UCLA

Posters

Title

Smart Object Architecture for Energy-Efficient Wireless Sensors

Permalink

https://escholarship.org/uc/item/4wb2q967

Authors

Ashutosh Verma Winston Wu Sridhar Vemuri <u>et al.</u>

Publication Date

2003

Center for Embedded Networked Sensing

Smart Object Architecture for Energy-Efficient Wireless Sensors

Ashutosh Verma, Winston Wu, Sridhar Vemuri, Gregory Pottie, and William Kaiser

Introduction: Smart Object—The Future of the Sensor World

Applications

- Focus on new class of wireless sensor applications with demands for high performance computing and networking that requires low duty cycle sensor operations
- Architecture matches high performance computing capability to the sensing task
- · Wide dynamic range power control

A New Architecture

- Combines a hardware and software object-oriented architecture for wide dynamic range and fine granularity energy management
- Software architecture permits autonomous scheduling and isolates developers from complex energy management detail
- Enables systematic design approach for multitasking energy-aware wireless sensor systems that must adapt to environment and events

The Platform

- Standard processor platforms
- Standard operating systems
- Language-independent interfaces
- Support for diverse sensors
- Energy and resource aware scheduling

Prior Architectures

support computation intensive applications

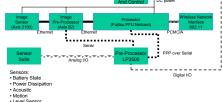
Low computational power efficiency

management

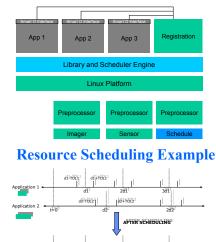
Microcontroller-based wireless sensors do not satisfactorily

Limited support for energy efficient wide-bandwidth wireless

Past methods for energy-aware platform scheduling presented complex demands to developer with regards to energy-


Problem Description: Limitations of the Current Sensors

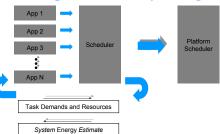
Background


- Wireless networked sensor deployments are now planned for a wide range of critical applications
- Energy limitations have always constrained unattended wireless
 sensors
- · Early systems focused on simple monitoring methods
- Now, new applications require powerful sensing (including vision sensors) and high performance computing (for image processing and security services) and low energy
- Energy demands exceed available energy by many orders of magnitude—new approach required

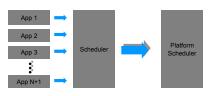
Proposed Solution: Smart Object Architecture Approach

Hardware Architecture

Software Architecture


Operations

- Scheduler observes application duty cycle and deadline demands and tolerance
- Scheduler computes energyefficient operation schedule meeting task and resource requirements at minimum energy
- Micropower preprocessor manages power and platform operation episodes according to scheduler
- Automated admission and scheduling of applications


Scheduler

- Developers:
- Specify operating duty cycle, execute time estimates, and allowable tolerances
- Scheduler:
 - Resource aware
 - Dependency aware
 - Energy aware
- Computes estimated optimal schedule
- May seed schedule search with pre-computed solutions
- Variational approach for scheduling of admitted new
- scheduling of admitt applications

Development Pathway: Design

Runtime Application Admission

Prototype System

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced