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ABSTRACT 

A brief history of the development of the inverse problem in 

resistivity sounding is presented with the development of the equations 

governing the Least Squares Inverse. Five algorithms for findinq the 

minimum of least square problem are described and their speed of conver­

gence is compared on data from two planar earth models. Of the five 

algorithms studied, the ridge-regression algorithm required the fewest 

numbers of forward problem evaluations to reach a desired minimum. 

*Now with Chevron Resources, Inc., San Francisco, California 94119 
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Solution space statistics, including 1) parameter started errors, 

2) parameter correlation coefficients, 3) model parameter eigenvectors 

and 4) data eigenvectors are discussed. The type of weighting applied 

to the data affects these statistical parameters. Weighting the data by 

taking log10 of the observed and calculated values is comparable to 

weighting by the inverse of a constant data error. The most reliable 

parameter standard errors are obtained by weighting by the inverse of 

observed data errors. All other solution statistics, such as data­

parameter eigenvector pairs, have more physical significance when 

inverse data error weighting is used. 
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INTRODUCTION 

Interpretation of resistivity soundings has been a topic of 

research since the early 1900's. Contribution to the recent geophysical 

literature have dealt with the development and application of a wide 

variety of one-dimensional inversion techniques and approaches for 

estimating uncertainties in the resulting parameters. This paper 

presents a comparison of five least squares minimization algorithms. 

The comparison is made in terms of the n~mber of forward problem 

evaluations required by each technique to reach a residual minimum. 

Three weighting schemes which affect the estimated parameter errors 

are compared at the minimum reached for a specific model. 

Until the advent of fast digital computers, the interpreter relied 

primarily on curve matching procedures, where albums of theoretical 

curves (Compagnie Generale de Geophysique 1955, 1963, Mooney and Wetzel 

1965, Flathe 1955, Orellana and Mooney 1966, Rijkswaterstaat 1969) are 

used alone or in conjunction with the auxiliary point method of partial 

curve matching (Kalenov 1957, Orellana and Mooney 1966, Zohdy 1965). 

This method, while undoubtedly the most convenient and simple, suffers 

from the drawback that the published curves cover only a limited number 

of cases. 

HISTORICAL DEVELOPMENT OF INVERSE METHODS 

The forward problem expressed in terms of integral expression for 

potential and apparent resistivity for the Schlumberger electrode array 

was developed by Stefanesco» Schlumberger and Schlumberger (1930). With 
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these and the associated kernel function, development began on interpre­

tation based on determining earth parameters by fitting a theoretical 

apparent resisitivity curve or kernel function to its observed counter-

part. Similar expressions for apparent resistivity have been developed 

for many other electrode arrays (Roy and Apparao 1971, Alpin 1966, 

Keller and Frischknecht 1966). This general approach remains a very 

popular method of inversion today. Another popular inversion method, 

which will not be considered here, involves the use of Dar Zarrouk para-

meters. This is well described by Zohdy (1965, 1968, 1974a, 1974b, 

1974c). 

Stefanesco et ~· (1930) derived the integral expressions 

V(r) 

I =current applied to the earth 

r = current electrode spacing 

V(r) = the electrode potential at r = AB/2 

Ps(r) = Schlumberger apparent resistivity 

Pl = top layer resistivity 

J 0 ,J1 = zero and first order Bessel functions, respectively 

B(A,k,t) = Stefanesco kernel function 

A = integration variable 

k = resistivity reflection coefficient 

t = layer thickness 

(1) 
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The Sl ichter kernel (Vozoff 1958), is defined by 

T(A,k,t) = p1[1 + 28(A,k,t)] (3) 

This kernel can also be related to apparent resistivity through the 

inverse Hankel transformation of (2); 

"" Ps(r) 
T(A,k,t) = J0 · r J1 (Ar) dr • (4) 

The Slichter kernel can also be expressed in a closed nonintegrable 

recursive form for an arbitrary number of n layers of thickness t; 

(Sunde 1949), where, 

where 

T = 1, 2 ••• n 

-2At1 
1 - u1 2 e ••• n 

-2At1 
1 + u e 1,2 ••• n 

u 1,2 ••• n 
= P1 - P2 T2,3 ••• n 

P1 + P2 T2,3 ••• n 

T (m-1 )m ••• m 

u(m-1)m ••• n 

1 - l.l( ) e =m-1 m ••• n 

1 + u( ) e m-1 m ••• n 

-2At 1 m-

-2Atm-1 

P - P T ( ) = m-1 m m m-1 ••• n 
P + P T m-1 m m(m-1) ••• n 

(5) 
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and 

The first general approach mentioned above consists of an algorithm 

that uses (2) or some similar expression to calculate the forward 

problem and then to vary model parameters until the calculated apparent 

resistivity, PA matches the observed data to some specified tolerance. 

Alternatively, the kernel function is derived from the apparent resisti­

vity data via (4), and (5) is used as the forward problem in a least 

squares method. This latter approach has the advantage that (5) is much 

faster to calculate than the forward problem represented by (2). 

The inverse problem was first approached in the kernel domain by 

Slichter (1933) using a solution for surface potentials developed by 

Langer (1933) for a one dimensional resistivity function which varied 

continuously with depth. Slichter•s procedure was to determine the 

kernel function from the apparent resistivity and then solve for the 

conductivity profile from the kernel function. Stevenson (1934) modi-

fied the approach to accommodate a step-wise resisitivity function of 

depth. A partially graphic, partially numerical method was developed by 

Pekeris (1940) which also used the Slichter kernel. The ease with which 

the kernel function can be calculated encouraged many workers to concen­

trate on interpretation in the kernel domain. Slichter used a power 

series representation for the kernel and later recursion formulae 
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(i.e., equation (5)) were developed (Sunde 1949, Flathe 1955, Vanyan, 

Morozova and Lozhemitina 1962, Kunetz 1966, Meinardus 1967). 

More recently, Ghosh (1971) developed a set of coefficients for 

transforming Schlumberger and Wenner sounding curves into their corres-

pending Slichter kernels, using linear filter theory rather than numeri­

cal integration. Koefoed (1965, 1966, 1968) used the raised kernel H(\). 

Many other authors have also done recent work concerning inversion in 

the kernel domain. These include Crous (1971), Meinardus (1967, 1970), 

Onodera (1960), Pekeris (1940), Vozoff (1958), and Ginzberg, Loewenthal, 

Shoham (1~76). 

Whether inversion is performed with kernel functions or measured 

data, fitting the calculated to the observed data is usually carried 

out in a least-squares sense. The least-squares fitting is in turn 

performed on a linearized version of the governing equations. 

The most common method for generating this system of equations 

is to expand the calculated functions, such as (2) and (5) in a 

Taylor series about an initial estimate pO in the parameter space. 

The series, neglecting second and higher order terms, is 

O(X,P); 
o N a o o = C(x.P )

1
. + \ ~p [C(x,P ).1 (P.- P .) 

' j~l 0 j " 1 . J J 

with j = 1, M and = 1, N 

(6) 
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O(X,P); = the ;th observation or kernel as a function of X, 

the system parameter vector 

C(X,PO); =the ;th calculated function value, (i.e., (2) or 

(5)), for X and pO the current estimate of the 

unknown parameter set. 

(Pj - PjO) = the linear estimate of the correction needed in 

the jth unknown parameter. 

Rewriting (6) in matrix notation, neglecting second and high order 

terms, 

where 

l:IG = A A P 

AG. 
1 

0 = O(x,P); - C(x,P ); 

A ... = 
lJ 

flC(x,P). 
1 

ap. 
J 

= P .. 
J 

X = X. 
1 

p = pO 

(The System Matrix) 

(7) 

(8) 



Equation (7) represents a system of N linear equation in M unknowns 

and since this is a non-linear problem, the solution of (7) will provide 

only a linear estimate of ~P, the correction needed to reach the mini-

mum. The classic least-squares inverse is 

The solution must be iterated, beginning each time from the current 

estimate of the parameter set, pO. 

(9) 

Vozoff {1958) calculated the kernel by inverse Hankel transforma-

tion and then used least-squares minimization of 

(10) 

where 

K1 2 = kernel calculated for a particular parameter set ' ' ••• n 

Kf = kernel integrated from field data 

Vozoff (1958) considered two methods based on gradients of the 

system matrix to minimize (10). The first was a functional iteration 

method and the second, a steepest descent method. The functional itera-

tion procedure follows Newton's technique for finding roots of a non-

linear equation of one unknown parameter. The procedure is discussed by 

Hildebrand (1949}. It consists essentially of an iterative Taylor 

series technique. An initial estimate is made for the values of the 



parameters, assuming that the estimate is quite close to the true 

values. The difference or the objective function ~G is approximated by 

the first two terms of its Taylor series expansion in terms of the 

unknown parameters. The expansion is then used to calculate the 

necessary changes in the initial estimate. The procedure is iterated 

until no further changes are needed. 

The steepest descent method deals directly with the difference 

function ~G. If one maps ~G in its m-parameter space, an m-dimensional 

least-squares surface is generated. Any choice of a parameter vector 

not at the minimum gives a point on the least-squares surface where its 

m-dimensional gradient is calculated. The parameter vector is changed 

so that the value of ~G descends along the steepest initial gradient. 

Recause the surface is not truly described by its first order gradient 

alone, the initial direction will probably not extend to the true 

minimum. Therefore the parameter vector is changed until the minimum of 

the least-squares surface ~G is found in that particular direction. 

At this point a new gradient is calculated and a new descent is made in 

the direction of steepest gradient. This procedure is iterated until a 

point of zero gradient is reached or until ~G becomes less than some 

predetermined value. These two methods of minimizing a function of sums 

of squares are forerunners of newer and more advanced methods which will 

be dealt with in this paper. The general format of a least-squares 

approach is now widely used in both the kernel domain and the apparent 

resistivity domain since the speed of new large computers make this time 
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consuming method more feasible and, more importantly, because it lends 

itself well to statistical evaluation of the resulting parameters. 

Many modern least-squares techniques are centered on the method of 

the generalized inverse. The generalized inverse has been thoroughly 

discussed for the inversion of surface wave and free oscillations data 

by Wiggins (1972}, and by Jackson (1972). Jupp and Vozoff (1975), 

Vozoff and Jupp (1975), Inman, Ryu and Ward (1973) found that in many 

resistivity problems, when model parameters are strongly correlated, the 

system matrix (8) was nearly singular. The nonorthogonality this caused 

was not satisfactorily dealt with by the generalized inverse. Hoerl and 

Kennard (1970a and 1970b) developed a theory which shows that linear 

estimation from nonorthogonal data could be improved by the use of 

biased estimators. Hoerl gave the name "ridge regression'' to this 

method. Marquardt (1970) discussed the relationship between generalized 

inverse and ridge regression and summarized his finding in these words: 

The Ridge and Generalized Inverse estimators 
share many properties. Both are superior to 
least-squares for ill conditioned problems. 
The generalized inverse solution is especially 
relevant for precisely zero eigenvalues (in the 
system matrix). The ridge solution is computa­
tionally simpler and seems better suited to coping 
with very small, but non-zero, eigenvalues. 

Most practical resistivity problems, owing to the many highly 

correlated parameters that can result, involve small but non-zero 

eigenvalues. For this reason Inman (1975) used ridge regression, 

with good results, for the inversion of resistivity data. The ridge 
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regression approach has also been used recently by Glenn and Ward 

(1976), Rijo, Palton, Feitosa and Ward (1977) and Petrick, Pelton and 

Ward {1977). 

FIVE LEAST-SQUARES MINIMIZATION ALGORITHMS 

The following descriptions of the algorithms closely follow the 

published literature. Some notation has been changed from the original 

publications for consistency within this paper. 

1) The Simplex Method 

The method is designed for the minimization of a function of M 

variables without constraints. 

Let Q0 ,Q1,0m be the (m+l) points in the m-dimensional 

parameter space which define the current least-squares surface, or 

simplex. Each point Ok has its own parameter vector of length m 

associated with it. Let ~Gk be the function value at Ok and define 

h as the suffix such that ~Gh = max(~Gk) 

2 as the suffix such that ~G2 = min(6Gk) 

Next we define Q as the centroid of the points with k * h, (Q1,0j) 

represents the distance from P; to Pj. At each stage in the process 

one of three operations -- reflection, contraction or expansion -- is 

used to replace Oh with a new point in the simplex. These true 

possible replacement points are defined as follows: the reflection of 
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Oh is denoted Q* and its co-ordinates are defined by the relation 

* Q = (l+a)Q-aQh 

where a, the reflection coefficient, is an arbitrary positive constant. 

This expression indicates that o* is Q on a line joining Oh and Q on 

the far side of Q from Oh with (Q* ,Q) = a (QhQ). If Q* which 

* corresponds to AG falls between AGh and AG1 , the Oh is replaced 

* by Q and the next iteration proceeds with the newly defined simplex. 

If the reflection produced a new minimum, AG* < G1 , then a step 

is taken to try and find a further minimum. The expanded point Q** is 

given by the relation 

** * Q = Q = (1-y)Q 

where the expansion coefficient, y, is the ratio of the distance 

(Q*, *Q) to (Q, *Q). If AG* < G9,p, Oh is replaced by Q**, 

and the process begins again from the start. However, if AG** > AG 1 

* it is called a "failed expansion," and Oh is replaced by Q before 

restarting. 

The third operation of contraction is used if, on reflecting Q 

to Q*, the condition AG* > AG9- exist for all k * h, i.e., that 

replacing Oh by o* leaves AG* the maximum, then a,new Oh is 

defined to be either the old Oh oro*, whichever has the lower AG 

value. The contracted point is defined by 
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(1-B)Q 

The contraction coefficient B lies between 0 and 1 and is defined by 

the ratio of distance co***,QJ to [Qh,Q]. o*** is used in place 

in Qh unless ~G*** > min(~Gh,~G*), i.e., the contracted point 

q*** is worse than the better of Qh and Q*. In this case of a 

"failed contraction", all the Qk's are replaced by (Qk + o~~.)/2 

and the process is restarted. 

The iteration process is set to run until ~G reaches or surpasses 

some preset min~mum value. The application of the simplex method to the 

minimizing of a function of many variables is discussed by Nelder and 

Mead (1965). 

2) Uncontrained Global Optimization (Rremermann) 

This routine was initially developed for the solution of systems of 

non-linear equations of up to 100 variables (Rremermann, 1970). The 

routine has also been used for finding maxima or minima of sums of 

squares, sums of exponentials, and curve fitting. The method is briefly 

described as follows: 

a) ~G is evaluated for the initial estimate of the parameter 

set, pO 

b) A random direction r is chosen. The probability distribution 

of the r is an N dimensional Gaussian with a1=a2= •• ~an=l 
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c) On the line determined by pO and r the restriction of ~G to 

this line is approximated by five point Lagrangian interpola­

tion, centered at pO and equidistant with distance h, which 

is a parameter of the method. 

d) The Lagrangian interpolation of the restriction of AG is a 

fourth degree polynomial in parameter A describing the line 

pO + Ar. The five coefficients of the Langrangian inter­

polation polynomial are determined. 

e) The derivative of the interpolation polynomial is a third 

degree polynomial with one or three real roots. The roots are 

computed by Cordan's formula. 

f) If there is one root AQ the procedure is iterated from 

the point with a new random direction provided that 

~G(PO + AQr) i ~G(PO). If this inequality does not 

hold, the method is iterated from pO with a new random 

direction. 

g) When there are three rea 1 roots, Al,A2,A3, then the 

polynomial is elevated at pO + Al r' pO + A2r anrl 

pO + A3r· Also, considering the value of pO, the 

procedure is iterated from the point where AG has the 

smallest value. If ~G has a minimum value at more than 

one point, the algorithm chooses one of them. 

h) Iteration continues until a predetermined number of interac­

tions has been run or until a prescribed minimum has been 

reached. 
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3) Peckham's method 

This method, Peckham (1970), was specifically designed for 

minimizing a sum of squares of non-linear functions without calculating 

the gradients which make up the matrix A. 

The work of Spendley, Hext and Himsworth (1962), Nelder and Mead 

(1965) in developing methods for minimizing functions in which the 

function is evaluated at (N+1), or more, points forming a simplex in 

N-dimensional space suggested to Peckham, that, for problems where the 

function is a sum of squares, the function values at a set of (N+l), or 

more, points might be used to estimate values for the coefficients Ci 

and A;j in (8). These could then be used in (9) for a linear estimate 

of the minimum. One iteration consists of replacing the point of the 

set with the highest function value by the linear estimate of the 

minimum position. 

Assume that there are function values Ok~ for a set of p points 

with parameters Pj~ where p l N+l and ~ = 1,2, ••• p. Now consider the 

minimization at each of the points in the M dimensional hyperspace. The 

linear approximation is obtained by picking C and A to minimize the N 

expressions. 

(11) 

where i = 1,2 ••• N and w~ is a weighting factor to determine the 

relative importance of each point in the simplex. The weighted mean is 

chosen as the origin for Pj so that 
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With the change of variables P'jt ~ wtPjt and O'kt = wtOk~ 
the values of C and A which minimize t.G are given by 

P'PTAT ~ P'O'T 

where 

n = }, 2 and c = l O'w (!J~ 

t=1 n 

If these values are substituted into (9) the linear estimation of the 

parameter set at the minimum, is 

(12) 

In order to solve equation (12) it is rewritten as 

(13) 

where 

(14) 

Equation (13) is the normal equation of a linear least-square problem, 

i.e., the Euclidean norm nO'w- o•p•Tzu has a minimum when Z 

satisfies (14). 
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The solution is obtained by use of orthogonal transformation, Golub 

(1965). Peckman used the ALGOL procedure "Orthlin 211 for his solution. 

In addition the values of w~ were chosen to give function values near 

the minimum more weight in determining C and A 

4) Ridge Regression 

Rather than using function values in a M dimension hyperspace to 

estimate values for Ci and A;j, it is very popular to use direct 

forward problem calculation for C; and finite differencing of these 

values to calculate A;j• The simplest approach is to solve (7), 

neglecting weighting, for ~P by calculating the least-squares inverse 

(AT~)-1AT. However, Hoerl and Kennard (1970a) show that when 

(ATA) is nearly singular, as it can be in many geophysical problems, 

the average difference between liP estimated and AP true becomes very 

large. The ridge regression method (Levenberg 1944; Foster 1961; 

Marquardt 1963, 1966) seeks to reduce this difference during the 

iteration process by damping the diagonal terms of (ATA). The ridge 

regression estimate of I'IPRR is 

where I is the density matrix and K > 0. According to Inman (1975), 

"The eigenvalues of (ATA + KI) are (A.} + K), where A.} are 

the eigenvalues of ATA. Any very small eigenvalues of the 

least-squares estimator will be increased in the ridge regression 

{15) 
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estimator by a factor K. Hence the inversion of the matrix (ATA + KI) 

will be more stable. Increasing the size of all the eigenvalues results 

in a significant decrease of, a) the mean of the squared length between 

AP true and APRR and b) the variance of the estimated solution." 

The basic concept of the technique is that the best direction for 

finding a reduced sum of squares lies somewhere between the direction 

given by the Taylor series increment and the direction of steepest 

descent. In (15), when K = 0, AP approaches the Taylor series 

direction. This process insures second convergence near the minimum. 

The effect of decreasing K in each iteration on the resulting 

intermediate model is that the model will at first fit the broad, low 

frequency aspects of the data with higher frequency components being 

fitted as K decreases. Hoerl and Kennard (1970) give an excellent 

example of the comparison of the ridge regression inverse and the 

classic least-squares inverse. A more detailed discussion of ridge 

regression and its relationship to the generalized inverse is covered by 

Marquardt (1970). The algorithm tested is routine ZXSSQ for the IMSL 

computer library. 

5) The Spiral Algorithm 

The Spiral algorithm and its comparison to methods by Marquardt and 

Powell is described in a paper by Jones (1970) for a number of models 

whose derivatives with respect to the parameter (i.e. the elements of A) 

are analytic. Only the general concepts of the algorithm, following 

Jones (1970), will be given here. 



-18-

The main principal of the algorithm is that a reduction in ~G can 

always be found in parameter space plane defined by the Taylor series 

estimate of the minimum, the steepest descent estimate of the minimum 

and the starting point for that iteration (see Fig. (I). Figure 2 

represents the plane ODT in parameter space, where 0 is the starting 

point for an iteration, T is the Taylor series point and D is the 

steepest descent point, chosen so the distance OD is equal to OT. 

The basic strateqy is that the next starting point should be as far 

away from 0 as possible while keeping the number of evaluations of the 

least-squares surface to a minimum. 

Within an iteration the first point checked is the Taylor series 

point T, which is generated by Marquardt•s method. If ~GT<~G0 , this 

point is accepted as the new minimum and a new Taylor series point is 

calculated from there. If ~GT l ~G0 , then the linear approximation 

of the model at 0 is not valid at T. This implies that the sum of 

squares valley must curve in one of the two directions, indicated by the 

dashed lines in Figure 2. In order to try and intercept the valley the 

spiral OST is searched. The curve moves out from T at angle B into the 

search area OTD and return to 0 along a tangent to line 00. The 

optimum equation for the spiral found by Jones (expressed in polar 

co-ordinates with origin at 0) is 

where r is the distance OS and r0 is the distance OT. 
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The points S that are checked on the spiral are determined from a 

sequence of points l which are generated on the segment TO. The points 

L divide the segment TO by the ratio: (1-~) where ~ is computed from 

the recurrence relation 

This relation was chosen to ensure that the points l become closer 

together as they near D. 

The coordinates (a,e) of the points L are given by the relations 

e = tan-1[ ~siny J 
l-~ + ~ S1n Y] ' 

and 

a = 

With the starting point 0 as origin, the coordinates of the point S 

in parameter space are given in terms of t and d, the coordinates of T 

and D respectively by the relation 

s = L ~d + {1 - ~)t a 

Equation (16) is the main operating equation of the Spiral 

algorithm aside from the Marquardt technique for generating T. 

If ~GT > ~G0 , each successive search point is derived as a weighted 

sum of two parameter space vectors t and d. 

(16) 
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The entire algorithm is more complicated since it contains a 

provision for dealing with spurious local minima. Interpolations are 

also performed when three consecutive search points yield reduced sums 

of squares, the interpolated minimum being checked to speed convergence. 

PARAMETER STATISTICS 

The simplest view of the inverse problem considered here is that of 

an automated 11 Curve fitting 11 procedure. A model is derived by finding a 

parameter distribution that will produce a theoretical function, either 

Pa or kernel function, that fits the observed data in some least­

squares sense. Weighted least-squares is usually used so that the data 

can be fitted on one of two ways: 1) data are fitted uniformly when the 

percentage data error is equal for all data (e.g., resistivity data is 

usually assmed to have a constant percent error at all electrode 

spacings) and (2) data are selectively fitted when data errors are 

variable (e.g., in EM soundings data error is usually a function of 

frequency). 

An ideal weighting scheme for the first case is a log10 Rijo 

et al. (1973) such that the function to be minimized is 

(17) 

Since the data errors are a constant percentage, this scheme weights the 

date equally and eliminates the requirements for a weight vector to be 

included. 
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In the case of variable data error it would seem appropriate to 

weight each data point in inverse proportions to its error. The 

following equation (18), represents this type of weighting. 

where 

N 
= l 

i=1 

cr. = the standard error for the ;th data point. 
l 

For the least squares inverse the weights enter as a matrix and 

(9) becomes AP = (ATw-1A)-1 ATw-1 AG where W is the diagonal 

matrix of data variance cr;2. The choice of a weighting scheme does 

not appreciably affect the speed of a minimization. However, it can 

(18) 

drastically affect the position of the minimum in parameter space and 

the parameter statistics. 

The effects of weighting, represented by (17) and (18) along with 

no weighting, on statistical parameter such as standard errors, correla-

tion coefficients and eigenvectors, will be discussed after these 

statistical parameters have been examined. 

The statistical parameters which are useful in characterizing our 

models are: 1) parameter standard errors, and 2) parameter correlation 

coefficient. In addition to these statistical parameters, the parameter 

and data eigenvectors with their associated eigenvalues can yield great 

insight into the relations between individual model parameter's and 

specific data. 
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Parameter standard errors and correlations are derived from the 

covariance matrix V, evaluated at the minimum. 

where 

2 
(J 

w .. 
lJ 

and 

·= l cro~ i=j 

N 
L [Observed; - Calculated;l 2 

i=1 

(19) 

If 10910 weight i nq is being used as in Equation (17), then w is 

replaced by taking log10 of the observed and calculated values in ~G. 

The parameter standard errors are defined by the square root of the 

diagonal term of V(e.g., i\Tll equals the standard error for parameter 

number 1). 

The correlation matrix is the diagonally normalized covariance 

matrix. Its terms are the correlation coefficients, which are measures 

of the linear dependence between parameters. The correlation matrix C 

is given by Jenkins and Watts (1968): 
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If .. 

C;j - (V .. )1/2 ~~ .. )1/2 
11 JJ 

(20) 

If an element C;j is near ±1 then the ;th and jth parameters 

are strongly linearly dependent. For example, if i represented the 

thickness t, and j the resistivity, p, of a layer (i.e., C;j repre­

sents the correlation between the thickness and resistivity of a layer), 

then only the ratio t/p is well determined by the data if C;j "' 1. 

This case is true for layers that are highly conductive relative to 

their surroundings. If C;j ~ -1, then only the product pt is well 

determined, as is the case for the relatively resistive layers. This is 

the familiar equivalence problem discussed, for example, by Sunde 

(1949). 

The relationship between parameter correlations and parameter 

standard errors is well explained by Inman (1975) and we will paraphrase 

him here: {If the correlations are small, then the standard errors, 

given by the square roots of the diagonals of (19), are a good measure 

of the uncertainty of each parameter. If, however, two parameters are 

highly correlated, C;j "' ±1, then the standard deviations will be 

larger than the actual uncertainties. Figure 3 illustrates this fact 

with a generalized slice of solution space. The two coordinates axes 

correspond to two parameters of the estimated layered earth model. The 

ellipse indicates a confidence region within which the residual sum of 

squares is expected to lie for a certain percent of the repeated experi­

ments. This region also defines the values of the parameter P2 

(resistivity) and t2 (thickness) which will give a residual sum of 
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squares within the contour. The origin is defined by the parameter 

value at the final solution. The tilt of the axis of the ellipse is a 

measure of the degree of correlation between the two parameters. If the 

standard errors from (19) are taken to be the true deviation estimates, 

then the ellipse is enclosed by a box whose sides are defined by the 

standard deviation. The box, which ignores parameter correlation, 

represents a much larger confidence region than the ellipse. By using 

the standard deviation implied by the box one obtains a very conserva­

tive estimate of the parameter confidence interval for correlated 

parameters.} 

Therefore, ~Y considering the standard deviations in conjunction 

with parameter correlations a more realistic parameter standard devia­

tion can be arrived at which is always less than or equal to the 

standard deviation computed from (19). Two models, one described by 

Inman (1975) and one of our choosing, called model 3, are considered for 

comparison of the inversion routines and to illustrate some concepts of 

the parameter statistics. See Fig. 11 and 12. 

A common misconception about parameter standard errors is that a 

single model parameter can be varied by its estimated standard error 

with no significant change resulting in the calculated forward problem. 

In fact, the parameter standard errors and correlation coefficients must 

be viewed as representing a complex interactive system that describes 

combinations of parameter changes which can be made without a signifi­

cant change in the estimated least-squares residual. For example, 

consider model 3 with its conductive middle layer. The eigenvectors, 

eigenvalues, correlation coefficients, and parameter standard errors, 
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:alculated using data errors as weights in Equation (18), are shown in 

Figure 8. Note the high positive correlation between P2 and t2 

indicating a linear relation between these two parameters, s2 = 

t21P2· Figure 4 shows the sounding curve for model 3 along with 

error envelopes generated by varying t2 by its standard error. 

Similarly, Figure 5 shows the error envelope generated by varying P2 

by its standard error. Clearly the change in PA curve is much larger 

than the 1% error assumed in the data. However, if the ratio t2/P2 

is varied (see Figure 6), as indicated by their correlation, simulta­

neously by their standard errors, the change observed in PA is on the 

order of 1%, the assumed error level, and thus is not a statistically 

significant change. 

The parameter eigenvectors and their associated eigenvalues are 

also very useful in defining the relation between parameters and their 

overall effect on the data generated from a particular model. 

Lanczos (1961) factored the system matrix A into its row (parameter) 

and column (observation) eigenvectors. The generalized inverse of A is 

defined in terms of these eigenvectors and eigenvalues as 

H = A-1 = VA=1uT 

The matrix U consists of q (q is the rank of A) eigenvectors u; of 

length N associated with the columns (data) of A. V is made up of the q 

eigenvectors V; of length M associated with the rows (parameters) of A. 

The matrix A-1 is the inverse of the diagonal matrix comprised of the 

eigenvalues of A. Figures 7 through 9 show these quantities for model 3 

and will be discussed later. 
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The q parameter eigenvectors comprising V are a new parametrization 

of the model, they are the q specific linear combinations of the para­

meters that can be uniquely determined by the data. Similarly, the q 

data eigenvectors are the linear combination of data which are tied, 

through the assumed model, to the linear combination of parameters 

formed in V. 

A useful analogy is to consider the eigenvectors as spectral 

components of the input and output of the linearized system. Then the 

decomposition of the matrix A is similar to the decomposition of the 

impulse response of an ordinary linear filter in terms of sinusoids 

(eigenvectors) of various amplitudes (eigenvalues). For a linear filter 

the amplitude response at a particular frequency determines how the 

filter will amplify the corresponding spectral component of the output. 

Similarly, if we think of the matrix A as a filter relating the 

input, (parameters), to the output, (calculated data), then the eigen­

values are the amplification coefficients which determine the magnitude 

of the effect of the linear combination of parameters, v;, on the 

linear combination of data u;. Small eigenvalues and their associated 

eigenvector represent the spectral components which are poorly trans­

ferred through the earth model. By considering these eigenvector eigen­

value decompositions, one can optimize data sets to contain the maximum 

information related to a model parameter of particular interest. 

The subject of experiment design by this method is discussed by 

Glenn et ~· (1976). 
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Figure 8 presents, (1) the parameter eigenvectors, (columns of V), 

(2) eigenvalues, (diagonal elements of A), (3) the data eigenvectors, 

(columns of U} whose numbering refers to the data points labelled in 

Figure 12, (4) the parameter correlation coefficients, and (5) the model 

parameter value with estimated standard errors. Some insight into the 

physical significance of this eigenvector decomposition can be gained by 

considering the effects of varying parameters on the sounding curve. 

Figure 13 shows the variation in PA caused by changing Pl by 

approximately 50%. Similarly, Figure 14 shows the variation in PA 

caused by a 50% change in t1. Note that the variation in PA occurs 

from data points 1 to data points 10 or 11. Compare this with the 

second and third eigenvector pairs of Figure 8, both of whose parameter 

eigenvectors are composed of Pl, t1 components. Their corresponding 

data eigenvectors have components from position 1 to 10. The same rela­

tion holds for the other eigenvector pairs. Compare Figure 4, produced 

by changing, P2, with the first eigenvector pair of Figure 8. The 

correspondence between the eigenvector pair and changes induced in PA 

by varying a particular parameter are not as clear for the fourth and 

fifth vector pairs of Figure 8. However, if the two are lumped together 

(the eigenvalues are of the same order of magnitude) the effects of 

varying t2 or P2 manifests itself in data from positions 9 to 21 as 

expected. 
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Effects of Weighting 

Ry comparing Figures 8 and 9, it is obvious (as proposed by Rijo 

et al. 1977) that taking 10910 of the observed and calculated data is 

the same as weighting by a constant percent error. The only difference 

appears in the estimated standard errors where those in Figure 8 used 

cr2 = 1 in Equation (19) and those in Figure 9 used 

2 cr = 

in Equation (19). The standard errors estimated in FigureR encompass 

the true parameter errors in all cases, whereas the standard errors 

shown in Figure 9 are consistently too small. 

The eigenvector pairs, correlation, and parameter standard errors 

calculated with no data weighting are shown in Figure 7: the eigen­

vectors are essentially the same as those in Figures 8 and 9 with one 

major exception. The data eigenvectors associated with parameter P2, 

t2, and P3 have their components shifted to larger AR/2 spacings. 

This bias occurs because the large PA values toward larger AB/2 

dominate the sum of squares. In effect, each data point is weighted by 

its own magnitude. In addition a much higher degree of parameter corre-

lation is found when no data weighting is used and estimated parameter 

standard errors are much larger than those calculated by weighted 

schemes. For an example of this compare the correlation coefficients 

for P3 P2 and P3 t2 in Figures 7 and 8. 
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Weighting the data by their standard errors as indicated in 

Equation (12) seems to be the most advisable because it is the most 

flexible to varying data errors and yields the smallest standard errors, 

consistent with the true error, as shown in Figures 7 through 9. 

The parameter eigenvectors and correlation coefficients for Inman 

(1975) model are given in Figure 10 and present a good example for their 

interpretation. The first three eigenvalues are all of about the same 

order of magnitude with the last two very much smaller. The linear 

combination of parameters represented by the first three eigenvectors 

have the greatest effect on the sounding curve. In these three eigen­

vectors and P1 and t1 elements have opposite signs while the P2 

and t2 elements have the same sign. This indicates that if P2 and 

t2 are both changed in the same direction, either positive or 

negative, the effect on the sounding curve (Figure 11) will be larger 

compared to the effect of similar changes on other parameters. In addi­

tion, if Pl increases and t1 decreases, or vice versa, the sounding 

curve will also change. The eigenvector associated with A42 = 0.081 

indicates, since A4 is small, that increasing or decreasing P1 and 

t1 together will have little effect on Figure 11. In other words, the 

ratio t1/P1 is the combination of these parameters which effects the 

sounding curve the most (note the correlation coefficient between Pl 

and t1 is +0.86). The eigenvector associated with A52 = 0.0097 

indicates that increasing P2 and decreasing t2 or vice versa has 

little effect on the sounding curve, (i.e., only the product P2 t2 

affects Figure 12). Aqain, this is also indicated by considering the 

correlation coefficient between P2 and t2, which equals -0.988. 
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By considering the parameter eigenvector and parameter correlation 

coefficients of this model it can be seen that the products P2 t2 

are better determined by, and have greater effect on, this data than 

either P2 or t2 separately. This is also true to a lesser extent of 

the parameters in the ratio t1/Pl· 

Comparison of the Inversion Algorithms 

The five methods discussed here were compared on two three-layer 

planar earth models (Figures 11 and 12). The data was generated by a 

numerical evaluation of Equation (2). Each of the five routines was 

modified to use log parameters to ensure determination of physically 

meaningful parameter sets (i.e., no negative parameter values) 

Rijo et al. {1977). Each routine minimizes the same ~G (Equation {17) 

and begins its process from the same initial guess of the parameter 

vector. 

The comparison can be made in terms of the number of forward 

problem evaluations required to reach a desired minimum and by 

considering the accuracy of the determined parameters. The criterion 

for defining the degree of fit between the observed and calculated 

apparent resistivity is the data variance, a2, given by Hamilton 

(1964) as: 

2 
a = 

where (N-M) are the degrees of freedom of the system. 

(18) 

Note that the measure of the fit is defined in real space and not 

in log or weighted space. 
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The results of the five inversions on both models are given in 

Table 1. The number of forward problem evaluations, N, required to 

reach a data variance estimate of cr2 and the resulting parameters are 

shown. The table also contains the linear combination of parameters for 

the middle layer, which are best determined by the data. For Inman's 

model (resistive middle layer) this is t2/P2· 

The initial guess for Inman's model was that used by Inman (1975). 

Pl = 8 ohm.m t1 = 15 m 

P2 = 500 ohm.m t2 = 150 m 

P3 = 5 ohm.m 

The initial guess for model 3 was: 

Pl = 80 ohm.m t1 = 100 m 

P2 = 20 ohm.m t2 = 50 m 

P3 = 500 ohm.m 

The true model parameter for Inman's model and model 3 are given in 

Figures 11 and 12, respectively. 

A general convergence criterion of cr = 0.05 was used. The values 

for cr can become very much less than cr (e.g., on iteration 30, cr = 0.36 

for Marquardt's method, an iteration 31, cr = 0.026). Iterations were 

stopped if the number of function calls was excessive compared with the 

other routines; this only occurred for Bremermann's method, and the 

simplex method. 

In a comparison of this type, where we are using the ideal data 

and requiring a close fit, all the parameters are just about equally 

resolved, given a low cr. For both models, the three {Table 1), Ridge 
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Regression, Peckham•s and Spiral, all reached fairly close values and 

very similar parameter estimates. For this reason, a comparison can be 

made simply in terms of N, the number of function calls. The iterative 

progression of parameters in different routines is of interest since it 

can give an indication of how a particular routine reaches a model. 

For Inman•s model the ranking in terms of N is 1) Ridge Regression, 

2) Spiral, 3) Peckham, 4) Rremermann, 5) Simplex. Considering the 

accuracy of parameters P2 and t2, it is interesting to note that 

Peckham•s method has more accurate estimates for P2 and t2 than 

Ridge Regression or Spiral, although the additional 50 plus function 

calls outweighs the increased accuracy. The Bremmerman and Simplex 

estimates for t2 are very poor, but it is interesting to note in the 

case of both Simplex and Bremmerman that, although P2 and t2 are in 

error by as much as 100%, their product P2t2 is only 2% low. 

The ranking in terms of N for model 3 is identical to the ranking 

for Inman's model. All of the routines gave good estimates for P1, 

t1, P3· All five also gave good estimates of the ratio t2/P2, 

~ven though the individual parameters were either both high (i.e. 

Peckham, Ridge Regression, Bremermann, Simplex, or low (i.e., Sprial). 

The procession of conductive middle layer parameters, P2, t2, 

and t2/P2 are plotted as a function of forward problem evaluation 

in figures (15), (16), and (17) respectively for the three fastest 

routines. The behavior of these two parameters, P2 and t2, are 

characteristic of the other, unplatted, parameters. 
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It is immediately obvious that parameter procession for Peckham's 

method is characterized by large oscillations from one forward problem 

evaluation to another as contrasted with rather smooth transitions of 

parameter values for Spiral and Marquardt's methods. The oscillations 

in Peckham's method are due to using a Simplex to define the forward 

problem function space, since each new set of parameter estimates is 

obtained through an arbitrary operation such as reflection of contrac­

tion. This is to be contrasted with the almost monotonous procession of 

parameters in the Spiral and Marquardt routines, which essentially use 

Taylor series increments to define the forward problem function space. 

It is also worth noting that Peckham•s parameter estimates develop an 

oscillation in values near the true solution; whereas the other two 

routines converge much more rapidly to a solution. 

One final property of the solutions that should be noted in the 

expression of the equivalence principal as seen by the procession of the 

longitudinal conductance S2 = t2/P2• For all three routines the 

longitudinal conductance S2 reached the true value much faster than 

either individual parameter; and even when both parameter P2 and t2 

are in error as they are both Spiral and Peckham, their ratio t2/P2 

has been accurately determined. This is a realization of the fact that 

for a thin conductive layer, S2 is the quantity best determined by the 

data. 

Considering both models, the ranking in terms of reaching the 

lowest cr2 with the fewest number of forward problem evaluations is: 
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1) Ridge Regression 

2) Spiral 

3) Peckham's method 

4) Bremmerman 

5) Simplex 

It should be noted that, for Bremermann's method, the number of 

function evaluations used in the iterative process is independent of the 

number of parameters describing the system, while the other four 

routines require more function evaluations as the number of parameters 

increases. For this reason, the Bremerman method would compare more 

favorably for models with a large number of parameters. 

Conclusion 

It has been demonstrated that parameter statistics such as 

parameter standard errors, parameter correlation, and associated eigen­

vectors can be greatly affected by choice of data weighting. The use of 

inverse data error weighting is flexible and yields the most reliable 

parameter standard error estimates. In addition, the relationships 

between parameter and data eigenvectors is physically correct and not 

biased as in the case where no weighting is used. 

In the comparison of the five least squares minimization algorithm, 

the Ridge Regression algorithm proved to require the fewest number of 

forward problem evaluation to reach a desired fit. The ranking of the 

five algorithms is the same for both models tested; indicating that the 

relative speeds of the algorithms is, at least to some degree, model 

independent. 
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Table 1 

Model 3 

Cl N pl tl p2 t2 

0.44 75 100.20 49.7 3.6 121.2 

0.188 28 101.01 49.6 3.97 133.3 

212.0 192 101.53 50.2 3.92 133.4 

0.034 332 100.02 49.6 3.6 120.0 

0.048 45 100.01 50.1 2.7 91.7 

True Values 100 50 3 100 

Model 4 

Cl N pl tl p2 t2 

0.065 100 9.99 9.98 385.2 252.3 

0.019 29 9.99 9.96 382.8 254.7 

1.56 67 10.41 11.29 524.23 181.87 

9.03 299 10.00 10.3 594.8 162.0 

0.041 43 10.00 9.89 380.3 256.4 

True Values 10 10 390• 250 

a ~ data variance estimate 
N ~ the number of calculation of the matrix A 

p3 t2/o2 

998 33.66 

1005 33.57 

1107 34.0 

1002 33.33 

997 33.96 

1000 33 

p3 t2. 0 2 

10.0 97185.0 

9.99 97499.0 

10.05 95342.0 

10.09 96357.0 

10.0 97508.0 

10 97500 
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for Inman 1 s 1975 model. 

11) Schlumberger sounding curve for Inman•s model. 

12) Model 3 Schlumberger sounding curve. 

13) Variation of PA for Model 3 with 10% change in Pl• 
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14) Variation of PA for Model 3 with 10% change in t1. 

15) Progression of the estimate of P2 for Model 3 as a function of 

the number of forward problem evaluations. 

16) Proqression of the estimate of t2 for Model 3 as a function of 

the number of forward problem evaluations. 

17) Progression of the estimate of t2/P2 for Model 3 as a function 

of number of forward problem evaluations. 
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