
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Towards a Theory of Droplet-Mixing Graphs in Microfluidics

Permalink
https://escholarship.org/uc/item/4wb2g5z2

Author
Coviello Gonzalez, Miguel

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wb2g5z2
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Towards a Theory of Droplet-Mixing Graphs in Microfluidics

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Miguel Coviello Gonzalez

September 2019

Dissertation Committee:

Professor Marek Chrobak, Chairperson
Professor Stefano Lonardi
Professor Philip Brisk
Professor William Grover

Copyright by
Miguel Coviello Gonzalez

2019

The Dissertation of Miguel Coviello Gonzalez is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I sincerely thank CONACYT and UC MEXUS for their full-ride scholarship during my

PhD studies. Without their support, this dissertation would not have been possible.

I also thank the National Science Foundation for their funding to the project AitF: EXPL:

Algorithmic Fluid Concentration Management for Programmable Microfluidics, with

award number CCF-1536026, which this dissertation is part of.

In addition, I express my deepest appreciation to my advisor and committee chair Marek

Chrobak, for his guidance and assistance throughout the entire PhD program.

Finally, I also thank the rest of my dissertation committee members, Philip Brisk, Stefano

Lonardi and William Grover, for their great support and invaluable advice.

iv

To God, for giving me life, health and intelligence to achieve my goals.

To my parents, Francisco Jose Coviello Marcano and Maricela Gonzalez Tolosa, for

all the sacrifices they made to make me who I am.

To my wife, Nadia Lorena Valdez Guevara, for supporting me thoroughly during

this long and challenging phase.

To my friends, family and everybody else that believed in me. Specially, my

brothers Jonatan Tadeo Coviello Gonzalez and Marcelo Coviello Gonzalez.

Thank you!

v

ABSTRACT OF THE DISSERTATION

Towards a Theory of Droplet-Mixing Graphs in Microfluidics

by

Miguel Coviello Gonzalez

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2019

Professor Marek Chrobak, Chairperson

In this work, we study the problem of fluid mixing in microfluidic chips. The motivation for

studying this problem comes from the process of sample preparation for chemical, biological,

medical and environmental experiments, which often require preparation of fluid mixtures

with desired concentrations.

We assume that fluids are manipulated in discrete units called droplets. The input

set of droplets consists of two distinct fluids: the reactant, which is the fluid of interest,

and the buffer fluid that is used to dilute it. The goal is to produce a target set of droplets

with prespecified reactant concentrations. In the model we study, the mixing process in a

microfluidic chip can be abstractly represented as a mixing graph.

A mixing graph is a collection of micro-mixers (nodes) connected by micro-channels

(edges) that converts an input set of droplets I into a set of output droplets T , by applying

a sequence of 1:1 mixing operations. This graph may also produce some waste, which are

superfluous droplets of fluid not used in the target set. Computational complexity of most

natural questions regarding such mixing graphs remain open. For example, it is not even

known whether it is decidable for a given target set to be produced without waste. Current

vi

work in the literature contains only heuristic approaches that compute mixing graphs while

attempting to optimize certain objectives, including minimizing waste, reactant usage, the

depth of the graphs, and more.

Our first contribution is an efficient algorithm for computing mixing graphs for

single-droplet targets. Our algorithm produces significantly less waste than state-of-the-art

algorithms in an experimental comparison. We also provide a bound on its worst-case per-

formance that is significantly better than those for earlier algorithms. Our second result

concerns the variant of the problem where the objective is to design a mixing graph that

perfectly mixes a collection of input droplets with arbitrary concentrations. We provide a

complete characterization of input sets for which such graphs exist, and an efficient algo-

rithm to construct these graphs. In addition, we provide several other results about prop-

erties of mixing graphs and about computational complexity of computing mixing graphs

of fixed depth.

vii

Contents

List of Figures x

1 Introduction 1
1.1 Microfluidic Mixing Chips . 1

1.1.1 Fluid-based Mixing Chips . 2
1.1.2 Droplet-based Mixing Chips . 3
1.1.3 Dilution . 4
1.1.4 Mixing Graphs . 5
1.1.5 Problem Statement . 7

1.2 Literature Review . 10
1.2.1 Single-Droplet Targets . 12

1.2.1.1 Algorithm Min-Mix . 12
1.2.1.2 Algorithm DMRW . 14
1.2.1.3 Algorithm REMIA . 15
1.2.1.4 Algorithm GORMA . 18

1.2.2 Multiple-Concentrations Targets . 22
1.2.2.1 Algorithm WARA . 22
1.2.2.2 Equal-Split Flow Model . 24
1.2.2.3 Asymmetric Traveling Salesman Model 27

1.3 Overview of Contributions . 30
1.3.1 Waste-Minimization Algorithm for Single-Droplet Targets 31
1.3.2 Algorithm for Perfect-Mixing . 31
1.3.3 Other Contributions . 32

1.3.3.1 NP-Hardness of a Restricted Variant 32
1.3.3.2 A Necessary Condition for Mixing Reachability 33
1.3.3.3 Decidability of Special Cases 33

2 Waste-Minimization Algorithm for Single-Droplet Targets 35
2.1 Preliminaries . 37
2.2 Algorithm Description . 40
2.3 Construction of Converters . 45

2.3.1 (i : 1
4 , j : 1

2)-Converters C2
i,j . 45

viii

2.3.2 (i : 3
8 , j : 5

8)-Converters C3
i,j . 47

2.3.3 (i : 1
8 , j : 3

8)-Converters C1
i,j . 49

2.4 Performance Bounds . 52
2.5 Experimental Study . 58

3 Algorithm for Perfect-Mixing 63
3.1 Preliminaries . 66
3.2 Necessity of Condition (MC) . 70
3.3 Some Auxiliary Lemmas . 71
3.4 Sufficiency of Condition (MC) . 74

3.4.1 Perfect Mixability of Near-Final Configurations 75
3.4.2 Proof for Arbitrary n ≥ 7 . 77
3.4.3 Proof for n = 5 . 88
3.4.4 Proof for n = 6 . 93

3.5 Polynomial Bound for the Number of Mixing Operations 94
3.5.1 Auxiliary Observations . 96
3.5.2 Proof for n Power of Two . 98
3.5.3 An Exponential Bound . 100
3.5.4 A Polynomial Bound . 103

3.6 Extension to Single-Concentration Producibility 110

4 Other Contributions 112
4.1 NP-Hardness of a Restricted Variant . 112

4.1.1 NP-Hardness for Mixing Graphs of Depth At Most 1 113
4.1.2 NP-Hardness for Mixing Graphs of Depth At Most 2 114
4.1.3 NP-Hardness for Mixing Graphs of Fixed-Depth 117

4.2 A Necessary Condition for Mixing Reachability 118
4.2.1 A Necessary Condition . 118
4.2.2 A Sufficient Condition for a Relaxed Variant 120

4.3 Decidability of Special Cases . 123
4.3.1 Configurations with At Most 4 Droplets 124
4.3.2 Configurations with Precision 2 . 127
4.3.3 Configurations with Only PCVs . 131
4.3.4 Configurations with PCVs and One Non-PCV 132

Bibliography 134

A Technologies for Fluid-Based Mixing 141
A.1 Proportional Network . 141
A.2 T-type Network . 142
A.3 Serial Network . 143
A.4 Combinatorial Network . 146
A.5 Pyramidal Network . 148

ix

List of Figures

1.1 Two mixing graph examples for a given input set I = {0, 0, 1, 1, 1, 1}. 6
1.2 Mixing graph that converts the input set I =

{
1
16 ,

3
16 ,

7
16 ,

7
32

}
into the target

set T =
{

1
4 ,

1
4 ,

13
64 ,

13
64

}
. 8

1.3 Mixing graph for target set T =
{

1
4 ,

3
4

}
. 8

1.4 A (partial) mixing graph of depth 6 that produces T =
{

1
8 , 17 : 7

8

}
with

precision d = 3. 12
1.5 Mixing graph example for Algorithm Min-Mix with target concentration 13

16 ,
or 0.1101 in binary. 13

1.6 Mixing graph example for Algorithm DMRW with target concentration 7
16 . . . 15

1.7 Example of Algorithm REMIA for the target concentration 43
64 16

1.8 Complete mixing graph produced by Algorithm REMIA for concentration 43
64 . 17

1.9 Algorithm GORMA droplet sharing example. 19
1.10 Algorithm GORMA CMT enumeration example. 21
1.11 Algorithm GORMA droplet sharing counter example. 21
1.12 Algorithm WARA droplet sharing example. 23
1.13 WARA droplet replacement example. 24
1.14 ESFM network structure for target set T = {(5 : 1

4), (3 : 3
4)}, with costb = 1,

costr = 2 and d = 2. 25
1.15 Example of ATSP-DBG for T = {1

4 ,
3
8 ,

7
8} with d = 3. 28

1.16 Mixing graph for ATSP-DBG when T = {1
4 ,

3
8 ,

7
8} with d = 3. 30

2.1 Coupling of two mixing graphs G1 and G2. 39
2.2 G2 is a compact representation of G1. 40
2.3 Graphical representation of intervals S1, S2, . . . , S5. 42
2.4 Conversion from Gs+1 to Gs. 42
2.5 Base mixing graphs B1, B2, B3 and B4 for concentrations 1

2 ,
1
4 ,

3
8 and 5

16 ,
respectively. 43

2.6 Initial converters and extenders for the case I =
{
i : 1

4 , j : 1
2

}
. 46

2.7 Initial converters for the case I =
{
i : 3

8 , j : 5
8

}
. 48

2.8 X3
1 and X3

2 extenders for the case I =
{
i : 3

8 , j : 5
8

}
. 48

2.9 Initial converters for the case I =
{
i : 1

8 , j : 3
8

}
. 50

2.10 X1
1 and X1

2 extenders for the case I =
{
i : 1

8 , j : 3
8

}
. 51

x

2.11 RPRIS experimental comparison for precision 7 and 8. 61
2.12 RPRIS experimental comparison for precision 15 and 20. 62

3.1 A mixing graph that perfectly mixes C =
{

1
16 ,

3
16 ,

7
32 ,

11
32 ,

7
16

}
. 63

3.2 A perfect mixing graph for C = {0, 0, 0, 3, 7} with precision 1. 65
3.3 Proof outline for n ≥ 7. 78

4.1 Characterization for a configuration with f1 and f3 even. 128
4.2 Characterization for a configuration with f1 and f3 odd. 129
4.3 Characterization for a configuration with f1 = 1 and f3 > 1 odd. 130

A.1 Proportional network structure. 142
A.2 Example of the T-typed convective/diffusive mixing chip. 143
A.3 Serial ladder network structure for three target concentrations. 143
A.4 Serial cascade network structure for n target concentrations. 145
A.5 Combinatorial mixing chip modules. 146
A.6 Pyramidal mixing chip experiment. 148

xi

Chapter 1

Introduction

1.1 Microfluidic Mixing Chips

Microfluidics is an area of science and engineering dedicated to the study and

manipulation of very small (picoliter to nanoliter [24]) amounts of fluids. Microfludic de-

vices have found applications in inkjet printing [4, 10, 41], microlens arrays [13, 18], super-

resolution imaging [39], bioanalysis [57], and cell biology research [29]. One of the most

remarkable achievements of microfluidics is the creation of lab-on-chip (LoC), which can

replace bulky and costly biochemical systems in labs, hospitals, and research centers [25].

Liu et al. in [38] defined LoC as a tiny device integrating a variety of laboratory functions,

such as dispensing, mixing, filtering, separating and detecting. During the past years, LoC

has gained a lot of attention due to its promising applications in cancer discovery [32,37,53],

health environment monitoring [40], protein analysis [28, 31, 72], drug discovery [9, 66] and

human physiological sample analysis [60, 62]. Furthermore, the importance of LoC devices

will soon scale up with the introduction of cloud laboratories [19], which give researchers

1

access to state-of-the-art equipment and data analysis tools, allowing them to carry out

their experiments remotely.

LoC devices manipulate the fluids along their chambers by applying physical effects

such as hydrodynamic pressure gradients, capillarity, magnetic forces, dielectrophoresis,

electrophoresis, electrowetting and acoustic waves [58,63].

One of the most fundamental functions of LoC devices is mixing of different fluids,

where the objective is to produce desired volumes of pre-specified mixtures of some given

fluids. There are several different technologies that can be used to manufacture microfluidic

chips for fluid mixing. One of the technologies involves fluid-based mixing chips, where

continuous volumes of fluids are manipulated throughout the chip. In other fluid mixing

technologies, discrete volumes of fluids, where the unit of fluid is called droplet, are mixed

by tiny components called micro-mixers.

In this work, we study droplet-based mixing chips. One of the motivations for

this study is that, although such mixing chips are simple to model, there are still many

theoretical gaps regarding the use of algorithms for the computation of efficient mixing

sequences for a mixing chip. In the following sections we describe the above mentioned

technologies for fluid mixing in LoC mixing devices, and further discuss our adopted model

and the problem statement.

1.1.1 Fluid-based Mixing Chips

In fluid-based technologies for mixing chips, continuous flows of fluids are ma-

nipulated throughout the chips. This is commonly achieved by having fluid dispensers

continuously inject fluids into the chips at a given rate. These fluid dispensers can regulate

2

the rate at which they inject fluids by adjusting the pressure on their pumps. In addition,

micro-channels (which fluids flow through) have their own hydrodynamic resistances, which

decrease the flow rate of the fluids passing through them.

Since fluids are continuously flowing, the typical approach is to let fluids mix along

the way while they are being transported, instead of having micro-mixers mixing the fluids

at specific locations. Certain fluid-based mixing chips bear some similarities to electric

network circuits. (See for example Appendix A.3.)

Oh et al. in [44] classified fluid-based mixing chips as either concentration-dependent

or flow-dependent. Later, they further classified concentration-dependent LoC mixing chips

into five network categories based on the architecture and similarities of their approaches:

proportional, T-typed, serial, combinatorial and pyramidal. (See Appendix A for examples

of each type of concentration-dependent fluid-based mixing chip.)

The mathematics behind fluid-based technologies depends on many non-trivial fac-

tors, including the physical design of the mixing chip, the physical properties of the fluids,

and the physical effects applied to the fluids. Hence, fluid-based technologies are commonly

represented by continuous models. However, the focus of this work is on discrete models,

so issues that arise in fluid-based technologies are outside the scope of this work.

1.1.2 Droplet-based Mixing Chips

In droplet-based technologies, LoC mixing devices manipulate discrete volumes of

fluids called droplets. This is achieved by either having the fluid dispenser system provide

the exact volume of fluid per droplet, or by internally dividing the fluids into droplets within

3

the mixing chip. (Since we are interested in purely theoretical analysis, it is safe to assume

that these mixing chips are provided with exact units of fluid per droplet.)

There are also different technologies for droplet-based mixing chips. However, in

this work we focus on chips that involve a collection of tiny components called micro-mixers,

which are connected by micro-channels. In such chips, input droplets are injected into the

chip by a fluid dispenser system, then they travel through appropriate micro-channels,

through a sequence of micro-mixers where they are subjected to mixing operations, and are

eventually discharged into output reservoirs. These droplet-based mixing chips may also

produce a by-product of superfluous fluid, called waste, that is discarded.

Typically, droplet-based mixing chips are categorized by mixing models. The most

common mixing model is the 1:1-model, for its simplicity and because mixing chips of

this model are relatively easy to manufacture. In this model, a micro-mixer has exactly

two input and two output channels. It receives one droplet from each input, mixes them

perfectly, and produces two identical droplets on its outputs.

Other mixing models include the a:a-model and the a:b-model, where a droplets

of equal concentration are mixed with some other a or b droplets, respectively, of equal

concentration. However, in this work we focus on mixing chips under the 1:1-model only.

1.1.3 Dilution

Dilution is a special case of fluid mixing that involves only two fluids, called buffer

and reactant. The goal is to produce a desired target set of fluid volumes with pre-specified

concentrations of reactant by diluting it with buffer. For example, in clinical diagnostics

4

(see [62]), blood, serum, plasma and urine may be used as reactants and phosphate buffered

saline as a buffer.

Recall that in a mixing chip under the 1:1-mixing model, a micro-mixer takes

two input droplets, mixes them perfectly, and produces two output droplets with equal

concentration. Therefore, if the input droplets have (reactant) concentrations a, b, then

the produced droplets will have concentration 1
2(a+ b). It follows that all droplets flowing

through the chip have concentrations of the form c/2d, where c and d ≥ 0 are integers.

This simply means that their binary representations are finite; note that these numbers

are simply binary numbers. In this representation, the number d, called precision, is the

number of fractional bits; assuming c is odd when d ≥ 1.

In addition to mixing chips under the 1:1-mixing model, in this work we also focus

on dilution. Throughout the rest of the dissertation, we will represent droplets by their

reactant concentrations (which uniquely determines their buffer concentration, since both

add up to one).

1.1.4 Mixing Graphs

The mixing process in a droplet-based mixing chip can be naturally represented

by a directed acyclic graph G that we call a mixing graph. The edges of G represent

micro-channels. Source vertices represent droplet dispensers, internal vertices represent

micro-mixers, and sink vertices represent output reservoirs. In a mixing graph represented

by the 1:1-mixing model, source vertices have in-degree 0 and out-degree 1, internal vertices

have in-degree and out-degree 2, and sink vertices have in-degree 1 and out-degree 0.

5

Given a set I of input droplets injected into the source nodes, a mixing graph G

converts it into the set Q of droplets in its sink nodes. Graph G1 in Figure 1.1 illustrates a

mixing graph for a 1:1 droplet-based mixing chip that, given input set I = {0, 0, 1, 1, 1, 1},

converts it into the output set Q =
{

1
8 ,

1
8 ,

1
4 ,

13
16 ,

13
16 ,

7
8

}
.

Typically, given an input set I and an output set T of droplets, the goal is to

design a mixing graph that converts I into T . However, the computed mixing graph might

also produce a superfluous set W of droplets, called waste, such that W = Q− T , where Q

is the output set of droplets. (This is trivially true when I has more droplets than T .) For

example, consider I = {0, 0, 1, 1, 1, 1} and T =
{

1
8 ,

1
8 ,

13
16 ,

13
16

}
. Then graph G2 in Figure 1.1

converts I into T ∪W , for W =
{

1
4 ,

7
8

}
.

0 1

0

1

1

1

13
16

13
16

13
16

1
8

1
8

1
4

1
4

1
2

3
4

7
8

7
8

1
8

0 1

0

1

1

1

13
16

13
16

13
16

1
8

1
8

1
4

1
2

3
4

7
8

1
8

w

w

G1 G2

Figure 1.1: Two mixing graph examples for a given input set I = {0, 0, 1, 1, 1, 1}. Mixing
graph G1 converts the input set I into the droplet set

{
1
8 ,

1
8 ,

1
4 ,

13
16 ,

13
16 ,

7
8

}
. Numbers on

the micro-mixers (internal nodes) represent the droplet’s reactant concentrations produced
by these micro-mixers. If only some of the produced droplets are needed, the remaining
droplets are designated as waste. This is illustrated by mixing graph G2, which produces
the droplet set

{
1
8 ,

1
8 ,

13
16 ,

13
16

}
. Small black circles labeled “w” on micro-mixers represent

droplets of waste.

6

The most fundamental algorithmic question involving mixing chips asks for design-

ing mixing graphs. Typically, we seek not just any correct graph, but one that minimizes

some measure of cost: for example, the reactant volume, waste, or the number of mixing

operations.

1.1.5 Problem Statement

In this work, we focus on designing mixing graphs for droplet-based mixing chips

under the 1:1-mixing model. Specifically, we focus on mixing graphs that minimize waste.

As a starting point, consider the following problem:

MixReachability: Given an input set I and a target set T of droplets, design a mixing

graph that converts I into T without waste (if at all possible).

If there is a mixing graph that converts I into T (exactly, without waste) then we say

that T is mix-reachable, or just reachable, from I. For example, let I =
{

1
16 ,

3
16 ,

7
16 ,

7
32

}
and T =

{
1
4 ,

1
4 ,

13
64 ,

13
64

}
. Figure 1.2 illustrates a mixing graph that converts I into T ,

exactly. Therefore, T is reachable from I. (See, also, G1 in Figure 1.1 for a target set

T =
{

1
8 ,

1
8 ,

1
4 ,

13
16 ,

13
16 ,

7
8

}
that is reachable from I = {0, 0, 1, 1, 1, 1}.)

For T to be reachable from I, clearly, I and T must have the same cardinality

and equal reactant volumes. However, these conditions are not sufficient. For example,

T =
{

1
4 ,

3
4

}
is not reachable from I = {0, 1}, because producing 1

4 from I requires at least

two buffer droplets and one reactant droplet, but T itself contains only two droplets. (A

mixing graph for target set T =
{

1
4 ,

3
4

}
with two waste droplets is shown in Figure 1.3.)

7

1
4

1
4

3
16

7
16

3
16

1
16

7
32

5
16

13
64

13
64

13
64

1
4

Figure 1.2: Mixing graph that converts the input set I =
{

1
16 ,

3
16 ,

7
16 ,

7
32

}
into the target set

T =
{

1
4 ,

1
4 ,

13
64 ,

13
64

}
.

As another example, consider I =
{

1
16 ,

1
8 ,

3
8 ,

7
8

}
and T =

{
1
16 ,

3
16 ,

7
16 ,

3
4

}
. First, to

produce target droplet 3
4 , we eventually have to mix droplet 7

8 ∈ I, because it is the only

droplet in I with a concentration higher than 3
4 . Now, the second highest concentration in

I is 3
8 , therefore the highest concentration we can obtain by mixing 7

8 is 5
8 , when we mix it

with 3
8 . However, 5

8 <
3
4 and thus a droplet with concentration 3

4 cannot be produced from

I. Hence, T is not reachable from I.

0 1

0

1
4

1
2

w

1

1
4

3
4

3
4

w

Figure 1.3: Mixing graph for target set T =
{

1
4 ,

3
4

}
.

In typical applications, the input set I consists of pure buffer and reactant droplets

(that is, only 0’s and 1’s). We denote this variant by MixProducibility, and target

8

sets reachable from such input sets are called mix-producible, or just producible; see set{
1
8 ,

1
8 ,

1
4 ,

13
16 ,

13
16 ,

7
8

}
in Figure 1.1 for an example of a producible set. If waste is allowed,

then, naturally, MixProducibility can be extended to an optimization problem where

the objective is to design a mixing graph that generates T while minimizing waste. Alter-

native objective functions have been studied: for example minimizing the reactant waste,

minimizing the number of micro-mixers, and others.

MixProducibility is not likely to be computationally easier than MixReach-

ability. (For example, via a simple linear mapping, any algorithm that solves Mix-

Producibility can also solve the variant of MixReachability where the input set has

droplets of any two given concentrations.) To the best of our knowledge, the computational

complexity of MixReachability and MixProducibility remains open. In fact, even

for single-droplet targets, we do not know whether the minimum-waste function can be

effectively computed. These theoretical gaps also motivate our work.

The contributions of this work are mainly related to MixReachability and Mix-

Producibility. In particular, they can be classified in the following areas:

• Algorithms for waste-minimization

• Computational complexity

• Characterization of reachable and producible sets

An overview of our contributions is given in Section 1.3.

9

1.2 Literature Review

Most of the previous papers in the literature study designing mixing graphs using

heuristic approaches. Earlier studies focused on producing single-droplet targets, where only

one droplet of some desired concentration is needed. This line of research was pioneered by

Thies et al. [65], who proposed an algorithm called Min-Mix that constructs a mixing graph

for a single-droplet target. Roy et al. [50] developed a single-droplet target algorithm called

DMRW that considered waste reduction and the number of mixing operations. Huang et al. [26]

and Chiang et al. [3] proposed single-droplet algorithms designed to minimize reactant

usage.

Many applications, however, require target sets with droplets of multiple concen-

trations (see for example [23,61,62,72,73]). Typically, target sets arising in practice involve

concentration values that form arithmetic or geometric sequences (referred to, respectively,

as “linear” and “logarithmic” in some literature – see, for example [32]), but the special

form of such sets does not seem to facilitate the design of mixing graphs. For multiple-

concentration targets, Huang et al. [27] proposed an algorithm called WARA, which is an

extension of Algorithm REMIA from [26]. Mitra et al. [43] modeled the problem of producing

multiple concentrations as an instance of the Asymmetric TSP on a de Brujin graph.

The papers cited above describe heuristic algorithms with no formal performance

guarantees. Dinh et al. [7] took a more rigorous approach. They modeled the problem as

an equal-split flow problem [42] on a “universal” graph that contains all possible mixing

graphs of maximum depth d as subgraphs, where d is the maximum precision in the target

set T . By assigning appropriate capacity and cost values to edges, the problem of extracting

10

a mixing subgraph that minimizes waste can be represented as an integer linear program,

resulting in an algorithm that is doubly exponential in d. Unfortunately, contrary to the

claim in [7], their algorithm does not necessarily produce mixing graphs with minimum

waste. The reason is that there are target sets with maximum precision d that require

mixing graphs of depth larger than d to be produced without any waste. In particular,

target sets of the form T =
{

2−d , 2d + 1 : 1− 2−d
}

are producible only by mixing graphs

of depth at least 2d.

We next show that producing a target set T =
{

2−d , 2d + 1 : 1− 2−d
}

, where d is

the maximum precision in T , without any waste, requires depth at least 2d. The argument

is as follows. Consider a micro-mixer that produces droplet of concentration 2−d in T .

This mixer actually produces two droplets with concentration 2−d and is at least depth d,

because it takes d steps to dilute 1 to concentration 2−d. The fluid in the second droplet

with concentration 2−d (the one not in T) produced by this mixer must also end up in

some droplets of T and its concentration will increase to 1− 2−d. The buffer concentration

in this droplet is 1 − 2−d and it takes at least d − 1 steps to reduce it to 2−d, in order

to obtain a droplet with reactant concentration 1 − 2−d. We can therefore conclude that

the depth of any mixing graph for T is at least 2d. Figure 1.4 shows an example for

the target set T =
{

1
8 , 17 : 7

8

}
(one droplet with concentration 1

8 and seventeen droplets

with concentration 7
8) with precision d = 3, for which a mixing graph of depth 2d = 6 is

constructed.

In the following sections we present a more in-depth description of the literature

mentioned above.

11

0 1

0

1
4

1
2 1

3
40

1
8

7
8

1

7
8

1

3
4 11

7
8

7
8

7
8

7
8

7
8

1
2

1
21

8
7
8

Figure 1.4: A (partial) mixing graph of depth 6 that produces T =
{

1
8 , 17 : 7

8

}
with

precision d = 3. Each of the three empty-shaded areas on the left represent the exact
same subgraph used in the rightmost shaded area, which takes as input one droplet of
concentration 1

2 and produces four droplets of concentration 7
8 .

1.2.1 Single-Droplet Targets

In this section, we present the work in the literature on designing mixing graphs

that produce a single-droplet target with a specified concentration.

1.2.1.1 Algorithm Min-Mix

In [65], Thies et al. pioneered research on mixing (dilution) optimization for

microfluidic mixing chips by proposing an algorithm called Min-Mix that produces a mixing

graph for a single-droplet target with a desired concentration. Their algorithm is sometimes

also referred to as the bit-scanning algorithm in the literature.

Algorithm Min-Mix computes a mixing graph based on the binary representation

of the target droplet concentration. Starting at the least-significant bit, the mixing process

12

mixes a buffer droplet with a reactant droplet at depth 1. Then, if the second least-

significant bit is one, a reactant droplet is mixed at depth 2, otherwise a buffer droplet

is mixed. The process continues until the most-significant bit has been processed and the

target droplet has been produced. The mixing graph produced by the algorithm is always

a tree; in fact, it consists of a path with leaves representing fluid dispensers attached to it.

0 1

0 .1

1

.1101

.01

.101 1

.1101

} Depth 0

} Depth 1

} Depth 2

} Depth 3

} Depth 4
w

w

w

w

Figure 1.5: Mixing graph example for Algorithm Min-Mix with target concentration 13
16 , or

0.1101 in binary. The number of waste droplets equals the depth of the graph: in this case
4. (For simplicity, droplet concentrations are shown in binary.)

In Figure 1.5, we illustrate an example of a mixing graph produced by Algo-

rithm Min-Mix. Given target droplet with reactant concentration 13
16 , whose binary repre-

sentation is 0.1101, the mixing graph produces concentrations 0.1, 0.01, 0.101 and 0.1101

at depth 1, 2, 3 and 4 respectively.

Although this algorithm minimizes the number of mixing operations necessary to

produce the target droplet (therefore the name, Min-Mix), it produces a lot of waste – one

waste droplet per depth in the graph (depths 1, 2, 3 and 4 in Figure 1.5). However, this

approach has been the basis of some other algorithms that we discuss next.

13

1.2.1.2 Algorithm DMRW

Roy et al. in [50] developed a single-droplet target algorithm called dilution and

mixing with reduced wastage (DMRW), which considered waste reduction in addition to the

number of mixing operations. This algorithm uses k:k micro-mixers, for appropriate values

of k that are determined by the algorithm. (We can think of such k:k micro-mixers as a

collection of k “parallel” 1:1 micro-mixers.)

Given the target concentration ct and two initial fluids with concentration cland

cr, respectively, such that 0 ≤ cl < ct < cr ≤ 1, the goal is to find a sequence of k:k-mixing

operations that produce ct from cl and cr, with an error at most 1
2γ . Algorithm DMRW is

based on binary search. At each step, concentration cm is produced by mixing cl with cr,

where cm = 1
2(cl + cr). Thus, there is only one k:k-mixer per step. If cm is smaller than ct,

then cl is set to cm. Otherwise, cr is set to cm instead. If |cm−ct| < 1
2γ , the algorithm stops

and outputs cm. The number of iterations is at most γ, because the concentration interval

between cl and cr (which includes ct) halves after each mixing operation.

If the initial concentrations are cl = 0 and cr = 1, then the algorithm computes

the exact value of ct after d mixing operations, where d is the precision of ct. This is because

in the ith step we have |ct − cm| < 2−i, and cm has precision i. So after d steps we have

|ct− cm| < 2−d and both ct and cm have precision d, which implies that they must be equal.

We must still specify the number of droplets that each mixer needs to produce.

This value can be computed by backtracking, starting from the target node. When a node v

producing a concentration c is considered, and the nodes processed earlier require ` droplets

with concentration c, then v will represent a k:k micro-mixer (or k 1:1 micro-mixers) for

14

0 1

0 1
2

0 1

7
16

7
16

w

1
4

w

3
8

w

1
2

w

Figure 1.6: Mixing graph example for Algorithm DMRW with target concentration 7
16 . This

example shows two 1:1 micro-mixers, instead of one 2:2 micro-mixer, for producing three
droplets of concentration 1

2 .

k = d`/2e. If ` is odd, then v will produce one droplet of waste. Figure 1.6 illustrates the

mixing graph computed by Algorithm DMRW for the target concentration 7
16 .

1.2.1.3 Algorithm REMIA

In [26], Huang et al. proposed an algorithm for single-droplet targets called REMIA,

which uses 1:1-mixers and was designed to minimize reactant volume. Their approach

consists of two phases: an interpolated dilution phase and an exponential dilution phase.

Let a prime concentration value (pcv) denote a concentration value with exactly

one bit 1 in its binary representation; that is, a number of the form 2−j , for some non-

negative integer j. First, in the interpolated dilution phase they compute a pcv mixing

tree, which is a mixing graph with a tree-like structure. This mixing tree generates the

target droplet starting from a droplet set of pcvs, instead of buffer and reactant droplets.

Thus, every leaf in a pcv mixing tree is a pcv node.

Let ct be the concentration of the target droplet. In the first step, we express ct as

ct = 2−i + (ct− 2−i), where i is the most-significant non-zero bit in ct. We can obtain ct by

15

mixing one droplet with concentration 2−i+1 and one with concentration 2 · (ct − 2−i). So,

in the pcv mixing tree, we will have two nodes with concentrations 2−i+1 and 2 · (ct − 2−i)

respectively, pointing to node ct. The node with concentration 2−i+1 is a pcv, so we put it

aside as a leaf. On the other hand, the node with concentration 2 · (ct − 2−i) may or may

not be a pcv. If it is a pcv, we put it aside as well, and the interpolation process ends.

If not, it becomes the new target concentration ct, and another round of the interpolated

dilution phase begins. G1 in Figure 1.7 shows the mixing graph obtained by the interpolated

dilution phase for target concentration 43
64 .

43
64

1
3
16

w

11
32

w

43
64

w

1
2

1
4

1
8

cv=0.101011

cv=0.01011

cv=0.0011

cv=0.001 cv=0.01

cv=0.1

cv=1

pcvs

G1

0

0 1

1
2

1
2

1
40

1
8

w 1
4

1
8

1

G2

pcvs

Figure 1.7: Example of Algorithm REMIA for the target concentration 43
64 . G1 and G2 are

the mixing graphs obtained by the interpolated dilution and exponential dilution phases,
respectively.

Next, in the exponential dilution phase, the set of all pcv concentrations found in

the interpolated dilution phase becomes our target set of concentrations, and a new mixing

graph is computed. The set of pcvs is processed in order of their increasing concentration

values. Let ci and cj be the next pcvs in the pcv target set respectively. If ci = 1, then

ci represents a reactant droplet and we just add a reactant node to our new mixing graph.

16

Otherwise, we know that ci can be generated by mixing a pcv droplet with concentration

2 · ci with a buffer droplet. So we add a mixer node with concentration ci with one input

being a buffer node and another being a node with concentration 2 · ci. We also add the

node with concentration 2 · ci to the target set of our pcvs.

Now, if ci = cj , then the two output droplets from the target set of pcvs will be

produced, and we remove both from the target set. Otherwise, we only remove ci and one

other droplet of concentration ci becomes waste. (In this case, cj will be considered again

later in the process.) The process continues until the target set of pcvs becomes empty. G2

in Figure 1.7 shows the mixing graph obtained by the exponential dilution phase for the

target set of pcvs in G1.

0

0
1

43
64

1
2

1
4

1
8

0

3
16

11
32

1

43
64

w

w

w

w

Figure 1.8: Complete mixing graph produced by Algorithm REMIA for concentration 43
64 .

The complete mixing graph is obtained by combining the graphs from the interpo-

lated dilution and exponential dilution phases: each leaf node from the interpolated dilution

phase is identified with the node of the exponential dilution tree with the same pcv label.

Figure 1.8 illustrates the final mixing graph of Algorithm REMIA for the target concentration

17

43
64 . (Note that the complete mixing graph produced by Algorithm REMIA might not be a

tree anymore.)

1.2.1.4 Algorithm GORMA

In [3], Chiang et al. proposed a branch-and-bound algorithm called GORMA, or

graph-based optimal reactant minimization algorithm, for single-droplet targets. This al-

gorithm consists of two main processes: complete mixing tree (CMT) enumeration and

maximal droplet sharing. A CMT is basically a mixing graph that is a binary tree, where

leaves are either buffer or reactant nodes, and where the root represents the target droplet.

Also, in a CMT, the precision of the concentration of any node (except the root) is smaller

than that of its immediate ancestor. Because of the 1:1-mixers, every non-leaf node in a

CMT has waste associated to it.

Algorithm GORMA can be divided into two phases. In the first phase, an initial CMT

B for ct is constructed. Then, in the second phase, using B as starting point, “all” CMTs

for ct are enumerated. We summarize each of these phases below. Let cx be an arbitrary

concentration. We define a descending concentration pair of cx as a pair of concentrations

(cu, cv) such that cx = 1
2(cu + cv) and where the precision of both cu and cv is smaller than

the precision of cx. We also define a shareable node pair (u, v), with concentrations cu and

cv, respectively, as a pair of nodes such that cu = cv, and where both u and v have waste

associated with them. Then, an unshareable mixing graph is defined as a mixing graph

without any shareable node pair.

Constructing B for ct. First, add a root node t (for ct) to B, then associate to it a list

of every possible descending concentration pair for ct and further mark each such pair as

18

unprocessed. Then, take the first unprocessed concentration pair (cu, cv) and processes it

as follows: mark (cu, cv) as processed and add nodes u and v, for cu and cv respectively, to

B, with edges (u, t) and (v, t) (where u and v are t’s left and right immediate descendants,

respectively). Finally, recursively construct the initial CMTs for u and v; u’s CMT first.

(No initial CMTs are computed for buffer and reactant nodes, since they are leaf nodes.)

Enumerating all CMTs for ct. Let B be the CMT constructed above for ct. First, we

convert B into an unshareable mixing graph by using the maximal droplet sharing process,

which basically consists of identifying shareable node pairs (u, v) in B, and replacing v and

v’s exclusive descendants with a node corresponding to u’s waste, until there are no more

shareable node pairs in B.

0

0 1

1
2

1
4

3
8

3
8

G1

0

0 1

1
2

1
4

w

G2

3
8

0 1

1
2

3
8

w

w

ww

w

Figure 1.9: Algorithm GORMA droplet sharing example. G1 illustrates the initial CMT while
G2 illustrates the resulting graph after sharing one of the droplets of concentration 1

2 .

Figure 1.9 shows an example of droplet sharing in an arbitrary CMT. G1 shows

the initial CMT. Then, G2 can be obtained from G1 by using the waste droplet of 1
2 , in the

left sub-tree of node 3
8 , to replace the corresponding node (and its corresponding exclusive

descendants) in the right sub-tree of node 3
8 .

19

Next, the CMT enumeration process continues using B as reference. Let x be the

last modified node in B with unprocessed descending concentration pairs. (If there is no

such node x, then all feasible CMTs have been enumerated and the CMT with minimum

waste is used as the final mixing graph.) Then, using x as a root, corresponding CMTs are

recursively computed. (However, regarding descending concentration pairs for x, only those

marked as unprocessed are considered.) As every feasible CMT must be enumerated, the

enumeration of a CMT for x leads to the re-enumeration of previously-enumerated CMTs.

For example, let y ∈ B be an ancestor of x, such that y’s left sub-tree contains x. Then, if

a CMT rooted at x is enumerated, y’s right child CMT must also be re-enumerated.

To avoid unnecessary re-enumerations, Chiang et al. proposed the following branch-

and-bound technique: instead of re-enumerating y’s right child CMT on the spot, a dummy

node is used to temporarily replace it. Let the CMT containing the dummy node be D.

Only when D’s unshareable mixing graph is better (with respect to reactant usage) than

the current best CMT is y’s right child CMT re-enumerated. Otherwise, the dummy node

replacement is rolled-back and the enumeration process continues.

Figure 1.10 illustrates a CMT enumeration example in progress. G1 shows the

current CMT. Then, G2 shows node 3
8 processing descending concentration pair (5

16 ,
7
16).

On G3, as node 3
8 is in the left sub-tree of node 17

32 , node 11
16 re-enumerates its initial

descending concentration pair, which is (3
8 , 1).

Chiang et al. claimed that the order in that shareable node pairs are processed is

irrelevant to the final outcome. However, in Figure 1.11 we show that this is not true. If

node 3
8 (on the right sub-tree of node 15

32) replaces node 3
8 (on the left sub-tree of node 15

32)

20

G1

17
32

1
2

w

11
16

w3
8

w

17
32

w

1
4

w 3
4

w5
8

w

… … … …

17
32

7
16

w

11
16

w3
8

w

17
32

w

5
16

w 3
4

w5
8

w

… … … …

17
32

7
16

w

11
16

w3
8

w

17
32

w

5
16

w 3
8

w

… … …

1

G2 G3

Figure 1.10: Algorithm GORMA CMT enumeration example. G1 shows the current CMT.
G2 shows node 3

8 processing descending concentration pair (5
16 ,

7
16). G3 shows node 11

16
processing descending concentration pair (3

8 , 1), again caused by the update on G2.

in the first droplet sharing operation, then a droplet sharing operation involving nodes of

3
4 will be lost, leading to an unshareable mixing graph that uses 3 reactant droplets, while

the optimal uses only 2. Thus, the order in which shareable node pairs are chosen and the

order in which nodes are replaced matters.

15
32

0 1

0

1

1
2

w

1
4

w

0 1

1
2

w

3
8

w

0 1

1
2

w

3
4

w

9
16

w

1

0 1

1
2

w

3
4

w 0

3
8

w

15
32

w

Figure 1.11: Algorithm GORMA droplet sharing counter example. If node 3
8 is chosen as the

first droplet sharing pair, the optimal unshareable mixing graph might not be found.

21

1.2.2 Multiple-Concentrations Targets

In this section, we present the work in the literature on designing mixing graphs

that produce many droplets with different specified concentrations.

1.2.2.1 Algorithm WARA

Algorithm WARA, proposed by Huang et al. in [27], is an extension of Algo-

rithm REMIA (see Section 1.2.1.3). It is based on the idea of waste recycling, which is

implemented by adding two more phases called droplet sharing (as in Algorithm GORMA)

and droplet replacement.

First, Algorithm WARA computes a pcv mixing tree for each target droplet using

Algorithm REMIA. Initially, every non-leaf node in a mixing tree has waste associated with

it, thus every non-leaf node in a mixing tree is a reusable node. Also, every leaf in a mixing

tree is a pcv node.

Second, in the droplet sharing phase, Algorithm WARA computes an unshareable

mixing graph G by applying maximal droplet sharing (as Algorithm GORMA does) to the set

of pcv mixing trees produced by Algorithm REMIA.

Third, in the droplet replacement phase, Algorithm WARA finds replacement can-

didate pairs (u, v) for z such that u, v, z ∈ G, z is a descendant of neither u nor v,

cz = 1
2(cu + cv) and both u and v are reusable. Thus, the output produced by mixing

u and v can safely replace z and its exclusive descendants. Once there are no more replace-

ment candidate pairs satisfying the above constraints, new replacement candidate pairs are

explored by allowing either u or v to be a pcv.

22

Algorithm WARA introduces two sorting criteria for replacement candidate pair

processing. Let G′ be obtained from G after processing a replacement candidate pair (u, v)

in G. Define the reactant minimization gain as

gain(u, v) = ERU(G)− ERU(G′)

where ERU(G) (for essential reactant usage) is the sum of the concentration values of all

the leaves in G. Also, define the uniqueness of (u, v) as:

uniq(u, v) = min(ac(u), ac(v))

where ac(u) is the number of replacement candidate pairs that contain u, if u is not a pcv,

and ac(u) = ∞, if u is a pcv. (Similarly for ac(v).) In order to minimize reactact usage,

during the droplet replacement phase, the algorithm chooses replacement candidate pairs

with high reactant minimization gain and high uniqueness.

1
8

…

G1

1

3
16

w

11
32

w

27
64

w

27
64

…

1
8

3
16

w

11
32

w

43
64

w

43
64

1
4

…

1
4

…

1

…

1
8

3
16

w

11
32

43
64

w

43
64

1
4

…

27
64

w

27
64

G2

1
2

…

1
2

… 1
2

…

1
2

… 1
2

…

Figure 1.12: Algorithm WARA droplet sharing example. G2 can be obtained from G1 by
replacing node of 11

32 in the sub-tree rooted from 43
64 , by the corresponding node of 11

32 in the
sub-tree rooted from 27

64 .

Let H be the graph produced after the droplet replacement phase. Next, Al-

gorithm WARA produces the set of pcvs that are leaves in H by using Algorithm REMIA’s

23

exponential dilution phase. Call this graph H ′. Finally, Algorithm WARA combines H and

H ′: each leaf node from H is identified with the node of H ′ with the same pcv label. Figure

1.12 shows an example of droplet sharing. Figure 1.13 shows an example of droplet replace-

ment where in G1, node 11
32 is reusable and node 1

16 is a leaf pcv node, and their mixing can

replace (partially) the sub-tree rooted at 13
64 .

G1

5
32

w

13
64

w

13
64

…

1
8

3
16

w

11
32

w

27
64

w

27
64

1
4

…

G2

1
4

…

1
4

… 1
2

…

1
16

…

1
2

…
13
64

w

13
64

…
1
8

3
16

w

11
32

27
64

w

27
64

1
4

…

1
2

…

1
16

…

1
2

…

Figure 1.13: WARA droplet replacement example. Nodes of 11
16 and 11

32 in G1 can be used to
replace the sub-tree rooted at 13

64 . The resulting mixing graph is shown by G2.

1.2.2.2 Equal-Split Flow Model

In [7], Dinh et al. proposed an approach (ESFM) to computing mixing graphs for

multiple target concentrations that is based on modeling the problem as the equal-split flow

problem [42]. The idea is to construct a “universal” flow graph that contains all possible

mixing graphs as subgraphs. By assigning appropriate capacity and cost values to edges,

minimum-cost equitable flows in this graph will determine a mixing graph for a given target

set of concentrations. The problem of computing such equitable flows can be represented

24

as an integer linear program (ILP). The objective function of this ILP can be customized

to optimize reactant usage or waste.

Assign cost values costr and costb to a reactant droplet and buffer droplet, respec-

tively. The optimization problem addressed in [7] can then be formulated as follows: given

the target set T = {(q1 : c1), (q2 : c2), . . . , (qm : cm)}, where qi represents the number of

droplets of ci for all i, find a mixing graph that generates T and minimizes the cost function

F = ur · costr + ub · costb.

where ur and ub denote the number of reactant and buffer droplets used by the mixing graph,

respectively. By setting costr = 1 and costb = 0 the reactant usage is being minimized.

Setting costr = 1 and costb = 1 will minimize the total number of droplets used, and thus

also the waste.

0 1

0 1
2

Q

1
4

1

3
4

1
20 1

S

W

cost=1
cap=INF

cost=2
cap=INF

cost=0
cap=5

cost=0
cap=3

} Level 0

} Level 1

} Level 2

Figure 1.14: ESFM network structure for target set T = {(5 : 1
4), (3 : 3

4)}, with costb = 1,
costr = 2 and d = 2. Edges without label have zero cost and infinite capacity.

Let d be the precision of the target set T . The flow network used by Dinh et al. has

d+ 1 levels numbered l = 0, 1, ..., d. For each level l and each concentration c with precision

at most l, the network contains a node denoted vl,c. For any two nodes vl,a and vl,b at level

25

l, and for c = 1
2(a+ b), the network has directed edges (vl,a, vl+1,c) and (vl,b, vl+1,c) to level

l+ 1, with infinite capacities and zero cost. In addition, we have three more nodes. One of

them is the source node S with edges (S, v0,0), (S, v0,2d) with infinite capacities and costs

costb and costr, respectively. We also have the waste node W and the sink node Q. Node

W has incoming edges (vd,c,W) with infinite capacity and zero cost from every node vd,c at

level d. Node Q has an incoming edge (vd,ci , Q) with capacity qi and zero cost, for each pair

(qi : ci) ∈ T . Figure 1.14 shows the network structure for target set T = {(5 : 1
4), (3 : 3

4)},

with costb = 1, costr = 2 and d = 2. Edges without labels have zero cost and infinite

capacity.

Next, we define the constraints. Let f(u, v) be the variable representing the flow

on an edge (u, v). We include all usual constraints for flow problems, namely capacity con-

straints and flow preservation constraints. In addition, we have equitable flow constraints,

defined as follows: for any three nodes vl,a, vl,b and vl+1,c such that c = 1
2(a+ b), we require

that f(vl,a, vl+1,c) = f(vl,b, vl+1,c). These constraints ensure that the fluids with concentra-

tions a and b arriving from vl,a and vl,b have the same volumes, so that they can be mixed

(using 1:1-mixers represented by vl+1,c) to obtain a fluid with concentration c.

We now give a complete ILP from [7]. Let cap(u, v) be the capacity of edge (u, v).

Using the network flows notation, their ILP looks as follows:

26

minimize F = f(S, v0,0) · costb + f(S, v0,2d) · costr

subject to f(u, v) ≤ cap(u, v), for (u, v) ∈ E (capacity constraint)

f(vd,ci , Q) = qi, for (qi : ci) ∈ T (target concentrations)∑
(u,v)∈E

f(u, v) =
∑

(v,w)∈E

f(v, w), for v ∈ V − (S ∪W ∪Q) (flow conservation)

f(vl,a, vl+1,c) = f(vl,b, vl+1,c) for 0 ≤ l < d and c = a+b
2 (equitable flow)

All flow values are required to be non-negative integers. (V and E above denote the set of

vertices and edges in the network, respectively.)

Any integral equitable flow that is a solution of the above ILP represents a mixing

graph, by interpreting the nodes in the network as mixers. More specifically, for any pair

vl−1,a and vl−1,b such that c = 1
2(a + b), if f(vl−1,a, vl,c) = (vl−1,b, vl,c) = k, we introduce

a k:k-mixer with inputs from two mixers corresponding to vl−1,a and vl−1,b. (Recall that

k:k-mixers are equivalent to k parallel 1:1-mixers.)

As we proved in Section 1.2, however, this approach actually has a flaw: while the

ILP correctly produces a mixing graph, this mixing graph may not necessarily be optimal

for a given target set. The reason is that an optimal mixing graph for a target set with

precision d may have depth larger than d, while [7] tacitly assumes that depth d is sufficient.

1.2.2.3 Asymmetric Traveling Salesman Model

In [43], Mitra et al. approached the problem of multiple-concentrations tar-

gets by modeling it as an Asymmetric Traveling Salesman Problem on a de Brujin graph

(ATSP-DBG). Let T be a target set of droplets with specified concentrations. The idea is to

27

produce T by a linear sequence of mixing operations using 1:1-mixers, where at each step

the current droplet is mixed either with buffer or reactant. (Thus, in this approach, no

fluid storage is required.) At each intermediate mixing step, one droplet is sent to the next

mixer, while the other one is either discarded (becomes waste) or used as output (becomes

a target droplet). Under the assumption that the mixing graph has this form, the objective

in [43] is to minimize the number of mixing operations.

Let d be the precision of the target set T . All concentrations are manipulated as

d-bit binary strings. If concentrations with higher precision arise, they are rounded-off to d

bits (e.g. for d = 4, mixing 0.1011 with 0 produces concentration 0.0101). This introduces

an error bounded above by 1
2d

.

.001

.01

.1

.101

.11.111

0

1

11

.011

0

0 0

0
1

0

1
0

1

1

1

0

0

G1

.01.111

0

2

.011

13

3
3

2

2

3

2

3
3

3

G2

Figure 1.15: Example of ATSP-DBG for T = {1
4 ,

3
8 ,

7
8} with d = 3. G1 shows a graph that is

isomorphic to the de Brujin graph B(2, d). G2 shows the directed weighted graph for which
a traveling salesman tour is computed.

The process of mixing with either reactant or buffer can be represented by a

directed graph G = (V,E) as follows: For each concentration cu with precision at most d,

G contains the corresponding node u. We introduce an edge (u, v) with label 0 if mixing

a droplet with concentration cu with a buffer droplet produces concentration cv. Similarly,

28

we introduce an edge (u, v) with label 1 if mixing a droplet with concentration cu with a

reactant droplet produces concentration cv. (In both cases, rounding can occur, as explained

earlier.) G1 in Figure 1.15 illustrates an example of this construction when d = 3.

It can be shown that G is isomorphic to the dth order binary de Brujin graph

B(2, d), and thus it contains a Hamiltonian cycle. This in turns implies that there is a path

in G that visits all vertices corresponding to the target set T ; or, in other words, that T

can be generated (approximately, as we allow rounding) by repeated mixing with buffer and

reactant only. The path that corresponds to T , however, could contain many additional

vertices, representing additional mixers and generating additional waste.

To optimize their mixing graphs, [43] construct a smaller graphG′. G′ is a complete

weighted directed graph. For each pair of concentrations cu and cv in T , graph G′ has a

directed edge (u, v) with weight dist(cu, cv), where dist(cu, cv) is the number of 1:1-mixers

needed to generate cv from cu, by mixing only with buffer and reactant, and with rounding

(as described earlier). The value of dist(cu, cv) can be determined by scanning the bits of

cu and cv from left to right and from right to left, respectively, to find the longest substring

matching and by subtracting its length from d (note that in general dist(cu, cv) may not

be equal to dist(cv, cu)). Optimizing the number of mixing operations is equivalent to

computing a minimum cost Hamiltonian path in G′, in other words to solving the traveling

salesman problem on G′. To this end, apply a heuristic algorithm.

G2 in Figure 1.15 shows an example of the construction of G′ for T = {1
4 ,

3
8 ,

7
8}.

Figure 1.16 shows the final mixing graph for the example provided in Figure 1.15. One

drawback of the approach in [43] is that every mixing operation that does not produce a

target droplet produces a waste droplet. (Also, we remark that Mitra et al. estimated an

29

absolute error to be at most 1
2d+1 , which is not quite correct, since the error can propagate

after each mixing operation and can accumulate to 1
2d

.)

.01

0

1

0

11 1

0.01

.1
w

.111.101
w

.11
w

.111

.011.011
w

Figure 1.16: Mixing graph for ATSP-DBG when T = {1
4 ,

3
8 ,

7
8} with d = 3.

1.3 Overview of Contributions

In this section we give an overview of our contributions. As mentioned in Sec-

tion 1.1.5, regarding MixReachability and MixProducibility, our contributions can

be divided into the following areas: (i) algorithms for waste-minimization, (ii) computa-

tional complexity, and (iii) characterization of reachable and producible sets.

To this end, we first summarize our contributions for (i). In Section 1.3.1 we

overview a waste-minimization algorithm for the single-droplet target case of MixPro-

ducibility, which produces significantly less waste than state-of-the-art algorithms in an

experimental comparison. Then, in Section 1.3.2 we overview our results for a sub-problem

of MixReachability, where the objective is to design a mixing graph that perfectly mixes

the input droplets. Furthermore, we show that this algorithm can be extended to provide

a minimum-waste mixing graph for MixProducibility when the target set consists of a

sufficiently-large number of same-concentration droplets.

30

Next, in Section 1.3.3.1 we overview our results for (ii), which result in an NP-

hardness proof for a restricted variant of MixReachability, where mixing graphs have

fixed depth. Then, in Section 1.3.3.2, we outline a necessary condition for both reachable

and producible sets. Although this condition is not a sufficient condition in our droplet

model, it allows us to characterize special cases of MixProducibility in Section 1.3.3.3.

Sections 1.3.3.2 and 1.3.3.3 comprises our contributions regarding (iii).

1.3.1 Waste-Minimization Algorithm for Single-Droplet Targets

To the best of our knowledge, the computational complexity of MixReachabil-

ity and MixProducibility remains open. In fact, it is not even known whether the

minimum-waste function is computable at all. This is true even for the single-droplet tar-

get case. Nonetheless, we designed an efficient waste-minimization algorithm for the single-

droplet case of MixProducibility and provided a bound on its worst-case performance,

which is significantly better than state-of-the-art algorithms, as shown in an experimental

comparison. We give a bound on its running time, as a function of its output, which is

the size of the produced graph. (This is because the output size is at least as large, and

usually larger, than the input size, which is equal to d – the number of bits in the target

concentration.) The algorithm’s running time is linear in the size of the computed graph,

whose size is O(d2). These contributions are presented in Chapter 2.

1.3.2 Algorithm for Perfect-Mixing

In this work, we focus on a sub-problem of MixReachability that we refer to as

PerfectMixability, where the objective is to design a mixing graph that perfectly mixes

31

the input droplets, producing only droplets of equal concentration. For this problem, we

give a complete characterization of input sets for which such graphs exist and an efficient

algorithm to construct these graphs.

We further extend the algorithm to construct minimum-waste mixing graphs for

MixProducibility when the target sets consist of equal-concentration droplets with large

multiplicities. The resulting algorithm is very convenient for applications that require large

volumes of equal-concentration droplets. For example, in drug manufacturing, where mass

production plays an essential role, large amounts of droplets with the same concentrations

are required in early stages of the production. In such an application, waste minimization is

a crucial component of the entire manufacturing process, thus highlighting the importance

of our contribution. This algorithm is presented in Chapter 3.

1.3.3 Other Contributions

In this section, we overview other minor contributions. Specifically, an NP-hardness

proof for a variant of MixReachability where mixing graphs have fixed depth, a neces-

sary condition for reachable and producible sets, and decidability proofs for special target

sets.

1.3.3.1 NP-Hardness of a Restricted Variant

As mentioned earlier, the computational complexity of MixReachability and

MixProducibility remains open. Nevertheless, in this work we obtained an NP-hardness

proof for a variant of MixReachability where mixing graphs have fixed depth. In essence,

we provide proofs for mixing graphs of depth 1 and 2, and then show the construction of

32

an NP-hardness proof for mixing graphs of fixed depth. These proofs and construction are

given in detail in Section 4.1.

1.3.3.2 A Necessary Condition for Mixing Reachability

Our contributions include a necessary condition for reachable sets. We refer to

this condition as dominance relation. In other words, let I and T be arbitrary initial and

target sets, respectively. If T is reachable from I, then this dominance relation holds. In

fact, in the fluid-based model, where we are allowed to mix arbitrary volumes of fluids, this

dominance relation is also a sufficient condition.

However, in our droplet model, dominance relation is not a sufficient condition.

Therefore, as an open problem, it remains to show a sufficient condition for the droplet

model. These contributions are presented in Section 4.2.

1.3.3.3 Decidability of Special Cases

These contributions are solely focused on MixProducibility. We give decidabil-

ity proofs for special types of configurations. In particular, we give decidability proofs for

configurations with at most four droplets, configurations with precision 2 and configurations

containing only pcvs. We also give a sufficient condition for producing configurations con-

taining pcvs and one non-pcv. (Recall that a pcv denotes a concentration value with exactly

one bit 1 in its binary representation.) These contributions are presented in Section 4.3.

Interestingly, the difficulty of such decidability proofs comes from the absence of

bounds on the depth of mixing graphs as well as the precision of intermediate concentrations

produced by these graphs. (This is the reason behind the flaw in Dinh et al. model

33

mentioned in Section 1.2.2.2.) Therefore, determining such bounds is a key step in proving

decidability.

34

Chapter 2

Waste-Minimization Algorithm for

Single-Droplet Targets

In this chapter, regarding MixProducibility, we present a new efficient algo-

rithm RPRIS (for Recursive Precision Reduction with Initial Shift) for designing mixing

graphs for single-droplet targets, with the objective to minimize waste. Our algorithm was

designed to provide improved worst-case waste estimate. Its main idea is quite natural: re-

cursively, at each step it reduces the precision of the target droplet by 2, while only adding

one waste droplet when adjusting the mixing graph during backtracking.

While designed with worst-case performance in mind, RPRIS significantly outper-

forms algorithms Min-Mix and DMRW in our experimental study, producing on average about

50% less waste than Min-Mix and between 21 and 25% less waste than DMRW, with the

percentage increasing with the precision d of the target droplet. (It also produces about

40% less waste than REMIA.) Additionally, when compared to ESFM, RPRIS produces on

35

average only about 7% additional waste. (See Section 1.2 in Chapter 1 for a description of

Algorithms Min-Mix, DMRW and ESFM.)

Unlike earlier work in this area, that was strictly experimental, we introduce a

performance measure for waste minimization algorithms and show that RPRIS has better

worst-case performance than Min-Mix and DMRW. This measure is based on two attributes

d and γ of the target concentration t. As defined earlier, d is the precision of t, and γ is

defined as the number of equal leading bits in t’s binary representation, not including the

least-significant bit 1. For example, if t = .00001011 then γ = 4, and if t = .1111 then γ = 3.

(Both d and γ are functions of t, but we skip the argument t, as it is always understood

from context.) In the discussion below we provide more intuition and motivations for using

these parameters.

We show that Algorithm RPRIS produces at most 1
2(d+γ)+2 droplets of waste (see

Theorem 2 in Section 2.4). In comparison, Algorithm Min-Mix from [65] produces exactly d

droplets of waste to produce t, independently of the value of t. This means that the waste

of RPRIS is about half that of Min-Mix for almost all concentrations t. (More formally, for

a uniformly chosen random t with precision d the probability that the waste is larger than

(1
2 − ε)d vanishes when d grows, for any ε > 0.) As for Algorithm DMRW, its average waste

is better than that of Min-Mix, but its worst-case bound is still d−Ω(1) even for for small

values of γ (say, when t ∈ [1
4 ,

3
4]), while Algorithm RPRIS’ waste is at most d/2 + O(1) in

this range.

In regard to time performance, for the problem of computing mixing graphs it

would be reasonable to express the time complexity of an algorithm as a function of its

output, which is the size of the produced graph. (This is because the output size is at least

36

as large, and usually larger, than the input size, which is equal to d – the number of bits of

t.) Algorithm RPRIS runs in time that is linear in the size of the computed graph, and the

graphs computed by Algorithm RPRIS have size O(d2).

Discussion. To understand better our performance measure for waste, observe that the

optimum waste is never smaller than γ + 1. This is because if the binary representation of

t starts with γ 0’s then any mixing graph has to use γ+ 1 input droplets 0 and at least one

droplet 1. (The case when the leading bits of t are 1’s is symmetric.) For this reasons, a

natural approach is to express the waste in the form γ+ f(d− γ), for some function f(). In

Algorithm RPRIS we have f(x) ≈ 1
2(x). It is not known whether smaller functions f() can

be achieved.

Ideally, one would like to develop “approximation” algorithms for waste minimiza-

tion, that measure waste performance in terms of the additive or multiplicative approxima-

tion error, with respect to the optimum value. This is not realistic, however, in the current

state-of-the-art, as no estimates for the optimum value are known; in fact, it is not even

known whether the optimum value is computable.

2.1 Preliminaries

We use notation prec(c) for the precision of concentration c, that is the number of

fractional bits in the binary representation of c. (All concentration values will have finite

binary representation.) In other words, prec(c) = d ∈ Z≥0 such that c = a/2d for an odd

a ∈ Z.

37

We will deal with sets of droplets, some possibly with equal concentrations. We

define a configuration as a multiset of droplet concentrations. Let A be an arbitrary con-

figuration. By |A| = n we denote the number of droplets in A. We will often write a

configuration as A = {f1 : a1, f2 : a2, ..., fm : am}, where each ai represents a different con-

centration and fi denotes the multiplicity of ai in A. (If fi = 1, then, we will just write

“ai” instead of “fi : ai”.) Naturally, we have
∑m

i=1 fi = n.

We defined mixing graphs in the introduction. A mixing graph can be thought

of, abstractly, as a linear mapping from the source values (usually 0’s and 1’s) to the sink

values. Yet in this work, for convenience, we will assume that the source concentration

vector is part of a mixing graph’s specification, and that all sources, micro-mixers, and

sinks are labeled by their associate concentration values.

We now define an operation of graph coupling. Consider two mixing graphs G1

and G2. Let T1 be the output configuration (the concentration labels of the sink nodes) of

G1 and I2 be the input configuration (the concentration labels of the source nodes) for G2.

To construct the coupling of G1 and G2, denoted G2 • G1, we identify inlet edges of the

sinks of G1 with labels from T1 ∩ I2 with outlet edges of the corresponding sources in G2.

More precisely, repeat the following steps as long as T1∩ I2 6= ∅: (1) choose any a ∈ T1∩ I2,

(2) choose any sink node t1 of G1 labeled a, and let (u1, t1) be its inlet edge, (3) choose any

source node s2 of G2 labeled a, and let (s2, v2) be its outlet edge, (4) remove t1 and s2 and

their incident edges, and finally, (5) add edge (u1, v2). The remaining sources of G1 and G2

become sources of G2 •G1, and the remaining sinks of G1 and G2 become sinks of G2 •G1.

See Figure 2.1 for an example.

38

0 1

0

1 0 1

0

1

G1 G2 G2 G1

1
4

1
2

3
8

3
8

3
8

1
4

1
4

5
8

5
8

1
2

1
2

1
2

3
8

1
2

1
4

5
8 3

8

1
2

5
8

1
2

1
2

3
8

Figure 2.1: Coupling of two mixing graphs G1 and G2. G2 •G1 is obtained by identifying
inlet edges of two sinks of G1, one labelled 1

4 and one 3
8 , with the outlet edges of the

corresponding sources of G2. These new edges are shown as dotted arrows.

Next, we define converter graphs. An (i : α, j : β)-converter is a mixing graph

that produces a configuration of the form T = {i : α, j : β} ∪W , where W denotes a set

of waste droplets, and whose input droplets have concentration labels either 0 or 1. As an

example, graph G2 •G1 in Figure 2.1 can be interpreted either as a (5
8 , 2 : 1

2)-converter that

produces a waste droplet of concentration 3
8 or as a (2 : 1

2 ,
3
8)-converter that produces a

waste droplet of concentration 5
8 .

If needed, to avoid clutter, sometimes we will use a more compact graphical rep-

resentation of mixing graphs by aggregating (not necessarily all) nodes with the same con-

centration labels into a single node, and with edges labeled by the number of droplets that

flow through them. (We will never aggregate two micro-mixer nodes if they both produce

a droplet of waste.) If the label of an edge is 1, then we will simply omit the label. See

Figure 2.2 for an example of such a compact representation.

39

0 1

0 1

1
4

1
2

3
4

1
2

0 1

0 1

1
4

1
2

3
4

1
2

1
21

4
3
4

1
4

1
4

3
4

3
4

0 1

0 1

1
4

1
2

3
4

1
2

1
2

1
4

3
4

2

2 2

2 2 22

3 3

G1 G2

Figure 2.2: G2 is a compact representation of G1. All nodes in G2 (except the last inter-
mediate node with label 1

2) represent an aggregation of at least two nodes from G1.

2.2 Algorithm Description

In this section we describe our algorithm RPRIS for producing a single-droplet

target of concentration t with precision d = prec(t). We first give the overall strategy and

then we gradually explain its implementation. The core idea behind RPRIS is a recursive

process that we refer to as Recursive Precision Reduction, that works (roughly) as follows.

Let ts be the concentration computed at the sth recursive step with ds = prec(ts); initially,

t0 = t.

(rpr1) Replace ts by another concentration value ts+1 with ds+1 = ds − 2.

(rpr2) Recursively construct a mixing graph Gs+1 for ts+1.

(rpr3) Convert Gs+1 into a mixing graph Gs for ts, increasing waste by only one droplet.

The mixing graph produced by this process is G0.

When we convert Gs+1 into Gs in part (rpr3), the precision of the target increases

by 2, but the waste only increases by 1, which gives us a rough bound of d/2 on the overall

40

waste. However, the above process does not work for all concentration values; it only

works when t0 ∈ [1
4 ,

3
4]. To deal with values outside this interval, we map t into t0 so that

t0 ∈ [1
4 ,

3
4], next we apply Recursive Precision Reduction to t0, and then we appropriately

modify the computed mixing graph. This process is called Initial Shift.

We next describe these two processes in more detail, starting with Recursive Pre-

cision Reduction, followed by Initial Shift.

Recursive Precision Reduction (RPR). We start with concentration t0 that, by ap-

plying Initial Shift (described next), we can assume to be in [1
4 ,

3
4].

Step (rpr1): computing ts+1. We convert ts into a carefully chosen concentration ts+1 for

which ds+1 = ds−2. One key idea is to maintain an invariant so that at each recursive step,

this new concentratiaon value ts+1 satisfies ts+1 ∈ [1
4 ,

3
4]. To accomplish this, we consider

five intervals S1 = [1
8 ,

3
8], S2 = [1

4 ,
1
2], S3 = [3

8 ,
5
8], S4 = [1

2 ,
3
4], and S5 = [5

8 ,
7
8]. Based on

the value of ts, we choose an interval Sk that contains ts “in the middle”. Specifically, we

choose Sk = [l, r] such that ts ∈ [l + 1
16 , r −

1
16]. We then compute ts+1 = 4(ts − l). Note

that ts+1 satisfies both ts+1 ∈ [1
4 ,

3
4] (that is, our invariant) and ds+1 = ds − 2. Figure 2.3

illustrates a graphical representation of intervals S1, S2, . . . , S5.

41

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

S1
S2

S4
S5

S3

Figure 2.3: Graphical representation of intervals S1, S2, . . . , S5. The thick shaded part of
each interval Sk = [l, r] marks its “middle section” [l + 1

16 , r −
1
16]. Each concentration

within interval [1
4 ,

3
4] belongs to a middle section of some Sk.

Step (rpr3): converting Gs+1 into Gs. Let Gs+1 be the mixing graph obtained for ts+1

in step (rpr2), by invoking our procedure recursively. We modify Gs+1 to obtain a graph

G′s+1 which is then coupled with an appropriate converter Cs+1, to obtain mixing graph

Gs = G′s+1 • Cs+1. Figure 2.4 illustrates this conversion process.

G
G’

t’ waste

I’
…

…

G’’

t waste

I’’
…

…

G’’

t waste

I’’
…

…

C
…

I
…

waste

Figure 2.4: Conversion from Gs+1 to Gs. The left image illustrates the computed mixing
graph Gs+1 with input labels Is+1 (consisting of only 0’s and 1’s) that produces ts+1 along
with some waste. The middle figure illustrates G′s+1, which is obtained from Gs+1 by
changing concentration labels. The last figure illustrates the complete mixing graph Gs =
G′s+1 • Cs+1 for ts, shown within a dotted rectangle.

42

Next, we explain how to construct G′s+1. G′s+1 consists of the same nodes and

edges as Gs+1, only the concentration labels are changed. Specifically, every concentration

label c from Gs+1 is changed to l+ c/4 in G′s+1. Note that this is simply the inverse of the

linear function that maps ts to ts+1. In particular, this will map the 0- and 1-labels of the

source nodes in Gs+1 to the endpoints l and r of the corresponding interval Sk.

The converter Cs+1 used in Gs needs to have sink nodes with labels equal to

the source nodes for G′s+1. That is, if the labeling of the source nodes of G′s+1 is I ′s+1 =

{i : l, j : r}, then Cs+1 will be an (i : l, j : r)-converter. As a general rule, Cs+1 should pro-

duce at most one waste droplet, but there will be some exceptional cases where it produces

two. (Nonetheless, we will show that at most one of such “bad” converter is used during the

RPR process.) The construction of these converters is somewhat intricate, and is deferred

to the next section.

0 1

1
2

1
2

0 1

0

1
4

1
2

1
4

0 1

0

1
4

1
2

3
8

3
8

0 1

0

1
4

1
2

3
8

5
16

5
16

G1 G2 G3 G4

w w

w w

w w

w

Figure 2.5: Base mixing graphs B1, B2, B3 and B4 for concentrations 1
2 ,

1
4 ,

3
8 and 5

16 , respec-
tively.

43

The base case. In the description of the RPR procedure above we tacitly assumed that

d0 = prec(t0) is sufficiently large, so that we can apply the algorithm recursively to t0.

The base case for the recursion consists of only a few values for which we give explicit

mixing graphs. Specifically, the base case involves concentrations B =
{

1
2 ,

1
4 ,

3
4 ,

3
8 ,

5
8 ,

5
16 ,

11
16

}
.

(Concentrations 5
16 and 11

16 are not strictly necessary for correctness but are included in

the base case to improve the waste bound.) Figure 2.5 illustrates the base mixing graphs

for concentrations 1
2 , 1

4 , 3
8 , and 5

16 ; the mixing graphs for the remaining concentrations are

symmetric.

Initial Shift (IS). We now describe the IS procedure. At the fundamental level, the idea

is similar to a single step of RPR, although the involved linear mappings and the converter

are significantly different.

We can assume that t < 1
4 (because for t > 3

4 the process is symmetric). Thus the

binary representation of t starts with γ ≥ 2 fractional 0’s. Since 2γ−1t ∈ [1
4 ,

1
2), we could

use this value as the result of the initial shift, but to improve the waste bound we refine

this choice as follows: If 2γ−1t ∈ (3
8 ,

1
2) then let t0 = 2γ−1t and σ = 1. Otherwise, we have

2γ−1t ∈ [1
4 ,

3
8], in which case we let t0 = 2γt and σ = 0. In either case, t0 = 2γ−σt ∈ [1

4 ,
3
4]

and d0 = d− γ + σ.

Let G0 be the mixing graph obtained by applying the RPR process to t0. It

remains to show how to modify G0 to obtain the mixing graph G for t. This is analogous

to the process shown in Figure 2.4. We first construct a mixing graph G′0 that consists of

the same nodes and edges as G0, only each concentration label c is replaced by c/2γ−σ. In

particular, the label set of the source nodes in G′0 will have the form I ′0 = {i : 0, j : 1/2γ−σ}.

44

We then construct a (i : 0, j : 1/2γ−σ)-converter C0 and couple it with G′0 to obtain G; that

is, G = G′0 • C0. This C0 is easy to construct: The 0’s don’t require any mixing, and to

produce the j droplets 1/2γ−σ we start with one droplet 1 and repeatedly mix it with 0’s,

making sure to generate at most one waste droplet at each step. More specifically, after z

steps we will have jz droplets with concentration 1/2z, where jz = dj/2γ−σ−ze. In step z,

mix these jz droplets with jz 0’s, producing 2jz droplets with concentration 1/2z+1. We

then either have jz+1 = 2jz, in which case there is no waste, or jz+1 = 2jz−1, in which case

one waste droplet 1/2z+1 is produced. Overall, C0 produces at most γ − σ waste droplets.

2.3 Construction of Converters

In this section we detail the construction of our converters. Let ts denote the

concentration at the sth recursive step in the RPR process. We can assume that ts ∈ [1
4 ,

1
2],

because the case ts ∈ (1
2 ,

3
4] is symmetric. Recall that for a ts in this range, in Step (rpr1)

we will chose an appropriate interval Sk, for some k ∈ {1, 2, 3}. Let Sk = [l, r] (that is,

l = k · 1
8 and r = l + 1

4). For each such k and all i, j ≥ 1 we give a construction of an

(i : l, j : r)-converter that we will denote Cki,j . Our main objective here is to design these

converters so that they produce as little waste as possible — ideally none.

2.3.1 (i : 1
4
, j : 1

2
)-Converters C2

i,j

We start with the case k = 2, because in this case the construction is relatively

simple. We show how to construct, for all i, j ≥ 1, our (i : 1
4 , j : 1

2)-converter C2
i,j that

produces at most one droplet of waste. These converters are constructed via an iterative

process. We first give initial converters C2
i,j , for some small values of i and j, by providing

45

specific graphs. All other converters are obtained from these initial converters by repeatedly

coupling them with other mixing graphs that we refer to as extenders.

Let J2
init = {(i, j)}i,j∈{1,2}. The initial converters C2

i,j are defined for the four index

pairs (i, j) ∈ J2
init. Figure 2.6 illustrates the initial converters C2

2,1, C
2
1,2 and two extenders

X2
1 , X

2
2 . Converter C2

1,2 produces one waste droplet and converter C2
2,1 does not produce

any waste. Converter C2
1,1 can be obtained from C2

2,1 by designating one of the 1
4 outputs

as waste. Converter C2
2,2 is defined as C2

2,2 = X2
1 • C2

1,1, and produces one waste droplet of

1
2 . (Note that, by the definition of coupling, C2

2,2 is simply a disjoint union of C2
1,1 and X2

1 .)

0 1

0

0 1

0 1

0 1 0

1
4

1
2

1
2

1
4

1
4

1
4

1
2

1
2

1
4

1
2

1
2

1
2

1
4

3
4

1
2

1
2

1
2

1
4

1
4

C1,2
2 X1

2 X2
2

w

C2,1
2

Figure 2.6: Initial converters and extenders for the case I =
{
i : 1

4 , j : 1
2

}
.

The construction of other converters C2
i,j is based on the following observation:

Suppose that we already have constructed some C2
i,j . Then (i) X2

1 •C2
i,j is a C2

i,j+2 converter

that produces the same waste as C2
i,j , and (ii) provided that j ≥ 2, X2

2 • C2
i,j is a C2

i+2,j−1

converter that produces the same waste as C2
i,j .

Let now i, j ≥ 1 with (i, j) /∈ J2
init be arbitrary. To construct C2

i,j , using the

initial converters and the above observation, express the integer vector (i, j) as (i, j) =

46

(i′, j′)+φ(0, 2)+ψ(2,−1), for some i′, j′ ∈ J2
init and integers ψ = d i2e−1 and φ = d j+ψ2 e−1.

Then C2
i,j is constructed by starting with C2

i′,j′ and coupling it φ times with X2
1 and then

ψ times with X2
2 . (This order of coupling is not unique but is also not arbitrary, because

each extender X2
2 requires a droplet of concentration 1

2 as input.) Since X2
1 and X2

2 do not

produce waste, C2
i,j will produce at most one waste droplet.

2.3.2 (i : 3
8
, j : 5

8
)-Converters C3

i,j

Next, for each pair i, j ≥ 1 we construct an (i : 3
8 , j : 5

8)-converter C3
i,j . These

converters are designed to produce one droplet of waste. (C3
1,1 will be an exception, see

the discussion below). Our approach follows the scheme from Section 2.3.1: we start with

some initial converters, which then can be repeatedly coupled with appropriate extenders

to produce all other converters. Since concentrations 3
8 and 5

8 are symmetric (as 5
8 = 1− 3

8),

we will only show the construction of converters C3
i,j for i ≥ j; the remaining converters

can be computed using symmetric mixing graphs.

Let J3
init = {(i, 1)}i∈{1,2,...,9}∪{(2, 2)}. The initial converters C2

i,j are defined for all

index pairs (i, j) ∈ J3
init. Figure 2.7 shows converters C3

3,1, C
3
4,1, . . . , C

3
7,1 and C3

9,1. Converter

C1
8,1 can be obtained from C3

9,1 by designating an output of 3
8 as waste. Converter C3

2,2 is

almost identical to X3
1 in Figure 2.8; except that the source labels 3

8 and 5
8 are replaced by

0 and 1, respectively (the result of mixing is still 1
2 , so other concentrations in the graph are

not affected). Converters C3
1,1 and C3

2,1 are obtained from C3
2,2 by designating outputs of{

3
8 ,

5
8

}
and 5

8 , respectively, as waste. Note that all initial converters except for C3
1,1 produce

at most one droplet of waste.

47

0 1

0

1

2

1
2

1
4

3
8

5
8

3
8

1
2

0

5
8

3
8

0 1

0 1
2 1

1
4

3
40

1
8

1

1
2

5
8

3
8

3
8

3
8 5

8

0 1

0 1
2

11
40

5
8

3
8

3
8

3
8

5
8

0 1

0 1
2

11
4

5
8

3
8

3
8

3
8

5
8

2 2

2 2

2
2

2

2

2 3

2 2

2 2
2

2

2
4

0 1

0 1
2

1
40

1
8

5
8

3
8

3
8

3
85

8

1

3
4

0

3
8

1
4

2 2

3
8

22

0 1

0 1
2

11
4

5
8

3
8

3
8 1

2

5
8

3
8

3 3

3
3

3

3

4 5

2

2

C3,1
3 C4,1

3 C5,1
3 C6,1

3 C7,1
3

1

2

1
4

w

7
8

w

1
2

w

1
8

w

w

C9,1
3

Figure 2.7: Initial converters for the case I =
{
i : 3

8 , j : 5
8

}
.

Now, consider extenders X3
1 and X3

2 in Figure 2.8. The construction of other

converters C3
i,j follows the next observation: Assume that we have already constructed

some C3
i,j , with i ≥ j. Then (i) X3

1 • C3
i,j is a C3

i+1,j+1 converter that produces the same

waste as C3
i,j , and (ii) X3

2 • C3
i,j is a C3

i+8,j converter that produces the same waste as C3
i,j .

0

2

0 1

0

8

4

1

2

33

2 2 4

3
8

5
8

1
2

1
4

3
8

5
8

5
8

3
8

1
2

1
4

3
8

3
8

X1
3 X2

3

Figure 2.8: X3
1 and X3

2 extenders for the case I =
{
i : 3

8 , j : 5
8

}
.

48

Consider now arbitrary i ≥ j ≥ 1 with (i, j) /∈ J3
init. To construct C3

i,j , using

the initial converters and the above observation, express the integer vector (i, j) as (i, j) =

(i′, j′) + φ(1, 1) +ψ(8, 0), for some integers φ, ψ ≥ 0, and (i′, j′) ∈ J3
init−{(1, 1)}. Then C3

i,j

is constructed by starting with C3
i′,j′ and coupling it φ times with X3

1 and then ψ times

with X3
2 (in arbitrary order). Since X3

1 and X3
2 do not produce waste (and we do not use

the initial converter C3
1,1), C3

i,j will produce at most one waste droplet.

Overall, all converters C3
i,j , except for C3

1,1 produce at most one waste droplet.

Converter C3
1,1 produces two droplets of waste; however, as we later show in Section 2.4, it

is not actually used in the algorithm.

2.3.3 (i : 1
8
, j : 3

8
)-Converters C1

i,j

In this section, for each pair i, j ≥ 1 we construct an (i : 1
8 , j : 3

8)-converter

C1
i,j . Most of these converters produce at most one droplet of waste, but there will be four

exceptional coverters with waste two. (See the comments at the end of this section.) The

idea of the construction follows the same scheme as in Sections 2.3.1 and 2.3.2: we start with

some initial converters and repeatedly couple them with appropriate extenders to obtain

other converters.

Let J1
init = {(i, j)}i,j∈{1,2,3} ∪ {(4, 2), (2, 5)}. The initial converters C1

i,j are defined

for all index pairs (i, j) ∈ J1
init. Converters C1

2,2, C1
2,3, C1

2,5, C1
3,1, C1

3,3 and C1
4,2 are shown in

Figure 2.9. Converters C1
1,1, C1

1,2 and C1
2,1 are obtained from C1

2,2 by designating outputs of{
1
8 ,

3
8

}
, 1

8 and 3
8 , respectively, as waste. Converter C1

1,3 is obtained from C1
2,3 by designating

an output of 1
8 as waste, and C1

3,2 is obtained from C1
4,2 by designating an output of 1

8 as

49

0 1

0

0

0 1

0

0

1

0
22

2
2

0 1

0

0

1

10

0

2
2

2

0 1

0

0

0

1
2

1
4

1
8

1
8

3
8

3
8

1
2

1
4

3
81

8

1
4

1
8

1
8

3
8

3
8

1
8

3
8

1
2

1
4

3
4

1
8

3
8

1
2

1
4

1
8

3
8

3
8

1
2

1
4

1
8

3
8

3
8

1
8

2
1
8

0 1

0

0

1
2

1
4

1
8

5
8

3
8

1
8

3
8

2

1

3
8

2

2 2

3

2

0 1

0

0

1
2

1
4

1
8

1
8

1

0

3
8

3
8

2 2

4 2

C2,5
1 C3,1

1 C3,3
1

5
8

w

C2,2
1 C2,3

1

7
8

w

1
4

w 1
2

w

3
4

w

C4,2
1

Figure 2.9: Initial converters for the case I =
{
i : 1

8 , j : 3
8

}
.

waste. Thus, among the initial converters, C1
1,1, C1

1,3 and C1
3,2 each produces two droplets

of waste; all other converters have at most one droplet of waste.

Next, we provide an observation leading to the construction of other converters

C1
i,j . Consider extenders X1

1 and X1
2 in Figure 2.10 and assume that we have already

constructed some C1
i,j . Then, (i) provided that j ≥ 2, X1

1 • C1
i,j is a C1

i+3,j−1 converter

that produces the same waste as C1
i,j , and (ii) provided that i ≥ 2, X1

2 • C1
i,j is a C1

i−1,j+3

converter that produces the same waste as C1
i,j . We also need the following, less obvious

observation:

Observation 1 If i, j ≥ 1 and (i, j) /∈ J1
init ∪ {(6, 1)}, then (i, j) = (i′, j′) + φ(−1, 3) +

ψ(3,−1), for some integers φ, ψ ≥ 0, and (i′, j′) ∈ J1
init − {(1, 1), (1, 3), (3, 2)}.

Proof. Let i, j ≥ 1 and (i, j) /∈ J1
init ∪ {(6, 1)}. We note first that we can represent (i, j) as

(i, j) = (̃i, j̃) + φ̃(−1, 3) + ψ̃(3,−1), for (̃i, j̃) ∈ J1
init − {(2, 5), (4, 2)} and integers φ̃, ψ̃ ≥ 0.

50

If (̃i, j̃) /∈ {(1, 1), (1, 3), (3, 2)} then we are done. Otherwise, we show how to modify the

values of parameters ĩ, j̃, φ̃ and ψ̃ so that they satisfy the condition in the observation.

Case 1: (̃i, j̃) = (1, 1). For this case, φ̃, ψ̃ ≥ 1 must hold, as otherwise we would get a

contradiction with i, j ≥ 1. Therefore, we can write (i, j) as (i, j) = (3, 3) +(φ̃−1)(−1, 3) +

(ψ̃ − 1)(3,−1).

Case 2: (̃i, j̃) = (1, 3). For this case, ψ̃ ≥ 1 must hold, because i ≥ 1. Therefore, we can

write (i, j) as (i, j) = (4, 2) + φ̃(−1, 3) + (ψ̃ − 1)(3,−1).

Case 3:(̃i, j̃) = (3, 2). For this case, it is sufficient to prove that φ̃ ≥ 1, since we could then

write (i, j) as (i, j) = (2, 5) + (φ̃ − 1)(−1, 3) + ψ̃(3,−1). To show that φ̃ ≥ 1 we argue

by contradiction, as follows. Suppose that φ̃ = 0. Then (i, j) = (3, 2) + ψ̃(3,−1). For

ψ̃ ∈ {0, 1} this contradicts that (i, j) /∈ J1
init ∪ {(6, 1)}, and for ψ̃ ≥ 2 it contradicts that

j ≥ 1.

0

X1 X2

2 2
0 1

4

22

1
8

1
8

1
4

1
8

3
8

3
8

3
8

1
8

5
8

1
4

1
8

3
8

4

1 1

Figure 2.10: X1
1 and X1

2 extenders for the case I =
{
i : 1

8 , j : 3
8

}
.

51

Using the observations above, for any pairs i, j ≥ 1 we can construct converter

C1
i,j as follows. If (i, j) = (6, 1) we let C1

6,1 = X1
1 • C1

3,2 (so C1
6,1 has two droplets of waste).

If (i, j) 6= (6, 1), we construct C1
i,j by starting with C1

i′,j′ and repeatedly coupling it with φ

copies of X1
2 and ψ copies of X1

1 , choosing a suitable order of couplings to ensure that each

intermediate converter has at least one output 1
8 and at least one 3

8 . (For example, if j′ = 1

then we begin by coupling X1
2 first.) As X1

1 and X1
2 do not produce any waste, these C1

i,j ’s

will each produce at most one droplet of waste.

Overall, the converters C1
i,j we construct have at most one droplet of waste, with

the exception of the following four: C1
1,1, C1

1,3, C1
3,2 and C1

1,6. (It is easy to prove that for

these converters waste 2 cannot be avoided.) As we show later in Section 2.4, of these four

converters only C1
1,3 is actually used in the RPR process of Algorithm RPRIS, and it is used

at most once.

2.4 Performance Bounds

In this section we provide the analysis of Algorithm RPRIS, including the worst-

case bound on produced waste, a bound on the size of computed mixing graphs, and the

running time.

Bound on waste. We first estimate the number of waste droplet of Algorithm RPRIS. Let

G be the mixing graph constructed by RPRIS for a target concentration t with its corre-

sponding values d = prec(t) and γ (as defined at the beginning of the chapter). Below we

prove the following theorem.

52

Theorem 2 The number of waste droplets in G is at most 1
2(d+ γ) + 2.

To prove Theorem 2, we show that the total number of sink nodes in G is at most

1
2(d+ γ − σ) + 3, for corresponding σ ∈ {0, 1}. (This is sufficient, as one sink node is used

to produce t).

Following the algorithm description in Section 2.2, let G = G′0 • C0. From our

construction of C0 (at the end of Section 2.2), we get that C0 contributes at most γ−σ sink

nodes to G. (Each waste droplet produced by C0 represents a sink node in G.) Therefore,

to prove Theorem 2 it remains to show that G′0 contains at most 1
2(d − γ + σ) + 3 sink

nodes. This is equivalent to showing that G0, computed by process RPR for t0 (and used

to compute G′0), contains at most 1
2d0 + 3 sink nodes, where d0 = prec(t0) = d − γ + σ.

Lemma 3 next proves this claim.

Lemma 3 The number of sink nodes in G0 is at most 1
2d0 + 3.

Proof. Let tb be the concentration used for the base case of the RPR process and db =

prec(tb) ≤ d0 its precision. We prove the lemma in three steps. First, we show that (i) the

number of sink nodes in the mixing graph computed for tb is at most three. (In particular,

this gives us that the lemma holds if t0 = tb.) Then, we show that (ii) if t0 6= tb then

the number of converters used in the construction of G0 is no more than 1
2d0 − 1, and (iii)

that at most one of such converter contains two waste sink nodes. All sink nodes of G0 are

either in its base-case graph or in its converters, so combining claims (i), (ii) and (iii) gives

a complete proof for Lemma 3.

The proof of (i) is by straightforward inspection. By definition of the base case,

tb ∈ B =
{

1
2 ,

1
4 ,

3
4 ,

3
8 ,

5
8 ,

5
16 ,

11
16

}
. The mixing graphs for base concentrations are shown in

53

Figure 2.5. (The graphs for 3
4 , 5

8 , and 11
16 are symmetric to B2, B3, and B4.) All these

graphs have at most 3 sink nodes.

Next, we prove part (ii). In each step of the RPR process we reduce the precision

of the target concentration by 2 until we reach the base case, which gives us that the

number of converters is exactly 1
2(d0 − db). It is thus sufficient to show that db ≥ 2, as

this immediately implies (ii). Indeed, the assumption that t0 6= tb and the definition of the

base case implies that d0 ≥ 4. (This is because the algorithm maintains the invariant that

its target concentration is in [1
4 ,

3
4] and all concentrations in this interval with precision at

most 3 are in B.) This, and the precision of the target concentration decreasing by exactly

2 in each step of the recursion, imply that db ∈ {2, 3} holds.

We now address part (iii). First we observe that converters Ck1,1 are not used in the

construction of G0: If we did use Ck1,1 in the construction of G0 then the source labels for

the next recursive step are {0, 1}. Hence, tb = 1
2 . Now, let tb−1 be the concentration, and

Sk = [l, r] the interval, used to compute tb. Since tb = 1
2 , then tb−1 = 1

2(l + r). Therefore,

by definition of Sk, tb−1 ∈
{

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4

}
⊂ B, so Algorithm RPRIS would actually use a

base case mixing graph for tb−1, instead of constructing Ck1,1 for tb.

So, it is sufficient to consider Cki,j converters that satisfy i + j ≥ 3 with i, j ≥ 1.

Now, from Sections 2.3.1, 2.3.2 and 2.3.3, we observe that the only such converters that

contain two waste sink nodes are C1
1,3, C

1
3,2 and C1

6,1. Claim 4 below shows that converters

C1
6,1 and C1

3,2 are not used in the construction of G0.

Regarding C1
1,3, first we note that this converter has exactly six source nodes; see

Figure 2.9, Section 2.3.3. This implies that C1
1,3 can not be used more than once in the

construction of G0, since the number of source nodes at each recursive step in the RPR

54

process is decreasing. (Note that there are symmetric converters C5
3,1, C5

2,3 and C5
1,6 for C1

1,3,

C1
3,2 and C1

6,1, respectively, where superscript 5 is associated to interval S5. Nevertheless, a

similar argument holds.) Thus, step (iii) holds.

Claim 4 Converters C1
6,1 and C1

3,2 are not used by Algorithm RPRIS in the construction of

G0 for t0.

We first present the following observations. Consider recursive step s of the RPR process, for

which ts is the target concentration. If a converter C1
i,j is used in this step, then ts ∈ (1

4 ,
5
16]

must hold; that is ts is in the middle part of interval S1 (see Figure 2.3 in Section 2.2).

(Recall that, by our algorithm’s invariant, ts ∈ [1
4 ,

3
4]. Also, note that ts 6= 1

4 since otherwise

this would be a base case and the algorithm would use B2 from Figure 2.5 instead.) Further,

at the next step of the RPR process, ts+1 = 4(ts − 1
8) satisfies ts+1 ∈ (1

2 ,
3
4].

We now prove the claim by contradiction, using the above observations. Assume

that either C1
6,1 or C1

3,2 were used in the construction of G0. If C1
6,1 was used in the

construction of G0, then the concentration labels of the source nodes at the next recursive

step are {6 : 0, 1}, and thus, since ts+1 >
1
2 , there is not enough reactant available to produce

ts+1.

On the other hand, if C1
3,2 was used in the construction of G0, then the concentra-

tion labels of the source nodes at the next recursive step are {3 : 0, 2 : 1}. This implies that

the next step is guaranteed not to be a base case, since all mixing graphs used for base case

concentrations contain at most three source nodes, as illustrated in Figure 2.5. Now, as

ts+1 >
1
2 , depending on the exact value of ts+1, the chosen interval for ts+1 must be either

S3 = [3
8 ,

5
8], S4 = [1

2 ,
3
4] or S5 = [5

8 ,
7
8]. We now consider these three cases.

55

Case 1: ts+1 ∈ (1
2 ,

9
16]. Then the chosen interval is S3 = [3

8 ,
5
8]. The only C3

i,j converter with

source concentration labels {3 : 0, 2 : 1} is C3
3,1 (see in Figure 2.7 in Section 2.3.2), whose

sink nodes have concentration labels
{

1
4 , 3 : 3

8 ,
5
8

}
. Therefore, the input configuration for

the next recursive step will be a subset of {3 : 0, 1}, which does not have enough reactant

to produce 4(ts+1 − 3
8) > 1

2 , thus contradicting the choice of S3.

Case 2: ts+1 ∈ (9
16 ,

11
16]. Then the chosen interval is S4 = [1

2 ,
3
4]. This instance is symmetric

to interval S2, having source concentration labels {2 : 0, 3 : 1}, instead of {3 : 0, 2 : 1}, and

target concentration t′s+1 = (1− ts+1). Thus we proceed accordingly. Since every converter

and extender in Section 2.3.1 adds at least the same number of source nodes with concentra-

tion label 0 as source nodes with concentration label 1, then no converter constructed by the

algorithm will have source concentration labels {2 : 0, 3 : 1}. Hence, we have a contradiction

with the choice of S2 for t′s+1, and thus also with the choice of S4 for ts+1.

Case 3: ts+1 ∈ (11
16 ,

3
4]. Then the chosen interval is S5 = [5

8 ,
7
8]. The argument here is simple:

to produce concentration 7
8 , at least three reactant droplets are needed, but the input

configuration contains only two. Therefore, at the next recursive step, the algorithm will

not have enough reactant droplets to construct a converter C5
i,j with i, j ≥ 1, contradicting

the choice of S5 for ts+1.

Finally, neither S3, S4 nor S5 are chosen by our algorithm for ts+1, contradicting

C1
3,2 being used for the construction ofG0. This completes the proof of Claim 4 and Lemma 3

(thus also completing the proof of Theorem 2).

Size of mixing graphs and running time. Let G = G′0 • C0 be the mixing graph

computed by Algorithm RPRIS for t; C0 is constructed by process IS while G′0 is obtained

56

from G0 (constructed by process RPR) by changing concentration labels appropriately. We

claim that the running time of Algorithm RPRIS is O(|G|), and that the size of G is O(d2),

for d = prec(t). We give bounds for G0 and C0 individually, then we combine them to

obtain the claimed bounds. (This is sufficient because the size of G′0, as well as the running

time to construct it, is asymptotically the same as that for G0.)

First, following the description of process RPR in Section 2.2, suppose that at

recursive step s, Gs+1, G′s+1 and converter Cs+1 = Cki,j are computed. (Note that the

algorithm does not need to explicitly relabel Gs+1 to get G′s+1 – we only distinguish Gs+1

from G′s+1 for the purpose of presentation.) The size of Cki,j is O(i + j) and it takes time

O(i+j) to assemble it (as the number of required extenders is O(i+j)). Coupling Cs+1 with

G′s+1 also takes time O(i+ j), since I ′s+1 (the input configuration for G′s+1) has cardinality

O(i+j) as well. In other words, the running time of each recursive RPR step is proportional

to the number of added nodes. Thus the overall running time to construct G0 is O(|G0|).

Now, let t0 be the target concentration for the RPR process, with d0 = prec(t0).

Then, the size of G0 is O(d2
0). This is because the depth of recursion in the RPR process is

O(d0), and each converter used in this process has size O(d0) as well. The reason for this

bound on the converter size is that, from a level of recursion to the next, the number of

source nodes increases by at most one (with an exception of at most one step, as explained

earlier in this section), and the size of a converter Cki,j used at this level is asymptotically

the same as the number of source nodes at this level. (Is and I ′s+1 in Figure 2.4 illustrate

the idea.)

Regarding the bounds for C0, we first argue that the running time to construct

C0 is O(|C0|). This follows from the construction given in Section 2.2; on step s there are

57

2js droplets being mixed, which requires js nodes; thus the entire step takes time O(js).

We next show that the size of C0 is O(d2). Let I0 be the input configuration for G0. From

the analysis for G0, we get that |I0| = O(d0), so the last step in C0 contains O(d0) nodes.

Therefore, as the depth of C0 is γ − σ, the size of C0 is O(γd0) = O(d2
0).

Combining the bounds from G0 and C0, we get that the running time of Algo-

rithm RPRIS is O(|G|) and the size of G is O(d2). (The coupling of C0 with G′0 does not

affect the overall running time, since it takes O(d0) time to couple them, as |I0| = O(d0).)

2.5 Experimental Study

In this section we compare the performance of our algorithm with algorithms

Min-Mix, DMRW, REMIA and ESFM. These algorithms were described in Section 1.2. However,

for completeness, we still give brief descriptions of these algorithms so that the reader

reviews the intuitions behind different approaches for constructing mixing graphs. Let

t ∈ (0, 1) be the target concentration and d = prec(t) its precision. Also, let bin(t) be t’s

binary representation with no trailing zeros.

Min-Mix [65]: This algorithm is very simple. It starts with τ = 0 and mixes it with the

bits of bin(t) in reverse order, ending with τ = t. It runs in time O(d) and produces

d droplets of waste.

DMRW [50]: This algorithm is based on binary search. Starting with pivot values l = 0

and r = 1, the algorithm repeatedly “mixes” l and r and resets one of them to their

average 1
2(l + r), maintaining the invariant that t ∈ [l, r]. After d steps we end up

with l = r = t. Then the algorithm gradually backtracks to determine, for each

58

intermediate pivot value, how many times this value was used in mixing, and based

on this information it computes the required number of droplets. This information is

then converted into a mixing graph.

REMIA [26]: This algorithm is based on two phases. In the first phase, the algorithm com-

putes a mixing graph G′ whose source nodes have concentration labels that have

exactly one bit 1 in their binary representation; each such concentration represents

each of the 1 bits in bin(t). Then, in the second phase, a mixing graph G′′ (that

minimizes reactant usage), whose sink nodes are basically a superset of the source

nodes in G′, is computed. Finally, G for t is obtained as G′ • G′′. (Although REMIA

targets reactant usage, its comparison to different algorithms in terms of total waste

was also reported in [26]. Thus, for the sake of completeness, we included REMIA in

our study.)

ESFM [7]: This algorithm constructs a “universal” mixing graph that contains all mixing

graphs of depth d as subgraphs. It then formulates the problem of computing a mixing

graph minimizing waste as an integer linear program (a restricted flow problem), and

solves this program. This universal graph has size exponential in d, and thus the

overall running time is doubly exponential in d.

We now present the results of our experiments. Each experiment consisted on

generating all concentration values with precision d, for d ∈ {7, 8, 15, 20}, and comparing

the outputs of each of the algorithms. The results for ESFM are shown only for d ∈ {7, 8},

since for d ∈ {15, 20} the running time of ESFM is prohibitive.

59

Figure 2.11 illustrates the experiments for concentrations of precision 7 and 8.

Figure 2.12 illustrates the experiments for concentrations of precision 15 and 20. In both

figures, the data was smoothed using MATLAB’s smooth function to reduce clutter and to

bring out the differences in performance between different algorithms.

As can be seen from these graphs, RPRIS significantly outperforms algorithm

Min-Mix, REMIA and DMRW: It produces on average about 50% less waste than Min-Mix

(consistently with our bound of 1
2(d + γ) + 4 on waste produced by RPRIS), and 40% less

waste than REMIA. It also produces on average between 21 and 25% less waste than DMRW,

with this percentage increasing with d. Additionally, when compared to ESFM, RPRIS pro-

duces on average only about 7% additional waste for d = 7, 8.

Among all of the target concentration values used in our experiments, there is not

a single case where RPRIS is worse than either Min-Mix or REMIA. When compared to DMRW,

RPRIS never produces more waste for precision 7 and 8. For precision 15, the percentage of

concentrations where RPRIS produces more waste than DMRW is below 2%, and for precision

20 it is below 3.5%.

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Concentration

3

4

5

6

7

W
as

te

Waste comparision for concentrations with precision 7

MinMix
REMIA
DMRW
RPRIS
ESFM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Concentration

3

4

5

6

7

8

W
as

te

Waste comparision for concentrations with precision 8

MinMix
REMIA
DMRW
RPRIS
ESFM

Figure 2.11: The number of waste droplets of algorithms Min-Mix, DMRW, REMIA, ESFM, and
our algorithm RPRIS, for all concentrations with precision 7 (top figure) and 8 (bottom
figure). All graphs are smoothed using MATLAB’s smooth function.

61

Figure 2.12: The number of waste droplets of algorithms Min-Mix, DMRW, REMIA, and our
algorithm RPRIS, for all concentrations with precision 15 (top figure) and 20 (bottom figure).
All graphs are smoothed using MATLAB’s smooth function.

62

Chapter 3

Algorithm for Perfect-Mixing

In this chapter we consider the following sub-problem of MixReachability:

PerfectMixability: Given a set C of n droplets with binary concentrations and bi-

nary average value µ = (
∑

c∈C c)/n, is there a mixing graph that mixes C perfectly,

converting C into the set of n droplets of concentration µ?

5
16

7
16

3
16

1
16

11
32

7
32

3
16

1
4

1
4 7

32
9

32

1
4

1
4

1
4

1
4

1
4

1
4

Figure 3.1: A mixing graph that perfectly mixes C =
{

1
16 ,

3
16 ,

7
32 ,

11
32 ,

7
16

}
.

63

Figure 3.1 shows an example of a perfect-mixing graph. As an example of a set

that is not perfectly mixable, consider D =
{

0, 3
16 ,

9
16

}
. After any (non-zero) number of

mixing operations the resulting set of concentrations will have the form D′ = {a, a, b} for

a 6= b, so no finite mixing graph will convert D into its perfect mixture
{

1
4 ,

1
4 ,

1
4

}
.

We provide a complete characterization of perfectly mixable sets, and show that

there is a polynomial-time algorithm that tests whether a given set is perfectly mixable,

and if so, constructs a polynomial-size perfect-mixing graph for it.

We represent droplet sets as multisets of concentration values. First, we observe

that without loss of generality we can assume that C∪{µ}@Z, for otherwise we can simply

rescale all values by an appropriate power of 2. (Z is the set of integers; Z>0 and Z≥0 are

the sets of positive and non-negative integers, respectively. Symbol @ is used to specify

a ground set of a multiset.) For any finite multiset A@Z and b ∈ Z>0, we define A to be

b-congruent if x ≡ y (mod b) for all x, y ∈ A. (Otherwise we say that A is b-incongruent.)

We say that C satisfies Condition (MC) if, for each odd b ∈ Z>0, if C is b-congruent

then C ∪ {µ} is b-congruent as well, where µ = ave(C). The following theorem summarizes

our results.

Theorem 5 Assume that n ≥ 4 and C ∪ {µ}@Z, where µ = ave(C). Then:

(a) C is perfectly mixable if and only if C satisfies Condition (MC).

(b) If C satisfies Condition (MC) then it can be perfectly mixed with precision at most

1 and in a polynomial number of steps. (That is, C has a perfect-mixing graph of

polynomial size where all intermediate concentration values are half-integral.)

64

(c) There is a polynomial-time algorithm that tests whether C is perfectly mixable and, if

so, computes a polynomial-size perfect-mixing graph for C.

Part (b) implies that, in general (if the concentrations in C ∪ {µ} are arbitrary

binary values), C can be mixed perfectly with precision at most d + 1, where d is the

maximum precision in C ∪ {µ}; in other words, at most one extra bit of precision is needed

in the intermediate nodes of a perfect-mixing graph for C.

This extra 1-bit of precision in part (b) of Theorem 5 is necessary. For example,

C = {0, 0, 0, 3, 7} (for which µ = 2) cannot be mixed with precision 0. If we mix 3 and

7, we will obtain multiset {0, 0, 0, 5, 5} which is not perfectly mixable, as it violates Con-

dition (MC). Any other mixing creates fractional values. However, C does have a mixing

graph where the intermediate precision is at most 1 — see Figure 3.2.

3.5

0 7

2

1.5

0 3

2.5

3 2

2.5

0

1.5

2 2

2 2 2 2

Figure 3.2: A perfect mixing graph for C = {0, 0, 0, 3, 7} with precision 1.

The proof of Theorem 5 is given in several sections. The necessity of Condi-

tion (MC) in Theorem 5(a) is relatively simple to show; the proof appears in Section 3.2.

65

The proof that Condition (MC) is sufficient is more challenging. We first show in Sec-

tion 3.3 (see Corollary 12) that, in essence, in Condition (MC) it is sufficient to consider

only the values of b, no bigger than the maximum concentration in C, that are powers of

prime factors of n. This property is used in Section 3.4 to show that any set C that satisfies

Condition (MC) has a perfect-mixing graph, completing the proof of Theorem 5(a). The

mixing graph constructed in Section 3.4 has precision at most 1, proving the frst part of

Theorem 5(b). The second part, showing the existence of a perfect-mixing graph of polyno-

mial size is established in Section 3.5. The proof of Theorem 5(c) is divided into two parts:

that testing Condition (MC) can be done in polynomial time follows directly from Corol-

lary 12 in Section 3.3, while a polynomial-time algorithm for constructing a perfect-mixing

graph is implicit in our construction in Section 3.5.

3.1 Preliminaries

Let Q0 be the set of binary numbers. Following the notation from Chapter 2, by

prec(c), where c ∈ Q0, we denote the precision of c, that is the number of fractional bits in

the binary representation of c, assuming there are no trailing 0’s. In other words, prec(c) is

the smallest d ∈ Z≥0 such that c = a/2d for some a ∈ Z. If c = a/2d represents actual fluid

concentration, then we have 0 ≤ a ≤ 2d. However, it is convenient to relax this restriction

and allow “concentration values” that are arbitrary binary numbers, even negative. In fact,

as we show shortly, it will be convenient to work with integral values.

Similarly, by a configuration we mean a multiset of n binary numbers, called

droplets or concentrations. In the literature, multisets are often represented by their char-

66

acteristic functions (that specify the multiplicity of each element of the ground set). In this

chapter we will generally use set-theoretic terminology, with its natural interpretation. For

example, for a configuration C and a concentration a, a ∈ C means that the multiplicity of

a in C is strictly positive, while a /∈ C means that it’s zero. Or, C − {a} = C ′ means that

the multiplicity of a in C ′ is one less than in C, while other multiplicities are the same.

The number of droplets in C is denoted |C| = n, while the number of different concentra-

tions is denoted ‖C‖ = m. As in Chapter 2, we will typically denote a configuration by

C = {f1 : c1, f2 : c2, ..., fm : cm}@Q0, where each ci represents a (different) concentration

value and fi denotes the multiplicity of ci in C, so that
∑m

i=1 fi = n. Occasionally, if it

does not lead to confusion, we may say “droplet ci” or “concentration ci”, referring to some

droplet with concentration ci. If fi = 1, we shorten “fi : ci” to just “ci”. If fi = 1 we

say that droplet ci is a singleton, if fi = 2 we say that droplet ci is a doubleton and if

fi ≥ 2 we say that droplet ci is a non-singleton. By sum(C) we denote the sum of C, that is

sum(C) =
∑

c∈C c. ave(C) = sum(C)/n is the average value of the concentrations in C and

will be typically denoted by µ. (Later, we will typically deal with configurations C such

that C ∪ {µ}@Z.)

In this work, since we are not concerned with the topological properties of mixing

graphs, we will often identify a mixing graph G with a corresponding mixing sequence,

which is a sequence (not necessarily unique) of mixing operations that converts C into its

perfect mixture. In other words, a mixing sequence is a sequence of mixing operations in a

topological ordering of a mixing graph.

Of course in a perfect-mixing graph (or sequence) G for C, all concentrations in

G, including those in C ∪ {µ}, must have finite precision (that is, belong to Q0) which is

67

at least max {prec(C), prec(µ)}. In addition to the basic question about finding a perfect-

mixing graph for C, we are also interested in bounding the precision required to do so.

For x ∈ Q0, define multisets C + x = {c+ x | c ∈ C}, C − x = C + (−x), and

C · x = {c · x | c ∈ C}. The next observation says that offsetting all values in C does not

affect perfect mixability, as long as the offset value’s precision does not exceed that of C or

µ.

Observation 6 Let µ = ave(C) and x ∈ Q0. Also, let d ∈ Z>0 be such that d ≥

max {prec(C), prec(µ), prec(x)}. Then C is perfectly mixable with precision d if and only

if C ′ = C + x is perfectly mixable with precision d.

Proof. (⇒) Suppose that G is a perfect-mixing sequence for C with precision d. Run the

same sequence G on input C ′. If some mixing step in G produces a value z when the input

is C then on C ′ its value is z + x, and prec(z + x) ≤ max {prec(z), prec(x)} ≤ d. Thus the

maximum precision in G for input C ′ is at most d.

(⇐) The proof for this implication follows from noting that µ′ = ave(C ′) = µ+ x,

max {prec(C ′), prec(µ′)} ≤ d, and by applying the above argument to −x instead of x.

Observation 7 Let µ = ave(C), δ = max {prec(C), prec(µ)}, C ′ = C · 2δ with µ′ =

ave(C ′) = 2δµ. (Thus C ′ ∪ {µ′}@Z.) Then C is perfectly mixable with precision d ≥ δ

if and only if C ′ is perfectly mixable with precision d′ = d− δ.

Proof. (⇒) Let G be a perfect-mixing sequence for C, with precision d. Run the same

sequence G on input C ′. If some node in G produces a value z on input C, then its value

on input C ′ will be z2δ, and prec(z2δ) = max {prec(z)− δ, 0} ≤ d− δ = d′.

68

(⇐) Let G′ be a perfect-mixing sequence for C ′ with precision d′. Run G′ on input

C. If some node in G′ produces a value y on input C ′, then its value on input C will be

y/2δ, and prec(y/2δ) ≤ prec(y) + δ ≤ d′ + δ = d.

Integral configurations. Per Observation 7, we can restrict our attention to configura-

tions with integer values and average, that is, we will be assuming that C ∪ {µ}@Z.

For x ∈ Z>0, if each c ∈ C is a multiple of x, let C/x = {c/x | c ∈ C}. For integral

configurations, we can extend Observation 7 to also multiplying C by an odd integer or

dividing it by a common odd factor of all concentrations in C.

Observation 8 Assume that C ∪ {µ}@Z and let x ∈ Z>0 be odd.

(a) Let C ′ = C ·x. Then C is perfectly mixable with precision 0 if and only if C ′ is perfectly

mixable with precision 0.

(b) Suppose that x is a divisor of all concentrations in C∪{µ}. Then C is perfectly mixable

with precision 0 if and only if C/x is perfectly mixable with precision 0.

Proof. Part (b) follows from (a), so we only prove part (a). Any sequence G of mixing

operations for C can be applied to C · x. By simple induction, if some intermediate value

in G was an integer z, now its value will be z · x, also an integer. This shows the (⇒)

implication.

To justify the (⇐) implication, suppose that G′ is a sequence of mixing operations

for C ′ and that all concentrations in G′ are integer. Since x is odd and all concentrations

in C ′ are multiples of x, every concentration in G′ will be also a multiple of x, including

ave(C ′). Thus, if we run G′ on C instead of C ′, if some node’s concentration was c · x, now

it will be c. Thus, the (⇐) implication holds.

69

Input format and size. The input configuration C is specified by listing the concen-

tration values of individual droplets, and its size is the total number of bits used in this

representation. For the sake of concretness, we will assume that C is already rescaled to

consist only of integers, and we will define the input size as s(C) =
∑

c∈C log(|c|+ 2). This

value is within a small constant factor of the actual number of bits representing C.

3.2 Necessity of Condition (MC)

In this section we prove that Condition (MC) in Theorem 5(a) is necessary for

perfect mixability. So let C ∪ {µ}@Z, where µ = ave(C), and assume that C is perfectly

mixable. Let G be a graph (or a sequence) that mixes C perfectly. We want to prove that

C satisfies Condition (MC).

Suppose that C is b-congruent for some odd b ∈ Z>0. Consider an auxiliary

configuration C ′ = C ·2δ, where δ is sufficiently large, so that all intermediate concentrations

in G when applying G to C ′ are integral. This C ′ is b-congruent, and starting from C ′, G

produces a perfect mixture of C ′, that is {n : µ′}, for µ′ = 2δµ.

Since C ′ is b-congruent, there is β ∈ {0, ..., b− 1} such that for each x ∈ C ′ we have

x ≡ β (mod b). We claim that this property is preserved as we apply mixing operations

to droplets in C ′. Indeed, suppose that we mix two droplets with concentrations x, y ∈ C ′,

producing two droplets with concentration z. Since x ≡ β (mod b) and y ≡ β (mod b), we

have x = αb+β and y = α′b+β, for some α, α′ ∈ Z, so z = 1
2(x+y) = (1

2(α+α′))b+β. As

b is odd (and z is integer), α + α′ must be even, and therefore z ≡ β (mod b), as claimed.

70

Eventually G produces µ′, so this must also hold for z = µ′. This implies that C ′ ∪ {µ′} is

b-congruent.

Finally, since C ′ ∪ {µ′} is b-congruent, for all 2δx, 2δy ∈ C ′ ∪ {µ′} it holds that

2δx ≡ 2δy (mod b). But this implies that x ≡ y (mod b), because b is odd. So we can

conclude that C ∪ {µ} is b-congruent, thus proving that C satisfies Condition (MC).

3.3 Some Auxiliary Lemmas

Condition (MC) involves all odd b ∈ Z>0, so it does not directly lead to an efficient

test for perfect mixability (Theorem 5(c)). Hence, we now show that only factors b of n

that are odd prime powers need to be considered, which implies that perfect mixability can

be tested in polynomial time. These properties will also play a role in the sufficiency proof

of Condition (MC) in Theorem 5(a).

Lemma 9 Let b, c ∈ Z>0 and A@Z. (a) If A is bc-congruent then A is also b-congruent.

(b) If gcd(b, c) = 1 and A is both b-congruent and c-congruent then A is bc-congruent.

Proof. Part (a) is trivial, because x ≡ y (mod bc) implies that x ≡ y (mod b). Part (b)

is also simple: Suppose that x ≡ y (mod b) and x ≡ y (mod c). This means that b|(x− y)

and c|(x− y). This, since b, c are co-prime, implies that (bc)|(x− y), which is equivalent to

x ≡ y (mod bc).

Lemma 10 If Condition (MC) holds for all b ∈ Z>0 that are a power of an odd prime then

it holds for all odd b ∈ Z>0.

Proof. Assume that condition (MC) holds for all b that are odd prime powers. Let

b′ ∈ Z>0 be odd, with factorization b′ = pγ11 ...p
γk
k , for different odd primes p1, ..., pk, and

71

suppose that C is b′-congruent. Then, by Lemma 9(a), C is also pγii -congruent for all i.

Since condition (MC) holds for pγii , this implies that C ∪ {µ} is pγii -congruent for all i. By

repeated application of Lemma 9(b), we then obtain that C ∪ {µ} is b′-congruent as well.

So Condition (MC) holds for b′.

Lemma 11 Let b ∈ Z>0 be odd. If gcd(b, n) = 1 then Condition (MC) holds for b.

Proof. Assume that C is b-congruent. By Observation 6, without loss of generality we can

assume that all numbers in C are multiples of b. (Otherwise we can consider C ′ = C − c,

for an arbitrary c ∈ C, because Condition (MC) is not affected by offsetting C.) Thus

sum(C) = bβ, for some β ∈ Z≥0, which gives us that µ = sum(C)/n = bβ/n, and, as b

and n are co-prime, we can conclude that µ is a multiple of b. This means that C ∪ {µ} is

b-congruent, proving that Condition (MC) holds for b.

Corollary 12 Let cmax be the maximum absolute value of concentrations in C, and suppose

that Condition (MC) holds for all b ∈ Z>0 that are powers of odd prime factors of n and

satisfy b ≤ cmax. Then Condition (MC) holds for all odd b.

To substantiate Corollary 12, note that C satisfies Condition (MC) for all odd

b ∈ Z>0 larger than cmax. This holds because for each such b, c mod b = c for all c ∈ C,

so the remainders of the concentrations in C modulo b are different. (Except for the trivial

case where all concentrations in C are equal, in which case µ is also equal and thus C

satisfies Condition (MC); such C is actually perfectly mixed.)

72

Algorithm 1 PerfectMixabilityTesting(C)

1: n←|C|

2: µ← ave(C)

3: cmax← maximum absolute concentration in C

4: P ← powers of odd prime factors of n that are at most cmax

5: for all p ∈ P do

6: if C is p-congruent but C ∪ {µ} is not then

7: return false

8: end if

9: end for

10: return true

Corollary 12 implies that perfect mixability testing can be done in polynomial

time (implying the first part of Theorem 5(c)). To justify this, recall that the input size is

s(C) =
∑

c∈C log(|c|+ 2) ≥ n. Thus the factoring of n can be computed in time polynomial

in the input size; n has at most log n distinct odd prime factors. Each such prime factor

has at most log cmax powers that are no bigger than cmax. Therefore, the total number of

powers of odd prime factors of n that are no bigger than cmax is at most log n log cmax. A

pseudocode of the resulting algorithm is given in Algorithm 1.

73

3.4 Sufficiency of Condition (MC)

In this section we prove that Condition (MC) in Theorem 5(a) is sufficient for

perfect mixability. A perfect-mixing graph constructed in our argument has precision at

most 1, showing also the first part of Theorem 5(b).

Note that in Theorem 5 we assume that n = |C| ≥ 4. Regarding smaller values

of n, for n = 2, trivially, all configurations C with two droplets are perfectly mixable with

precision 0. The case n = 3 is exceptional, as in this case Theorem 5 is actually false.

(For example, consider configuration C = {0, 1, 5}, for which µ = 2. This configuration

is b-incongruent for all odd b > 1, so it satisfies condition (MC), but is not perfectly

mixable.) Nevertheless, for n = 3, perfectly mixable configurations are easy to characterize:

Let C = {a, b, c}, where a ≤ b ≤ c. Then C is perfectly mixable if and only if b =

1
2(a + c). Further, if this condition holds, C is perfectly mixable with precision 0. (That

this condition is sufficient is obvious. That it is also necessary can be proven by following

the argument given in the introduction for the example configuration D right after the

definition of PerfectMixability.)

So from now on we assume that n ≥ 4. Let C be the input configuration and

µ = ave(C), where C ∪ {µ}@Z. The outline of our proof is as follows:

• First we prove that C is perfectly mixable with precision 0 when n is a power of 2.

This easily extends to configurations C called near-final, which are disjoint unions of

multisets with the same average and cardinalities being powers of 2. In particular,

this proves Theorem 5(a) for n = 4.

74

• Next, we give a proof for n ≥ 7. The basic idea of the proof is to define an invari-

ant (I) and show that any configuration that satisfies (I) has a mixing operation that

either preserves invariant (I) or produces a near-final configuration. Condition (I) is

stronger than (MC) (it implies (MC), but not vice versa), but we show that that any

configuration that satisfies Condition (MC) can be modified to satisfy (I).

• We then give separate proofs for n = 5, 6. The proof for n = 5 is similar to the case

n ≥ 7, but it requires a more subtle invariant. The proof for n = 6 follows from the

proofs for n ≥ 7 and n = 5.

3.4.1 Perfect Mixability of Near-Final Configurations

Let C @Z be a configuration with |C| = n = σ2τ , for some odd σ ∈ Z>0 and

τ ∈ Z≥0, with ave(C) = µ ∈ Z. We say that C is near-final if it can be partitioned into

multisets C1, C2, ..., Ck, such that, for each j, ave(Cj) = µ and |Cj | is a power of 2. In this

sub-section we show (Lemma 13 below) that near-final configurations are perfectly mixable

with precision 0. We also show that configurations with only two different concentrations

that satisfy Condition (MC) are near-final, and thus perfectly mixable.

Define Ψ(C) =
∑

c∈C(c − µ)2 as the variance of C. Obviously Ψ(C) ∈ Z≥0,

Ψ(C) = 0 if and only if C is a perfect mixture, and, by a straightforward calculation, mix-

ing any two different same-parity concentrations in C decreases the value of Ψ(C) by at

least 1.

75

Lemma 13 If C is near-final then C is perfectly mixable with precision 0.

Proof. It is sufficient to prove the lemma for the case when n is a power of 2. (Otherwise, we

can apply it separately to each set Cj in the partition of C from the definition of near-final

configurations.)

So assume that n is a power of 2. It is sufficient to show that if ‖C‖ = m 6= 1

(that is, C is not yet perfectly mixed) then it contains two different concentrations with

the same parity. (Each such mixing strictly decreases Ψ(C), so a finite sequence of such

mixing operations will perfectly mix C.) This is trivially true if m ≥ 3, so it is sufficient

to prove it when m = 2, that is for C = {f1 : c1, f2 : c2}. Without loss of generality, by

Observation 6, we can assume that c2 = 0, and then we claim that c1 is even. We have

ave(C) = µ = f1c1/n. As µ ∈ Z, f1 < n and n is a power of 2, we have that c1 must be

even, as claimed.

Lemma 14 Assume that ‖C‖ = 2, say C = {f1 : c1, f2 : c2}, and that C satisfies Condi-

tion (MC). Then σ divides f1 and f2. Consequently, we have that n is not prime and C is

near-final.

Proof. Without loss of generality, we can assume that c2 = 0. (Otherwise we can consider

C ′ = C − c2 instead. This does not affect Condition (MC) and the property of being

near-final.) Let c1 = α2γ , for some odd α ∈ Z>0. Then µ = f1c1/n = f1α2γ/(σ2τ).

Since α divides c1, Condition (MC) implies that α must also divide µ. In other words,

µ/α = f12γ/(σ2τ) is integer. This implies, in turn, that f1 is a multiple of σ, as claimed.

Since f2 = n− f1, it also gives us that f2 is a multiple of σ.

76

This immediately implies that n cannot be prime, for otherwise we would have

that n = σ, so n would be a divisor of f1 < n.

To prove the last claim, let f1 = σf ′1 and f2 = σf ′2, for some f ′1, f
′
2 ∈ Z>0. Split C

into σ sub-multisets of the form Cj = {f ′1 : c1, f
′
2 : 0}, for j = 1, 2, ..., σ. The cardinality of

each Cj is f ′1+f ′2 = n/σ = 2τ and its average is ave(Cj) = f ′1c1/(f
′
1+f ′2) = (f1/σ)c1/(n/σ) =

f1c1/n = µ. Therefore C is near-final, as claimed.

3.4.2 Proof for Arbitrary n ≥ 7

In this sub-section we prove that Condition (MC) in Theorem 5(a) is sufficient for

perfect mixability when n ≥ 7. Let C be a configuration that satisfies Condition (MC),

where C ∪ {µ}@Z and |C| = n. Also, let the factorization of n be n = 2τ0pτ11 p
τ2
2 ...p

τs
s ,

where {p1, p2, ..., ps} = p̄ is the set of the odd prime factors of n and {τ1, τ2, ..., τs} are their

corresponding multiplicities.

If A@Z is a configuration with |A| = n (where n is as above) and ave(A) ∈ Z, we

will say that A is p̄-incongruent if A is pr-incongruent for all r. If A is p̄-incongruent then,

by Lemma 9(a), it is b-incongruent for all b that are powers of pr’s, which, by Corollary 12,

implies that A satisfies Condition (MC). Further, if A is also not near-final then Lemma 14

implies that ‖A‖ ≥ 3. We summarize these observations below. (They will be often used in

this section without an explicit reference.)

Observation 15 Assume that a configuration A@Z with ave(A) ∈ Z is p̄-incongruent.

Then (a) A satisfies Condition (MC), and (b) if A is not near-final then ‖A‖ ≥ 3.

77

Proof outline. The outline of the proof is as follows (see Figure 3.3): Instead of dealing

with C directly, we will consider a p̄-incongruent configuration Č @Z with µ̌ = ave(Č) ∈ Z

that is “equivalent” to C in the sense that C is perfectly mixable with precision at most 1

if and only if Č is perfectly mixable with precision 0.

It is thus sufficient to show that Č is perfectly mixable with precision 0. To this

end, we first apply some mixing operations to Č, producing only integer concentrations,

that convert Č into a configuration E such that:

(I.0) E@Z and ave(E) = µ̌,

(I.1) E has at least 2 distinct non-singletons, and

(I.2) E is p̄-incongruent.

We refer to the three conditions above as Invariant (I). Then we show that any

configuration E that satisfies Invariant (I) has a pair of different concentrations that are

“safe” to mix, in the sense that after they are mixed the new configuration is either near-

final or satisfies Invariant (I). We can thus repeatedly mix such safe mixing pairs, preserving

Invariant (I), until we produce a near-final configuration, that, by the previous section, can

be perfectly mixed with precision 0.

C Č E near
final

perfect
mix

satisfies (I)satisfies (MC) -incongruentp

Figure 3.3: Proof outline for n ≥ 7. The first dashed arrow represents replacing C by Č.
Solid arrows represent mixing operations.

78

Replacing C by Č. We now explain how to modify C. We will do it in steps. First, let

C ′ = C − c1, for some arbitrarily chosen c1 ∈ C. Note that µ′ = ave(C ′) = µ− c1 ∈ Z, that

0 ∈ C ′, and that C ′ satisfies Condition (MC). By Observation 6, C is perfectly mixable if

and only if C ′ is perfectly mixable (with the same precision), so it is sufficient to show that

C ′ is perfectly mixable.

Then, let θ ∈ Z>0 be the maximum odd integer that divides all concentrations c ∈

C ′ (that is, the greatest common odd divisor of C ′). Let C ′′ = C ′/θ. By Observation 8(b)

and the paragraph above, C is perfectly mixable if and only C ′′ is perfectly mixable (with

the same precision), so from now on we can replace C by C ′′.

By Condition (MC) applied to C ′, θ is a divisor of µ′, so µ′′ = ave(C ′′) = µ′/θ ∈ Z.

Next, we claim that C ′′ is p̄-incongruent. To show this, we argue by contradiction. Suppose

that C ′′ is pr-congruent for some r. This means that there is β ∈ {0, 1, ..., pr − 1} such that

c ≡ β (mod pr) for all c ∈ C ′′. Since 0 ∈ C ′′ (because 0 ∈ C ′), we must have β = 0. In

other words, all c ∈ C ′′ are multiples of pr. That would imply, however, that all c ∈ C ′ are

multiples of θpr, which contradicts the choice of θ, completing the proof.

Finally, let Č = 2·C ′′ and µ̌ = 2µ′′ = ave(Č). All concentrations in Č are even and,

since multiplying all concentrations by 2 does not affect p̄-incongruence, Č is p̄-incongruent.

By Observation 7, and the properties of C ′′ established above, C is perfectly mixable with

precision at most 1 if and only if Č is perfectly mixable with precision 0. Therefore, from

now on, it is sufficient to show a mixing sequence with all integral concentration values that

converts Č into its perfect mixture {n : µ̌}.

79

Converting Č into E. Let Č be the configuration constructed above. We now show that

with at most two mixing operations, producing only integer values, we can convert Č into

a configuration E that satisfies Invariant (I).

Let A@Z be a configuration with ave(A) ∈ Z and |A| = n. Assume that A is

p̄-incongruent. For different concentrations a, a′ ∈ A with the same parity, we say that the

pair (a, a′) is pr-safe if mixing a and a′ converts A into a pr-incongruent configuration; in

other words, there is a′′ ∈ A − {a, a′} that satisfies a′′ 6≡ 1
2(a + a′) (mod pr). (Otherwise,

we say that the pair (a, a′) is pr-unsafe, or just unsafe to generalize.) We will also say that

(a, a′) is p̄-safe if it is pr-safe for all r. For example, let n = 5 and A = {0, 0, 3, 7, 10}, for

which ave(A) = 4. Then pair (0, 10) is 5-safe but pair (3, 7) is 5-unsafe.

Lemma 16 Let A be a p̄-incongruent configuration with ave(A) ∈ Z and |A| = n. (Recall

that n ≥ 7.) Then

(a) For each r, there is at most one pr-unsafe pair in A.

(b) There are at most n − 5 droplets involved in same-parity concentration pairs that are

unsafe.

(c) If a concentration a ∈ A is a non-singleton (has multiplicity at least 2) then for any

b ∈ A with b 6= a and the same parity as a, the pair (a, b) is p̄-safe.

Proof. (a) Suppose that some pair (a1, a2) of concentrations with a1 6= a2 and same parity

is pr-unsafe, and let β = (1
2(a1 + a2)) mod pr. The assumption about a1, a2 implies that

b ≡ β (mod pr) for all b ∈ A−{a1, a2}, and the assumption that A is p̄-incongruent implies

that ai 6≡ β (mod pr) for at least one i ∈ {1, 2}. We claim that this must in fact hold for

80

both i ∈ {1, 2}. Indeed, say that a1 6≡ β (mod pr) but a2 ≡ β (mod pr). This means that

pr 6 |(a1 − β) and pr|(a2 − β), which implies that pr 6 |(1
2(a1 + a2) − β), contradicting the

definition of β. Thus ai 6≡ β (mod pr) for both i ∈ {1, 2}, as claimed.

It remains to show that any other pair of concentrations is pr-safe. Fix three

arbitrary concentrations {b1, b2, b3} ⊆ A−{a1, a2}, so that we have bj ≡ β (mod pr) for j ∈

{1, 2, 3}. Consider any two different same-parity concentrations c1, c2 ∈ A with {c1, c2} 6=

{a1, a2}, and let A′ be obtained from A by mixing droplets c1 and c2. Then A′ must still

contain some droplet bj and, since {c1, c2} 6= {a1, a2}, A′ will also contain some droplet ai.

As we have ai 6≡ bj (mod pr), A
′ is pr-incongruent, and thus (c1, c2) is pr-safe.

(b) By part (a), the number of concentrations involved in same-parity unsafe pairs

is at most 2s, where s is the number of distinct odd prime factors of n, so it remains to

show that 2s ≤ n− 5. Indeed, if n equals either 7 or 8 (for which s = 1 or 0, respectively),

then the inequality holds. For n ≥ 9, using the fact that s ≤ log3 n, it is sufficient to show

that 2 log3 n ≤ n− 5. This is true, because for n = 9 the equality holds, and for n ≥ 9 the

left-hand side grows slower than the right-hand side.

(c) Fix some factor pr of n. As A is pr-incongruent, there is a concentration c ∈ A

with c 6≡ a (mod pr). We have two cases. If b ≡ a (mod pr) then b 6= c, so after mixing

the new configuration A′ will contain c and 1
2(a + b), where 1

2(a + b) ≡ a (mod pr), so

c 6≡ 1
2(a + b) (mod pr). On the other hand, if b 6≡ a (mod pr), then A′ will contain a and

1
2(a+ b), and a 6≡ 1

2(a+ b) (mod pr). Thus (a, b) is pr-safe. As this holds for all r, (a, b) is

p̄-safe.

The configuration Č constructed earlier contains only even concentration values,

and it already satisfies Č ∪{µ̌}@Z and is p̄-incongruent (that is, it satisfies conditions (I.0)

81

and (I.2) for E). It remains to show that there are mixing operations involving only droplets

already present in Č (and thus of even value, to assure that Condition (I.0) holds) that

preserve condition (I.2), and such that the resulting configuration E is either near-final or

it satisfies condition (I.1). If Č already has two or more non-singletons, we can take E = Č

and we are done, so assume otherwise, namely that there is either one non-singleton in Č

or none. We consider three cases.

Case 1: Č has one non-singleton a with multiplicity f ≥ 3. Mix a with any singleton b and

let E be the resulting configuration. In E we have two non-singletons and condition (I.2)

will be satisfied, by Lemma 16(c). Thus E satisfies Invariant (I).

Case 2: Č has one non-singleton a with multiplicity 2. By Lemma 16(b), there are at least

5 droplets in Č not involved in any unsafe pair. Thus there are at least 3 singletons, say

b, c, d, that are not involved in any unsafe pair. Mixing one of pairs (b, c) or (b, d) produces

a concentration other than a. Mix this pair, and let E be the resulting configuration. Then

E satisfies Invariant (I).

Case 3: Č has only singletons. By Lemma 16(b), there is a singleton, say b ∈ Č, that is not

involved in any unsafe pair (in fact, there are at least five, but we need just one here). Let

c ∈ Č − {b} be a singleton nearest to b, that is one that minimizes |c− b|. By the choice of

b, the pair (b, c) is p̄-safe. Let Č ′ = Č−{b, c}∪{a, a}, for a = 1
2(b+ c), be the configuration

obtained by mixing this pair. Č ′ is p̄-incongruent and in Č ′ we have only one non-singleton

a and its multiplicity is 2. We can thus apply Case 2 above to Č ′, converting it to E. (Note

that, unlike for the Č in Case 2, our a may be odd. But since we do not mix a in Case 2,

the argument is still valid.)

82

Preserving Invariant (I). We now present the last part of the proof, following the out-

line given at the beginning of this section. Let E@Z be the configuration, say E =

{f1 : e1, f2 : e2, ..., fm : em}, with ave(E) = µ̌, obtained from Č by a sequence of mixing

operations, as described earlier. If E is near-final then E has a perfect-mixing sequence, by

Lemma 13. Otherwise, we show that E has a pair of concentrations whose mixing produces

a configuration that is either near-final or satisfies Invariant (I).

Let ei, ej ∈ E be two different concentrations and e = 1
2(ei + ej). Then the pair

(ei, ej) is called a safe mixing pair if the configuration E′ = E−{ei, ej}∪{e, e} obtained by

mixing ei and ej is either near-final or satisfies the Invariant (I). We will be always choosing

ei and ej with the same parity, which is a sufficient and necessary condition for E′ to satisfy

condition (I.0). Also, for E′ to satisfy condition (I.2), the pair {ei, ej} must be p̄-safe.

We next prove that if configuration E satisfies Invariant (I) (and is not near-final)

then it must contain a safe mixing pair. This will show that we can repeatedly mix E,

maintaining Invariant (I), until we turn E into a near-final configuration, which we can

then perfectly mix using Lemma 13.

Lemma 17 Assume that E contains two different concentrations ei, ej ∈ E with the same

parity and fi ≥ 3. If E satisfies Invariant (I) then (ei, ej) is a safe mixing pair for E.

Proof. Let e = 1
2(ei + ej) and let E′ = E − {ei, ej} ∪ {e, e} be obtained from mixing ei

and ej . Since fi > 1, Lemma 16(c) implies that condition (I.2) holds for E′. In E′ we will

still have at least two droplets of concentration ei and at least two droplets of concentration

e 6= ei. So condition (I.1) holds as well. (We remark that we could end up with ‖E′‖ = 2,

which can happen if fj = 1 and ‖E‖ = 3 with e ∈ E. If so, since E′ satisfies (I.2), it

83

must also satisfy condition (MC), and therefore, by Lemma 14, in this case E′ is actually

near-final.)

Lemma 18 Assume that E contains three different concentrations ei, ej , ek ∈ E with the

same parity and fi, fj ≥ 2. If E satisfies Invariant (I) then one of (ei, ek), (ej , ek) is a safe

mixing pair for E.

Proof. Without loss of generality, assume that |ei − ek| ≤ |ej − ek| (otherwise swap i

and j). We show that (ei, ek) is a safe mixing pair for E. Let e = 1
2(ei + ek) and let

E′ = E − {ei, ek} ∪ {e, e} be obtained from mixing ei and ek. Since fi > 1, Lemma 16(c)

implies that condition (I.2) holds for E′. From |ei − ek| ≤ |ej − ek|, we have that e 6= ej .

So in E′ we will have at least two droplets of concentration ej and at least two droplets of

concentration e 6= ej . This means that condition (I.1) holds as well.

Lemma 19 Assume that ‖E‖ ≥ 4 and that E contains three different concentrations

ei, ej , ek ∈ E with the same parity such that fi ≥ 2 and fj = fk = 1. If E satisfies

Invariant (I), then one of (ei, ej), (ei, ek) is a safe mixing pair for E.

Proof. By condition (I.1), there is another concentration el ∈ E − {ei, ej , ek} with fl ≥ 2.

Without loss of generality, we can assume that e = 1
2(ei + ej) 6= el (otherwise we can use ek

instead of ej). Mixing ei and ej produces E′ = E−{ei, ej}∪ {e, e}. Since fi ≥ 2, condition

(I.2) is satisfied. In E′ there are at least two droplets with concentration el and at least two

droplets with concentration e 6= el, so condition (I.1) is satisfied as well.

Lemma 20 Assume that ‖E‖ = 3 and that E is not near-final. If E satisfies Invariant (I)

then E has a safe mixing pair.

84

Proof. Let E = {f1 : e1, f2 : e2, f3 : e3}. Reorder E so that f1 ≥ f2 ≥ f3. From f1 + f2 +

f3 = n ≥ 7 we have that f1 ≥ 3 and f2 ≥ 2. By symmetry, we can also assume that e1 is

even. If either e2 or e3 is even, then the existence of a mixing pair follows from Lemma 17.

So we can assume that e2, e3 are odd. We claim that (e2, e3) is a safe mixing pair.

Let e = 1
2(e2 + e3) and let E′ = E − {e2, e3} ∪ {e, e} be obtained from mixing e2 and e3.

Since f2 ≥ 2, Lemma 16(c) implies that condition (I.2) holds for E′. This, and

Observation 15(a) imply that if ‖E′‖ = 2, then E′ must be near-final, by Lemma 14, and

we are done. So for the rest of the proof we can assume that ‖E′‖ ≥ 3.

It is now sufficient to prove that E′ satisfies (I.1). If e 6= e1, in E′ we have at least

three droplets with concentration e1 and at least two with concentration e, so E′ satisfies

(I.1). Otherwise, e = e1 and we cannot have f2 = f3, because this would imply that E is

near-final (by partitioning E into singletons {e1} and pairs {e2, e3}). So f2 > f3. Further,

the assumption that ‖E′‖ ≥ 3 implies that f3 ≥ 2. We thus obtain that f2 ≥ 3; so in

E′ there will be at least five droplets with concentration e1 and at least two droplets with

concentration e2. This proves that (I.1) holds for E′.

Lemma 21 Assume that ‖E‖ = 4 and that E is not near-final. If E satisfies Invariant (I)

then E has a safe mixing pair.

Proof. Let E = {f1 : e1, f2 : e2, f3 : e3, f4 : e4}. By symmetry and reordering, we can

assume that e1 is even and that f1 ≥ f2 ≥ f3 ≥ f4. This, and condition (I.1) imply that

f1 ≥ f2 ≥ 2. We consider two cases, depending on the value of f1.

Case 1: f1 ≥ 3. If at least one of e2, e3, e4 is even, then the existence of a safe mixing pair

follows from Lemma 17.

85

So assume now that e2, e3, e4 are all odd. If f3 ≥ 2, we obtain a safe mixing pair

from Lemma 18. Otherwise, f3 = f4 = 1, and we obtain a safe mixing pair from Lemma 19.

Case 2: f1 = 2. Then n ≥ 7 implies that f2 = f3 = 2 as well. If two concentrations among

e2, e3, e4 are even, or if e2, e3, e4 are all odd, the existence of a safe mixing pair follows from

Lemma 18.

Otherwise, one of e2, e3, e4 is even and two are odd. We then want to mix e4 with

the one of e1, e2, e3 that has the same parity as e4. For concreteness, assume that e2 is even

and e3, e4 are odd. (The argument in all other cases is the same.) We claim that (e3, e4) is

a safe mixing pair. Indeed, let E′ = E − {e3, e4} ∪ {e, e}, for e = 1
2(e3 + e4). Since f3 > 1,

Lemma 16(c) implies that condition (I.2) holds. In E′ we have at least two droplets with

concentration e. If e 6= e1, then E′ has two droplets with concentration e1 6= e; otherwise,

if e = e1, then E′ has two droplets with concentration e2 6= e. Thus condition (I.1) holds

for E′.

Lemma 22 Assume that ‖E‖ ≥ 5 and that E is not near-final. If E satisfies Invariant (I)

then E has a safe mixing pair.

Proof. Let E = {f1 : e1, f2 : e2, ..., fm : em}, for m ≥ 5. By symmetry and reordering, we

can assume that e1 is even and that fi ≥ fi+1, for i = 1, 2,,m−1. We have several cases.

Case 1: f1 ≥ 3. The same argument as is in Lemma 21 Case 1 holds.

Case 2: f1 = 2. Then f2 = 2 as well, by condition (I1). We have some sub-cases.

Case 2.1: f3 = 2. In this case, choose three concentrations among e1, e2, e3, e4, e5 with

the same parity. This will give us three concentrations ei, ej , ek with the same parity

86

and with fi = 2. If fj = 2 or fk = 2, we obtain a safe mixing pair from Lemma 18,

otherwise we obtain a safe mixing pair from Lemma 19.

Case 2.2: f3 = ... = fm = 1 and e2 is odd. Among e3, e4, e5 there are either two even or

two odd concentrations. By symmetry, we can assume e3, e4 are even. This gives us

three concentrations ei, ej , ek that satisfy the assumptions of Lemma 19, so we obtain

a safe mixing pair by applying this lemma.

Case 2.3: f3 = ... = fm = 1 and e2 is even. If any concentration among e3, e4, ..., em is

even, then we obtain a safe mixing pair from Lemma 18. Otherwise, e3, e4, . . . , em

are all odd. This set has m − 2 = n − 4 droplets. Thus, by Lemma 16(b), there

is at least one concentration ei, for i ∈ {3, 4, ...,m}, such that any pair (ei, ej), for

j ∈ {3, 4, ...,m}−{i}, is p̄-safe. Let E′ = E−{ei, ej}∪{e, e} be obtained from mixing

ei and ej , for e = 1
2(ei + ej). By the choice of ei, E

′ satisfies (I.2). E′ satisfies (I.1)

because it has at least two droplets with concentration e1 and at least two droplets

with concentration e2.

Completing the proof. We are now ready to complete the proof that Condition (MC)

in Theorem 5(a) is sufficient for perfect mixability when n ≥ 7. The argument follows the

outline given at the beginning of this section and depicted in Figure 3.3.

Assume that C satisfies Condition (MC). As described earlier in the proof, we first

replace C by configuration Č @Z such that (i) µ̌ = ave(Č) ∈ Z, all values in Č are even,

and Č is p̄-incongruent, and (ii) C is perfectly mixable with precision at most 1 if and only

if Č is perfectly mixable with precision 0.

87

Then we show that Č has a perfect-mixing sequence (with precision 0), converting

Č into its perfect mixture {n : µ̌}. To this end, we first perform some mixing operations

(at most two) that convert Č into a configuration E that either satisfies Invariant (I) or is

near-final. If this E is near-final, we can complete the mixing sequence using Lemma 13. If

this E is not near-final, then condition (I.2) implies that E satisfies Condition (MC) which,

in turn, by Lemma 14, implies that ‖E‖ ≥ 3. Therefore, depending on the value of ‖E‖,

we can apply one of Lemmas 20, 21, or 22, to show that E has a safe mixing pair, namely

a pair of different concentrations whose mixing either preserves Invariant (I) or produces

a near-final configuration. We can thus apply the above argument repeatedly to E. As in

Section 3.4.1, each mixing decreases the value of Ψ(E) =
∑

e∈E(e− µ̌)2. Thus after a finite

number of steps we eventually convert E into a near-final configuration, that has a mixing

sequence by Lemma 13.

3.4.3 Proof for n = 5

In this sub-section we prove that Condition (MC) in Theorem 5(a) is sufficient for

perfect mixability when n = 5. The overall argument is similar to the case n ≥ 7 we con-

sidered in Section 3.4.2 (and depicted on Figure 3.3), although this time we need a slightly

different invariant. This is because in the case when n = 5 there are configurations that

satisfy Invariant (I) but do not contain any pair of concentrations whose mixing preserves

Invariant (I).

For example, E = {0, 0, 4, 4, 7} with ave(E) = 3 satisfies Invariant (I). The only

pair of different concentrations with the same parity is (0, 4); however, after mixing these

concentrations, the new configuration will violate condition (I.1).

88

Let A@Z be a configuration with n = |A| = 5 and ave(A) ∈ Z. We say that

A is blocking if A = {n− 2 : a1, a2, a3} where a1 6= 1
2(a2 + a3) and a1 has parity different

than a2, a3. Otherwise we say that A is non-blocking. For example, A = {0, 0, 0, 3, 7},

with ave(A) = 2, is blocking. The intuition is that this A has only one pair of same-

parity different concentrations, namely (3, 7), but this pair is not p̄-safe – mixing 3 and

7 produces configuration A′ = {0, 0, 0, 5, 5} that is 5-congruent (in fact, it also violates

Condition (MC)).

We say that A satisfies Invariant (I’) if A meets the following three conditions:

(I.0) A@Z and ave(A) = µ̌,

(I.1’) A is non-blocking, and

(I.2) A is p̄-incongruent.

At this point, we observe that, although we considered the case n ≥ 7 in the

previous section, the claims in Lemma 16(a) and (c) hold also for n = 5, and we will be

using them in the proof. (Lemma 16(b) does not hold for n = 5, however.) We will also

frequently use Observation 15 that follows directly from Lemma 14.

So, assume that we are given a configuration C with C ∪ {µ}@Z satisfying Con-

dition (MC). As in Section 3.4.2, we start by converting C into a configuration Č @Z, with

µ̌ = ave(Č) ∈ Z, such that (i) all concentrations in Č are even, (ii) Č is p̄-incongruent, and

(iii) C is perfectly mixable with precision at most 1 if and only if Č is perfectly mixable

with precision 0.

We then simply take E = Č (unlike in Section 3.4.2, we don’t need to modify Č).

It thus remains to show that E is perfectly mixable with precision 0. By the properties

89

of Č, E satisfies conditions (I.0) and (I.2) and, since all concentrations in E are even, it

also satisfies (I.1’). Thus E satisfies Invariant (I’) and the rest of the proof is devoted to

constructing a sequence of mixing operations that preserve Invariant (I’) until E becomes

near-final, which can be mixed perfectly with Lemma 13.

Preserving Invariant (I’). Assume that E is not near-final and that it satisfies Invari-

ant (I’). We modify the definition of a safe mixing pair: in this proof we will say that a pair

of concentrations {e, e′} ⊂ E is safe, if mixing e and e′ produces a configuration that either

satisfies Invariant (I’) or is near-final. We now show that each configuration E that satisfies

Invariant (I’) has a safe mixing pair. As we will always choose a pair of concentrations with

the same parity for mixing, condition (I.0) will be trivially preserved, so in the proofs below

we focus on explaining why the other two conditions are preserved.

Lemma 23 Assume that ‖E‖ = 3 and that E is not near-final. If E satisfies Invariant (I’)

then E has a safe mixing pair.

Proof. Let E = {f1 : e1, f2 : e2, f3 : e3}. By symmetry and reordering, respectively, we can

assume that e1 is even and that f1 ≥ f2 ≥ f3. We analyze two cases based on f1’s value:

Case 1: f1 = 2. Thus, f2 = 2 and f3 = 1. We consider two sub-cases.

Case 1.1: e2 is even. We will mix e1 and e2, producing E′ = {e1, e2, e3, 2 : e}, for e =

1
2(e1 + e2). Since E is not near-final, e 6= e3 (and obviously e /∈ {e1, e2}). Since

f1 = 2, by Lemma 16(c), E′ satisfies condition (I.2). Further, as ‖E′‖ = 4, E′ also

satisfies condition (I.1’). Therefore, (e1, e2) is indeed a safe mixing pair.

Case 1.2: e2 is odd. Without loss of generality we can assume that e3 is even (by the odd-

even symmetry between e1 and e2.) We mix e1 and e3, and let E′ be the resulting

90

configuration. Since f1 = 2, by Lemma 16(c), pair (e1, e3) is p̄-safe, so E′ satisfies

condition (I.2). This, together with Lemma 14 (as n = 5 is prime), implies that

‖E′‖ > 2, which means that 1
2(e1 + e3) 6= e2, implying in turn that E′ has two non-

singletons. Thereby, E′ satisfies (I.1’) and thus we can conclude that (e1, e3) is a safe

mixing pair.

Case 2: f1 = 3. Thus, f2 = f3 = 1. Since E satisfies (I.1’), and by the assumption that

E is not near-final, we have that at least one of e2 and e3 is even. By symmetry, we can

assume that e2 is even. We mix e1 and e2, and let E′ be the new configuration. As f1 = 3,

by Lemma 16(c), E′ satisfies (I.2). Further, 1
2(e1 + e2) 6= e3, because otherwise we would

have ‖E′‖ = 2, contradicting Lemma 14. So E′ contains two non-singletons, and thus it

satisfies condition (I.1’). Therefore (e1, e2) is a safe mixing pair.

Lemma 24 Assume that ‖E‖ = 4 and that E is not near-final. If E satisfies Invariant (I’)

then E has a safe mixing pair.

Proof. Let E = {f1 : e1, f2 : e2, f3 : e3, f4 : e4}. By symmetry and reordering, we can

assume that e1 is even and that f1 = 2 and f2 = f3 = f4 = 1. We analyze three cases based

on the parities of e2, e3, e4.

Case 1: At least two of e2, e3, e4 are even. Assume without loss of generality that e2, e3 are

even. Let e = 1
2(e1 + a2). By symmetry, we can assume that e 6= e4 (for otherwise we can

take e = 1
2(e1 +e3) instead). Let E′ = E−{e1, e2}∪{e, e} be obtained by mixing e1 and e2.

As f1 = 2, E′ satisfies (I.2) by Lemma 16(c). If e 6= e3 then ‖E′‖ = 4, so E′ satisfies (I.1’).

If e = e3 then E′ = {e1, 3 : e3, e4} where e1, e3 are even, so E′ satisfies (I.1’) as well. Thus

(e1, e2) is a safe mixing pair.

91

Case 2: Exactly one of e2, e3, e4 is even. Assume without loss of generality that e2 is even.

Let E′ be obtained by mixing e1 and e2, also let e = 1
2(e1 + e2). E′ satisfies (I.2) by

Lemma 16(c). If e ∈ E′ then e ∈ {e3, e4}, where both e3, e4 are odd. Else, e /∈ E′ and

‖E′‖ = 4. Either way E′ satisfies (I.1’) and (e1, e2) is a safe mixing pair.

Case 3: e2, e3, e4 are all odd. By Lemma 16(a) there is at most one 5-unsafe pair. Assume

that (e2, e3) is 5-safe. (Otherwise use e4 instead of e3.) Mixing e2 and e3 produces E′

that preserves condition (I.2). Moreover, 1
2(e2 + e3) ∈ E implies ‖E′‖ = 2 (contradicting

Lemma 14), so instead, 1
2(e2 + e3) /∈ E and ‖E′‖ = 4. Thus, E′ preserves (I.1’) and (e2, e3)

is a safe mixing pair.

Lemma 25 Assume that ‖E‖ = 5 and that E is not near-final. If E satisfies Invariant (I’)

then E has a safe mixing pair.

Proof. Let E = {e1, e2, e3, e4, e5}. By symmetry and reordering, we can assume that

e1, e2, e3 have the same parity, say even. Additionally, by Lemma 16(a), there is at most

one 5-unsafe pair in E, so we can assume that it does not involve e1. In other words, all

pairs involving e1 and any other even concentration are 5-safe.

We now have three cases, given below. In each case we mix e1 with some other

even concentration, so conditions (I.0) and (I.2) will be satisfied, and we only need to ensure

that (I.1’) is satisfied as well.

Case 1: e4 and e5 are even. Choose i 6= 1 for which |e1 − ei| is minimized, and let

e = 1
2(e1+ei). Then e /∈ E. Mixing e1 and ei gives us configuration E′ = E−{e1, ei}∪{e, e}

with ‖E′‖ = 4, so E′ satisfies (I.1’).

92

Case 2: e4 and e5 have different parity. Say that e4 is even and e5 is odd. Let e = 1
2(e1 +e2).

We can assume that e 6= e5 (otherwise, swap e2 with e3). Mixing e1 and e2 gives us

configuration E′ = E − {e1, e2} ∪ {e, e}. If e /∈ E, then ‖E′‖ = 4. Otherwise, e ∈ {e3, e4};

say that e = e3. Thus E′ = {3 : e3, e4, e5}. Since e4 and e5 have different parity, E′ is

non-blocking. Thus in both subcases E′ satisfies (I.1’).

Case 3: e4 and e5 are odd. By symmetry, we can assume that |e1 − e2| ≤ |e1 − e3|. Then

e = 1
2(e1 + e2) 6= e3. If e /∈ E, then ‖E′‖ = 4. Otherwise, e ∈ {e4, e5}; say that e = e4, by

symmetry. Then E′ = {e3, 3 : e4, e5}, and e3, e5 have different parity, so E′ is non-blocking.

Thus in both subcases E′ satisfies (I.1’).

Completing the proof. We can now prove that Condition (MC) in Theorem 5(a) is

sufficient for perfect mixability when n = 5. Assume that C satisfies Condition (MC).

As described earlier in this section, we convert C into configuration Č @Z such that C is

perfectly mixable with precision at most 1 if and only if Č is perfectly mixable with precision

0. This Č is p̄-incongruent, all its concentrations are even, and it satisfies µ̌ = ave(Č) ∈ Z.

Thus, if we take E = Č, this E satisfies Invariant (I’). If E is near-final, then we use

Lemma 13 to perfectly mix E. If this E is not near-final, then, depending on the value of

‖E‖, we can apply one of Lemmas 23, 24, or 25, to show that E has a safe mixing pair. As

in Section 3.4.2, the value of Ψ(E) decreases at least by 1 after each mixing operation. So

after a finite sequence of mixing operations E must become near-final.

3.4.4 Proof for n = 6

The proof that Condition (MC) in Theorem 5(a) is sufficient for perfect mixability

when n = 6 is derived from both Section 3.4.2 and Section 3.4.3.

93

First of all, as in Section 3.4.3, Invariant (I) cannot always be preserved, so we

use Invariant (I’) instead. For example, E = {0, 0, 6, 6, 5, 7} with ave(E) = 4 satisfies

Invariant (I). However, mixing 0 and 6 violates condition (I.1), mixing 5 and 7 violates

condition (I.2) (in fact, it also violates Condition (MC)), and any other mixing that involves

two distinct concentrations violates condition (I.0).

The outline of the proof for n = 6 is the same, given C ∪ {µ}@Z satisfying

Condition (MC), we construct Č such that C is perfectly mixable with precision at most

1 if and only if Č is perfectly mixable with precision 0. Then, using Č, we construct E

that satisfies Invariant (I’). After this, we just continuously mix safe mixing pairs until E

becomes near-final.

To prove that there is always a safe mixing pair, we can slightly modify Lemmas 23,

24, and 25 such that they hold for n = 6. This can be done because both 5 and 6 have

exactly one odd prime factor and because Observation 15 also holds for n = 6.

3.5 Polynomial Bound for the Number of Mixing Operations

Let C @Z with ave(C) ∈ Z and |C| = n be a configuration that satisfies Condi-

tion (MC). The existence of a perfect-mixing graph for C was established in Section 3.4.

This graph, however, might be very large – it can be shown that if arbitrary droplets are

mixed at each step then it might take an exponential number of steps for the process to

converge. In this section we prove Theorem 5(b), namely, that C can be perfectly mixed

with precision at most 1 and in a polynomial number of steps. (We already proved that,

for n ≤ 3, C can be perfectly mixed after at most one mixing operation and with precision

94

0. Hence we will be assuming that n ≥ 4.) The essence of the proof is to show that in the

construction in Section 3.4 it is possible to choose a mixing operation at each step so that

the overall number of steps will be polynomial in the input size.

It is sufficient to show that configuration E, constructed from C as in Section 3.4.2,

is perfectly mixable with precision at most 0 in a polynomial number of mixing operations.

(Constructing such E from C can easily be done in a polynomial number of steps.) For

this reason we will assume that E is the initial configuration. Using the same notation as

in Section 3.4.2, let µ̂ = ave(E). Specifically, we will show that Ψ(E) =
∑

e∈E(e− µ̂)2 can

be decreased down to 0 after a polynomial number of mixing operations, while preserving

E ∪ {µ̂}@Z after every such mixing.

The general idea is to always mix two concentrations whose difference is big enough

such that, after a polynomial number of mixing operations, Ψ(E) decreases by at least a

factor of two. It follows that Ψ(E) can be decreased down to 0 after a polynomial number

of mixing operations.

Additionally, to guarantee that E is perfectly mixed with precision at most 0, we

will only mix pairs of concentrations that are safe, until E becomes near-final; recall that

a safe pair is a pair of distinct concentrations whose mixing preserves the corresponding

invariant. (If n is a power of two then we only need to mix two same-parity concentrations.)

Once E is near-final, it is simple to show a polynomial sequence of mixing operations to

perfectly mix E preserving E ∪ {µ̂}@Z.

95

3.5.1 Auxiliary Observations

Let A@Z with ave(A) = µA ∈ Z and |A| = nA be an arbitrary configuration. We

define min(A) and max(A) as the lowest and highest concentrations in A, respectively. We

also define the diameter of A as diam(A) = max(A)−min(A). Recall that the bit size of A

is s(A) =
∑

a∈A log(|a|+2). We denote by Aeven and Aodd two disjoint multisets containing

all even and odd concentrations in A, respectively; we will often write Aπ and Aπ̄, with

π, π̄ ∈ {even, odd} and π 6= π̄, as a simplification for Aeven and Aodd. We lastly define ΨA,0

as the value of Ψ(A) before any mixing has been performed.

The following observations show that mixing two droplets with concentrations that

are sufficiently far apart eventually decreases Ψ(A) by a factor at least two.

Observation 26 Let x, y ∈ A such that |x−y| ≥ diam(A)/γ for constant γ ∈ Z>0. Mixing

x and y decreases Ψ(A) by at least Ψ(A)/2γ2nA.

Proof. Assume without loss of generality that µA = 0 so that Ψ(A) =
∑

a∈A a
2. Let A′ be

obtained after mixing x and y. We have that Ψ(A) decreases by:

Ψ(A)−Ψ(A′) = x2 + y2 − 2
(x+ y

2

)2
=

(x− y)2

2
≥ diam(A)2

2γ2
≥ Ψ(A)

2γ2nA

Observation 27 Repeatedly mixing x, y ∈ A satisfying |x − y| ≥ diam(A)/γ, for constant

γ ∈ Z>0, decreases Ψ(A) by at least Ψ(A)/2 after at most 2γ2nA mixing operations.

Proof. Assume that a, b ∈ A satisfy |a − b| ≥ diam(A)/γ. By Observation 26, mixing

a and b produces A′ such that Ψ(A) − Ψ(A′) ≥ Ψ(A)/2γ2nA; in other words, Ψ(A′) ≤

96

Ψ(A)
(
1 − 1

2γ2nA

)
. So, repeatedly mixing x, y ∈ A satisfying |x − y| ≥ diam(A)/γ (for

corresponding diam(A) per mix), for at most 2γ2nA times produces A′′ such that

Ψ(A′′) ≤ Ψ(A)
(

1− 1

2γ2nA

)2γ2nA
≤ Ψ(A)

2

which holds because (1− 1/x)x ≤ 1/2 for x ≥ 2. (In fact, (1− 1/x)x −→ 1/e as x goes to

infinity.)

The next observations will be used (without any explicit reference) as plain arith-

metic simplifications.

Observation 28 log Ψ(A) ≤ 2s(A).

Proof. First we show that the inequality holds when µA = 0 and then we show that it

holds for arbitrary µA. Assume that µA = 0. Then:

log Ψ(A) = log
∑
a∈A

a2 ≤ log
(∑
a∈A

(
|a|+2

))2
≤ 2 log

∏
a∈A

(
|a|+2

)
≤ 2

∑
a∈A

log(|a|+2) ≤ 2s(A)

For µA arbitrary, consider the function f(A, x) =
∑

a∈A(a − x)2. Taking the derivative

of f with respect to x gives us that the function is minimized when x = µA. This, and

f(A, 0) =
∑

a∈A a
2 implies that the argument for µA = 0 is sufficient for arbitrary µA.

Observation 29 Let A′ ⊆ A. Then Ψ(A′) ≤ Ψ(A).

Proof. Let µA′ = ave(A′). Consider the function g(x) =
∑

a∈A′(a − x)2. This function is

minimized when x = µA′ . (This can be shown by computing the derivative of g with respect

to x.) From this we get that g(µA) ≥ g(µA′) = Ψ(A′). Further, g(µA) ≤ Ψ(A) because

g(µA) is a sum of some terms in Ψ(A). Thus, Ψ(A′) = g(µA′) ≤ g(µA) ≤ Ψ(A).

97

Observation 30 Let A′ be obtained from A after a mixing operation. Then Ψ(A′) ≤ Ψ(A).

Proof. Let a, b ∈ A be the concentrations of the mixed droplets. Then:

Ψ(A)−Ψ(A′) = (a− µA)2 + (b− µA)2 − 2
(a+ b

2
− µA

)2
=

(a− b)2

2

As (a− b)2/2 is non-negative, we have that Ψ(A′) ≤ Ψ(A). (Note that ave(A′) = µA.)

3.5.2 Proof for n Power of Two

In this sub-section we prove that E can be perfectly mixed with precision at most

0 in a polynomial number of mixing operations when |E| = n is a power of two. (Note that

n power of two implies that there are no odd prime factors, so mixing droplets with the

same-parity furthest-apart concentrations is sufficient.)

Let π, π̄ ∈ {even, odd} with π 6= π̄. If any mixing on Eπ produces concentra-

tions with parity π̄, then such concentrations are excluded from Eπ and included into Eπ̄.

Consider Lemma 31 below.

Lemma 31 After at most 4ns(E) furthest-apart mixing operations in Eπ, either Eπ = ∅

or ‖Eπ‖ = 1.

Proof. Recall that ΨEπ ,0 = Ψ(Eπ) before any mixing has been performed. Let |Eπ| =

nπ. By Observation 27, repeatedly mixing min(Eπ) with max(Eπ) decreases Ψ(Eπ) by

at least Ψ(Eπ)/2 after at most 2nπ mixing operations; every mixing operation involves

two concentrations with difference diam(Eπ). Thus, after at most 2nπ log ΨEπ ,0 mixing

operations, either Eπ = ∅ or ‖Eπ‖ = 1 hold. Finally, nπ ≤ n and ΨEπ ,0 ≤ ΨE,0 so

2nπ log ΨEπ ,0 ≤ 2n log ΨE,0 ≤ 4ns(E).

98

Even though Lemma 31 is not useful on its own, it helps us analyze a mixing

strategy from a more general point, which is presented in Lemma 32 below.

Lemma 32 After any sequence of at most 8ns(E) same-parity furthest-apart mixing oper-

ations Ψ(E) decreases by at least Ψ(E)/18n.

Proof. Let δ = diam(E) before any mixing operation. If the same-parity furthest-apart

pair x, y ∈ E satisfies |x−y| ≥ δ/3, then by Observation 26, mixing x and y decreases Ψ(E)

by at least Ψ(E)/18n. Otherwise, consider Eeven and Eodd non-empty. Assume without

loss of generality that max(Eodd) > max(Eeven). This, and the difference between every

same-parity concentration pair being less than δ/3 implies that min(Eodd) > max(Eodd) −

δ/3, min(E) = min(Eeven) and max(Eeven) < min(Eeven) + δ/3. Hence, |min(Eodd) −

max(Eeven)| ≥ δ/3.

Now, let n′ = |Eeven| such that n′ < n. By Lemma 31, it takes at most 4n′s(Eeven) <

4ns(E) furthest-apart mixing operations on Eeven for either Eeven = ∅ or ‖Eeven‖ = 1 to

hold (similarly for Eodd). Thus, if we repeatedly mix the droplets with the same-parity

furthest-apart concentrations in E, eventually, after fewer than 8ns(E) such mixing opera-

tions, either a mixing in Eeven produces an odd concentration or a mixing in Eodd produces

an even concentration. (This is true because, as mentioned in the proof for Lemma 13, n

power of two guarantees the existence of two distinct concentrations with same-parity, so

we cannot have both ‖Eeven‖ = 1 and ‖Eodd‖ = 1.)

So, if x odd was produced from a mixing in Eeven, then we mix x with max(Eodd).

Otherwise, y even was produced from a mixing in Eodd and we mix y with min(Eeven). As

99

both |x −max(Eodd)| and |y −min(Eeven)| are at least δ/3, either mixing decreases Ψ(E)

by at least Ψ(E)/18n (see Observation 26), and thus the lemma holds.

Lemma 32 leads to a complete proof shown in Theorem 33 below.

Theorem 33 If |E| = n is a power of two, then E can be perfectly mixed with precision at

most 0 after no more than 288n2s2(E) mixing operations.

Proof. By Lemma 32, Ψ(E) decreases by at least Ψ(E)/18n after a mixing sequence of

at most 8ns(E) same-parity furthest-apart mixing operations. It follows from Observa-

tion 27 that after at most 18n such mixing sequences, Ψ(E) decreases by at least a factor of

two. Consequently, after at most 18n log ΨE,0 such mixing sequences, E becomes perfectly

mixed. Finally, each mixing sequence takes at most 8ns(E) mixing operations, thus the

total number of mixing operations is at most 288n2s2(E).

Theorem 34 If E is near-final, then E can be perfectly mixed, with precision at most 0,

after no more than 144n3s2(E) mixing operations.

Proof. Assume that E is near-final. By definition, E can be partition into at most n/2

disjoint E′vE satisfying |E′| > 1 power of two with ave(E′) = ave(E). Each disjoint E′

can be perfectly mixed in at most 288n2s2(E) mixing operations (see Theorem 33 above),

thus the theorem holds.

3.5.3 An Exponential Bound

In this sub-section we give a simple upper bound on the number of mixing op-

erations to perfectly mix E with precision at most 0 when |E| = n ≥ 5. This bound is

100

exponential in n — so it’s too weak for our purpose — but we will need it to bound the

number of mixing steps when n is at most 22 (see Theorem 37).

Let E satisfy Invariant (λ); λ = I ′ for n = 5, 6 and λ = I for n ≥ 7. Also, let

A ⊆ E. We say that a pair of distinct concentrations in A is good if it is safe with respect

to E. (Any mixing in A involving a good pair preserves Invariant (λ) on E.) If there is no

good pair in A then we say that A is E-mixed. Additionally, since E satisfies Invariant (λ),

either E is near-final or the existence of a safe pair in E is guaranteed. (This was shown in

Sections 3.4.2 and 3.4.3.)

First, in Lemma 35 below we show an upper bound on the number of mixing

operations to E-mix A ⊆ E. Then, using such results we give an upper bound in Theorem 36

for the number of mixing operations to perfectly mix E with precision at most 0.

Lemma 35 Assume that E satisfies Invariant (λ). If A ⊆ E with |A| = k, then A can be

E-mixed with precision at most 0 in no more than (8k3s(A))k mixing operations.

Proof. We prove the lemma by induction with respect to k. Let φ(A) denote the number

of furthest-apart good mixing operations to E-mix A.

Base case: If k ≤ 1, then φ(A) = 0, since A is trivially E-mixed.

Inductive step: Assume that every A′ ⊂ A with |A′| = k′ < k can be E-mixed

in φ(A′) ≤ (8k′3s(A′))k
′

mixing operations. We next show that A can be E-mixed in

φ(A) ≤ (8k3s(A))k mixing operations.

If A is E-mixed then we are done. Otherwise, let x, y ∈ A be the furthest-apart

good pair. If |x−y| ≥ diam(A)/k, then mixing x and y decreases Ψ(A) by at least Ψ(A)/2k3

(see Observation 26). Then, by Observation 27, after at most 2k3 such mixing operations

101

Ψ(A) decreases by a factor at least two. It follows that after at most 2k3 log ΨA,0 such

mixing operations, A becomes E-mixed. Nevertheless, such x and y do not always satisfy

|x − y| ≥ diam(A)/k. Consequently, we next show a strategy that bounds the number of

mixing operations satisfying |x− y| < diam(A)/k.

Let δ = diam(A) before any mixing operation. Divide the interval [min(A),max(A)]

into k equal segments such that for at least one segment with interval [l, r], no con-

centration in A lies withing the open interval (l, r). Split A into A1 and A2 such that

max(A1) ≤ l and min(A2) ≥ r. By our inductive assumption, A1 and A2 can be E-mixed

in φ(A1), φ(A2) < (8k3s(A))k−1 mixing operations, respectively. Therefore, after at most

φ(A1) +φ(A2) mixing operations, either A becomes E-mixed or there is a good pair x ∈ A1

and y ∈ A2 that satisfies |x− y| ≥ δ/k.

It follows that A can be E-mixed in at most (8k3s(A))k mixing operations:

φ(A) ≤ 2k3 log ΨA,0 ·
(
φ(A1) + φ(A2) + 1

)
≤ 4k3s(A) · 2(8k3s(A))k−1 ≤ (8k3s(A))k

Theorem 36 If |E| = n ≥ 5, then E can be perfectly mixed after at most (8n3s(E))n +

144n3s2(E) mixing operations.

Proof. Let E satisfy Invariant (λ), for λ ∈ {I, I ′}. We know that if E satisfies Invariant (λ)

then E either has a safe pair or it is near-final. Therefore, we first E-mix E using Lemma 35

and then we perfectly mix it using Theorem 34. The total number of mixing operations is

thus at most (8n3s(E))n + 144n3s2(E).

102

3.5.4 A Polynomial Bound

In this sub-section we prove in Theorem 37 below that E can be perfectly mixed

with precision at most 0 in a polynomial number of mixing operations. (For simplicity, we

will be using Observation 26 without explicit reference.)

Theorem 37 E can be perfectly mixed with precision at most 0 in a polynomial number of

mixing operations.

Proof. If n is a power of two we can simply use Theorem 33 and we are done. Thus,

we can assume that n ≥ 5. If n is a small constant, say n < 22, we can perfectly mix E

using Theorem 36, where the total number of mixing operations is a polynomial of constant

degree. Otherwise, n ≥ 22 (E satisfies Invariant (I)) and we analyze the following cases.

Assume that E is not perfectly mixed. Let γ ≥ 2 be a small integral constant and

δ = diam(E) before any mixing operation. Assume by symmetry that |Eπ| ≥ |Eπ̄|.

Case 1: ‖Eπ‖ = 1; thus |Eπ̄| ≥ 1. Let a ∈ Eπ. We consider two sub-cases:

Case 1.1: min(Eπ̄) < a < max(Eπ̄). After at most two safe mixing operations on Eπ̄,

Ψ(E) decreases by at least Ψ(E)/32n (see Lemma 40).

Case 1.2: a < min(Eπ̄) or a > max(Eπ̄). After at most 128ns(E)+1 safe mixing operations

on Eπ̄, Ψ(E) decreases by at least Ψ(E)/32γ2n (see Lemma 41).

Case 2: ‖Eπ‖ ≥ 2 with diam(Eπ) ≥ δ/γ. After one safe mixing operation on Eπ, Ψ(E)

decreases by at least Ψ(E)/8γ2n (see Lemma 42).

103

Case 3: ‖Eπ‖ ≥ 2 with diam(Eπ) < δ/γ. Let E′ be obtained from E after E-mixing Eπ,

which takes at most 128ns(E) safe mixing operations (see Lemma 43); E′π is E′-mixed. We

consider two sub-cases:

Case 3.1: |E′π| ≥ |E′π̄|. By Observation 38 below and since E′π is E′-mixed, we have

that ‖E′π‖ = 1. Hence, as in Case 1 above, after at most 128ns(E′) + 1 safe mixing

operations on E′π̄, Ψ(E′) decreases by at least Ψ(E′)/32γ2n. (In other words, as

Ψ(E) > Ψ(E′), Ψ(E) decreases by at least Ψ(E)/32γ2n.)

Case 3.2: |E′π| < |E′π̄|. As γ ≥ 2, diam(E′π) < δ/γ and because the mixing operations on

Eπ produced at least one droplet with concentration π̄, we have that diam(E′π̄) > δ/γ.

Hence, as in Case 2 above, after one safe mixing operation on E′π̄, Ψ(E′) decreases by

at least Ψ(E′)/8γ2n. (As Ψ(E) > Ψ(E′), Ψ(E) decreases by at least Ψ(E)/8γ2n.)

Applying a sequence of mixing operations specified by the cases above results in a

decrease of Ψ(E) by at least Ψ(E)/32γ2n. Thus, by a simple extension to Observation 27,

we get that after at most 32γ2n such mixing sequences Ψ(E) decreases by at least Ψ(E)/2.

It follows that after at most 64γ2ns(E) mixing sequences, E either becomes near-final

or perfectly mixed; E near-final can be perfectly mixed in at most 144n3s2(E) mixing

operations (see Theorem 34). Each mixing sequence takes at most 256ns(E) + 1 mixing

operations, therefore the total number of mixing operations to perfectly mix E is at most

214γ2n2s2(E) + 64γ2ns(E) + 144n3s2(E).

Observation 38 Assume that E with |E| = n ≥ 22 satisfies Invariant (I) and let π such

that |Eπ| ≥ |Eπ̄|. There is at least one droplet in Eπ such that, when paired with any other

droplet in Eπ, the resulting pair is safe.

104

Proof. Lemma 16(a) and the number of distinct odd prime factors of n being less than

log3 n imply that E has at most 2blog3 nc droplets that are unsafe when paired with other

droplets in E. This, and Observation 39 below give that the number of droplets that, when

mixed with other droplets in E violate Invariant (I), is at most 2blog3 nc+ 6 < n/2 ≤ |Eπ|,

since n ≥ 22. Thus, the lemma holds.

Observation 39 Assume that E with |E| = n ≥ 7 satisfies Invariant (I). The number

of droplets involved in mixing operations that decrease the number of non-singletons in E

down to one is at most 6.

Proof. If the number of non-singletons in E is more than three, then no mixing decreases

the number of non-singletons down to one; similarly when mixing a non-singleton with fre-

quency higher than two. Additionally, mixing two singletons does not decrease the number

of non-singletons. Now, E satisfying Invariant (I) implies that there are at least two non-

singletons a, b ∈ E. We consider two types of cases where a mixing decreases the number

of non-singletons in E down to one:

Case 1: Mixing two non-singletons, say a and b. This can happen when the frequency of

both a and b is two each, leading to a total of 4 droplets involved. (There could be another

non-singleton e = 1
2(a + b) in E, however no mixing involving e decreases the number of

non-singletons down to one because either a or b remains non-singleton after the mixing.)

Case 2: Mixing a non-singleton with a singleton. (This can happen when E has exactly

two non-singletons, a and b respectively.) Let a and c be the non-singleton and singleton,

respectively. If a is a doubleton and b = 1
2(a+c), then mixing a and c decreases the number

of non-singletons down to one. Similarly, if b is a doubleton and a = 1
2(b + d), for some

105

singleton d ∈ E, then mixing b and d decreases the number of non-singletons down to one.

Therefore, the total number of droplets (excluding a and b, which were already counted in

Case 1 above) is at most 2.

Therefore, the number of droplets involved in mixing operations that decrease the

number of non-singletons down two one is at most 6.

Lemma 40 Assume that E with |E| = n ≥ 7 satisfies Invariant (I). Also, assume that

|Eπ| ≥ |Eπ̄| ≥ 1 and that ‖Eπ‖ = 1, with a ∈ Eπ. If min(Eπ̄) < a < max(Eπ̄) then, after at

most two mixing operations, Ψ(E) decreases by at least Ψ(E)/32n.

Proof. Let δ = diam(E) before any mixing operation. Assume without loss of generality

that π = even. Since E satisfies Invariant (I), there is at least one non-singleton b ∈ Eodd.

Either min(Eodd) or max(Eodd) is furthest from b, so assume without loss of generality that

min(Eodd) is furthest from b; |b−min(Eodd)| ≥ δ/2. If b,min(Eodd) is a safe pair then we mix

them and we are done. Otherwise, E has exactly two non-singletons, a = 1
2(b+ min(Eodd))

and b (which is a doubleton). Consider the following cases:

Case 1: b = max(Eodd). Both E satisfying Invariant (I) and ‖Eπ‖ = 1 imply that there is

c ∈ Eodd such that min(Eodd) < c < b; mixing b and c produces a non-singleton other than

a, so b, c is a safe pair. We analyze the following sub-cases:

Case 1.1: c < a. Since |b− c| ≥ δ/2, mixing b and c decreases Ψ(E) by at least Ψ(E)/8n.

Case 1.2: c > a. Let d = 1
2(b+ c) be the output of the mixing between b and c. If d is odd,

then mixing d and min(Eodd) decreases Ψ(E) by at least Ψ(E)/8n. (Pair d,min(Eodd)

is a safe pair because their mixing produces a non-singleton other than a.) Otherwise,

106

d is even and, as |d− a| ≥ δ/4, mixing a and d decreases Ψ(E) by at least Ψ(E)/32n.

(Note that a, d is a safe pair because, after the mixing, a is still a non-singleton.)

Case 2: b < max(Eodd). This is similar to Case 1.2 above under the assumption that

b < max(Eodd) and using c = max(Eodd).

Lemma 41 Assume that E with |E| = n ≥ 7 satisfies Invariant (I). Also, assume

that |Eπ| ≥ |Eπ̄| ≥ 1 and that ‖Eπ‖ = 1 with a ∈ Eπ. If either a < min(Eπ̄) or

a > max(Eπ̄), then, after at most 128ns(E) + 1 safe mixing operations, Ψ(E) decreases

by at least Ψ(E)/32γ2n, for constant γ ∈ Z>0.

Proof. Let δ = diam(E) before any mixing operation. Assume without loss of generality

that π = even and that a < min(Eodd). We analyze two sub-cases:

Case 1: diam(Eodd) ≥ δ/2γ. E satisfying Invariant (I) implies that there is a non-singleton

b ∈ Eodd. Either min(Eodd) or max(Eodd) is furthest from b, so assume without loss of

generality that min(Eodd) is furthest from b. As a < 1
2(b+ min(Eodd)), pair b,min(Eodd) is

a safe pair (mixing b and min(Eodd) produces a non-singleton other than a) that satisfies

|b − min(Eodd)| ≥ δ/4γ. Therefore, mixing b and min(Eodd) decreases Ψ(E) by at least

Ψ(E)/32γ2n.

Case 2: diam(Eodd) < δ/2γ. This implies that |min(Eodd) − a| ≥ δ/2γ. E-mix Eodd using

Lemma 43; E satisfying Invariant (I) implies that an even concentration b is eventually

produced. Since a’s frequency is at least dn/2e ≥ 3, pair a, b is a safe pair; a is still a

non-singleton after the mixing. Additionally, since b > min(Eodd), |b− a| > δ/2γ and thus

mixing a and b decreases Ψ(E) by at least Ψ(E)/8γ2n. Finally, Lemma 43 takes at most

128ns(E) mixing operations, so the lemma holds.

107

Lemma 42 Assume that E with |E| = n ≥ 22 satisfies Invariant (I). Also, assume that

|Eπ| ≥ |Eπ̄| and that ‖Eπ‖ ≥ 2. If diam(Eπ) ≥ diam(E)/γ, for constant γ ∈ Z>0, then after

one safe mixing operation Ψ(E) decreases by at least Ψ(E)/8γ2n.

Proof. Assume without loss of generality that π = even and let a = min(Eeven) and

b = max(Eeven). If a, b is a safe pair then mixing a and b decreases Ψ(E) by at least

Ψ(E)/2γ2n. Thus, assume that a, b is not a safe pair.

By Observation 38, and as a, b is not a safe pair, there is c ∈ Eeven with c /∈ {a, b}

for which any pair involving c is a safe pair. Now, either a or b is furthest from c, so assume

without loss of generality that a is furthest from c. Then, |c − a| ≥ diam(E)/2γ and thus

mixing a and c decreases Ψ(E) by at least Ψ(E)/8γ2n.

Lemma 43 Assume that E with |E| = n ≥ 7 satisfies Invariant (I). Then Eπ can be

E-mixed after at most 128ns(E) mixing operations.

Proof. Assume without loss of generality that π = even and let |Eeven| = n′ and δ =

diam(Eeven) before any mixing operation. If a mixing in Eeven produces odd concentrations,

then such concentrations are excluded from Eeven and included into Eodd; this can happen

at most n′/2 times, if so, then Eeven becomes E-mixed.

Assume that the number of safe pairs (with respect to E) in Eeven is non-zero and

let a = min(Eeven) and b = max(Eeven). If a safe pair x, y ∈ Eeven satisfies |x − y| ≥ δ/4,

then mixing x and y decreases Ψ(Eeven) by at least Ψ(Eeven)/32n′. It follows from from

Observation 27 that after at most 32n′ such mixing operations, Ψ(Eeven) decreases by at

least Ψ(Eeven)/2. Hence, Eeven can be E-mixed after at most 32n′ log Ψ(Eeven) such mixing

operations.

108

We next show that if Eeven has not been E-mixed, then after two safe mixing

operations (with respect to E) either an odd concentration is produced or Ψ(Eeven) decreases

by at least Ψ(Eeven)/32n′. Consequently, after at most 128ns(E) safe mixing operations,

Eeven becomes E-mixed.

So, if a and b is a safe pair then we are done; |a− b| = δ. Instead, assume that a, b

is not a safe pair and consider the following cases:

Case 1: Eeven has only singletons. This implies that no mixing in Eeven decreases the

number of non-singletons in E. So, let c, d ∈ Eeven be the furthest-apart safe pair and

x = 1
2(c+ d) be the output of their mixing. If either |c− d| ≥ δ/2 or x odd holds, then we

are done. Otherwise, let y ∈ {a, b} be furthest from x. By the choice of y, we have that

|x− y| ≥ δ/2, and as x is a doubleton, x, y is a safe pair and thus we mix them.

Case 2: Eeven has exactly one non-singleton c. Either a or b is furthest from c, so assume

without loss of generality that b is furthest from c; |b − c| ≥ δ/2. If b, c is a safe pair then

we mix it and we are done. Otherwise, b, c is not a safe pair, therefore there are exactly

two non-singletons in E, c ∈ Eeven (which is a doubleton) and e = (b+ c)/2 /∈ Eeven. Since

there is a safe pair in Eeven, there is some d ∈ Eeven such that d /∈ {b, c}. Then, c, d is

a safe pair because mixing c and d produces a non-singleton x = 1
2(c + d) other than e.

So, if |c − d| ≥ δ/2 then we mix them and we are done; if x is odd then we are also done.

Otherwise, b, x is a safe pair (e 6= 1
2(b+ x)) and |x− b| ≥ δ/4, so we mix it.

Case 3: Eeven has at least two non-singletons c < d. We analyze two sub-cases:

Case 3.1: a = c. Since a, b is not a safe pair, then mixing b and c decreases the number of

non-singletons down to one. This gives us two sub-cases:

109

Case 3.1.1: d = b. Eeven having a safe pair implies that there is some x ∈ Eeven

such that x /∈ {c, d}. Either c or d is furthest from x, so assume without loss of

generality that d is furthest from x; |d − x| ≥ δ/2. Mixing x and d produces a

non-singleton other than c, so x, d is a safe pair and we mix it.

Case 3.1.2: d < b. This implies that d = 1
2(c+ b), b− d = δ/2 and b, d is a safe pair

(mixing b and d produces a non-singleton other than c), so we mix b and d.

Case 3.2: a < c. If |a − c| ≥ δ/2 then we mix a and c and we are done; 1
2(a + c) < d

implies that mixing a and c produces a non-singleton other than d, so a, c is a safe

pair. Instead, let |a−c| < δ/2 which implies |b−c| ≥ δ/2. Now, if pair b, c is safe then

we mix it and we are done, so also assume that b, c is not a safe pair. (We cannot have

b = d because that would contradict a, b not being a safe pair; |a − c| < δ/2 implies

c < 1
2(a+ b), so mixing a and b would produce a non-singleton other than c.)

Therefore, as b, c is not a safe pair, we have that d = 1
2(b + c) and mixing b and d

produces a non-singleton other than c. Hence, b, d is a safe pair satisfying |b−d| ≥ δ/4,

so we mix it.

3.6 Extension to Single-Concentration Producibility

As mentioned in Section 1.3.2, we further extend our perfect-mixing algorithm to

construct minimum-waste mixing graphs for MixProducibility, when configurations have

considerably-many droplets of equal concentration. Naturally, the resulting algorithm is

very convenient for applications that require large volumes of equal-concentration droplets.

110

For example, in drug manufacturing, where mass production plays an essential role, large

amounts of droplets with same concentrations are required in early stages of the production.

In such application, waste minimization is a crucial constituent of the entire manufacturing

process, thus highlighting the importance of this contribution.

Let T be the target configuration. The construction of a mixing graph for T , with

waste at most 1 (which is necessary when the reactant volume in T is non-integral), follows

directly from Theorem 44 below.

Theorem 44 Let n = |T | and d = prec(T ∪ {µ}), for µ = ave(T). If n > d2d > 7 then T

is producible with at most 1 droplet of waste.

Proof. Let b = (1− µ)n and r = nµ be the buffer and reactant volumes in T , respectively.

As n > d2d, we have that b, r > d. If both b and r are integral, we simply use our perfect-

mixing algorithm to produce T without any waste; the initial set is I = {b : 0, r : 1}, which

satisfies Condition (MC). (I satisfies Condition (MC) because, when mapped to integers,

each concentration in I is multiplied by 2d, so every 1 becomes 2d, and 0 6≡ 2d mod x for

all positive odd x.)

Otherwise, let I ′ = {dbe : 0, dre : 1} with |I ′| = n + 1. Use Algorithm Min-Mix

(see Section 1.2.1.1 in Chapter 1) on I ′ to produce concentration w = dre − r, which

represents the waste droplet. Let I ′′ = I ′ − {w}, so that |I ′′| = n and ave(I ′′) = µ. Since

Algorithm Min-Mix uses at most d droplets of either buffer or reactant to produce w, we

have that 0, 1 ∈ I ′′, because dbe, dre > d. This implies (by the same argument as for I

above) that I ′′ satisfies Condition (MC), and, as|I ′′| ≥ 7, our perfect-mixing algorithm can

perfectly mix I ′′, producing T .

111

Chapter 4

Other Contributions

In this chapter we present the following contributions. First, an NP-hardness proof

for a variant of MixReachability, where a mixing graph of fixed-depth is sought, is given

in Section 4.1.1. Then, a necessary condition for reachable sets is presented in Section 4.2.

Finally, for special configurations, we give decidability proofs in Section 4.3.

4.1 NP-Hardness of a Restricted Variant

In this section we show that the variant of MixReachability where a mixing

graph of fixed-depth is sought is NP-hard. We first give complete proofs for mixing graphs

of depth at most one and two, respectively. Then we give a construction of an NP-hardness

proof for mixing graphs of fixed depth.

112

4.1.1 NP-Hardness for Mixing Graphs of Depth At Most 1

Let the Depth-1-MixReachability problem be the following: Given two con-

figurations I and T , determine whether T is reachable from I via a mixing graph of depth

at most one. (The depth is defined as the maximum number of nodes on a path from an

input to an output. So a mixing graph of depth 1 does not have any edges between mixers

— each mixer is connected to two input nodes and two output nodes.)

Recall that Numerical-3D-Matching is defined as follows: Given three multi-

sets X,Y, Z of non-negative integers such that |X| = |Y | = |Z| = m, and a non-negative

integer S, determine whether (X,Y, Z) has a 3D-matching consisting of triplets each adding

up to S. (A 3D-matching of (X,Y, Z) is defined as a partition M of X ∪ Y ∪ Z into m

triplets of the form (x, y, z) ∈ X × Y × Z.) Numerical-3D-Matching is well-known to

be NP-complete.

In Theorem 45 below, we show that the Depth-1-MixReachability problem is

NP-hard by giving a polynomial-time reduction from Numerical-3D-Matching.

Theorem 45 The Depth-1-MixReachability problem is NP-hard.

Proof. We prove the theorem by giving a polynomial-time reduction from Numerical-

3D-Matching. Let X = {xi}i, Y = {yi}i, and Z = {zi}i be the sets from an instance of

Numerical-3D-Matching, as defined above. We construct two configurations I and T

as follows. For each i = 1, 2, . . . ,m:

• Add one droplet with concentration ai = 2xi + 1
2 and one droplet with concentration

bi = 2yi + 1 to I.

• Add two droplets with concentration ci = S − zi + 3
4 to T .

113

We claim that there exists a 3D-Matching M of (X,Y, Z) consisting of triplets

that add up to S if and only if T is reachable from I via a mixing graph of depth at most

one.

(=⇒) Assume M is a 3D-Matching of (X,Y, Z) where each triplet (xi, yj , zk) ∈M adds up

to S. For each (xi, yj , zk) ∈M , we have

1
2(ai + bj) = 1

2 [(2xi + 1
2) + (2yj + 1)] = xi + yj + 3

4 = S − zk + 3
4 = ck.

Create a mixing graph G where for each (xi, yj , zk) ∈M we create a mixer node with inputs

ai and bj and two outputs ck. Then G converts I into T .

(⇐=) Assume that there is a mixing graph G of depth at most 1 that converts I into T .

All numbers in I are either half-integral ai’s or integral bj ’s, and all numbers ck in T have

fractional part 3
4 . So G must consist of m mixer nodes, where each node has incoming edges

from some ai ∈ I and some bj ∈ I and outgoing edges to two ck’s in T , where ck = 1
2(ai+bj).

Create a 3D-Matching M as follows: for each such node include the corresponding triplet

(xi, yj , zk) in M . By simple calculation (reversing the calculation in implication (=⇒)),

we get that xi + yj + zk = S. Thus M is indeed a correct solution to the instance of

Numerical-3D-Matching.

4.1.2 NP-Hardness for Mixing Graphs of Depth At Most 2

Let the Depth-2-MixReachability problem be the following: Given two con-

figurations I and T , determine whether T is reachable from I via a mixing graph of depth

at most two.

114

In Theorem 46 below, we show that the Depth-2-MixReachability problem is

NP-hard by giving a polynomial-time reduction from Numerical-3D-Matching.

Theorem 46 The Depth-2-MixReachability problem is NP-hard.

Proof. We prove the theorem by giving a polynomial-time reduction from Numerical-

3D-Matching. Let X = {xi}i, Y = {yi}i, and Z = {zi}i be the sets from an instance of

Numerical-3D-Matching. We construct two configurations I and T as follows: Add 2m

droplets with concentration 0 to I, where m = |X|. Then, for each i = 1, 2, . . . ,m:

• Add one droplet with concentration ai = 4xi + 1
4 and one droplet with concentration

bi = 4yi + 1 to I.

• Add four droplets with concentration ci = S − zi + 5
16 to T .

We claim that there exists a 3D-Matching M of (X,Y, Z) consisting of triplets

that add up to S if and only if T is reachable from I via a mixing graph of depth at most

two.

(=⇒) Assume M is a 3D-Matching of (X,Y, Z) where each triplet (xi, yj , zk) ∈M adds up

to S. For each (xi, yj , zk) ∈M , we have

1
4(ai + bj) = 1

4 [(4xi + 1
4) + (4yj + 1)] = xi + yj + 5

16 = S − zk + 5
16 = ck.

Create a mixing graph G of depth two as follows: Let Q1 and Q2 represent the set of mixers

in G at depth one and two, respectively. For each triplet (xi, yj , zk) ∈ M , add a mixer to

Q1 with inputs (ai, bj) so that its outputs equal 1
2(ai+bj). Also, add two mixers to Q2 with

inputs (
ai+bj

2 , 0) each, so that the four outputs equal
ai+bj

4 . Then G converts I into T .

115

(⇐=) Assume that there is a mixing graph G of depth at most 2 that converts I

into T . Note that all ai’s in I have fractional part 1
4 , while all other numbers are integral

bj ’s and 0’s. Further, all numbers ck in T have fractional part 5
16 . With this in mind,

consider the fractional part of every possible concentration produced by a mixer node at

depth one:

ai mod 2 = 1
8 bj mod 2 = 1

2

2ai mod 2 = 1
4 2bj mod 2 = 0

(ai + bj) mod 2 = 5
8 0 mod 2 = 0

Since no fractional part equals 5
16 , then G must be a graph of depth two. Thus, consider

the fractional part of every possible concentration produced by a mixer node at depth two:

ai mod 4 = 1
16 bj mod 4 = 4

16

2ai mod 4 = 2
16 2bj mod 4 = 8

16

3ai mod 4 = 3
16 3bj mod 4 = 12

16

4ai mod 4 = 4
16 4bj mod 4 = 1

(ai + bj) mod 4 = 5
16 3 (2ai + 2bj) mod 4 = 10

16

(2ai + bj) mod 4 = 6
16 (ai + 2bj) mod 4 = 9

16

(3ai + bj) mod 4 = 7
16 (ai + 3bj) mod 4 = 13

16

0 mod 4 = 0

Hence, at depth two, the only possible concentration that has fractional part 5
16 is 1

4(ai+bj).

Therefore, the output of every mixer node at depth two must equal 1
4(ai + bj). To this end,

and from the analysis above for mixer nodes at depth one, the only possible input pairs for

116

mixer nodes at depth two are either (
ai+bj

2 , 0) or (ai2 ,
bj
2). Consequently, the input pairs for

mixer nodes at depth one are either (0, 0), (0, ai), (0, bj) or (ai, bj).

Create a 3D-Matching M as follows. For each mixer m in G at depth two: If m’s

input pair equals (ai2 ,
bj
2), then add the corresponding triplet (xi, yj , zk) to M . Otherwise,

m’s input pair equals (
ai+bj

2 , 0). Then, ai and bj can be obtained by identifying the corre-

sponding mixer, whose output pair equals
ai+bj

2 , at depth one; the input pair for this mixer

node is (ai, bj). In either case, ai and bj are chosen so that ck = 1
4(ai + bj). Finally, add

the corresponding triplet (xi, yj , zk) to M .

Every triplet (xi, yj , zk) ∈M adds up to S:

xi + yj + zk = 1
16(4ai − 1) + 1

16(4bj − 4) + (S − ck + 5
16) = 1

4(ai + bj) + S − ck = S

Thus M is indeed a correct solution to the instance of Numerical-3D-Matching.

4.1.3 NP-Hardness for Mixing Graphs of Fixed-Depth

Let the Fixed-Depth-MixReachability problem be the following: given two

configurations I and T , and a non-negative integer l, determine whether T is reachable from

I via a mixing graph of depth l.

In this section, we show that the Fixed-Depth-MixReachability problem is

NP-hard (see Corollary 47 below) by giving an extension to the proofs in Theorems 45

and 46.

Let X = {xi}i, Y = {yi}i, and Z = {zi}i be the sets from an instance of

Numerical-3D-Matching. We construct two configurations I and T as follows: Add

m
∑l−1

i=1 2i droplets with concentration 0 to I, wherem = |X|. Then, for each i = 1, 2, . . . ,m:

117

• Add one droplet with concentration ai = 2l ·xi+ 1
2l

and one droplet with concentration

bi = 2l · yi + 1 to I.

• Add 2l droplets with concentration ci = S − zk + 2l+1
22l

to T .

Corollary 47 The Fixed-Depth-MixReachability problem is NP-hard.

4.2 A Necessary Condition for Mixing Reachability

In this section, we present a necessary condition for reachable sets. We refer to

this condition as dominance relation. Additionally, we show that, if we are allowed to mix

arbitrary volumes of fluids, this dominance relation is also a sufficient condition.

Let C be an arbitrary configuration with |C| = n. We define function %() as follows:

%(C) denotes an enumeration of C for which the ith entry %(C)i refers to the ith smaller

concentration in C. %(C, k) =
∑k

i=1 %(C)i denotes the sum of the k smaller concentrations

in C. For example, for C = {(2 : 6
8), (2 : 1

8), 3
8}, %(C)3 = 3

8 and %(C, 3) = 5
8 .

Given two configurations I and T with |I| = |T |, we say that T dominates I if

%(T, k) ≥ %(I, k) for all k. We show that dominance relation is a necessary condition for

MixReachability. We also show that if we are allowed to mix two droplets in any volume

proportion, then this dominance relation becomes also a sufficient condition.

4.2.1 A Necessary Condition

Let I and T be the initial and target configurations, respectively, with |I| =

|T | = n. In this section, we show that the dominance relation is a necessary condition

118

for MixReachability. In other words, we show that if T is reachable from I then T

dominates I.

To this end, assume that T is reachable from I and let G be a mixing sequence

that converts I into T . By Lemma 48 below, after a mixing operation on I, the resulting

configuration dominates I. Therefore, since T can be obtained by applying the mixing

sequence G to I, and as the dominance relation is transitive, we have that T dominates I.

Lemma 48 Let A be an arbitrary configuration. Also, let A′ be obtained after a mixing

operation on A. Then A′ dominates A.

Proof. Without loss of generality, assume that the concentrations of the mixed droplets

in A are %(A)i and %(A)j , with i < j. (Otherwise, i = j and thus A = A′, so A′ trivially

dominates A.) Let σ = 1
2(%(A)j − %(A)i). Mixing %(A)i with %(A)j is analogous to adding

and subtracting σ to %(A)i and %(A)j , respectively. To this end, we consider the following

process:

1. If %(A)i = %(A)i+1, we can trivially increase i by one without affecting the mixing

process. Similarly, if %(A)j = %(A)j−1, we can decrease j by one as well.

2. Otherwise, let φ = min(%(A)i+1 − %(A)i, %(A)j − %(A)j−1,
1
2(%(A)j − %(A)i)) and

Â = A. Increase %(Â)i and decrease %(Â)j by φ, respectively. Since φ > 0, we

have that %(Â, k) > %(A, k) for k = i, i + 1, . . . , j − 1. (For all other indices l 6= k,

%(Â, l) = %(A, l).) Thus, Â dominates A.

3. Repeat the process for Â, î = i+ 1 and ĵ = j − 1, until %(Â)̂i = %(Â)ĵ .

After each iteration, the resulting configuration dominates its previous configuration, so the

lemma holds.

119

4.2.2 A Sufficient Condition for a Relaxed Variant

Assume that we are allowed to mix two droplets in any volume proportion. Under

this condition, in Theorem 49 below, we show that the dominance relation is a sufficient

condition for MixReachability.

Let A be an arbitrary configuration. We define a fractional mixing between two

droplets x, y ∈ A, as two mixing operations where, for some real number a with 0 < a ≤ 1,

in the first mixing operation, a volume of droplet x is mixed with (1− a) volume of droplet

y, and in the second mixing operation, (1−a) volume of droplet x is mixed with a volume of

droplet y. Thus, for some real number a with 0 < a ≤ 1, a fractional mixing between x and

y produces two droplets with concentrations ax+ (1− a)y and (1− a)x+ ay, respectively.

Theorem 49 Let I and T be the initial and target configurations, respectively, with |I| =

|T |. Then, T is reachable from I by a sequence of fractional mixes if and only if T dominates

I.

Proof. (=⇒) Assume that T can be obtained from I by a sequence of fractional mixes.

That T dominates I follows from Lemma 50 below.

(⇐=) Assume that T dominates I. Let d = prec(I ∪ T). By Lemma 51 below, we

can implement the process of a droplet giving a unit of concentration 1
2d

to another droplet

by using a fractional mixing, with corresponding a. Also, by Lemma 52 (below Lemma 51),

we know that whenever %(T, i) > %(I, i), for the smallest i, there exists j > i such that

%(I)j > %(I)i, and thus %(I)j can give a unit of concentration 1
2d

to %(I)i. We can thus

repeat this process until I = T .

120

The above process finishes after at most Ψ(T)−Ψ(I) droplets have given a unit of

concentration 1
2d

to other droplets, because after each step, Ψ(I) increases by at least one.

(Recall that, for some configuration C, Ψ(C) denotes the variance of the concentrations in

C.)

Lemma 50 Let A be an arbitrary configuration and A′ be obtained from A after a fractional

mixing. Then, A′ dominates A.

Proof. Let a (with 0 < a ≤ 1) be the corresponding real number associated to the fractional

mixing used to produce A′ from A. Also, let %(A)i and %(A)j be the concentrations of the

droplets used to produce A′, such that a volume of %(A)i is mixed with (1 − a) volume of

%(A)j and (1− a) volume of %(A)i is mixed with a volume of %(A)j .

Assume without loss of generality that i < j such that %(A)i < %(A)j . (For

i = j, we have that A = A′ and the lemma trivially holds.) Mixing a volume of %(A)i

with (1− a) volume of %(A)j is analogous to increasing the concentration of the a-volumed

fluid by α = λ − %(A)i and decreasing the concentration of the (1 − a)-volumed fluid by

β = %(A)j − λ, for λ = a · %(A)i + (1− a) · %(A)j . (Similarly for mixing (1 − a) volume of

%(A)i with a volume of %(A)j .)

To prove the lemma under the above analogy, it is convenient to think of the

droplets in A as ψ-sized mini-droplets, where ψ = gcd(a, 1− a). To this end, let Â denote

a configuration containing the corresponding ψ · |A| mini-droplets of A. Also, let %(Â)̂i

to %(Â)̂i′ and %(Â)ĵ to %(Â)ĵ′ be the a-volumed and the (1 − a)-volumed mini-droplets,

respectively, of %(A)i and %(A)j , correspondingly, involved in the first mixing operation.

Consider the following process:

121

1. If %(Â)̂i′ = %(Â)̂i′+1, we can trivially increase î and î′ by one without affecting the

mixing operation. Similarly, if %(Â)ĵ = %(Â)ĵ−1, we can also decrease both ĵ and ĵ′

by one as well.

2. Otherwise, let Â′ = Â. Simultaneously increase %(Â′)̂i through %(Â′)̂i′ and decrease

%(Â′)ĵ through %(Â′)ĵ′ by σ, φ > 0 respectively, at a rate proportionally to α and

β correspondingly, until either %(Â′)̂i′ + σ = %(Â′)̂i′+1, %(Â′)ĵ − φ = %(Â′)ĵ−1 or

%(Â′)̂i′ + σ = %(Â′)ĵ − φ holds.

Either way, as σ, φ > 0, we have that %(Â′, k) > %(Â, k) for k = î, î+ 1, . . . , ĵ−1. (For

all other indices l 6= k, %(Â′, l) = %(Â, l).) Thus, Â′ dominates Â.

3. Repeat the process for Â′, with corresponding î, î′, ĵ and ĵ′, until %(Â′)̂i = %(Â′)̂i+1 =

%(Â′)ĵ′ = λ.

After each iteration, the resulting configuration Â′ dominates its corresponding previous

configuration Â. This also holds for mixing the remaining (1 − a)-volumed mini-droplets

of %(A)i with the remaining a-volumed mini-droplets of %(A)j . (Note that the volume of

fluid manipulated by the fractional mixing adds up to two droplets, exactly: one droplet of

volume per mixing operation.) Therefore, A′ must dominate A.

Lemma 51 Let d = prec(I ∪ T) and 1 ≤ i < j ≤ n. Also, let %(I)i = x
2d

and %(I)j = y
2d

,

where x and y are integers satisfying x < y. Applying a fractional mixing to %(I)i and

%(I)j, with corresponding a = y−x−1
y−x , produces two droplets with concentrations %(I)i + 1

2d

and %(I)j − 1
2d

, respectively.

122

Proof.
y − x− 1

y − x
· %(I)i +

1

y − x
· %(I)j =

1

y − x

[x(y − x− 1)

2d
+

y

2d

]
=

1

2d(y − x)

[
x(y − x) + (y − x)

]
= %(I)i +

1

2d

(The proof for y−x−1
y−x · %(I)j − 1

y−x · %(I)i = %(I)j − 1
2d

follows from above by

switching i with j and by subtracting instead of adding.)

Lemma 52 Assume that T dominates I. Also, assume that %(T, i) > %(I, i) for some

1 ≤ i ≤ n. Let ι be the smallest i that satisfies %(T, ι) > %(I, ι). Then, there exists j > ι

that satisfies %(I)j > %(I)ι.

Proof. We know that %(T)ι > %(I)ι because ι is the smallest integer that satisfies %(T, ι) >

%(I, ι). Also, since T dominates I, there exists some j with ι < j ≤ n that satisfies

%(I)j > %(T)j . Hence %(I)ι < %(T)ι ≤ %(T)j < %(I)j , and thus the lemma holds.

4.3 Decidability of Special Cases

As mentioned in Chapter 1, it is not known whether MixReachability and

MixProducibility are decidable. Nonetheless, in this section, for MixProducibility,

we give decidability proofs for special types of configurations. In particular, we give decid-

ability proofs for configurations with at most four droplets, configurations with precision 2

and configurations containing only pcvs. We also give a sufficient condition for producing

configurations containing pcvs and one non-pcv. (Recall that a pcv denotes a concentration

value with exactly one bit 1 in its binary representation.)

123

In the following sections, for an arbitrary configuration C, we define by bv(C) and

rv(C) the buffer and reactant volumes in C, respectively.

4.3.1 Configurations with At Most 4 Droplets

In this section, we show that MixProducibility is decidable for configurations

with at most four droplets. Let T with |T | = n ≤ 4 be the target configuration. If the

reactant (or buffer) volume in T is not integral, then T is clearly not producible. So, assume

that T ’s reactant volume (and thus the buffer volume) is integral and let I = {a : 0, b : 1}

be the initial configuration, where a =
∑

c∈T (1 − c) and b =
∑

c∈T c are integers; either

a = 0 or b = 0 implies that I = T , so further assume that a, b ≥ 1.

The decidability proof for the case n ≤ 2 is trivial, since at most one mixing

operation is required to determine whether T producible from I. The case n = 3 is also

easy. Mixing 0 and 1 produces I ′ =
{

1 : c, 2 : 1
2

}
, for c ∈ {0, 1}, with precision prec(I ′) =

1 > prec(I) = 0, so the precision increases. In particular, after every mixing operation,

the resulting configuration has form {1 : c1, 2 : c2}, with prec(c1) < prec(c2). Therefore, by

Observation 53 below, every mixing operation increases the precision. (Note that we never

mix two equal concentrations, since the result is redundant.) Hence, T is producible from

I only if after prec(T) mixing operations, I becomes T .

Observation 53 Let c1 and c2 be two distinct concentrations. If prec(c1) 6= prec(c2), then

prec(1
2(c1 + c2)) = max (prec(c1), prec(c2)) + 1.

Proof. Assume (by symmetry) that prec(c1) < prec(c2). If we represent both c1 and c2 by

the fractions c1 = x
2prec(c2)

and b = y

2prec(c2)
, we get that x is even and y is odd. Therefore,

124

mixing c1 and c2 produces

c3 =
c1 + c2

2
=

x+ y

2prec(c2)+1

and since x+ y is odd, prec(c3) = prec(c2) + 1.

It remains to show that MixProducibility is decidable for n = 4. The idea of

the proof is somewhat similar to the case n = 3. We show that after every three mixing

operations, either the current configuration becomes perfectly mixed (as in PerfectMixa-

bility) or its precision increases. Thus, if the precision of the current configuration exceeds

that of the target configuration, then we can stop mixing. This implies that we only need

to consider mixing sequences of length at most 3 ·prec(T), so there are finitely many mixing

sequences to check. The proof is presented in Lemma 54 below.

Lemma 54 If n = 4, then it is decidable to determine whether T is producible.

Proof. As I consists of only 0’s and 1’s, the first mixing operation trivially increases the

precision. Furthermore, every time a mixing operation increases the precision, a configura-

tion I ′ of form I ′ = {c1, c2, c3, c3} (c1 and c2 might be equal) is obtained, where c3 denotes

the concentration produced by the mixing operation and where prec(c1, c2) < prec(c3).

We next show that after at most three mixing operations, the current configuration

either becomes perfectly mixed or its precision increases. Without loss of generality, assume

that the initial configuration is I = {c1, c2, c3, c3} with prec(c1, c2) < prec(c3). (Otherwise,

as mentioned above, I consists of 0’s and 1’s, so the next mixing operation mixes a 0 and a

1, increasing the precision. Thus we get a configuration I ′ of this form.) By Observation 53,

and as prec(c1, c2) < prec(c3), mixing c3 with either c1 or c2 increases the precision. So,

instead, assume that c3 is not mixed at the first step.

125

Thus, the first mixing operation mixes c1 and c2, producing configuration I ′′ =

{c3, c3, c4, c4}, where c4 = 1
2(c1 + c2) and prec(c4) ≤ prec(c3). (Note that prec(c4) ≤

prec(c3) holds because c4 is obtained by diving c1 + c2 by 2, so prec(c4) can be at most

max(prec(c1), prec(c2))+1 ≤ prec(c3).) If prec(c4) < prec(c3), then mixing c3 and c4 increases

the precision and we are done. Otherwise, prec(c4) = prec(c3) and, by Observation 55 be-

low, mixing c3 and c4 produces a configuration I ′′ = {c3, c4, c5, c5} with prec(c3) 6= prec(c5),

where c5 = 1
2(c3 + c4). Therefore, if the third (and last) mixing operation involves c3 and

c4, then I ′′ becomes perfectly mixed. Otherwise, c5 is mixed with either c3 or c4, and thus

the precision increases.

Finally, consider all mixing sequences of length at most 3 · prec(T). If any of those

mixing sequences produces T , then T is producible. Otherwise, T is not producible.

Observation 55 Let C = {2 : c1, 2 : c2} with c1 6= c2 and prec(c1) = prec(c2) be a configu-

ration with integral reactant volume. Then prec(1
2(c1 + c2)) 6= prec(c1).

Proof. If we represent both c1 and c2 by the fractions c1 = x
2prec(c1)

and c2 = y

2prec(c1)
, we get

that both x and y are odd integers. Let 2σ = x+ y. Then

c1 + c2

2
=

x+ y

2prec(c1)+1
=

σ

2prec(c1)
.

Assume by contradiction that prec(1
2(c1 + c2)) = prec(c1); that is, assume that σ

is odd. Since the reactant volume of C is integral, we have that

4σ

2prec(c1)
=

σ

2prec(c1)−2

is integral, which only holds for prec(c1) = 2. (Note that prec(c1) ≥ 0.) Now, as

c1 6= c2, the only possible values for c1 and c2 that satisfy the corresponding constraints

126

are c1 = 1
4 and c2 = 3

4 . However, mixing c1 and c2 produces c3 = c1+c2
2 = 1

2 , with

prec(c3) < prec(c1), and thus a contradiction.

4.3.2 Configurations with Precision 2

In this section, we give a characterization for configurations with precision 2. This

characterization is presented in Theorem 56 below. Let T = {f1 : 1
4 , f2 : 1

2 , f3 : 3
4} be the

target configuration, where f1, f2 and f3 are non-negative integers.

Theorem 56 T is producible if and only if (4.1) and (4.2) below hold.

f1 + 2f2 + 3f3 is divisible by 4 (4.1)

T 6= {1

4
,
3

4
} (4.2)

Proof. (=⇒) Assume that T is producible. Let

rv(T) = f1 ·
1

4
+ f2 ·

1

2
+ f3 ·

3

4
=
f1 + 2f2 + 3f3

4
. (4.3)

By definition of MixProducibility, rv(T) is integral. This implies that (4.1)

holds by (4.3). Also, at the beginning of any mixing sequence, we always mix a 0 with

a 1, thus producing concentration 1
2 . After this, we will always need to mix an extra 0

to produce concentration 1
4 or an extra 1 to produce concentration 3

4 , implying |T | ≥ 3

whenever f1 + f3 ≥ 1. Therefore, (4.2) also holds.

(⇐=) Assume that (4.1) and (4.2) hold. By (4.1), we know that f1 and f3 are

either both even or both odd, so we have two cases:

127

0 1

0 1

1
4

1
2

3
4

} Level 0

1
4

3
4

1
2

} Level 1

} Level 2

f1 f2 f3

f1
2

f3
2

f1
2

f3
2

f1+2f2+f3
4

f1+2f2+f3
4

Figure 4.1: Characterization for a configuration with f1 and f3 even.

Case 1: Both f1 and f3 are even.

The mixing graph in Figure 4.1 shows a characterization for this case. We know that

f1
2 and f3

2 are both integral because f1 and f3 are even. Also, f1+2f2+f3
4 is integral

because f1+2f2+f3
4 = f1+2f2+3f3

4 − f3
2 , where both f1+2f2+3f3

4 and f3
2 are integral.

Case 2: Both f1 and f3 are odd.

We consider the following sub-cases:

Case 2.1: f1 = f3.

This implies that f1 · 1
4 + f1 · 3

4 = f1, so, by (4.1), f2 · 1
2 must be integral, which

implies f2 is even. Consider the following sub-cases:

Case 2.1.1: f1, f3 = 1.

The left mixing graph in Figure 4.2 illustrates this characterization. As

f1, f3 = 1, both nodes 1
4 and 3

4 at depth 2 have to get rid of one droplet each

(since a mixer produces two droplets), and such droplets will eventually

become two droplets with concentration 1
2 . This implies f2 ≥ 2, so in the

mixing graph, f2 − 2 ≥ 0 and f2
2 is integral.

128

0 1

0 1

1
4

1
2

3
4

Level 0

1
4

3
4

1
2

Level 1

Level 2

f1=1

f2

1

1
2

1 1 1

f3=1
1 1

f2
2

f2
2

f2-2

Level 3

Level 4

0 1

0 1

1
4

1
2

3
4

1
4

3
4

1
2

f1,f3 = 1

f2

1
21 1

f1+2f2+f3-2
4

f2

0 1

1
4

3
4

f1 f3

1 1

f1-2

1 1

f3-2

f1-1
2 f1-1

2
f3-1
2

f3-1
2

f1+2f2+f3-2
4

f1,f3 > 1

Figure 4.2: Characterization for a configurations with f1 and f3 odd. The left mixing
graph illustrates a characterization for f1, f3 = 1. The right mixing graph illustrates a
characterization for f1, f3 > 1.

Case 2.1.2: f1, f3 > 1.

The right mixing graph in Figure 4.2 illustrates this characterization. As

f3 > 1, then f3 − 2 ≥ 0. Additionally, f3−1
2 is integral because f3 is odd.

Finally, f1+2f2+f3−2
4 is integral because f1+2f2+f3−2

4 = f1+2f2+3f3
4 − f3−1

2 .

The same analysis applies to f1.

Case 2.2: f1 = 1 and f3 > 1.

As in sub-case 2.1.1 above, node 1
4 at depth 2 needs to get rid of one droplet.

This droplet determines whether f2 is either even or odd:

Case 2.2.1: f2 odd.

The left mixing graph in Figure 4.3 illustrates this characterization. In this

sub-case, node 1
2 at depth 3 keeps the output droplet of node 1

4 at depth 2.

129

In the mixing graph, f3 − 2 ≥ 0 and f3−1
2 is integral because f3 > 1 is odd.

Also, as f1 = 1, 2f2+f3−1
4 = f1+2f2+3f3

4 − f3+1
2 is integral.

Case 2.2.2: f2 even.

The right mixing graph in Figure 4.3 illustrates this characterization. In this

sub-case, node 1
2 at depth 3 sends the output droplet of node 1

4 at depth 2

to node 3
4 on depth 4. Because of this, and as f3 is odd, f3 ≥ 5. In the

mixing graph, f3−4 ≥ 0 and f3−3
2 is integral because f3 ≥ 5 is odd. Finally,

2f2+f3−1
4 is integral as in the left mixing graph.

0 1

0 1

1
4

1
2

3
4

Level 0

1
4

3
4

1
2

Level 1

Level 2

f1=1

f2

1

1
2

1

f3

1 1

f2-1

Level 3

Level 4

f2 odd f2 even

1

3
4

f3-2

11

f3-1
2f3-1

2

2f2+f3-1
4

2f2+f3-1
4

0 1

0 1

1
4

1
2

3
4

1
4

3
4

1
2

f1=1

f2

1

1
2

1

f3

1 1

f2-2

1

3
4

f3-4

22

f3-3
2f3-3

2

2f2+f3-1
4

2f2+f3-1
4

Figure 4.3: Characterization for a configuration with f1 = 1 and f3 > 1 odd. The left
mixing graph illustrates the characterization for f2 odd. The right mixing graph illustrates
the characterization for f2 even.

Case 2.3: f1 > 1 and f3 = 1.

The same analysis as in sub-case 2.2 applies after swapping f1 with f3.

130

4.3.3 Configurations with Only PCVs

In this section, we give a characterization for configurations containing only pcvs.

Let T be the target configuration with d = prec(T) and n = |T | non-negative integers.

Without loss of generality, assume that for all c in T , c ≤ 1
2 . (Otherwise, T might also

contain 1’s, which basically represent reactant droplets, and thus we can trivially ignore

them.)

Theorem 57 T is producible if and only if rv(T) is integral.

Proof. (=⇒) Assume that T is producible. By definition of MixProducibility, the

initial set for T contains an integral number 1’s, hence rv(T) is integral.

(⇐=) Assume that rv(T) is integral. This, and n being an integer, imply that

bv(T) is integral. Let l = 1 and consider the following mixing process:

1. Let I = {(b : 0), (r : 1
2l−1)} be the current configuration, where b = bv(T) and

r = rv(T); b ≥ r because for all c in T , c ≤ 1
2l

.

2. From I, mix r droplets of concentration 0 with r droplets of concentration 1
2l−1 . Thus,

2r droplets of concentration 1
2l

are produced.

3. Let x be the number of pcvs with concentration 1
2l

in T ; 2r ≥ x because rv(I) = rv(T).

Output x droplets of concentration 1
2l

and let T ′ = T −{x : 1
2l
} and I ′ = (I ∪{2r−x :

1
2l
})− {r : 0, r : 1

2l−1 }, such that bv(I ′) = bv(T ′) and rv(I ′) = rv(T ′).

4. Repeat the process for I ′ and T ′ until T ′ = ∅.

Given the above process, pcvs in T with concentration 1
2l

are produced in iteration

l (see step 3). Also, we know that the process stops after d steps, because the smallest pcv

in T has concentration 1
2d

, which is produced at the last iteration d.

131

4.3.4 Configurations with PCVs and One Non-PCV

In this section, in Theorem 58 below, we give a sufficient condition for producible

configurations that contain pcvs and one non-pcv. (For simplicity, since 1’s are basically

reactant droplets, we will assume that all pcvs have concentration at most 1
2 .)

Theorem 58 Let T be a configuration containing pcvs and one non-pcv, with d = prec(T)

and both bv(T) and rv(T) integral. If rv(T) ≥ 4d, then T is is producible.

Proof. Assume that rv(T) ≥ 4d and let c ∈ T be the non-pcv. By Lemma 59 below, and

as rv(T) is integral, we can always remove from T a subset Q that satisfies rv(Q) = 1 and

c /∈ Q, until there is only P ⊂ T , with c ∈ P and rv(P) = 1. So, to prove the theorem, we

first show how to produce P , and then, using the residual droplets, and some buffer and

reactant droplets, we show how to produce T − P (without any waste).

Producing P . We first use Algorithm Min-Mix (see Section 1.2.1.1 in Chapter 1) to

produce c, which also produces d extra droplets; let C ′ contain these extra droplets. Then,

we produce P − {c} (consisting of only pcvs), using exactly one reactant droplet, by using

a process similar to the one for configurations with only pcvs (see Section 4.3.3); in this

process however we need not to mix all non-0’s at each step, but only the necessary ones.

This process produces at most d extra droplets (at most one extra droplet per iteration);

let P ′ contain these extra droplets. Thus, P can be produced by also producing P ′ and C ′,

where |P ′|+ |C ′| ≤ 2d. (Note that rv(C ′∪P ′) is integral because rv({c}∪C ′) and rv(P ∪P ′)

are integral, and rv({c} ∪ P) = 1; in fact, bv(C ′ ∪ P ′) is also integral.)

Producing T−P . Let n′ = |C ′ ∪ P ′| ≤ 2d. If n′ is not a power of two, then let B = {β−n′ :

0}, where β is the smallest power of two that satisfies n′ < β < 2n′. Otherwise, let B = ∅.

132

Also, let A = {rv(B ∪ C ′ ∪ P ′) : 0, bv(B ∪ C ′ ∪ P ′) : 1}. Then, for I ′ = {A ∪B ∪ C ′ ∪ P ′},

we have that bv(I ′) = rv(I ′) = β and thus the average of the concentrations in I ′ is 1
2 .

Let T ′ = {2β : 1
2}. Then, as bv(T ′) = bv(I ′) and rv(T ′) = rv(I ′), produce T ′

from I ′ using our perfect-mixing algorithm in Chapter 3. (Note that T ′ does not need to

satisfy Condition (MC), because |T ′| power of two implies that T ′ is near-final.) Clearly,

rv(T ′) = β < 2n′ ≤ 4d ≤ rv(T). Therefore, as T − P contains only pcvs with concentration

at most 1
2 , T − P can be produced from I = T ′ ∪ {bv(T)− bv(T ′) : 0, rv(T)− rv(T ′) : 1} by

the process described in Section 4.3.3 for configurations with only pcvs. (The first iteration

is slightly different though, since we mix rv(T)− rv(T ′) 1’s instead of rv(I).)

Lemma 59 Let A be a configuration with only pcvs and assume that rv(A) > 1. There

exists A′ ⊂ A such that rv(A′) = 1.

Proof. Let A′ = ∅ and n = |A|. For i = n, n − 1, . . . , 1, if rv(A′) + %(A)i ≤ 1, add %(A)i

to A′. As %(A)i−1 is either equal or half %(A)i, for 1 < i ≤ n, then we have that eventually

rv(A′) = 1.

133

Bibliography

[1] Ravindra K. Ahuja, James B. Orlin, Giovanni M. Sechi, and Paola Zuddas. Algorithms
for the simple equal flow problem. Management Science, 45(10):1440–1455, 1999.

[2] Kyle Campbell and Alex Groisman. Generation of complex concentration profiles in
microchannels in a logarithmically small number of steps. Lab on a Chip, 7(2):264–272,
2007.

[3] Ting W. Chiang, Chia H. Liu, and Juinn D. Huang. Graph-based optimal reactant
minimization for sample preparation on digital microfluidic biochips. In 2013 Inter-
national Symposium on VLSI Design, Automation and Test (VLSI-DAT), pages 1–4.
IEEE, 2013.

[4] Patrick W. Cooley, David B. Wallace, and Bogdan V. Antohe. Applications of ink-jet
printing technology to BioMEMS and microfluidic systems. In Micromachining and
Microfabrication, pages 177–188. International Society for Optics and Photonics, 2001.

[5] Miguel Coviello Gonzalez and Marek Chrobak. Towards a theory of mixing graphs: a
characterization of perfect mixability. In International Conference on Algorithms and
Complexity, pages 187–198. Springer, 2019.

[6] IBM ILOG CPLEX. V12. 1: User’s manual for CPLEX. International Business Ma-
chines Corporation, 46(53):157, 2009.

[7] Trung A. Dinh, Shinji Yamashita, and Tsung Y. Ho. A network-flow-based optimal
sample preparation algorithm for digital microfluidic biochips. In 19th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 225–230. IEEE, 2014.

[8] Kathryn A. Dowsland and William B. Dowsland. Packing problems. European Journal
of Operational Research, 56(1):2–14, 1992.

[9] Shirit Einav, Doron Gerber, Paul D. Bryson, Ella H. Sklan, Menashe Elazar, Sebas-
tian J. Maerkl, Jeffrey S. Glenn, and Stephen R. Quake. Discovery of a hepatitis
C target and its pharmacological inhibitors by microfluidic affinity analysis. Nature
Biotechnology, 26(9):1019–1027, 2008.

134

[10] Scott A. Elrod, John S. Fitch, and David K. Biegelsen. Low cost piezo printhead based
on microfluidics in printed circuit board and screen-printed piezoelectrics, March 25
2008. US Patent 7,347,533.

[11] Mikael Evander, Linda Johansson, Tobias Lilliehorn, Jure Piskur, Magnus Lindvall,
Stefan Johansson, Monica Almqvist, Thomas Laurell, and Johan Nilsson. Noninvasive
acoustic cell trapping in a microfluidic perfusion system for online bioassays. Analytical
Chemistry, 79(7):2984–2991, 2007.

[12] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of time table and multi-
commodity flow problems. In 16th Annual Symposium on Foundations of Computer
Science., pages 184–193. IEEE, 1975.

[13] Pietro Ferraro, Lisa Miccio, Simonetta Grilli, Andrea Finizio, Sergio De Nicola, and
Veronica Vespini. Manipulating thin liquid films for tunable microlens arrays. Optics
& Photonics News, 19:34–34, 2008.

[14] Thomas Franke, Adam R. Abate, David A. Weitz, and Achim Wixforth. Surface
acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on
a Chip, 9(18):2625–2627, 2009.

[15] James Friend and Leslie Y. Yeo. Microscale acoustofluidics: Microfluidics driven via
acoustics and ultrasonics. Reviews of Modern Physics, 83(2):647, 2011.

[16] Harold N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum
matching on graphs. Journal of the ACM (JACM), 23(2):221–234, 1976.

[17] David Goldberg, Jon Feldman, and Cliff Stein. The integral unit-capacity maximum
flow problem with homologous arcs. Technical report, Working Paper, Columbia Uni-
versity, New York, NY, 2006.

[18] S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and Pietro Ferraro. Liquid
micro-lens array activated by selective electrowetting on lithium niobate substrates.
Optics Express, 16(11):8084–8093, 2008.

[19] Erika Check Hayden. The automated lab. Nature News, 516(7529):131, 2014.

[20] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating
k-set packing. Computational Complexity, 15(1):20–39, 2006.

[21] Matthew A. Holden, Saurabh Kumar, Ali Beskok, and Paul S. Cremer. Microfluidic
diffusion diluter: bulging of PDMS microchannels under pressure-driven flow*. Journal
of Micromechanics and Microengineering, 13(3):412, 2003.

[22] Matthew A. Holden, Saurabh Kumar, Edward T. Castellana, Ali Beskok, and Paul S.
Cremer. Generating fixed concentration arrays in a microfluidic device. Sensors and
Actuators B: Chemical, 92(1):199–207, 2003.

[23] Frank Hsieh, Hasmik Keshishian, and Craig Muir. Automated high throughput mul-
tiple target screening of molecular libraries by microfluidic MALDI-TOF MS. Journal
of Biomolecular Screening, 3(3):189–198, 1998.

135

[24] Yi L. Hsieh, Tsung Y. Ho, and Krishnendu Chakrabarty. A reagent-saving mixing
algorithm for preparing multiple-target biochemical samples using digital microfluidics.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(11):1656–1669, 2012.

[25] Juinn D. Huang and Chia H. Liu. Sample preparation for droplet-based microfluidics.
In 14th International Symposium on Integrated Circuits (ISIC), pages 364–367. IEEE,
2014.

[26] Juinn D. Huang, Chia H. Liu, and Ting W. Chiang. Reactant minimization during
sample preparation on digital microfluidic biochips using skewed mixing trees. In
Proceedings of the International Conference on Computer-Aided Design, pages 377–
383. ACM, 2012.

[27] Juinn D. Huang, Chia H. Liu, and Huei S. Lin. Reactant and waste minimization in
multitarget sample preparation on digital microfluidic biochips. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(10):1484–1494, 2013.

[28] Mais J. Jebrail and Aaron R. Wheeler. Digital microfluidic method for protein extrac-
tion by precipitation. Analytical Chemistry, 81(1):330–335, 2008.

[29] Klavs F. Jensen. Silicon-based microchemical systems: characteristics and applications.
MRS Bulletin, 31(02):101–107, 2006.

[30] Noo L. Jeon, Stephan K. W. Dertinger, Daniel T. Chiu, Insung S. Choi, Abraham D.
Stroock, and George M. Whitesides. Generation of solution and surface gradients using
microfluidic systems. Langmuir, 16(22):8311–8316, 2000.

[31] Kelly Karns and Amy E. Herr. Human tear protein analysis enabled by an alkaline mi-
crofluidic homogeneous immunoassay. Analytical Chemistry, 83(21):8115–8122, 2011.

[32] Choong Kim, Kangsun Lee, Jong H. Kim, Kyeong S. Shin, Kyu J. Lee, Tae S. Kim,
and Ji Y. Kang. A serial dilution microfluidic device using a ladder network generating
logarithmic or linear concentrations. Lab on a Chip, 8(3):473–479, 2008.

[33] Kangsun Lee, Choong Kim, Byungwook Ahn, Rajagopal Panchapakesan, Anthony R.
Full, Ledum Nordee, Ji Y. Kang, and Kwang W. Oh. Generalized serial dilution
module for monotonic and arbitrary microfluidic gradient generators. Lab on a Chip,
9(5):709–717, 2009.

[34] Kangsun Lee, Choong Kim, Geunhui Jung, Tae S. Kim, Ji Y. Kang, and Kwang W. Oh.
Microfluidic network-based combinatorial dilution device for high throughput screening
and optimization. Microfluidics and Nanofluidics, 8(5):677–685, 2010.

[35] Kangsun Lee, Choong Kim, Youngeun Kim, Byungwook Ahn, Jaehoon Bang, Jungk-
wun Kim, Rajagopal Panchapakesan, Yong K. Yoon, Ji Y. Kang, and Kwang W.
Oh. Microfluidic concentration-on-demand combinatorial dilutions. Microfluidics and
Nanofluidics, 11(1):75–86, 2011.

136

[36] Cheuk W. Li, Rongsheng Chen, and Mengsu Yang. Generation of linear and non-linear
concentration gradients along microfluidic channel by microtunnel controlled stepwise
addition of sample solution. Lab on a Chip, 7(10):1371–1373, 2007.

[37] Peng Li, Zackary S. Stratton, Ming Dao, Jerome Ritz, and Tony J. Huang. Probing
circulating tumor cells in microfluidics. Lab on a Chip, 13(4):602–609, 2013.

[38] Chia H. Liu, Kuo C. Shen, and Juinn D. Huang. Reactant minimization for sample
preparation on microfluidic biochips with various mixing models. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(12):1918–1927, 2015.

[39] Chien-Hung Lu, Nicolas C. Pégard, and Jason W. Fleischer. Flow-based structured
illumination. Applied Physics Letters, 102(16):161115, 2013.

[40] Leanne Marle and Gillian M. Greenway. Microfluidic devices for environmental moni-
toring. TrAC Trends in Analytical Chemistry, 24(9):795–802, 2005.

[41] Carl D. Meinhart and Hongsheng Zhang. The flow structure inside a microfabricated
inkjet printhead. Journal of Microelectromechanical Systems, 9(1):67–75, 2000.

[42] Carol A. Meyers and Andreas S. Schulz. Integer equal flows. Operations Research
Letters, 37(4):245–249, 2009.

[43] Debasis Mitra, Sandip Roy, Krishnendu Chakrabarty, and Bhargab B. Bhattacharya.
On-chip sample preparation with multiple dilutions using digital microfluidics. In IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 314–319. IEEE, 2012.

[44] Kwang W. Oh, Kangsun Lee, Byungwook Ahn, and Edward P. Furlani. Design of
pressure-driven microfluidic networks using electric circuit analogy. Lab on a Chip,
12(3):515–545, 2012.

[45] Phil Paik, Vamsee K. Pamula, Michael G. Pollack, and Richard B. Fair. Electrowetting-
based droplet mixers for microfluidic systems. Lab on a Chip, 3(1):28–33, 2003.

[46] Amandeep Parmar. Integer programming approaches for equal-split network flow prob-
lems. PhD thesis, Georgia Institute of Technology, 2007.

[47] Michal Pióro, Aron Szentesi, János Harmatos, Alpár Jüttner, Piotr Gajowniczek, and
Stanislaw Kozdrowski. On open shortest path first related network optimization prob-
lems. Performance Evaluation, 48(4):201–223, 2002.

[48] Michael G. Pollack, Alexander D. Shenderov, and Richard B. Fair. Electrowetting-
based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2):96–101,
2002.

[49] Hong Ren, Vijay Srinivasan, and Richard B. Fair. Design and testing of an interpo-
lating mixing architecture for electrowetting-based droplet-on-chip chemical dilution.
In 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators
and Microsystems, volume 1, pages 619–622. IEEE, 2003.

137

[50] Sandip Roy, Bhargab B. Bhattacharya, and Krishnendu Chakrabarty. Optimization
of dilution and mixing of biochemical samples using digital microfluidic biochips.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
29(11):1696–1708, 2010.

[51] Sudip Roy, Bhargab B. Bhattacharya, Partha P. Chakrabarti, and Krishnendu
Chakrabarty. Layout-aware solution preparation for biochemical analysis on a dig-
ital microfluidic biochip. In 24th International Conference on VLSI Design (VLSI
Design), pages 171–176. IEEE, 2011.

[52] Sudip Roy, Partha P. Chakrabarti, Krishnendu Chakrabarty, and Bhargab B. Bhat-
tacharya. Waste-aware single-target dilution of a biochemical fluid using digital mi-
crofluidic biochips. Integration, the VLSI Journal, 51:194–207, 2015.

[53] Wajeeh Saadi, Shur J. Wang, Francis Lin, and Noo L. Jeon. A parallel-gradient mi-
crofluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomedical
Microdevices, 8(2):109–118, 2006.

[54] Jennifer Sager, Maxwell Young, and Darko Stefanovic. Characterization of transverse
channel concentration profiles obtainable with a class of microfluidic networks. Lang-
muir, 22(9):4452–4455, 2006.

[55] V. I. Shevchik. Multicommodity flow problem. Journal of Mathematical Sciences,
65(1):1462–1464, 1993.

[56] Jinjie Shi, Xiaole Mao, Daniel Ahmed, Ashley Colletti, and Tony J. Huang. Focusing
microparticles in a microfluidic channel with standing surface acoustic waves (SSAW).
Lab on a Chip, 8(2):221–223, 2008.

[57] Samuel K. Sia and George M. Whitesides. Microfluidic devices fabricated in poly
(dimethylsiloxane) for biological studies. Electrophoresis, 24(21):3563–3576, 2003.

[58] Todd M. Squires and Stephen R. Quake. Microfluidics: Fluid physics at the nanoliter
scale. Reviews of Modern Physics, 77(3):977, 2005.

[59] K. Srinathan, Pranava R. Goundan, M. Ashwin Kumar, R. Nandakumar, and C. Pandu
Rangan. Theory of equal-flows in networks. In International Computing and Combi-
natorics Conference, pages 514–524. Springer, 2002.

[60] Vijay Srinivasan, Vamsee Pamula, Michael Pollack, and Richard Fair. A digital mi-
crofluidic biosensor for multianalyte detection. In IEEE The Sixteenth Annual Inter-
national Conference on Micro Electro Mechanical Systems (MEMS), pages 327–330.
IEEE, 2003.

[61] Vijay Srinivasan, Vamsee K. Pamula, and Richard B. Fair. Droplet-based microfluidic
lab-on-a-chip for glucose detection. Analytica Chimica Acta, 507(1):145–150, 2004.

[62] Vijay Srinivasan, Vamsee K. Pamula, and Richard B. Fair. An integrated digital
microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab
on a Chip, 4(4):310–315, 2004.

138

[63] Howard A. Stone, Abraham D. Stroock, and Armand Ajdari. Engineering flows in
small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics,
36:381–411, 2004.

[64] Robert E. Tarjan and Anthony E. Trojanowski. Finding a maximum independent set.
SIAM Journal on Computing, 6(3):537–546, 1977.

[65] William Thies, John P. Urbanski, Todd Thorsen, and Saman Amarasinghe. Abstraction
layers for scalable microfluidic biocomputing. Natural Computing, 7(2):255–275, 2008.

[66] Elisabeth Verpoorte. Microfluidic chips for clinical and forensic analysis. Electrophore-
sis, 23(5):677–712, 2002.

[67] Glenn M. Walker, N. Monteiro Riviere, Jillian Rouse, and Adrian T. O’Neill. A linear
dilution microfluidic device for cytotoxicity assays. Lab on a Chip, 7(2):226–232, 2007.

[68] Yi Wang, Aditya S. Bedekar, S. Krishnamoorthy, Sachin S. Siddhaye, and Shivshankar
Sundaram. System-level modeling and simulation of biochemical assays in lab-on-a-chip
devices. Microfluidics and Nanofluidics, 3(3):307–322, 2007.

[69] George M. Whitesides. The origins and the future of microfluidics. Nature,
442(7101):368–373, 2006.

[70] Martin Wiklund, Roy Green, and Mathias Ohlin. Acoustofluidics 14: Applications of
acoustic streaming in microfluidic devices. Lab on a Chip, 12(14):2438–2451, 2012.

[71] Achim Wixforth. Acoustically driven programmable microfluidics for biological
and chemical applications. Journal of the Association for Laboratory Automation,
11(6):399–405, 2006.

[72] Tao Xu, Krishnendu Chakrabarty, and Vamsee K. Pamula. Defect-tolerant design
and optimization of a digital microfluidic biochip for protein crystallization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4):552–
565, 2010.

[73] Tao Xu, Vamsee K. Pamula, and Krishnendu Chakrabarty. Automated, accurate,
and inexpensive solution-preparation on a digital microfluidic biochip. In Biomedical
Circuits and Systems Conference (BioCAS), pages 301–304. IEEE, 2008.

[74] Abhimanyu Yadav, Trung A. Dinh, Daiki Kitagawa, and Shigeru Yamashita. ILP-
based synthesis for sample preparation applications on digital microfluidic biochips. In
29th International Conference on VLSI Design and 15th International Conference on
Embedded Systems (VLSID), pages 355–360. IEEE, 2016.

[75] Hayat A. Yusuf, Sara J. Baldock, Robert W. Barber, Peter R. Fielden, Nick J. God-
dard, and Bernard J. T. Brown. Novel microsystems for concentration gradient gen-
eration through computer optimization with validation using optical instrumentation.
Microelectronic Engineering, 85(5):1265–1268, 2008.

139

[76] Hayat A. Yusuf, Sara J. Baldock, Robert W. Barber, Peter R. Fielden, Nick J. Goddard,
Stephan Mohr, and Bernard J. T. Brown. Optimisation and analysis of microreactor
designs for microfluidic gradient generation using a purpose built optical detection
system for entire chip imaging. Lab on a Chip, 9(13):1882–1889, 2009.

[77] Hayat A. Yusuf, Sara J. Baldock, Peter R. Fielden, Nick J. Goddard, Stephan Mohr,
and Bernard J. T. Brown. Systematic linearisation of a microfluidic gradient network
with unequal solution inlet viscosities demonstrated using glycerol. Microfluidics and
Nanofluidics, 8(5):587–598, 2010.

[78] Weixiong Zhang and Richard E. Korf. A study of complexity transitions on the asym-
metric traveling salesman problem. Artificial Intelligence, 81(1):223–239, 1996.

140

Appendix A

Technologies for Fluid-Based

Mixing

A.1 Proportional Network

In [36], Li et al. proposed a microfluidic device capable of generating linear and

non-linear concentration gradients by having the reactant and the buffer fluids mix propor-

tionally along intermediate micro-channels.

They argue that the flow rate across each micro-channel is proportional to their

length. So if multiple micro-channels have the same length, the same amount of reactant

volume will flow through them.

Figure A.1 shows the structure of a proportional network where all micro-channels

have the same length. Such network generates a linear concentration gradient of fluids. The

concentration of the fluids is measured at the corresponding cavities along the doted line.

141

Figure A.1: Proportional network structure. Main channels are the input micro-channels
for buffer and reactant (dye) respectively. (Figure taken from [36].)

A.2 T-type Network

A laminar microfluidic convective/diffusive mixing chip is presented in [22] by

Holden et al.. The mixing chip consists of a T-intersection of two input fluids into a main

micro-channel. The input fluids are mixed by a convective/diffusive transport of nanoliter

quantities of volume of each fluid along the intersecting micro-channel. Finally, the fluids

are divided into a parallel array of independent micro-channels. The target concentrations

can be approximated by regulating the flow rate of each input fluid.

Holden et al. computations include Navier-Stokes, species transport and continu-

ity equations to approximate the convective/diffusive behavior of the fluids being mixed.

These equations involve attributes of the fluids such as velocity, viscosity, density and mass

diffusivity.

Also, they extended their approach to polydimethylsiloxane-based mixing chips

in [21], which are more flexible than the rigid laminar chips. Figure A.2 illustrates the

process of two fluids (Alexa594 and Alexa488) being mixed. The image is only a schematic

representation that shows the overall structure of the mixing chip, how the fluids are mixed

142

Figure A.2: Example of the T-typed convective/diffusive mixing chip where two fluids are
being mixed, Alexa594 and Alexa488 respectively (taken from [22]).

together along the intersecting micro-channel, and how the fluids are routed into the corre-

sponding output micro-channels.

A.3 Serial Network

Kim et al. in [32] proposed a serial ladder mixing chip able to generate logarithmic

and linear step-wise multiple target concentrations.

Buffer
dispenser

Reactant
dispenser

Qx,1

Qr,1

Qx,2 Qx,3

Qr,2 Qr,3Qo,1 Qo,2 Qo,3

Qc,1 Qc,2 Qc,3

Qb,1 Qb,2 Qb,3

Rx,1 Rx,2 Rx,3

Rb,1 Rb,2 Rb,3

Rr,1 Ro,1 Rr,2 Ro,2 Rr,3 Ro,3

Rc,1 Rc,2 Rc,3

c1 c2 c3

Figure A.3: Serial ladder network structure for three target concentrations.

143

Their design is analogous to an electric circuit, where the current sources, resistors

and grounds represent fluid dispensers, micro-channels’ hydrodynamic resistances and fluid

output storages, respectively. Figure A.3 illustrates the structure of a serial ladder network

for three target concentrations, c1, c2, c3 respectively. Qx,k and Qr,k are the input flow rates

at the kth step. Qb,k and Qr,k are the flow rates of the buffer and reactant (already diluted if

k > 1) for the kth mixing step. Qo,k is the output flow rate for the kth mixing operation and

Qc,k is the flow rate for the kth target concentration ck. Also, each flow rate Q is associated

with a resistance R. Micro-mixers are represented with the symbol
⊗

.

Given the target set of concentrations T = {c1, c2, . . . , cn} with their corresponding

flow rates Qc = {Qc,1, Qc,2, . . . , Qc,n}, the dilution ratios γ = {γ1, γ2, . . . , γn} between buffer

and reactant at each micro-mixer can be computed using the following equations:

ck = γk · ck−1

γk =
Qr,k

Qb,k +Qr,k

Only after that, the remaining flow rates can be computed by a series of algebraic

equations. The computation goes backwards from the last mixing step, where Qb,n =

(1− γn) ·Qc,n and Qr,n = γ ·Qc,n.

Next, the flow rates in the mixing chip are controlled by adjusting the hydrody-

namic resistance of the corresponding micro-channels. At each step there are five resistances

Rb,k, Rr,k, Ro,k, Rx,k, Rc,k respectively, from which Rb,k, Rr,k, Ro,k are fixed as constants to

maintain the functionality of the mixing chip while Rx,k, Rc,k are left as adjustable resis-

tances.

144

As the flow rate through each resistance is known, the necessary resistances are

computed using Kirchhoff’s voltage law. Also, the dimensions of the micro-channels are

computed by analyzing the fixed resistances of the micro-mixers and their connecting micro-

channels’ lengths.

..................

Qb Qr
cb=c0 cr=cn+1

R0=Rb,0

Rb,1

Rb,2

Rb,n-1

Rb,n

R1=Ro,1
R2

Rn+1RnRn-1

Rr,n

Ro,n

Rr,n-1

Rr,n-2

Rr,2

Rr,1

Qb,n Qr,n

Qo,n

Qr,n-1

Qr,n-2

Qn+1QnQn-1
Q2

Q1
Q0

Qb,1

Qb,2

Qb,n-1

c0 c1 c2 cn-1 cn cn+1

Qr,2

Qr,1

Ro,n-1Qo,n-1

Ro,2Qo,2

...
...

...
...

Figure A.4: Serial cascade network structure for n target concentrations.

Kim et al. also proposed a serial cascade mixing chip able to generate monotonic

and arbitrary multiple target concentrations in [33], which is an extension to the serial

ladder network. However, in the serial cascade network, each buffer flow rate is independent

from the buffer flow rates of previous steps, which makes it more powerful than the serial

ladder network. Figure A.4 shows the structure of a serial cascade network for n target

concentrations.

145

A.4 Combinatorial Network

In [34, 35], Lee et al. proposed a combinatorial LoC mixing chip that produces

seven combinations out of three input reagents and buffer. If the input reagents are A,B

and C, then the possible combinations include {ABC,AB,BC,AC,A,B,C}.

The proposed mixing chip consists of an initial concentration control module fol-

lowed by a combinatorial dilution module. The concentration control module basically

generates different concentrations of each reagent by diluting each reagent with buffer only.

This is accomplished by having a common channel share all the input fluids in some order

and proportion such that each reagent is only combined with buffer in this phase.

(a) (b)

Figure A.5: Combinatorial mixing chip modules. Image (a) illustrates the concentration
control module. Image (b) shows the entire combinatorial network of the mixing chip.
(Figures taken from [35].)

146

Figure A.5 (a) shows the structure of the concentration control module, where

S1, S2, S3 and B (BL, BR) are the input micro-channels for the three reagents and the

buffer, respectively, and QS1, QS2, QS3, QBL and QBR are their corresponding flow rates.

CS1, CS2 and CS3 are the concentrations of the three reagents, and S∗1 , S
∗
2 and S∗3 are the

output micro-channels for the diluted reagents. The common channel has all input micro-

channels as input in the following order: {S1, BL, S2, BL, S3}. As all reagents share this

channel (being diverged by buffer), there is a limit on the flow rates that fluids can have

such that reagents are not intermixed accidentally. This implies that the concentration

gradient that the control module can generate is limited.

The combinatorial dilution module takes the outputs of the concentration control

module as intermediate inputs. Then, the intermediate input fluids selectively flow into

seven parallel mixing-channels. Given the flow rates and concentrations of the target fluids,

all micro-channels’ lengths can be computed. Also, using the analogy between microfluidics

and electrical circuits, the hydrodynamic resistances at the corresponding micro-channels

can be determined by using Ohm’s and Kirchhoff’s laws. Figure A.5 (b) illustrates the com-

plete network structure of the combinatorial device, where outputs O1, O2, O3, O4, O5, O6

and O7 represent the reagent combinations ABC,AB,BC,AC,A,B and C, respectively.

At the top of the image we have the concentration control module, which is connected to

the combinatorial dilution module by the corresponding three output micro-channels.

147

A.5 Pyramidal Network

In [30], Jeon et al. proposed a left-right symmetric pyramidal mixing chip network

model for any combination of x input fluids with a gradient output generator of y concen-

trations, for x < y. Such mixing chip consists of y−x+1 levels of vertical serpentine-shaped

micro-channels, where the output fluids of each such micro-channel (but the ones at the

bottom of the pyramid) are being split into two.

(a) (b)

(c)

Figure A.6: Pyramidal mixing chip experiment for the dilution of hydrofluoric acid with
water. Image (a) shows the network structure of the mixing chip. Image (b) shows two
fluids being diffusively mixed. Image (c) shows the output concentration gradient. (Figures
taken from [30].)

The mixing chip generates the gradient of concentrations by sequentially splitting

and mixing the fluids simultaneously at each level in the network, where fluids travel down-

wards from the top of the pyramid. Figure A.6 (a) illustrates a 4-input 9-output pyramidal

mixing chip network design.

The pyramidal mixing chip can be also analyzed with the electrical circuit analogy,

as discussed in the previous sections. Vertical micro-channels’ lengthiness comes from the

148

fact that fluids are being diffusively mixed along them. Thus, it is important that vertical

micro-channels’ lengths are sufficiently large to ensure a complete equilibration of the con-

centrations of the fluids being mixed. The concentration at each micro-channel’s output is

computed based on the flow rates of the input fluids and the resistances and lengths of the

corresponding micro-channels.

Both static and dynamic gradients can be generated by varying the pressure on

the fluid dispensers. Also, by increasing the number of levels in the pyramidal network (and

thus the number of output micro-channels), a higher gradient resolution of concentrations

can be obtained.

Figure A.6 illustrates an experiment where hydrofluoric acid is being used as reac-

tant (middle fluid dispenser) and water as buffer (outer fluid dispensers). Image (a) shows

the micro-chip network, image (b) shows two fluids being diffusively mixed by a vertical

serpentine-shaped micro-channel at the bottom of the pyramid and image (c) shows the

output concentration gradient of the mixing chip.

There has been multiple improvements to the model described in [30], some of

them include [2, 54,68,75–77].

149

