranes like lipid bilayer, bending e�ects and shear elasticity

must be considered. Many constitutive equations have been used to model viscoelasticity of the membrane:

neo-Hookean, Mooney-Rivlin, SK (Skalak et al., 1973), ES (Evans and Skalak, 1980). For capsules with thin

membranes SK and ES laws could be used to �t the experimental compression data with good precision,

whereas the commonly used neo-Hookean law could not (Barthès-Biesel, 2011). The Mooney-Rivlin model

does not predict the relative behavior in uniaxial tension and isotropic tension observed in red cell membranes

(Skalak et al. 1973). The SK model for an incompressible, plane isotropic and hyperelastic thin membrane

can be expressed in terms of the strain energy function W as (2D),

S =
∂W

∂E
W =

B

4

(
1

2
I2
1 + I1 − I2

)
+
C

8
I2
2 (4.24)

where B and C are material properties, the invariants given in alternate form are I1 = 2 (E11 + E22) and

I2 = 4E11E22 +2 (E11 + E22) for a plane with a normal in the directions 3. Then, the second Piola-Kirchho�

stress tensor in the plane reduces to,

S11 = BE11 + C
2 (1 + 2E22) I2

S22 = BE22 + C
2 (1 + 2E11) I2

Viscoelastic solid The investigation of Evans et al. (1976) used the problem of micropipette aspiration

of cells to show how the relaxation is dominated by the membrane viscosity and that the cytoplasmic and

extracellular �uid �ow have negligible in�uence on the relaxation time. The membrane viscosity, which was
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not considered before, makes the membrane viscoelastic. The stress for a viscoelastic solid is also given by

the elastic and the viscous terms as,

S = S(e) + S(v) (4.25)

where S(e) and S(v) are the elastic and viscous Piola-Kirchho� stress tensors. If the Kelvin-Voigt model is

used, then,

S(v) = ηeÃ

where ηe is the membrane viscosity, Ã = L̃ + L̃T and L̃ is the velocity gradient, L̃ = (∇Xṽ)
T .
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Chapter 5

Numerical Method

5.1 Conservation of Mass and Linear Momentum

The Finite Volume Method (FVM) is used to integrate the governing equations in space for a Cartesian,

staggered and rigid grid. The integration in time is performed following semi-implicit (Crank and Nicolson,

1996), splitting and unsplitting schemes to advance from the step n to n + 1. The last corrected step is

represented by a subscript m. The pressure p, normal stresses τii and volume fraction F are cell centered,

while the velocities u, v, w and density ρ (ρu, ρv, ρw) are staggered componentwise by a half cell. The shear

stresses τxy, τyz, τxz and the respective dynamic viscosity η are staggered to the common face between the

velocity components of the respective shear strain rate.

For the linear momentum, the local acceleration term is discretized following a central second-order

scheme. The trapezium rule is applied to integrate most of the forces, based on the information at time

n and the last corrected step m. That procedure converts a semi-implicit scheme evaluated at t + 1/2

into a pseudo-Crank-Nicolson scheme, which is still semi-implicit, but evaluated at t and t + ∆t. Pressure

forces are evaluated implicitly. The viscous and surface-tension forces discretizations follow the mentioned

semi-implicit scheme. The non-linear convective acceleration term is linearized following either the Picard's

successive approximation (M. and DeBlois, 1997), i.e. (ρu)
n
um, or the pseudo semi-implicit approach, as

shown in 5.1. The justi�cation of this selection is shown in section 6.1.1. The momentum �uxes at the

control surfaces are computed following the sharp and monotonic algorithm for realistic transport (SMART)

high-resolution scheme introduced by Gaskell and Lau (1988). The strain-rate tensor required to compute

the stress tensor is discretized following a non-uniform second-order central-di�erence scheme for the �rst

derivative (Ferziger and Peric, 1999). The stress and advective terms at time n are obtained from the previous

iteration, while only the coe�cients related to u and deferred terms of the linear system are computed at
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time m. The crossed component of the Newtonian viscous stress is deferred. Our latests implementation

approximated the zero shear viscosity at the cell face using harmonic mean.

1
∆t

´
Ω

[
(ρu)

n+1 − (ρu)
n
]
dV = 1

2

´
∂Ω

n · {− (ρu)
n
un − (ρu)

m
um + (τn + τm)} dA

+
´

Ω

[
−∇pm + 1

2 (fn + fm)
]
dV

(5.1)

Here, f stands for all the forces mentioned in 4.3. The accuracy of the interface for problems involving

deforming drops improves when fCSF is discretized following a pseudo semi-implicit scheme, in comparison

to an implicit scheme, and by staggering the volume-fraction gradient, ∂F/∂xi, which is only de�ned in ui

cell.

For a high-resolution scheme, the �ow of the conservative quantity φc is given by

ˆ
∂Ωi

n · uφcdA =
∑
f

(n · u)f HR
(
φci−2, . . . , φ

c
i+2

)
Af i

where the subscript f denotes that the evaluation is being made at a face (interpolated when the value is not

directly available), HR is the high-resolution limiting function Gaskell and Lau (1988), and A is the area of

the control surface. In the case of the linear momentum equation in the x direction, φc = ρu .

Performing surface/volume integrations without any curvature conduces to the following set of linear

algebraic equations,

(
Cnp +Dm

p + Smt
)
un+1
p = Snt u

n
p +
∑

(Cnnb +Dm
nb)u

n+1
nb +

∑
(Cnnb +Dn

nb)u
n
nb+Sp+Dmvnb+Sothers (5.2)

where C D St Sp represents advective, Newtonian di�usive, temporal and pressure gradient terms respec-

tively, while v represents crossed velocity terms and Sothers stands for remaining source terms, like the

non-Newtonian extra-stress, particle rigidifying force, old and new surface-tension and gravity terms. The

term unb includes the extended grid region, i.e. i+ 2 or i− 1 for evaluations at i.

Then, the discretized equations reduce to a linear system, Aφ = b, or Anpφ
n+1
p =

∑
(Amnb)φ

n+1
nb +S, where

A represents the coe�cients of the linear system and S stands for the all source terms, i.e. in x direction,

S = Snt u
n
p +

∑
(Cnnb +Dn

nb)u
n
nb + Spx + Dmvnb + Dmwnb + Sx others. In the case of φ = u, the implicit

terms involving the other velocity components v, w, and some nonlinear terms (advection) are deferred,

that is, they are treated as source terms. Because the deferred terms contain implicit variables or nonlinear

expression, the terms are updated every local iteration. After the system is assembled, further under-

relaxation is applied. The solution is considered converged once the changes in φ between local iterations
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are below a certain tolerance, typically 10−7, together with small value of the normalized residuals, de�ned

as RES = 1
RESo

N∑
i=1

|Apφp +
∑
Anbφnb − b|i . 10−8.

In order to solve the system of algebraic equations, the tridiagonal matrix algorithm (TDMA) (Anderson,

1994) is used. By deferring the crossed terms, the system becomes pentadiagonal, and the solver for a

tridiagonal system is �nally used because it is computationally fast and several local iterations are needed in

general. An iterative Gauss-Seidel method is employed after each TDMA sweeping in order to propagate the

information along the other two directions. The extra terms of the pentadiagonal system are also deferred

and updated every local iteration of the solver. After each iteration, a residual is computed and the degree of

convergence is determined. Normally, additional loops are required when using an implicit or semi-implicit

HR scheme, for non-Newtonian �uids, for �ows with rigid particles and for starting simulations.

The SIMPLE algorithm (Patankar, 1980) together with under-relaxation factors are implemented to

satisfy continuity on each time step. The iterative process corrects the pressure and velocity �eld and

permits the convergence of non-linear forces on each cell like the extra-stress tensor, rigidifying, collisional

and surface-tension forces. Incompressibility is enforced every time step by correcting the velocity and

pressure �elds according to u∗i = umi + u′ and p∗ = pm + αpp
′, where u∗, p∗ are the corrected velocity and

pressure; um, pm are the last velocity and pressure updates; α is the under-relaxation factor for the pressure

correction equation; A is the control surface; Ap is the �p� coe�cient of the linear system; and u′, p′ are the

velocity and pressure corrections. The velocity correction is given by u′ = −αuAu

A ∇p
′. When following the

SIMPLEC algorithm (van Doormaal and Raithby, 1984), the pressure correction is solved from,

δ

δxi

(
Vui

Ap ui

δp′

δxi

)
≈ δumi

δxi
+ αpp

δu
′

i

δxi
(5.3)

where density variations are accounted for in the Ap ui term, which is the Ap coe�cient associated with the

ui cell of volume Vui
, and αpp ∈ [0, 1]. The velocity correction u′ is predicted from 5.3 by making αpp = 0

and solving for p′ (SIMPLE step). Then, a corrected p′ is computed for 0 < αpp ≤ 1. An iterative process

(per time step) corrects the pressure and the velocity �eld while permitting the convergence of the non-linear

terms on each control volume.

For the solid, the method of discretization of Bailey and Cross (1995) is followed: a Lagrangian �nite

volume formulation based on interpolating functions. The equations of motion extended to a dynamic case

and large deformation reduce to,

ṽn+1 =
ũn+1 − ũn

∆t

ˆ
Ωo

ρo
ṽn+1 − ṽn

∆t
dV =

ˆ
Ωo

(∇ · Sn + fm) dV (5.4)

The code is implemented in Fortran and parallelized using OpenMP directives. The load is typically
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between 80− 98% when the code is running in 16− 4 threads.

5.1.1 High-Resolution scheme: SMART

Numerical �uxes computed using a low order scheme generally create numerical dissipation. In the other

hand, if a high order scheme is used, spurious oscillations are created, leading to numerical instability. When

a high-resolution scheme is used to compute the numerical �ux, a limiter function selects or weights between

a low order and a high order scheme in order to reduce numerical di�usion, improve accuracy and maintain

numerical stability. Between HR schemes, there are total variation diminishing (TVD) schemes and non-

TVD schemes, bounded and not bounded schemes like QUICK. One scheme used in viscoelastic models is

the sharp and monotonic algorithm for realistic transport (SMART) due to Gaskell and Lau (1988), which

is based on the normalized variable diagram, third-order accurate for equally spaced meshes, bounded and

non-TVD. The normalized variables are,

φ̂f =
φf−φu

φd−φu
, φ̂p =

φp−φu

φd−φu

ξ̂f =
ξf−ξu
ξd−ξu , ξ̂p =

ξp−ξu
ξd−ξu

where φ is the transported variable, ξ is the coordinate and u, p, f and d represent the location of the

upwind cell (upwind of p), the actual cell (upwind of f), the face and downwind cell, respectively. The

variable computed at the face is then,

φ̂f =



ξ̂f(1−3ξ̂p+2ξ̂f)
ξ̂p(1−ξ̂p)

φ̂p

ξ̂f(1−ξ̂f)
ξ̂p(1−ξ̂p)

φ̂p +
ξ̂f(ξ̂f−ξ̂p)

1−ξ̂p

1

φ̂p

0 < φ̂p <
ξ̂p
3

ξ̂p
3 6 φ̂p 6

ξ̂f

ξ̂p

(
1 + ξ̂f − ξ̂p

)
ξ̂f

ξ̂p

(
1 + ξ̂f − ξ̂p

)
< φ̂p < 1

elsewhere

5.1.2 Time step and stability

The stability of the numerical method is determined by the local velocity, or referential velocity uo, and

the remaining force-related velocities. When dealing with surface-tension forces, the phase velocity of the

capillary wave, vCSF , is required to constrain the timestep to avoid catastrophic failure. A semi-implicit

method allows for relatively large viscous di�usion velocities, vτ ∼ 2η/ (ρ∆x), but in order to capture

transient e�ects of the viscous stresses, the time step it limited by vτ . The maximum capillary-wave phase

velocity vCSF for the wave number k = π/∆x is given by vCSF ∼
√

2πσ
∆x〈ρ〉 (Brackbill et al., 1992). When

including viscoelastic forces, the shear wave speed, vV E =
√
ν0/λ1, is the referential velocity for stability.

Then, for a given minimum length of the volume, ∆x, a �ow conditions, the time step is limited by the
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Courant-Friedrichs-Lewy condition, CFL, as,

∆t =
∆xCFL

max (uo, vτ , vV E , vCSF )

The PLIC method is expected to be stable for CFLu < 0.5 Harvie and Fletcher (2001) when the

velocity �eld is su�ciently solenoidal. Depending on the donating-region method used, smaller CFL numbers

would increase the convergence on mesh re�nement. Additionally, the �uxing method is required to satisfy

1 ≥ F − ∆t
∆V

6∑
l=1

(u ·A)l ≥ 0, which is enforced through a redistribution strategy when necessary. The DDR

method does not need redistribution because the wisps are only generated by machine-precision errors. The

BDR method requires a redistribution algorithm. The minimum volumetric �uxing criterion is limited to

ε < 10−6.

The mesh spacing is also restricted by the maximum curvature of the interface as ∆x > 1/κ because the

HF method tends to increase the error when the curvature is relatively large, that is, when the interface

becomes trans-grid or sub-grid. This criterion is normally violated when the drop breaks up. It may also be

violated in large deformations, but it is hard to determine a priori, or because of numerical limitations, such

violation must be accepted.

5.2 The Volume-of-Fluid Method

Among various VOF �uxing strategies, special attention is given to Eulerian unsplit PLIC methods. Two

formulations are considered: a basic �uxing strategy, denoted as BDR, and the de�ned donating region

(DDR) method of Harvie and Fletcher (2001) extended for 3D domains. In the �rst formulation, the

donation region (DR) is a rectangular extrusion of the control surface. For example, if a control surface is

a rectangle of sides a and b, and the �ow is in the x direction, then the DR is a parallelepiped of volume
´ ´

u · dAdt ≈ uab∆t. The edgewise volumetric �ow is given by the intersection between the extruded

�wet area� at the control surface in the direction of the �ow and the DR. The �ow reassembles an extruded

triangle, quadrilateral or pentagon depending on how the reconstructed plane intersects with the control

surface. Because a method of this type is low-order, a temporal multi-scale strategy could be adopted.

Meanwhile the linear momentum equation advances one time step ∆t, the local time step is ∆t∗ = ∆t/N .

The discretization of Equation 4.2 in time follows an Euler-forward scheme,

ˆ
Ω

F l+1 − F l

∆t∗
dV +

ˆ
∂Ω

(n · uF )
l
dA =

ˆ
Ω

F l
(
∇ · ul

)
dV (5.5)

where the step l is the Eulerian-forward intermediate step between n and n + 1 (l = n for the single-step

36



approach), the �ow term is evaluated using a simpli�ed unsplit strategy, and the source term is computed

at the center of the cell. In general, the net volumetric �ow of the dispersed phase is given by,

ˆ t+∆t

t

ˆ
∂Ωi

(n · uF ) dAdt ≈ (Fe + Fw + Fn + Fs + Ft + Fb) (5.6)

where the �ow in any direction is limited by the upwind contribution. For instance, in the positive x direction,

the volumetric �ow is,

Fi,e =


Vi,E if ui,e > 0

−Vi,W if ui,e < 0

0 if ui,e = 0

(5.7)

The solution to Equation 5.5 is direct once all the �uxes are computed. In order to determine the �uxes,

a plane is reconstructed on each cell where an interface is present. The parameters of the plane are then

used to �nd the points that generate the �wet area�. This area can be expressed in terms of the parameters

of the plane, the reconstructed case and the face direction, as summarized in the Appendix, Table 5.2. An

upwind �ux is chosen because the �wet areas� are discontinuous across contiguous cells. In this manner, the

topology of the volumetric �ow remains inside the DR. For example, the �ow in the �x� direction is given

by Vi,E = ui,eAi,E∆t, or Vi,E = ui,eAi+1,W∆t, according to Equation 5.7. This type of �uxing is based on

a basic donating region (BDR).

In the de�ned donating region (DDR) method, the DR is reconstructed from the streamtube formed by

approximated streamlines at the corners of a given control surface of the cell. These streamlines are based

on the normal velocities at the center of the adjacent faces. For instance, the velocity at the origin (corner)

of the cell ijk is uo = (uijk, vijk, wijk), which determines the direction of the associated line as uo/ |uo|. If

any component of the line is pointing outwards of the cell, then the DR, or part of it, is inside the cell. With

the direction of the four lines at the corners of a given control surface known, the volume of the DR depends

only on one parameter, α, which is found after matching the BDR and DDR volumes (see Figure 5.2.1 for

more details). In this way, eight vertices of the hexahedra are known and the de�ned donating region is

reconstructed. More advanced DR reconstruction methods consider variations of the velocity in time and

space, and mixed in�ux/out�ux regions to reconstruct the streamtube(s).

The DR represents the maximum �ow of the dispersed phase at a given face. These DRs are then

intersected with the plane of the interface to approximate the actual net �ow, as discussed in the appendix.

In the DDR method, the net �ow is also given by Equation 5.7, but the volume Vi,j is now computed using
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(a) Di�erent cases of plane reconstructions in the nor-
malized and oriented cell

(b) Donating Region of the east �ow

Figure 5.1: The PLIC method

a combination of tetrahedra, truncated frustums, pyramids, prisms and hexahedra.

Treatment to Wisp Generation

Depending on the strategy used to �ux the volume, there is tradeo� between volume conservation and

accuracy. For incompressible �ows, when the volumetric out�ow is larger than the in�ow, a void in the

dispersed �uid is created. Similarly, when the in�ow is larger than the out�ow, an over�ow is produced.

Voids and over�ows are indicatives of errors in mass conservation, and several VOF-PLIC methods are prone

to produce them. Possible strategies to reduce wisp generation include lowering the CFL number, �ux

limiting, wisp redistribution and exact �uxing (not necessarily mass conserving, but volume conserving).

The BDR method here employed generates wisps and are eliminated by using the upstream redistribution

algorithm suggested by Harvie and Fletcher (2000). This method consists on the following procedure:

� Reducing the over�ow by distributing it on the upstream neighbor �rst and then to the remaining

neighbors if the upstream cell is full.

� Increase the under�ow by subtracting from the downstream neighbor �rst and then to the remaining

ones if downstream is full.

The DDR method does not need this treatment because the �uxing is exact and does not produce wisps,

but it is employed to correct roundo� errors.

5.2.1 The Piecewise Linear Interface Calculation (PLIC)

The piecewise linear interface calculation (PLIC) is a technique used to reconstruct a plane inside a cell

containing one or more interfaces from the knowledge of the volume-fraction �eld, F . Here, only one interface
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within a cell is considered, which is represented by a plane that is reconstructed when ε < F < 1− ε, where

ε ∈
(
10−3, 10−12

)
. A large value of ε may reduce the apparition of �otsams, but accuracy is reduced as

well, meanwhile a lower limit is dependent upon machine-precision error. For very small values of ε, quad

precision is necessary in the reconstruction algorithm. The minimum �uxing value is set to ε = 10−6.

A case-by-case model for plane reconstruction is selected, as described by van Sint Annaland et al. (2005).

In order to �nd a plane, the normal vector of the equivalent planar interface is required, which is given by,

n̂ = −∇F/ |∇F | (5.8)

Because F is a discrete non-smooth function, Equation 5.8 cannot be applied directly. Di�erent strategies

can be chosen to approximate n̂. The normal vector can be computed using di�erent techniques to produce

second-order reconstruction accuracy, as explained by Rider and Kothe (1998). Here, a combination of the

height-function method and the central-di�erence scheme is considered to compute n̂. For cases in which

the height function cannot produce a normal, the central di�erence is used, which was shown to o�ers super-

linear order of convergence in the case of average reconstruction of circles (the translation achieves order

1.7− 2.0 on �ne-coarse meshes), and linear to sub-linear order of convergence when lines are reconstructed

(order 1.5 − 0.6 on �ne-coarse meshes) according to Pilliod and Puckett (2004). The HF method for the

normal is discussed in the next section. On coarse meshes, the central-di�erence scheme produces lower error

than other second-order methods, characteristic that is helpful when resolving small structures.

Once the normal, n̂, is obtained, a transformation is performed, which allows for the reconstruction of a

plane in terms of the local coordinates, ζi, the plane constant, d, and the oriented normal, ni, as,

n1ζ1 + n2ζ2 + n3ζ3 = d ζi =
xi − xi ref

∆xi
(5.9)

Markers are used to determine whether a cell has an interface, is the neighbor of a cell with an interface,

or is a single-�uid cell. If an interface is present, the number of cases in three dimensions can be reduced to

six after these transformations:

1. Change of coordinate directions, such that ni > 0.

2. Mutual interchange of coordinate directions to satisfy n3 > n2 > n1.

3. Interchange between the phases, such that if F > 0.5, then F ∗ < 0.5.

The 3D cases can degenerate to 2D cases, when n1 < εn or n2 < εn, or to 1D cases, when n1 < εn and

n2 < εn. By performing a volume integral of the cases presented in Figure 5.1a, di�erent equations for the
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plane constant d can be found, as summarized in Table 5.1 (van Sint Annaland et al., 2005). A valid solution

for d can be encountered for εn < 1× 10−10, or as limited by machine-precision error. The plane function of

each cell is determined independently from the neighbors once the normal vector is known. As a consequence

of the linear reconstruction, highly curved interfaces are �attened, incurring in large reconstruction errors.

A traditional method to solve this issue is the multi-grid approach, but it was not implemented here.

Table 5.1: Cases and equations of the reconstructed planes

Case Plane Root �nding method

I d3 = 6n1n2n3F ∗ Explicit

II d3 = 6n1n2n3F ∗ + (d− n1)3 Fixed-point iteration

III d3 = 6n1n2n3F ∗ + (d− n1)3 + (d− n2)3 As case 2 and secant method

IV d3 = 6n1n2n3F ∗ + (d− n1)3 + (d− n2)3 + (d− n3)3 Brent's method

V d3 = 6n1n2n3F ∗ + (d− n1)3 + (d− n1)3 − (d− n1 − n2)3 Combination of methods

A robust implementation depends on the degree of convergence of the plane constant, d. The secant

method, the �xed-point iteration and the Brent's method are used to �nd d, depending on the case being

considered. Case I has an explicit solution. Case II is solved with the �xed-point iteration method. Case

III is solved as case II, while complemented with the secant method to accelerate convergence. The Brent's

method cannot determine the root of a function if the function does not change signs within an interval.

There is no change of signs for case III, therefore, the Brent's method cannot be employed. Case IV is solved

using the Brent's method. A combination of the aforementioned methods is used to solve for d in case V,

where a change of sings of the function must be checked when using the Brent's method. It is important to

give an appropriate initial condition when seeking the value of d, and proper bounds, since it is possible to

have multiple roots, or divergence, within the interval [0, 1] due to the cubic nature of the equations.

Another two cases arise if the interface is a closed surface that is contained within a cell, or shared

between two cells, like a droplet or a small �lament. These cases were not implemented because they require

more than one plane inside a cell. This problem can be solved by means of a Lagrangian transport, which

requires a sub-grid model for the drag force, or by using a multi-grid approach, which could require several

levels if the droplet is small.

5.2.2 Curvature Model and Normal Vector

Di�erent strategies can be used to �nd the curvature of an interface. In general, the curvature is given by

the normal vector at the interface, n̂, as (Brackbill et al., 1992),

κ = −∇ · n̂ (5.10)
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In VOF methods, the curvature is normally computed from the volume fraction, F , on a given stencil.

Because of the discontinuous nature of F , strategies employed on smooth functions tend to produce large

errors. Common approaches use either the smoothed volume fraction, a convolution technique or the height

function method.

The curvature then can be obtained from the knowledge of the normal vector, which can be computed

from the volume fraction as n̂ = ∇F/ |∇F |. This approach involves the numerical di�erentiation of a

discontinuous function, fact that introduces errors in the calculation. To overcome this di�culty, a smoothed

volume fraction function F̃ can be computed to estimate the unit normal to the interface. This method

computes the curvature from the divergence of a smoothed interfacial normal vector, therefore it is denoted

as DINV. A common method in 2D is based on weighting the information of F at the cell with the values of

the neighbors Dupont and Legendre (2010),

F̃ij =
3

4
Fij +

1

16

∑
Fnb

In 3D, the weighted averaged of F among the surrounding cells is Yabe et al. (2007),

F̃ijk =
1

2

{
Fijk +

1

1 + 6a+ 12b+ 8c

[
Fijk + a

(∑
F1axis

)
+ b

(∑
F2axis

)
+ c

(∑
F3axis

)]}

where the constants are, a = 1
6+12

√
2+8
√

3
, b = a/

√
2 and c = a/

√
3, while the summation terms are

∑
F1axis = Fi−1,j,k + Fi+1,j,k + Fi,j−1,k + Fi,j+1,k + Fi,j,k−1 + Fi,j,k+1

∑
F2axis = Fi−1,j−1,k + Fi−1,j+1,k + Fi+1,j−1,k + Fi+1,j+1,k

+Fi−1,j,k−1 + Fi+1,j,k−1 + Fi−1,j,k+1 + Fi+1,j,k+1

+Fi,j−1,k−1 + Fi,j+1,k−1 + Fi,j−1,k+1 + Fi,j+1,k+1

∑
F3axis = Fi−1,j−1,k−1 + Fi−1,j−1,k+1 + Fi−1,j+1,k−1 + Fi−1,j+1,k+1

+Fi+1,j−1,k−1 + Fi+1,j−1,k+1 + Fi+1,j+1,k−1 + Fi+1,j+1,k+1

Another technique based on smoothening functions is,

F̃ijk (x, y, z) =

+1∑
i′,j′,k′=−1

D (x− xi+i′)D (y − yj+j′)D (z − zk+k′)F (xi+i′ , yj+j′ , zk+k′)h
3

where the smoothening function D is given by the function proposed by Peskin (1977),
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D(x) =
1

2h
(1 + cos (πx/h))

where h represents the smoothened width, i.e. h = 2∆x, which has to be selected carefully, because if the

width is too small then numerical instabilities may arise, especially for large surface tension coe�cients, or if

the stencil is too large, excessive smoothening is obtained. Then, the computation of ∇F is simpli�ed. For

example, the variation of F in the x direction is given by,

∂F̃ijk (x, y, z)

∂x
=

+1∑
i′,j′,k′=−1

−π
h

sin

(
π
x− xi+i′

h

)[
1 + cos

(
π
y − yj+j′

h

)]
×

[
1 + cos

(
π
z − zk+k′

h

)]
F (xi+i′ , yj+j′ , zk+k′)

In the HF method, the estimation of a discrete height function, h (x), in the neighborhood of the cell

of interest allows for the calculation of the normal vector and the curvature of the interface. This method

is denoted as HF. The �rst step is to determine the direction of the interface, because the discrete height

function is computed along that direction. At the interface, the maximum variation of F occurs in the normal

direction. Therefore, the component of ∇F with the maximum absolute value determines the direction. The

second step is to compute the height on each node of the stencil from the values of F in the neighborhood.

If
∣∣∣ ∂F∂x3

∣∣∣ > ∣∣∣ ∂F∂x1

∣∣∣ and ∣∣∣ ∂F∂x3

∣∣∣ > ∣∣∣ ∂F∂x2

∣∣∣, the local heights are given by the summation of the volume contributions

in direction �3�. The height function is then computed as,

hij =

k+3∑
k′=k−3

Fij k′∆x3 (5.11)

Once the height functions are known at a given surface, the curvature is given by the expression,

κl =
hl,11 + hl,22 + hl,11h

2
l,2 + hl,22h

2
l,1 − 2hl,12hl,1hl,2(

1 + h2
l,1 + h2

l,2

)3/2
(5.12)

where hl,i, hl,ii are the �rst and the second derivatives of hl in the direction �i�, and hl,12 is the crossed

derivative. The �rst and second derivatives of the height function are estimated using a 3-point second-order

�nite di�erence scheme for non-uniform meshes (Ferziger and Peric, 1999). The curvature is computed using

a seven-point 3 × 3 stencil (7 × 3 × 3), that is, seven cells along the direction with the largest gradient of

F , and nine discrete heights to estimate the height function. Once the normal vector at the interface, n̂, is

provided, the height function is computed with the stencil that has the closest normal to n̂.

By using other stencils or projections, di�erent types of height functions can be found. Here, only the
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traditional HF method provided with additional directions is addressed. On the model denoted as HF-PD,

standing for the main planes diagonals, that is, the principal diagonals in the xy, xz and yz planes. Another

model, denoted as HF-AD, standing for all diagonals, the HF-PD model is provided with the additional

diagonals of each octant in the xyz system. The curvature is computed using a 5 × 3 × 3 stencil along

the diagonal directions. The direction of the stencil is determined by a region of in�uence, depending on

the largest gradient of F or after knowing n̂. For instance, if the direction of the gradient is close to any

PD direction, then that stencil is activated, and similarly for the AD stencil. An example of the stencils

used to compute the nth plane for these techniques is shown in Figure 5.2. The �nal implementation of the

HF-PD model used a cuto� angle of α = β = 63.25◦: xy diagonals satisfy |n1| > cos (α), |n2| > cos (α),

|n3| < cos (β); xz diagonals satisfy |n1| > cos (α) , |n3| > cos (α) , |n2| < cos (β); and yz diagonals satisfy

|n2| > cos (α), |n3| > cos (α), |n1| < cos (β). In the case of the HF-AD, the normals are required to satisfy

cosα < ni, where α = 62◦. The angles were selected based on the inspection of the zones with maximum

error, together with reducing the lack of convergence on mesh re�nement.

The error in the traditional height function can also be improved by applying a correction at certain angles

estimated from the local osculating sphere at the interface (López and Hernández, 2010). This method is

also analyzed here and denoted as HF-LH.

Figure 5.2: Stencils for the referential planes of constant height: HF method with normal (0, 0, 1), HF-PD
method with normal (1, 1, 0) and the HF-AD method with normal (1, 1, 1). The volume fraction, F , is
located at the p cell (©). A compact stencil is chosen on a 3× 3 layout, given best results when compared
to extended versions. The referential plane pointing along the main diagonal (HF-AD) is enclosed by the
interpolated values of F (2). Interpolations of F are also considered to produce the middle plane in between
referential planes (compact stencil).

The error in the traditional height function can also be improved by applying a correction at certain angles

estimated from the local osculating sphere at the interface (López and Hernández, 2010). This method was

used for testing purposes and is denoted as HF-LH.

The height function could be obtained from the distance function φRDF under the reconstructed distance
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function method (RDF). However, the height function computation based on φ is more prone to result in

unde�ned interface heights than when F is used Liovic et al. (2010).

Our latests simulation used another approach, based on the height functions. The normal vector is

found after solving a 2D least-squares problem, or plane �t, from the information provided by the height

function, h (x), in a 3× 3 stencil. The central-di�erence scheme is used to predict the main direction or as

the actual value if the minimization problem is not possible. The equation to be minimized is E (A, B, C) =
N∑
i=1

[Aζ1i +Bζ2i + hi + C]
2, which is related to the di�erence between the plane position at a given coordinate

and the h value. It is implied that n∗1 = A, n∗2 = B, n∗3 = 1, n∗3ζ3 = h and n∗3 points in the direction of

the maximum absolute gradient of F . The value of N is increased by one for each case where non-zero and

non-full values of h are found. This problem is only solved for N ≥ 3, out of 9 candidates, from the linear

system,


∑
ζ2
1

∑
ζ1ζ2

∑
ζ1∑

ζ1ζ2
∑
ζ2
2

∑
ζ2∑

ζ1
∑
ζ2 N



A

B

C

 =


−
∑
ζ1h

−
∑
ζ2h

−
∑
h

 (5.13)

After �nding A and B, the normal is given by n̂ =
(
Aî +Bĵ− k̂

)
/
√
A2 +B2. To compute h, only three

layers are considered (3× 3× 3). The cases where a �lled or partially �lled cell is surrounded by void, or a

void is surrounded by full cells, were not given especial treatment. However, this issue should be addressed

because the central-di�erence scheme and the 2D least-squares method will fail in this scenario.

5.2.3 The continuous surface force model

The face-centered CSF model of Francois et al. (2006) showed the capability of reducing spurious currents

and estimates the correct pressure jump when the exact curvature is prescribed. Here, the CSF force is

staggered on the u, v and w cells and computed as,

fCSFl = σκl
∂F

∂xl
(5.14)

which can be weighted by the volume fraction (Brackbill et al., 1992; van Sint Annaland et al., 2005) (F-CSF),

fCSFl = 2σκl 〈F 〉l
∂F

∂xl
(5.15)

or by the density (ρ-CSF),
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fCSFl = σκl
〈ρ〉l
[ρ]

∂F

∂xl
(5.16)

where l is the direction (i.e. x, y or z), κl = avg (km, km−1), ∂F
∂xl

= Fm−Fm−1

∆x on uniform grids and

m = i, j or k in accordance with l. Here, the unweighted formulation of the force is employed and the

curvature is computed at a face of a uvw cell, which is the center of a p cell, while the gradient is de�ned

at the center of the uvw cell. For the avg function, better results were observed in the convergence of

the pressure with mesh re�nement when the projected curvature is computed using the average-maximum

(AvM) function, Equation 5.17, instead of using an arithmetic average, suggesting that even more accurate

estimations can be used.

κl =



(km + km−1) /2 |km| > 0, |km−1| > 0

km km−1 = 0, |km| > 0

km−1 km = 0, |km−1| > 0

0 km = km−1 = 0

(5.17)

5.2.4 DDR and BDR schemes

When the donating region is given by the BDR method, the volumetric �ow at a face is VBDR = uA∆t,

where the �wet area� is computed as shown in Table 5.2 and u is the normal velocity to the face.

Table 5.2: Area of the dispersed �uid at the control surface of a given cell for di�erent the types of planes
as determined from the intersection of the plane with the cell boundaries in a transformed (oriented) control
volume.

Type I Type II Type III Type IV Type V

AE
δx2δx3

0 1
2

(d−n1)2

n2n3

1
2

(d−n1)2

n2n3

1
2

(d−n1)2

n2n3

(d−n1− 1
2
n2)

n3

AW
δx2δx3

1
2

d2

n2n3

1
2

d2

n2n3

(d− 1
2
n2)

n3

[d(n2+n3)− 1
2 (d2+n2

2+n2
3)]

n2n3

(d− 1
2
n2)

n3

AN
δx1δx3

0 0 1
2

(d−n2)2

n1n3

1
2

(d−n2)2

n1n3

(d−n2− 1
2
n1)

n3

AS
δx1δx3

1
2

d2

n1n3

(d− 1
2
n1)

n3

(d− 1
2
n1)

n3

[d(n1+n3)− 1
2 (d2+n2

1+n2
3)]

n1n3

(d− 1
2
n1)

n3

AT
δx1δx2

0 0 0 1
2

(d−n3)2

n1n2
0

AB
δx1δx2

1
2

d2

n1n2

(d− 1
2
n1)

n2

[d(n1+n2)− 1
2 (d2+n2

1+n2
2)]

n1n2

[d(n1+n2)− 1
2 (d2+n2

1+n2
2)]

n1n2
1

In the case of the DDR method, the volume of the DR is enforced to match that volume of a basic

DR. Once this volume is determined together with the direction of the velocity at the corners of the control

surface, the extension of the DR is known and therefore, the 8 vertices of the DR. The planes formed by

these points are then intersected with the interfacial plane and the volume that is �below or inside� becomes

the volumetric �ow at the given area. These volumes or �ows are computed analytically in a case-by-case
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manner, using the code developed for the BDR method. A few examples are presented in Figure 5.3. The

reversed single vortex problem and the deformation �eld problem were used to �nd the most common cases.

(a) Case 1

(b) Case 2

Figure 5.3: Example of cases 1-2 in the DDR method
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(a) Case 3

(b) Case 4

(c) Case 5

Figure 5.4: Example of cases 3-5 in the DDR method
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Chapter 6

Numerical Validation

On this section di�erent benchmarks are used to validate our model. The following problems are selected:

planar Poiseuille �ow, static drop, oscillation of a viscous drop, �ow past a cylinder and the settling of a

sphere in a channel. Unless otherwise stated, all units are CGS.

6.1 Advection problems

6.1.1 Nonlinear Advection of a Square Wave

This problem is governed by the inviscid Burger's equation (conservative form),

∂u

∂t
+
∂u2

∂x
= 0

The initial condition is given by u = u0 (H (x+ aL)−H (x+ bL)), where u0 = 1, L = 1 is the domain, H

is the step function and a = 0.4, b = 0.6. The time step is selected based on ∆t = CFL∆x/u0, CFL = 0.25

and N = 101 mesh points.

The time discretization is summarized in table 6.1, and the �uxes used are summarized in table 6.2,

where the functions UDS (x) and HR (x) compute the value of x at the face, based on the values of the

neighbors, following an upwind di�erence scheme or a high resolution scheme, respectively. In �gure 6.1 it

is shown how a Crank-Nicolson scheme and the implicit second order scheme achieve a similar shape for

CFL = 0.25. The pro�le deviates for higher CFL number using a DeBlois linearization method with the

implicit second order scheme in time, but improves considerably for CFL = 0.125.
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Figure 6.1: Nonlinear advection of a square wave: comparison of di�erent schemes at t = 50 (CFL = 0.25
and ∆t = 0.1225).

Table 6.1: Time marching schemes

Method Equation

Explicit Euler un+1
i = uni + ∆t

∆x

(
Fi+1/2 (un)−Fi−1/2 (un)

)
Implicit Euler un+1

i = uni + ∆t
∆x

(
Fi+1/2

(
un+1

)
−Fi−1/2

(
un+1

))
Implicit 2nd Order un+1

i = 2
3

[
2uni −

1
2
un−1
i + ∆t

∆x

(
Fi+1/2

(
un+1

)
−Fi−1/2

(
un+1

))]
Crank-Nicolson un+1

i = uni + ∆t
2∆x

[
Fi+1/2

(
un+1

)
−Fi−1/2

(
un+1

)
+ Fi+1/2 (un)−Fi−1/2 (un)

]

Table 6.2: Momentum �ux for di�erent schemes (Conservative form)

Method Equation

DeBlois F (um) = UDS(unun+1)

HR Fully Implicit F (um) = HR
((
un+1

)2)
HR DeBlois F (um) = HR(unun+1)

HR Crank-Nicolson F (u) = HR
(
u2
)
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6.1.2 The Reversed Single Vortex

The reversed single vortex problem is simulated to estimate the spatial and temporal order of convergence of

the PLIC-VOF advection methods. The original problem is extended to 3D by extruding a disk to a length of

0.3, in a cubic domain of size 1. In this manner, planar convergence can be compared directly to other authors

by extracting the middle plane information. Additionally, the consistency of the method can be veri�ed by

comparing the interface location and convergence rate for di�erent planes. The remaining parameters are

similar to (Rider and Kothe, 1998; Harvie and Fletcher, 2000). The planar streamfunction of this �ow is

given by ψ = 1
π cos

(
πt
T

)
sin2 (πx) sin2 (πy). The velocity �eld is given by u = − cos

(
πt
T

)
sin2 (πx) sin (2πy),

v = cos
(
πt
T

)
sin2 (πy) sin (2πx) and w = 0, for a time reversal at t = T , where T = 2 and t ∈ [0, T ].

The cylinder has radius 0.15 and is located at (0.50, 0.75, 0). The time step is determined from the CFL

condition at t = 0. The L-1 error is computed from all the N cells that contain an interface on the xy plane

(z = 0) as L1 =
N∑
i=1

Vi
∣∣F�nal − Finitial∣∣i.

Table 6.3: Middle-plane-L1 error for the single vortex problem, T = 2, HF-BDR method

Grid CFL = 1/4 O (∆xn) CFL = 1/10 O (∆xn) CFL = 1/40 O (∆xn)

323 7.23× 10−3 � 3.55× 10−3 � 2.97× 10−3 �

643 3.42× 10−3 1.08 1.58× 10−3 1.16 7.94× 10−4 1.90

963 2.26× 10−3 1.02 1.04× 10−3 1.03 3.77× 10−4 1.83

1283 1.64× 10−3 1.12 8.75× 10−4 0.60 2.59× 10−4 1.31

1603 1.53× 10−3 0.3 5.52× 10−4 2.07 1.96× 10−4 1.24

The convergence of the L1 error on mesh re�nement using the BDR method shows zero to second order of

convergence, depending on the CFLu number, as shown in Table 6.3. If the CFLu is small, as it is the case

for low Re and low Ca problems, the BDR method is convergent and at least �rst-order accurate, where the

accuracy degrades with mesh re�nement. The global error is determined by the reconstruction error and the

�uxing error, where the least convergent of the two determines the order of the method. For small CFLu

numbers, the e�ect of the �uxing is reduced and the error is mainly determined by the reconstruction error,

which is shown to be second-order convergent. More benchmark or theoretical analysis would be needed to

precise the order of convergence of both, the normal and the �uxing. For large CFLu, the method fails to

convergence on mesh re�nement. When the volume of the DR is relatively large, the �uxed volume and the

exact �uxed volume di�er from each other and local variations of the plane due to rotations and translations

are not captured. When CFLu > 1, the cell-cell DR overlaps, setting an maximum upper limit in CFL. In

general, the nature of the �ow does not normally allow for large time stepping, CFLu ∼ 1, therefore, the

method can be second-order accurate at best. This is expected because in the limit when δt→ 0, the �uxing

methods become exact and the error incurred comes mostly from the reconstruction error.
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A similar statement can be made for the DDR method from the results shown in Table 6.4. For CFL ≤

1/4, the method is at least �rst order. Because the velocity �eld is known for all times, a direct comparison

between the semi-implicit and the explicit approach can be performed. In all the cases, the semi-implicit

approach produced better results, which is shown to be �rst order at least, even at CFL = 1/2. For

CFL ≤ 80, both methods are second-order accurate, while for CFL ≤ 40 the semi-implicit method is

second-order accurate. Although the semi-implicit method is better in terms of convergence, the overhead

comes from the PLIC method when it is coupled with the remaining governing equations.

Table 6.4: Middle-plane-L1 error for the single vortex problem, T = 2, HF-DDR method

CFL = 1/2 CFL = 1/4

Grid Explicit Semi-Implicit Explicit Semi-Implicit

32 8.35× 10−3 4.59× 10−3 4.92× 10−3 3.66× 10−3

64 4.53× 10−3 (0.88) 1.84× 10−3 (1.39) 2.34× 10−3 (1.07) 1.22× 10−3 (1.59)

96 3.12× 10−3 (0.92) 1.21× 10−3 (1.04) 1.52× 10−3 (1.06) 7.24× 10−4 (1.28)

128 2.27× 10−3 (1.11) 8.60× 10−4 (1.18) 1.12× 10−3 (1.07) 5.29× 10−4 (1.09)

CFL = 1/10 CFL = 1/10

Grid Explicit Semi-Implicit MS-Explicit* MS-Semi-Implicit**

32 3.35× 10−3 3.06× 10−3 3.27× 10−3 2.96× 10−3

64 1.20× 10−3 (1.48) 7.90× 10−4 (1.95) 1.13× 10−3 (1.53) 7.40× 10−4 (2.00)

96 7.15× 10−4 (1.28) 4.10× 10−4 (1.62) 6.72× 10−4 (1.28) 3.64× 10−4 (1.75)

128 5.08× 10−4 (1.19) 2.70× 10−4 (1.45) 4.65× 10−4 (1.28) 2.19× 10−4 (1.77)

CFL = 1/40 CFL = 1/80

Grid Explicit Semi-Implicit Explicit Semi-Implicit

32 2.96× 10−3 2.92× 10−3 2.94× 10−3 2.92× 10−3

64 7.40× 10−4 (2.00) 6.53× 10−4 (2.16) 6.93× 10−4 (2.08) 6.61× 10−4 (2.14)

96 3.64× 10−4 (1.75) 2.97× 10−4 (1.95) 3.12× 10−4 (1.97) 2.85× 10−4 (2.07)

128 2.19× 10−4 (1.77) 1.65× 10−4 (2.03) 1.75× 10−4 (2.01) 1.55× 10−4 (2.13)

Note: The order of convergence is expressed in parenthesis.
* The multi-step explicit method with N = 4.
** The multi-step method with a linear interpolation of the velocity (locally explicit).

Additionally, two multi-step approaches were simulated, also shown in Table 6.4, where N = 4 sub-steps

were considered. For the multi-step explicit case (MSE), the velocity used for the �uxing is un, while for

the multi-step semi-implicit case (MSSI), the velocity comes from an interpolation between un and un+1 in

such a way that each sub-step is explicit. The sub-steps can also be advanced using a semi-implicit scheme.

For CFL = 1/10 and the MSE case, the convergence is slightly better than the single-step explicit method

at the same CFL, while the MSSI case behaves very similar to the single-step explicit method at 1/4th of

the original CFL, which is CFL = 1/40 in this case. The multi-step semi-implicit approach di�ers from the

equivalent explicit method without sub-steps only in the interpolation procedure of the velocity, which is

exact for the explicit method. The important conclusion is that the MSE method is the least computationally

expensive MS method and does not show considerable improvements over the explicit method at the same

CFL. However, a feature of the MS method is that it reduces undershots and overshots present in the

51



BDR method, which in turn reduces the amount of redistribution needed. The DDR method does not need

mass redistribution because the �uxing is exact up to machine precision error, making a MSE techniques

completely unnecessary.

(a) T = 2 (b) T = 3

Figure 6.2: Iso-surface, F = 0.5, of the reversed single vortex problem at t = 1
2T and t = T . For the

DDR-explicit method, mesh 1283 and CFL = 1/4.

The order of convergence observed here with the semi-implicit scheme at CFL = 0.5 is similar to

convergence of the Rudman vortex of Harvie and Fletcher (2001), reported to be within 1.2−1.4 when using

the Youngs method and within 1.2− 1.7 when using the Puckett method. Additionally, the initial and �nal

volume inside the domain are the same as expected for the DDR method.

Figure 6.3: The reversed single-vortex problem: Iso-surface F = 0.5 at t = 1
2T and t = T for the DDR-explicit

method, mesh 1283, CFL = 1/4 and T = 8.

For larger values of T , the interface must be resolved within one cell due to the formation of thin sheets.

For cases where subgrid structures are present, the interface is not well resolved because only one plane is

assigned to a topology that requires two or more planes coexisting within the same cell. This leads to a

numerical problem that reassembles a surface tension e�ect because it produces globs, but not related to any

force because the velocity �eld is prescribed. The numerical surface-tension e�ect is shown in Figure 6.3 for

T = 8 where only four detached pillars were formed at the trailing edge.
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6.1.3 The Deformation Field problem

The three-dimensional deformation �eld problem, introduced by LeVeque (1996), is used to estimate the

order of convergence of the DDR method. This �ow was initially employed to complete and debug the DDR

code because it manifests more �uxing cases than the single vortex problem. The velocity �eld is given by,

u = 2 sin2 (πx) sin (2πy) sin (2πz) cos
(
πt
T

)
v = − sin (2πx) sin2 (πy) sin (2πz) cos

(
πt
T

)
w = − sin (2πx) sin (2πy) sin2 (πz) cos

(
πt
T

) (6.1)

The error is computed as Ln = n

√
N∑
i=1

[
Vi
(
F�nal − Finitial

)
i

]n
, where V is the volume of the cell. The

average order convergence of the L1 error is 1.75, while it is 2.55 for the L2 error, as shown in Figure

6.4. This convergence is superlinear and better than the planar convergence of the reversed single-vortex

problem, which happens to be linear at best. Moreover, the solution improves slightly with mesh resolution.

In comparison, the CVTNA-PCFSC-unsplit method of Liovic et al. (2006) showed quadratic convergence,

between 2.14 and 2.69, while their Youngs-split method showed superlinear convergence, between 1.68−1.87,

for the range of mesh resolutions used here. The L1 errors and converge of the Young-split method are similar

to the results here observed. In terms of volume conservation, the volume remained constant at all times to

a value of 1.413717× 10−2. The interface at t = 1
2T and t = T is presented in Figure (6.5) for di�erent mesh

resolutions.
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Grid L1 Error O (∆xn) L2 Error O (∆xn)

323 8.21× 10−3 � 3.92× 10−4 �

643 2.76× 10−3 1.57 7.61× 10−5 2.37

723 2.23× 10−3 1.79 5.65× 10−5 2.52

1003 1.26× 10−3 1.74 2.49× 10−5 2.50

1283 8.19× 10−4 1.74 1.32× 10−5 2.56

1503 6.14× 10−4 1.82 8.64× 10−6 2.69

1603 5.49× 10−4 2.43 7.33× 10−6 3.59

1503* 5.01× 10−4 � 7.63× 10−6 �

Figure 6.4: Estimation of the error in the three-dimensional deformation �eld problem, T = 3, HF-DDR-
explicit method, CFL = 0.5. * CFL = 1

8 .

A direct comparison with the level set (LS) and particle level set (PLS) methods of Enright et al. (2002)

at CFL = 1 is not possible because the Courant number is limited to CFL ≤ 0.5 for the DDR-VOF method

(when the velocities at opposite faces in a given cell have di�erent directions, CFL > 0.5 could produce

overlapping donating regions). However, a qualitative comparison (CFL = 0.5, mesh 1003) indicates that

53



the DDR-VOF method produces a slightly larger pattern of numerical surface tension than the PLS method

at t = 1
2T , but it is signi�cantly better than the LS method. The numerical surface tension reduces with

mesh re�nement, as observed for a 1503 mesh. The protrusions and indentations observed at t = T where

also present and discussed in the coupled VOF-LS method of Ménard et al. (2007) and Chenadec and Pitsch

(2013). Their results showed no signs of numerical surface tension at t = 1
2T because the former author,

using a 1503 mesh, employed a correction when two interfaces are present in the stencil, while the latter used

a 1923 mesh.

(a) Mesh 1003 (b) Mesh 1283 (c) Mesh 1503

Figure 6.5: The 3D deformation �eld problem: Iso-surface F = 0.5 at t = 1
2T (green) and t = T (white), for

the HF-DDR-explicit method, CFL = 0.5 and T = 3.
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6.2 Newtonian-Fluid Solver

6.2.1 Starting Flow between Parallel Plates

The classical problem of the starting �ow between parallel plates subject to a constant pressure gradient is

presented to verify the consistency between the numerical scheme and the governing equations. An implicit

second-order scheme in time was employed and the result is shown in Figure 6.6. As it can be observed, the

results are in excellent agreement with the analytical solution of the Navier-Stokes equations for a Newtonian

�uid, given by (Waters and King, 1969),

u

uo
(y1, t1) = −4y1 (y1 − 1)− 32

∞∑
n=1

sinNy1

N3
e−N

2t1

where y1 = y/h, t1 = ηt/
(
ρh2
)
, uo = −dp/dxh2/ (8η), N = (2n− 1)π

Figure 6.6: Velocity pro�le for the starting �ow between parallel plates for CFL = 0.25, time step ∆t =
2 · 10−4, ∆x = 3.7 · 10−2 using a mesh of 50× 30× 5 cells.

6.2.2 Lid-driven Cavity Flow

The �uid inside a cavity �ows due to viscous stresses created by a lid moving at a velocity U . The domain

is a box of size 1. Wall boundary conditions with zero velocity are prescribed on left, right and bottom

boundaries, a moving wall at the top boundary and symmetries at the front and back boundaries. In the

absence of density variations (no temperature gradients), this �ow is characterized by the Reynolds number

only, Re = UH/ν. When Re & 100, the e�ect of advection is crucial, and low order schemes degrades

accuracy considerably. The numerical solution is compared with the results of Ghia et al. (1982) on Fig. 6.7
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and Table 6.5. The simulation of a 90× 90× 5 variable mesh shows an error as large as 8% when compared

with a multigrid method at a higher resolution (129× 129).

Table 6.5: Properties of primary and secondary vortices at Re = 1000

Vortex Property Ghia et al. (1982) 90× 90× 5 Error (%)

Primary ψmin −0.117929 −0.1133 3.4

Location (x,y) 0.5313, 0.5625 0.5324, 0.5677 0.2,0.9

BL ψmax 2.31129× 10−4 2.500× 10−4 7.9

Location (x,y) 0.0859, 0.0781 0.0820, 0.0769 4.5,1.5

BR ψmin 1.75102× 10−3 1.701× 10−3 2.9

Location (x,y) 0.8594, 0.1094 0.8661, 0.1121 0.8,2.5

(a) (b)

Figure 6.7: Lid-driven cavity �ow at Re = 1000, using CFL = 50. (a) Streamfunction for a mesh 90×90×5
(b) Comparison of the velocity u .

6.2.3 Flow after a sudden expansion

The �ows after sudden expansions are studied for di�erent geometries and �ow conditions to compare the

behavior of the recirculation zone against the literature and to perform a mesh sensitivity analysis when the

mesh is uniform.
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Planar symmetric expansion

The �ow in a planar sudden expansion of 1 : 4 ratio is simulated to validate the numerical model for conditions

where the solution is symmetric. This �ow is dependent on the Reynolds number, Re = ρUd
µ , where U is the

upstream average velocity. A recirculation zone is present for low Re and grows in size and strength as Re

increases until a condition where the vena contracta is created. The streamfuncion, the velocity pro�le and

the recirculation-zone length are being compared with the results of Wahba (2007) for the cases of Re = 0

(Stokes limit approximation) and Re = 30. The case of an asymmetric solution was also addressed for an

expansion 1:3 and Re = 80 by Fearn et al. (1990) and Oliveira (2003) in Newtonian and viscolastic �uids,

respectively. The boundary conditions are prescribed as follows: velocity u = U = 1 at the inlet, pressure

p = 0 and normal velocities at the outlet, symmetries in the z direction, and walls (v = 0) for |y| ≥ 1
2d if

x ≤ 0 and for |y| ≥ ed
2 if x > 0, where e is the expansion ratio. The normalized streamfunction is de�ned as

Ψ (x, y) = (ψ − ψo) / (ūd), where ū is the averaged upstream velocity. The coordinates are normalized by d

and the velocity by U . The domain is limited to a rectangle of size 22× 4 and the mesh is uniform.

8

9

10

11
12

13

7

6

5

14

1 0 1 2 3 4 5
2

1.5

1

0.5

0

0.5

1

1.5

2 Level

15 0.5095

14 0.5092

13 0.50891

12 0.5089

11 0.5

10 0.4

9 0.2

8 0

7 0.2

6 0.4

5 0.5

4 0.5089

3 0.50891

2 0.5092

1 0.5095

(a) Re = 0

0.505573

0.4

0.2

0

0.2

0.4

0.50556

0.59

0.56

0.52
0.5

0.5

1 0 1 2 3 4 5 6
2

1.5

1

0.5

0

0.5

1

1.5

2

Mesh

(b) Re = 30

Figure 6.8: Streamlines for a planar symmetric sudden expansion of ratio 1 : 4 (a) d/∆x = 29.25 and (b)
d/∆x = 40.
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The streamlines of this �ow are shown in Figure 6.8 for Re = 0 and Re = 30. It is noticed a relatively

small single recirculation zone for Re = 0, while two types are present for Re = 30, the large principal vortex

and a very small vortex at the corner. It is also observed a very small detachment region at the exit of the

expansion for Re = 30. The result for Re = 0 is in good agreement with the results obtained by Wahba

(2007). The case of Re = 30 is qualitatively similar to Re = 40 and Re = 60. The re-attachment length is

given by Lr/d = 0.178Re and is valid for Re > 1 (Scott et. al, 1986), and it is Lr = 5.34d for Re = 30.

A direct comparison of the velocity �eld at di�erent cross sections is presented in Figure 6.9a for Re = 30.

The error of the velocity pro�les at the center of the channel for di�erent locations using a mesh resolution

d/∆x = 9.25 and in comparison with Wahba (2007) are: x/d = 2.5, 0.09%, x/d = 5.35, 3.2%, x/d = 10, 9%.

The pro�les are su�ciently accurate for low mesh resolutions in the expansion regions.

u/U, normalized velocity
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Figure 6.9: Velocity pro�le for for the �ow in a planar symmetric sudden expansion at Re = 30: (a) velocity
at di�erent channel locations (b) centerline velocity. Mesh resolutions: d/∆x = 9.25 (Ny = 40) (− − −)
and 29.25 (120) (· · · · · · ). Reference, Wahba (2007) (��).

The velocity along the center line is presented in Figure 6.9b to show the e�ect of mesh resolution on

the maximum velocity and the development length for Re = 30. The �ow in the narrow channel becomes

developed after Ld/d = 5.32. Downstream of the expansion, the velocity pro�le requires a length of xmax/d ∼
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10 to redevelop. Finally, the size of the recirculation zone is Lr/d = 5.29 for a mesh d/∆x = 29.25 (Ny = 120),

which is within 0.9% error of the referential value.

Axisimmetric sudden expansion

An axisymmetric sudden expansion �ow is simulated in three dimensions for Red = ρUmaxd/µ = 12, 50.9,

and compared with the experimental results of Khodaparast et al. (2014). A piecewise wall boundary

condition is impose and its e�ect on the accuracy of the solution is veri�ed. An uniform mesh with ∆x =

∆y = ∆z is generated inside a parallelepiped domain, and the cylindrical shape is obtained from the wall

boundary conditions. The boundary conditions are prescribed as follows: inlet u = 1, outlet p = 0 with

normal velocities, and v = 0 is prescribed at radius r (x) ≥ d/2 for x ≤ 0 and r (x) ≥ de/2 for x > 0, where

e is the expansion ratio and d is the pipe diameter before the expansion.

The �ow is visualized on the xy plane (z = 0) using a streamfunction given by u = 1
y
∂ψ
∂y , v = − 1

y
∂ψ
∂x , which

is normalized as ψ̂ = 8
Ud2 (ψ − ψo). The streamlines for an expansion e = 1.961, and two �ow conditions,

Re = 12 and Re = 50.9, are shown in �gure 6.10.

1

2

3

4

57 6

0.5 0 0.5 1 1.5 2 2.5
1

0.5

0

0.5

1

Level STF

10 0.509

9 0.507

8 0.505

7 0.5025

6 0.5004

5 0.499

4 0.45

3 0.3

2 0.1

1 0.01

(a) Re = 12, Mesh 300× 90× 90

1

2

3

4
5

6
778

9

0.5 0 0.5 1 1.5 2 2.5
1

0.5

0

0.5

1

Level STF

9 1.08

8 1.06

7 1.04

6 1.02

5 1.0055

4 1.005

3 0.8

2 0.5

1 0.1

(b) Re = 50.9, mesh 500× 75× 75

Figure 6.10: Streamlines of the �ow in axisymmetric sudden expansion for di�erent Re and e = 1.96 at
steady-state conditions.
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x/d, Normalized position
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Figure 6.11: Centerline horizontal velocity, u, for Re = 50.9

A comparison is made with the experimental �gures of Khodaparast et al. (2014) and the results are

reported in Table 6.6. Here, the subindex c indicates vortex coordinates, Rc = rc/d is its radial distance and

Lc = xc/d, where d = D/e = 1.02. The error of the position is within 10%, considering the complications

with reading the vortex location in the original source, this is acceptable.

Table 6.6: Comparison of the vortex geometry.

Khodaparast et al. (2014) Mesh Ny = 60, 80

Re 12 50.9 12 50.9

Lc 0.211 0.54 0.214 0.48,0.503

Rc 0.706 0.705 0.7653 0.7056, 0.7024

Lr 0.51 1.95 0.548 2.07

As it can be observed, Re has to be below the transitional Ret ∼ 50 to reduce the size of the vortex

structure. In that sense, the remaining of the study is kept below Ret.

These results show that a mesh resolution between 60 to 80 radial elements, has a minor e�ect on the

position of the vortex, while the maximum velocity is within 5% from the theoretical value. Considering

that the mesh is uniform and Cartesian, and the comparison is held against experimental data, these results

are acceptable.

Bilateral Sudden Expansion

A sudden bilateral centered expansion in a channel at subcritical Reynolds number is analyzed in the Results,

together with the expansions of drops. From the main streamlines it is possible to observe which geometries
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and �ow conditions produce large recirculating zones. Avoiding recirculation zones permits larger advective

accelerations near the expansion region. Aside from Red, this problem also depends on the aspect ratio,

de�ned either as α = W/d or AR = h/W , and the expansion ratio e = H/d, whereW is the channel breadth,

H is its height and h = (H − d)/2. The recirculation zones are expected for large Red and α, and closer to

the centerline for large e. For a geometry and �ow conditions where a vortex is present, the center of the

vortex moves downstream while the jet structure becomes larger by increasing Re.
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6.3 Viscoelastic-Fluid Solver

6.3.1 Flow Past a Cylinder

A cylinder is included inside a channel �lled with an Oldroyd-B �uid by using a rigidifying force obtained

from DLM method. Among di�erent benchmarks for non-Newtonian �uids, the �ow past a cylinder o�ers

all-in-one capabilities: the stress tensor can be found in tension, compression and there is an important shear

stress; transient solutions are found for high Re or high De; drag coe�cient has values su�ciently accepted

in Newtonian and viscoelastic �uids; velocity and stress pro�les along the center line can be compared near

the leading edge and wake for di�erent De or viscoelastic models. The region close to the body is subject

to high gradients in velocity and stress, and high resolution is required to capture viscoelastic boundary

layers, which increase in size and intensity as De increases. For the problem of the �ow past a cylinder, the

dimensionless force K and Deborah number De are,

K =
D

η0U
=

´
σn · i dS
η0U

De =
λ1U

R

The investigation of Oliveira et al. (2000) studied the error in the dimensionless drag coe�cient CD based

on di�usion (or K) after using di�erent techniques. They found that CD has spatial order of convergence of

1, 1.8 and 2 for the streamline upwinding (UDS), and the high-resolution schemes MINMOD and SMART,

respectively. When ∆r/R = 0.01 (Nx = 100 volumes across the cylinder radius R = 1), the corresponding

di�erence in drag coe�cient is ∆KUDS ≈ 10 or ∆KSMART ≈ 1. Since K ∼ 100, this would predict an error

of 10% for UDS and 1% for SMART under an extremely demanding mesh of at least 400 cells perpendicular

to the �ow direction. Similar errors were obtained performing a simulation with 500 horizontal mesh points,

as shown in �gure 6.12. Now, considering also the time step required to achieve steady state and the large

entry-exit length required at higher De, an error in K of ∼ 10% is justi�ed. This clearly shows that a DLM

method is not e�cient or accurate because of the size of the �rst cell in the �ow. High resolution methods are

required, namely SMART, MINMOD, CUBISTA, etc, combined with an adaptable mesh. For that reason

SMART was chosen here.

Many authors, according to Hulsen et al. (2005), conclude that comparing Cd along is not a proof of

accuracy, since di�erent viscoelastic models arrive to the same drag coe�cient under low De (UCM, Olroyd-

B, FENE-P, etc.). Here, without using body �tted meshes it was observed that achieving the right drag force

is a challenge. In that sense, the velocity along the centerline and pressure-stress distribution around the

immersed body are better suited for comparison between rheological models because each of them predict

di�erent velocities on the wake of the particle.
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Figure 6.12: E�ect of the mesh resolution on the dimensionless drag force as a function of De. Comparison
with Hulsen et al. (2005).

In order to test the overall model and its limitations, pressure and stress are computed around the cylinder

and the drag coe�cient is determined by two methods. For the �rst method, the total stress is integrated

over the surface of the cylinder, from leading to rear stagnation points. Neglecting acceleration terms, drag

force on a cylinder inside a vertical channel is given by,

D = 2R

ˆ π

0

[(τxx − p) cos θ + τxy sin θ] dθ

For the second method, the force over the cylinder is given by the rigidifying force computed from the

DLM method in the vertical direction, where gravity force can be considered (settling of a sphere problem).

Since both methods achieve similar results, the reported dimensionless drag force is,

K =
FDLM y +mpg

ηoUz

A sensitivity analysis on drag coe�cient is shown in �gure 6.12, where di�erent mesh sizes and De are

selected, based on η0 = 1P, a cylinder of radius R = 0.25, and a channel width W = 1. The error observed

is less than 4% for 250 mesh points (R/∆r v 60), and less than 1% for 500 mesh points (non-uniform mesh).

Polymer stresses for De = 0.8 are shown in �gure 6.13, where the contour lines predict regions in tension

(τii > 0) and compression (τii < 0) in detail. These contours are qualitative similar the results from Oliveira

et al. (2000) at De = 0.9. Even though the reference uses a di�erent Deborah number, De = 0.9, this

model still captures the same structures near the front of the cylinder, the wake and at the wall. However,

important di�erences are observed in a detailed plot of the stresses due to a poor resolution near the sphere

(not shown).
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Figure 6.13: Contour plot of normalized variables for the �ow past a cylinder: (a) τ12

ηU/R ,
τ11

ηU/R ,
τ22

ηU/R for the
current simulation at De = 0.8 and 100x300 mesh points.

6.3.2 Settling of a Sphere in a viscoelastic �uid

The motion of a sphere settling inside a square channel �lled with an Oldroyd-B �uid is used to validate

the temporal scales, hydrodynamic forces and the motion of the particle. A sphere of radius Rs is being

released from rest in a tube/channel of radius/width Rc with geometric ratio κ = Rs/Rc and moves under the

action of gravity. The standard benchmark considers an axisymmetric domain �lled with an upper convected

Maxwell �uid (UCM) and Re = 0, where the drag correction factor (de�ned below) changes considerable for

low De when compared with Oldroyd-B �uid. However, the comparison is made with numerical results that

consider solvent viscosity and small Re.

Dimensionless numbers are de�ned in terms of the terminal velocity of a Newtonian �uid Us as done by

Becker et al. (1994), instead of the actual velocity, in order to predict De and Re.

Re =
2RsρfUs

η0
De =

λ1Us
Rs

Us =
(4/3)πR3

s (ρs − ρf ) g

6πη0RsKN

Actual values are computed using the viscoelastic settling velocity U∞ as,

Re1 =
2RsρfU∞

η0
De1 =

λ1U∞
Rs
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The elasticity number for this case is,

E =
λ1ηo
2a2ρf

The presence of the walls of the cylinder is taken into account using the wall correction factor KN stated

by Happel and Brenner, provided with the Faxén-Bohlin series, for the Newtonian �uid,

KN =
1

1− 2.10444
(
Rs

Rc

)
− 2.08877

(
Rs

Rc

)3

− 0.95
(
Rs

Rc

)5

For the viscoelastic �uid, the wall correction factor K (De, κ) is computed based on the drag force (Becker

et al., 1994)

K =
Drag on sphere

6πηoRU∞

where the drag is equal to the addition of the particle weight and the rigidifying force because they are in

equilibrium with the hydrodynamical forces in steady-state conditions.

In order to reproduce the results of Becker et al. (1994), it is considered a geometric ratio κ = 0.243,

a sphere of Rs = 1.27cm (di�erent material may change De) and an Oldroyd-B �uid with, η0 = 137.6P,

β = 0.59, λ1 = 0.794 and its density is estimated to be ρf = 889g/cm3. In �gure 6.14 it is noted a viscoelastic

transient behavior taking place in a timescale t/λ1 ∼ 1, which is smaller than the viscous timescale for at least

one order, where at initial stages the particle increases its velocity over the settling velocity of a Newtonian

�uid (overshot) and then decays monotonically to the terminal velocity. Also, the error in velocity is within

∼ 5% for a particle resolution Rs/∆r ∼ 10.

Based on the behavior of the steady state drag coe�cient for di�erent aspect ratios, Owens and Phillips

(2002) concluded that the capability of a model to �t very well viscometric functions and transient uniaxial

extensional properties of a given �uid does not imply accuracy for complex problems like the �ow around a

sedimenting sphere. That is a serious limitation, added the actual complexity of the models involved and

the computational time added.

6.3.3 Settling of a Sphere in a Newtonian �uid

The motion of a sphere settling inside a cylindrical channel �lled with a Newtonian �uid is now used to

determine the error and convergence of the viscous and rigidifying forces. In this problem, the pipe is

generated by imposing a wall boundary condition in a parallelepiped domain of size Lx×Rc×Rc for r ≥ Rc.

The other two boundaries are wall (left) and pressure p = 0 (right). Gravity is −980 cm/s2 i. The comparison
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Figure 6.14: Settling velocity as a function of dimensionless time for di�erent mesh size, Delrin sphere
ρs = 1.38g/cm3, Re = 0.011, De = 0.406, E = 38.1, κ = 0.243.

is made at low Re where the dimensionless numbers are the same as in the previous section. For this test,

the geometric ratio used is κ = 0.5, resulting in a drag correction factor of KN = 5.9475 (Boddart and

Chroche, 1994).

The parameters used for the simulation are the following: Rs = 0.05cm, ρs = 1.05 g/cm3, ρf = 1 g/cm3,

η = 0.2P, ρs = 1.05 g/cm3, ρf = 1 g/cm3. Under these conditions, the terminal velocity is Us = 0.02289 cm/s,

producing a Reynolds number Re = 0.011. A variable mesh in the x direction was employed, where the

meshing near the particle and along its path is uniform. The particle is initially located at x = 0.025 cm,

and the domain size in x is Lx ∼ 1 cm.

The velocity of the particle as a function of time is presented for di�erent mesh resolutions in Figure 6.14

and a comparison is summarized in Table 6.7.

Table 6.7: Velocity of the particle at t = 0.02 for di�erent grids

Mesh Rs
∆x

Settling Velocity

100× 45× 45 11.25 -0.02077

80× 30× 30 7.5 -0.02077

55× 20× 20 5 -0.01763

Exact, Us - -0.02289

The mesh sensitivity analysis shows that the terminal velocity is within∼ 9% error for a particle resolution

Rs/∆x < 7.5. This value will be used for further studies. The terminal velocity does not change by re�ning

to Rs/∆x = 11.25. A coarser mesh of Rs/∆x = 5 has an error of 15% when compared to the �ner mesh,
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Figure 6.15: Evolution of the velocity for the settling of a rigid particle in a squared channel. For ρs =
1.05 g/cm3, Re = 0.011, De = 0 and κ = 0.5.

which is considerably large.
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6.3.4 Collision of particles

The problem of two co-aligned particles moving towards each other is simulated to determine the constants

of the collision model and to understand its limitations. In order to isolate relevant forces the linear Euler

equation is used with uniform density, that is, gravity, advection and viscous terms are not computed. Only

the DEM-based collisional model is employed and any lubrication is due to pressure forces. The particles

are accelerated by a piecewise force, Fx = FoH (to − t) in Ωp, where H is the Heaviside step function.

The constant K related to Equation (4.15) is set to 100 and to ≈ 0.12. Even though the model is

elastic, the coe�cient of restitution deviated from the unity. Increasing the rugosity ε improves the elastic

behavior, but it increases the minimum distance between the particles, L12 = |x2 − x1| / (2a). This is

shown in Figure 6.16, where the coe�cient of restitution is e = 0.70, 0.67, 0.63 and the minimum distance

is L12/ (2a) = 1.15, 1.08, 1.04, for ε = 5∆x, 4∆x, 3∆x. The collision was completely inelastic for ε ≤ ∆x.

When L12 < 2∆x, a singularity in the pressure �eld is noticed, and it can be avoided by imposing ε > 2∆x,

depending on the value of K. This behavior limits the applicability of this model if elastic collision are to

be reproduced.
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Figure 6.16: Relative motion of two particles in a horizontal collision. For Rp/∆x = 12 and ε: 5∆x (��),
4∆x (· · · · · · ), 3∆x (− · ·−), 2∆x (− · −) and ∆x (− − −).
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Figure 6.17: Relative motion of two particles in oblique collision. For Rp/∆x = 12 and ε = 3∆x.

Now, the initial position in the vertical direction is changed to produce an oblique collision. Similarly as

before, the motion is induced by a horizontal force. The results for ε = 3∆x are shown in Figure 6.17. The

minimum distance is L12 = 1.04, as in the case with a horizontal collision.

From this study it was found that using the lubrication force is not necessary if ε > 2∆x because the
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criteria of 2/3∆x for its activation is never reached. The results show a singular pressure for smaller values

of ε , i.e. ε = ∆x, and even then, lubrication force does not activate. Only when ε < ∆x it will activated.

Therefore, the two options are ε = 0 for fully inelastic collisions, or ε = 3∆x for partially elastic collisions.

Considering that the coe�cient of restitution is highly dependent on ε, large errors are expected for a

frictional-force model (shearing).
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6.4 Problems involving Surface Tension

6.4.1 Static drop problem

In this section, the problem of a static drop in a quiescent �uid is investigated to understand the capabilities

or limitations of the CSF method when surface tension is relevant. The objective is to show how di�erent

curvature models, transport models and techniques a�ect the accuracy of the results. It is of interest to

determine the convergence rate of the curvature model with mesh re�nement, the errors incurred in the

calculation of the the pressure jump and the intensity of the spurious currents. The exact pressure jump

at the interface is given by the Young-Laplace equation, ∆p = κσ, where κ is the curvature and σ is the

surface-tension coe�cient. The exact curvature for a sphere of radius a is κ = 2/a. This problem is governed

by a modi�ed Reynolds number Reosc =
√
ρdσa/ηd, where ρd and ηd are the drop density and a dynamic

viscosity, respectively. This problem is subject to the initial condition u (x, 0) = 0 and p (x, 0) = 0.

The FCT Algorithm

The following simulations consider a spherical drop of radius a = 2 contained in an cube of size H = 6 where

the �uids have uniform properties: density ratio, γ = ρd
ρm

= 1, and viscosity ratio, λ = ηd
ηm

= 1. The �rst

group of simulations focuses on showing the errors in pressure jump and curvature for several schemes. The

surface-tension coe�cient σ = 73 and Re = 340 are used. The exact curvature and pressure jump are κ = 1

and ∆p = 73.

(a) Pressure pro�le, p (b) Curvature, κ

Figure 6.18: Comparison of curvature models for the static drop problem. The properties are measured along
the x axis at y = 0. The curvatures are computed from the divergence of a smoothed interfacial normal
vector model (DINV), where the smoothed F̂ is computed using the technique of Yabe et al. (2007) or Peskin
(1977), and using the height functions formulation (HF). Results shown after one time step ∆t = 1.2 · 10−3

(CFL = 1) using a mesh 70× 70× 70 or a/∆x = 23.
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The HF method captures the pressure jump ∆p distributed along 3 cells and provides an estimation of

the curvature with an error 9 · 10−3, for an interface thickness δ/a ∼ 0.2, as shown in �gure 6.18. A larger

error was observed when the curvature was computed using the interface normal vector (DINV). Despite

that the addition of a smoothed color function reduces the error considerably, in comparison to estimating

the curvature from a raw color function (not shown), the error is as low as 44% and as large as 300%.

Among the two DINV method tested, the approach suggested by Yabe et al. (2007) presents a smaller error

in curvature and better pressure jump than the method of Peskin (1977). Considering that only one time

step was advanced, these results are independent of the transport model.

The viscous dissipation becomes negligible for Reosc & 100, which in turn enhances the growth of the

spurious currents. For larger values of Reosc, numerical breakdown can happen. That is why knowing the

scale of such velocities is important. The scales of the spurious currents in former simulations using the HF-

FCT method are now compared and presented in �gure 6.19. Two mesh resolutions are used: a/∆x = 16

and a/∆x = 30. Mesh re�nement shows �rst-order reduction of the maximum velocity, as expected. A less

pronounced reduction is noticed when the time step is reduced. As it can be observed, the interface degrades

considerably for the coarser mesh. More detailed studies on the spurious currents are shown next.

We now change the properties across the interface and consider a new test with high density and viscosity

ratios for di�erent curvature and force models. Within a given CSF approach, two di�erent models are chosen:

a density based and the unweighted staggered (not molli�ed). Additionally, the term ∇F is computed either

from a �rst-order �nite di�erence (sharp/staggered) or from a second-order �nite di�erence (three point).

The curvature is estimated from the traditional height function computed along a main axis (HF),

considering additional directions, that is, on the diagonals of the main planes (diagonals or HF-PD), or the

main diagonal of the cell (all diagonals or HF-AD), and from the divergence of the interfacial normal vector.

The comparison is held at the same Reynolds number, Reosc = 340, but for density ratio γ = ρd/ρm = 1000,

viscosity ratio λ = µd/µm = 1000, and a cubed domain of size H = 5.

The pressure pro�les for di�erent cases are shown in �gure 6.20. In this case, the lowest error with respect

to the steady state solution is obtained by the DINV-Peskin method. The density-based three-point molli�ed

case showed large interface degradation. One of the e�ects of using large stencils is that the pressure jump

takes more cells. The molli�cation was incorporated to improve the stability, but the main reason of the

increase in the error is the three-point technique. The HF method kept the interface within two cells (sharp),

but with higher local curvatures (stairs). It is noticed how the FCT method compresses the transport along

main directions, which produces stair-like patterns of the interface. The DINV-Peskin method smoothed

the interface, therefore reducing those e�ects, and the �nal spherical shape was captured with an acceptable

range of curvatures across the interface. This is the reason why it produced better results. Considering that
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(a) (b)

(c) (d)

Figure 6.19: Spurious currents at t = 1.5 for di�erent mesh resolution and CFL conditions for the HF-FCT
method and uniform properties: (a) For 70 × 70 × 70 (a/∆x = 16) and CFL = 0.025, |umax| = 0.92 (b)
For 130× 130× 130 (a/∆x = 30) and CFL = 0.1, |umax| = 0.53 (c) For 130× 130× 130 (a/∆x = 30) and
CFL = 0.025,|umax| = 0.31 (d) Contour of the interface for the mentioned cases.

DINV-Yabe performed better than DINV-Peskin in the previous simulations, it is expected that DINV-Yabe

together with the staggered force (SF-Y) will o�er better stability and accuracy than the other methods

when employing the FCT algorithm in high property ratio conditions.

The PLIC Algorithm

The surface-tension force is now computed using the staggered CSF approach, equation (5.14), unless stated

otherwise and advanced in time using the FCT and the �rst PLIC algorithms. The curvature models adopted

for the comparison are the kernel based (SF-Y) (Yabe et al., 2007) and the height function family of methods

(HF, HF-PD, HF-AD and HF-LH). The simulations are performed in a cubic domain of size H = 6, for a

drop with radius a = 2 , γ = 1 and λ = 1. The drop is initialized with sub-grid resolution. This problem is
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Figure 6.20: Comparison of the pressure pro�le along x axis (y = 0) after 320∆t ≈ 0.2, using a mesh
50× 50× 50, a/∆x = 20 and CFL = 0.5, within a three point or a sharp (staggered) technique to compute
∇F .

subject to the initial condition u (x, 0) = 0, p (x, 0) = 0, advanced in time with a time step ∆t = 3.4 · 10−3

(CFLσ = 0.25), using a mesh 603 and the residual criterion for mass conservation is set to 10−8. The new

�ow conditions are Reosc = 200 and a surface-tension coe�cient of σ = 1 are chosen, which represents a low

Ohnesorge number problem, Oh = η/ (ρσR)
1/2

= 0.005. The exact curvature and pressure jump are κ = 1

and ∆p = 1, respectively.

The CSF method is capable of resolving the pressure jump, ∆p, across two cells, while the PLIC-VOF

method keeps the interface without degradation in time, as show in Figure 6.21. The HF method shows

a better pressure jump than the HF-PD and SF-Y models and is capable of keeping the pressure jump

accurately after t = 100∆t. This is expected since the HF method computes the curvature of a sphere with

high accuracy.

The curvature pro�le is presented in Figure 6.22, where a remarkable maximum error of 43% is observed

for the SF-Y method. It is noticed how the use of the SF-Y model can a�ect the solution in multiple

directions, while the HF-PD model shows a degradation at angles around 30◦ and 60◦. The height function

method can produce inaccurate values of κ if the mesh is too coarse or if κ is relatively large, as when

resolving highly curved interfaces, grid-sized structures, or when the interface is not resolved sharply (more

than 3 cells) like it happens with di�usive non-compressive schemes. The calculation of the height function

along di�erent directions (HF-PD or HF-AD) can provide a solution to the �rst problem, considering that a

maximum error can occur at angles (2n+ 1)π/4 in 2D, but at the expense of a larger error in spherical or

simpler shapes, as shown here.
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Figure 6.21: Pressure distribution using the PLIC-VOF method. (a) The curvature is computed along the
line y = 0, x > 0 using the following models: HF (Left), HF-PD (Middle) and SF-Y (Right) at t = ∆t (•),
or at t = 100∆t (©), for CFLσ = 0.25 (∆t = 3.4 · 10−3), a mesh 603 (a/∆x = 19) and uniform properties.
(b) Representation of HF-PD model on the xy plane.

A summary of the average and maximum error of the curvature (〈κ〉 − 1, κmax − 1) on the xy plane for

several curvature models is presented in Table 6.8. Two mesh resolutions and a smaller time step were

considered for this test to determine the raw order of convergence on mesh re�nement. The HF-PD, HF-AD

and SF-Y did not show convergence on mesh re�nement. Those methods had a similar maximum error in

curvature. Only the HF and the HF-LH models showed convergence of the curvature on mesh re�nement,

where better results were obtained with the HF method.

Table 6.8: Error of the curvature κ in the xy plane after one time step ∆t = 1× 10−3 for di�erent models.
Reosc = 200 and uniform properties, λ = γ = 1.

Mesh 603 Mesh 1203

Model 〈κ〉 − 1 κmax − 1 〈κ〉 − 1 κmax − 1 Order

HF 1.1× 10−3 0.003 4.6× 10−4 0.015 1.2

HF-PD 1.1× 10−2 0.12 6.0× 10−2 0.8 <0

HF-AD 5× 10−2 0.12 6.0× 10−2 0.8 <0

HF-LH 1.1× 10−3 0.003 5.1× 10−4 0.016 1.07

SF-Y 1.2× 10−1 0.43 1.6× 10−1 0.7 <0

It is also important to show the e�ect of the curvature estimations on the calculation of the pressure.

The error of the pressure is based on its value at the center of the drop, P (0)− 1. A mesh sensibility analysis

was performed using the HF, HF-PD and SF-Y models, and the results are summarized in Table 6.9. These

results (and the results up to this point) were obtained without the AvM technique, Equation 5.17. The

comparison shows a small order of convergence and even negative in some cases. There is no correlation

between the pressure and the curvature when the grid is re�ned for the HF model, because the curvature

has positive order of convergence, while the pressure has negative order of convergence. On the other hand,
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Figure 6.22: Estimation of the curvature for a static drop of radius a = 2, using: HF (��), HF-PD (•)
and SF-Y (◦). Results are shown after one time step, CFLσ = 0.25 (∆t = 3.4 · 10−3), using a mesh 603

(a/∆x = 19).

the HF-PD model manifests positive order of convergence of the pressure on �ne grids, but negative order

of convergence of the curvature. Aside from the observation that none of the methods has a �xed order of

convergence on grid re�nement, there is no correlation between the convergences of curvature and pressure.

Therefore, the curvature model initially chosen determines the overall error of the pressure distribution,

where a bias error could be carried on even with grid re�nement. Because the HF-PD model shows the

lowest error on �ne meshes, it was the preferred model for a while during this work. Also, it presents the

lowest error of the pressure in time as it is discussed next.

Table 6.9: E�ect of the curvature model on the error in the pressure measured at the origin after one time
step of ∆t = 1× 10−3. No AvM.

Model HF HF-PD SF-Y

Grid (a/∆x) P (0)− 1 Order P (0)− 1 Order P (0)− 1 Order

153(4) 7.4× 10−3 � 4.6× 10−3 � 2.8× 10−2 �

303(9) 7.9× 10−5 5.6 1.3× 10−2 � 1.1× 10−2 1.1

603(19) 7.3× 10−3 -6.1 4.4× 10−3 0.2 1.5× 10−2 -0.4

1203(39) 8.3× 10−3 -0.2 3.9× 10−3 0.4 1.5× 10−2 0.03

Now, several curvature models and the two transport models, the FCT and the �rst BDR-PLIC method,

are studied. The comparison is made after ∆t and 100∆t. The pressure at the center of the drop, the

maximum velocity and the details of the simulations are presented in Table 6.10. The error in the pressure

is less than 0.7% after ∆t for the HF and HF-PD methods, which is due to an accurate estimation of the

curvature with an average error smaller than 1%. For the SF-Y method, an error of 12% in the average

curvature implies an error of 1.5% in the pressure. Even though the HF-AD method shows 5% error in the

average curvature, the error in pressure increases to 2.7%, larger than SF-Y. It is also noted how all the

values of the pressure improve after 100∆t for the PLIC method, while they deviate for the FCT method,
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particularly in the case of the HF-AD model.

Table 6.10: Pressure at the center of the drop and spurious currents development using di�erent methods.
For Reosc = 200, λ = γ = 1, CFLσ = 0.25 (∆t = 3.4 × 10−3), mesh 603 and the unweighted CSF model.
No AvM.

FCT PLIC

Model p∆t p100∆t |Vmax|∆t |Vmax|100∆t p∆t p100∆t |Vmax|∆t |Vmax|100∆t

HF 0.9927 0.9871 2.5× 10−4 4.2× 10−2 0.9927 0.9927 2.5× 10−4 2.1× 10−2

HF-PD 1.0044 0.9924 3.2× 10−3 8.6× 10−2 0.9940 1.0005 3.2× 10−3 7.1× 10−2

HF-AD 0.9735 0.9480 3.3× 10−3 8.6× 10−2 0.9735 0.9770 3.3× 10−3 7.6× 10−2

SF-Y 0.9847 0.9810 3.4× 10−3 3.2× 10−1 0.9847 0.9953 3.4× 10−3 1.9× 10−1

The velocity of the parasitic currents is in the order of 0.01σ/η for the parabolic interface reconstruction

method (PROST) of Renardy and Renardy (2002). Given the properties of the drop used here, the equivalent

value of the spurious currents is VmaxPROST ∼ 1.4, which is de�nitely large. As a reference, spurious

currents are measured and presented in Table 6.10. The maximum velocities are smaller such estimation, for

t < 100∆t, with values as low as 2 × 10−2. The method with the lowest value is the standard HF method,

followed by the HF-PD, HF-AD and SF-Y. This is expected since the spurious currents are reduced as the

curvature becomes exact. Additionally, the PLIC method showed slightly smaller spurious currents than the

FCT method. A more detailed study is presented later on for the DDR-PLIC method.

It is of interest to obtain a curvature model that converges with mesh re�nement. After analyzing the

reasons of a non-converging pressure on mesh re�nement, it was found that the technique to average the

curvature was having a signi�cant impact on the results. The e�ect of molli�cation and the use of the

AvM technique, Equation (5.17), is now studied. When the HF-LH model (López and Hernández, 2010) is

combined with the F-based CSF force and AvM is used, convergence with mesh re�nement is observed. The

curvature and pressure are presented in Table 6.11. As it can be observed, the error in the pressure reduces

with grid re�nement and the convergence is always positive, being considerably more accurate for �ner mesh

resolutions than the HF model without AvM, shown in Table 6.9. When AvM was deactivated, that is, the

curvature is given by the average between neighbors, the HF-LH model showed slightly worst results than

the HF model. The curvature accuracy of the HF-LH model is similar to the HF model in the xy plane, but

it improves in the other directions (not shown). Finally, the molli�cation or weighting by volume fraction

produced a second-order convergence of the pressure on mesh re�nement.
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Table 6.11: Error of the curvature κ in the xy plane and pressure at the origin after one time step ∆t =
1×10−3 for the HF-LH model (López and Hernández, 2010). Reosc = 200 and uniform properties, λ = γ = 1.

Curvature F-Based Unweighted Unweighted No AvM

Mesh 〈κ〉 − 1 κmax − 1 Order P (0)− 1 Order P (0)− 1 Order P (0)− 1 Order

303 5.1× 10−3 5.8× 10−3 − 6.0× 10−3 − 7.6× 10−3 − 1.2× 10−3 −

603 1.1× 10−3 2.8× 10−3 2.00 1.1× 10−3 2.28 1.4× 10−3 2.28 −7.2× 10−3 < 0

903 5.3× 10−4 4.1× 10−3 1.80 4.7× 10−4 2.01 6.3× 10−4 1.85 −8.2× 10−3 < 0

1203 5.1× 10−4 1.6× 10−2 0.16 2.1× 10−4 2.72 3.7× 10−4 1.80 −8.4× 10−3 < 0

These methods are proven to be accurate on the mesh sizes used (a/∆x > 4), within 3% error and as

accurate as 2×10−6%, which is useful when small particles are not fully resolved, or when there is a spectrum

of curvatures.

The BDR and DDR algorithms

In this section, the convergence rate of the curvature model with mesh re�nement, the errors incurred in

the calculation of the the pressure jump and the intensity of the spurious currents for the BDR and DDR

methods are formally sought. Similarly as before, the drop has radius a = 2, it is initialized in a quiescent

�ow, with u (x, 0) = 0, and p (x, 0) = 0. The initial volume fraction is computed using the �baby-cell�

method with a sub-grid resolution of ∆l = ∆x/250. The domain is a cube of size H = 6. The drop-medium

density ratio is γ = ρd/ρm = 103 and viscosity ratio is λ = ηd/ηm = 103, unless stated otherwise. A Reynolds

number Reosc = 200, equivalently to a Ohnesorge number of Oh = ηd/
√
ρdσa = 0.005, and a surface-tension

coe�cient of σ = 1 are considered again. The simulations are advanced in time with CFLσ = 0.25, using a

normalized residual criterion for mass conservation of 10−8. The surface-tension force is computed using the

staggered CSF approach, Equation (5.14). The curvature is computed from the directional height functions

and the AvM technique is activated.

Ln (φ) =

n

√√√√√ N∑
i=1

|φi − φexact|n

Nφnexact
(6.2)

In order to compare the error in curvature and pressure, the L1 and L2 relative error norms are computed

using Equation 6.2, while L∞ stands for the maximum error. The curvature is extracted at the interface,

F = 0.5, meanwhile the pressure is only measured inside the drop, F = 1. The error in curvature can also

be estimated as ∆κ ∼ 2
na , where n = a/∆x. Similarly, the L1 and L2 normalized norms of the spurious
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currents are measured across the interface, 0 < F < 1, from Ln (φ) = n

√
1
N

N∑
i=1

|φi|n, while L∞ is measured

in the whole domain.

The e�ect of mesh resolution on the curvature after one time step, ∆t, is shown in Table 6.12. The

convergence of the L1 norm is superlinear with an overall convergence of order 1.95 (for N between 15 and

140) and a minimum order of convergence of 1.72. These results are expected because a second-order scheme

was employed in Equation 5.12. In the case of the L2 error, the order of convergence varied between �rst

and third order, with an overall order of 1.81, and a minimum of 0.96. Except for the case of N = 5, the

L1, L2 and L∞ errors were smaller than the estimated error ∆κ (normalized by κ = 1). The L∞ error was

observed to increase for �ne meshes. The HF method is known to increase the error of the curvature when

at least one radius of curvature is comparable to the mesh size. These results suggest that a mesh resolution

of a/∆x > 3 is required to be within 10% error. In cases where r1 � r2 (planar cases), the curvature can be

approximated as κ = 1
r1

+ 1
r2
≈ 1

r2
, and the error behaves like ∆κ ≈ ∆x

r2
2
. Thereby, a slightly coarser mesh

can be used.

Table 6.12: Error of the curvature κ at the interface, F = 0.5, after one time step, CFL = 0.25, for di�erent
mesh resolutions. Reosc = 200 and λ = γ = 103.

Mesh L1 Error L2 Error L∞ Error
a

∆x
(N3) Error Order Error Order Error ∆κ ∼ 2∆x

a2

1 2
3
(53) 0.865 � 0.865 � 0.865 0.6

2 2
3
(83) 9.5× 10−2 4.7 0.127 4.1 0.356 0.375

5(153) 1.8× 10−2 2.7 1.9× 10−2 3.0 3.4× 10−2 0.2

10(303) 4.9× 10−3 1.83 9.9× 10−3 0.96 7.7× 10−2 0.1

20(603) 1.0× 10−3 2.27 1.3× 10−3 2.96 5.9× 10−3 5× 10−2

40(1203) 3.1× 10−4 1.72 6.1× 10−4 1.07 9.3× 10−3 2.5× 10−2

46 2
3
(1403) 2.4× 10−4 1.76 4.1× 10−4 2.54 1.5× 10−2 2.1× 10−2

In general, the maximum error in curvature when using the HF method occurs near the main diagonal

of the cell (̂i + ĵ + k̂), as shown in Figure 6.23, where the iso-surface of the interface is presented for a mesh

resolution a/∆x = 46.7. In this case, that maximum error is 2% after ∆t and it grows up to 5% after 100∆t.

The surrounding error remain within 2%.

One of the bene�ts of using the HF model is the improvement of the pressure distribution. In the case

of a static drop, the pressure distribution inside is uniform. This behavior is recovered numerically, as it is

shown for a coarse mesh and after 100∆t in Figure 6.25. In contrast to the HF-PD model, shown in Figure

6.21, the pro�le does not present spikes near the interface.

The error in pressure is also presented after one step ∆t, Table 6.25, after 100∆t, Table 6.14, and at t = 1,

Table 6.15. The order of convergence in pressure is more or less similar to the convergence of the curvature,

between �rst and second order. However, for later times, t = 1, the order of convergence degrades. This
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Figure 6.23: Curvature κ on the iso-surface F = 0.5 for a drop of radius a = 2, using the HF method and
λ = γ = 103. Results are shown after ∆t and 100∆t (∆t = 6.3× 10−4) for a mesh of 1403 (a/∆x = 46.7).
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Figure 6.24: Pressure distribution of a drop on the xy plane using the HF and the staggered-unweighted
CSF models. Mesh 303, t = 100∆t and λ = γ = 103.

is attributed to the growth in the spurious currents, which bend the interface and produce local changes in

curvature.

Table 6.13: Error in pressure at t = ∆t, CFL = 0.25.

Mesh (a/∆x) L1 Error Order L2 Error Order L∞ Error

153(5) 2.1× 10−2 � 2.1× 10−2 � 1.1× 10−2

303(10) 4.8× 10−3 2.13 4.9× 10−3 2.12 1.8× 10−2

603(20) 1.6× 10−3 1.6 1.8× 10−3 1.41 1.6× 10−2

1203(40) 4.4× 10−4 1.86 5.1× 10−4 1.84 4.8× 10−3

The velocity of the parasitic currents can be estimated from 〈V 〉 = Cσ/η. If the velocity employed is the

maximum velocity, then a higher bound of C can be found. For that reason, the L∞ norm of the velocity

is used. In the case of γ = 1, the spurious current constant is C ∼ 10−4, and it increases for γ = 103 up to

C ∼ 10−1. As a reference, spurious currents are measured and presented in Table 6.16. The values of C for

uniform properties are similar to the reported values using PROST (Renardy and Renardy, 2002).
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Table 6.14: Error in pressure at t = 100∆t, CFL = 0.25.

Mesh (a/∆x) L1 Error Order L2 Error Order L∞ Error

153(5) 3.8× 10−2 � 3.8× 10−2 � 4.2× 10−2

303(10) 9.8× 10−3 1.96 1.0× 10−2 1.87 2.8× 10−2

603(20) 2.3× 10−3 2.07 2.6× 10−3 2.03 7.0× 10−3

1203(40) 6.7× 10−4 1.79 8.4× 10−4 1.61 7.2× 10−3

Table 6.15: Error in pressure at t = 1, CFLσ = 0.25.

Mesh (a/∆x) L1 Error Order L2 Error Order L∞ Error

153(5) 3.1× 10−2 � 3.1× 10−2 � 3.7× 10−2

303(10) 8.5× 10−3 1.87 9.1× 10−3 1.79 2.2× 10−2

603(20) 3.0× 10−3 1.52 4.0× 10−3 1.18 3.9× 10−2

X

Y

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 6.25: Spurious currents on the xy plane using the HF, PLIC, DDR and the staggered-unweighted
CSF models. Mesh 303, t = 1 and λ = γ = 1. The velocity �eld is scaled 75 : 1.

Table 6.16: Spurious currents at t = 1, for Reosc = 200, CFLσ = 0.25.

γ = λ = 1 γ = λ = 103

Mesh L1 norm L2 norm L∞ norm
L∞µ
σ L1 norm L2 norm L∞ norm

L∞µ
σ

303 8.6× 10−3 1.3× 10−2 5.7× 10−2 4.1× 10−4 1.2× 10−1 5.2× 10−1 6.4 4.5× 10−2

603 1.9× 10−3 3.7× 10−3 5.0× 10−2 3.5× 10−4 3.2× 10−2 1.0× 10−1 5.6 4.0× 10−2

1203 8.3× 10−4 1.6× 10−3 4.3× 10−2 3.0× 10−4 3.5× 10−1 1.2 39.2 0.28
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6.4.2 Oscillation of a liquid drop

The numerical method is further studied for the motion of an initially deformed drop in a quiescent �ow.

This problem allows for a full validation of the numerical method because it combines high drop deformation

with relatively large Re and variations in viscosity and density. This �ow is governed by Reosc =
√
ρdσa/ηd,

where a is the radius of equilibrium. The parameters used for the comparisons are the �rst period of the

oscillation, τ1, and the dorp aspect ratio A/B, where A and B are the horizontal and vertical lengths,

respectively. The domain is limited by a cube of side 2. All the boundaries are prescribed with pressure

p = 0 and normal velocities, while the initial condition is u = 0, p = 0. Following the work of Basaran

(1992), the initial deformation of the drop is given by a departure of the nth spherical harmonic,

r (θ) = γ1/3
n a [1 + fnPn (cos θ)] 0 6 θ 6 π, n > 1 (6.3)

where r is the radius from the origin in spherical polar coordinates, the angle θ is measured with respect to

the horizontal axis, fn is the amplitude of the initial deformation, γn is a normalization factor that ensures

constant volume for di�erent initial deformations and Pn is the nth Legendre's polynomial. For n = 2,

the normalization is γ2 = 35
35+21f2

2 +2f3
2
for the prolate deformation, while γ2 = 280

280+420f+378f2
2 +103f3

2
for the

oblate deformation.

The FCT Algorithm and the Oblate Drop

In this part we study the deformation of drops using the FCT algorithm for the case of the oblate shape

deforming at Reosc = 40. For a negligible matrix �uid dependence, high viscosity and density ratios are

used: λ = ηd
ηm

= 1000, γ = ρd
ρm

= 1000. The simulations are based on ρd = 1, σ = 1, a = 1 and ηd = 0.025.

For Reosc = 40, the constants for the Rayleigh-Lamb model are b = 0.125 and ω = 2
√

2, which relates to a

complex frequency of βn = 0.125± i 2.8312.

The motion of the interface is shown in Figure 6.26, where a sharp interface is obtained. The aspect

ratio for the oblate case using two curvature models is shown in Figure 6.27, where the results of Basaran

(1992) using the BIM method are also included as a reference (prolate case). It can be observed how the

oblate case is in better agreement with the Rayleigh-Lamb solution than the prolate case. The comparison

with the theoretical model shows an average di�erence of 7% and a maximum of 19%. When the curvature

is computed from Height functions (HF), severe degradation of the interface was obtained (not shown),

con�rming that the FCT model works better with a convolution/smoothening method than with the HF

method.
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(a) Interface motion (b) Contour of the volume fraction at the maximum
amplitude of the �rst cycle

Figure 6.26: Interface of the oscillating viscous drop problem at Re = 40, γ = λ = 1000, and CFL = 0.5.
The curvature is computed from the divergence of the interface normal vector (DINV).

Figure 6.27: Aspect ratio a/b of a viscous drop initialized from a departure of the 2nd spherical harmonic
(oblate case) at Re = 40 and γ = λ = 1000 using two smoothening functions. The curvature is computed
from the divergence of the interfacial normal vector (DINV) using the Peskin and Yabe approach. References
are Basaran (1992) (prolate case) and the theoretical Rayleigh-Lamb model.

The Former PLIC Algorithm and the Prolate Drop

The next step in improving accuracy is by means of PLIC and the HF method. Now, the comparison is made

for a drop initialized with the prolate shape (departure of the 2nd spherical harmonic) with an equivalent

radius a = 1 for Reosc = 10, Reosc = 40 and Reosc = 100. The CFL number is kept small to reduce

time-step dependency. The interface is transported using the FCT-VOF and PLIC-VOF algorithms. The
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surface-tension force is calculated using the molli�ed ρ-CSF model together with the HF, HF-PD, HF-AD

and HF-LH curvature models. The normal vector is computed from a combination of the central di�erence

and the HF method.

The shape of the drop during the �rst half period is shown in Figure 6.28, where it can be noticed similar

amplitudes and timescales for di�erent Re. Several more simulations are summarized in Table 6.17. The

aspect ratio is also studied in time and is presented in Figures 6.29-6.31.
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Figure 6.28: Shape of a drop (F = 0.5) released from a departure of the 2nd spherical harmonic (deformation
f2 = 0.5) on the xy plane. (a-b) Using the FCT method, the HF-AD curvature model and a relatively coarse
mesh (603). (c) Using PLIC and HF-LH (903).
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(a) Re = 10 (©) and Re = 40 (2,3)
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(b) Re = 100

Figure 6.29: Evolution of the aspect ratio A/B for a drop released from a departure of the 2nd spherical
harmonic (deformation f2 = 0.5), using the FCT-VOF method and for large drop-medium property ratio
(λ = γ = 103). The simulations are performed on a relatively coarse mesh (603) at CFLσ = 0.125. (a)
The HF-AD curvature model is presented for Re = 10 (©) and Re = 40 (2), while the HF-PD for Re = 40
(3). (b) For Re = 100 using the models: HF (· · · · · · ), HF-PD (− − −), HF-AD (− · −). The reference is
Basaran (1992) at Re = 10 (��), Re = 40 (· · · · · · ) and Re = 100 (��).

The FCT algorithm is employed for Re = 10 and Re = 40, where the error in the aspect ratio at the �rst

period, [A/B]1, on a mesh 603, is smaller than 4% in amplitude and 5% in phase when compared with the
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Table 6.17: Sensitivity analysis on mesh re�nement of the aspect ratio, A/B, at the �rst period, τ1, for a
deformation f2 = 0.5.

FCT algorithm, λ = γ = 103, CFLσ = 0.125 PLIC algorithm, λ = γ = 102 , Re = 100, ∆t = 2.5× 10−4

Re Mesh a
∆x

τ1 (E)
(
A
B

)
1
E (%) Order Mesh a

∆x
τ1 E(%)

(
A
B

)
1
E(%) Order

HF-AD HF-PD

303 6.75 2.52 (2) 1.34 (24) � 303 6.75 2.65 (2) 1.66 (6) �

603 14.25 2.53 (2) 1.62 (8.1) 1.46 603 14.25 2.50 (1) 1.755 (0.4) 3.6

100 1203 29.25 2.71(9) 1.82 (3.3) 1.25 903 21.75 2.40 (3) 1.800 (2) <0

HF-PD HF-LH∗

303 6.75 2.50 (1) 1.64 (6.9) � 403 9.25 2.52 (2) 1.729 (2)

603 14.25 2.47 (1) 1.61 (8.6) <0 603 14.25 2.47, (1) 1.753 (0.5) �

903 21.75 2.41 (3) 1.65 (6.3) 0.72 903 21.75 2.46 (1) 1.753 (0.5) ~0

1203 29.25 2.38 (4) 1.68 (4.9) 1.05 1203∗∗ 29.25 2.50 (1) 1.748 (0.8) <0

Ref. 2.4800 1.7622 HF-AD

HF-PD 603 14.25 2.47 (1) 1.776 (0.8) �

603 14.25 2.493 (1) 1.567 (3.9) 903 21.75 2.46 (1) 1.773 (0.6) 0.58

40 HF-AD Ref. 2.4800 1.7622

603 14.25 2.638 (6) 1.558 (4.4)

Ref. ∼ 2.48 ∼ 1.63 ∗ F-CSF force model

HF-AD ∗∗∆t = 1.5× 10−4

303 6.75 2.49 (2) 1.312 (1.6) � Error is provided in parenthesis (%).

10 603 14.25 2.537 (4) 1.299 (0.6) 1.3 Reference is Basaran (1992).

Ref. 2.4436 1.2909

boundary integral method of Basaran (1992). For Re = 40, the evolution of the aspect ratio obtained with

the HF-PD method was slightly more accurate in space and time than HF-AD, as presented in Table 6.17

and Figure 6.29a. However, for Re = 100 the HF-AD method performed better than HF and HF-PD in time

and space, as shown in Figure 6.29b. The problem is more challenging for Re = 100, since more mesh points

are required (> 903) to be within 5% error. In the case of a mesh 1203 and the HF-AD model, the error

is less than 3.3% in amplitude, but a shift of 9% in phase is observed due to a subharmonic. These results

at high density ratios show how a mesh resolution of a/∆x ∼ 15 is su�cient to resolve major deformations

when Re is small, but at moderate Re, more resolution is required. The principal source of error is the

curvature model because relevant di�erences in the aspect ratio are observed for di�erent models.

For the case of the PLIC-VOF method at Re = 100, a considerably smaller time steps are required to

ensure stability when the density ratio is high, so it was lowered to λ = γ = 102. By comparing the aspect

ratio for di�erent methods, shown in Figure 6.30a using a mesh 603 and for the �rst period in Table 6.17, the

curvature models are ordered in terms of accuracy as: HF-PD, HF-LH and HF-AD. If now the fourth period

is considered, the HF-AD performs slightly better than HF-PD and HF-LH. For larger mesh resolutions,

HF-LH performs better because this method converges with grid re�nement. The SF-Y model was also
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Figure 6.30: Evolution of the aspect ratio A/B when a drop is released from a departure of the 2nd spherical
harmonic, f2 = 0.5, using the PLIC-VOF method at Re = 100, for a low drop-medium property ratio
(λ = γ = 102). (a) Curvature model comparison for a mesh 603 and ∆t = 2.5 × 10−4: HF-AD (− · −),
HF-PD (− − −) and HF-LH (· · · · · · ). (b) Sensitivity to mesh resolution using the HF-PD model: mesh 303

(− · −), 603 (− − −) and 903 (· · · · · · ). The reference is Basaran (1992) (��).

tested, but the interface degradation was severe and the results were discarded. A mesh sensitivity using

the HF-PD model is shown in Figure 6.30b, where it can be observed how the oscillations amplify with grid

re�nement more than expected. Even though these results are within 6% of error, convergence with grid

re�nement is possible when the F-CSF force and the HF-LH model are used, as shown in Figure 6.31.
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Figure 6.31: Sensitivity to mesh resolution of the aspect ratio A/B when a drop is released from a departure
of the 2nd spherical harmonic, f2 = 0.5, using the PLIC-VOF method, F-CSF force and the HF-LH curvature
model at Re = 100, λ = γ = 102. For mesh 403 and ∆t = 2.5 × 10−4 (− · ·−), 603 and ∆t = 2.5 × 10−4

(− · −), 903 and ∆t = 2.5 × 10−4 (· · · · · · ), 1203 and ∆t = 1.5 × 10−4 (− − −). The reference is Basaran
(1992) (��).

The DDR-PLIC Algorithm

The interface is now transported using the BDR-PLIC and DDR-PLIC methods and the curvature used

is HF model provided by normals computed with the HF method as well. The surface-tension forces are
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calculated using the unweighted CSF model. In di�erence to the previous subsections, the average viscosity

is computed with the harmonic-mean function.

The shape of the drop is very similar to the previous results, however, the change of the interface during

the �rst half period is shown in Figure 6.32.
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(a) Contours for F = 0.5 on the xy plane (b) Iso-surface for F = 0.5

Figure 6.32: Motion of a drop released from a departure of the 2nd spherical harmonic (deformation f2 = 0.5),
using the DDR-PLIC method with the HF curvature model, λ = γ = 100 , mesh 603 and ∆t = 2.5× 10−4.

Table 6.18: Sensitivity analysis on mesh re�nement of the aspect ratio, A/B, at the �rst period, τ1, for a
deformation f2 = 0.5 using PLIC. Flow conditions at Re = 100, λ = γ = 100. The normalized error is
presented in parenthesis.

DDR Algorithm BDR Algorithm

∆x ∆t τ1
(
A
B

)
1

Order (∆x)n τ1
(
A
B

)
1

Order (∆x)n

2a/15 2.5× 10−4 2.488 1.6251 (7.7× 10−2) � 2.489 1.6238(7.9× 10−2) �

a/15 1.0× 10−4 2.40 1.6808 (4.6× 10−2) 0.752 2.40 1.6802(4.7× 10−2) 0.755

a/30 1.0× 10−4 2.45 1.7151(2.7× 10−2) 0.790 2.46 1.7147(2.7× 10−2) 0.787

Ref. (Basaran, 1992) 2.48 1.7622

A comparison between the BDR and DDR methods is shown in in Table 6.18 and Figure 6.33. The

di�erence between the methods is negligible, which means that the drop aspect ratio is not sensitive to the

�uxing algorithm. Considering that the order of convergence between the BDR and DDR methods is slightly

di�erent and the results are very similar, it can be concluded that the main source of error for this type of

problem is not due to the �uxing algorithm of F itself, but due to the forces. The aspect ratio is observed to

converge on mesh re�nement with an order of ∼ 0.75−0.79. The surface-tension force depends on curvature

and the gradient of the volume fraction. In the case of curvature, the local error reduces superlinearly with
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mesh re�nement (static drop problem), but such error may contribute to increase the accumulated error.

Advection and viscous forces may also contribute to the error, leading to a �nal sublinear convergence of the

drop aspect ratio.
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Figure 6.33: Comparison of the aspect ratio A/B for a drop released from a departure of the 2nd spherical
harmonic (deformation f2 = 0.5) between the BDR (− − −) and the DDR (· · · · · · ) methods at Re = 100.
For λ = γ = 102, mesh 1203 (∆x = a/30) and ∆t = 10−4.

The aspect ratio is also presented in Figure 6.34 for Re = 10 and Re = 100. For Re = 10, the phase

and the aspect ratio [A/B]1 are in excellent agreement with the results of Basaran (1992), where only 603

internal cells are required to obtain such accuracy. This not only shows that our method is consistent, but

shows how the curvature model is also accurate for non-spherical shapes. As Re is increased, more cells

are needed to be within a given error. For Re = 100, the equivalent spherical drop must be resolved with

∆x ≤ a/15 to be within 5% error. The convergence on mesh re�nement for Re = 100 is shown in Figure

6.34b. Because the error increases with Re, it is then expected that advection forces are responsible for the

error contribution.

It is also of interest to show how the kinetic energy evolves in time. It is computed in the whole domain

as KE (t) =
∑
i

1
2

(
ρ (t) ‖u (t)‖2 ∆V

)
i
and presented in Figure 6.35. The maximum kinetic energy decreases

due to viscous dissipation as expected, but not as periodically or with the decay observed in cases of small

deformations or when the drop is initially spheroidal.
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(b) Re = 100

Figure 6.34: Evolution of the aspect ratio A/B for a drop released from a departure of the 2nd spherical
harmonic (deformation f2 = 0.5), using the PLIC-VOF-DDR method and the HF curvature model. (a) For
λ = γ = 103 and Re = 10: mesh 603 (∆x = a/15) and ∆t = 10−4 (− − −). (b) For λ = γ = 102 and
Re = 100: mesh 303 (∆x = 2a/15) and ∆t = 2.5×10−4 (− − −), 603 (∆x = a/15) and ∆t = 10−4 (− · −),
1203 (∆x = a/30) and ∆t = 10−4 (· · · · · · ). The reference is Basaran (1992) at Re = 10 and Re = 100
(��).
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Figure 6.35: Evolution of the kinetic energy for the problem of a drop released from a departure of the 2nd

spherical harmonic, f2 = 0.5 at Re = 100. For λ = γ = 102 , mesh 603 and ∆t = 2.5× 10−4 (− − −), 1203

and ∆t = 1.5× 10−4 (��).

This benchmark is widely used in the community for small deformations, but not so much for non-

spheroidal shapes, large deformations f2 and Re & 100. As Re, density and viscosity ratio increase, the
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problem becomes more challenging, making it useful for testing overall accuracy of methods as it was shown

here.

6.4.3 Drop Deformation in a Simple Shear Flow

An initially-spherical drop of radius a subject to a simple shear �ow adopts a spheroidal shape as it deforms.

The drop is located between two plates moving at a shear rate γ̇ and separated by a distance d. The respective

dimensionless separation or clearance ratio is β = d/ (2a). For β & 4, the deformation is slightly dependent

on d (Li et al., 2000). This problem is governed by the external Reynolds number, Re = ρmγ̇a
2/ηm, capillary

number, Ca = ηmγ̇a/σ, the viscosity ratio, λ = ηd/ηm, and the density ratio, γ = ρd/ρm. The referential

time and velocity are tref = γ̇−1 and uref = γ̇a.

The topology of the drop becomes steady when the surface-tension force is relatively important, or

unsteady otherwise, conducing to breakup and daughter drops. Common parameters to characterize the

deformation are the Taylor deformation, D, given by D = (l − b) / (l + b), where l and b are the half-length

and half-breadth of the drop, respectively, and the orientation angle, θ, which is the angle between the drop

semi-major axis and the horizontal.

The advection terms of the momentum equation are not computed because the Stokes �ow limit is

enforced (Re = 0). Uniform properties between the drop and the medium are considered, λ = γ = 1. The

initial conditions are u (x, 0) = 0 and p (x, 0) = 0, while the boundary conditions are prescribed as follows:

pressure p = 0 at the inlet/exit regions in the x direction, no-slip conditions at the walls in y direction and

symmetries in z direction.

The FCT Algorithm

The results of drop deformation and angle of orientation are now shown using the FCT algorithm. Changes

in the drop contour in time are shown in Figure 6.36, while the steady-state conditions are presented in Table

6.19 and Figure 6.37. If the capillary number is below the critical value, Ca < 0.41, then drop breakup is

avoided. Since the time step is limited by viscous forces, the semi-implicit scheme is stable for large CFL.

Here, CFL > 1 is employed. Several values of Ca were simulated, for subcritical and supercritical conditions.
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(a) Ca = 0.1 (b) Ca = 0.3 (c) Ca = 0.42 (d) Ca = 0.5

Figure 6.36: Cross-section view of the deformation of a viscous drop in simple shear �ow, for equal densities,
λ = 1 and Stokes �ow, using an uniform mesh 120× 60× 60, CFL = 1, a/∆r = 14, the staggered surface-
tension model provided with κ = −∇ · n̂.

Table 6.19: Parameters of the simulation (Stokes �ow* Re = 0), λ = 1

η ρ γ̇ σ a Re* Ca a/∆r DNum DTheo 45◦ − θ 45◦ − θtheo

1 1 1 2.5 0.25 0.0625 0.1 14 0.119 0.123 6.9 6.27

3 1 3 7.5 0.125 0.015625 0.15 7 0.172 0.180 10.4 9.4

3 1 3 7.5 0.25 0.0625 0.3 14 0.360 0.229 19.7 18.8

4.2 1 4.2 10.5 0.25 0.0625 0.42 14 0.508 (0.32) 32.9 26.3

5 1 5 12.5 0.25 0.0625 0.5 14 - - - -

This problem was addressed with several advection schemes in the FCT algorithm, until acceptable results

were achieved. Initially, a high-resolution scheme applied to the transport of F was too di�usive and the

interface was blurred out, as shown in Figure 6.38. The next type of scheme that can be used is a downwind

scheme. Among limiting-like schemes, the FCT algorithm is the only method capable of getting accurate

results, but it is prone to creating stairs on inclined interfaces and detachment. For instance, large values of

Ca show a severe degradation of the interface.

In the next section, the PLIC algorithm is employed and several problems associated with the FCT

algorithm are solved, however, at the expense of creating voids and wisps (�rst PLIC implementation).
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(a) (b)

Figure 6.37: Deformation of a viscous spherical drop in simple shear �ow. Comparison for equal densities,
λ = 1 and Stokes �ow, using an uniform mesh 120x60x60, CFL = 1, a/∆r = 7− 14. The CSF model is the
staggered surface-tension model with κ = −∇ · n̂. (a) Taylor deformation parameter D as a function of Ca
under steady-state conditions (b) Drop orientation angle θ.

(a) (b)

Figure 6.38: Cross-section view of the deformation of a viscous drop in simple shear �ow, for equal densities,
λ = 1, Ca = 0.1 and Stokes �ow, using an uniform mesh 60x30x30, CFL = 1, a/∆r = 7− 14, the staggered
surface-tension model provided with κ = −∇·n̂ and t = 0.91. (a) For FCT-VOF and second-order backwards
(b) For VOF and Second Order backwards

Former PLIC algorithm

The same problem is now analyzed using our �rst PLIC algorithm, which is similar to the BDR method.

The following results were obtained using the HF-PD curvature model. Using the oscillating viscous-drop

problem as a reference for Re < 100, accuracy is within 5% error when the drop resolution is a/∆x & 15−20.

The parameters for this simulations are the following: radius a = 0.25, shear rate γ̇ = 1, plates separation

d = 2, clearance ratio β = d/ (2a) = 4, external Reynolds number Re∗ = ρmγ̇a
2/ηm = 0.0625, uniform

properties across the interface λ = γ = 1, rectangular parallelepiped domain of size 3 × 2 × 1 and the time

step is limited to ∆t ≤ 0.001.

The steady-state shape for di�erent capillary numbers is presented in Figure 6.39a. The transient solu-

91



Table 6.20: Steady-state Taylor deformation parameter, D, and angle of orientation, θ, for an initially
spherical drop of radius a = 0.25, subject to a simple shear �ow in a domain 3×2×1 and a mesh 180×120×60.
Stokes �ow (Re = 0) with uniform properties.

PLIC-VOF Phenomenological model (Minale, 2008)

Ca L/a B/a D 45◦ − θ D 45◦ − θ

0.1 1.122 0.897 0.1166 8.8 0.109 6.27

0.15 1.202 0.846 0.1736 11 0.164 9.40

0.20 1.293 0.809 0.2348 15 0.219 12.5

0.25 1.417 0.764 0.2991 17 0.273 15.7

0.30 1.545 0.722 0.3631 21 0.328 18.8

0.35 1.703 0.671 0.4348 24 0.383 21.9

0.4 2.116 0.621 0.5461 29 - -
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(a) Steady-state shape contours
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Figure 6.39: Deformation of a viscous drop subject to a simple shear �ow under the Stokes �ow assumption
(Re = 0) in a domain of size 3× 2× 1, using an uniform mesh 180× 120× 60 (a/∆x = 14.625, ∆x ∼ 1/60),
∆t ≤ 0.001, the HF-PD model and uniform properties (λ = γ = 1). (a) Each contour correspond to a di�erent
capillary, Ca =

(
0.1 0.15 0.2 0.25 0.3 0.35

)
, where Ca = 0.35 has the largest deformation.

tions were considered for a di�erent capillary numbers. The time scale of the deformation changes with the

capillary number as it is shown in Figure 6.39b. For large Ca, the e�ect of the surface-tension force becomes

weak and larger physical times are required to achieve steady-state conditions, demanding a stable method.

In this sense, PLIC represents an improvement over the FCT algorithm.

The half-length, L, and the half-breadth, B, are extracted from each contour, and the Taylor deformation

parameter is computed, while the angle of orientation is obtained from the direction of the semi-major axis.

These results are summarized in Table 6.20 and Figure 6.40. As it can be observed, these results are in

excellent agreement with the solutions of Li et al. (2000) (PROST), where simulations using similar mesh

resolution and domain size were performed. The analytical results of Taylor (1934), Barthès-Biesel and

Acrivos (1973), and the phenomenological model of Minale (2008) are presented to show the deviation of the

numerical solution as Ca increases.

Now, a mesh sensitivity analysis is performed at Ca = 0.35 using the half-length distance as parameter.

The following steady-state values are obtained: for ∆x ∼ 1/60 the deformation is L/a = 1.702, while for
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Ca, Capillary number
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Figure 6.40: Comparison of the steady-state condition of a sheared viscous drop for di�erent capillary
numbers. Simulations using the PLIC method (©), the Stokes �ow approximation, uniform properties
(λ = γ = 1), mesh 180× 120× 60 (a/∆x = 14.625), and ∆t < 0.001. Prediction from the phenomenological
model Minale (2008) (��). Analytical solutions are from (a) Taylor (1934) and (b) Barthès-Biesel and
Acrivos (1973) (� � �). The numerical solutions are from PROST (Li et al., 2000) (N).

∆x ∼ 1/90, L/a = 1.715. The transient solutions are shown in Figure 6.41, achieving excellent agreement

with the results using PROST (Renardy and Renardy, 2002) and the boundary integral method of Cristini

et al. (2001). The major di�erence between pro�les is attributed to the initial condition because the velocity

is initialized in their case, while here an initially quiescent �ow is considered. A remarkable improvement in

accuracy is obtained from using the HF-PD over the HF curvature model. Later on it was found that such

improvement are related to an increased in curvature in the HF-PD model.
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Figure 6.41: Evolution of the half-length, L/a, of a viscous drop subject to a simple shear �ow, for uniform
properties (λ = γ = 1), Stokes �ow approximation, and the curvature model HF-PD. For a mesh 180×120×60
(∆x ∼ 1/60), ∆t = 1.25× 10−4 (•) and 270× 180× 90 (∆x ∼ 1/90), ∆t = 7.5× 10−5 (©). The references
are PROST (∆x = 1/128) (� � �) and BIM (��) (Renardy and Renardy, 2002; Cristini et al., 2001).

Renardy and Renardy (2002) used PLIC and PROST in their simulations and observed that the CSF

model (PLIC) produces a lack of accuracy. However, a half-length of L/a = 1.715 was obtained here with a

CSF-PLIC method, which presents a smaller error than the best e�ort (∆x = 1/128, ∆t = 5× 10−4) using
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PROST, L/a = 1.709. The referential value is L/a = 0.717 in the work of Cristini et al. (2001). This shows

the relevance of using a �sharp� CSF force model together with an accurate curvature model (HF-PD).
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Figure 6.42: Sensitivity of the evolution of the half-length, L/a, to the curvature model and type of CSF
model. Properties are uniform (λ = γ = 1), Stokes �ow approximation is considered and ∆t = 1 × 10−3.
For a mesh 240× 160× 80 (∆x ∼ 1/80) HF-PD (− − −), and 180× 120× 60 (∆x ∼ 1/60) HF-AD (− · −),
HF-PD with F-CSF (� �), HF-LF with CSF (− · ·−) and HF-LH with F-CSF (· · · · · · ). The references is
BIM (��) (Cristini et al., 2001).

Considering the excellent results produced by the combination HF-LH and F-CSF for the problem of the

initially-deformed drop, its performance is analyzed for shearing �ows and compared with the other methods.

This time, the initial condition of the velocity �eld is u (y, 0) = γ̇y, as done by the references. Now, the

result of the half-length matches the solution using BIM (Cristini et al., 2001) at the initial stages of the

drop deformation for all methods. However, the half-length at steady-state conditions varies depending on

the method employed. These results are summarized in Figure 6.42 and Table 6.21. When the HF-PD

and HF-AD models are combined with the unweighted CSF force, the steady-state values are in excellent

agreement with the reference, where di�erences of 0.6% and 1.3% are observed, respectively. When the

HF-LH model is combined with the weighted CSF, the error increases monotonically without achieving

steady-state conditions. In order to determine whether the cause is the F-CSF force or the curvature model,

the model HF-PD is combined with the F-CSF force, producing a relatively small deviation of 4.7%. When

the HF-LH model is combined with the unweighted CSF force, a signi�cant di�erence of 15% is observed.

Even though weighting the CSF model introduces error, the use of the HF-LH model causes the largest

impact, producing unacceptable results when both models are combined. Because of this departure from the

steady-state solution, the HF-LH model was not employed in our studies, and the weighted-CSF model was

avoided.
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Table 6.21: Comparison of the drop half-length for various curvature and surface-tension force models at
Ca = 0.35 and t = 15 against the BIM solution (Cristini et al., 2001) (L/a = 1.717).

Staggered-CSF Staggered-F-CSF

Model (∆x) Half-length (L/a) Di�erence (% Model (∆x) Half-length (L/a) Di�erence (%

HF-PD (1/80) 1.707 0.6 HF-PD (1/60) 1.798 4.7

HF-PD (1/60) 1.692 1.5 HF-LH (1/60) 2.161 26

HF-AD (1/60) 1.694 1.3

HF-LH (1/60) 1.970 15

In shearing �ows, the PLIC method remains stable whereas the FCT method degrades promptly. Since

long-term simulations are required when Ca is large, the PLIC method is preferred.

DDR-PLIC algorithm

Similarly as before, the sphere has radius a = 0.25 and subject to a shear rate γ̇ = 1 for the same clearance

ratio β = d/ (2a) = 4. The porpoise of this section is to show that the deviation of the deformation

observed by other authors is due to the size of the domain. The selected domains are of sizes 3× 2× 1 and

3× 2× 2, equivalent to 12a× 8a× 4a and 12a× 8a× 8a, respectively. It will be shown that the results are

su�ciently accurate for the second domain, con�rming that only the symmetric boundary conditions in z,

or the periodic condition for other authors, are a�ecting the values of the half-length, discarding the �uxing

methods, mesh resolutions and curvature models as the possible reasons of the deviation. Renardy et al.

(2002) performed a sensitivity analysis of the domain size, mesh resolution and time step on L/a, showing

that for Lx = Ly = Lz = 12a, ∆x = 3a/32 and ∆t = 10−4 an error of 2.5% is achieved. Here, an error of

0.6% is achieved for the second domain, but as large as 6% with the �rst domain.

For the following results, the HF curvature model, the PLIC method and both �uxing strategies are

employed. Accuracy is within 6% error for a drop resolution of a/∆x & 15, as expected from the results of the

oscillating viscous-drop problem. The time step is limited to ∆t ≤ 5×10−4, for a typical CFLu < 0.01 which

is low enough to assume superlinear convergence on mesh re�nement of the �uxing algorithms. Moreover,

the HF curvature model is selected in order to keep convergence on mesh re�nement. Therefore, the error

due to interface advection is minimized.

The transient shape of a drop at capillary number Ca = 0.35 and its deformation are presented in Figure

6.43. The steady-state Taylor deformation, normalized half-length and orientation angle are D = 0.435,

L/a = 1.728 and θ = 24.6◦, respectively, for a domain of size 3 × 2 × 2, mesh resolution a/∆x = 15 or

∆x = 1/60 and ∆t = 5 × 10−4. This result is within 0.6% of error with respect to the solution of Cristini
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(b) Evolution of the Taylor deformation and Half -Length

Figure 6.43: Deformation of a viscous drop subject to a simple shear �ow under the Stokes �ow assumption
(Re = 0) at Ca = 0.35 in a domain of size 3 × 2 × 2, using an uniform mesh 180 × 120 × 120 (a/∆x = 15,
∆x = 1/60), ∆t = 5×10−4, the HF model and uniform properties (λ = γ = 1). (a) Each contour corresponds
to a di�erent time, t = (0, 0.2, 0.5, 1.1, 2.35, 20).

et al. (2001) using the boundary integral method.

A mesh sensitivity analysis is performed at Ca = 0.35 for a domain of size 3×2×1 to show the dependence

of the drop half-length on Lz, which is Lz/a = 4 for this case. The steady-state results are presented in

Table 6.22, while the transient results in Figure 6.44. As it can be observed, L/a diverges from the reference

value Cristini et al. (2001), 1.717, as the mesh resolution and time step are re�ned. The results are also

independent of the VOF �uxing strategy, namely BDR or DDR, as expected. Because of the Stokes �ow

assumption, the steady-state values of L/a will not depend on Re∗. Only when domain size in the z direction

is increased from 4a to 8a, the error reduces from ∼ 5% to 0.6%. Therefore, accurate values can only be

obtained if the domain is su�ciently large. To the present, it was not clear if PLIC methods were capable

of obtaining accurate solutions in this problem. Now, it is shown to be possible, but more accuracy would

be directly related to the curvature model, the mesh resolution and the size of the domain in all directions.

Table 6.22: Comparison of the drop half-length for various curvature and surface-tension force models at
Ca = 0.35 and t = 15 against the BIM solution.

BDR DDR

Mesh (a/∆x) Half-length (L/a) Di�erence (%) Mesh (a/∆x) Half-length (L/a) Di�erence (%)

180× 120× 60(15) 1.798 4.7 180× 120× 60(15) 1.794 4.5

240× 160× 80(20) 1.809 5.4 180× 120× 120(15) 1.728 0.64

300× 200× 100(25) 1.826 6.4 Cristini et al. (2001) 1.717 �

It is also possible to compare against the results of Renardy et al. (2002). When they used a domain of

12a× 12a× 12a, ∆x = 3a/32 and Re∗ = 0.03125, the drop half-length was L/a = 1.76, which represents a
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Figure 6.44: E�ect of the mesh re�nement and domain size on the evolution of the half-length, L/a, of
a viscous drop subject to a simple shear �ow under uniform properties (λ = γ = 1) and Stokes �ow
approximation. Using BDR: mesh 180 × 120 × 60 (∆x = 1/60, a/∆x = 15) and ∆t = 5 × 10−4 (− − −),
240 × 160 × 80 (∆x ∼ 1/80, a/∆x = 19.6) and ∆t = 5 × 10−4 (− · −), 300 × 200 × 100 (∆x = 1/100,
a/∆x = 25) and ∆t = 1×10−4 (· · · · · · ). Using DDR: mesh 180×120×60 (12a×8a×4a) and ∆t = 5×10−4

(�), 180× 120× 120 (12a× 8a× 8a) and ∆t = 5× 10−4 (©). The references are PROST (∆x = 1/128) (�)
and BIM (��) (Renardy and Renardy, 2002; Cristini et al., 2001).

di�erence of 2.5. This di�erence only goes below 4.8% when they use the domain of size 12a and could have

been lower for smaller ∆x. Nevertheless, mesh resolution is very limiting factor. For instance, the simulations

using a/∆x = 25 require about 6 million uniformly spaced cells. Such simulation requires several weeks to

months to complete.

These results indicate that PLIC-VOF is fully capable of obtaining accurate solutions in this type of

problems when the curvature, the �uxing and the reconstruction are convergent on mesh re�nement, together

with the proper domain size and resolution. Previously, other methods were required to obtain accurate

solutions, like PROST or BIM. Here, a mesh resolution of a/∆x = 15 and Lz = 8a was su�cient to be

within 0.6% error. This parameters let us understand the error incurred in future simulations.

These results are obtained at Ca = 0.35 where a steady-state conditions can be achieved. For Ca > 0.42,

the drop stretches considerably and breakup is expected, as it is discussed next.
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6.4.4 Breakup of a Drop in a Simple Shear Flow

It is known that a droplet subject to a simple shear �ow at low Reynolds (i.e. Re = 0.0625) breaks up at

Cac ≈ 0.43 for a clearance ratio β = 4. The case now studied is Ca = 0.44, which allows for a comparison

with the VOF method of Renardy and Renardy (2002) (PROST) and the boundary integral method (BIM)

of Cristini et al. (2001). In this section, the predicting capabilities of the PLIC algorithm are tested for the

deformation and breakup of drops. The external Reynolds is the same as in the previous problem and the

Stokes �ow limit is also enforced. The parameter for the comparison is the drop half-length, L, because it is

a direct indicative of accuracy and the time for breakup.

Weak wall e�ect: Former PLIC algorithm

In this section, the results from using PLIC and the HF-PD curvature model are analyzed. The domain

selected for this test is a parallelepiped of size 3 × 2 × 1. The interface contours of a drop breaking up is

shown in Figure 6.45. As it can be observed, the deformation of the drop is large enough to produce breakup

and three daughter drops of ellipsoidal shape. Lobes are produced as the drop stretches. Then, whole-

drop recirculation diminishes as the neck forms and contracts. When lobe recirculation starts, a �lament is

produced and remains stable until the �nal rupture.
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Figure 6.45: Breakup of a viscous drop in a simple shear �ow. For uniform properties, λ = γ = 1, Re∗ =
0.0625, Ca = 0.44, ∆t = 1.25× 10−4, mesh 180× 120× 60 (a/∆x = 14.6).

The results for a mesh 180×120×60 (∆x ∼ 1/60) presented drop breakup at t0.5 = 38.9 for a half-length
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of L/a = 4.14. The �lament is completely detached from the daughter drop when t0.001 = 39.8, where

the subindex indicate the contour-level criterion. For a coarser mesh, 160 × 80 × 40 (∆x ∼ 1/40), breakup

occurs at t0.5 = 41.0 and t0.001 = 44.0. The references reported breakup at tc = 47.8 (PROST) and tc = 49

(BIM), where the half-length is L/a = 5.39 for the latter. This discrepancy is attributed to the lack of mesh

resolution at the �lament region (around one cell), leading to a high error in curvature and �uxes, which in

turn induced an earlier breakup. Also, the HF-PD model is expected to increase the curvature, therefore

larger forces and early ruptures.

The evolution of the half-length of the drop is compared against the �nest mesh resolution (∆x = 1/160)

of (Renardy and Renardy, 2002) (PROST), as shown in Figure 6.46. It is worth noting that the method

here presented is capable of achieving a correct drop deformation, which is given by the solution using BIM

Cristini et al. (2001). The di�erence of L with respect to BIM is within 2% up to time t = 39.
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Figure 6.46: Evolution of the half-length of a viscous drop in a simple shear �ow. Uniform properties
(λ = γ = 1), Re∗ = 0.0625, ∆t = 1.25 × 10−4. The HF-PD and PLIC methods used for Ca = 0.44, mesh
180 × 120 × 60 (a/∆x = 14.6) (��) and 160 × 80 × 40 (a/∆x = 9.6) (� · �). The references are PROST
(∆x = 1/160) (· · · · · · ) and BIM (� � �) (Renardy and Renardy, 2002; Cristini et al., 2001).

One of the capabilities of the VOF method is to conserve mass, feature that is required in long-term

simulations. The volume of the drop measured at time t = 0 is V0 = 6.544992 × 10−2, while at t ∼ 39

is V0 = 6.544840 × 10−2, which represents a normalized di�erence of 2 × 10−5. This was achieved with a

normalized residual of the pressure-correction equation of 10−3, the former PLIC method, which is similar

to the BDR scheme, and without any redistribution algorithm which enforces mass conservation.

Weak wall e�ect: DDR-PLIC algorithm

Now, the same problem is repeated, but using the most recent DDR-PLIC algorithm. It is important to

mention that results as accurate as before were not possible and the e�ect of the mesh size was investigated.

Even though the method is superior to the previous PLIC method, the curvature model used is the HF
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model. The reason behind the selection of this model is that it converges with mesh re�nement, unlike the

HF-PD, and the viscous stress �eld is more smooth. In order to investigate the convergence of the method,

two parallelepiped domains of sizes 3× 2× 1 and 3× 2× 2 are considered. The deformation of the interface

for Ca = 0.44 is shown in Figures 6.47 and 6.48, while the drop half-length is presented in Figure 6.49.
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Figure 6.47: Breakup of a viscous drop in a simple shear �ow. For uniform properties, λ = γ = 1, Re∗ =
0.0625, Ca = 0.44, ∆t = 5× 10−4, mesh 270× 180× 90 (a/∆x = 22.5).
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Figure 6.48: Breakup of a viscous drop in a simple shear �ow. For uniform properties, λ = γ = 1, Re∗ =
0.0625, Ca = 0.44, ∆t = 5× 10−4, mesh 180× 120× 120 (a/∆x = 15).

Using the mesh 270 × 180 × 90 (∆x = 1/90 or a/∆x = 22.5 ), the drop breaks up with half-length

L/a = 4.77 at t = 38, which represents an error of 12% in L/a and 22% in time. For a coarser mesh,

180× 120× 60 (∆x = 1/60), breakup occurs with half-length L/a = 4.66 at t = 41, equivalent to 14% error
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in L/a and 16% in time. This indicates that mesh re�nement increase the deformation, but breaks up the

drop sonner, as expected. The references reported breakup at t = 47.8 (PROST, ∆x = 1/160) and tc = 49

(BIM), where the half-length is L/a = 5.39 for the latter. These results are obtained with the smaller domain

in z.

When a larger domain in z is employed, mesh 180 × 120 × 120, the drop breaks up at t = 55 for a

half-length L/a = 4.28, representing a 12% di�erence in time and 20% in space. Analyzing how accurate

this method was for previous problems, it is then expected that these discrepancies are due to the boundary

conditions and mesh re�nement. Numerical errors in the �lament region are prone to occur because the

one-cell resolution problem and the fact that the error in curvature is large for an interface not resolved

within 3 cells.

t, Time

L
/a

, 
N

o
rm

a
li
z
e

d
 H

a
lf

L
e

n
g

th

0 5 10 15 20 25 30 35 40 45 50 55
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 6.49: E�ect of the mesh size and resolution on the evolution of the half-length of a viscous drop in a
simple shear �ow at Ca = 0.44 under uniform properties (λ = γ = 1) and Re∗ = 0.0625. Using the HF-DDR
method for ∆t = 5× 10−4 and meshes 177× 117× 57 (a/∆x = 14.6) (− · −), 180× 120× 120 (a/∆x = 15)
(− − −), 270× 180× 90 (a/∆x = 22.5) (· · · · · · ). The reference is BIM (��) (Renardy and Renardy, 2002;
Cristini et al., 2001).

Considering that mesh re�nement increases the deformation, it is expected that �ner meshes in a wider

domain would produce more accurate solutions. Producing solutions at the required mesh resolution ∆x .

1/160 and time step is quite limiting.

In terms of mass conservation, the volume of the drop measured within time t = 0 − 30 remained as

V = 6.54498× 10−2 for a/∆x = 22.5.

Despite our best e�orts to show accurate solutions of this problem, the important conclusion is that the

method is capable of predicting drop breakup, but with limited accuracy.
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6.4.5 Drop Deformation in a Straight Capillary Tube

The problem of a spherical viscous drop located in capillary tube with a started pressure-driven Stokes �ow

is analyzed for di�erent capillary number and mesh resolutions. The objective is to compare the shape of

the drop obtained using PLIC-VOF with the boundary integral method (BIM) of Tsai and Miksis (1994).

This comparison is held at Re = 0 for a blockage ratio β = a/R = 0.9, and a range of Ca = µU/σ from

0.05 to 1.0, where U is the upstream average velocity. The domain in consideration is a parallelepiped of

size 16.7× 2× 2, where a pipe is generated by prescribing wall boundary conditions as required. The drop

is initially located at xo = −6a, position where the �ow is already fully developed since Ld/d > 0.62 for

Re = 0. A sensitivity analysis to the mesh resolution is performed based on the velocity and geometrical

parameters of the drop, as shown in Fig 6.50. The aspect ratio is de�ned as L/B, where L is the maximum

horizontal length of the drop and B is the maximum vertical breadth. Drops with re-entering cavities are

characterized by the the the tip-to-end length at y = 0, A.

L

A

B

Figure 6.50: Geometrical properties of a deformed drop in a capillary tube. The shape is given for Ca = 1.0
at t = 2 and a mesh resolution d/∆x = 30.

Table 6.23: Centerline and maximum tip-to-end length of the drop for di�erent mesh resolutions at Ca = 1.
Error shown in parenthesis (%).

time

d
∆x

∆t 2 4 6

A L A L A L

30 (Re = 0.1, MS N = 5) 1× 10−4 2.33 (2.1) 3.44 (1.1) � � � �

60 (Re = 1, RK N = 4 ) 5× 10−4 2.06 (11) 3.45 (0.9) 0.91 (35) 3.77 (4.6) 0.41 (28) 3.65 (5.2)

60 (Re = 0.1, MS N = 10) 2.5× 10−4 2.398 (0.8) 3.392(2.5) 1.292 (7.7) 3.769 (4.6) 0.474(17) 3.608(6.3)

Tsai and Miksis (1994) � 2.38 3.48 1.40 3.95 0.57 3.85

The evolution of the shape of the drop for Ca = 1 is presented in Fig 6.51, where a re-entering cavity is

observed as in the simulations of Tsai and Miksis (1994). It was noticed that a good parameter for comparison
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Figure 6.51: Evolution of an initially spherical drop of radius a = 0.9 in a capillary tube of radius R = 1 for
λ = 0.1 and Ca = 1.0 at t = 0, 2, 4, 6. Mesh resolution d/∆x = 60. Advection terms are not computed.

is the tip-to-end length A. As it can be observed from Table 6.23, the error incurred in the shape is large.

Several simulations were performed to �nd the reasons of the discrepancy. This problem motivated the

study of multistep, Runge-Kutta and DDR-PLIC methods in VOF. The multistep method with N = 5, 10

was employed with the former PLIC algorithm to minimize the errors in time and due to �uxing of the

volume fraction. The HF-PD curvature model is also employed in order to improve the curvature for coarse

meshes. It was found as the main reason for the discrepancy the e�ect of the local acceleration term in

the momentum equation. This error let us understand the di�erence between having Re ∼ 0 and using the

Stokes approximation with �nite values of Re. This study showed that the error incurred for Ca = 1 is as

large as 17% for a mesh resolution d/∆x = 60 and Re = 0.1. The main contribution to this error is the high

curvature at the rear side of the drop, that is, at the tips of the re-entrant cavity. A case like this one may

take bene�t of multigrid solutions.

Table 6.24: Aspect ratio, A/B, of the drop for di�erent mesh resolutions and Capillary numbers

d
∆x

\ Ca 0.05 0.2 0.5

30 (Re∗ = 1) 1.113 (1.1) � �

57 (Re∗ = 1) � 1.465 (11) 2.044 (9)

60 (Re = 0.1) 1.102 (2.1) 1.590(3.6) 2.139 (4.8)

Tsai and Miksis (1994) 1.126 1.650 2.246

The drop contours at lower capillary numbers are presented in Figure 6.52. The aspect ratio is compared

in Table 6.24. The cases with mesh resolution d/∆x = 57, Re∗ = 1 (advection is not computed), the former
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PLIC and the HF curvature model showed a maximum di�erence of 11% for Ca = 0.2. For d/∆x = 60,

DDR-PLIC-HF and Re = 0.1 (advection is now considered), the maximum di�erence reduces to 4.8% for

Ca = 0.5. The solution for highly spherical drops is accurate as expected, meanwhile the error for higher

Ca decreases with a lower Re. This benchmark shows that drops with resolutions of a/∆x ∼ 27 produce

results that are su�ciently accurate. Lowering Re may improve the results further.

By using multisteps methods, an important reduction in wisps and improved interfaces are observed,

meanwhile using DDR-PLIC eliminates those problems. Results of the latter where more accurate because

a lower Re is employed. This concludes the validation of the VOF-DDR-PLIC method.
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Figure 6.52: Steady-state deformation of an initially spherical drop of radius a = 0.9, λ = 0.1. For Ca =
0.05, 0.2, 0.5, using the former BDR (Re∗ = 1) (· · · · · · ) and DDR (Re = 0.1) (��). Deformation increases
with Ca.
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6.5 Elastic-Solid Solver

6.5.1 Beam in a cantilever

Consider a horizontal built-in beam of length L, squared cross section A and moment of inertia I, subject to

a punctual vertical force P at the extreme pointing downwards. The steady-state solution of this problem

using the elastic curve theory gives, y = −Px2 (3L− x) / (6EI), where A = bh and I = bh3/12. Here,

a numerical model is employed based on linear elasticity with added di�usion (to achieve steady-state), a

non-uniform grid and provided with the following properties: ρ = 1, E = 2000, ν = 0, L = 0.5, h = 0.1,

b = 1. Equivalence to the elastic curve is obtained using a �thin� mesh, as shown in �gure 6.53.

(a) (b)

Figure 6.53: Displacement of a beam in a cantilever after the application of a punctual force at the extreme:
(a) E�ect of mesh re�nement (b) Contour of U1 and U2.

6.5.2 E�ect of simple shear on an elastic cylindrical shell

On the previous section, a simple shear is applied on a drop and the respective Taylor deformation parameter

was obtained. A similar problem was performed by Ramanujan and Pozrikidis (1998) on a spherical shell

(following the strain energy function of Skalak et al. (1973), which allows for shear deformation but resists

local and global dilatation) using a boundary element method in axisymmetric coordinates. Here, a fully 3D

�nite volume method is considered, following an elastic model for the stress tensor. To stabilize the solution

and achieve steady state, a volumetric force is added as, Fd = Cṽ∆V, where C is a damping constant and

V is the volume of the cell.

An external shear �ow is applied and a zero-way coupling is considered: a constant shear stress acting on
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the external faces. The 2-way coupling required more numerical research in order to get relatively accurate

solutions. The stress applied to the external face of the membrane is given by τxy = ηmγ̇, where u = γ̇y and

v = 0. It is assumed no �ow inside the shell or low viscosity, therefore, the shear stress is only imposed on

the external faces. For this problem, the capillary number is replaced by the dimensionless shear rate as,

G = ηmγ̇R/Es

where ηm is the viscosity of the matrix �uid, R is the particle radius and Es is the surface elastic modulus,

Eh, being h is the thickness of the membrane. The results are shown in �gure 6.54, where a similar trend is

found between the simulated cylindrical shell and thin capsule of the reference using G. The angle with the

horizontal remains at 45◦ for large G in this simulation, while it is observed to reduce in the literature. The

shell bends inwards while the capsule bends outwards.

Despite that a cylindrical shell with zero-way coupling and a capsule with full coupling are two di�erent

problems, the solutions showed similarities in deformation. Because of the equivalence between G and Ca,

it may be possible to �nd a relationship between the behavior of a drop and a biological cell. In a dynamical

sense, elasticity may produce oscillations, while viscoelasticity may produce dampening, as it will be shown

next.
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Figure 6.54: Deformation of an elastic body for several dimensionless shear rate, G. Results for the defor-
mation of a cylinder after the application of a constant stress, τ 12, on the external side (−�−). Comparison
with the deformation of a thin capsule subject to a simple shear �ow and λ = 1 (•), from Ramanujan and
Pozrikidis (1998).
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6.5.3 E�ect of simple shear on an elastic sphere

Results using the experimental code with 2-way coupling are now presented, basically to show the qualitative

oscillatory behavior of the problem. For simplicity, a sphere is now compared with a drop. The pressure and

shear stress contours, together with the solid surface, the streamlines and the maximum deformation of the

solid are presented in Figure 6.55.

(a) Pressure contour, G = 0.35 (b) Shear stress contour, G = 0.35

(c) Shear stress contour, G = 1.6 (d) Maximum deformation

Figure 6.55: Stresses and deformation for a solid sphere in a simple shear �ow

By comparing several results using the drop deformation and the solid sphere, the �uid to solid relation

for similar deformation is G ∼ 7Ca. These results are presented in Figure 6.56. The elastic solid shows fully
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oscillatory behavior, while the simple-viscoelastic solid shows dampening. This is not the case for drops at

relatively low Ca where the Taylor deformation is monotonic.

(a) Taylor deformation of the solid (b) Comparison between the solid and the drop

Figure 6.56: Taylor deformation of a solid sphere in a simple shear �ow.

This brief study allow us to understand the main di�erence between drops and rubber-like solids which

is the oscillatory behavior. If such e�ect is not considered, one can still �nd similarities between drops and

membraned-like objects.

The code for the solid presented unstable behavior when the object had rotated considerably. Also, there

are several publications of the behavior of membranes for elastic and viscoelastic solids. A cell membrane is

better represented by a thin membrane because of its thickness, so thick-membrane analysis does not apply

to that problem. For these reasons, this investigation was not pursued further.

6.6 Conclusions

Di�erent problems were used to validate the forces and submodels required to simulate the particle-drop

interaction. The temporal and viscous forces were veri�ed with a Poiseuille �ow, while the accuracy of

advection forces was analyzed with the cavity �ow problem, showing convergence to the exact solution for

the former and convergence to solutions in the literature for the later. The problem of a static drop was

included to verify of the importance of the spurious currents, accuracy of the pressure jump and curvature,

and degree of mass conservation. The motion of the interface and its reconstruction was addressed with

the single vortex problem and the deformation �eld, showing not only excellent volume conservation, but

superlinear order of convergence with grid re�nement. The problem of an initially deformed drop allowed for
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a �nal veri�cation under a non-linear problem were all the models are relevant. The long-term capabilities

of the method and e�ect of the boundary conditions were addressed in the problem of a drop subject to a

simple shear �ow.
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Chapter 7

Results

7.1 Wall E�ect on the Breakup of Drops in Simple Shear Flows

When the con�nement is greater than a/d = 0.15, the walls a�ect the drop shape and its critical capillary

number, Cac, as shown in the phenomenological model of Minale (2008). In this study, a drop is sheared

under high con�nement geometry for various Ca and the critical conditions for breakup are estimated.

The sensibility of the drop deformation and critical conditions to the size of the domain is also analyzed.

The symmetry in z direction is brought closer to the drop to increase the drop stability and reduce the

mesh points. For moving plates separated by a distance d, the limiting geometry has a clearance ratio of

β = d/ (2a) = 1, unless the drop is initially deformed or injected.

Similarly as before, drop radius is a = 0.25 and properties are uniform, λ = γ = 1. The clearance ratio is

�xed to β = 1.1, while Ca is varied until breakup is found. The external Reynolds number is Re∗ = 0.0625

and Stokes �ow approximation is used again. Four types of meshes are used: uniform spacing (M1), variable

spacing throughout the domain (M2), variable spacing only away from the drop in the x direction (M3),

and variable spacing in the x and z directions (M4).

The simulations show steady-state drop deformations for Ca . 0.48, where the drop stretches, recoils

and then stretches again without breakup. The drop half-length evolves as a mass-spring damped oscillator

until steady-state conditions are achieved, as shown in Figure 7.1. Steady-state conditions are achieved after

t ∼ 200 with half-lengths of L/a = 4.259, 4.460, 4.664, for Ca = 0.45, 46, 47, respectively. The deformation

increases as Ca is increased, until drop recovery is no longer possible and breakup occurs. For Ca = 0.49

the drop breaks up in a domain with Lx = 20a and Lz = 5a, but it is stable in a domain with Lx = 16a.

The drop breaks up at Ca = 0.48 when Lz = 12a.

The Taylor deformation, D, shown in Figure 7.2, is very similar between di�erent cases for t < 30. The
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maximum elongation of the drop is t ∼ 30. Past this time, D deviates depending on whether the drop

manifests breakup or not. The cases with a larger domain in the z direction have smaller values of D. It

is noted how the Taylor deformation increases for supercritical cases (Ca ≥ 0.50) after t ∼ 30, while it

decreases for near critical conditions (Ca = 0.49). This behavior could be used to determine the type of

breakup because it is di�erent between critical and slightly supercritical conditions. The Taylor deformation

parameter is also expected to increase for larger supercritical conditions because the drop breaks up without

recoiling. The cross section (xy plane, z = 0) of the interface for these cases are presented in Figures 7.3-7.7

for more details.
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Figure 7.1: Half-length, L/a, of a viscous drop under high con�nement geometry, low Re, uniform properties,
∆t = 5×10−4 and domain size Lx×2.2a×Lz. For meshM1−320×44×100 (a/∆x = 20), Lx = 16a and Lz =
5a: Ca = [0.45 0.46 0.47 0.48 0.49] (��). For single/multi-meshes: Ca = 0.48 (M3− [320, 400]× 44× 100,
Lx = [16a, 24.5a]), Ca = 0.49 (M1 − [320, 400] × 44 × 100, Lx = [16a, 20a]), Ca = 0.50 (M3 − 460 ×
44 × 100, Lx = 28.2a), Ca = 0.51 (M3 − [340, 460] × 44 × 100, Lx = [21.4a, 28.2a]) and Ca = 0.52
(M3 − [340, 400, 500] × 44 × 100, Lx = [21.4a, 28.2a, 30.6a]) (− · ·−). For mesh M2 − 240 × 40 × 85
(a/∆y > 11, 16a×2.2a×12a), Ca = [0.46 0.48] (· · · · · · ). Some simulations were restarted in larger domains
in x direction as indicated in brackets.
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Figure 7.2: E�ect of the capillary number on the Taylor deformation, D, of a viscous drop under high
con�nement geometry, β = 1.1, low Re, uniform properties and ∆t = 5 × 10−4. For mesh resolution
a/∆x = 20 and Lz = 5a: Ca = 0.48 (M1− 320× 44× 100) (��), Ca = 0.49 (M3− [320, 400]× 44× 100)
(− · ·−), Ca = 0.51 (M3− [340, 460]×44×100) and Ca = 0.52 (M3− [340, 400, 500]×44×100) (− − −).
For variable mesh resolution a/∆y > 11: Ca = [0.46, 0.48] (M2− 240× 40× 85) (· · · · · · ). D increases with
Ca.

113



1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.1

0

0.1

0.2 T = 0, 10, 20, 30

1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.1

0

0.1

0.2 T = 40, 50, 60

(a) Ca = 0.46

1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.1

0

0.1

0.2 T = 0, 20, 30, 38

1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.1

0

0.1

0.2 T = 40, 49, 55

1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.1

0

0.1

0.2 T = 60, 75

(b) Ca = 0.48

Figure 7.3: Breakup of a drop in low Re �ows for an extended domain in z, Lz = 12a, uniform properties,
λ = γ = 1, variable mesh M2− 240× 40× 85 (a/∆yneck ∼ 11), domain size 16a× 2.2a× 12a, MSE scheme
(N = 10) and ∆t = 5× 10−4. For t1 (− · ·−) , t2 (− − −), t3 (��).

Using a variable mesh, a large domain in z direction, Lz = 12a, and the multistep-explicit method, the

simulations at Ca = 0.46 and Ca = 0.48 show a transition from subcritical to supercritical conditions, as

observed in Figure 7.3. For a slightly supercritical Ca, the drop stretching is faster than the inner recoiling

process, giving origin to a neck between the main lobes. These lobes do not retract as fast as in subcritical

cases with large Ca, leading to an unstable neck that breaks up. This occurs at t = 50− 55 for L/a ∼ 5.74.

In comparison, the BIM solution of Janssen and Anderson (2007) presented a critical capillary number of

Ca = 0.465 for β = 1.11.
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Figure 7.4: E�ect of con�nement and domain size on the drop interface at subcritical conditions. For
Ca = 0.47, low Re, uniform properties, λ = γ = 1, mesh M1− 320× 44× 100 ( a/∆x = 20), ∆t = 5× 10−4

and domain 16a× 2.2a× 5a.

When symmetric boundary conditions are brought closer to the drop, the lobes are smaller, the neck is

more stable and breakup is delayed until Ca & 0.49. In the case of Ca = 0.47, a neck started to form in the

middle, as shown in Figure 7.4 for t = 50, but this drop is stable and a steady-state condition is achieved

after t > 200.

In the case of Ca = 0.48, Figure 7.5, four neck-like structures were formed, as shown for t ∼ 50. These

structures are stable for Lx = 16a and Lx = 24.5a, even though the latter shows larger deformation. In this

sense, there is an e�ect of the boundary in x direction on the deformation, but it does not induce breakup.

When the domain is reduced in the x direction, the mixed inlet/outlet boundary condition is brought

closer to the drop, which makes the �ow more stable. This �ow can be made physically possible by inserting

a rack of �ns aligned horizontally and located close to the point of the maximum drop deformation. This

e�ect is more evident for Ca = 0.49 because it produces stable or unstable drops. These results are presented

in Figures 7.6a, 7.6b and 7.1, the latter in terms of the drop half-length.
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(a) Mesh M1− 320× 44× 100, domain 16a× 2.2a× 5a
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Figure 7.5: Continuation of Figure 7.4, for Ca = 0.48.
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(a) Ca = 0.49, meshes M1− [320, 400]× 44× 100, domains [16a, 20a]× 2.2a× 5a
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(b) Ca = 0.49, mesh M1− 320× 44× 100, domain 16a× 2.2a× 5a
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(c) Ca = 0.50, mesh M3− 460× 44× 100, domain 28.2a× 2.2a× 5a

Figure 7.6: Drop interface near critical conditions. Similar parameters of Figure 7.4.

The type of breakup is similar between Ca = 0.49 and Ca = 0.50 in the sense that two dumbbell-shaped

and one spheroidal daughter drops are created after the formation of four constrictions. However, the central

drop is smaller for Ca = 0.5. The critical deformation are L/a = 7.15 at t = 57 and L/a ∼ 7.5 at t ∼ 60,

respectively.
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(a) Ca = 0.51, meshes M3− [340, 460]× 44× 100, domains [21.4a, 28.1a]× 2.2a× 5a.
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(b) Ca = 0.52, meshes M3− [340, 400, 500]× 44× 100, domains [21.4a, 24.5a, 30.6a]× 2.2a× 5a.

Figure 7.7: Drop interface for supercritical conditions. Similar parameters of Figure 7.4.

For Ca = 0.51, six constrictions are formed, but only two o�-center constrictions are unstable, as shown

in Figure 7.7. Breakup is observed at t = 57 for L/a = 8.4. Two main daughter drops are created and

they adopt a stable dumbbell shape. A smaller daughter drop is created in the middle from the neck. For

Ca = 0.52, three necks gave origin to four daughters: two dumbbell-shaped and two spheroids. The central

neck breaks up at t = 51 while o�-center necks break up at t = 52, for L/a = 9.09. Considerably more mesh

resolution would be needed to capture and track the small fragments, if any. For larger values of Ca, more

fragments are expected.

7.1.1 E�ect of Viscosity Ratio

The e�ect of non-uniform viscosity across the interface on the critical conditions is now analyzed. The degree

of con�nement in y direction and density ratio are the same as in the previous section, β = 1.1 and γ = 1,

but the viscosity ratio is changed to λ = 0.3 and λ = 1.9. A full domain in z is considered because it is the
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least critical case and a variable mesh is used in all directions (M2), as shown in Figure 7.8a.

For λ = 0.3, the drop stabilizes considerably. There is no evidence of necking at Ca = 0.6, meanwhile

a central neck is observed at Ca = 0.7 which breaks up at t = 53.5 with a drop half-length L/a = 7.59.

This rupture originates two daughter drops. When compared with λ = 1, less deformation is observed for

a given Ca. Additionally, the case Ca = 0.7 and λ = 0.3 is very similar to the case Ca = 0.5 and λ = 1 in

critical half-length and type of breakup. The critical condition for λ = 0.3 is in the range of Cac = 0.6− 0.7,

representing ∼ 30% increase from λ = 1. These results are shown in Figure 7.8.
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(b) Ca = 0.6, mesh M2− 240× 40× 85, domain 16a× 2.2a× 12a
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(c) Ca = 0.7, mesh M2− 380× 50× 90, domain 28a× 2.2a× 12a

Figure 7.8: Deformation of a drop of radius a = 0.25 in a �ow with a more viscous medium, λ = 0.3, at low
Re and β = 1.1.

For λ = 1.9, the drop breaks up for Ca = 0.47 after the formation of six constrictions and it is stable for

Ca = 0.40, as shown in Figures 7.9a and 7.9b. The central neck then disrupts and creates a small daughter
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drop, while the remaining of the mother drop produces two dumbbell shaped drops. This resembles the case

of λ = 1 and Ca = 0.49. Rupture happens at t ∼ 60 for L/a = 8.14. In the case of Ca = 0.5, only three

constrictions are formed, as shown in Figure 7.9c. In contrast to λ = 1, the drop pinched at the most external

necks. Rupture is observed for L/a ∼ 7.3 at t ∼ 50. For Ca = 0.6, the drop stretches considerably more and

several constrictions appear, as shown in Figure 7.9d. Therefore, several daughter drops are expected. The

critical condition is within Cac = 0.4− 0.5.

For a more viscous drop, λ = 1.9, the drop deformation, the critical Ca and the critical time remained

similar to the case with λ = 1, while the type of breakup can be due to central-pinching or end-pinching,

depending on Ca. For a less viscous drop, λ = 0.3, the deformation is reduced considerably, requiring smaller

values of the surface-tension coe�cient to induce breakup.

Based on these results, an estimation of the critical point is plotted against viscosity ratio λ in Figure

7.10. The �tting shown by Grace (1982) (weak wall e�ect and low Re) is expressed in terms of the reduced

shear E, but here are transformed to Ca. The regions for stable and unstable drop show a di�erent tendency

for λ > 1. It is then expected that a wall increases the range of λ for which drop rupture can happen, which

is about 4 for uncon�ned �ows.
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(c) Ca = 0.5, mesh M2− 240× 40× 85, domain 20a× 2.2a× 12a, ∆t = 1× 10−3
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(d) Ca = 0.6, mesh M2− 340× 40× 85, domain 28a× 2.2a× 12a, ∆t = 1× 10−3

Figure 7.9: Deformation of a drop in a less viscous medium, λ = 1.9, at low Re and β = 1.1.
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Figure 7.10: E�ect of the viscosity ratio on the critical conditions.

The drop deformation is also analyzed and presented in Figure 7.11. The cases with stable and unstable

drops show a similar behavior in L/a and D for di�erent values of λ, where the main di�erence lies in the

shift of Ca, as it can be observed. Because cases with breakup have an increasing Taylor deformation in

time, it is expected that the critical capillary is smaller than the values reported.
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Figure 7.11: Half-length, L/a, and Taylor deformation,D, of a viscous drop under high con�nement geometry,
and non-uniform properties for λ = 0.3 (· · · · · · ) and λ = 1.9 (��). Details of the simulations are presented
in Figures 7.8 and 7.9.

7.1.2 E�ect of Reynolds Number

The e�ect of inertia is now analyzed for Reynolds numbers, Re = ρmγ̇a
2/ηm, 10 and 40. Strong-wall e�ect

is considered for uniform properties, λ = γ = 1, clearance ratio β = 1.1, Lz = 5a and a = 0.25. When

inertia is present, the drop is expected to break at lower Ca. If the clearance ratio is reduced, then the walls

stabilize the drop, allowing it to achieve higher values of Ca without breaking. The contours of the interface

are presented in Figures 7.12-7.15 and 7.18, while the deformation is summarized in 7.16.

In the case of weak-wall e�ects and Re = 10, the drop breaks for Ca & 0.15 (Li et al., 2000; Renardy

et al., 2002). Breakup is now observed between Cac = 0.35−0.40 when the boundaries are brought closer to
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the drop, as shown in Figures 7.12d and 7.13. This represents a 233− 266% increase in the critical capillary

number. The e�ect of Lz is also veri�ed at Ca = 0.3, as shown in Figures 7.12b and 7.12c. The maximum

half-lengths are L/a = 3.94 for Lz = 5a and L/a = 3.71 for Lz = 12a, representing a 6% di�erence. Recoiling

end-pinching is observed for Ca = 0.40, where breakup occurs at t = 79 for a drop half-length L/a = 7.88.
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(c) Ca = 0.30, mesh M4− 325× 44× 100, domain 20a× 2.2a× 12a
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(d) Ca = 0.35, mesh M3− 340× 44× 100, domain 20.8a× 2.2a× 5a

Figure 7.12: Subcritical drop deformation with inertia. For Re = 10, λ = 1, β = 1.1, mesh resolution on the
drop of a/∆x = 20 and ∆t = 10−3.
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Figure 7.13: Supercritical drop deformation at Re = 10 and Ca = 0.40. For mesh M3− 400× 44× 100 and
domain 20a× 2.2a× 5a. Continuation of Figure 7.12.

In the case of Re = 40, the drop breaks up at lower capillary numbers than Re = 10, as expected.

Extensional end-pinching occurs at Ca = 0.25, for a drop half-length L/a = 9.27 and t = 40. Extensional

end-pinching is also observed at Ca = 0.20, for L/a = 6.54 and t = 63. The critical condition lies in the

range Cac = 0.17−0.20. In comparison to Re = 0 and Re = 10, the drop deformation is larger for any given

value of Ca.
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(a) Ca = 0.10 and Ca = 0.15, mesh M3− 300× 44× 100, domain 18.4a× 2.2a× 5a
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(b) Ca = 0.17, mesh M3− 400× 44× 100, domain 24.5a× 2.2a× 5a

Figure 7.14: Subcritical drop deformation with inertia. For Re = 40, λ = 1, β = 1.1, mesh resolution on the
drop of a/∆x = 20 and ∆t = 10−3.

For Re = 10, the drop retracts after achieving its maximum deformation and then shows end-pinching

without any considerable central constriction. Similarly as it is observed for Re = 0, near critical conditions

showed decreasing L/a and D in time during breakup. In contrast, the cases simulated for Re = 40 only
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show extensional end-pinching. This is better understood in terms of the drop half-length, as presented

in Figure 7.16a, where L/a is shown to decrease for Re = 10 and to increase for Re = 40 in supercritical

conditions. Similar solutions of L/a are observed for di�erent Re in subcritical conditions, mainly shifted by

Ca. An equivalent statement can be made for the Taylor deformation, but only with respect to the tendency

because the initial behavior is di�erent, as shown in Figure 7.16b.
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(a) Ca = 0.20, meshes [340, 400]× 44× 100, domains [20.8a, 24.5a]× 2.2a× 5a
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(b) Ca = 0.25, meshes M3− [300, 400, 500]× 44× 100, domains [18.4a, 24.5a, 30.5a]× 2.2a× 5a

Figure 7.15: Supercritical drop deformation at Re = 40. Continuation of Figure 7.14

In the case of Re & 40, the drop manifests a second mode of oscillations in the transversal cross section.

This behavior is well captured by the Taylor deformation, D, which is not monotonic during the drop-

stretching phase, as show in Figure 7.16b. Because the drop half-length does not show oscillations, then
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only the drop half-breadth varies. In this sense, the Taylor deformation can be de�ned in terms on the

half-breadth in y or z. Instead, changes in the cross-sectional aspect ratio are analyzed in terms of the drop

radius at x = 0 in the y and z directions, Rz/Ry. The interface contours in the transversal cross section

and Rz/Ry against time are presented in Figure 7.17. As it can be observed, amplitude and phase increase

with Ca. The �rst maximum amplitude is (Rz/Ry)1 = [1.47, 1.58, 1.66] and occurs at t1 = [1.61 , 1.97 , 2.02]

for Ca = [0.15, 0.20, 0.25], respectively. The second maximum amplitude, (Rz/Ry)2 = 1.08, is similar for

di�erent values of Ca.
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Figure 7.16: Half-length, L/a, and Taylor deformation,D, of a viscous drop under high con�nement geometry,
uniform properties, ∆t = 1×10−3 and mesh resolution on the drop of a/∆x = 20. For Re = 10 and Lz = 5a:
Ca =0.15, 0.20, 0.25, 0.30, 0.35, 0.40 (��). For Lz = 12a: Ca = 0.30 (− − −). For Re = 40 and Lz = 5a:
Ca = 0.10, Ca = 0.15, Ca = 0.17, 0.20, 0.25(· · · · · · ). For Re = 110, Ca = 0.1 and Lz = 5a (− · ·−).
Deformation increases with Ca.
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Figure 7.17: Cross-sectional aspect ratio, Rz/Ry, at x = 0 (yz plane) and interface of a drop deforming in a
con�ned simple shear �ow at Re = 40, β = 1.1. For Ca = 0.15 (��), 0.20 (− · ·−), 0.25 (· · · · · · ).

Now, cases with Re = 110 are simulated. The �rst observation is that mesh resolutions like the ones used

126



for Re = 40 produce �ctitious wall adhesion. The dynamics for this and larger Re is di�erent because the

interface migrates towards the wall, mostly due to the low pressures in the gap between the interface and the

wall. Wall adhesion may be possible for wetting surfaces because of the proximity of the wall to the drop.

However, a moving contact surface and the respective dynamic contact angle imposes further challenges

that are not studied. This issue is partially solved by increasing the mesh resolution near the walls. In this

manner, drops with relatively small Ca show recoiling instead of numerical tip-streaming. The type of mesh

considered have uniform spacing near the drop in x, bilinear spacing in y and uniform spacing in z (M5).

Cases with Ca ≤ 0.075 are stable, while Ca = 0.1 shows extensional end-pinching breakup, as presented in

Figure 7.18.
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Figure 7.19: Half-length, L/a, and Taylor deformation,D, of a viscous drop under high con�nement geometry,
uniform properties, for Re = 110. Deformation increases with Ca. Details of the simulations are presented
in Figure 7.18.

For Re = 110, the half-length is similar to the previous cases, but the Taylor deformation shows more

oscillation than the Re = 40 case, as observed from Figure 7.19. For Ca = 0.25, D shows two maximums,

while four maximums are noticeable for the remaining cases. Despite the oscillations, D increases in time

for the case that breaks up, Ca = 0.1, which is characteristic of extensional end-pinching. The oscillations

are expected in these cases because the modi�ed or oscillatory Reynolds is considerably larger than 1,

Reosc =
√
ρdσa/ηd = 33− 66.

In the case of transversal oscillations at Re = 110, the amplitude of Rz/Ry and the time required to

reach the �rst maximum increases with Ca. The �rst maximum aspect ratio is (Rz/Ry)1 = [1.24, 1.41, 1.63]

at t1 = [1.16 , 1.57 , 1.85] for Ca = [0.025, 0.05, 0.1], respectively. The second maximum is also similar in

amplitude, ∼ 1.26, but with a larger o�set in time. The behavior of the aspect ratio at large times results in

Rz/Ry > 1 for supercritical cases, while Rz/Ry . 1 for subcritical cases. These results are shown in Figure

7.20.
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Figure 7.20: Cross-sectional aspect ratio, Rz/Ry, at x = 0 (yz plane) and interface of a drop deforming in a
con�ned simple shear �ow at Re = 110, β = 1.1. For Ca = 0.025 (��), 0.05 (− · ·−) and 0.1 (· · · · · · ).

A �nal analysis is performed to determine the correlations between the maximum stable drop half-length,

the �ow parameters and the critical conditions. These results are summarized in Table 7.1 for power and

exponential �ttings, where the latter showed better agreement with the data. Because these relations are

found for conditions near the critical point, the error increases for a given Re as Ca→ 0 and for supercritical

conditions where the behavior is di�erent. This information is also presented in Figure 7.21, where the

critical line is included.

Table 7.1: Fitting of maximum drop half-length

Re Lmax/a (Power) R2 Error (%) Lmax/a (Exponential) R2 Error (%) Ca

0 1 + 79.0Ca3.47 0.9986 0.5 1 + 0.173 e7.46Ca 0.9991 0.3 0.45-0.48

10 1 + 42.7Ca2.21 0.970 10 1 + 0.169 e9.49Ca 0.9972 1.9 0.15-0.35

40 1 + 58.4Ca1.73 0.9938 2.9 1 + 0.291 e13.3Ca 0.9994 0.8 0.1-0.17

110 1 + 29.2Ca1.02 0.982 5 1 + 0.393 e22.9Ca 0.9998 0.6 0.025-0.075

The maximum critical half-length grows linearly with respect to Cac for small Re, while it tends to

asymptote as Re increases,

Lmax/a ≈


10.93Cac + 1.97 for Re ≤ 40

5.94Ca2
c + 6.86Cac + 2.59 for Re ≤ 110

(7.1)

while it decreases with Rec as,
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Lmax/a ≈ 7.31e−
1.085 Rec
Rec+30.96 (7.2)

with an error < 3.5% with respect to the data and within 2 − 20% due to the grid resolution and range of

Ca employed. The half-length shows an asymptotic behavior for large Re, meanwhile Cac decreases with

Re, as presented in Figure 7.22. The relation between Rec and Cac can be obtained by solving Equations

(7.1) and (7.2). Larger Re are required to determine the trend of Cac with certainty.
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7.1.3 Viscoelasticity

The e�ect of viscoelasticity on the drop is to reduce the deformation for De . 1, and to increase it for

De ∼ 3, when Ca = 0.3 Mukherjee and Sarkar (2009). It is observed that viscoelasticity induce complex

�ow and overshoots with oscillatory behavior. Furthermore, the second normal stress N2 was predicted to

be an stabilizing agent against droplet breakup, since highly stable strings resembling a dumbbell can be
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formed (Guido, 2011). Considering the limitation in mesh resolution required to simulate viscoelastic �ows

and the amount of publications in this �eld, this problem was not addressed.

7.1.4 Conclusions

For uniform properties, the critical capillary increases from the uncon�ned case, and it increases even more

if the symmetric boundary conditions or the mixed inlet/outlet boundaries are brought closer to the drop.

This allows for a drop to be fully stable at capillary numbers as high as 0.49. When the drop is more viscous

than the medium, the critical capillary number remains similar to the uniform case. However, di�erent types

of daughter drops are observed. When the medium is more viscous, the drop is considerably stable and

requires large capillary numbers to induce breakup.

Increasing inertia also increases the deformation for a given capillary number, but the drop is more stable

than the uncon�ned cases because the critical capillary number is now larger. Inertia also produces traversal

oscillations. The maximum drop half-length increases exponentially in terms of Ca near critical conditions

for a constant Re, while it may asymptote for large Re. In the case of Cac, it decreases monotonically with

increasing Re.
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7.2 Drop-rigid-particle Interaction in Simple Shear Flows

The previous results leads to the observation that drops subject to simple shear �ows under low Re and

Ca do not break up, and the addition of closer walls increase the stability. In order to bring in another

disruptive element, rigid particles are included into the domain.

Two rigid spheres and an initially spherical drop are simulated under di�erent �ow and geometric condi-

tions to analyze di�erent �ow phenomena. In the absence of particles, certain conditions of several parameters

(Re, Ca, G, λ, κ) are needed to produce drop breakup. Now, two rigid particles are included to understand

their e�ect on the drop and �nd critical conditions where the drop is being punctured. The study focuses

on Stokes �ow, Re � 1, to moderate Re, and low Ca �ow, also called weak �ow limit, Ca � 1. For a

constant Ca, increasing Re enhances the deformation and produces drop breakup, but for low Ca, the drop

is stable. Therefore, to produce a disruption on a stable drop, external forces are necessary. To enforce

the hypothesis that breakup is possible at low Ca, the case of a single drop in con�nement has shown to

decrease critical capillary number, Cacrit, as the obstruction increase when the drop is more viscous than

the medium, λ > 1Minale (2008), shown in �gure 2.1-b, and shown in the previous section for λ = 1.9 where

0.4 < Cacrti < 0.5.

A dimensional analysis of this problem reduces to a correlation of the following properties:

Breakup = f(xp, yp, Rp, Rd, ρp, ρm, ρd, ηm, ηd, σ, γ̇, H)

where ρp, xp, yp, Rp are the particle density, coordinates and radius; Rd, ρd, ηd are the drop density,

viscosity and radius; ρm, ηm are the medium density and viscosity; γ̇ is the shear strain-rate; and H is the

separation of the plates. In order to compare with previous results, this problem is studied in terms of the

�ow parameters: Re =
ρmγ̇R

2
d

ηm
, capillary number Ca = We

Re = ηmγ̇a
σ .

Figure 7.23: Schematic of the problem.
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The problem is depicted in �gure 7.23 where the relevant forces acting on the sphere are shown. The

�ow will induce drag, lift and torque on the particles, but as the gap between the particle and the drop

reduces, a lubrication force will also be present. As the particles approach each other, the pressure in the

gap increases due to lubrication e�ects. While the drop deforms and adopts the �nal shape, which might be

quasi-spherical for low Ca, the vertical force exerted on the rigid particles is responsible for their deviation

and distancing from each other. The location of the particles has an important role because when the vertical

distance is large enough, the shearing e�ect on the drop is minimized, but higher velocities and gradients

could be present, and when the vertical distance is small, the particles go in collisional trajectory and could

puncture the drop. For the former case, breakup could happen due to enhanced shearing stresses, normally

for moderate Re, while for the later, the drop is disrupted and punctured. For this reason, the objective is to

minimize the vertical acceleration of the rigid particles and enforce a horizontal path, in order to reproduce

the later case, which is one way of producing breakup at low Ca and low Re without using self-propelled

particles.

A particle could be capable of distorting the shape of the drop if the pressure in the gap increases to the

order of ∼ κσ. At later stages in the deformation process, the drop adopts a concave shape with negative

curvature that produces minimal lubrication force, and another region with highly positive curvature that

produce a restoring force. Therefore, the critical condition is at the beginning of the motion when the

curvature is positive everywhere. In that sense, disruption could be induced if the vertical deviation of the

particles is minimized at the initial stages. A simpli�ed balance of forces on the particle gives the following,

mpa = Dno−drop + Lno−drop + Flub

The time scale is selected as ts = (Rd +Rp) /U , that is, the approximate time required by a particle to

reach the center of the drop. The vertical acceleration is considered to be proportional to the horizontal,

ay ∝ U/ts. The maximum lubrication pressure over the sphere should be larger than the capillary force

responsible of keeping the shape of the drop, Fy lub ∝ R2
pκσ and κ ∼ 2

Rd
. Considering that external viscous

e�ects are favorable, this problem can be analyzed using the particle Weber number,

Wep =
ρpRPRd (γ̇yo)

2

σ (Rd +Rp)
(7.3)

where yo is the initial vertical distance of the particle as seen from the drop. For very large values of Wep

one can expect breakup or disruption.

Another parameter that was found to correlate better with the deformation is the Laplace number,
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La =
Re

Ca
=

ρp(γ̇yo)RP

η

η(γ̇Rd)
σ

=
ρpσRpyo
η2Rd

(7.4)

It is also of practical to use the Stokes number, de�ned here as,

Stk =
mpU

3πdpRpη
=

1

18

ρpγ̇R
2
p

η
(7.5)

Depending on the trajectory of the particles and the deformation of the drop, the phenomena can be

classi�ed as follows:

� Small drop deformation (negligible e�ect of the particles).

� Large drop deformation.

� Drop disruption during the extensional phase (no collision).

� Critical drop deformation (puncturing)

� Drop disruption during the extensional phase (particle-particle touching).

� Supercritical drop deformation (particle-particle collision)

� Drop disruption after particle-particle bouncing.

Considering the large amount of simulations required to study all the cases, this research focuses on �nding

those �ow conditions and quantities that enhance large deformations and possible puncturing, with emphasis

in low Ca regimes. Determining the mechanisms of the phenomena are also of interest because they allow

for a better understanding and classi�cation of the problem. The principal parameter for this study is the

dimensionless particle-particle distance, de�ned as,

L12 = ‖X2 −X1‖ /(2Rp) (7.6)

The deformation of the drop can also be quanti�ed in terms of the aspect ratio, the Taylor deformation,

the half-length, or half-breadth. However, the particle-particle distance L12 is used because it allows for an

easy way to determine the critical point, which is when there is collision. Another parameter of relevance is

the time to achieve the minimum particle-particle distance, denoted by t∗. Time is normalized by t∗ instead

of the capillary time for convenience with L12,min.
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7.2.1 Uniform properties

In this section, the e�ects of varying Re and Ca are analyzed under uniform conditions: unity viscosity and

density ratios, γd = γp = λ = 1, and unity radius ratio, Rp/Rd = 1, where the subindexes d and p stand for

drop or rigid particle properties, respectively. The domain is a parallelepiped of size (10× 8× 2.5)Rd. The

initial conditions are set to zero velocity and zero pressure. The left and right boundaries (mixed inlet/outlet

regions) are prescribed with zero pressure and normal velocities, the top and bottom walls are prescribed

with speed U and symmetry is applied at the front and back boundaries. The collision and lubrication models

are employed with ε = 0 and εl = 2/3∆x. The location of the rigid particles has an important e�ect on

the deformation of the drop. For instance, as the particles get closer to the centerline, their relative velocity

reduces, but the projected region for collision increases. In the limit, no shearing due to the particles takes

place because they only rotate. However, particles that are closer to the centerline can also return before

passing by. For each combination of Ca and Re, there is an optimal location for maximum drop deformation.

In this section, the location of the particles is �xed to |X (t = 0)| = Rd+Rp, |Y (t = 0)| = 0.8Rd. Considering

the large amount of parameters, this section focuses on the overall e�ect of the �uid properties on the drop

deformation when the plates are suddenly started.

Table 7.2: Particle-particle minimum properties and parameters in uniform conditions

Case Rd
∆x

η ρd ρp γ̇ σ Rd(Rp) Re Ca
(xo,yo)
Rd

Wep La Stk L12,min t∗

I-1 15.6 1 1 1 1 10 1 1 0.1 (2, 0.8) 0.1 10 0.06 1.543 4.04

I-2 15.6 1 1 1 1 4 1 1 0.25 (2, 0.8) 0.25 4 0.06 1.342 4.27

I-3 15.6 1 1 1 1 2 1 1 0.5 (2, 0.8) 0.5 2 0.06 1.204 4.43

I-4 15.6 1 1 1 1 1 1 1 1 (2, 0.8) 1 1 0.06 1.110 4.57

I-5 15.6 1 1 1 1 0.5 1 1 2 (2, 0.8) 2 0.5 0.06 1.064 4.69

II-1 11.6 0.1 1 1 100 10 0.1 10 0.1 (2, 0.8) 1 100 0.56 1.615 0.146

II-2 11.6 0.1 1 1 100 4 0.1 10 0.25 (2, 0.8) 2.5 40 0.56 1.417 0.152

II-3 11.6 0.1 1 1 100 2 0.1 10 0.5 (2, 0.8) 5 20 0.56 1.269 0.156

II-4 11.6 0.1 1 1 100 1 0.1 10 1 (2, 0.8) 10 10 0.56 1.147 0.159

II-5 11.6 0.1 1 1 100 0.5 0.1 10 2 (2, 0.8) 20 5 0.56 1.062 0.166

III-1 15.6 0.02 1 1 100 2 0.1 50 0.1 (2, 0.8) 5 500 2.8 1.673 0.452

III-2 15.6 0.02 1 1 100 0.8 0.1 50 0.25 (2, 0.8) 25 200 2.8 1.484 0.461

III-3 15.6 0.02 1 1 100 0.4 0.1 50 0.5 (2, 0.8) 25 100 2.8 1.344 0.468

III-4 11.6 0.02 1 1 100 0.2 0.1 50 1 (2, 0.8) 50 50 2.8 1.219 0.476

III-4 11.6 0.02 1 1 100 0.1 0.1 50 2 (2, 0.8) 100 25 2.8 1.116 0.484

From previous results, it is expected that a domain of size Lz > 8a has a minimal e�ect on the results.

By lowering Lz to 4a, the drop deformation may increase due to the presence of closer boundaries, but it

may also speed up the dynamics. These e�ects may seem to a�ect the solution, but this domain is chosen

because it reduces the computational cost. Additionally, because �nite Re are considered, symmetries are

avoided to allow for unsymmetrical solutions if it is the case.
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A relevant parameter to measure the deformation of the drop is the particle-particle distance. Values

closer to the rugosity threshold, ε, imply strong e�ects of lubrication forces and large deformations, meanwhile

relatively large values are indicative of minimal to no e�ect on the drop. Collision takes places when the

particle-particle distance is smaller than ε.
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Figure 7.24: Particle-particle distance L12: E�ect of Re and Ca.

The degree of resolution of L12, min depends on the mesh re�nement in the sense that a coarse meshes

produce larger L12,min than a �ner meshes when L12 ∼ 1. For the typical mesh resolutions Rd/∆x =

(6.66, 8, 11.6, 15.6), the lowest L12 that can be resolved are L12,R =
2Rp+2

√
2∆x

2Rp
= (1.21, 1.18, 1.12, 1.09),

respectively. The 2
√

2 factor comes from the fact that the error of the lubrication force is large when the

interfaces between two particles are within two cells of distance, one cell per particle, while the
√

2 comes

from the typical diagonal approach. In this way, L12,R is a conservative estimation of the error incurred for

a given mesh resolution. Any case with L12,min below these thresholds implies a large deformation of the

drop and possibly puncturing. The �nest mesh would be preferred, but the computational times are in the

order of several weeks to months, which sets an upper barrier in the waiting times. Another parameter that

can be of relevance is the minimum distance where collision or lubrication models are activated, but because

ε = 0, only the latter is de�ned: L12,L =
2Rp+2/3∆x

2Rp
= (1.05, 1.04, 1.03, 1.02).

A summary of the properties and cases is presented in Table 7.2. The e�ects of three Reynolds numbers,

1, 10 and 50, and several capillary numbers are explored, and conclusions are derived from the comparison

of L12,min among di�erent cases. As it can be observed, the most important e�ect on the drop deformation

is due to variations in Ca. For small Ca, drop deformation is small and L12,min tends to be large, which

implies that the e�ect of the rigid particles is minimal. Drop deformation also decreases slightly by increasing
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Re. If Ca is now increased, the deformation increases considerable until the point that the drop behaves like

the surrounding �uid (Ca & 1). Relevance is given to estimating the critical capillary CaCr for a given Re

where the drop punctures. The critical conditions are determined from L12,R and the correlation between

L12,min and Ca. This is presented at the end of this section. The rest of this section is dedicated to analyze

the results. It is also important to note that L12,min does not correlate well with Wep, La or Stk numbers.

For that reason, the analysis based on Re and Ca of previous sections will be repeated. Nevertheless, �ows

with low values of La and Stk numbers produce larger drop deformations.

The results presented do not show particle-particle elastic collisions, which are given by L12,min ≤ 1+ ε
2Rp

,

mostly because ε = 0 and L12,min > 1 for the cases simulated. The evolution of L12 is presented in Figure

7.24, from which L12,min is extracted. Also, constant L12,min lines are shown in a plot of Re vs Ca in Figure

7.25, from which it is evident that large Ca are required to produce drop puncturing and particle collisions,

while cases with low Ca exhibit large particle-particle distances. This impose an important limitation on

drop disruption for cases where Ca is even smaller than 0.1 because external forces may be required.
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Figure 7.25: E�ect of Re and Ca on the minimum normalized particle-particle distance, L12,min.

The cases with Re = 1 showed the lowest values of the particle-particle distance. For Ca = 0.1, the drop

recovers from shearing and particulate e�ects, achieving L12,min = 1.54 at t = 4.04, which is about 5% and

8% lower than the value at Re = 10 and Re = 50, respectively. That di�erence decreases for larger values

of Ca. At Ca = 2, Re = 1 shows a slightly lower value of L12,min than Re = 10, which can be attributed

to the di�erence in mesh resolution. This suggests that �ner mesh resolutions increase the values of L12 due

to a larger lubrication force. Several mechanism are observed during the deformation and are discussed for

Re = 10 given the similarities with Re = 1.
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(a) Ca = 0.1

(b) Ca = 0.25

(c) Ca = 0.5

(d) Ca = 1

(e) Ca = 2

Figure 7.26: Particulate shearing of a drop, Re = 1.
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The results for Re = 10 show less deformation than the equivalent cases at Re = 1 after comparing the

values of L12min in Table 7.2, or from the 3D representation presented in Figures 7.26 and 7.27. Similarly

as the case of Re = 1, drop deformation increases with Ca. An analysis for Re = 10 is the following:

� For Ca = 0.1, the particles produce a biconcave shape on the drop, but such deformation is minimal

as noted that the particle-particle distance is large enough, L12min = 1.6. After the passing of the

particles, the drop recoils to the spheroidal stable shape. The mechanisms observed are as follows: (I)

particle approaching, (II) drop-hollowing, (III) tumbling, (IV) drop stretching (V) drop recoiling.

� The deformation is slightly larger for Ca = 0.25, since L12min = 1.4, but another mechanism is

observed: drop spooning and saddling-up. In the former mechanism, the stretching of the drop produce

a spoon-shaped region, which is barely noted in this case. For the latter mechanism, the particles are

separating from each other while the drop adopts a saddle shape, as observed at t = 0.18. In this

case the mechanism are then: (I) particle approaching (II) drop-hollowing (III) slight-spooning (IV)

saddling-up (V) stretching (VI) recoiling.

� For Ca = 0.5, the deformation during the particle-attraction phase is more pronounced, as noted by a

reduction in the particle distance to L12min = 1.27 at t = 0.15. The particle separation phase shows

important deformation as well: (III) spooning, t = 0.17, (IV) saddling-up, t = 0.19 and (V) relevant

stretching, t > 0.21. The saddle shape is formed due to the rotation of the particles.

� The deformation is even more relevant for Ca = 1, as observed from L12min = 1.15 at t = 0.16 (close

to puncturing). This case presents the same mechanisms of Ca = 0.5, but the spooning phase is more

evident, t = 0.18− 0.2, while the saddling-up phase is accompanied by �lamentation, t = 0.22. Then,

the tip of the drop recovers from the saddle shape while it keeps stretching. The drop is expected

to break up for this case, but the simulation was stopped before. Then, a �nal mechanism should be

present: (VI) breakup.

� For Ca = 2, the particles produce a hollow in the deformed drop at t = 0.18 given that L12min = 1.06.

For later times, a large �lament is formed due to the persistent spooning phase. Because surface-

tension forces are considerably less important, the spoon-shaped region remains in time long enough

for the production of a large �lament. This �lament then shows necking at the end of the �lament

and numerical surface tension in the spoon-shaped region. The mechanism of the deformation are as

follows: (I) particle approaching, (II) drop hollowing, (III) drop puncturing, (IV) drop spooning, (V)

spooning with �lamentation and (VI) drop fragmentation.
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(a) Ca = 0.1

(b) Ca = 0.25

(c) Ca = 0.5

(d) Ca = 1.0

(e) Ca = 2.0

Figure 7.27: Re = 10
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The cases with Re = 50 are presented in Figure 7.28 and Table 7.2. This case is similar to Re = 10,

but because Re is larger, the deformation enhances near the tip of the drop. An analysis for Re = 50 is the

following:

� For Ca = 0.1, the drop deformation is small, as noted by a minimum particle-particle distance of

L12min = 1.67. The mechanism seems to be dominated by tumbling, but it can still be categorized as

(I) approaching, (II) tumbling with hollowing and stretching and (III) recoiling.

� For Ca = 0.25, the minimum particle-particle distance is L12min = 1.48. The drop deformation is

di�erent because the tips of the drop are sharper than what it is observed with lower values of Re.

The mechanisms are similar to Ca = 0.1.

� For Ca = 0.5, the minimum particle-particle distance is L12min = 1.34, considerably larger than

the cases with lower Re. The mechanisms observed are (I) particle-particle approaching, (II) drop

hollowing, (III) drop hollowing with tumbling (IV) saddling, (V) tip-sharpening and (VI) recoiling.

� For Ca = 1, the indentation due to the particles is less pronounced than cases with lower Re. For

instance, the minimum distance is L12,min = 1.22, which is larger than in previous cases, 6 − 9%.

The drop also show transversal oscillations that change its shape considerably as it can be observed in

the yz planes. Similarly as the cases with strong-wall e�ect, the maximum half-length of the drop is

smaller than cases with lower Re.

� For Ca = 2, the results show no sign of puncturing (L12,min = 1.12) as for lower Re. The interface is

also di�erent because the drop �attens up and does not produce �laments as before. The saddling-up

phase is also more pronounced than before, up to the point that the spooning phase is shortened and

not observable at later times. The particles �nally detach, leaving the considerably less stretched than

for Re = 10.
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(a) Ca = 0.1

(b) Ca = 0.25

(c) Ca = 0.5

(d) Ca = 1.0

(e) Ca = 2.0

Figure 7.28: Re = 50
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The relevance of viscous and pressure forces is shown in terms of the stress in Figure 7.29. A pressure

�eld increasing towards the drop con�rms that such e�ect is due to lubrication and that pressure is about

one order of magnitude larger than viscous forces. The stress σxx, denoted as S11, shows a combination of

tension and compression that requires further analysis to conclude on its e�ect, but there is an important

region away from the center in compression and a relevant region in tension closer to the center, implying that

the net horizontal force due to σxx may be towards the drop. The stress σyy, denoted as S22, shows tension

near the centerline and compression away from the center, which indicates that σyy produces a net vertical

force towards the center. This con�rms that viscous forces increase the drop deformation, as observed from

the behavior of L12 when Reynolds varies.

(a) Pressure contours on the particles

(b) Stress and pressure contours on the particles

Figure 7.29: Stresses acting on the particles for Re = 10 and Ca = 0.1. The iso-surface is plotted at a) Rp
and b) 1.2Rp

The particle path is now analyzed and presented in Figure 7.30. The pathline of the left particle for a

given condition shows that it deviates vertically up (away from the drop) and that the distance from the

center increases with Re, which is in agreement with the previous results of the particle-particle distance

L12. Cases with larger Re show the following behavior: the horizontal position of the particle is smaller

when t . t∗ (with the exception of Ca = 0.1) and it is larger for t > t∗, as observed from Figure 7.30b, while
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the vertical position is always larger for t ∼ t∗. This behavior con�rms that large Reynolds values tend to

enforce particle-particle separation. Another interesting behavior happens for Re = 10 and Ca = 2, where

close-to-collision conditions are observed. In this case, the maximum vertical position occurs at t = t∗ and

then, the particle move towards the centerline. Because the two particles are close to each other during this

time, lubrication forces are expected to be responsible of such drafting.
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Figure 7.30: E�ect of the Reynolds and capillary numbers on the normalized particle path and position (left
particle) for Re = 10 (blue), Re = 50 (orange), Ca = 0.1 (��) , Ca = 0.25 (− − −), Ca = 0.5 (− · −),
Ca = 1 (− · ·−) and Ca = 2 (· · · ·).

It is of interest to �nd a relationship between the minimum particle-particle distance and the �ow pa-

rameters. When L12,min is plotted against Ca, a relationship of the form L12,min ≈ (f (Ca) + 1) + 1 agrees

well with the data. An additional point is added, knowing that for Ca = 0, L12,min = 2. To simplify the

choice of f (Ca), a power �t is used. This type of correlation seems to be very accurate for low Re, but

is limited by the error of the data. The correlations obtained are presented in Table 7.3 for each Re and

from which an overall regression in Re is obtained. The comparison between the data and the correlations

is presented in Figure 7.31. If any of the correlations is now extrapolated to L12,min < 1.02, the minimum

resolvable value with the most re�ned mesh, it is observed that Ca > 6.7. Therefore, it is expected that for

particle-particle collision, large values of Ca are needed as predicted by these correlations. The conclusion
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is that collisions are not possible at low Ca for uniform properties.

Table 7.3: Correlations for the particle-particle minimum distance

Case Correlation R2 Max Error

I L12,min = 1
7.67Ca0.968+1 + 1 0.99978 0.7%

II L12,min = 1
6.32Ca1.052+1 + 1 0.9975 1.7%

III L12,min = 1
3.78Ca0.908+1 + 1 0.9659 0.9%

Overall L12,min = 1
Ca(2.73×10−3Re+0.129)−1+1

+ 1 0.9891 3.2%

Ca, Capillary number
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Figure 7.31: Minimum particle-particle distance: Data and non-linear regression model

This section was limited to the analysis of the e�ect of Re and Ca for uniform conditions. The e�ect of

particle size, density, drop viscosity and initial position of the particles is discussed next.

7.2.2 E�ect of particle size and density ratio

When the mass of the particles is increased, it is expected that the drop will require larger recovering forces

to resist the deformation. The mass can be increased by either increasing ρp or Rp. In situations where the

particle size is a factor, the density can be increased up to factors as large as ×20. If gravity is a negative

factor, then larger neutrally buoyant particles can be used. Similarly, if only the choice of the material is

a factor, then the particle size can be increased for a given density ratio. In general, it is better if both

parameters are increased. Considering that our limitation is the amount of cells that can be tackled, the

scaling is limited to 3 : 1 with uniform meshes, and to 4 : 1 with a variable mesh. The initial position is

again given by |X (t = 0)| = Rd+Rp, |Y (t = 0)| = 0.8Rd. Therefore, the blockage ratio due to the particles,

de�ned as B = y2−y1

2Rp
, is kept constant. The separation of the plates is H = 4 (Rd +Rp).

In this section, Wep is increased further without changing Re. In that way, the ratio of inertial to

surface-tension forces is increased while the ratio of inertial to viscous forces is kept constant. As it will be

observed, drop puncturing can be achieved with smaller values of Ca as it was originally intended. Lowering

145



Table 7.4: E�ect of the particle size and density on the minimum separation distance, L12

Case Rd
∆x

η ρd ρp γ̇ σ Rd(Rp) Re Ca
(xo,yo)
Rd

Wep La Stk L12,min t∗

II-1 11.6 0.1 1 1 100 10 0.1 10 0.1 (2, 0.8) 1 100 0.56 1.615 0.146

IV-1 15.6 0.1 1 10 100 10 0.1 10 0.1 (2, 0.8) 10 100 5.6 1.530 0.181

IV-2 12.5 0.1 1 20 100 10 0.1 10 0.1 (2, 0.8) 20 100 11 1.488 0.209

V-1 8 0.1 1 1 100 10 0.1(0.2) 10 0.1 (3, 1.6) 2 100 2.2 1.198 0.193

V-2 8 0.1 1 1 100 10 0.1(0.3) 10 0.1 (4, 2.4) 3 100 5 1.083 0.244

V-3** 8 0.1 1 1 100 10 0.1(0.4) 10 0.1 (5, 3.2) 4 100 8.8 <1.047 >0.27

VI-1 6.67 0.1 1 10 100 10 0.1(0.2) 10 0.1 (3, 1.6) 20 100 22 1.155 0.271

VI-2 6.67 0.1 1 20 100 10 0.1(0.2) 10 0.1 (3, 1.6) 40 100 44 1.136 0.321

VI-3 8 0.1 1 20 100 10 0.1(0.3) 10 0.1 (4, 2.4) 60 100 100 1.056 0.425

**Case with variable mesh. The spacing is uniform near the drop to the resolution reported.

B should also e�ectively increase the deformation, but such case is analyzed later on. The conditions of the

simulations are summarized in Table 7.4. Expecting larger deformations for Re < 10, such cases were not

simulated.
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Figure 7.32: E�ect of particle density on the normalized particle-particle distance, L12.

The e�ect of density ratio, case IV, is shown in Figures 7.32 and 7.33. As it can be observed, increasing

the density up to twenty times has a minimal impact on the drop disruption, but it does increase the

deformation because L12 reduces from 1.615 to 1.487. In a sense, such increase in density is close to the

physical maximum that it can be achieved with typical super-heavy solids if the medium is like water. The

main e�ect lies in the timescale, where denser particles take longer to achieve the maximum deformation.

Even though the mesh resolution varies between di�erent cases, the conclusion is still the same.
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(a) ρp/ρd = 10

(b) ρp/ρd = 20

Figure 7.33: E�ect of density ratio at Re = 10 and Ca = 0.1 for uniform particle-drop radius and viscosity.
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Figure 7.34: E�ect of particle size on the normalized particle-particle distance, L12.

The e�ect of particle radius is now analyzed without increasing the density and the results are presented

in Figures 7.34 and 7.35. Particles as large as two times the size of the drop are incapable of producing

drop puncturing, L12,min = 1.2, but particles three times in size is the lowest needed to produce signi�cant

hollowing, L12 = 1.08. Particles four times larger presents L12,min < 1.04.

Now, the density and particle size are increased and the results are presented in Figures 7.36 and 7.37.

Cases VI-1 and VI-2 compared to case V-1 show a slight decreased in L12,min, from 1.2 to 1.16 and 1.14,

respectively.
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(a) Rp/Rd = 2

(b) Rp/Rd = 3

(c) Rp/Rd = 4

Figure 7.35: E�ect of particle radius at Re = 10 and Ca = 0.1 with uniform density and viscosity.
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(a) γp = 10

(b) γp = 20

Figure 7.36: E�ect of density ratio at Re = 10, Ca = 0.1 and Rp/Rd = 2 (coarse mesh) with uniform
viscosity.

Finally, these cases are used to estimate the behavior with respect to density and particle size. The

data is �tted using power laws and the results are summarized in Table 7.5. As it can be observed, the

exponent due to the size is larger than the exponent due to the density. It is important to mention that

these simulations may be within or around 10% error, therefore, these correlations are expected to be around

or within the same error.
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t/t*, normalized time
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Figure 7.37: E�ect of the particle radius and density on the normalized particle-particle distance, L12.

Table 7.5: Correlations for the particle-particle minimum distance

Case Correlation R2 Max Error

IV L12,min = 1.684− 0.0695
(
ρp
ρd

)0.347

1 5× 10−5%

V L12,min = 0.92 + 0.694
(
Rd

Rp

)1.32

1 6× 10−3%

Overall L12,min = 1 + 0.651

[(
Rd

Rp

)1.24

− 0.0905
(
ρp
ρd

)0.290
]

0.991 2.9%

7.2.3 E�ect of viscosity ratio

Literature indicates that lower critical capillary numbers tend to occur for λ ≈ 1 and values of λ away from

∼ 1 are stabilizing. Our results with the high-constriction geometry in a simple shear �ow show a slight

reduction of Cac for λ > 1. In order to determine if a similar e�ect happens when including particles, cases

with the following conditions are considered: Re = 10, Ca = 0.1, Rp/Rd = 2, λ = [0.1, 1.9], Rd

∆x = 8 and

∆t = 2.5× 10−5.

� For λ = 1.9, the minimum distance is L12min = 1.202 and happens at t = 0.194. In comparison, the

case with λ = 1 has a minimum distance L12min = 1.198. This represents a di�erence as small as

+0.3%. This di�erence is not related to mesh resolution or timestep as both are kept constant between

cases. It is then expected that larger values of λ may only decrease the deformation. The mechanisms

observed are the following (I) hollowing (II) tumbling (III) stretching (IV) recoiling.

� For λ = 0.1, the minimum distance is L12min = 1.186 and occurs at a similar time as before, t = 0.194

. This represents a −1% di�erence with respect to λ = 1. This allows to determine that the minimum

deformation does not occur at λ ∼ 1 as expected, but for λ < 1. Therefore, a medium that is more

viscous than the drop is preferred. This result was not expected because drops tend to deform more

for λ ∼ 1, nevertheless the change is small.
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(a) λ = 0.1

(b) λ = 1.9

Figure 7.38: E�ect of viscosity ratio at Re = 10, Ca = 0.1 and Rp/Rd = 2

t/t*, normalized time
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Figure 7.39: E�ect of the viscosity ratio on the normalized particle-particle distance, L12, at Re = 10 and
Ca = 0.1.
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7.2.4 E�ect of Initial Position

The location of the rigid particles play an important role in the deformation of the drop. The �rst e�ect is

due to the blockage ratio, B = y2−y1

2Rp
. When B → 0, the particles are aligned with the drop and only wall

migration can make them move during the starting phase. As B is increased, the particles separate from each

other vertically and the relative velocity increases. The limit for particle-particle collision is when B = 1,

unless there is drafting, while the limit for signi�cant drop deformation is when B = 1 + Rd

Rp
, considering

that the particles are moving horizontally.

Table 7.6: E�ect of the initial position of the particles on the minimum particle-particle distance.

Case Rd
∆x

η ρd ρp γ̇ σ Rd(Rp) Re Ca (xo, yo) /Rd Wep L12,min t∗

II-1 11.6 0.1 1 1 100 10 0.1 10 0.1 (2, 0.8) 1 1.615 0.146

II-2 11.6 0.1 1 1 100 4 0.1 10 0.25 (2, 0.8) 2.5 1.417 0.152

II-3 11.6 0.1 1 1 100 2 0.1 10 0.5 (2, 0.8) 5 1.2691 0.156

VII-1 11.6 0.1 1 1 100 10 0.1 10 0.1 (5, 0.8) 1 1.476 0.233

VII-2 11.6 0.1 1 1 100 4 0.1 10 0.25 (5, 0.8) 2.5 1.237 0.242

VII-3 11.6 0.1 1 1 100 2 0.1 10 0.5 (5, 0.8) 5 1.053 ~0.25

VIII-1 12 0.1 1 1 100 10 0.1 10 0.1 (2,0.6) 1 1.584 0.168

VIII-2 12 0.1 1 1 100 10 0.1 10 0.1 (2,0.4) 1 1.542 0.197

VIII-3 12 0.1 1 1 100 10 0.1 10 0.1 (2,0.2) 1 1.493 0.243

IX-1 11.6 0.0125 1 1 100 1.25 0.1 80 0.1 (5, 0.8) 8 1.492 0.865

X-1 12 0.1 1 1 100 10 0.1 10 0.1 (5,0.2) 1 3.09 0.331

The objective is to clarify if particles released far away (more inertia) can produce larger deformations

on the drop than particles that are closer. First, the e�ect of the horizontal position is studied. This type

of simulations are more challenging due to the increased temporal timescales and only few simulations are

performed. Second, the e�ect of the vertical position is studied. In this way, it can be determined if there is

a way to optimize the puncturing due to the initial location and if so, quantify such improvement.

The results summarized in Table 7.6 show how particles released far away in the horizontal direction

and closer to the drop in the vertical direction tend to reduce L12,min. The baseline case is II-1, where

the minimum distance is 1.615. The case VII-1 (far-away particles in x) presents a minimum distance of

1.476, which is a 9% reduction. This reduction is more relevant when the capillary number is increased. For

Ca = 0.25, cases II-2 and VII-2, the minimum distance changes from 1.417 to 1.237, which is a 13% reduction.

For Ca = 0.5, cases II-3 and VII-3, the reduction is larger than 15%, as only a partial solution leading to
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Figure 7.40: E�ect of initial horizontal position of the particles on the normalized particle-particle distance,
L12.

collision was achieved. These results are also compared in Figure 7.40. This con�rms that reductions in

the minimum particle-particle distance of up to 15% are possible by changing the horizontal position when

Ca < 0.5.

The 3D representation of the simulations with di�erent initial position in x is presented in Figure 7.41.

As it can be observed, the deformation for Ca = 0.25 and Ca = 0.5 is considerably larger, where the later

case showed puncturing.

The pathline of the particles is presented in Figure 7.42. Particles released closer to the drop tend to

do the initial vertical migration away from the drop and they keep separating from vertically until they are

�nally drafted (positive x). When the particles are released away from each other, they attempt to do a

return upon approaching, as observed from the reduction in vertical position around t/t∗ ∼ 0.9, but the drop

recoiling push them away for low Ca. For Ca = 0.5, surface-tension forces are not su�ciently strong and

the particles produce a hole on the drop.
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(a) Ca = 0.1

(b) Ca = 0.25

(c) Ca = 0.5

Figure 7.41: Solution for various Ca when the particles are released far away in the x direction (case VII).
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Figure 7.42: E�ect of the initial horizontal position on the normalized particle path and position (left particle)
for Re = 10.
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Changes in the vertical position when the particles are close to each other in the horizontal direction

show variations of the minimum particle-particle distance of up to 8%. The comparison among di�erent

cases is shown in Figure 7.43.
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Figure 7.43: E�ect of initial vertical position of the particles on the normalized particle-particle distance,
L12.

The 3D representation of the e�ect of changes in the initial vertical position is presented in Figure 7.44.

The di�erences may only be evident at t = 0.25, t = 0.2 and t = 0.17 for yo = 0.2Rp, yo = 0.4Rp and

yo = 0.6Rp, respectively, where the minimum particle-particle distance occurs and the particles are closer.

It is also noted that for t = 0.28, t = 0.23, t = 0.2 of the same initial positions mentioned before, the case

with lower yo shows drop tipping. Therefore, more deformation during the approaching phase lead to more

deformation in the separating phase.

The vertical position modi�ed the particle-particle distance as L12,min = 1 + 0.633
(
yo
Rd

)0.159

, with an

error of 0.37% and R2 = 0.994. This is obtained at constant xo, for particles that are close to the drop when

the �ow starts and for Ca = 0.1. The e�ect of the vertical position presented a smaller exponent than the

correlations based on the e�ects of density and particle size, but it is still comparable and relevant.

Because it is now known that the deformation depends on xo and yo, it would be expected that a particle

far away in x and closer to the centerline would produce the maximum deformation. However, particles can

return for certain �ow conditions. Considering the time required to move the particles when the horizontal

initialization is large only the case of a particle released far away and closer to the centerline was performed

(case X-1). That case showed that particles return for xo/Rd = 5 and yo/Rd = 0.8. This opens up a new

study that can be derived, �nding the conditions in Re, Ca, λ and γ and xo where the particles can return

and the optimal position based on critical return-to-pas.s conditions. A case (X-1) with returning particles

is shown in Figure 7.45.
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(a) yo = 0.2Rp

(b) yo = 0.4Rp

(c) yo = 0.6Rp

Figure 7.44: E�ect of the initial position in the y direction (case VIII).
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Figure 7.45: Pathline of returning and non-returning particles: Re = 10, Ca = 0.1, xo/Rp = (5, 0.8, 0) (case
VII-1) and xo/Rp = (5, 0.2, 0) (case X-1 ).
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Another e�ect that needed to be addressed is whether a particle released far away will produce more

deformation on the drop at larger Re. Similarly as previous cases, the deformation decreased with Re. The

case IX-1 showed a minimum distance of 1.492, which is 1% larger than case VII-1. In this comparison, only

Re is changed from Re = 10 to Re = 80. At Re = 80, an asymmetric solution is observed. This case was

enforced with a convergence criteria of the linear momentum equation of 2 × 10−7 and mass conservation

of 10−3, which is believed to be su�ciently small to obtain iteration independent solutions for lower Re.

It is also possible that a smaller criteria could enforce a symmetric solution. This case also con�rms that

increasing Re also increases the minimum particle-particle distance. Therefore, low Re conditions are still

preferred.

Figure 7.46: E�ect of the initial location at Re = 80 and Ca = 0.1 (case IX).

7.2.5 E�ect of particle shape

One way that can be used to lower L12,min is by using cylinders instead of spheres, which can be made long

enough that the presence of the drop would only a�ect its vertical displacement minimally. If a collision

takes place, then the drop may be sliced in half instead of punctured.

7.2.6 Discussion on drop puncturing and implications

For the porpoise of breaking a biological cell in shear �ows, the results of drop deformation in a starting

shear �ow can be summarized as follows:

� Increasing Re tends to produce end-pinching, with or without particles. Low Re is better for central-

drop disruption.

� The minimum particle-particle distance increases with Re.

� Low constriction geometry β increases the stability of the drop, therefore, large values of β are better.

� Drop disruption is not observed at Ca = 0.1 under uniform conditions. Surface-tension forces tend to

stabilize the drop after puncturing, or after a large deformation.
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� Increasing the density of the particles has only a minimal positive e�ect on the drop deformation.

� Increasing the radius of the particles has a large impact on the drop deformation. Larger and denser

particles are preferred.

� Particles at least three times the radius of the drop are required at capillary as low as 0.1 to produce

puncturing. It is expected that considerably larger particles are needed for even smaller capillary

numbers.

� Locating the particles far away tends to increase the drop deformation. This may depend on the

returning-particle e�ect.

� Locating the particles closer to the horizontal centerline increases the drop deformation. However, if

they are su�ciently far in the horizontal direction, they may return.
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7.3 Drop Deformation due to Gravity-driven Particles

Consider the case of two rigid particles with di�erent densities, but equally increased and decreased around

the medium density, and a neutrally buoyant drop where the heavy particle is on top and the light particle

below. This type of con�guration is expected to be metastable, where the particles approach each other and

then tumble. The degree of deformation in relationship with the density ratio is sought, but particularly,

the conditions that produce puncturing.

A dimensionless analysis of the problem shows that it is governed by Reosc =
√
ρdσRd/ηd, viscosity ratio

λ, density ratio γ and Bond number, de�ned as,

Bo =
relative weight of the particle

surface-tension force
=
|ρp − ρd| gR3

p

σRd

If the transient e�ects are taken into consideration, another Re and Ca can be de�ned. Due to the

complexity of this �ow with several parameters, uniform properties between the drop and the medium are

considered, γd = λ = 1, equivalent radius Rd = Rp, the density of the particle is given by γp =
max(ρpi)

ρm
,

while the properties of the drop are Rd = 0.1 cm, ρd = 1 g/cm3, η = 0.01 P and σ = 1dyne/cm. This �ow

is then represented by Reosc = 31.6 and Bo = 9.8 |ρp − ρd| cm3/g. Gravity is acting in the −y direction.

The simulations are performed in a parallelepiped domain of size 6Rd × 9Rd × 6Rd. The initial position of

the particles is yo = 2.5Rp. A mesh of 40 × 60 × 40 and CFL = 0.2 (∆t = 4.5 × 10−5 − 3.7 × 10−4) were

employed. The results of this �ow are presented in Figures 7.47 and 7.48.

Among many aspects that can be analyzed, it is particularly important that a critical value for drop

hollowing Bo between 11.76 and 13.72 is found. For the smallest Bo, gravitational forces are not su�ciently

large to produce a hole, but they are su�ciently large to produce large deformations on the drop. Moreover,

the drop and the particles exhibit a decaying oscillatory motion until the numerical imbalances produce

unstable conditions and the drop is pushed away. It is expected then that any �ow below the critical Bo is

metastable. For the larger Bo, drop holing takes place, the particles motion is monotonic and the drop shows

local oscillations, adopting a �nal ring shape. In this case, the solution is stable, where collisional forces

compensate for the buoyancy force acting on both particles. It is also worth mentioning that because the lower

particle has lower density and the upper particle has higher density than the medium, the position, velocity

and acceleration are di�erent between them, therefore, the solution is not symmetric in the y direction.

The aspect ratio of the drop and the particle-particle distance are computed and presented in Figure

7.49. The dynamics of the case with larger density di�erence is faster and overdamped, while the case with

the smaller density di�erence is damped-oscillatory. The maximum aspect ratio of the latter is 16.3 and it

is achieved at t = 0.12.
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Simulations with a smaller particle radius, Rp ∼ 0.01 cm are more interesting because the solutions can

be applied in biological studies. Unfortunately, those cases require considerable more computational time

because Rep is lower.
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(a) |ρp − ρd| = 1.05, Bo = 10.29

(b) |ρp − ρd| = 1.2, Bo = 11.76

Figure 7.47: E�ect of particle density on the deformation of a drop at Re = 31.6
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(a) |ρp − ρd| = 1.4, Bo = 13.72

(b) |ρp − ρd| = 1.6, Bo = 15.68

Figure 7.48: Continuation of Figure 7.47.
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Figure 7.49: E�ect of density on the deformation of a drop at Re = 31.6
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7.4 Breakup of a Drop after a Sudden Expansion

From previous results, it is expected that larger Re will lower the critical Ca and the degree of drop

deformation required for breakup. In a sudden expansion, there is a critical Reynolds of the main �ow

that produces regions of recirculation. Once these regions are produced, the actual change in area of the �ow

minimizes as a drop moves downstream. Drops may break up if the acceleration in the expansion region is

maximized. For that reason, recirculation zones must be avoided. These regions can be reduced if the drop

is started in an initially quiescent �ow and the drop reaches the expansion before fully developed conditions.

Finding mechanisms to break up one drop will allow for the disruption of a stream of drops, but the �ow

must be pulsating in order to produce expansions without recirculating zones. The domain size, expansion

ratio and boundary conditions are studied.

7.4.1 Drop in a Bilateral Sudden Expansion

The problem of a bilateral expansion is studied to analyze the range of conditions where a single drop splits

into daughter drops. For a given expansion geometry, Re and Ca are varied until critical conditions are

found. These numbers are de�ned in terms of the narrow channel, Re = ρUd
η and Ca = ηU/σ , where

U is the upstream average velocity and d is the narrow channel vertical height. If the expansion ratio is

relatively small, break up could only be observed in the smaller channel after increasing Ca due to the

rear-side re-entering �ow. The expansion ratios and �ow conditions for which a drop stretches and splits

is sought. However, the �ow conditions should be such that the drop can achieve steady-state conditions

in the narrow channel without fragmenting or breaking up, which is typically the case for low Ca. Again,

the interest lies in determining if expansion geometries can induce breakup in otherwise stable conditions.

The geometry studied here is limited to expansion ratios e = H/d = 4 − 8, aspect ratios of the cross

section α = W/d = 1 − 2.4 and blockage ratios β = 2a/d = 0.833 − 0.909. The drop is initially located at

xo/a ≤ −10. The main �ow is either created by a constant pressure di�erence between the inlet and the

outlet, or prescribed by a velocity at the inlet and a pressure at the outlet. For the �nal study, the pressure

di�erence is kept constant and based on the approximate steady-state conditions for a given Re.

For the cases with no breakup, the e�ect of the channel is studied in terms of the minimum aspect ratio

of the drop A/B, which is used to estimate the critical conditions for breakup. This parameter compares

the half-length to the half-breadth, meaning that small values of A/B are indicative of a thinner drop, while

a zero value represents central disruption. Two Reynolds numbers are considered, 10 and 50, together with

several capillary numbers and expansion ratios. These results are summarized in Table 7.7 for a �ow started

from fully developed conditions and velocity prescribed at the inlet.
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Table 7.7: Minimum aspect ratio after the expansion, (A/B)min for blockage ratio β = 2a/d = 0.833.
The initial conditions are the fully developed conditions, or suddenly started �ow (**), both with velocity
prescribed at the inlet. (*) Experiences narrow-channel breakup.

Red = 10

e = 4 e = 6 e = 6.66

Ca α = 1 α = 2.4 Ca α = 1 α = 2.22**

0.5 0.523 0.565 0.4 0.4061 0.533

0.8 0.447 0.5 0.3829

1.0* 0.439 0.8 0.3097

1.2* 0.283

Red = 50

e = 4 e = 6 e = 6.66

Ca α = 1 α = 1 Ca α = 2.22**

0.5 0.646 0.618 0.4 0.368

In the case of Re = 10, the �ow does not present circulation zones. Despite this condition, a geometry

with e = 4 and α = 1 does not show drop breakup for capillary numbers as large as Ca = 0.8, as shown

in Figure 7.50b. Because the acceleration at the expansion region is not enough to stretch the drop in the

y direction, the deformation is not signi�cant to induce necking, the precursor of breakup. In the case of

Ca = 1, shown in Figure 7.50c, the drop shows fragmentation. However, this value of Ca is larger than

Cacr of the narrow channel, making the expansion irrelevant for the purpose of producing daughter drops

under low Ca. Nevertheless, �ows with Ca > Cac could be used to produce multiple structures, therefore

maximizing the amount of fragments. The initial position of the drop could also be subject of optimization.

The small particles appearing in the �gures are due to numerical surface tension (lack of mesh resolution

near the end tips of the drop) and wisp generation (the old BDR scheme was used in these simulations).

Some of these results are also presented in 3D in Figure 7.51.

When α is increased from 1 to 2.4, (A/B)min also increases, which means that the drop is more stable.

Because of that, smaller values of α are preferred to increase the drop deformation.

The circulation zone is present for Re = 50, e = 4 and α = 1. In this �ow, the case of Ca = 0.5 is also

stable, as presented in Figure 7.52. Because of the apparition of the vena contracta, a drop is expected to

be stable for Ca < Cc. Also, (A/B)min for Re = 50 is 0.646, which is 23% larger than the value at Re = 10.

A similar reasoning may apply for larger values of Ca. This con�rms that steady-state initial conditions

diminishes the drop deformation for moderate Re.

Increasing α will also generate circulation zones at lower Re. Increasing Re will increase the size of the

circulation zone, which in turn reduces the actual expansion. This implies that splitting is not possible for

the geometry and �ow conditions studied, that is, e = 4 and Re . 50.

When the expansion ratio is increased to e = 6, a drop achieving steady-state conditions before the

expansion manifest larger deformations, but is still not su�cient to produce drop splitting.
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Figure 7.50: Evolution of a drop in a bilateral sudden expansion for e = 4, α = 1 and Re = 10. Shown for
t = 0, 1, 2, . . . (· · · ) and t = 0.5, 1.5, 2.5, . . . (�-) in a) and b). Time is given for c).
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(a) Ca = 0.8 (Stable) (b) Ca = 1.0 (Detachments)

Figure 7.51: Deformation of a drop in a bilateral sudden expansion for Re = 10, e = 4 and α = 1, initialized
with fully developed conditions. Small fragments are �oatsams that appeared in the �rst BDR code.

Figure 7.52: Similar as Figure 7.51, Re = 50 and Ca = 0.5. U = 0 is shown in yellow.
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(a) Ca = 0.5 (Stable) (b) Ca = 0.8 (Detachments)

Figure 7.53: Deformation of a drop in a bilateral sudden expansion for Re = 10, e = 6 and α = 1, initialized
with fully developed conditions.

Figure 7.54: Similar as Figure 7.53, Re = 50 and Ca = 0.5. U = 0 is shown in yellow.
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For the cases shown before, the drop-splitting was not possible. Now, the initial conditions are changed to

explore if the developing circulations a�ect the the drop expansion further. Two cases are brie�y considered.

The �ow is now initially quiescent and the inlet is prescribed with uniform velocity u = U and a constant

pressure at the exit. The geometric parameters are e = 6.
_
6 and α = 2.

_
2 , while the �ow conditions are

Re = 10 and Re = 50, for Ca = 0.4. The minimum aspect ratio is also presented in Table7.7, while the

interface is shown in Figures 7.55-7.58.

These cases also presented circulations. Even thought the drop crosses the expansion after the complete

development of the main vortex, both are more or less transported downstream simultaneously.

The main problem encountered in this �ow is that the actual expansion of the �uid particles changes due

to the apparition of �ow recirculation. When a drop is released in a fully developed �ow, the recirculation

zones are already present if Re is su�ciently large or if α is large enough for a given Re. The objective now

is to determine if the drop can expand before the formation of the circulation zones using a de�ned pressure

at the inlet and the outlet. The average velocity U is computed from the latest timestep in order to report

Re and Ca.

Table 7.8: Minimum aspect ratio after the expansion, (A/B)min for blockage ratio β = 2a/d = 0.9
_
09, α = 1,

quiescent initial conditions and prescribed pressure at the boundaries.

e = 8.0
_
45

Case η σ U umax Re Ca (A/B)min t∗

DP1 0.018
_
3 0.0152

_
7 0.596 1.30 17.9 0.716 0.182 7.0

DP2 0.018
_
3 0.013095 0.597 1.30 17.9 0.832 0.120 9.0

DP3 0.018
_
3 0.010185 0.596 1.30 17.9 1.073 0

e = 6.
_
6

Case η σ α U umax Re Ca (A/B)min t∗

0.018
_
3 0.02619 1.

_
1 0.376 0.715 11.3 0.263 0.478 5.5

0.018
_
3 0.0152

_
7 1.

_
1 0.578 1.097 17.3 0.693 0.304 5.7

0.018
_
3 0.011458 1.

_
1 0.578 1.097 17.3 0.924 0.239 6.7

0.01 0.022 1.
_
1 0.765 1.45+ 38.2 0.382 0.428 5.7

0.018
_
3 0.011458

_
3 1.

_
1 0.490 1.01 14.7 0.784 0.170 9.8

0.018
_
3 0.010

_
185 1.

_
1 0.490 1.01 14.7 0.882 �

0.018
_
3 0.0091

_
6 1.

_
1 0.490 1.01 14.7 0.980 �

Considering that it is not possible to break up the drop at low Ca, the cases with Ca ∼ 1 are explored.

Between Figures 7.56 and 7.57 it can be observed there is a critical Re for the apparition of splitting. For

Re = 17.3, the drop is stable at large Ca, while it shows end-tip splitting for Re = 14.7. This is in relationship

with the fact that the drop deforms more at lower Re before reaching the expansion. Splitting was observed

for a capillary number as low as Ca = 0.88.

As it can be observed, for Re = 38.2, Figure 7.58, the formation of the circulation zones is immediate and
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in phase with the drop moving through the expansion region. At Ca ∼ 0.4, the deformation of the drop is

0.43, which is similar to the case of Re = 50 (sudden startup conditions and α = 2.2) where the deformation

is 0.37.

Cases with large expansion ratios are shown in Figure 7.59, e ≈ 8. The deformation shows a central

constriction that leads to necking. This neck breaks up at Ca = 1.07 and Re = 17.9. Considering that

lowering Re is favorable, breakup may be possible at lower Ca if Re is reduced.

As it can be observed, the range of conditions for which the drop splits is very narrow. Large values of

Ca produce breakup in the narrow channel, while low Ca produce drop recoiling. Also, increasing Re also

increase the critical capillary number. This phenomenon is highly dependent on the formation of a reentrant

cavity and its shape, which in turn depends on the initial location of the drop and the �ow conditions.

The purpose of studying this problem is to determine the conditions that produce drop splitting after a

sudden expansion for low Ca. The results indicate that splitting may not not possible for Ca < Cacr as it

was originally sought. Instead, values of Ca ∼ 1 are required to produce breakup. It is also not possible

for large enough values of Re because of the apparition of the vena contracta. Drop splitting is possible for

e = 8, but the initial location of the drop may be relevant (closer to the expansion than for e = 4). Drop

detachment for e = 4 may have reduced the possible expansion of the drop, but splitting is not possible.

Another mechanism was observed for e = 6.
_
6 and Ca ∼ 0.9: end-tip splitting. These results may suggest

that it could be possible to produce splitting at lower Ca, but larger expansion ratios are required, and

therefore more mesh points. Such cases were not simulated.
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Figure 7.55: E�ect of Reynolds number on the deformation of a drop in a bilateral sudden expansion for

e = 6.
_
6 , α = 2.

_
2 , and Ca = 0.4.
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Figure 7.56: Evolution of a splitting drop in a bilateral sudden expansion for e = 6.
_
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prescribed pressures.
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Figure 7.57: Continuation of Figure 7.56. For Re = 14.7.
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Figure 7.59: Evolution of a splitting drop in a bilateral sudden expansion for e = 8.0
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7.4.2 Axisymmetric Sudden Expansion

Preliminary results in an axisymmetric sudden expansion showed that the drop can stretch as a �attened

disk, instead of a banana shape, and then it forms an annular structure. This ring may break up due to

capillary instability or collapse as a drop again. This study is only mentioned as another possibility to

produce drop fragmentation. Considering the narrow range of Re and Ca observed in the previous section,

�nding such conditions in this case may require several simulations.
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Chapter 8

Summary and Final Discussion

A volume-of-�uid method together with several �uxing algorithms (VOF-FCT, BDR-PLIC-VOF, DDR-

PLIC-VOF) have been used to investigate the deformation and breakup of droplets in shearing and exten-

sional �ows, with and with out rigid particles. Because of numerical limitation, emphasis is done on the

accuracy of the submodels: advection, plane reconstruction, �uxing of the volume fraction, interface curva-

ture, surface-tension forces, rigidifying forces, among others. The accuracy in drop deformation is observed

to be highly dependent on the curvature model, while the stability relies on the �uxing algorithm. Other

aspects are mass conservation capabilities, and the DDR method is shown to conserve mass exactly, which

not necessarily means that the transport of material from one cell to another is exact. Accuracy, stability

and consistency are the requirements for a robust solver. We encounter that combining the HF model for

normals and curvatures, together with the DDR-PLIC method and a �rst-to-second-order �uid �ow solver

is su�cient to analyze engineering problems involving drops. Part of the analysis involved the comparison

of the Taylor deformation parameter and the drop half-length for a single drop. Such results are in good

agreement with the values of other authors using VOF.

Drops in high con�nement showed a slight increase in stability. It may be possible to increase the stability

even more if the symmetry planes are brought immediately close to the drop. If the purpose is to reduce

the requirements to produce breakup, localizing the boundaries far away is preferred. Typically, a distance

of six times the drop radius in one direction is su�cient.

When the drop viscosity is within two times the viscosity of the medium, the critical capillary number

remains similar to the uniform case. However, di�erent types of daughter drops are observed. When the

viscosity of the medium is ten times more viscous than the drop, the �ow is considerably stable, requiring

large capillary numbers to induce breakup. The cases with inertia showed an increase in deformation for
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a given capillary number, but the drop is considerably more stable than the uncon�ned case due to the

presence of the walls. Inertia also produces traversal oscillations. The maximum drop half-length increases

exponentially in terms of the capillary number near critical conditions for a constant Reynolds, while it

may asymptote for large Reynolds. The critical capillary number decreases monotonically with increasing

Reynolds.

In the case of particulate �ows, a drop can be punctured by the presence of rigid particles. Among several

parameters, the capillary number determines the requirements of the particles in order to produce puncturing.

For low capillary numbers and uniform properties, puncturing is not possible, but the requirements are

reduced as the capillary number reaches the critical capillary number without particles (i.e ∼ 0.5). The

initial position of the particles is the second parameter of relevance under these conditions. Particles closer

to the centerline produce larger deformation, but take longer to accelerate, while particles far away in the

direction of the �ow produce an enhanced e�ect and may take less time to pass over the drop. Even though

the initial position of the particle can be optimized, increasing the particle size to at least three times the

drop size is preferred because it produces large deformations and puncturing under low capillary conditions.

Denser particles also increase the deformation, but the impact is less signi�cant.

Particulate �ows that where studied before considered suddenly started �ows. In those cases, the initial

angular velocity of the particles is the result of a rigidization process and enhanced lift forces may be present.

This may increase drafting e�ect and thereby puncturing. The analysis presented here is more conservative

because the angular velocity is the solution of the dynamics of the problem and the results are less prone to

produce puncturing. Here, the particle-particle distance is used to determine the conditions for puncturing.

Because the lubrication force is important in the gap, a criteria is made on whether puncturing is happening

or not. Extrapolating the results to that criteria showed that large capillary numbers are required to produce

collision e�ectively. However, it was also observed that our methods are incapable of analyzing the collision

problem in detail mainly because the singularity that appears when the particles are within one cell distance

from each other. A rugosity of at least two cells is required to account for elastic collisions, but such distance

can be considerably large. This type of analysis required a multigrid approach and such method was not

incorporated.

It was also reported that particles increase the drop deformation. Such e�ect is observed qualitatively and

is remarkable for capillary numbers below the critical value. Several mechanism are described for supercritical

cases as those �ows are complex in nature.

The analysis presented here is referenced on a Reynolds and Capillary basis. This is the typical basis for

uncon�ned �ows without particles and therefore is preferred. Considering the amount of parameters, this

study is only performed for limited cases. A general parameter that determines the possibility for puncturing
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was not encountered.

This work can be extended to viscoelastic �uids.
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