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The plasma channel formation in the focus of a knife-like nanosecond laser pulse
irradiating a gas target is studied theoretically, and in gas-dynamics computer
simulations. The distribution of the electromagnetic field in the focus region, obtained
analytically, is used to calculate the energy deposition in the plasma, which then
is implemented in the magnetohydrodynamic computer code. The modelling of the
channel evolution shows that the plasma profile, which can guide the laser pulse, is
formed by the tightly focused short knife-like lasers. The results of the simulations
show that a proper choice of the convergence angle of a knife-like laser beam
(determined by the focal length of the last cylindrical lens), and laser pulse duration
may provide a sufficient degree of azimuthal symmetry of the formed plasma channel.

Key words: plasma dynamics, plasma simulation

1. Introduction
One of the most important applications of high intensity short duration lasers is

in the development of compact accelerators of charged particles (Mourou, Tajima
& Bulanov 2006). Since the next lepton collider would require a centre-of-mass
energy of the order of TeV and conventional accelerator technology reaches its limits
near this energy given reasonable space and cost restrictions, high-gradient advanced
acceleration concepts are required. Laser plasma accelerators (LPAs) are leading
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2 O. G. Olkhovskaya and others

candidates due to their ability to produce acceleration gradients of tens to hundreds
of GV m−1, leading to compact acceleration structures. LPAs are also envisioned as
compact electron beam sources for free-electron lasers, which can be used in a variety
of other applications. The laser driven acceleration of electrons is based on the laser
wakefield acceleration (LWFA) concept (Tajima & Dawson 1979; Esarey, Schroeder
& Leemans 2009). Recently, it was demonstrated that PW class lasers can accelerate
electrons via the LWFA up to several GeV (Leemans et al. 2014; Gonsalves et al.
2019) with a record of 7.8 GeV (Gonsalves et al. 2019).

We note that efficient LPA operation requires the laser pulse to propagate over
a distance of the order of the acceleration length without significant diffraction. In
order to achieve this, preformed plasma channels can be used. These channels are
characterized by the transverse plasma density profile with a minimum along the
laser propagation axis. Such a density profile can mitigate laser pulse diffraction,
thus allowing for an extended interaction and acceleration length. However, a high
uniformity of the plasma along the laser pulse propagation direction and azimuthal
symmetry in the transverse direction are required for plasma channels to be effectively
utilized for laser driven acceleration.

Capillary discharges were shown to provide such plasma channels and stable
acceleration to multi-GeV energy with modern laser power (see, e.g. Leemans
et al. 2014). The optimization of the maximum electron energy achieved in the
LWFA scheme for a given laser power leads to fixing of the plasma density
and the laser spot size. Due to a small capillary radius, imperfections in high
power laser modes and fluctuations in beam pointing, the capillaries can experience
extensive wall damage. It is possible to mitigate the damage to the capillary walls by
utilizing laser-heater-assisted plasma channel formation inside the capillary discharge
waveguide, as was suggested in Bobrova et al. (2013) and demonstrated in Gonsalves
et al. (2019). Another solution to the damage problem is the utilization of a plasma
channel formed in an extended neutral gas target. Several methods are used to create
such plasma channels inside an ambient gas (Durfee & Milchberg 1993; Volfbeyn
& Leemans 1998; Volfbeyn, Esarey & Leemans 1999; Geddes et al. 2004, 2005;
Morozov et al. 2018). For example, single mode propagation over 100 Rayleigh
length of a 5 × 1017 W cm−2 laser pulse has been demonstrated by Morozov et al.
(2018) (see also Shalloo et al. 2019).

In this paper, we present theoretical and simulation studies of plasma channel
formation in the line focus of a knife-like nanosecond duration laser pulse. The axis
of the plasma channel is perpendicular to the direction of the knife-like laser beam
propagation (see figure 1). When the focus and, hence, the plasma channel are long
enough, then the latter can be used as a waveguide for high power femto-second laser
pulses. An advantage of such a scheme is the possibility of, to some extent, arbitrarily
lengthening the plasma channel, because different parts of the channel operate almost
independently. As a result, we could add new sections of laser initiators along the
plasma channel and lengthen the gas jet or the gas cell. Another advantage is that
the longitudinal homogeneity of the channel is completely controlled by external
conditions, and not by plasma processes. One of disadvantages is possible asymmetry
of the channel in the plane perpendicular to its axis. One of the main goals of this
work is to find conditions when this asymmetry is as low as possible. The laser pulse
and initial gas parameter ranges considered here are based on the laser-generated
plasma channel experiment (Levato et al. 2018).

When studying such plasma channels theoretically and in computer simulations,
we assume that the channel is homogeneous along the line focus. However, we note
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Plasma channel formation in the knife-like focus of laser beam 3

FIGURE 1. The surfaces show the edges of the laser pulse focused in the stripe of width
w. The focusing angle β of the knife-like laser pulse is assumed to be small. The plasma
channel will be formed along the z-axis. Its diameter will be typically larger than w.

that the experimental degree of this homogeneity should be high enough to ensure
effective transportation of the high intensity laser pulse over long distances in such
a plasma channel. As was mentioned above, the plasma channel should not only be
homogeneous along the line focus, but also azimuthally symmetric in the transverse
direction to avoid significant light scattering and seeding of unwanted instabilities.
However, the electromagnetic field distribution in the focus of a knife-like laser pulse
is not azimuthally symmetric, which should translate into azimuthal asymmetry of the
plasma density. It is obvious that, for a longer focal length (or smaller convergence
angle of laser pulse), the field asymmetry at focus is higher. It is plausible, however,
that the heated plasma expansion might result in the channel symmetrization.

The two-dimensional (2-D) simulations are performed using the magnetohydro-
dynamic (MHD) computer code MARPLE, developed in the Keldysh Institute of
Applied Mathematics (Gasilov et al. 2012). The code MARPLE is used to simulate
capillary discharges with the parameters typical for the laser driven multi-GeV
electron accelerators (Bagdasarov et al. 2017a,b,c). It is also instrumental in studying
the effects of laser heating of the capillary discharge plasma for optimization of the
high power laser pulse guidance within the formed waveguide (Bobrova et al. 2013;
Gonsalves et al. 2019). The code was upgraded in order to take into account the
heating of plasma by the inverse bremsstrahlung absorption in the focus of the laser
pulse, so it can be used to simulate the plasma channel creation by the knife-like
laser pulses. The distribution of the electromagnetic field at focus is obtained from
the solution of Maxwell equations. This solution is then used to determine the laser
energy deposition in the plasma in the MHD simulations of the plasma dynamics.
Finally, the resulting local energy deposition is determined by both electromagnetic
energy density and the distributions of plasma temperature and density.

The paper is organized as follows. In § 2, we formulate the model of the laser
energy deposition in the plasma for sufficiently small convergence angles of the laser
pulse. The simulation results are presented in § 3. They give the spatial distribution of
the plasma parameters for different values of the convergence angle and laser pulse
duration. We conclude in § 4.

2. Deposition of laser pulse energy in an under-critical density plasma
2.1. Spatial distribution of the electric field in the focus of a knife-like beam in an

under-critical plasma
In order to determine the knife-like laser pulse energy deposition in the gas target, the
electromagnetic field distribution in the focal region needs to be calculated. In figure 1
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we show schematically the focusing of the laser pulse. We will assume later that the
focusing angle of the laser pulse, β, is small compared to unity.

Let us consider a stationary electromagnetic field in a vacuum. Assuming
a 2-D geometry, all components of the electromagnetic field depend on time
and on the coordinates x and y only. The electric field in the focus region is
E(x, t) = (Ex, Ey, Ez) = (0, 0, E(x, y) exp(−iωt)), where ω = kc is the frequency of
the electromagnetic wave, k = 2π/λ is the wavenumber and λ is the wavelength.
This choice of electric field configuration corresponds to the transverse-electric (TE)
polarization. The transverse-magnetic (TM) polarization can be considered in a similar
way. The electric field E is the solution of the Helmholtz equation (Landau & Lifshitz
1960)

∇
2E+ k2E= 0. (2.1)

Here, the operator ∇ acts in the 2-D space (x, y), i.e. ∇= (∂x, ∂y, 0). The z-component
of the electric field is equal to real part of the complex value E.

The derivation of the exact solution of (2.1) for our set-up is presented in
appendix A along with an approximate expression that is used in the simulations
below. The distribution of |E|2(x, y) depends on the laser wavelength and laser
intensity, and on the focusing angle β defined as full width at half maximum
(FWHM) of the angular distribution of the intensity of the laser beam at sufficiently
large distances from the focus. The approximation used corresponds to assuming β

to be small. However, we demonstrate in appendix A that it has reasonable accuracy
up to β = 45◦ when compared to the exact solution.

This approximate equation relates the electromagnetic energy flux F (measured in
erg s−1 cm−2), |E|2 and J(t) that is the intensity J(t) of the knife-like laser pulse in
terms of its power per unit length along the z-axis and measured in erg s−1 cm−1. It
is given by

F = c
|E|2

8π

= J(t)
2
√

πα
√

4π2α4x2 + λ2
exp

(
−

4π2α2y2

4π2α4x2 + λ2

)
. (2.2)

For 2πα|x| � λ the dependence given by (2.2) corresponds to the Gaussian angular
distribution of the radiation flux of the beam. The focusing angle β (FWHM) of the
laser pulse, expressed via the parameter α, is given by

β = 2
√

ln 2α. (2.3)

Here, we assume that α and, hence, β are much smaller than unity.
We neglect the finite difference of the refraction index of plasma from unity

throughout this section. Such an approximation is reasonable if α � ne/ncr. This
strong inequality is satisfied for the range of densities considered in the present
paper.

Although we take into account non-stationarity of the laser pulse, i.e. the
dependence of J(t) on time t, as well as the propagation of the electromagnetic
wave, the expression (2.2) does not take into account the effect of retardation. It can
be neglected because cτ is several orders of magnitude larger than Lx. Here, τ is the
duration of the laser pulse with a typical value of 2–10 ns in our simulations, and
Lx is the typical size of the hot plasma in the x-direction that will be of the order of
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FIGURE 2. The contours of constant value of F in the focus of a knife-like beam in the
plane (x/λ, y/λ) for a focusing angle of the laser pulse equal to β = 5.2◦ (m2

= 1). The
contours correspond to 0.5, 0.3 and 0.2 of the maximum value at the point (x= 0, y= 0).
The beam propagates in the x-direction. The field distribution has different scales for x-
and y-axes.

a few hundred µm. In this case, the wave can be considered as stationary, although
propagating.

The distribution (2.2) describes the pulse with transverse size w (FWHM) at focus,
which is equal to

w=

√
ln 2

πα
λ , (2.4)

and determined by diffraction.
An example of the spatial distribution (2.2) of the laser energy flux is shown in

figure 2 for β = 5.2◦.
Equation (2.2), as well as the theory developed to derive it, are obtained for an

ideally spatially coherent laser pulse, i.e. it can be described as a single transverse
mode in terms of (A 7). The laser pulses in the experiment might not satisfy the
condition of ideal coherence. If an incoherent beam has the same direction of
propagation and the same focusing angle, then it can be considered as an incoherent
sum of coherent laser pulses with different y-positions of their foci. If we assume
additionally that the beam preserves a Gaussian form, then (2.2) and (2.4) can
be rewritten with the following substitution: λ → m2λ, where m2 is the so-called
m2-parameter, describing the ‘quality’ of the laser pulse in terms of its coherence
(Siegman 1993). As a result, these equations may be rewritten in the form

F = c
|E|2

8π
= J(t)

2
√

πα
√

4π2α4x2 +m4λ2

× exp
(
−

4π2α2y2

4π2α4x2 +m4λ2

)
, (2.5)

w=

√
ln 2
πα

m2λ. (2.6)

A Gaussian beam, or, in general, a converging laser pulse, is defined completely by
J(t), λ, α and m2 in the framework of our model.
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2.2. Laser energy deposition rate in the plasma

For a given spatial distribution of the laser pulse intensity, cE2/8π, in the focal region,
which is a function of (x, y, z, t), the inverse bremsstrahlung absorption in the plasma
is described by an imaginary part of the permittivity: ε= ε′+ iε′′. We assume that the
plasma density is under-critical, i.e. ne� ne cr. The rate of plasma heating due to finite
ε′′ is given by the expression (Landau & Lifshitz 1960; Lifshitz & Pitaevskii 2002)

Q=
|E|2

8π
ωε′′ =

|E|2

8π
c

2πε′′

λ
= F

2πε′′

λ
. (2.7)

The function F is given by (A 17). The imaginary part of the permittivity, ε′′, for the
inverse bremsstrahlung process (Lifshitz & Pitaevskii 2002), is equal to

ε′′ =
4
√

2π

3
ze4ne

m1/2
e T3/2

e

ω2
pe

ω3
Λ, (2.8)

where

Λ=max
{

π
√

3
,

1
2

ln
25T3

e

e5γω2z2e4me

}
. (2.9)

Here, e and me are the charge and the mass of an electron, respectively, Te and
ne are the temperature and the density of the electrons, z is the mean ion charge,
ωpe=

√
4πnee2/me is the plasma frequency and γ = 0.57721 . . . is the Euler constant.

This expression for the rate of plasma heating due to the absorption of the laser pulse
energy via the inverse bremsstrahlung process is valid when Te� z2e4me/h̄2

∼ 27z2 eV
and ω�ωpe (Sobelman 1992; Lifshitz & Pitaevskii 2002).

We note that the expressions (2.7)–(2.9) are obtained assuming full ionization of the
plasma. In the case of a partially ionized plasma, these expressions should be modified
by changing z3 to z1z2 in (2.8), and z2 to z2

1 in (2.9), where z1 =max{1, z}.
The expressions (2.7)–(2.9) say that a laser beam with a wavelength of λ= 1.03 µm

has an absorption coefficient 2ε′′/λ ' 1.4 × 10−2 cm−1 in a fully ionized hydrogen
plasma with electron density, ne = 3 × 1018 cm−3, and temperature, Te = 15 eV. It
means that deposited power per unit volume, Q, is equal to Q ' 1.8 GW cm−3 for
the laser beam with total energy per unit length along the z-axis, Jtot = 10 J cm−1,
duration of 8 ns and w= 10 µm.

We implement the above described absorption model in the computer code
MARPLE. This model was used to simulate the effects of the laser heating in
Gonsalves et al. (2019), Bobrova et al. (2013) and Ragozin et al. (2002). The
agreement between the results of the simulations and the experimental results, reported
by Gonsalves et al. (2019) and Ragozin et al. (2002), was demonstrated.

If the parameter α of the laser pulse is much less than unity, and much larger than
the ratio ne/ne cr, i.e. 1� α� ne/ne cr, then the refraction effects are negligibly small.
Here, ne cr = meω

2/4πe is the critical plasma density. We neglect also the depletion
of the laser pulse energy due to the inverse bremsstrahlung absorption in the focus
region.

If the laser pulse propagates along the x-axis, where the laser pulse intensity does
not depend on the coordinate z, then at each moment in time we can find the peak
value of F, which is equal to

F0(t)= J(t)
2
√

πα

λ
. (2.10)
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3. Two-dimensional gas-dynamics simulations of plasma channel formation
3.1. Main physical parameters of simulations

Here, we discuss the simulations of a plasma channel formation, elongated in the z
direction by a knife-like laser pulse propagating in the x-direction. Thus, the laser
beam propagates perpendicular to the forming plasma channel. The channel is formed
in an ambient gas, with an initially homogeneous density. The laser pulse is assumed
to be homogeneous along the z-axis, and is focused onto the line x= y= 0. Near the
focus the distribution of the knife-like laser pulse energy flux, F(x, y, t), taking into
account the diffraction, is described in § 2.1 (equation (2.5)). We set the following
dependence of the laser power on time:

J(t)=

{
Jtotτ

−1 sin2(πt/2τ) for 0< t< 2τ
0 for t> 2τ ,

(3.1)

per unit length in the z-direction. Thus, the laser pulse, forming the plasma channel,
is characterized by the following five parameters: (i) λ = 2πc/ω, wavelength of the
laser, (ii) Jtot, total energy of the laser pulse per unit length in the z-direction; (iii) τ ,
duration (FWHM) of the laser pulse; (iv) β, focusing angle (FWHM) of the laser pulse
in the plane (x, y); and (v) m2. We set λ= 1030 nm, Jtot= 12 J cm−1 and m2

= 1 for
all simulations, varying τ and β.

The ambient gas is hydrogen with an initial density of 24 µg cm−3 and temperature
of 0.3 eV. The hydrogen gas was chosen for our simulations because it can be fully
ionized at moderate plasma temperatures of several eV, and because it was used in
recent LWFA experiments as a target (Leemans et al. 2014; Gonsalves et al. 2019).
The optical breakdown of hydrogen by the laser pulse is initiated by a spark in a small
vicinity of the line x = y= 0. This is necessary because the physical model used in
the code does not include several physical processes important for optical breakdown.
We do not specify here the parameters of the spark, such as its temperature and size,
assuming that the final parameters of the plasma channel do not depend on them,
provided the breakdown takes place in a short period after the laser pulse onset.

In what follows we use the 3-D MHD code MARPLE to model the process of
laser heating and plasma channel formation. The physical model implemented in
this code is described in appendix B. Although the model includes the full set of
MHD equations, only the part that describes the dynamics of the gas is used in
our simulations. We also utilize the model of the laser beam energy deposition
described in § 2. The code is designed to use the finite volume technique on general
unstructured simulation meshes and a parallel computation technique with message
passing communications. It was successfully used to model several experiments.
These include experiments on laser wake field accelerators of electrons in capillary
discharges (Bagdasarov et al. 2017a,b,c; Gonsalves et al. 2019), experiments with
dense Z-pinches formed by multi-wire arrays in pulsed power facilities (Grabovski
et al. 2008; Aleksandrov et al. 2014, 2019; Olkhovskaya et al. 2015) and experiments
on the solid matter response to high intensity electron beams (Ananyev et al. 2017;
Gasilov et al. 2019), etc.

We performed four different simulations. The parameters of the laser beam that
were varied in these simulations are presented in table 1. Section 3.2 is devoted
to the general description of the simulated dynamics of plasma channel formation
under these conditions and to the investigation of the dependence of plasma channel
parameters on the focusing angle β of the laser pulse. Section 3.3 is devoted to the
investigation of the effects of the laser pulse duration, τ .
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β α m2 w τ η

(deg.) (µm) (ns) (%)

A 5.2 0.0546 1 5 2 0.64
B 26 0.275 1 1 2 0.58
C 45 0.5 1 0.6 2 0.72
D 21 0.220 1 1.2 10 1.29

TABLE 1. Parameters of the 2-D simulations and simulated percentages of laser energy
η deposited into the plasma.

3.2. Dependence of plasma channel parameters on the focusing angle β of the laser
pulse

3.2.1. Simulation set-up
We perform four simulations (A, B, C and D) with different values of β and τ ,

whereas other physical parameters remain fixed (see table 1). We assume that the
minimum size w of the spatial distribution of the laser pulse energy in the (x, y)-plane
is limited by diffraction only for the initial beam, as was described in § 2.1, and hence
depends significantly on the focusing angle of the beam, β, as shown in table 1. An
example of the spatial distribution of the laser intensity in the (x, y)-plane for the
simulation A (β = 5.2◦) is shown in figure 2.

In this section we study how the knife-like nanosecond laser pulse structure affects
the azimuthal symmetry of the plasma channel. We perform three simulations, A,
B and C, with different values of β, β = 5.2◦, 26◦ and 45◦, for τ = 2 ns. The
laser pulse duration is chosen to be relatively small since it is plausible to assume
that the hydrodynamic expansion of the heated plasma channel outward into the
homogeneous ambient gas might lead to the symmetrization of initially asymmetric
energy deposition by the laser pulse (e.g. see figure 2).

In the A and B cases the simulation box is 2 mm × 2 mm or in the (x, y)-plane
[−1 mm; +1 mm] × [−1 mm; +1 mm]. We use two-dimensional grids, composed
of rectangular cells, for the spatial discretization. These two-dimensional grids are
the products of two one-dimensional grids. The grid mesh size varies from 250 nm
(case A) and 50 nm (case B) in the vicinity of the axis (x= 0, y= 0) to 100 µm and
25 µm, respectively, near the simulation box boundary. The total number of cells is
600 × 600 in case A and 2700 × 2700 in case B. The following symmetries can be
applied in the simulations x→−x and y→−y in order to reduce the computational
load. The x → −x symmetry is due to the fact that we neglect the effect of the
laser depletion because of the absorption (see the estimates below). In case C, the
simulation box is 1 mm× 1 mm or in the (x, y)-plane: [0; 1 mm] × [0; 1 mm], which
is a quarter of the simulation box used in cases A and B. The solution in the whole
domain 2 mm × 2 mm is obtained by using the x→−x and y→−y symmetries. The
smallest grid mesh size is equal to 50 nm in the vicinity of the axis (x = 0, y = 0).
The largest grid mesh size is equal to 25 µm in the vicinity of the outer boundary.
The total number of cells is equal to 1400× 1400. The simulation A is performed for
the time interval t ∈ [0, 10 ns], whereas the simulations B and C are performed for
the time interval t ∈ [0, 15 ns].

3.2.2. Results of the simulations A, B and C
The results of the simulation A (β = 5.2◦) are shown in figure 3, where the

snapshots of the electron temperature, Te, and the electron density, Ne, are presented
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Plasma channel formation in the knife-like focus of laser beam 9

FIGURE 3. Snapshots of spatial distributions of electron temperature, Te, in eV and
density, Ne, in cm−3 at t= 10 ns for the simulation A (β = 5.2◦, τ = 2 ns).

at t = 10 ns. It is clearly seen that the hot plasma bubble is asymmetric. See also
§ 3.4. Approximately 0.64 % of the total energy of the laser pulse is absorbed in the
focus region. This number depends strongly on the dynamics of the plasma in and
around the focus region during the laser pulse interaction with the target.

We now proceed to a more detailed presentation of the results of the B case
(β = 26◦). Figures 4 and 5 show the process of the hot (almost completely ionized)
plasma bubble formation. In figure 4 we present the sequential snapshots of the
electron temperature and density distributions in the (x, y)-plane at t = 6, 10 and
15 ns. The electron density distribution near the axis x = y = 0 becomes more
symmetric than in the case A. The degree of symmetry of the electron density
depression is considered below and can be seen in figure 8. The improved symmetry
of the plasma channel is beneficial for guiding of high power laser pulses over a
sufficiently long distance. The simulation shows that approximately 0.58 % of the
total energy of the laser pulse is absorbed in the focus.

In figure 5 we show the shock wave propagating outwards from the hot bubble. The
shock wave is manifested by the typical distribution of the mass density along the x-
and y-directions at subsequent moments in time (see figure 5). If we define a boundary
of the hot ionized plasma bubble as a position of maximum of the electron density
along the radius, then the simulation shows that the shock wave encircles the area,
which at t = 10 ns is wider than the plasma bubble by approximately 100–150 µm
in all directions. Since this distance is not substantially large compared to the bubble
size, the shock wave is tightly attached to the hot bubble until the time t= 10 ns. As
a result, the homogeneous gas ahead of the shock wave front serves as a mitigating
factor for the growing asymmetry. For sufficiently late times, when the shock wave
outruns the growing bubble, this mitigating factor vanishes.

At t = 10 ns the electron temperature behind the shock wave is of the order of
1.5 eV. As a result, the degree of ionization is low. Hence, the hot bubble expands
mainly due to the effect of thermal conductivity after the interaction with the laser
pulse is over.

In order to explain the importance of the vortical motion of the plasma in the (x, y)-
plane we show the velocity field distribution at t = 15 ns for the case B in figure 6.
Figure 6(a,b) show the distributions of the y and x components of the plasma velocity
v, respectively. Figure 6(c) shows the z-component of the vorticity ω=∇ × v at the
same time. The vorticity is generated due to two similar effects. Let us first mention
that the vorticity is generated at the not perfectly plane shock wave front. The second
source of the vorticity is the baroclinic effect ∇p×∇ρ 6= 0, which takes place right
behind the shock wave at its downstream side. Here, p is the plasma pressure, and ρ
is its mass density.
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FIGURE 4. Snapshots of the spatial distribution of the electron temperature (eV) and
density (cm−3) in the case B (β = 26◦, τ = 2 ns) at t = 6, 10 and 15 ns, showing the
blowing up of the hot plasma bubble.

The typical value of the vorticity ωz is equal to |∇ × v| ∼ (0.5 − 1) × 108 s−1

within the region r =
√

x2 + y2 . 0.4 mm. Assuming that the viscosity is relatively
low, the vorticity ωz is frozen into the plasma in accordance with Kelvin’s circulation
theorem. This means that the plasma in the bubble turns inside out over approximately
30 ns. This will lead to the turbulent mixing of the plasma inside the bubble and
to the distortion of the symmetric channel. This process prevents the azimuthal
symmetrization of the plasma channel. Taking this into account, we stop the
simulation at t = 20 ns. The same conclusions can be drawn for all our simulation
cases. The process of distortion of symmetric hot channels due to baroclinic vorticity
generation and gas cooling was investigated earlier (see Kurzweil, Livne & Meerson
2003, and references cited therein).

Let us consider the degree of asymmetry of the electron density depression near
the axis of the plasma channel, in the region r < 150 µm. This region could be
relevant for laser pulse guidance along the z-axis. We characterize the asymmetry
by the difference between Ne(r, 0) and Ne(0, r) at r 6 150 µm. A more specified
definition of the asymmetry could be introduced after consideration of the propagation
of laser pulses in the plasma channel, which is outside the scope of the present work.
Figure 8 shows snapshots of 1-D distributions of electron density along the lines x= 0
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FIGURE 5. Shown are the plasma mass density distributions along the axis y = 0 and
x= 0 at t= 5, 10, 15 ns for the simulation B (β = 26◦; τ = 2 ns).

(a) (b) (c)

FIGURE 6. Snapshots of distribution of the plasma velocity components vx (a), vy (b) and
the z-component of plasma velocity curl (∇ × vvv)z (c) measured in 106 s−1 at t = 15 ns
for the simulation B (β = 26◦; τ = 2 ns).

and y= 0. The moments of the snapshots correspond to times t= 6, 10 and 15 ns. The
curves at t< 6 ns and at t> 15 ns behave like those at t= 6 and 15 ns, respectively.
We may see the electron density on the line x= 0 is higher at t= 10 ns than on the
line y= 0 at r. 150 µm, whereas they change ordering at t= 15 ns. It means that the
angular asymmetry at r. 150 µm changes its sign during the period 10 ns< t< 15 ns.
It is plausible to assume that the optimal time for the laser pulse guiding through this
plasma channel is in the interval 10 ns< t< 15 ns. The existence of such an optimal
time seems to be the consequence of the vortex motion in the bubble, considered
above. In this case, the continuation of the simulation to later times, t > 15 ns, is
not reasonable. The general conclusions presented in the latter three paragraphs could
be applied with some quantitative corrections to all our simulations.

We present the results of simulation case C (β = 45◦) in figures 7 and 13 (in
§ 3.4), which show the structure of the plasma channel at t = 15 ns, and asymmetry
of the depression of the electron density near its centre (x, y) = (0, 0) at the same
time, respectively. The distribution of the electron density in the vicinity of the axis
x = y = 0 at the time t = 15 ns becomes much more symmetric than in the case A,
whereas the difference from case B is not so significant.

The simulation shows that approximately 0.72 % of the total laser pulse energy is
absorbed in the focus region.

The waist size w of our laser beam is considerably less that the plasma bubble.
To clarify this point we can compare w from table 1 and the typical size of the hot
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FIGURE 7. Snapshots of spatial distribution of electron density (cm−3) and temperature
(eV) for the simulation C (β = 45◦, τ = 2 ns) at t= 15 ns.

(a) (b) (c)

FIGURE 8. Time evolution of 1-D cross-sections of electron density distributions for the
case B (β = 26◦; τ = 2 ns). The green lines correspond to the ray x= 0, y> 0 and the
red lines do the ray y= 0, x> 0. (a–c) panels correspond to snapshots at t= 6, 10 and 15
ns, respectively. Only the region r 6 150 µm may be relevant for possible wave guiding
along the z-axis. Note the green lines are above the red lines in this region at t= 4 and 6
ns, and they change ordering at t= 15 ns. It indicates a change of sign of the azimuthal
asymmetry in the electron density spatial distribution during the time t ∈ (10, 15) ns.

plasma bubble for this case C, presented in figure 7. Our non-equidistant simulation
grid, described in § 3.2.1, allows us to resolve well the transverse size of laser energy
deposition together with total size of the problem, keeping a reasonable number
of meshes. To demonstrate the sufficient spatial resolution we show the spatial
distribution of laser energy flux at the plane x = 0 together with sets of grid values
of electron temperature, Te, and plasma density, ρ, in figure 9.

3.3. Dependence of plasma channel on laser pulse duration
3.3.1. Simulation set-up

In what follows we present the results of simulations of the case D (β = 21◦, τ =
10 ns) from table 1. The general structure of the simulation box is similar to the case
B in § 3.2. The smallest grid mesh size is equal to 125 nm in the vicinity of the axis
(x, y) = (0, 0), and the largest one is equal to 100 µm in the vicinity of the outer
boundary at x = 2 mm. The total number of points of the two-dimensional grid is
872× 851= 742 072. The simulation is performed for the time interval t ∈ [0; 20 ns],
so that the peak of the laser pulse reaches the focus at t= 10 ns.
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FIGURE 9. The transverse distribution of the laser beam intensity (blue line, arbitrary
units), electron temperature (red squares) and plasma density (green squares) at x= 0 at
the moment of maximum intensity of the laser beam. The scales of the vertical axes are
chosen to emphasize visible gradients. Actually Te and ρ are almost constant at spatial
scales determined by the spot size of the laser focus.

FIGURE 10. Snapshots of the electron temperature (eV) and density (cm−3) spatial
distributions at t= 15 and 20 ns in the case D (β = 21◦; τ = 10 ns).

3.3.2. Results of the simulation D
The results of the simulation of case D are summarized in figures 10–13 (in § 3.4).

Figure 10 shows the 2-D distributions of electron temperature, Te, and electron density,
Ne, on the plane (x, y) at t= 15 ns. The plasma channel is elongated in the x-direction,
which is the direction of laser pulse propagation.

Figure 11 shows the dependences of the plasma density, ρ, measured in g cm−3,
along the y axis, (x= 0, y> 0), and along the x axis, (x> 0, y= 0), at t= 5, 10, 15
and 20 ns. It demonstrates the strong shock wave propagation outside the region of
the laser energy deposition, and the formation of a hot plasma bubble inside the low
density region. It is interesting to compare the size of the hot bubble with the size
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FIGURE 11. Mass density distributions along the x- and y-axes at different time moments
in the case D (β = 21◦; τ = 10 ns).

of the region bounded by the shock wave at t= 15 ns. We define the hot bubble as
the region where the temperature Te is higher than half of the maximum temperature
at x= y= 0. If we compare the curves in figure 11, corresponding to t= 15 ns, with
the upper row in figure 10, we can see that the typical size of the plasma bubble in
both directions of its symmetry is approximately 1.5–2 times smaller than the size of
the region bounded by the shock wave. The position of the shock wave at the line
y = 0 moves outward faster than the analogous position of the shock wave on the
line x= 0. This effect is caused by the additional heating and ionization of relatively
cold plasma behind the shock wave front in the vicinity of the line y= 0 by the laser
pulse. Such additional heating takes place due to the enhanced energy deposition from
the laser pulse in this region. This effect is more important than the effect of the
higher plasma pressure gradient in the y-direction. We conclude that the ionization
front, moving in the x-direction, is driven mainly by the additional plasma heating,
whereas the shock wave moving in this direction, and accompanying the ionization
front, is more or less a secondary effect. It is necessary to note that the effect of the
faster plasma front propagation in the x-direction is influenced considerably by the
significant 2-D structure of motion at the tip of the shock wave along the y= 0 line.

From the comparison of figures 10 and 11, one can see the maximum temperature
is accompanied by the electron density minimum, at the centre (x, y)= (0, 0). We note
that hydrogen is almost completely ionized at Te> 5 eV. Hence, the distribution of Ne
corresponds actually to the distribution of mass density, ρ. Time dependencies of Te
and Ne maxima are presented in figure 12.

Figure 13(c) shows three 1-D electron density distributions along the rays (0, y> 0),
(x>0,0) and (x>0, y= x) at t=15 ns. These demonstrate more clearly than figure 10
the degree of symmetry of the electron density depression at the centre. The azimuthal
symmetry of the electron density hole plays an important role for the possibility of
high quality transportation of high intensity laser pulses in the waveguide, formed by
the plasma channel. Figure 13 demonstrates that the sharpness of the electron density
minimum for the case D in the x-direction is approximately 2–3 times lower than in
the y-direction at distances r< 150 µm from the centre of the plasma channel.

In § 3.2.2 we presented the results of the simulation of the case B for a considerably
shorter laser pulse with duration τ = 2 ns, keeping the laser energy, Jtot, the same. The
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FIGURE 12. Time dependencies of electron density Ne(0, 0, t) and temperature Te(0, 0, t)
in the case D (β = 21◦; τ = 10 ns).

(a) (b) (c)

FIGURE 13. Degrees of electron density distribution asymmetry at t= 15 ns for the cases
A (β = 5.2◦; τ = 2 ns) (a), C (β = 45◦, τ = 2 ns) (b) and D (β = 21◦; τ = 10 ns) (c).
The green lines correspond to the 1-D distributions along the lines x= 0, the red lines do
along the lines y= 0 and the blue lines along the lines x= y. r=

√
x2 + y2.

case B has a similar focusing angle. It is 26◦ instead of 21◦ for the case D. We may
conclude that the difference in laser pulse duration (5 times) is much more important
than the difference in the focusing angle (∼20 %), so that almost all the difference in
the symmetry of the plasma channel in these two simulations may be ascribed to the
influence of the laser pulse duration. We see that in the case B the plasma channel at
t= 15 ns is much more symmetric than in the case D. We may conclude that shorter
laser pulses generate more symmetric channels in plasma.

3.4. Angular asymmetry of electron density distribution
We considered the evolution of the electron density distribution for the case B (β =
26◦; τ = 2 ns) in the relevant vicinity of the plasma channel axis in § 3.2.2 (see
figure 8). We showed that the angular asymmetry changes its sign in the time interval,
10 ns < t < 15 ns. Hence, the most symmetric distribution of plasma density in the
(x, y) plane takes place during this interval. A similar situation takes place for the case
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C with wider angle β and the same pulse duration, τ . The degree of the asymmetry
at t = 15 ns can be seen in figure 13(b). It can be compared with figure 8(c). In
both of these cases there is sufficient time for symmetrization after the laser pulse,
which introduces asymmetry, and before the detaching of the shock wave from the
hot plasma bubble, when homogeneous ambient gas and high thermal conduction in
the bubble mitigate the asymmetry.

For small β (see case A), the initial asymmetry, introduced by the laser, is so high
that it is not decreased considerably by the moment of the shock wave detaching.
The electron density asymmetry at t= 15 ns for the case A is shown in figure 13(a).
When the laser pulse is long (case D), then there is not enough time to mitigate the
asymmetry, which is being introduced continuously during the laser pulse propagation.
As a result the asymmetry remains very high up to t = 15 ns, when the mitigation
effect begins to decline (see figure 13c).

Thus, we conclude that the sufficiently large focusing angle β ∼ 25◦–45◦ of the
laser beam and a duration of the order of τ ∼ 2 ns need to be utilized to obtain an
azimuthally symmetric plasma channel after approximately 10 ns after the laser pulse.
Here, we used the parameters of the laser beam and plasma specified in § 3.1. We
note that the above mentioned focusing angle and laser duration can depend on other
parameters of the laser beam and the initial pressure of the neutral gas.

4. Conclusions

The solution of the Maxwell equations allows us to describe the electromagnetic
field distribution and the electromagnetic radiation energy deposition in the focus
region. The detailed simulations were performed using a modification of the
MHD code MARPLE with the goal of investigating the process of the channel
symmetrization, when the asymmetry of the initial channel is imprinted by the
asymmetric deposition of the laser energy. The dissipative 2-D MHD simulations
reveal a rather complicated structure of the plasma dynamics. Nevertheless, the
simulations show a way to reach regimes of symmetric plasma channel formation.

We performed simulations for different focusing angles β and durations τ of the
laser pulse. The simulation, corresponding to β = 5.2◦ and τ = 2 ns, shows that the
plasma channel is highly asymmetric. In order to find a way towards azimuthally
symmetric channel formation, we performed two 2-D simulation runs with β=26◦ and
β= 45◦ for the laser pulse duration τ = 2 ns. The simulations show that approximately
azimuthally symmetric plasma channels in the close vicinity of the axis are formed
approximately 1t ∼ 10 ns after the laser pulse power peak reaches the focus. We
performed also simulation with longer laser pulse durations, τ = 10 ns, and β = 21◦.
The asymmetry introduced by the laser energy deposition is enhanced in this case.
As a result, the plasma channel formed under these conditions is not suitable for
guiding of high intensity laser pulses. We conclude that, by optimizing the laser–target
parameters (duration of laser pulse τ , its energy, time delay 1t and focusing angle of
the laser pulse β), it is possible to find an optimal set of parameters for the formation
of the plasma waveguide channel structure.

We also studied the possible symmetrization of the plasma channel due to the late
stage expansion of the hot plasma. The simulations show that the hot plasma bubble
at the moment of its formation is not azimuthally symmetric. At this moment the
shock wave detaches from the hot bubble, which becomes almost isobaric. The further
evolution of the remaining bubble is governed mainly by the thermal conduction and
by the vortex motion. The vortices are excited just before the shock wave detachment.
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We see that the most symmetric channel is formed at approximately t = 10–15 ns
for the case where the focusing angle is β = 26◦ and the laser pulse duration is
τ = 2 ns. Then, the asymmetry starts to grow due to the vortex motion. A similar
problem was studied by Kurzweil et al. (2003), where it was shown that the vortex
motion leads to a strong mixing of the hot bubble with the ambient gas and to the
complete loss of symmetry. When the shock wave is not yet detached from the hot
bubble, the homogeneous ambient gas effects can lead to a symmetrization. So the
most symmetric state of the hot bubble may occur right before the shock wave runs
away.
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Appendix A. Derivation of the expression (2.2) for spatial distribution of electric
field in knife-like focus of the laser beam

In order to solve (2.1) we introduce elliptic cylindrical coordinates, σ and τ (Korn
& Korn 1968)

y2

a2σ 2
+

x2

a2(σ 2 − 1)
= 1, (A 1)

y2

a2τ 2
+

x2

a2(τ 2 − 1)
= 1. (A 2)

It follows from these expressions that

y= aστ, x2
= a2(σ 2

− 1)(1− τ 2), (A 3a,b)

where σ >1, −16 τ 61 and a is a positive constant value, which is determined below.
In the elliptic cylindrical coordinates, equation (2.1) takes the following form (Korn
& Korn 1968):√

σ 2 − 1 ∂σ (
√
σ 2 − 1 ∂σE)+

√
1− τ 2 ∂τ (

√
1− τ 2 ∂τE)= k2a2(τ 2

− σ 2)E. (A 4)

We search for the solution of (A 4) in the form E(σ , τ ) = Σ(σ)T(τ ). Substituting
this expression into (A 4) we obtain a system of ordinary differential equations for
functions Σ and T√

σ 2 − 1
d

dσ

(√
σ 2 − 1

dΣ
dσ

)
= (Λ− k2a2σ 2)Σ, (A 5)
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1− τ 2

d
dτ

(√
1− τ 2

dT
dτ

)
=−(Λ− k2a2τ 2)T. (A 6)

The solution of these equations can be expressed in terms of Mathieu functions (Olver
et al. 2010).

First, we consider the limiting case of ka � 1. Here, the solution, T(τ ), differs
from zero only at a small value of |τ |. Using |τ | � 1, while kaτ 2 may be ∼O(1),
we rewrite (A 6) in the following form:

d2T
dτ 2
+ (Λ− k2a2τ 2)T = 0 . (A 7)

This equation has a set of localized solutions that are actually solutions of an
eigenvalue problem, with Λ being the eigenvalue. They can be expressed in terms
of Hermite polynomials and exponents (Olver et al. 2010). These solutions have
nodes with the exception of one solution. The only eigenfunction without any
node corresponds to the Gaussian beam, lowest, prime eigensolution and the lowest
eigenvalue Λ

T ∝ exp (−kaτ 2/2), (A 8)

with Λ= ka, and ka� 1. If ka� 1, then equation (A 5) for the function Σ takes the
form √

σ 2 − 1
d

dσ

(√
σ 2 − 1

dΣ
dσ

)
= (ka− k2a2σ 2)Σ. (A 9)

When ka� 1, it can be solved within the framework of the WKB approximation, i.e.

Σ = b exp (iS), (A 10)

where S and |dS/dσ | are functions of σ , much larger than 1, whereas b is a smoothly
varying pre-exponent. In this case, the typical scale of the fast oscillating exponent
exp(iS) is much less than the typical scale of the pre-exponent b variations. It is easy
to obtain the equation for S as a function of variable σ . It can be written in the form(

dS
dσ

)2

= k2a2 σ 2

σ 2 − 1
. (A 11)

It yields
S= ka

√
σ 2 − 1sgn(x). (A 12)

The pre-exponent b satisfies the equation

(2S′b′ + S′′b)(σ 2
− 1)+ S′b σ =−ikab, (A 13)

where the prime denotes differentiation with respect to the variable σ . Assuming that
the solution of this linear ordinary differential equation of the first order has the form
b= |b| exp(iφ), we obtain the following expressions for the amplitude |b| and phase
φ:

|b| ∝
1
√
σ
, φ =

sgn(x)
2

arctan
(

1
√
σ 2 − 1

)
. (A 14a,b)

Substituting expressions for Σ and T in the formula for the single non-vanishing
component of the electric field Ez = E(x, y)e−iωt

= Σ(σ)T(τ )e−iωt, and taking into
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account (A 3) with |τ | � 1, we obtain an expression for stationary travelling electric
field. Square of its absolute value is given by

|Ez|
2
∝

1
√

x2 + a2
exp

(
−ka

y2

x2 + a2

)
. (A 15)

It is useful to introduce a dimensionless parameter α, which determines the angle
of focusing of the laser pulse (see below) and the aspect ratio of energy distribution
of electromagnetic energy in the plane (x, y), α = 1/

√
ka, when ka� 1. Substituting

this relationship into (A 15), we obtain that the square of absolute value of the electric
field E depends on the coordinates x and y as

|E|2 ∝
1

√
α4k2x2 + 1

exp
(
−

α2k2y2

α4k2x2 + 1

)
. (A 16)

In the paraxial approximation the, averaged over the period of the electro-magnetic
field, Poynting vector value is

F= c
〈(E×B)x〉

4π
= c
|E|2

8π
. (A 17)

Combining (A 16) and (A 17), we obtain (2.2).
Note that we used the WKB approximation only to derive the distribution (A 16)

of the electromagnetic energy in the focus along the beam axis, whereas the
transverse distribution in the waist of the focus is determined by the diffraction
effect. Equation (A 16) says that the longitudinal depth of the focus λα−2/2π
is approximately ∼α−2/2π times larger than the laser wavelength. It justifies the
application of the WKB approximation for describing the longitudinal structure, when
α� 1.

We analysed above the case of the TE polarization of an electromagnetic wave.
However, if the parameter α is small, i.e. α� 1, the |E|2 distribution does not depend
on the polarization of the electromagnetic wave in the leading order. This fact can be
explained by the the substitution Bz↔Ez in (2.1) and (A 4), and by the fact that both
the electric and magnetic fields in the wave are almost perpendicular to the x-axis,
when α� 1.

Using our equations (A 8), (A 10), (A 12) and (A 14), and the symmetry TE ↔ TM,
mentioned above, we write for small α that

|E|2|TM = |B|2|TE ≈ |E|2(x, y)|TE

(
1+

α4k2y2

(1+ α4k2x2)2

)
. (A 18)

We estimate that TM-polarization provides at α = 1/2 approximately 10 % higher
energy deposition into plasma in the vicinity of the waist of the laser beam under the
same conditions as the TE-polarization. For α= 1/4 this value becomes approximately
3 %.

We note that the result (2.2) can be obtained, within the framework of the paraxial
approximation for the Helmholtz wave equation. Both types of polarization are
described by the same expression in this approximation. The Gaussian beams are
well-known solutions of this equation (see, for example, Svetlo (2010)). Using this
approach for the case of a knife-like electromagnetic beam, one can obtain the spatial
distribution of the laser energy flux F.
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(a) (b)

FIGURE 14. Distributions of |E|2 along the lines x = 0 (a) and y = 0 (b) at α = 1/2.
The former presents the transverse distribution with respect to the direction of laser beam
propagation, whereas the latter corresponds to the distribution along the beam. The blue
lines present distributions (2.2), whereas the red ones correspond to solutions of the
exact (A 7) and (A 10) with the same α and total flux. The black dashed line presents half
of the standing wave mentioned in the text. Note that the latter is almost indistinguishable
from the red line in (a), although it is different.

We derived (A 16) assuming α� 1. However, the values of α up to α = 1/2 (or
ka= 4) were used along with (2.2) in simulations. In order to determine what kind of
error is introduced by this, we use the exact equations (A 5) and (A 6). The solution
should be smooth in the whole space (x, y). Then we would obtain T ∝ ce0(ζ , 4),
where ζ = arccos(τ ) and Σ ∝ ce0(iu, 4), and where u = arccosh (σ ). Here, ce0(·, ·)
is one of standard Mathieu functions (Olver et al. 2010). This solution represents a
standing wave. However, our goal is to find a solution, which would behave as ∝
exp(ikr)/

√
r at r=

√
x2 + y2→∞ at the half-plane x> 0. This condition corresponds

to a pure travelling wave in this region and introduces some x→−x asymmetry. In
this case, we are forced to set a boundary condition at some place outside the beam
so that the solution will be in the simple form, E= T(τ )Σ(σ). We set that E= 0 at
x= 0, when |y|> a. Then

T ∝ se1(ζ , 4), (A 19)

where the Mathieu function se1(ζ ,q) is defined in the handbook by Olver et al. (2010),
and Σ(σ(x, 0)) is obtained from a numerical solution of the equation(

χ 2
+ 1
)
Σχχ + χΣχ +

(
4qχ 2

+ 2q− a0(q)
)
Σ = 0, (A 20)

with the boundary condition

Σ ∝ exp(ikaχ)/
√
χ + · · · at χ→+∞. (A 21)

Here, χ = x/a, q = k2a2/4 and this equation is equivalent to (A 5). The boundary
condition fixes the solution that corresponds to the outgoing travelling wave far from
the focus at the half-plane x> 0.

Figure 14 shows the comparisons of two 1-D cross-sections of the |E|2 distribution
obtained from the solution of both (2.2) and the exact equations (A 19)–(A 21). We
used the same parameter α= 1/2 and the same flux J, and normalize the plots to the
maximum value from (2.2). For clarification, we plot also half of |E|2 for standing
wave solution, described in the previous paragraph. It is interesting that, although the
travelling wave solution and the standing one are surely different, nevertheless, the
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difference cannot be resolved in figure 14 for this parameter α=1/2. We may mention
another manifestation of the same feature at α = 1/2: the intensity of the reflected
wave in the region x<0, r→∞ is only approximately 10−4 of the incoming travelling
wave. In summary, we conclude that the inaccuracy of (2.2) is less than ∼3 %–4 % of
the maximum value even for our highest value of α= 1/2. For lower α. 1/

√
8≈ 0.35

the difference becomes negligible.

Appendix B. Physical model implemented by the code MARPLE
The code MARPLE implements the following system of MHD equations:

∂tρ +∇ · ρv = 0; (B 1)

ρ (∂tv + (v · ∇) v)=−∇p−
1
c

j×B; (B 2)

∇×B=
4π

c
j; j= σ

(
E+

1
c
v×B

)
; (B 3)

∂tB=−c∇×E; ∇ ·B= 0; (B 4)

ρ (∂tεe + v · ∇εe)+ pe∇ · v =∇ · (κe∇Te)+
j2

σ
−Qie +Q; (B 5)

ρ (∂tεi + v · ∇εi)+ pe∇ · v =∇ · (κi∇Ti)+Qie. (B 6)

Besides quite standard notations for plasma density, its velocity, electric current and
electric and magnetic fields, we use here less common notations. Here, p= pe + pi is
the plasma pressure determined by the sum of the pressures of the electron, pe, and
ion components, pi; εe and εi are specific internal energies of the electron and ion
components of the plasma, respectively; σ is the electric conductivity of the plasma;
κe and κi are coefficients of thermal conduction in the electron and ion components
of the plasma; Te and Ti are temperatures of the electron and ion components the of
plasma; Qie represents the energy exchange between the electron and ion components;
and Q is the rate of energy deposition from the laser beam to plasma per unit volume
and per unit time. The latter value is defined in § 2.

Equations (B 1) and (B 2) are the continuity equation and Newton’s second law,
respectively. Equations (B 3)–(B 4) give three out of four Maxwell equations (in the
quasi-stationary approximation) and Ohm’s law. The remaining Maxwell equation,
∇ ·E= 4πq, where q is the volume density of the total electric charge, is reduced to
q= 0 for macroscopic plasma volumes. The latter condition is usually referred to as
the condition of quasi-neutrality: ne = Zni, where Z is the mean charge of compound
plasma component of heavy particles, consisting of ions and neutrals, and ne and ni
are the concentrations of electrons and the heavy particles, respectively. We include
neutrals in a joint component consisting of neutrals and ions in this section. This
heavy particle component is referred to as ‘ions’ and is designated by the subscript
i here. The mean charge Z is defined here from the Saha ionization equation.
Equations (B 5) and (B 6) are heat equations for electron and ion components,
respectively. The thermodynamic parameters of these components εe,i and pe,i actually
correspond to an ideal gas, however, εe includes the energy of ionization. Quite
similar model for description of partially ionized hydrogen plasma was described by
Bobrova et al. (2002).

Equations (B 1)–(B 6) are written here in a simplified form, which is relevant to
the present problem. Nevertheless, the full MHD model implemented in the code
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MARPLE includes: plasma viscosity, anisotropic (tensor) structures of σ and κe,i,
thermal radiation transport etc. The kinetic coefficients σ , κe,i, as well as Qie were
calculated using the model by Braginskii (1963). The model was extended to take
into account collisions with neutrals analogously to Bobrova et al. (2002).

The code MARPLE utilizes different types of boundary conditions. See for example
Bagdasarov et al. (2017a). They may include connection to an external low frequency
electromagnetic generator. However, we do not include such external generators in
the present problem. Moreover, we chose a sufficiently large size of the simulation
domain so that the disturbances in the initially homogeneous cold gas do not reach
its boundaries. As a result, the exact form of passive conditions for plasma parameters
at the boundaries does not play any role in the present problem.

Magnetic field in the initial state is assumed negligible. The simple form of
Ohms law, presented in (B 3), and the initial condition lead to the magnetic field B
being equal to 0 during the whole simulation. We estimated that the battery effect,
neglected in (B 3), and caused by non-vanishing ∇pe×∇Te, leads to the generation of
a magnetic field that could be neglected for the present problem. Our model contains,
however, the effect ∇p × ∇ρ in the equation of motion (B 2). It is similar to some
extent to the battery effect and leads to the generation of vorticity in the hot plasma
bubble. This effect plays an important role for our problem and is considered above.

The physical model, presented here, as well as the code MARPLE as a whole were
used for successful simulations of different experiments, as it was mentioned above.
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