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ABSTRACT OF THE DISSERTATIONHigher Order Integral Stark-Type ConjeturesbyCaleb J. EmmonsDotor of Philosophy in MathematisUniversity of California San Diego, 2006Professor Cristian Popesu, ChairThe Stark onjetures attempt to apture the leading terms at s = 0 of the S-inomplete Artin L-funtions attahed to an abelian extension of number �elds asthe image under a regulator map of an evaluator built out of S-units. We introduea new onjeture of Popesu, whih extends Rubin's higher order of vanishingStark-type onjeture by removing the hypothesis that S ontains splitting primes.We prove that the evaluator attahed to an extension K=k an be written as alinear ombination of evaluators arising in subextensions whih do have splittingprimes, linking the original onjeture of Rubin with its extension. This allows aohomologial proof of the extended onjeture when the original is known for thesubextensions and S has \enough" �nite unramifying primes. We study extensionsof exponent 2 where we prove Rubin's onjeture under the hypothesis that anauxiliary smoothing set T is suÆiently large, and ahieve new partial resultstowards the onjeture in general for these extensions. The onsequenes of a
ix



Stark-type onjeture of Burns are studied, leading to weaker suÆient inequalitiesfor extensions of prime exponent.In the appendix, we prove a series of equivalenes for when a yli Kummerextension ofK is entral extension over k, whih is an analogue of Coates' onditionfor ahieving an abelian extension.
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Chapter 1
Introdution and history
1.1 Introdution for non-number theoristsTo begin, we work through a very spei� example to introdue the reader tothe avor of all the objets we will be onerned with in the remainder of thedissertation. Although I may use tehnial language oasionally, even the non-mathematial reader should be able to get an idea of the material. The most basiobjets in number theory are probably the ring1 of integersZ = f:::;�2;�1; 0; 1; 2; 3; 4; :::gand the �eld2 of rational numbers (frations)Q = n d ��� ; d 2 Z; d 6= 0o :Number theory studies not only these objets (e.g. fatoring integers into1A ring is basially a set of objets together with operations +, - and �.2A �eld is basially a set of objets together with operations +, -, � and �.
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2
primes), but also asks what happens when we add in elements whih were notthere before. For example, one an learn a lot of number theory and geometry bystudying the Gaussian integersZ[p�1℄ = fa+ bp�1 j a; b 2 Zgi.e., the ring we get by adding the new number \p�1" to Z.One beautiful aspet of Stark-type onjetures is that they an use magial-looking sums to learn about arithmeti in ertain rings. For example we will seethat the sums11 � 13 + 15 � 17 + 19 � 111 + 113 � 115 + 117 � : : : = �4 ; (1.1)

11 � 15 � 17 + 111 + 113 � 117 � 119 + 123 + 125 � : : : = ln(2 +p3)p3 ; (1.2)and 11 + 13 + 17 + 19 � 111 � 113 � 117 � 119 + 121 + : : : = �p5 (1.3)an atually give us information about fatorization in Z[p�1℄, Z[p3℄ and Z[p�5℄,respetively.Let d be a squarefree3 integer, suh that 4 divides (d � 3). Consider the �eldwe get by adding pd to Q :Q (pd) = f�+ �pd j �; � 2 Qg:3Squarefree means that d is not divisible by n2 for any n > 1. For suh a number it is nothard to see that pd is not in Q.



3
The ring of integers of this �eld isZ[pd℄ = fa+ bpd j a; b 2 Zg:It is natural to investigate the ways in whih this new ring Z[pd℄ is like or unlikeZ. To start with, Z[pd℄ may or may not have unique fatorization. For example,in Z[p�5℄ we have the following fatorizations of 6:2 � 3 = 6 = (1 +p�5)(1�p�5): (1.4)Yet within the ring, 2 does not divide either of the numbers on the right handside. Thus \fatorization into prime numbers" fails.4 In order to reover uniquefatorization, the notion of an ideal was introdued. An ideal A � Z[pd℄ is anysubset that is losed under internal addition (a+b 2 A for all a; b 2 A) and externalmultipliation (r � a 2 A for all r 2 Z[pd℄, a 2 A). We all an ideal prinipal ifA = (�)Z[pd℄ is generated by one element. We all two ideals A and B priipallyequivalent if there exist  and Æ in Z[pd℄ suh that ()A = (Æ)B. We then lookat the lass groupCld = fideals of Z[pd℄g=(prinipal equivalene)and de�ne the lass number hd to be the ardinality of the lass group. We havethe following theorem:Z[pd℄ has unique fatorization () hd = 1: (1.5)4The mistaken assumption that ertain number rings had the property of unique fatorizationled to inorret \proofs" of Fermat's Last Theorem in the 1800s; FLT was �nally settled duringthe 1990s.



4
Another way in whih Z[pd℄ may di�er from Z is that it may have in�nitelymany units. The units (i.e. invertible elements) of Z are simply �1. However, inZ[p3℄ for example, we have the equation(2 +p3)(2�p3) = 1; (1.6)and thus "3 = 2 +p3 is a unit of Z[p3℄. (And of ourse, if we square, ube, et.both sides of equation (1.6), we learn that any power of "3 is also a unit.)Let Ud = Z[pd℄� be the group of units. The Dirihlet Unit Theorem in thissituation (again 4j(d� 3)) saysUd = 8>>>><>>>>: f�1g if d < �1f�1;�p�1g if d = �1f�1g � h"di if d > 0;where "d is alled the fundamental unit for Q(pd) and is a generator of an in�niteyli group.Our goal was to study the arithmeti of Z[pd℄ via in�nite sums. To this end,de�ne a funtion �d : Z! f0;�1g in the following manner. Let �d(1) = 1. If p isa prime number, put�d(p) = 8>>>><>>>>: 0 if p j 4d1 if p - 4d; pj(x2 � 4d) for some x 2 Z�1 otherwise:Then extend �d multipliatively:�d(mn) = �d(m) � �d(n):



5
(Later we will reognize �d as the unique nontrivial Dirihlet harater assoiatedto our abelian �eld extension.)We de�ne an L-funtion viaL(s; �d) = 1Xn=1 �d(n)ns= �d(1)1s + �d(2)2s + �d(3)3s + �d(4)4s + �d(5)5s + : : : ;where s is a omplex variable. This series initially onverges absolutely and uni-formly on ompat subsets of <e(s) > 1, but it may be analytially ontinued tothe whole omplex plane. Moreover, these sums even onverge at s = 1.At this point the enterprising reader an return to the sums (1.1), (1.2), and(1.3) and work out that these are equal to L(1; ��1), L(1; �3) and L(1; ��5) re-spetively.Now we state an amazing theorem whih links the value of these L-funtionsat s = 1 to the lass number and the group of units. (This theorem arises fromwriting the L-funtions as a ratio of zeta funtions. We will pursue this approahextensively and in muh greater generality in Chapter 4.)Theorem 1.1.1. If d is an integer, 4j(d� 3), and �d is as above, thenL(1; �d) = 8>>>><>>>>: �p4jdjhd if d < �1�4h�1 if d = �1ln("d)pd hd if d > 0:At this point, if we fous on d = �5, we an write a omputer program thatsums for example the �rst one-hundred-thousand5 terms of series (1.3), and outputs5One an get bounds on how many terms are needed, et. We are not attempting to fous onthis aspet. Here one-hundred-thousand terms is easily suÆient.



6
the value approx = 1:404942946208175278630922728and ompare this toPi=sqrt(20) = 0:7024814731040726393156374643Aording to Theorem 1.1.1, the ratio of these two numbers must be the lassnumber. That is h�5 = 2:And we ould onlude via (1.5) that Z[p�5℄ does not have unique fatoriza-tion. Notie that we ould onlude this entirely numerially, without reourse toatually �nding an instane of non-unique fatorization suh as equation (1.4).Similarly, if we sum the �rst terms of the series (1.1) it quikly onverges to�=4 and we learn that h�1 = 1, i.e. that the Gaussian integers Z[p�1℄ do haveunique fatorization.Exerise: Given the value of the sum (1.2) and that "3 = 2 + p3, use Theo-rem 1.1.1 to determine h3, and hene by (1.5) whether Z[p3℄ has unique fator-ization.This long example has illustrated the onnetions between values of ertain L-funtions at s = 1 and quantities arising from the unit group and the lass groupof the assoiated �eld. This is the onern of the Stark onjetures. In the nextsetion and those following, we shall generalize these ideas in the following ways:by replaing the extension Q (pd)=Q with an arbitrary �nite abelian extension of
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number �elds K=k, by moving our point of interest6 (via the funtional equation)from s = 1 to s = 0, and by introduing auxiliary sets of primes S and T .1.2 A brief history of Stark-type onjeturesLeonhard Euler (1707-1783) was among the �rst to systematially study valuesof analytially de�ned objets. In partiular, he investigated what is now alledthe Riemann zeta funtion: �(s) = 1Xn=1 1nsand dedued its produt formula�(s) = Yp prime 11� p�s :For this reason, the fators in the produt are alled Euler fators.About a entury later, Johann Lejeune Dirihlet (1805-1859) introdued a pe-riodi funtion (a Dirihlet harater) into the numerator of the zeta funtion andalled the result an L-funtion. We have already seen examples of these in theprevious setion and learned that their speial values are quite useful for learningabout arithmeti.7These days, L-funtions are attahed not to periodi funtions of the naturalnumbers, but rather to haraters of a Galois group, a view whih enompasses6This move will require us to examine derivatives of the L-funtions, but this is not a fun-damental hange, as we are really interested merely in apturing the leading oeÆient in thepower series expansion about the spei�ed point.7Dirihlet's foremost use of L-funtions was to prove his theorem on primes in progression:for any relatively prime natural numbers a and b, the set fax+ b j x a natural numberg ontainsin�nitely many prime numbers.
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the earlier de�nition by reognizing (Z=nZ)� as the Galois group of the ylotomi�eld of nth roots of unity over Q .The importane of L-funtions is that they provide a harater-by-haraterfatorization of the Dedekind zeta funtion. Named after Rihard Dedekind (1831-1916), this funtion is attahed to a number �eld K, and an be given by the Eulerprodut �K(s) = YP a prime of K 11�NP�s :(See Setion 2.2 for the notations.) If K = Q we reover Riemann zeta.We have �K(s) =Y� L(s; �); (1.7)where the produt runs over all the haraters attahed to the Galois group ofK=Q . We shall re�enounter this formula in greater generality.These zeta and L-funtions have funtional equations relating their values at sand 1 � s. In the previous setion we studied values at s = 1. However, it turnsout one obtains simpler formulae if one turns attention to s = 0. By the funtionalequation, these are equivalent.Expanding �K(s) in a power series at s = 0 gives the analyti lass numberformula �K(s) = �hKRKwK sd +O(sd+1): (1.8)The leading term of the zeta funtion enodes the lass number (hK), the numberof roots of unity in K (wK) and a regulator (RK) arising from the unit group ofK. Also appearing is d, the Z-rank of the unit group.



9
Harold Stark was perhaps the �rst to suspet that a natural rational fatoriza-tion of the regulator ourred in terms of the unit group. In a series of papers inthe 1970s and early 1980s Stark promulgated the Stark onjetures. These providea framework to investigate the natural question of how the leading term of �K(s)fators into the leading terms of the L-funtions at s = 0. Write the power seriesof eah L-funtion at s = 0 asL(s; �) = (�)sr(�) +O(sr(�)+1):By ombining equations (1.7) and (1.8) we knowd =X� r(�) (1.9)and �hKRKwK =Y� (�): (1.10)One main question is whether we an realize eah (�) as arising from a �-pieeof RK times some rational number.Furthermore, if this question is answered in the aÆrmative, what then anwe say about the rational number? In a ertain very spei� ase, Stark gavean integral onjeture whih bounds the denominators of these numbers. Thisonjeture allows one to onstrut so-alled Stark units out of the values of the�rst derivatives of the L-funtions at s = 0. These Stark units are very useful andmysterious objets in number theory. In some ases taking roots of Stark unitsleads to a solution of Hilbert's 12th Problem|expliit lass �eld theory via speialfuntions. Hilbert had in mind the well known theory of exponentional funtionexp(x) over Q and the j-funtion oming from the theory of omplex multipliation



10
over imaginary quadrati �elds. Stark suggests that at times we may use haraterombinations of exp(L0(s; �)) as our speial funtion.Let us plae ourselves in the setting of Stark's orginal integral onjeture. Forthe preise de�nitions of all the terms to follow, onsult the following hapter. LetK=k be an abelian extension of number �elds, with Galois group G. Let bG denotethe dual group of G. We introdue a �nite set of primes S of the base �eld k,whih ontains all of the in�nite and ramifying primes. For the purposes of thisdisussion we shall assume the ardinality of S is at least 3. This set S modi�es theL-funtions, lass groups, and unit groups as desribed later. We let wK denotethe number of roots of unity in K.CONJECTURE (The First Order Abelian Stark Conjeture):Suppose further that S ontains at least one prime v0 whih splits ompletely inK=k. Fix a prime w0 of K whih divides v0. Then Stark predits that there is aunique element " 2 K with the following properties:(i) (" evaluates derivatives of the L-funtions) for eah � in bG,L0S(0; �) = �1wK X�2G�(�) log j"�jw0;(ii) (" is an S-unit)j"jw = 1 for all w not lying above a prime in S,and(iii) (abelian ondition) the extensionK("1=wK )=k
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is abelian.Stark proved this onjeture in [Sta80℄ under the assumption that k = Q ork = Q(p�d) (i.e. the two ases in whih the solution to Hilbert's 12th Problemis already known.) The next major ontribution to the subjet was the publia-tion of John Tate's book Les onjetures de Stark sur les fontions L d'Artin ens=0 [Tat84℄, in whih a representation-theoreti approah to the onjetures washighlighted.The splitting prime v0 fores the nontrivial L-funtions to vanish with order atleast one. In some ases the �rst derivative of the L-funtion aptures the leadingterm of its power series expansion at s = 0, but at other times is does not. It isa natural question, therefore, to ask for a similar integral-type onjeture in theases of higher order of vanishing. Karl Rubin made suh a onjeture when hepublished [Rub96℄ in 1996. Rubin supposes that S ontains r � 1 primes whihsplit ompletely inK=k and then predits that the rth derivatives of the L-funtionsare aptured under a regulator of an element in a sublattie of the rth exterior power(over Z[G℄) of the (S; T )�modi�ed unit group UK;S;T . (See hapter 3). We shallall this the standard (Rubin) onjeture and denote it by B(K=k; S; T; r). Thereis extensive support for Rubin's onjeture. Consult [Pop04℄.Rubin's onjeture uses an auxiliary smoothing set of primes T . (Suh a set was�rst introdued by Gross [Gro88℄.) By varying T one reaptures the ondition (iii)of Stark's original integral onjeture. The onnetion is made via a theorem wedesribe in Appendix A. It is ondition (iii) that at times implies a solution toHilbert's 12th problem via Stark units. Stark originally formulated this ondition
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merely by asking that K("1=wK )=K=k be a entral extension. For a disussion anda proof of what is required to ahieve a entral extension, also see Appendix A.Yet there remains the question of integrality when some of the vanishing ats = 0 is produed by non-split primes. Disussions between David Dummit andStark led Stark to formulate The Extended First Order Abelian Stark Question in2001. This question predited a formula similar to, but more ompliated than, (i)in ases when there was not neessarily a split prime in S but all L-funtionsvanished with order at least one at s = 0. Stefan Erikson investigated and provedertain ases of this question in his dissertation [Eri05℄.The next step was to reate a onjeture whih merged the Extended First Or-der Question with Rubin's higher order integral onjeture. Cristian Popesu putforward a suggestion in 2003 (a forthoming artile by Popesu introduing thisnew onjeture is slated to be submitted for publiation this year [Pop06℄). Thisextended onjeture is outlined in Chapter 3, where we denote it by eB(K=k; S; T ).(There are a slight variants to B and eB also introdued and referred to as onje-tures C and eC.)We shall examine this extended onjeture in detail. Our main goals will beto (1) examine its funtoriality under hange of �elds, and sets S and T , (2) provethat the extended onjeture follows from knowing the standard onjeture underertain irumstanes (and vie versa that the standard follows from the extended)and (3) prove the extended onjeture outright when possible.



Chapter 2
The objets of study

In this hapter, we arefully de�ne all notations and objets we will be studyingthroughout this dissertation. The reader who is already familiar with the higherorder integral Stark onjeture of Rubin may wish to skim Setions 2.3 and 2.7before proeeding diretly to Chapter 3. Many results of this hapter are of atehnial nature and may be skipped upon a �rst reading and referred bak to asneessary.2.1 Basi notationsFor a �nite set S, jSj or oasionally #S will denote the ardinality of S. Forany rational number q and prime l we fator q = lm � t with t relatively prime to land set ordl(q) = m.If A is a group and l is a prime number, rkl(A) is de�ned to be ordljA=Alj, ifthis number is �nite. Of ourse in�nite groups an and often do have �nite l-ranks
13



14
(for example if they are abelian and �nitely generated). It is also important toreognize that if A is a �nite group, ordljAj is always at least rkl(A), and may bestritly greater. For example, ord2jZ=32Zj= 5 while rk2(Z=32Z) = 1.If H is a subgroup of A, then (A : H) denotes the index of H in A. If M=k isan extension of �elds, [M : k℄ is the dimension of M as a k-vetor spae.If G is another group, and A has a G-ation, i.e., A is a module over the ringZ[G℄, then for a 2 A and � 2 Z[G℄ we shall write the ation as either � � a or a�,primarily depending on whether we were originally onsidering A as an additiveor multipliative group. (At times we even mix the two notations.) For any ringD � C we abbreviate DA := D 
ZA. (Almost always D = Q or D = C .) Thenotation bHi(G;A) denotes the ith Tate ohomology group of G with oeÆients inA (.f. [Cas67℄).2.2 Field extensions and fatorization of primesThroughout this dissertation, we will usually takeK=k to be a �nite abelian Ga-lois extension of number �elds. A number �eld is a �nite extension of the rationalnumbers Q . To say K=k is Galois means that Autk(K), the set of automorphismsof K whih �x k, has ardinality equal to [K : k℄. We all G(K=k) := Autk(K)the Galois group, and when K=k is �xed often use simply the letter G to denoteit. A number �eld k has a anonial ring assoiated to it, alled the ring of integersof k, and denoted Ok. This ring is de�ned to be the olletion of elements of kwhih are the root of some moni polynomial with oeÆients in Z. As was pointed
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out in the introdution, studying the arithmeti of Ok is one of the main goals ofnumber theory.Primes, or plaes, of a number �eld k ome in two avors. The �rst type, alled�nite or non-Arhimedean primes, an be identi�ed simply with non-zero primeideals of the ring of integers Ok. The seond type of prime is alled in�nite orArhimedean. An in�nite prime v orresponds to an embedding �v : k ,! C . If�v(k) � R we say v is a real plae; otherwise v is a omplex plae. Primes in generalare denoted by the letters v or w. Finite primes shall oasionally be denoted withthe letters p, P, p, q, et.A more holisti view is possible; we ould take a prime (in�nte or �nite) to bede�ned as an equivalene lass of absolute values on k. In partiular, if v is a primeof k, then the ompletion, kv, is C , R, or a �nite extension of the p-adi numbersQ p , depending on whether v is a omplex plae, a real plae, or a plae of �niteresidue harateristi p, respetively. The normalized absolute value orrespondingto a �nite plae p of k is j�jp = (Np)�ordp(�);where Np = jOk=pj is the ardinality of the residue �eld, and ordp is the naturalextension to ideals of the ord funtion from the previous setion. When v is a realin�nite plae, j�jv is the usual R-absolute value of the orresponding v-embeddingof �. If v is omplex, then j�jv = j�v(�)j2 is the square of the usual C -absolutevalue of the v-embedding of �.We are onerned with the behavior of primes in extensions K=k. If p is a �nite
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prime of k, then pOK is an ideal of OK whih we may fatorpOK = Pe11 Pe22 : : :Pegginto primes of K. We say that Pi divides p, and write Pijp. Furthermore we havethe inertial degree, whih is the natural number fi = fPijp suh thatNK=kPi = pfi ;where NK=k denotes the norm map. It is not too diÆult to show thate1f1 + e2f2 + : : :+ egfg = [K : k℄: (2.1)If v is an in�nite prime of k and w is an in�nite prime of K, then we say wdivides v if �wjk = �v:As above we write wjv. If w is omplex and v is real, then we say v has omplexi�edin K. For a disussion of whether this orresponds to rami�ation, see Setion 2.6.When K=k is Galois, e1 = e2 = : : : = eg, and we shall denote this quantityby e = ep(K=k) and all it the rami�ation index of p in K=k, and f1 = f2 =: : : = fg whih we shall denote by f = fp(K=k) (and all it the inertial degree).Formula (2.1) redues to efg = jGj. If g = jGj, we say p splits ompletely in K=kand all p a splitting prime. When e > 1 we say that p rami�es in K=k. Only�nitely many primes (namely those dividing the disriminant ideal dK=k) ramify inany �nite extension K=k.Suppose from now on that K=k is Galois, with Galois group G. Let p be a�nite prime of k, and P a prime of K dividing p. The group G ats transitively
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on the set of primes dividing p. We de�ne the deomposition group of P to be thestabilizer of P under this ation:GP = f� 2 G j P� = Pg:Beause G ats transitively, the deompostion group has ardinality ef .We may onsider the residue �elds Fq = Ok=p and Fqf = OK=P. These are�nite �elds of order Np = q and NP = qf , respetively. Eah � 2 GP indues anautomorphism on OK=P via � + P 7! �� + P. Suh an indued automorphism�xes Ok=p (onsidered in the natural way as a sub�eld of OK=P). One disoversthat all suh automorphisms are ahieved, and we get an exat sequene:0 �! IP �! GP '�! G(Fqf =Fq ) �! 0: (2.2)The kernel IP is alled the inertial group. The �nal Galois group G(Fqf =Fq ) inthe exat sequene (2.2) is yli of order f with a anonial generator, alled theFrobenius, F : a 7! aq. It follows that the ardinality of IP is e.Hene when p is unrami�ed, IP is trivial and ' in (2.2) is an isomorphism.Therefore we may pull bak �P = '�1(F )to arrive at the Frobenius automorphism �P, whih generates the deompositiongroup. Equivalently, the Frobenius automorphism is the automorphism �P suhthat x�P � xNp (mod P)for all x 2 OK . When speifying the �elds is neessary we shall either use thenotation �P(K=k) or �K=kP �.
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The next lemma lists the funtoriality properties of Frobenius automorphismsunder hange of �eld and hange of top prime.Lemma 2.2.1. (i) If � is any automorphism in G, �K=kP� � = ��1 �K=kP � � .(ii) If M is a �eld intermediate to K and k, with prime } lying below P then�M=k} � = �K=kP ����M and �K=MP � = �K=kP �f}jp.As a orollary of Lemma 2.2.1(i), if G is abelian, then the Frobenius dependsnot on P but merely on p. Hene in this situation (whih is the situation in thesequel), we write �p instead of �P. Note that p splits ompletely in K=k if andonly if p is unrami�ed and �p = 1.The unit group of k onsists of the invertible elements in Ok, Uk = O�k . If S isa �nite set of plaes of k, we let Ok;S denote the ring Ok loalized at S, and theS-unit group be Uk;S = O�k;S.2.3 Group rings, r-overings, and regulatorsIf G is a �nite abelian group, all representations of G are 1-dimensional (equalto their haraters). The set of haraters of G forms a group under multipliationbG = f� : G �! C � j � is a group homomorphismg:The trivial harater is the harater that takes every group element to 1 2 C � ;we denote the trivial harater by 1G.We may form the group rings Z[G℄ and C [G℄. By standard representation
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theory, the seond ring deomposesC [G℄ =M�2 bG C e� ; (2.3)where e� := 1jGjX�2G�(��1)�:Lemma 2.3.1. The e�'s have the following properties:(i) They are idempotents: e2� = e�.(ii) They are orthogonal: if � 6=  , e�e = 0.(iii) They at as �-evaluators: if � 2 G, � � e� = �(�)e�:This lemma proves the deomposition of C [G℄. Moreover, it follows that ifM isany C [G℄-module, thenM also deomposes as a C [G℄-module into �-omponents:M =M�2 bG(e�M):On the omponent (e�M), eah � 2 G ats simply as multipliation by �(�).De�nition 2.3.2. Let S be a set of primes of k and � 2 bG, � not the trivialharater. We put rS(�) := #fv 2 S : �jGv = 1Gvg:For the trivial harater, 1G, we setrS(1G) := jSj � 1:If G is the Galois group of K=k, we allrS(K=k) := min�2 bG rS(�)
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the minimal order of vanishing for S with respet to K=k.Finally, for any integer j we de�ne ( bG)j;S = f� 2 bG : rS(�) = jg.Remarks:(1) If � 2 bG is not the trivial harater, there are exatly rS(�) primes in S whihsplit ompletely in the extension Kker�=k. Indeed a prime v splits ompletely inany subextension M of K ontaining k if and only if Gv � G(K=M).(2) The reason for the terminology `minimal order of vanishing' is that if S ontainsall the in�nite and rami�ed primes, then rS(�) is nothing more than the order ofvanishing at s = 0 of the S-inomplete L-funtion LS(s; �). See [Tat84, Proposition3.4℄ for details.De�nition 2.3.3. If G is any subset of bG, we say that a set S is an r-over for Gif rS(�) � r for all � 2 G.Lemma 2.3.4. If S1; S2 � S are r-overs for ( bG)r;S, then S1 \ S2 is as well.Proof. Suppose S1 and S2 are r-overs for ( bG)r;S. Take � 2 ( bG)r;S, � not the trivialharater. Then there must be exatly r distint primes v1; :::; vr in S with theproperty that �jGv = 1Gv . These primes must be in S1 and S2 by the de�nition ofr-over. Hene they are in S1 \ S2. Therefore rS1\S2(�) = r.On the other hand, if � 2 ( bG)r;S is the trivial harater, then it follows thatjSj = r+1. In this situation, for S1 and S2 to be r-overs for ( bG)r;S they also mustontain at least r + 1 primes, so must in fat be S.Corollary 2.3.5. Let r = rS(K=k). The setSmin =\S 0;
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where the intersetion is over all S 0 � S that are r-overs for ( bG)r;S, is the minimalr-over for ( bG)r;S.De�nition 2.3.6. Let S be a set of plaes of k, and K a �nite extension of k.De�ne SK = fw j w is a prime of K whih divides v for some v 2 Sg:Let YS be the free abelian group on SK . There is a natural homomorphism,alled the augmentation map, YS aug�! Z �! 0sending an elementPw2SK nw �w toPw2SK nw. We de�ne XS to be the kernel ofaug.We de�ne, for any Q [G℄-module M,(M)r;S = fm 2 M : e� �m = 0 in CM for all � 2 bG suh that r(�) 6= rg:(Often we will extend salars of any Z[G℄-modules to at least Q [G℄.) We onsider(�)r;S as a funtor from the ategory of Q [G℄-modules to itself. If we have a Q [G℄-module homomorphismM1 ��! M2, then we put (�)r;S := �j(M1)r;S . Note thatthis is well-de�ned; if m 2 (M1)r;S then �(m) 2 (M2)r;S:It will be useful to introdue more group-ring idempotents. In partiular, forany natural number j we may form the idempotentej = X�2 bGrS(�)=j e�:
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Lemma 2.3.7. Eah ej is an element of Q [G℄.Proof. This is obvious if there are no � 2 bG with rS(�) = j. Otherwise this followsfrom the fat that if � is an automorphism of C , then rS(�Æ�) = rS(�). (Beause� and � Æ � have the same kernel. Indeed for any two haraters � and  in bG,there exists a C -automorphism � with  = � Æ � if and only if ker = ker�.)Hene we may group our haraters by their kernels, and notie that if we take(for some  ), H = ker , thenX�2 bGker(�)=H e� = 1jGj  �(n)X�2H � + TrQ(�n )=Q(�n)X�=2H �! 2 Q [G℄:where we let n = jGjjHj , �(�) is Euler's totient funtion, �n is a primitive nthroot of unity and Tr denotes the trae. (Notie that �(n) is nothing more thanTrQ(�n )=Q(1).)Remark: If we throw in more of the e�'s we arrive at an even nier formula: Forany subgroup H � G, X�2 bGH�ker� e� = 1jHjNH ; (2.4)where NH =Xh2H h 2 Z[G℄ (2.5)is the algebrai norm attahed to the subgroup H. This an be proved by applyingeah  2 bG to both sides of the equation. IfH � ker we get 1 = 1, and otherwise,0 = 0. By the diret sum deomposition of C [G℄, equation (2.3), we are done.
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Lemma 2.3.8. The funtor (�)r;S from the ategory of Q [G℄-modules to itself hasthe following properties(i) It is exat.(ii) It ommutes with taking exterior produt over Q [G℄.Proof. (i) Suppose 0 �! A ��! B ��! C �! 0 is a short exat sequene ofQ [G℄-modules. Being merely a restrition, (�)r;S is still injetive. If  2 (C)r;S, Letb 2 B be suh that �(b) = . Put b0 =Pr(�)=r e� � b = er � b. Then b0 2 (B)r;S, and�(b0) = er �  =X�2 bG e� �  = :Hene (�)r;S is onto (C)r;S.Exatness in the middle is an equally easy exerise.(ii) LetM be a Q [G℄-module, and n a positive integer. We wish to prove that�VnQ[G℄M�r;S = VnQ[G℄(M)r;S: The inlusion (�) is immediate. On the other hand,if m = m1 ^ : : : ^mn 2 �VnQ[G℄M�r;S, thenm = er �m = enr �m = (er �m1) ^ : : : ^ (er �mn) 2 n̂Q[G℄(M)r;S:The proof onludes by the linearity of multipliation by er.Lemma 2.3.9. If jSj > r + 1, (C VrXS)r;S = (C Vr YS)r;S :Proof. Tensoring the exat sequene 0 �! XS �! YS �! Z �! 0 with the atZ-module C yields an exat sequene 0 �! CXS �! C YS �! C e1 �! 0, wherewe write C e1 to emphasize the trivial G-ation. Now apply the funtor (�)r;S,noting that the funtor annilihates C e1 if and only if jSj > r + 1. Now use both(i) and (ii) of Lemma 2.3.8.
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For eah v 2 S, arbitrarily �x a single w 2 SK with wjv. We de�ne a regulatormap C UK;S RS�! CXSvia RS(u) =Pv2S lw(u) � w, wherelw(u) = 1jGvjX�2G log ju��1 jw � �:Proposition 2.3.10. The map RS is a C [G℄-isomorphism.Proof. That the map is a C [G℄-homomorphism is easily heked. Suppose u 2 UK;Sand RS(u) = 0. Then u has trivial valuation at every single prime of K, and heneis a root of unity. But the image of suh an element in C UK;S is trivial. It followsthat as a map of C -vetor spaes, RS is injetive. Sine C UK;S and CXS have thesame dimension over C (see Lemma 2.5.1 in the following unit group setion), theproposition follows.From this isomorphism we get an isomorphism of exterior algebrasC Vr UK;S Vr RS

// C VrXS:Reall that for any set S = fv1; :::; vjSjg; of plaes of the base �eld k we havearbitrarily �xed a prime wi of K dividing vi. We also �x an arbitrary order on S,so that if we pik a subset I = fvi1 ; :::; virg of S with exatly r elements, we mayput wI = wi1 ^ ::: ^ wir and there is no ambiguity about the sign. If S 0 � S hasmore than r elements we put wS0 =XwI ;
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where the summation runs over all subsets I of S 0 of ardinality exatly r. (Eahdistint subset gives rise to only one summand; we always order the subsripts ininreasing order.) We introdue the notation P(S) for the power set of S, andPr(S) for the set of all subsets of S of ardinality exatly r. Thus we ould writewS0 =PI2Pr(S) wI .Proposition 2.3.11. Assume S is an r-over for bG. Then S 0 � S is an r-overfor ( bG)r;S if and only if (C Vr YS)r;S is a free (C [G℄)r;S -module of rank 1 and basiswS0.Proof. For this proof we refer the reader to [Pop06℄.Let �Smin be the map that sends an element ��wSmin in (C Vr YS)r;S to � 2 C [G℄.This map is well de�ned by the previous proposition. In the following sequene(with our standing assumption that jSj > r + 1), eah map is an isomorphism ofC [G℄-modules C r̂ UK;S!r;S Vr RS�!  C r̂ XS!r;S �!  C r̂ YS!r;S �Smin�! C [G℄r;S :We all the omposite of these maps the Smin-regulator attahed to the extensionK=k, and denote it RK=k;S. At times, in the interest of suint typography, wemay suppress either or both of the subsripts.Thus far, the regulators we have been disussing do not resemble the stan-dard regulators of algebrai number theory, namely determinants of logarithms.However, we make that onnetion next. For the �eld extension K=k, with primesw1; : : : ; wr we de�ne yet another regulator map. Let W = w1^ : : :^wr 2 VrZ[G℄YK,
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and for u1; : : : ; ur 2 UK;S putRW (u1 ^ : : : ^ ur) = det1�i;j�r �lwj(ui)� 2 C [G℄;and then extend this map to all of C VrZ[G℄UK;S via linearity. These are the regula-tors that will be used when stating the so-alled standard onjetures in the nexthapter. It is not surprising, perhaps, that they have a link with the regulatorRK=k;S whih we have already de�ned. For the proof of the next theorem, see[Pop06℄.Theorem 2.3.12. RK=k = RwSmin = XI2Pr(Smin)RwI :Suppose H is a subgroup of G. Put M = KH , and � = G=H = G(M=k).There is a natural projetion � = �K=M : G ! �, whih may be extended to amap C [G℄ ! C [�℄. By abuse of notation we use � to denote both.Proposition 2.3.13. For any z 2 C Vr UK;S,�K=MRK=k(z) = RM=k(N (r)M=Kz):Proof. By the linearity of all operators onsidered, it suÆes to assume z is asimple tensor, z = u1^ : : :^ur. Let v1; :::; vr be any r primes of k, and �x wijqijviprimes of K=M=k, respetively.Realling the way we normalize our absolute values, and that for deomposition
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groups, jHqj=jGvj = 1=j�vj, we have�lw(u) = 1jGvjX�2G log ju��1 jw � �H= 1jGvj X�H rep.G=H  Xh2H log juh�1��1 jw! � �H= 1jGvj X�H rep.G=H log jNK=M(u��1)jw � �H= 1jGvj X�H rep.G=H log j(NK=Mu)��1H jjHqjq � �H= lq(NK=Mu)for any u 2 UK;S.Let q = q1 ^ : : : ^ qr and W = w1 ^ : : : ^ wr. Then�RW (z) = � det1�i;j�r(lwi(uj)) = det1�i;j�r(lqi(NK=Muj)) = Rq(N (r)K=Mz):Hene, we are done by Theorem 2.3.12.Finally we need to onstrut a map that is a one-sided inverse of �K=M . Wede�ne 	K=M : C [�℄ �! C [G℄P�H2� n�H � �H 7�! 1jHjP�2G n�H � �Lemma 2.3.14. The map 	K=M has the following properties:(i) �K=M Æ	K=M = idC [�℄(ii) 	K=M Æ �K=M = (multipliation by 1jHjNH in C [G℄)(iii) For � 2 b� any harater, 	K=M(e�) = e�Æ�K=M .
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Proof. These are all straight-forward omputations. As an example, we performthe omputation for (iii):	(e�) = 	 1j�j X�H2��((�H)�1)�H!= 1j�jjHjX�2G�(��1H) � �= 1jGjX�2G(� Æ �)(��1) � �= e�Æ�:
2.4 Artin L-funtionsLet S be a �nite set of primes of k. As a standing assumption, S ontainsall the Arhimedean primes, and those ramifying in K=k. De�ne, originally for<e(s) > 1, a so-alled G-equivariant (S; T )-modi�ed L-funtion�K=k;S;T (s) : C ! C [G℄by �K=k;S;T (s) =Yv=2S(1� ��1v Nv�s)�1Yv2T(1� ��1v Nv1�s) (2.6)The produt onverges absolutely and uniformly on ompat subsets of <e(s) > 1.The funtion given by the produt may be uniquely analytially ontinued to aentire funtion on C n f1g with a simple pole at s = 1, thereby de�ning �. Theindividual term (1 � ��1v Nv�s)�1 is alled the Euler fator assoiated to v. Theterms appearing rightmost are alled the smoothing fators assoiated to T .
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There is an alternate way to write �K=k;S;T (s):�K=k;S;T(s) =X�2 bGLK=k;S;T (s; ��1)e�; (2.7)where LK=k;S;T (s; �) is the (S; T )-modi�ed Artin L-funtion attahed to �. Speif-ially the L-funtions are given by the formula:LS;T (s; �) =Yv=2S(1� �(�v)Nv�s)�1Yv2T(1� �(�v)Nv1�s):Beause we are assuming K=k is abelian, all representations are 1-dimensionaland we do not need to onsider the determinant of the ation as is done in gen-eral (see [Neu99, VIIx12℄). Further, beause S ontains all in�nite and ramifyingprimes, we avoid de�ning Euler fators for these \bad" primes.If one multiplies out the Euler fators, one obtains (for simpliity taking T = ;)LS(s; �) =X �(�a)(Na)s ;where the sum is over all (integral) ideals a of k relatively prime to S. Theautomorphism �a is de�ned by �a = �p1�p2 : : : �ptwhere a = p1p2 : : : pt is the prime fatorization of a.When G is abelian, these funtions may be extended to analyti funtions ofthe entire omplex plane for � 6= 1 and LK=k;S;T (s; 1) = �k;S;T (s) is analytiallyontinued to the whole plane exept for a simple pole at s = 1.As in the previous setion, we take H � G a subgroup and put M = KH , and� = G=H = G(M=k). We denote the natural projetion C [G℄ ! C [�℄ by �. In
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this situation, Artin L-funtions satisfy some well-known funtoriality properties,whih are summarized in the next proposition.Proposition 2.4.1. (i) (Ination) If  : G(M=k) ! C � is any harater, then Æ � is a harater of G(K=k) andLK=k(s;  Æ �) = LM=k(s;  ):(ii) (Restrition) If e� : G(K=M)! C � is a harater of G(K=M), thenLK=M(s; e�) = Y�2 \G(K=k)�jG(K=M)=e�LK=k(s; �):Proof. The proof is based on looking one-at-a-time at eah Euler fator omingfrom a prime in the base �eld. See for example [Neu99, Proposition VII.10.4℄.Remarks: (1) Notie that in part (ii) if we take M = K, and e� to be (byneessity) the trivial harater, then we reover the important formula�K(s) = Y�2 bGLK=k(s; �):(2) Also, beause of these properties, we ould suppress the notation of whih�elds we are working with from the L-funtions, however we will mainly only dothis when the �elds are �xed.(3) All stated properties also hold for S- and (S; T )-modi�ed L-funtions.Let us push the idea in Remark (1) a bit further and prove an amusing lemmawhih relates the total splitting of the primes of S in K=k to their splitting in eahyli subextension of K=k.
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Lemma 2.4.2. For any set of primes S of the base �eld k, we have the followingequality X�2 bG�6=1G rS(�) =Xv2S(gv � 1); (2.8)where gv = jGjjGv j is the number of primes of K lying above v.Proof. By Remark (1) above, we may onlude (by dividing the zeta funtion of kaross) thatords=0(�K;S(s))� ords=0(�k;S(s)) = X�2 bG�6=1G ords=0(LK=k;S(s; �)):The right hand side is exatly P �2 bG�6=1G rS(�), while the left hand side is (jSKj �1)� (jSj � 1). But jSK j =Pv2S gv.2.5 Unit groupsAt the heart of the theory lies the (S; T )-modi�ed unit group UK;S;T , de�nedby UK;S;T = �u 2 K� : jujw = 1 (8w 62 SK); u � 1 (mod P) (8P 2 TK)	 :In this setion, we ollet several (slightly disjointed) lemmas that will help uswhen working with these groups. Let us desribe their struture as Z- and Z[G℄-modules. The �rst is not far to seek; the following lemma desribes the Z-strutureompletely.
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Lemma 2.5.1. As abelian groups, UK;S �= �K � ZjSKj�1, and UK;S;T �= �K;T �ZjSKj�1 where �K (respetively �K;T ) is the group of roots of unity of K (respetivelyroots of unity of K ongruent to 1 modulo every prime in TK).Proof. The �rst is the well-known Dirihlet Theorem for S-units (see e.g. [Gra03℄or [Neu99℄). For the seond, suppose that u1; : : : ; un (n = jSKj � 1) is a basis forUK;S=�K. Then by Fermat's Little Theorem, if we raise eah ui to a high enoughpower �, we will have u�i � 1 (mod MT ) whereMT is the produt of all the primesin TK. Hene the Z-rank of UK;S;T is at least that of UK;S, but as the former isontained in the latter, the ranks must be equal. The redution from �K to �K;Tis immediate.The struture of UK;S;T (or UK;S) as a Z[G℄-module is not well understood.Indeed, oming to understand this struture is one of the key hopes of pursuingStark-type onjetures.When we deal with (S; T )-modi�ed objets in the onjetures that are to follow,we will be making the requirement that UK;S;T is Z-torsion free, or equivalently,that �K;T = f1g. This is not at all hard to ahieve, as evidened by the followinglemma.Lemma 2.5.2. The ondition that UK;S;T is Z-torsion-free is satis�ed if T ontainsat least one prime p that does not divide wKOK (where wK denotes the number ofroots of unity in K).Proof. Consider the funtion f(x) = xwK � 1, whih is a (reduible) de�ningequation for the roots of unity in OK . Let P be a prime of K lying above p. The
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fat that f 0(x) = wKxwK�1 is trivial (mod P) only at x � 0 (mod P) tells us thatthe roots of f are distint (mod P). Hene for � 2 �K,� 6= 1) � 6� 1 (mod P)) � =2 UK;S;T :

In the oming setions, when we de�ne ertain latties inside C Vr UK;S we willbe working not only with the unit groups, but also with their Z[G℄-duals. As usualwe need to understand their behavior under hange of �eld.Lemma 2.5.3. For any Z[G℄-moduleM there is an isomorphism of abelian groupsHomZ(M;Z) �= HomZ[G℄(M;Z[G℄):Proof. An isomorphism is given by the map ' 7�! (m 7!P�2G '(m�) ���1), withinverse map � 7�! (m 7! (oeÆient of idG in �(m))). See [Rub96℄.De�nition 2.5.4. We follow [Pop04, Setion 4℄, in de�ning a mapN�K=M : HomZ[G℄(UK;S;T ;Z[G℄)! HomZ[�℄(UM;S;T ;Z[�℄)via (N�K=M')(u) = 1[K :M ℄�K=M Æ ' Æ �K=M(u): (2.9)Lemma 2.5.5. If bH1(G(K=M); �K;T ) = 1, then the map N�K=M is surjetive.Proof. The sequene 1 ! UM;S;T ! UK;S;T ! UK;S;T=UM;S;T ! 1 leads to a longexat sequene1! HomZ(UK;S;T=UM;S;T ;Z)! HomZ(UK;S;T ;Z)! HomZ(UM;S;T ;Z) Æ!Ext1Z(UK;S;T=UM;S;T ;Z)! Ext1Z(UK;S;T ;Z)! Ext1Z(UM;S;T ;Z)! 1:
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The �nal term is 1 beause, for any abelian group A, ExtiZ(A;Z) is trivial ifi � 2 (see [DF91, Setion 17.1℄). Further, #Ext1Z(A;Z) is equal to the order of thetorsion subgroup of A, if it is �nite.Let us show, by ounting ardinalities, that the long exat sequene abovesplits into two short exat sequenes at Æ. Pik a u in the torsion subgroup Z ofUK;S;T=UM;S;T , so that un 2 UM;S;T for some n � 1. Consider the map H ! �K;T ,� 7! u��1. Let's justify that �K;T is indeed the target of this map. For eahh 2 H := G(K=M), we then have (uh�1)n = (un)h�1 = 1, so that uh�1 = �h issome nth root of unity in UK;S;T . One heks that this map is a 1-oyle. (Indeed,u���1 = u����+��1 = u��1u�(��1).) Thus, by modding out oboundaries, this mapindues one 1! ker'! Z '! bH1(H; �K;T );where ker' = �K;TUM;S;T=UM;S;T �= �K;T=�M;T . By assumption, the ohomologygroup bH1(H; �K;T ) is trivial, and hene Z �= ker'. We onlude that #Z = wK;TwM;Tand hene by looking at ardinalities,1!Ext1Z(UK;S;T=UM;S;T ;Z)! Ext1Z(UK;S;T ;Z)! Ext1Z(UM;S;T ;Z)! 1is exat, so that1! HomZ(UK;S;T=UM;S;T ;Z)! HomZ(UK;S;T ;Z) resK=M! HomZ(UM;S;T ;Z)!1is an exat sequene.Next, one heks that the diagram
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HomZ(UK;S;T ;Z) resK=M

//�=
��

HomZ(UM;S;T ;Z)�=
��HomZ[G℄(UK;S;T ;Z[G℄)N�K=M

// HomZ[�℄(UM;S;T ;Z[�℄)is ommutative. We have just seen that the top map in the above ommutativediagram is surjetive. Sine the vertial maps are isomorphisms (by Lemma 2.5.3),it follows that the bottom map is also surjetive.Note of ourse that if, as we often assume, �K;T = f1g then bH1(H; �K;T ) isobviously trivial.It will be important to know how the map N� interats with the natural pro-jetion and elements of the dual group of UK;S;T . The answer lies in the followingLemma 2.5.6. If z 2 Q VrZ[G℄UK;S;T and �1; : : : ; �r 2 U�K;S;T , we have�K=M(�1 ^ : : : ^ �r)(z) = ((N�K=M�1) ^ : : : ^ (N�K=M�r))(N (r)K=Mz):Proof. By linearity, it suÆes to assume z = u1 ^ : : : ^ ur. Then�K=M(�1 ^ : : : ^ �r)(u1 ^ : : : ^ ur) = �K=M det(�i(uj))= det(�K=M�i(uj))= det��K=M NK=M[K :M ℄�i(uj)�= det� 1[K :M ℄�K=M�i(NK=Muj)�= det �(N�K=M�i)(NK=Muj)�= ((N�K=M�1) ^ : : : ^ (N�K=M�r))(N (r)K=Mz)as desired.
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Finally we round out this setion by proving that the evaluators we will beexamining in the rest of this dissertation are supported only at ertain primes.Lemma 2.5.7. Suppose that S ontains exatly r primes that split ompletely inthe extension K=k and u 2 (UK;S)r;S. Then jujw = 1 for all primes w not dividingthe split primes in S.Proof. Fix suh a w and all v the prime below it in k. If v =2 S then jujw = 1 bythe de�nition of UK;S. So suppose v 2 S, in whih ase we are assuming v doesnot split ompletely in K=k, so the deomposition group Gv is nontrivial.We work with the element � = jGjer 2 Z[G℄. As u 2 (UK;S)r;S, er � u = u inC UK;S , whih means that u� = � � ujGj for some root of unity �. By applying theabsolute values, jujjGjw = Y�2G ���uP�2 bGr;S �(��1)����w= Y�2G ���uP�2 bGr;S �(�)���w�= Y�2G=Gv ���uP�2 bGr;S �(�)P�2Gv �(�)���w�= 1:The last equality holds beause in generalP�2Gv �(�) is either jGvj or 0 based onwhether Gv � ker� or not|however � 2 bGr;S means that for primes in S, onlythe r split ones have Gv � ker�.Sine jujw is a nonnegative real number, jujw = 1.
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2.6 Class �eld theoryClass �eld theory has intimate onnetions with Stark's onjetures, whih isapparent from the hK �guring so prominently in the seminal formula�K(s) = �hKRKwK sd +O(sd+1):In the higher order onjetures, the behaviors of the primes in S must be known.Do they ramify in K=k? How many of them split in eah subextension? This isone of the two uses we will have for lass �eld theory: it governs these behaviors.When we turn to studying extensions of exponent two (Chapter 4), we need tounderstand the 2-rank of ertain ideal lass groups. In this setion we introduethese groups and begin to disuss relationships between their ranks.Throughout this setion we will follow the notational onventions found in Gras[Gra03℄. We �x a number �eld k and take S and T to be a �nite disjoint sets ofplaes of k. Let Ik denote the group of frational ideals of k, and P l0 denote the setof �nite plaes of k. Similarly P l1; P lr1; and P l1 denote the in�nite plaes, andthe real and omplex subsets of them, respetively. Finally, for a rational primenumber p 2 Z, P lp denotes the primes of k that divide p. For any set of plaes Twe denote T0 = T \ P l0. We an form the idealMT = Yp2T0 p:We onsider subgroups of frational ideals|�rst those relatively prime to T :Ik;T = fa 2 Ik j (a;MT ) = 1g:
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Now for any idealM and any subset � � P lr1, we form the prinipal ray lassPk;M;� = f(a) 2 Ik;supp(M) j a 2 k�; a � 1 (mod M); �v(a) > 0 8v 2 �g:De�nition 2.6.1. Given a �nite sets S of plaes of k, and an ideal M withsupp(M) \ S = ;, we de�ne the S-ray lass group modulo M to be the quotientClk;S;M = Ik;supp(M)=Pk;M;Sr1hS0i:The lass groups of interest to us generally have a tame modulus with supportequal to T , so we give these a speial name:De�nition 2.6.2. The (S; T )-modi�ed lass group of k isAk;S;T = Clk;S;MT :If T is the empty set, we often abbreviate Ak;S := Ak;S;;.The fundamental theorems of lass �eld theory (applied to these irumstanes)now ombine to give:Theorem 2.6.3. There exists a �eld Hk;S;T whih is a �nite Galois extension of k,oupled with a group isomorphism, alled the Artin map, Ak;S;T �=�! G(Hk;S;T=k).Moreover Hk;S;T is the maximal abelian extension of k, whih is unrami�ed outsideT , at most tamely rami�ed in T , and in whih all primes in S split ompletely.Remark: Unlike many other soures, we follow Gras [Gra03℄ and Neukirh [Neu99℄(in partiular, see the disussion after Proposition III.3.13 in Neukirh) in allinga omplexifying in�nite prime \inert" as opposed to \ramifying." One then plaes
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any in�nite prime one does not want \to ramify", i.e., one wishes to split, into S.Thus by not inluding any in�nite primes in S one gets a narrow lass �eld, andby inluding all of them one gets an ordinary lass �eld.De�nition 2.6.4. The ardinality of Ak;S;T , or equivalently of G(Hk;S;T=k), isdenoted hk;S;T ; we refer to it as the (S; T )-modi�ed lass number.As mentioned before, in Chapter 4 we study multiquadrati extensions, andthe prime 2 is of utmost importane. Therefore we give primes that divide 2, i.e.,those in P l2, a speial name, and all them dyadi primes.Theorem 2.6.5. Suppose S ontains the set of Arhimedean plaes P l1, and thatT ontains no dyadi primes and is disjoint from S. Thenrk2(Clk;S;MT )� rk2(Clk;T;M�) = jT j � jSj;where M� = Yp2S0nS2 pYp2S2 p2ep(k=Q)+1 Yp2P l2nS2 p2ep(k=Q) :Proof. If we apply [Gra03, Theorem I.4.6(ii)℄ to this situation, we obtainrk2(Clk;S;T )� rk2(Clk;T;M�) = jT j � jSj;where Clk;S;T = lim �Clk;S;N with the projetive limit taken over all N with supportin T . It remains to show rk2(Clk;S;T ) = rk2(Clk;S;MT ), whih is ahieved by thefollowing argument. Let N =Qp2T pnp be any ideal with np > 0 for all p 2 T (i.e.MT jN). Aording to Corollary I.4.5.4 in [Gra03℄,0 � rk2(Clk;S;N)� rk2(Clk;S;MT ) �Xp2T rk2((Up)2U (1)p =(Up)2U (np)p );
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where Up is the group of loal units in the ompletion kp, and U (i)p is the subgroupof loal units ongruent to 1 modulo �ip for a uniformizer �p. But(Up)2U (1)p =(Up)2U (np)p �= U (1)p =((Up)2U (np)p \ U (1)p ):But the group on the right is a quotient of U (1)p =U (np)p , whih has ardinality(Np)np�1. Sine p is non-dyadi, this ardinality is odd, so the 2-rank is zero.Next we turn to studying so-alled governing �elds as expliated in [Gra03℄. Forthe momentM denotes any �eld intermediate between K and k, and � = G(M=k).De�nition 2.6.6. LetYSM = fx 2M� j (x) = a2aS0; a 2 IM ; aS0 2 hSM;0ig;and QM =M(qYSM):The �eld QM is alled the S�governing �eld assoiated to M .Note that YSM is a Z[�℄-module, so by Lemma A.1.3 (found in Appendix A),the extension QM=k is Galois.For eah w 2 TM , let �QM=Mw � denote the Frobenius of w in G(QM=M).Lemma 2.6.7. If T 6= ; and T ontains no dyadi primes, then there exists aT -totally rami�ed S-split relative quadrati extension of M if and only ifYw2TM �QM=Mw � = 1:Proof. This lemma is merely the spei�ation to p = 2 of [Gra03, CorollaryV.2.4.2℄.
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2.7 Evaluators and lattiesWhen Stark examined the �rst derivatives of the L-funtions, he expeted theirvalues to arise from a regulator map applied to an element "K=k in UK;S. Whenr = rS(K=k) > 1, we want to examine the higher derivatives of the L-funtions,and it beomes natural to ask not that the values ome from a single unit, butrather from an rth exterior produt of UK;S. We may need denominators, andindeed we shall �rst de�ne the evaluator"K=k;S;T 2 C r̂Z[G℄UK;S;T :More tehnially, the evaluator will be in the minimal order of vanishing (�)j;Ssubmodule of the exterior produt. IndeedLemma 2.7.1. If j denotes the number of primes whih split ompletely in K=kthen 1j!�(j)K=k;S;T (0) 2 (C [G℄)j;S : (2.10)Proof. By di�erentiating equation (2.7) j times, substituting s = 0 and dividing byj!, we see that the e�-omponent of 1j!�(j)K=k;S;T (0) is 1j!L(j)K=k;S;T (0; ��1). For everyharater � 2 bG, rS(�) � j, beause of the j splitting primes and the remarksfollowing De�nition 2.3.2. On the other hand, if rS(�) > j we have rS(��1) > jand therefore these L-funtions vanishing to order higher than j at s = 0, so itsjth derivative evaluates to 0. Therefore this element of C [G℄ is only supported one�-omponents with rS(�) = j.The evaluators we �x will depend on our hoie of primes w sitting aboveprimes v 2 S that we use to de�ne the regulators. However, this dependene is
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well-understood and does not a�et the truth of the onjetures. For details, seeRemark 2 in Setion 2.1 of [Pop04℄. Also note that we will be using the notationf (r)(s) to denote the usual rth derivative of f(s), as opposed to the rth derivativedivided by r! as is done in some of the literature on Stark-type onjetures.De�nition 2.7.2. (The standard Rubin-Stark evaluator) Let S+ denotethe primes in S that split ompletely in K=k. Let j be a nonnegative integer.(i) If j = jS+j we put W = wS+ in the sense of Setion 2.3, and de�ne"K=k;S;T;j = R�1W � 1j!�(j)K=k;S;T (0)�|the inverse image under the isomorphism C ĵ UK;S;T!j;S RW�! (C [G℄)j;Sof the speial value of the j-th derivative of the equivariant L-funtion.(ii) If j < jS+j we put "K=k;S;T;j = 0.(iii) If j � jSj�1 or j > jS+j we do not de�ne "K=k;S;T;j. (This ase will be avoidedin the sequel.)These epsilons are alled the standard Rubin-Stark evaluators for the dataK=k,S, and T . They are the elements that appear in the standard onjetures, whihwe will meet in the next hapter. Note that although "K;S;T;j is an element ofthe (j; S)-submodule of the exterior produt, we often regard it as an element ofC VrZ[G℄UK;S;T itself.De�nition 2.7.3. (The extended Rubin-Stark evaluator) On the otherhand, we introdue for this dissertation a more general evaluator, �K=k;S;T , as fol-
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lows: �K=k;S;T = R�1K=k;S � 1r!�(r)K=k;S;T (0)� ;where r = min�2 bG rS(�) is the minimal order of vanishing.As de�ned, these evaluators always exist. The onjetures we formulate willtherefore not stipulate their existene, but rather predit where exatly they lie.A priori, they are elements of a C -vetor spae. We will �rst onjeture them tolie in a rational (\Q") omponent of it, and then in an integral (\Z") lattie insidethat omponent.Finally we turn to de�ning latties inside of exterior produts. Let D be aommutative ring and M be any D-module. Let M� := HomD(M; D) be thedual in the ategory of D-modules. As desribed by Rubin (in [Rub96, Setion1.2℄), for any 0 � j � r, there is a anonial mapĵD M� ! HomD r̂D M; r�ĵD M! :This is ahieved by iterating the map that a single � de�nes fromVrM toVr�1M:m1 ^ : : : ^mr 7! rXi=1 (�1)i+1�(mi)m1 ^ : : : ^mi�1 ^mi+1 ^ : : : ^mr:When j = r, the indued map is (�1 ^ : : : ^ �r)(m1 ^ : : : ^mr) = det(�i(mj)).In order to de�ne a lattie we are going to implement these ideas withD = Z[G℄,M = UK;S;T and j = r or j = r � 1.We de�ne the Rubin-onjetured lattie �K=k;S;T;r to be8<:� 2 0�Q r̂Z[G℄UK;S;T1Ar;S�������1 ^ : : : ^ �r�1(�) 2 UK;S;T ; 8 �1; : : : ; �r�1 2 U�K;S;T9=; :
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Equivalently, we ould require, as Rubin does, the ondition that�1 ^ : : : ^ �r(�) 2 Z[G℄for all �1; :::; �r 2 U�K;S;T : However, the �rst de�nition is an important way oflooking at the Rubin-onjetured lattie, as we also de�ne a slightly larger lattie,alled the Popesu-onjetured lattie, �0K=k;S;T;r via8<:� 2 0�Q r̂Z[G℄UK;S;T1Ar;S ������ �1 ^ : : : ^ �r�1(�) 2 UK;S;T ; 8 �1; : : : ; �r�1 2 U�K;S9=; :As usual, we will suppress many of the subsripts when then are not relevant. Ifno T is indiated, then T = ;.Lemma 2.7.4. (i) C�S;T = C�0S;T = �C VrZ[G℄UK;S�r;SProof. This is immediate, as all the unit groups onsidered are of �nite index inUK;S, and all are supported on the same �-eigenspaes.



Chapter 3
The onjetures

As in the previous hapter, K=k is an abelian extension of number �elds.De�nition 3.0.5. We all a set S appropriate for the extension K=k if it is anon-empty �nite set of plaes of k whih(i) ontains all in�nite plaes of k, and(ii) ontains all plaes ramifying in K=k.Further we all a pair of sets (S; T ) appropriate for the extension K=k if S isappropriate for K=k, T and S are disjoint, and UK;S;T is Z-torsion-free.We remind the reader that the last ondition is not at all hard to satisfy; reallLemma 2.5.2.The philosophy of the onjetures we shall be investigating is summarized in the
45
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following diagram. We have two objets, whih are isomorphi as C [G℄-modules:0�C r̂Z[G℄UK;S;T1Ar;S �=�! (C [G℄)r;S�K=k;S;T ! 1r!�(r)S;T (0):On the right-hand side we have a natural analytially-de�ned objet �S;T (s). Wepull a speial value of this objet bak through the regulator map to arrive at anobjet whih is of an arithmeti avor, the Rubin-Stark evaluator �S;T . One thenasks that this evaluator have good arithmeti properties, whih we fore by askingit to be in some Z[G℄-sublattie. The same idea is used for both the standard andthe extended onjetures, the main di�erene is that (as we saw in the previoushapter) the regulator has a simpler desription under the presene of enoughsplitting primes.3.1 Statements of the onjeturesThere are �ve onjetures we will mention. The �rst is Stark's Main Conjeturefor minimal order of vanishing; following the literature we all this onjeture A.Next is the standard Rubin onjeture, B and the standard Popesu onjeture,C. Finally omes the extended onjeture eB with Rubin's lattie, and that withPopesu's lattie, eC. Consult the introdutory hapter for the history of theseonjetures.CONJECTURE A(K=k; S; r) (Stark's rationality onjeture):Suppose S is appropriate for K=k. Then "K=k;S;r, whih a priori is only an element
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of C�S , is atually an element of Q�S .CONJECTURE B(K=k; S; T; r) (The standard Rubin onjeture):Suppose (S; T ) is appropriate for K=k, S ontains at least r primes whih splitompletely in K=k and jSj � r + 1. Then"K=k;S;T;r 2 �S;T :CONJECTURE C(K=k; S; r): (The standard Popesu onjeture):Suppose S is appropriate for K=k, S ontains at least r primes whih split om-pletely in K=k and jSj � r+1. Then for all sets T suh that (S; T ) is appropriate,"K=k;S;T;r 2 �0S;T :CONJECTURE eB(K=k; S; T ) (The extended onjeture, Rubin's lat-tie):Let r = min�2 bG rS(�). Suppose (S; T ) is appropriate for K=k, jSj � r + 2, andS 6= Smin. Then �K=k;S;T 2 �S;T :CONJECTURE eC(K=k; S) (The extended onjeture, Popesu's lat-tie):Let r = min�2 bG rS(�). Suppose S is appropriate for K=k, jSj � r + 2, and S 6=Smin. Then for all sets T suh that (S; T ) is appropriate,�K=k;S;T 2 �0S;T :Throughout this dissertation we usually fous on the relationship between Band eB, and ontent ourselves to make passing referene to eC, primarily when it
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di�ers from eB. The phrase extended onjeture refers to eB. Many results provenfor eB an be diretly exported to eC.One may wonder about the slightly arti�ial-seeming hypothesis in eB and eCthat jSj � r + 2. In the previous hapter, we used this onvention to make surethat the trivial harater vanished to order greater than r and to thereby de�nethe regulator R. In truth, the restrition on the size of S need not be there at theprie of introduing a more ompliated regulator. However, we do not really gainanything from its removal. This is shown by the followingLemma 3.1.1. If S is an r-over for bG and jSj = r + 1, then S ontains at leastr primes that split ompletely in K=k.Proof. We begin with the formula from Lemma 2.4.2, and the fat that r � rS(�)for all � to get r(jGj � 1) �Xv2S (gv � 1):Now suppose, for the sake of ontradition, that S ontained two primes v1; v2whih did not split ompletely in K=k. That is to say gv1 ; gv2 < jGj (where gvrepresents the number of primes of K dividing v), and hene (as gv divides jGj),gvi�1jGj�1 < 12 for i = 1; 2. Then we haver �Xv2S gv � 1jGj � 1 < 12 + 12 + (r � 1) = r;a ontradition. Therefore suh v1 and v2 do not exist, and at least r primes of Ssplit in K=k.This lemma says that if jSj = r + 1 we satisfy the hypothesis of the standard
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Rubin onjeture, and so need not do any extra work to speify an extendedonjeture in this ase.On the other hand, the ondition S 6= Smin is ompletely nontrivial. Indeedthere are omputational examples of number �eld extensions K=k and sets S andT suh that all hypotheses of eB(K=k; S; T ) are satis�ed exept S 6= Smin, but�K=k;S;T 62 �S;T . These examples, due to Dummit and Hayes, our even in the�rst order ase, rS(K=k) = 1 (see [Eri05, Setion 4.2℄ for an exposition). We shalldisuss this situation further in Setion 5.4.When onsidering eB(K=k; S; T ) as distint from B(K=k; S; T; r), one assumesK=k to be a non-yli extension. The is beause of theLemma 3.1.2. If K=k is yli, then eB(K=k; S; T ) is equivalent to B(K=k; S; T; r)where r = rS(K=k).Proof. Suppose K=k is yli. We must show that if S is an r-over for K=k thenS ontains at least r primes whih split ompletely. So suppose S is an r-over forK=k. Let � be a faithful harater (whih exists beause G is yli). We know atleast r primes split in Kker�=k. But Kker� = K. The next setion will show that�K=k;S;T = "K=k;S;T;r in this situation.Corollary 3.1.3. For any number �eld k, the onjeture eB(k=k; S; T ) is true.Proof. Sine B(k=k; S; T; r) is known, this is immediate, as k=k is yli!
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3.2 Relationships between evaluatorsOne relationship for the standard evaluators is detailed in the following propo-sition.Proposition 3.2.1. For any tower of extensions K=M=k, appropriate sets (S; T )and integer j, "M=k;S;T;j = N (r)K=M"K=k;S;T;j:This result, though a simple onsequene of the behaviour of the regulator mapsunder hange of �elds, is important in the onstrution of Euler systems from theonjetures. For details, see [Rub96℄ or [Pop04℄. It will also prove invaluable whenproving relationships among the extended evaluators.We an link the standard evaluators and the extended evaluators. SupposeS is an r-over for the extension K=k (and that jSj > r + 1). The idea is thatalthough there may not be r primes that split in the full extension K=k, if onepiks a harater � 2 bG then there are at least r primes that split in a ertainanonial subextension assoiated to �. Spei�ally:De�nition 3.2.2. For any � 2 bG, letK� := Kker�;G� := ker�and �� := G=G� �= G(K�=k):
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We put r = min�2 bG rS(�). In the (yli) extensionK�=k there are exatly rS(�) �r primes of S that split ompletely (see the remark after De�nition 2.3.2). If thereare stritly more than r, the Rubin-Stark evaluator "� = "K�=k;S;T;r is trivial,otherwise it is a nontrivial element of C VrZ[��℄ UK�;S;T .Theorem 3.2.3. Suppose jSj > r + 1. Let�K=k =X�2 bG 1jG�jr e�"�: (3.1)Then �K=k is the extended Rubin-Stark evaluator for the extension K=k.Proof. We need to show that RK=k;S(�K=k) = 1r!�(r)K=k;S;T (0). We do this one har-ater at a time.Indeed,RK=k;S(�K=k)e� = XI2Pr(Smin)RwI (�K=k)e� (Theorem 2.3.12)= XI2Pr(Smin) 1jG�jrRwI ("K�=k;S;T;r)e� (Linearity of regulator)Now if � 2 bG is suh that rS(�) > r then"K�=k;S;T;r = 0 = 1r!�(r)K=k;S;T (0)e�:So hereafter suppose that rS(�) = r. In the summation above, there are two ases.If I does not onsist of exatly the r primes that split in K�=k then let v1 2 Ibe one suh prime with the deomposition group D = (��)v1 6= f1g, and v2; :::; vrbe the other primes in I, and �x primes of K�, qijvi. We are going to show thatthe piee of the regulator orresponding to I is zero, by a standard method when
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dealing with haraters. We provide the details so one an see how the variousobjets are linked at the levels of the di�erent �elds. By the de�nition of ��, thereis a harater e� 2 �� with trivial kernel in �� suh that � = e� Æ �. ThenRq("�)ee� = Rq1^:::^qr("�)ee�= 1j��jX2�� e�(�1)Rq1^:::^qr("�)= 1j��j X2��=D X�2D e�(�)!Rq1^:::^qr("�)= 0:The last equality holds beause e� has trivial kernel, while D is nontrivial. HoweverRwI ("�)e� = 	K=K�(Rq("�)ee�) = 0where 	 is the map whose properties were outlined in Lemma 2.3.14.It follows that only the set I onsisting of the primes splitting in K�=k survives,and RK=k;S(�K=k)e� = 1jG�jrRw�1^:::^w�r ("�)e�; (3.2)where W = w�1 ^ : : : ^ w�r onsists of arbitrarily hosen primes of K above the rprimes of k that split in K�=k.However, aording to the proof of Proposition 2.3.13, if � is the natural pro-jetion,�K=K�Rw�1^:::^w�r ("�) = Rq�1^:::^q�r (N (r)K=K�"�) = jG�jrRq�1^:::^q�r ("�): (3.3)
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(Here q�i is the prime of M that lies below w�i .) We need the map 	 = 	K=K�whose properties were introdued in Lemma 2.3.14. We ompute|RK=k;S(�K=k)e� = 1jG�jrRW ("�)e�= 1jG�jr	 Æ �(RW ("�))e�= 1jG�jr	(jG�jrRq�1^:::^q�r ("�))e�= 	� 1r!�(r)K�=k(0)� e�= 1r!0�X 2b� L(r)K�=k;S;T (0;  �1)e Æ�1A e�= 1r!L(r)K=k;S;T (0; ��1)e�= 1r!�(r)K=k;S;T (0)e�The �rst equality is equation (3.2), the seond holds beause RW ("�) is �xed byG�, the third is equation (3.3), the fourth is the evaluation property of "�, the�fth is the de�nition of �K�=k and Lemma 2.3.14(iii), the sixth is the InationProperty of Artin L-funtions ombined with the fat that e� is an idempotent,and the seventh is the de�nition of �K=k.Sine we have shown the two values we wish are equal on every e�-omponentof C [G℄, they must be equal.Remark: Throughout this dissertation, we are using the fat that, for M = KHwe have an embedding of C [G℄-modulesC r̂Z[�℄UM;S;T ,! C r̂Z[G℄UK;S;T
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to onsider the module on the left as a submodule of that on the right and aresuppressing any umbersome notation that might be used suh as ^r�K=M .The meat of formula (3.1) is that it allows us to realize the evaluator for thefull extension K=k as a C [G℄-linear ombination of evaluators oming from ylisubextensions: KG�1
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� Kker�n
uuuuuuuuuuuuuuuuuuuuuuuuuKker�1 ��1 NNNNNNNNNNNN kNote that not all of the �elds are distint beause for eah subgroup H � Gwith G=H yli of order , there are exatly �() haraters with ker� = H where�() denotes Euler's totient funtion.The above desription of �K=k is ertainly very useful and does have the ad-vantage of allowing us to redue all alulations of Stark evaluators to the level ofyli extensions of the base �eld k. The spirit of the Stark Conjetures, however,is to work at least \over Q" whenever possible; i.e., we would prefer to build �K=kout of a Q [G℄-linear ombination of evaluators arising in subextensions. The fatthat we are really working \over Q" is apparent after onsidering the proof ofLemma 2.3.7, and that "� depends not on � but on ker�. The following theorem
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will give another formula for �K=k even more in the spirit of working \over Q ."Reall Pr(Smin) onsists of those subsets of Smin of ardinality exatly r. Foreah I 2 Pr(Smin), we set up the following notation.De�nition 3.2.4. First DI = hGv j v 2 Ii;is the subgroup of G generated by the deomposition groups of the primes in I. PutMI = KDI :Let "I be the Rubin-Stark evaluator orresponding to the standard Rubin on-jeture B(MI=k; S; T; r). (Notie that "I may be zero if yet more primes of S splitin MI=k; and MI is the largest subextension of K=k in whih all the primes in Isplit ompletely.)Theorem 3.2.5. The extended Rubin-Stark evaluator for K=k is�K=k = XI2Pr(Smin) 1jDIjr "IProof. For any I, we ompute1jDI jr "I = 1jDIjr NDIjDIj"I= 1jDIjr X�2 bGDI�ker� e�"I= 1jDIjr X�2 bGDI�ker� e� N (r)MI=K�(ker� : DI)r "I= X�2 bGDI�ker� 1j ker�jr e�"�
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where the �rst equality holds beause elements of DI �x "I , the seond is equation(2.4), the third holds beause �(NMI=K�) = (ker� : DI) for those � whih ontainDI in their kernel, and the last is Proposition 3.2.1.Therefore XI2Pr(Smin) 1jDI jr "I =X�2 bG n�j ker�jre�"�where n� = #fI 2 Pr(Smin)jDI � ker�g= #fI 2 Pr(Smin) and for all v 2 I; v splits in K�g8<: = 1 if � is relevant;> 1 otherwise:However, when n� > 1 we have more than r primes whih split in K�=k and "� = 0by de�nition. The proof onludes by Theorem 3.2.3.3.3 Varying S and T in the onjeturesSuppose we know eB(K=k; S; T ) is true and we wish to inrease the set T tosome T 0 � T . What an be said?The �rst thing to notie is that for either the standard or extended onjeture,�K=k;S;T[fvg = (1� ��1v Nv) � �K=k;S;Twhih follows from di�erentiating the equation�K=k;S;T[fvg(s) = (1� ��1v Nv1�s) ��K=k;S;T (s):
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r times, dividing by r!, and evaluating at s = 0. For this reason we introdue thenotation (for any �nite set of unrami�ed plaes T )ÆT = Yv2T (1� ��1v Nv):The following proposition is proven for onjeture B instead of eB in [Pop02,Proposition 5.3.1℄. However, as the statement really only onerns the latties �Tand �T 0 and the fat that �S;T 0 = ÆT 0nT � �S;T , the idential proof also works for theextended onjeture.Proposition 3.3.1. If T � T 0, then eB(K=k; S; T )) eB(K=k; S; T 0).This is all that an be said of funtoriality in T , as the opposite impliation isurrently not known and indeed will likely never be proven diretly but will onlyfollow from already knowing the truth of eB(K=k; S; T ). (The ÆT 's, though invert-ible in Q [G℄, pik up large denominators upon inversion, anathema to knowingthat the new epsilon lies in any given lattie.)The situation of funtoriality of eB in S is muh more subtle than that offuntoriality in T . Indeed it is even more subtle than the funtoriality of thestandard onjeture B in S. In the standard onjeture, one breaks the situationinto four ases: adding/subtrating a totally split/non-totally split prime from S.However, upon onsidering the extended onjeture, one sees that the ases arereally about whether the minimal order of vanishing r dereases, stays the same,or inreases.First we review the funtoriality in S of the standard onjetures. The easiestase is when one is adding a prime to S whih does not split ompletely in the
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extension K=k.Proposition 3.3.2. If v =2 S [ T is a prime of k that does not split ompletely inK=k, then B(K=k; S; T; r)) B(K=k; S [ fvg; T; r) and"K=k;S[fvg;T;r = (1� ��1v )"K=k;S;T;r:Proof. The seond fat is all we need to prove, as the �rst will then follow imme-diately. But the seond is a onsequene of the equation�K=k;S[fvg;T (s) = (1� ��1v Nv�s)�K=k;S;T(s):As above, one di�erentiates r times, divides by r!, and evaluates at s = 0 (usingthe fat that �(j)K=k;S;T (0) = 0 for j < r). Of ourse the Frobenius �v exists beauseS may be assumed to be appropriate and therefore ontains all the unrami�edprimes.On the other hand, when removing a prime from S that does not split om-pletely to get S 0 = S n fv0g, the truth of the onjeture with S does not imply thetruth of the onjeture with S 0. (Of ourse if v0 is an in�nite or ramifying primethe hypotheses of the onjeture are not even satis�ed anymore.)What about splitting primes? It turns out one an always remove a split primeand the truth of the onjeture will stay the same.Proposition 3.3.3. If r > 0 and v1 2 S is a prime that splits ompletely in K=kthen B(K=k; S; T; r) =) B(K=k; S n fv1g; T; r � 1):
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The following gives a partial answer to the question of adding a split prime.The ondition that the evaluator be in a ertain Fitting ideal times �S;T is strongerthan B(K=k; S; T; r), whih only requires that the evaluator be in �S;T itself.Proposition 3.3.4. If v =2 S [ T is a prime that splits ompletely in K=k, and"K=k;S;T;r 2 FittZ[G℄(h[v℄K;S;T i)�S;T then B(K=k; S [ fvg; T; r + 1) is true.Proof. See [Rub96, Theorem 5.3(iii)℄.There are extra ompliations when it omes to the extended onjeture eB. ThediÆulty is that if one adds a prime S 0 = S [ fvg, the minimal order of vanishingmay inrease even if v does not split ompletely. In this ase the leading terms ofmore L-funtions may enter the piture, as the following example illustrates.Example 3.3.5. Let K = Q (�8) = Q(p�1;p2) and k = Q . Suppose S =f1; 2; 3; 17g. If the harater group bG onsists of �0; �1; �2; �3 with �xed �eldsQ ;Q (p�1);Q(p2) and Q(p�2) respetively, then the orders of vanishing arerS(�0) = 3rS(�1) = 1rS(�2) = 2rS(�3) = 2:

But if we put S 0 = S [ fpg where p is any rational prime ongruent to 5 (mod 8),then p will split in Q (p�1)=Q (and Q=Q ) but remain inert in the other two �xed
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�elds. The new orders of vanishing would berS0(�0) = 4rS0(�1) = 2rS0(�2) = 2rS0(�3) = 2;
and hene the minimal order of vanishing jumps from rS(K=k) = 1 to rS0(K=k) =2. Moreover, while �(1)S (0) enodes information only about the L-funtion attahedto �1, �(2)S0 (0) enodes information about the three L-funtions attahed to thenontrivial haraters �1; �2 and �3. Hene we annot express �K=k;S0 merely interms of �K=k;S.The author is urrently working on a theory in whih the leading terms of allL-funtions (not just those of minimal order of vanishing) are enoded into anevaluator. Upon adding a prime into S, this new evaluator behaves in a well-understood manner, whih gives hope for proving an analogue of Proposition 3.3.4in this situation.3.4 Main investigation of this dissertationThe extended onjetures seem perhaps more natural in that the vanishing ofthe L-funtions is not fored by adding split primes, but rather just arises \like amist o� the oean." The standard onjetures do not predit anything nontrivial
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with many arbitrarily hosen extentions K=k and sets S. What will often happen isthat S will ontain some number j of split primes, while all the L-funtions vanishto order greater than j due to the other primes in S. The extended onjetures,however, are always nontrivial.It is natural to ask what the link between the standard and extended onjeturesis. Are they \equivalent" in some sense? And if so, in what sense preisely?Already we have seen some links between the evaluator �K=k that arises in theextended onjeture and standard evaluators that arise in ertain subextensions ofK=k (.f. Theorems 3.2.3 and 3.2.5).In this setion we will present a theorem, whih partially answers the questions.Theorem 3.4.1. If eB(K=k; S; T ) is true and r is the assoiated minimal orderof vanishing, then for any �eld M suh that K � M � k the standard onjetureB(M=k; S; T; r) is true.Proof. Fix suh an M and put H = G(K=M). If less than r primes split inM=k then B(M=k; S; T; r) is vauously true: the hypotheses are not satis�ed. IfjSj = r+1, onjetures eB(K=k; S; T ) and B(K=k; S; T; r) are equivalent by Lemma3.1.1, and the theorem follows from the natural behavior of onjeture B underhange of top �eld. So we may assume jSj � r + 2. If more than r primes of Ssplit ompletely in M=k then B(M=k; S; T; r) is trivially true with "M=k;S;T;r = 0,sine jSj � r + 2. So assume that exatly r primes of S split ompletely in M=k.
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Let �K=k be the extended Rubin-Stark evaluator for K=k. We alulateN (r)H �K=k = N (r)H X�2 bG 1j ker�jre�"�= X�2 bGH�ker� jHjrj ker�jre�N (r)M=K�"M=k= NHjHj"M=k= "M=k:The �rst equality is Theorem 3.2.3, the seond is the fat that in the group ringC [G℄, NHe� = 8<: jHje� if H � ker�0 otherwiseand "� = N (r)M=K�"M=k (see Proposition 3.2.1), the third is equation (2.4), and �nallythe fourth is simply that every element of H ats trivially on "M=k.Now take '1; : : : ; 'r 2 U�M;S;T . Pik �1; : : : ; �r 2 U�K;S;T suh that N�K=M�i = 'i(we an do this by Lemma 2.5.5 beause we are working under the hypothesis that�K;T = f1g).We ompute (using Lemma 2.5.6),('1 ^ : : : ^ 'r)("M=k) = ('1 ^ : : : ^ 'r)(N (r)K=M�K=k)= �K=M�(�1 ^ : : : ^ �r)(�K=k)�2 �K=MZ[G℄ = Z[�℄
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Note we an also prove the above theorem for Popesu's lattie �0S;T only withthe triviality of bH1(G(K=M); �K;T ) (whih we used in applying Lemma 2.5.5).Corollary 3.4.2. If Smin ontains only primes whih split ompletely, then eB isequivalent to B.Proof. Simply take M = K in the previous Theorem.We wish to also prove results in the other diretion: when does knowing thetruth of the standard onjetures imply the truth of the extended onjetures?One main reason we wish for suh an impliation is that the standard onjeturesare known in many ases, and thus we may prove the extended onjeture in thismanner. However, at this time we annot prove suh an impliation in general.Several speial ases are taken are of in the ourse of the remaining hapters.(See in partiular Theorem 5.1.1.) Of ourse, we have almost done enough workto prove the next two propositions, whih are weak onverses.Proposition 3.4.3. Let r = rS(K=k) be the minimal order of vanishing. IfB(MI=k; S; T; r) is true for all I 2 Pr(Smin), then�K=k;S;T 2 1jGj�S;T ;i.e., eB(K=k; S; T ) is true up to fator of jGj = [K : k℄.Proof. Let � = �1^ : : :^�r 2 VrZ[G℄U�K;S;T . Note that Lemma 2.5.6 ombined with
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the fat that "M=k is �xed by H = G(K=M) yield�� 1[K :M ℄r "M=k� = 1[K :M ℄r	K=M�K=M�("M=k)= 1[K :M ℄r	K=M((N�K=M)(r)�)(N (r)K=M"K=M)= 	K=M((N�K=M)(r)�)("K=M)2 	K=MZ[�℄ � 1[K :M ℄Z[G℄:Now we apply this omputation repeatedly with M = MI for eah I 2 Pr(Smin)to the formula Theorem 3.2.5 to obtain the result. (Noting of ourse that jDI j =[K :MI ℄, both of whih divide jGj.)Proposition 3.4.4. Let r = rS(K=k) be the minimal order of vanishing. IfB(Kker�=k; S; T; r) is true for all � 2 bGr;S, then�K=k;S;T 2 1jGj�S;T ;i.e., eB(K=k; S; T ) is true up to fator of jGj = [K : k℄.Proof. The proof is idential to that of the previous Proposition; one simply ex-amines the piees of �K=k oming from Kker� and uses Theorem 3.2.3 instead ofTheorem 3.2.5.Finally we notie that the onjeture eB also ats naturally under hange of top�eld:Proposition 3.4.5. IfM is a �eld intermediate between K and k and the minimalorder of vanishing remains onstant rS(M=k) = rS(K=k), thenN (r)K=M(�K=k) = �M=k:
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Proof. Fix H � G as the Galois group of K=M . Let  be a harater of � =G(M=k) = G=H. Note that under the identi�ation Z[�℄ �= Z[G℄H = NHZ[G℄,e =X e�; (3.4)where the summation runs over all � 2 bG for whih H � ker� and e� =  . (Heree� denotes the map indued by � after we mod out its domain by H.)Then N (r)K=M�K=k =  jHjr XH�ker� e�! �K=k= XH�ker�� jHjj ker�j�r e�"K�=k= X 2b�0BB� XH�ker�e�= e�1CCA 1j ker jr "M =k= X 2b� 1j ker jr e "M =k= �M=k:(We have used the fat that if e� =  , then j ker j = j ker�jjHj and K� = M .) Thehypothesis that rS(K=k) = rS(M=k) was used in that "M =k denotes "M =k;S;T;rand we are raising the oeÆients to the orret power to apply Theorem 3.2.3and ahieve �M=k in the last equality.Corollary 3.4.6. If rS(M=k) = rS(K=k), theneB(K=k; S; T ) =) eB(M=k; S; T ):Proof. This result follows diretly from the previous proposition, applying theomputation at found at end of the proof of Theorem 3.4.1.



Chapter 4
Multiquadrati extensions

Sine we are not able to prove the equivalene of the standard and extendedonjetures in the most general ase, we attak subases. One key ase in whihPopesu's and Rubin's onjetures, C(K=k; S; r) and B(K=k; S; T; r), are known iswhen K=k is a relative quadrati extension, i.e. an extension of relative degree two.This is due to work of Stark, Tate, and Rubin (see in partiular [Tat84℄ Th�eor�emeIV.5.4 and [Rub96℄ Theorem 3.5). There has been work on extending this resultto arbitrary multiquadrati extensions in [DST03, San04℄. The multiquadratiextended onjeture in the ase r = 1 was takled in [Eri05℄.De�nition 4.0.7. By a multiquadrati extension of rank m we mean an (abelian)Galois extension of number �elds K=k suh that G = G(K=k) �= (Z=2Z)m.In this hapter we mirror muh of Sands [San04℄ work toward proving Popesu'sonjeture C in multiquadrati extensions, working instead with T -modi�ed units,lass groups, et., and trying to get a handle on Rubin's onjeture B and the
66
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extended onjeture eB.We note that G an be thought of as an m-dimensional vetor spae over the�nite �eld F2 = Z=2Z: Intermediate �elds are in one-to-one orrespondene withsubspaes of G. Intermediate relative quadrati extensions M=k are in one-to-oneorrespondene with (m� 1)-dimensional subspaes GM := G(K=M) � G. Thesesubspaes our naturally as the kernels of the harater group of bG of G. So forthis group we have a nie anonial isomorphism between bG and G that simplysends � 2 bG to the nonzero element of (ker�)?.Let M be suh an intermediate relative quadrati extension of k. We shalldenote the Galois group G(M=k) as �M = f1; �Mg, and omit the subsripts ifM is�xed. Reall AM;S;T is the (S; T )-modi�ed ideal lass group: the quotient of the setof frational ideals of M that are prime to SM and TM by the subgroup onsistingof prinipal ideals that have a generator that is prime to SM and ongruent to 1modulo all primes in TM (and similarly for Ak;S;T ). There is a well-de�ned mapAk;S;T �! AM;S;T indued by lifting an ideal in k to M . (Of ourse � depends onM , but we suppress this from the notation, as the �eld M is usually apparent.)Throughout this hapter, we �x r := rS(K=k) as the minimal order of vanishingfor K=k.De�nition 4.0.8. We all a quadrati extension M=k relevant if M is ontainedin K and exatly r primes of S split in M=k.We work under our standing assumption that jSj > r + 1, in whih ase thesequadrati extensions are the only ones for whih "M=k;S;T 6= 0.The main tool we will use in this hapter is the following theorem.
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Theorem 4.0.9. Suppose K=k is a multiquadrati extension of rank m and forevery relevant quadrati extension M=k the following inequality is satis�edjSj � r + ord2jAM;S;T=�Ak;S;T j � m+ 1: (4.1)Then the extended onjeture, eB(K=k; S; T ), is true.We will prove this theorem later in the hapter.The group AM;S;T=�Ak;S;T an be unwieldly to work with, so we note thatLemma 4.0.10. When M=k is relevant,ord2jAM;S;T=�Ak;S;T j � rk2(Ak;S;T ):Proof. We onsider the map indued by the norm,AM;S;T=�Ak;S;T N�! Ak;S;T=A2k;S;T[a℄M;S;T �Ak;S;T 7�! [NM=ka℄k;S;TA2k;S;T :The map is well-de�ned, as the norm ats by squaring on ideals of k. Sine jSj �r + 2, in a relevant quadrati extension M=k, S must ontain at least one primethat does not split ompletely in M=k. Thus M \ Hk;S = k where Hk;S denotesthe S-Hilbert lass �eld of k. Therefore by lass �eld theory, the norm map on theS-lass group is surjetive.By ombining Lemma 4.0.10 with Theorem 4.0.9, we obtain the slightly weakerCorollary 4.0.11. (Main Theorem for Multiquadrati Extensions) Sup-pose K=k is a multiquadrati extension of rank m and for every relevant quadrati
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M=k the following inequality is satis�edjSj � r + rk2(Ak;S;T ) � m + 1: (4.2)Then the extended onjeture, eB(K=k; S; T ), is true.Note that sine eB implies B (.f. Theorem 3.4.1), we may also apply Corollary4.0.11 to onlude the truth of B.Example 4.0.12. Let K=k be any multiquadrati extension of number �elds ofrank m, and (S; T ) be appropriate for the extension. Fix a partiular harater ofminimal order of vanishing �1 2 bGr;S. Put a = rk2(Ak;S;T ) andb = r +m + 1� jSj � a:By applying Corollary 4.0.11 we see that if b � 0 then eB(K=k; S; T ) is true. Soassume that b � 1. Let E = fvjSj+1; : : : ; vjSj+a+bgbe a set of a+ b primes disjoint from S and T and suh that�1(�v) 6= 1 (4.3)for all v 2 E. Suh a set may be hosen by the Thebotarev Density Theorem[Neu99, Theorem VII.13.4℄. Let S 0 = S [ E.I laim that eB(K=k; S 0; T ) is true. First of all, (S 0; T ) is learly appropriate forK=k. Next, beause of (4.3), no prime in E splits in K�1=k and hene rS0(�1) =rS(�1) = r.
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Sine jS 0j = jSj+ a + b and rk2(Ak;S0;T ) � 0, it follows thatjS 0j � r + rk2(Ak;S0;T ) � jSj+ a+ b� r= m+ 1:Hene we may apply Corollary 4.0.11 to onlude the truth of eB(K=k; S 0; T ).4.1 Finding an expliit formula for "M=kThe �rst step toward proving the theorem is to give an expliit formula forthe evaluators arising in the relevant quadrati extensions. Let us remark brieythat under our hypotheses on T , UM;S;T=Uk;S;T is Z-torsion-free. Indeed, supposeu 2 UM;S;T satis�es ub 2 Uk;S;T for some natural number b. Then (u�M�1)b =(ub)�M�1 = 1 implies u�M�1 is a bth root of unity in UM;S;T , and hene is equal to1. Therefore u is �xed by �M and so u 2 Uk;S;T .Theorem 4.1.1. SupposeM=k is a relevant quadrati extension with Galois group� = f1; �g. Let u1; :::; ur onstitute a Z-basis for UM;S;T=Uk;S;T . Then the Rubin-Stark evaluator is "M=k = 2jSj�r�2hM;S;Thk;S;T (1� �) � u1 ^ : : : ^ ur;where hM;S;T = jAM;S;T j:Proof. See the proof of Theorem 3.5 in [Rub96℄.We want to inrease the oeÆient in front of the exterior produt of units asmuh as possible. We use a method employed by Sands in [San04℄. To this end,
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we rewrite (1� �) = 21�r(1� �)r, so that"M=k = 2jSj�r�2hM;S;Thk;S;T 21�ru1��1 ^ : : : ^ u1��r :Let U�M;S;T denote the set of units u 2 UM;S;T suh that NM=ku = 0 (rememberwe are writing the unit groups additively!). The Z-rank of U�M;S;T is r, as it is thekernel of a map from UM;S;T (Z-rank jSj+ r � 1) onto a subgroup of Uk;S;T whihontains U2k;S;T (Z-rank jSj � 1). Therefore we an hoose z1; : : : ; zr a Z-basis forU�M;S;T .As u1��1 ; : : : ; u1��r is a Z-basis for U1��M;S;T , we haveu1��1 ^ : : : ^ u1��r = (U�M;S;T : U1��M;S;T ) � z1 ^ : : : ^ zr:We will understand the unit group index above in terms of group ohomology.4.2 Some ohomologial lemmasNext we prove aLemma 4.2.1. For any relative quadrati extension M=k of number �elds, andany �nite disjoint sets S and T of primes in k suh that S ontains all the primeswhih ramify in M=k we have the following exat sequene.0 �! bH1(�; UM;S;T ) �! Ak;S;T ��! AM;S;T �! AM;S;T=�Ak;S;T �! 0:Proof. The following proof is a T -modi�ed version of a result found in [Tat84℄.Let M�T denote the elements of M� that are ongruent to 1 modulo all primesin TM , and PM;S;T denote the set of prinipal frational ideals ofM whih are rela-tively prime to S and have a generator that is inM�T . We make similar de�nitions
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for k�T and Pk;S;T . It is readily veri�ed that the following sequenes are exat0 �! Uk;S;T �! k�T �! Pk;S;T �! 0 (4.4)0 �! UM;S;T �!M�T �! PM;S;T �! 0: (4.5)Applying the \�xed by �" funtor to (4.5) yields another exat sequene0 �! Uk;S;T �! k�T �! P �M;S;T �! bH1(�; UM;S;T ) �! bH1(�;M�T ): (4.6)Lemma 4.2.3 will show that bH1(�;M�T ) = 0 (i.e., that we have a T -modi�edHilbert Theorem 90). Assuming that for now, an appliation of the Snake Lemmato sequenes (4.4) and (4.6) yieldsbH1(�; UM;S;T ) �= Coker(Pk;S;T ,! P �M;S;T ):Next we onsider the exat sequenes0 �! Pk;S;T �! Ik;S[T �! Ak;S;T �! 0; (4.7)0 �! PM;S;T �! IM;S[T �! AM;S;T �! 0; (4.8)where for example Ik;S[T denotes the group of frational ideals of k that are rela-tively prime to S and T .Applying the \�xed by �" funtor to (4.8), and using the fat that S ontainsall the rami�ed plae of M=k, gives an exat sequene0 �! P �M;S;T �! Ik;S[T �! A�M;S;T � AM;S;T : (4.9)Putting this all together gives the diagram
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0
��

0
��

ker �� _
��0 // Pk;S;T //

��

Ik;S[T // Ak;S;T //�
��

00 // P �M;S;T //

��
��

Ik;S[T //

��

AM;S;T
��
��bH1(�; UM;S;T ) 0 AM;S;T=�(Ak;S;T ) :Another appliation of the Snake Lemma gives ker � �= bH1(�; UM;S;T ), and then thelast exat olumn is what we were trying to prove.At this point we note theCorollary 4.2.2. Under the hypotheses of the previous lemma,hM;S;Thk;S;T jbH1(�; UM;S;T )j = jAM;S;T=�Ak;S;T j:Remember that we needed to prove the followingLemma 4.2.3. If T does not ontain any rami�ed primes, bH1(�;M�T ) = 0:Proof. Let M�(T ) denote the anti-units at T , namely the set of � 2 M� suh thatordw(�) = 0 for all w 2 TM . Put �(T ) =Lw2TM M(w)�, where M(w)� denotesthe the invertible elements of the residue �eld at w. With these notations, thefollowing sequene is exat:0 �!M�T �!M�(T ) �! �(T ) �! 0: (4.10)
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Write �(T ) �= Lv2T (M(w)� 
Z[�v℄ Z[�℄), where a �xed wjv is hosen arbitrarilyfor eah v 2 T . Applying Shapiro's Lemma (.f. [Cas67℄), allows us to omputebHi(�;�(T )) =Mv2T bHi(�v;M(w)�):By Hilbert's Theorem 90, bH1(�v;M(w)�) = 0, and sine �v is yli (as v 2 Tis unrami�ed) we may onsider the Herbrand Quotient. But beause M(w)� is�nite, it has trivial Herbrand Quotient, hene bHi(�v;M(w)�) = 0 for all i. Weonlude that bHi(�;�(T )) = 0.By examining the long exat sequene of Tate ohomology assoiated to (4.10),it follows that bHi(�;M�T ) �= bHi(�;M�(T )) for all i.Next we onsider the exat sequene0 �!M�(T ) �!M� L ordw�! Mw2TM Z �! 0whose long exat ohomology, thanks the Hilbert's Theorem 90, looks like0 �! k�(T ) �! k� ��! "Mw2TM Z#� �! bH1(�;M�(T )) �! 0Now the approximation theorem ombined with the fat that T does not ontainany rami�ed primes, yields that the map� =  Mw2TM ordw!�����k�is surjetive, and hene bH1(�;M�(T )) = 0, ompleting the lemma.
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4.3 The proof of Theorem 4.0.9Proof. Assume the hypotheses of the theorem. That is, let K=k be a multi-quadrati extension of rank m with Galois group G, and �x S, T , and r so thatthe hypotheses of the extended onjeture are satis�ed, and further that we havethe inequality 4.1 for all relevant M=k.Choose �1; : : : ; �r in HomZ[G℄(UK;S;T ;Z[G℄): In order to prove the extendedonjeture ~B(K=k; S; T; r) it remains to show �(�K=k) = (�1 ^ : : :^ �r)(�K=k) is anelement of Z[G℄.From Lemma 2.5.6, we know that if �M is the natural projetion from Z[G℄ toZ[G=GM℄ = Z[�M℄ that�M (�(�K=k)) = (N�(r)K=M�)(N (r)K=M�K=k)= '("M=k)where ' = '1 ^ : : : ^ 'r, and eah 'i = N�K=M�i is some element of U�M;S;T =HomZ[�M℄(UM;S;T ;Z[�M ℄): Let z1; :::; zr be a Z-basis for U�M;S;T as in the earliersetion. Notie that sine (1 + �M)'i(zj) = 'i((1 + �M )zj) = 'i(0) = 0,'i(zj) 2 Z[�M℄� = (1� �M)Z: (4.11)Fix nij 2 Z suh that 'i(zj) = (1� �M)nij.
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We ompute'("M=k) = '�2jSj�r�2hM;S;Thk;S;T 21�ru1��1 ^ : : : ^ u1��r �= 2jSj�r�2hM;S;Thk;S;T (U�M;S;T : U1��M;S;T )21�r'(z1 ^ : : : ^ zr)= 2jSj�r�2hM;S;Thk;S;T jbH�1(�M ; UM;S;T )j � 21�r det('i(zj))= 2jSj�r�2hM;S;Thk;S;T jbH1(�M ; UM;S;T )j � 21�r det((1� �M )nij)= 2jSj�r�2jAM;S;T=�Ak;S;T j � 21�r(1� �M)r det(nij)= 2jSj�r�2jAM;S;T=�Ak;S;T j(1� �M) det(nij)The �rst equality uses our expliit desription of "M=k, the third the de�nitionof bH�1, the fourth the fat that � is yli, and the �fth is Lemma 4.2.1.It is now evident that '("M=k) 2 2jSj�r+ord2(jAM;S;T =�Ak;S;T j)�2Z[�M ℄. Combiningthis with our initial assumption that jSj � r + ord2(jAM;S;T=�Ak;S;T j) � m + 1, itfollows that '("M=k) 2 2m�1Z[�M ℄. Note we get this onlusion whether M=k isrelevant or not. Indeed, ifM=k is not relevant, then '("M=k) = 0 beause "M=k = 0.Hene we have an element � = �(�K=k) in Q [G℄ suh that every projetion of� into an order 2 quotient spae lands in 2m�1Z[�M ℄, and whose projetion into Zvia the augmentation map is zero (this is true for our � sine jSj > r+1). I laimthat this means � is in Z[G℄.We prove this �nal laim, whih ompletes the proof of the theorem. Write� =P�2G q��: We know that for every H � G of index 2 (H = GM for some M),�M (�) = (Xh2H qh)H + (Xh2H qh�M )�MH 2 2m�1Z[�M℄: (4.12)



77
In partiular for any �xed � we see Ph2H qh� 2 2m�1Z. We view G as the vetorspae Fm2 . Let W be the set of all subspaes H � G suh that (G : H) = 2. Itis not hard to see using results on vetor spaes over �nite �elds that the numberof suh subspaes is 2m � 1. Consider the sum PH2WPh2H qh�. We see that q�appears jW j times, while for every  2 G,  6= �, q appears 2m�1�1 times. Hene(2m � 1)q� + (2m�1 � 1)P 6=� q 2 2m�1Z. But we have (2m�1 � 1)Pg2G qg = 0:Subtrating gives 2m�1q� 2 2m�1Z. Therefore q� 2 Z.4.4 Results towards the standard onjetureFor a �xed base �eld k, we use the following notations: P l is the set of plaes ofk; P l2 represents the dyadi primes, i.e. those that divide 2; P l0 is the set of �niteplae; P lr1, P l1 is the set of real and omplex plaes of k respetively, while �nallyP l1 = P lr1 [ P l1. For any set of plaes S, we put S0 = S \ P l0, S1 = S \ P l1,et.Generally we have a �xed extension K=k in mind, and for any set of plaes S,we put S+ = fv 2 Sj v splits ompletely in K=kg and S� = S n S+. We use thenotation for ray lass groups introdued in Setion 2.6. For any abelian group Bwe put B(2) = B=B2, whih is an elementary abelian 2-group.Proposition 4.4.1. If K=k is a multiquadrati extension, T onsists of a singleprime vT whih splits ompletely in K=k, and P l2 � S�, then the standard Rubinonjeture B(K=k; S; T; r) is true up to a fator of 22+jS+1j.Proof. Break the set S into two piees S = S+ [ S� onsisting of the primes that
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split ompletely in K=k and those that do not respetively. We may assume thatjS+j = r, beause otherwise the onjeture is trivially true.Let A = Cl(2)k;;;S�0 [T . This group orresponds to the maximal multiquadratiextension of k that is unrami�ed outside of S�0 [ T . Let B+ be the subgroup of Agenerated by the deomposition groups of the primes in S+, and similarly B� andBT for the primes in S� and T . We �nd that Cl(2)k;S�;T �= A=B� and Cl(2)k;T;S�0 �=A=BT . Moreover, rk2(Clk;S�;T ) � rk2(Clk;S;T ) = rk2( B+B+\B� ) and rk2(Clk;T;S�0 ) �rk2(Clk;T[S+;S�0 ) = rk2( B+B+\BT ). Sine the groups on the right sides are elementaryabelian, we onluderk2(Clk;S�;T )� rk2(Clk;S;T )� (rk2(Clk;T;S�0 )� rk2(Clk;T[S+;S�0 )) =rk2(B+ \BT )� rk2(B+ \ B�)But BT is generated by the deomposition group of vT . Sine vT is tamelyrami�ed (vT 62 P l2), its rami�ation index is at most e = 2 and its inertial degree inthe multiquadrati extension Hk;;;S�[T=k is at most f = 2 (beause f = jGvT =IvT jis a yli sub-quotient of G). Hene the deomposition group of vT has 2-rank atmost 2. We onlude that rk2(B+ \ BT ) � 2. Also note that K � H(2)k;T[S+;S�0 , som := rk2(G(K=k)) � rk2(Clk;T[S+;S�0 ) (Here is where we are using the hypothesisthat vT splits in K=k). Putting these fats together yieldsrk2(Clk;S�;T )� rk2(Clk;S;T )� �rk2(Clk;T;S�0 )�m� � 2;or rk2(Clk;S�;T )� rk2(Clk;T;S�0 ) � 2�m + rk2(Clk;S;T ):
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Now aording to the reetion formula (Theorem 2.6.5; here is where we areusing the hypothesis that P l2 � S�),rk2(Clk;S�;T )� rk2(Clk;T[Sr+1 ;S�0 ) = jT j � jP l1j � jS�0 j+ jSr+1 j= 1� (jSj � r)� jS+1 j:And by Corollary I.4.5.4 of [Gra03℄, rk2(Clk;T[Sr+1 ;S�0 ) � rk2(Clk;T;S�0 ) � �jSr+1 j.Therefore 2�m+ rk2(Clk;S;T ) � 1� jSj+ r � jS+1 j � jSr+1 j:or, with the fat that when T ontains no dyadi primes, rk2(Clk;S;T ) = rk2(Ak;S;T ),jSj+ rk2(Ak;S;T ) � 1 + r +m� (2 + jS+1j):By examining Corollary 4.0.11, we see that the proof is omplete.Corollary 4.4.2. If k is totally real and K is totally omplex, then with the hy-pothesis of the previous proposition, B(K=k; S; T; r) is true up to a fator of 22.Example 4.4.3. If the base �eld is k = Q , then under the hypothesis of theprevious proposition we have proven that B(K=k; S; T; r) is true up to a fator of22+1 = 8. However the requirements that P l2 � S and vT split ompletely are notreally neessary in this ase, and this result may be proved diretly from Corollary4.0.11 via other methods.We wrap up this setion by proving theProposition 4.4.4. Suppose K=k is a multiquadrati extension. If jT+j � r + 1and P l2 � S, then B(K=k; S; T; r) is true.
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Proof. By Theorem 2.6.5,rk2(Clk;S;T+)� rk2(Clk;T+;S0) = jT+j � jSjAlso rk2(Clk;S;T ) � rk2(Clk;S;T+), and, sine K � Hk;T+;S0, m � rk2(Clk;T+;S0).Putting these inequalities together yields the neessary one to apply Theorem4.0.9.Note that the ondition that P l2 � S is often ful�lled naturally beause it isquite ommon for dyadi primes to ramify in multiquadrati extensions (as theextension is Kummer and the dyadi primes divide the exponent.)4.5 Results towards the extended onjetureIn this setion we derive further results for the extended onjeture. Of ourseall results for the extended onjeture eB also imply the orrespondingresults for the standard Rubin onjeture B. (Take M = K in Theorem3.4.1.)Proposition 4.5.1. If K=k is a biquadrati biyli extension, i.e. G(K=k) �=(Z=2Z)2, and rk2(AM;S;T ) � 1 for all relevant quadrati extensions M=k, theneB(K=k; S; T ) is true.Proof. We are also assuming, as always, that the L-funtion attahed to the trivialharater vanishes to order greater than r, i.e. jSj � r+2. Aording to Theorem4.0.9, we are done if, for eah relevant quadrati extension M=k,jSj+ ord2(jAM;S;T=�Ak;S;T j) � r +m+ 1 = r + 3:
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Hene we are redued to the ase where there exists a relevant extension M=k inwhih ord2(jAM;S;T=�Ak;S;T j) = 0 and jSj = r + 2. Let M=k be suh a quadratiextension and � = G(M=k).By Lemma 4.0.10 we have ord2(jAM;S;T=�Ak;S;T j) � rk2(Ak;S;T ); we onludethat Ak;S;T also has odd ardinality. Now the long exat sequene of �nite groups(see Lemma 4.2.1),0 �! bH1(�; UM;S;T ) �! Ak;S;T ��! AM;S;T �! AM;S;T=�Ak;S;T �! 0implies that both jbH1(�; UM;S;T )j and jAM;S;T j are odd, sine their produt is.However this ontradits our hypothesis that rk2(AM;S;T ) � 1. Therefore no suhrelevant extension exists and the proposition follows.The next theorem we shall prove applies to the extended onjeture, andthereby also to Rubin's onjeture. It is the strongest theorem known to theauthor regarding Rubin's onjeture in multiquadrati extensions. It says that ifwe are allowed to hose the set T judiiously, we may take T to be of ardinalitym� 1 and the onjeture de�nitely beomes true. Moreover, if any set T of non-dyadi primes is hosen of ardinality larger than r + m, the onjeture will betrue. (The ondition that the primes in T be non-dyadi is simply to avoid troublewith wild rami�ation. However, if one truly wishes to put dyadi primes into Tthat is not a problem, one should simply replae the set T below with T nT2, applythe theorem, and then add the dyadi primes bak into T , and onjeture eB willremain true by Proposition 3.3.1.)Theorem 4.5.2. Suppose K=k is a multiquadrati extension of rank m, S is ap-propriate for K=k and is an r-over for bG. Then:
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(i) For any integer t with t � r +m+ 1� jSj � rk2(Ak;S), there exists a set Twith jT j = t suh that eB(K=k; S; T ) is true.(ii) If T is any set of non-dyadi plaes with jT j � r +m + 1, the onjetureeB(K=k; S; T ) is true.Proof. We prove (ii) �rst. Suppose T of the indiated size is given. Let P(T )denote the power set of T . We make P(T ) into a group under the operationT1 � T2 = (T1 [ T2) n (T1 \ T2):(The identity element is the empty set, and every element is its own inverse.)Reall the onstrution of the S-governing �eld of k from Setion 2.6. First weput YSk = fx 2 k� j (x) = a2aS0g:Then we form the governing �eldQk = k(qYSk ): (4.13)De�ne a homomorphism P(T )  �! G(Qk=k) via the formula (T1) = Yv2T1 �Qk=kv � :That  is atually a homomorphism relies simply on the fat that G(Qk=k) isan elementary 2-group. Aording to Lemma 2.6.7, eah T1 2 ker( ), T1 6= ;,orresponds to a relative quadrati extension of k whih is T1-totally rami�ed andS-split. We onlude thatrk2(Ak;S;T )� rk2(Ak;S) � rk2(ker( )): (4.14)
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Nowj ker( )j = jP(T )j � jCoker( )jjG(Qk=k)j � jP(T )jjG(Qk=k)j = 2jT j�rk2(G(Qk=k)): (4.15)Let Ak;S[2℄ denote the 2-torsion of Ak;S, i.e., those elements annihilated by 2.The exat sequene0 �! Ak;S[2℄ �! Ak;S 2�! Ak;S �! A(2)k;S �! 0 (4.16)implies #Ak;S[2℄ = #A(2)k;S, and hene, sine both groups are elementary abelian,rk2(Ak;S[2℄) = rk2(A(2)k;S) = rk2(Ak;S). We use the following short exat sequeneto analyze the rank of the Galois group of the governing �eld:0 �! Uk;S(k�)2(k�)2 �! YSk(k�)2 ��! Ak;S[2℄ �! 0where for x 2 YSk =(k�)2 we deompose (x) = a2aS0 and then set �(x) := [a℄k;S.This map is learly well de�ned. Now we verify the exatness. First, if  = [a℄k;S 2Ak;S[2℄, then a2 = (x)bS0 with x 2 k� and bS0 2 hS0i. Hene �(x) = . Next, ifx 2 YSk =(k�)2 gets mapped to the identity under �, then (x) = (x0)2aS0. Henex = xx20 � x20 2 Uk;S(k�)2: On the other hand, it is lear that all suh elements getmapped to the identity under �.Sine all the groups in the exat sequene are �nite elementary 2-groups, weuse Kummer theory to �nd thatrk2(G(Qk=k)) = rk2(YSk =(k�)2) = rk2(Uk;S(k�)2=(k�)2) + rk2(Ak;S):Combining the fat that rk2(Uk;S(k�)2=(k�)2) = rk2(Uk;S=U2k;S) = jSj with equa-tions (4.14) and (4.15), we �nd thatrk2(Ak;S;T )� rk2(Ak;S) � jT j � jSj � rk2(Ak;S):
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Realling our hypothesis on jT j and rearranging yieldsjSj+ rk2(Ak;S;T ) � r +m+ 1whih, in view of the Main Theorem of multiquadrati extensions (Corollary 4.0.11),�nishes the proof of (ii).For part (i), let t � r +m + 1� jSj � rk2(Ak;S) be a given integer. Choose tdistint primes v1; :::; vt of k suh that�Qk=kvi � = 1for eah 1 � i � t, and ollet them to form the set T .Consider the map  as above. In this situation all of P(T ) is in the kernel of , so that equation (4.14) beomesrk2(Ak;S;T )� rk2(Ak;S) � rk2(P(T )) = t:Substituting the bound on t, and rearranging yields the neessary inequality toapply the Main Theorem for multiquadrati extensions.Remark: Sine jSj � r � 2 � 0, it follows that we may hoose the t in part (i)of the above theorem to be m� 1. In the biquadrati ase we therefore may taket = 1. Hene in the biquadrati biyli ase we may always add one prime to Tto make the onjeture true, namely a prime whih splits ompletely in Qk=k.4.6 Completely nontrivial r-oversThe spirit of the onjeture eB is that we do not wish to onsider only the aseswhere there are r primes whih split ompletely. We may well ask what happens if



85
we push this idea to its extreme, and supposed that S does not ontain any primewhih splits ompletely in the extension K=k. It turns out that in ertain aseswe an then say even more.De�nition 4.6.1. For an extension K=k and integer r, we all an r-over S forbG ompletely nontrivial if it does not ontain any primes that split ompletely inK=k.Proposition 4.6.2. If K=k is a multiquadrati extension of rank m and S is aompletely nontrivial r-over with r � m, then eB(K=k; S; T ) is true.Proof. Reall the inequality from Lemma 2.4.2,X�2 bG�6=1G rS(�) =Xv2S(gv � 1): (4.17)Sine, by hypothesis, none of the primes in S split ompletely in K=k, it followsthat eah deomposition group is nontrivial and gv � 2m�1 for eah v 2 S. SineS is an r-over for bG, for every � 2 bG, rS(�) � r. Plugging these estimates into(4.17) yields (2m � 1)r � (2m�1 � 1)jSj, or jSj � 2m�12(m�1)�1r > 2r. Sine jSj is aninteger, jSj � 2r+1, whih, by hypothesis is at least r+m+1. Again we are doneby the Main Theorem regarding multiquadrati extensions (Corollary 4.0.11).Corollary 4.6.3. If S is a ompletely nontrivial r-over, onjeture eB is true inbiquadrati biyli extensions (i.e. when G = (Z=2Z)2).Proof. Aording to the previous Proposition, we are done if r � 2. The ase r = 1was taken are of in [Eri05℄.
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4.7 A remark on the approahOur attak on the problem of multiquadrati extensions was to write the eval-uator for the full extension K=k in terms of piees oming from eah quadratilevel. We have not been able to prove any onjeture in full using this method, soit is natural to ask whether it might not always work. The answer is that indeedat times it is not strong enough: some of the piees add together to give an ele-ment in the lattie while eah piee is not in the lattie. The following exampledemonstrates this phenomenon.Example 4.7.1. Let k = Q and K = Q (�8) = Q (p�1;p2). Let S = f1; 2; 17gand T = f3g. The �eld K has three quadrati sub�elds, K1 = Q (p�1), K2 =Q(p�2) and K3 = Q (p2). All �ve �elds have lass number one. One �nds thatthe three Rubin-Stark units for the quadrati extensions Ki=Q are "1 = 8�15p�117 ,"2 = �1+12p�217 and "3 = 1. Sine 17 splits ompletely in K=k, we are in thesituation of the standard Rubin onjeture, though we an onsider it also from theviewpoint of the extended onjeture, as S is a 1-over for bG. From our earlierdesription we obtain (now written multipliatively)"K=k = "1=21 "1=22 "1=23 :One an hek that, for example "1=21 =2 K. Indeed, in K we may deompose "1into primes: ("1)OK = P17P017(P0017P00017)�1;



87
where(17)OK = P17P017P0017P00017= (2 +p�1 +p2)(2 +p�1�p2)(2�p�1 +p2)(2�p�1�p2):Never-the-less, "K=k 2 UK;S;T . This happens beause the "1=21 and "1=22 ombineto give something in the lattie. Our analysis from in the urrent hapter wouldnot have deteted this fat.



Chapter 5
More general extensions

In the previous hapter we studied extensions of exponent two extensively. Herewe move bak to studying more general types of extensions.5.1 Covers with �nite, unramifying primesIn this setion K=k is any arbitrary �nite abelian extension of number �elds,and the pair of sets (S; T ) is appropriate for K=k. Denote the minimal order ofvanishing by r = rS(K=k). Reall that Pr(Smin) is simply the set of all subsets ofSmin with ardinality exatly r. If S ontains `enough' �nite unramifying primes,the standard onjeture implies the extended onjeture. To be preise:Theorem 5.1.1. Suppose S is an r-over for bG whih has a subset S 0 whih is anr-over for bG onsisting of only �nite unramifying primes. If B(MI=k; S; T; r) istrue for all I 2 Pr(Smin) then eB(K=k; S; T ) follows.
88
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Proof. Note that Smin � S 0. Let Sb = S n S 0; this set is a 0-over to whih we willbe adding primes to generate zeroes in the L-funtions of ertain subextensions ofK=k. As S 0 ontains only �nite, unramifying primes, Sb still ontains all in�niteand ramifying primes and hene is appropriate for the extension K=k. We all Sbthe base appropriate set. We may assume that jS 0j > r beause if jS 0j = r, thenSmin = S 0 ontains r primes that split ompletely and MI = K for I = Smin. Weare atually assuming B(K=k; S; T; r) is true in this ase! However in this situationB and eB are equivalent (see Corollary 3.4.2) and we would be done. Thereforeassume jS 0j > r and hene for any I 2 Pr(Smin) we may also de�ne�I = Yv2S0nI �1� ��1v �(the Frobenius automorphisms exist beause we are assuming the primes in S 0 areunrami�ed).We shall use the notation of Setion 3.2. Temporarily �x some I 2 Pr(Smin).Take v 2 I and � 2 bG. We laim that �((�v � 1)�I) is zero. Obviously the laimis true if �(�I) = 0. But �(�I) 6= 0 implies that no prime in S 0 n I splits in K�=k.However we know at least r primes of S 0 have to split in K�=k, as S 0 is an r-over.Thus all the primes in I split in K�=k, so �(�v) = 1 and the laim has been shown.Sine this holds for all � 2 bG we onlude that (�v� 1)�I = 0, that is, �v � �I = �I .In the ase of unrami�ed primes, DI , the subgroup generated by the deompo-sition groups of the primes in I, is atually generated by the Frobenius automor-phisms, DI = h�v j v 2 Ii. Thus, the previous paragraph has shown that �I is�xed by DI . But Z[G℄ is ohomologially trivial, so Z[G℄DI = NDIZ[G℄. Therefore�I = NDI � �0I for some �0I 2 Z[G℄.
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Piking up this extra oeÆient NDI is enough to �nish the proof. Take anelement � = �1 ^ : : :^�r 2 Vr U�K;S;T . We need only show that �(�K=k;S;T ) 2 Z[G℄,as this will imply that �K=k;S;T is an element of �S;T , whih is the predition of theextended onjeture. We will show �rst that �("MI=k;Sb[I;T;r) = N rDI��I for some��I 2 Z[G℄. Aording to a omputation idential to the one performed in the proofof Proposition 3.4.3,�("MI=k;Sb[I;T;r) 2 jDI jr	K=MI(Z[G=DI℄) = jDIjr�1NDIZ[G℄ = N rDIZ[G℄:Now we use Theorem 3.2.5 to ompute�(�K=k;S;T ) = XI2Pr(Smin) 1jDIjr�("MI=k;S;T;r)=X �0IjDIjrNDI�("MI=k;Sb[I;T;r)=X �0IjDIjrN r+1DI ��I=X �0INDI��I2 Z[G℄;thereby ending the proof.Example 5.1.2. Over Q , Rubin's onjeture is known for Z=lZ-extensions if lis an odd prime [Bur04℄. So we may onstrut examples of extensions K=Q inwhih the extended onjeture eB is known. One way to proeed is the following:By Dirihlet's Theorem on primes in progression, we know the sequene f1+blg1b=1ontains in�nitely many rational primes. Let pi = 1+ bil for i = 1; : : : ; m be m ofthese.
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Consider the ylotomi �eld L = Q(�N ) where N = p1 � : : : �pm. By well knownylotomi �eld theory, G(L=Q) �= (Z=NZ)� �=Lmi=1 Z=bilZ and let H denote thesubgroup Lmi=1 lZ=bilZ of G under the last identi�ation. Finally, let K = LH bethe �xed �eld. Then G(K=Q) is isomorphi to (Z=lZ)m. One an then �ll out setsS and T of primes of Q for whih we an prove eB(K=Q ; S; T ).As a general rule, any result whih says \B for all suh extensions implies eB"may be reproven almost verbatim for \C for all suh extensions implies eC". Allthat is needed is to replae �S;T with �0S;T . Thus we have also the followingTheorem 5.1.3. Suppose S is an r-over for bG whih has a subset S 0 whih is anr-over for bG onsisting of only �nite unrami�ed primes. If C(MI=k; S; r) is truefor all I 2 Pr(Smin) then eC(K=k; S) follows.5.2 Extensions of prime exponentIn this setion we suppose our �nite abelian Galois group G has prime expo-nent l, that is G = G(K=k) �= (Z=lZ)m. We do not neessarily suppose that ourbase �eld k ontains the lth roots of unity; the extension K=k may not be a Kum-mer extension. Our goal is to prove eB(K=k; S; T ) under the hypothesis that thestandard Rubin onjeture is true for (yli) extensions of degree l. If l > 2 themain di�erene from the multiquadrati extensions onsidered earlier is that weurrently do not have an expliit formula for the Stark-evaluators "M;S;T;j. Indeed,we do not know in general that the onjetures are true, as we do in the quadratiase. None-the-less we will arrive at similar (but weaker) inequalities on jSj and r
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whih imply the truth of the onjetures. To wit:Theorem 5.2.1. Suppose l is a prime number, G = G(K=k) �= (Z=lZ)m and thatB(M=k; S 0; T; r) is true for every degree l extension M of k ontained in K andappropriate S 0 � S. Let Sram denote the set of �nite primes of k that ramify inK=k, and P l1 denote the set of in�nite plaes of k. IfjSj � r + jSramj+ jP l1j+ (m� 1)l (5.1)then eB(K=k; S; T ) is true.Proof. Take a � 2 bGr;S, and let H = ker�. Then M = KH is a relevant extensionof k, i.e., a Z=lZ-extension in whih exatly r primes of S split. Aording toTheorem 3.2.3, we know that�K=k;S;T =X�2 bG 1j ker�jr e�"Kker�=k;S;T;rand so if we look at the piee oming from the �eld M , this is (see the Remarkafter Lemma 2.3.7) 1jHjr NHjHj"M=k;S;T;r = 1jHjr "M=k;S;T;r(the equality beause every element of H ats trivially on "M=k;S;T;r.)We know further that upon appliation of an element � 2 Vr U�K;S;T , we willpik up a N rH = jHjr�1NH :�� 1jHjr "M=k;S;T;r� 2 NHjHjZ[G℄ = l1�mNHZ[G℄:The key is to run this same argument not with "M=k;S;T;r, but rather with"M=k;SH ;T;r for some SH ( S. In partiular we take SH to onsist of the r primes of
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S that split in M=k, the primes that ramify in M=k and the in�nite primes of k.Thus SH is appropriate, and we do have an "M=k;SH ;T;r. Notie U�K;S;T � U�K;SH;T .The two epsilons are linked in the following way:"M=k;S;T;r = 24 Yv2SnSH �1� �v(M=k)�1�35 "M=k;SH;T;r: (5.2)Beause of our hypothesis on jSj, we know jS n SH j = jSj � jSHj � (m� 1)l.We need to study the produt that appears in equation (5.2). Fix � a generatorof � = G(M=k) �= Z=lZ. Then for any set of ni 2 f1; 2; :::; l� 1g,lYi=1(1� �ni) = lYi=1(1� �)(1 + � + ::: + �ni�1) 2 (1� �)lZ[�℄:If l = 2, (1 � �)2 = 2(1 � �) 2 lZ[�℄, while if l is an odd prime the �rst andlast terms anel and (1 � �)l = Pl�1j=1 �lj��j 2 lZ[�℄. Sine we know jS n SH j �(m � 1)l and eah set of l fators in the produt ontributes at least a fator ofl we onlude that hQv2SnSH (1� �v(M=k)�1)i 2 lm�1Z[�℄. We onlude that�� 1jHjr "M=k;S;T;r� 2 Z[G℄, and so by linearity �(�K=k;S;T ) 2 Z[G℄, whih ompletesthe proof.Corollary 5.2.2. If our data satisfy all the hypothesis of Theorem 5.2.1 exept thebound on jSj, we may still add suÆiently many primes to S so that the extendedonjeture for K=k beomes true.Proof. Confer Example 4.0.12.Corollary 5.2.3. If G = G(K=k) �= (Z=lZ)m, B(M=k; S 0; T; r) is true for everydegree l extension of k ontained in K and appropriate S 0 � S, S is a ompletely
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nontrivial r-over andr � 1l � 1hjSramj+ jP l1j+ (m� 1)l � 1ithen eB(K=k; S; T ) is true.Proof. (Compare Proposition 4.6.2). We use the inequality from Lemma 2.4.2,X�2 bG�6=1G rS(�) =Xv2S(gv � 1): (5.3)Sine, by hypothesis, none of the primes in S split ompletely in K=k, it followsthat eah deomposition group is nontrivial and gv � lm�1. Sine S is an r-overfor bG, for every � 2 bG, rS(�) � r. Substituting these estimates into (5.3) yields(lm � 1)r � (lm�1 � 1)jSj, or jSj � lm�1l(m�1)�1r > lr. Sine jSj is an integer, jSj �lr+1 = r+(l�1)r+1, whih, by hypothesis is at least r+ jSramj+ jP l1j+(m�1)l.We are done by the previous Theorem.5.3 A Stark-type onjeture of BurnsReently David Burns has proposed a onjeture whih may imply onjetureB, and related onjetures of Gross and Tate. See [Bur04℄.The onjeture predits that in the standard situation of r splitting primes inK=k, for � 2 VrZ[G℄U�K;S;T we have�("K=k;S;T;r) � �hk;S;TReg�G (mod I jSj�rG )where IG (the so-alled augmentation ideal) is the kernel of Z[G℄ aug�! Z; and Reg�Gis a anonial Gross-type regulator taking values in Z[G℄ and de�ned via loalreiproity maps and the isomorphism G �= IG=I2G. See [Hay04℄ for details.
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In partiular, this onjeture implies that, in our situation where r primes ofS split in M=k, for � = �1 ^ : : : ^ �r 2 VrZ[G℄U�K;S;T ,((N�L=M)r�)("M=k) 2 I jSj�r�1G(M=k) : (5.4)Hene if G �= (Z=lZ)m we may play o� the same ideas as Setion 5.2 state thefollowing proposition:Proposition 5.3.1. Suppose l is a prime number, G = G(K=k) �= (Z=lZ)m andthat Burns' onjeture as stated above is true for every degree l extension of kontained in K and appropriate S 0 � S. IfjSj � r + (m� 1)l + 1 (5.5)then eB(K=k; S; T ) is true.Proof. For a Z=lZ-extension M=k with Galois group � = f1; �g, we have I� =(��1)Z[�℄. But then I l� � lZ[�℄. Hene if jSj�r�1 � (m�1)l, by equation (5.4)we have ((N�L=M)r�)("M=k) 2 lm�1Z[�℄:The proof �nishes exatly as that of Theorem 5.2.1.Corollary 5.3.2. Suppose Burns' onjeture for degree l extensions. If S is aompletely nontrivial r-over, and G �= (Z=lZ)m and moreoverr � ll � 1(m� 1)then eB(K=k; S; T ) is true.
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Proof. This orollary follows from the previous proposition in exatly the samemanner that Corollary 5.2.3 followed from Theorem 5.2.1.Corollary 5.3.3. Suppose Burns' onjeture for degree l extensions. If S is aompletely nontrivial r-over, G �= (Z=lZ)2 and r � 2 then eB(K=k; S; T ) is true.5.4 Counterexamples to potential onjeturesIt is safe to say that Stark's rationality onjeture is believed to hold, i.e.�K=k;S;T 2 Q VrZ[G℄UK;S;T (atually the submodule thereof supported on the har-aters of minimal order of vanishing). The searh for the orret lattie in-side Q VrZ[G℄UK;S;T is still in progress. Indeed, Rubin settled on the ondition(�1 ^ : : : ^ �r)(") 2 Z[G℄ only after realizing that the more natural �rst guess ofVrZ[G℄UK;S;T itself was inorret.There is a relatively large amount of support for Rubin's lattie �S;T in the aseof the standard onjeture. However we have only provided very partial supportfor the use of it for the extended onjetures in this dissertation. (This is perhapsmore likely to be due to weaknesses in this author's methods of proof than to thelattie?) In any ase, beause of the result of Proposition 3.4.3, if one believes thestandard Rubin onjeture, then the orret lattie is some sublattie of 1jGj�S;T .Indeed by examining that proof more losely, one sees that 1�S;T an be usedwhere  = lmI2Pr(Smin)jDIj:We have also proven �S;T itself an be used when S has a sub-r-over onsisting
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of �nite unramifying primes, or in multiquadrati extensions when T is suÆientlylarge.The statement of the onjeture eB inluded the hypothesis S 6= Smin. The aseS = Smin may be viewed as a `boundary ase,' and often a di�erent onlusionfollows in boundary ases. For example, in the introdution we only introduedStark's First Order Abelian Conjeture under the hypothesis jSj � 3 to avoid amore ompliated formulation of what happens when jSj = 2. For the extendedonjeture, when S = Smin and r = 1 there is numerial evidene that at times�K=k;S;T 62 �S;T . See [Eri05, Setion 4.2℄ for the expliit onstrution.Another hypothesis that might be imposed in lieu of `S 6= Smin' is that thedeomposition groups of the primes in S generate the full Galois group of K=k.This ondition is equivalent toHk;S\K = k, where Hk;S is the maximal everywhereunrami�ed abelian extension of k in whih all primes of S split ompletely. Heneby imposing this ondition, we would not gain information about a lass of veryinteresting examples when Ak;S is nontrivial. For example, we ould not investigateexamples similar to that Rubin gives to demonstrate the need for the lattie �S;T ,i.e. ones where all or most of the primes in S split in K=k.It would be interesting to disover the `right' lattie to apture the evaluatorsas losely as possible, inluding one that aptures omponents arising from non-minimal order of vanishing L-funtions.



Appendix
Charaterizing entral extensions

Throughout this appendix, K=k is an abelian extension of number �elds, G =G(K=k), �K denotes the roots of unity inK and wK = #�K. In what follows, everyourane of UK may be interepreted as UK;S for any set of primes S ontainingall Arhimedean plaes. We arbitrarily �x a funtionN : G �! Z (A.1)suh that �� = �N� for all � 2 �K. Let UabK=k denote the set of units of K whosewK-th root is abelian over k. There is a (non-injetive) map UK ! QUK sendingu to eu = 1
u. This map annihilates torsion (all roots of unity get sent to 1). Theimage of UK under this map is denoted fUK . As usual, kab denotes the maximalabelian extension of k.The following haraterization of when adjoining a wK-th root of an S-unit toK generates an extension that is abelian over k an be found in [Tat84, PropositionIV.1.2℄. It is due originally to Coates [Coa77℄, and we shall refer to it as `Coates
98
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ondition.'Proposition A.0.1. Let f�igi2I be a system of generators for G. For any u 2QUK , the following are equivalent:(i) There exists an " 2 UabK=k suh that uwK = e".(ii) There exists a �eld L � kab suh that u 2 fUL.(iii) For almost all �nite plaes p of k unrami�ed in K, there exists "p 2 UKsuh that "p � 1 (mod pOK) and e"p = u�p�Np:(iv) There exists " 2 UK and f�igi2I � UK suh that uwK = e", 8i; j 2 I��j�N�ji = ��i�N�ijand "�i�N�i = �wKi .A.1 An analogue of Coates' onditionThe aim of this appendix is to prove a similar type of haraterization of whenthe extension L = K("1=wK ) is not neessarily abelian, but merely entral over k.De�nition A.1.1. Reall that a group extension1 �! H �! G �! G �! 1 (A.2)is alled entral if H is ontained in the enter of G, i.e., any element h 2 Hommutes with every element of G. A series of �eld extensions L=K=k with L=kand K=k Galois is alled entral if the orresponding exat sequene of Galoisgroups 1 �! G(L=K) �! G(L=k) �! G(K=k) �! 1 (A.3)
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is entral.We may onsider the group of roots of unity �K as a Z[G℄-module (any �eldautomorphism will take a root of unity to another root of unity).De�nition A.1.2. Let A(K=k) := AnnZ[G℄(�K) � Z[G℄be the annihilator ideal of �K under this ation.It an be shown (see [Tat84, Lemme IV.1.1℄) that A(K=k) is generated over Zby the elements (�p �Np) as p runs through the set of primes of k unrami�ed inK=k.We begin by studying general Kummer extensions of an abelian extension K=k.(A Kummer extension of K is any extension obtained by adjoining to K the wK-throots of elements of K.) Choose a subgroup � � K�=(K�)wK and L = K( wKp�).Lemma A.1.3. The extension L = K( wKp�) is Galois over k if and only if � isa Z[G℄-module.Proof. ()) Suppose L=k is Galois. Let � 2 G and Æ 2 �. Let e� be any lift of �into G = G(L=k). Fix � as a wK-th root of Æ. Sine �e� 2 L, Æ� is a wK-th powerof an element of L, and hene by Kummer theory Æ� 2 �.(() Suppose � is a Z[G℄-module. Let � 2 L be a �xed wK-th root of someÆ with Æ 2 �. Let L be the normal losure of L=k, and  2 G(L=k). As K=k isGalois, learly (K) = K. Next we notie that � = (Æ)1=wK is the wK-th root ofsomething whih, by hypothesis, is in �. Therefore � 2 L. Sine this hold for allgenerators of L=K, (L) = L. Therefore L=k is Galois.



101
Lemma A.1.4. A Kummer extension L = K( wKp�) is entral over k if and onlyif � is annihilated by A(K=k) in K�=(K�)wK .Proof. ()) Suppose L=K=k is a entral extension. Pik Æ 2 �, and � 2 G =G(K=k). Fix a root, � = Æ1=wK . Let a 2 A(K=k). Fix h 2 H = G(L=K). Then�h�1 = � is a root of unity. We ompute (using entrality)�a(h�1) = �(h�1)a = �a = 1:Thus �a is �xed by H, so �a 2 K� whih means Æa 2 (K�)wK .(() Suppose � is annihilated by A(K=k). First we prove that L=k is Galois.Let g be an element of G = G(K=k). Let Æ 2 �. ThenÆg = Æg�Ng+Ng = �wKÆNg = ÆNg 2 �:Hene � is a Z[G℄-module, so by Lemma A.1.3, L=k is Galois.Now take h 2 H = G(L=K). For x 2 K it is lear that xgh = xhg. It remainsto verify that the same holds for elements of wKp�. Let � = Æ1=wK be suh anelement, so that �h = �� for a root of unity �. By hypothesis �g�Ng = � for some� 2 K. Then �gh�hg = �gh�(Ng)h+(Ng)h�hg= �(g�Ng)h�h(Ng�g)= �h(��)�(g�Ng)= ���1= 1:
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Let T be a �nite set of non-Arhimedean primes of k suh that(1) T does not ontain any primes that ramify in K=k or that divide wKOk,(2) for every � 2 G there is a q 2 T suh that �q = � , and(3) f�p �Np j p 2 T g generates A(K=k) as a Z-module.Then there are sets of integers fbpg and fbipg suh thatwK =Xp2T bp(�p �Np); (A.4)and �i �N�i =Xp2T bip(�p �Np): (A.5)Of ourse we may (and do) hoose the bp's so that they are nonzero only if p splitsompletely in K=k.The next proposition aomplishes our goal in establishing a ondition for en-trality whih is the analogue of Coates ondition for abelianness.Proposition A.1.5. Let u 2 QUK , f�igi2I be a system of generators for G andT be as above. The following are equivalent.(i) There is an " 2 UK suh that uwK = e" and K("1=wK )=K=k is entral.(ii) There exists a olletion f�igi2I � UK and an " 2 UK suh that e" = uwKand for all i 2 I, �wKi = "�i�N�i.(iii) There exists a olletion of units f"pgp2T � UK suh that u�p�Np = e"p andfor all p in T whih split ompletely in K=k, "p � 1 (mod pOK).Proof. (i), (ii): This is a speial ase of Lemma A.1.4.(i) ) (iii): Let L = K("1=wK ). Fix a root � = "1=wK . For eah p 2 Tarbitrarily hoose a prime P of L dividing p. We de�ne "p = ��P�Np. (Note that
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this does depend on our hoie of P, but we suppress this from the notation). Weverify that indeed "p is in K. This is beause if h 2 H = G(L=K),"h�1p = �(h�1)(�P�Np) = ��P�Np = 1:If p 2 T splits ompletely in K=k then under the identi�ation G �= G=H, wehave �p = 1 �H. For any other prime q 2 T ,"�q�Nqp"�p�Npq = ��P�Q��Q�Pwhere of ourse Q is our hosen prime of L that divides q. But as �P 2 H, itommutes with �Q (by assumed entrality), so the ratio is 1. Therefore"�q�Nqp = "�p�Npq : (A.6)Let } be the prime of K below P. Beause "p � 1 (mod P) and "p 2 K, it follows"p � 1 (mod }). Hene also "�Nqp � 1 (mod }).Now redue equation (A.6) modulo } to get "�qp � 1 (mod }), or equivalently"p � 1 (mod }��1q ). Therefore, letting ��1q range over the Galois group G (whihwe may do beause of ondition (2) on T ), we �nd that "p � 1 (mod pOK).(iii) ) (ii). Suppose the olletion f"pgp2T � UK with the stated propertiesis given. We de�ne " =Yp2T "bpp ;and �i =Yp2T "bipp :
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Remember that we have hosen the bp suh that bp 6= 0 implies p splits om-pletely in K=k. In this ase, by hypothesis, "p � 1 (mod pOK). Suppose p is suha prime and q is any other prime of T . Then as"̂�q�Nqp = "̂�p�Npq ;these two elements must di�er by a root of unity. But in this ase the root of unitymust be ongruent to 1 modulo pOK. By our hypothesis on T , it follows that thisroot of unity is atually equal to one. That is"�q�Nqp = "�p�Npqwhen bp 6= 0.One omputes "�i�N�i = "Yp2T "bpp #Pq2T biq(�q�Nq)= Yp;q2T "bpbiq(�q�Nq)p= Yp;q2T "(�p�Np)bpbiqq= �wKias needed.A.2 Appliation to Stark's onjeturesThe reason Coates' ondition (Proposition A.0.1) is important is that it givesa new way to formulate the statement `K("1=wK )=k is abelian' in terms of T -moditi�ed unit groups as we let T = fvTg with vT varying over a set of primes as
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in part (iii) of the proposition. (Here " is of ourse the Stark unit arising from theFirst Order Integral Stark onjeture.) That is, this proposition establishes thelink between Rubin's formulation and Stark's formulation of the integral onjeturewhen r = 1. Harold Stark has laimed that his original predition or \all heneeded" was that K("1=wK )=K=k be a entral extension. Yet in every ase ofthe original �rst order Stark onjeture, the extension was found to be abelian.None-the-less, it was of interest to see what exatly is needed to ahieve a entralextension.Proposition A.0.1 is also apparent in the di�erene between onjetures B andC (and eB and eC). Both B and C redue to Stark's original formulation whenr = 1, but eah generalizes the abelian ondition in a di�erent way to higherorder. Let us examine the idea in C and use this to formulate another statementwhere we replae `abelianness' with `entrality' in the higher order of vanishingsituation.An alternate formulation of onjeture C(K=k; S; r) is to take T = ; and requirethat �1 ^ : : : ^ �r�1("K=k;S) 2 1wKUabK=k;Sfor all �1; : : : ; �r�1 2 U�K;S. It then beomes natural to ask instead that�1 ^ : : : ^ �r�1("K=k;S) 2 1wKU entK=k;Sfor all �1; : : : ; �r�1 2 U�K;S. Here of ourse U entK=k;S denotes those S-units u for whihK(u1=wK )=K=k is a entral extension.Aording to our main result in this appendix, Proposition A.1.5, this means wemight formulate a onjeture weaker even that eC. In this weaker onjeture we let
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T = fvTg run through the sets of ardinality one suh that (S; T ) is appropriate,and for all �1; : : : ; �r�1 2 U�K;S; we ask that�1 ^ : : : ^ �r�1(�K=k;S;T ) 2 Uwhere U = UK;S;T if vT splits ompletely in K=k and U = UK;S otherwise.Although urrently we have not proven any further ases of this weakenedonjeture than those implied by eB, it is quite oneivable that this may be themore natural statement, given the propensity of the results in Chapter 4 to requirethat T ontain primes whih split ompletely in K=k (see e.g. Proposition 4.4.1).
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