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Behavioral/Cognitive

Dissociable Decoding of Spatial Attention and Working
Memory from EEG Oscillations and Sustained Potentials

X Gi-Yeul Bae and Steven J. Luck
Center for Mind & Brain and Department of Psychology, University of California-Davis, Davis, California, 95618

In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working
memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead
reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to
spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating
EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working
memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered
orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also
carried clear information about the location of the stimulus, but they provided little or no information about orientation independently
of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent
with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations
primarily carry location information, consistent with their link to spatial attention.

Key words: alpha; decoding; EEG; ERP; orientation; working memory

Introduction
Working memory (WM) is fundamentally important in cognitive
processing, and substantial effort has been devoted to understanding
the neural coding of WM representations. Most research has fo-
cused on the persisting neural activity that is present during the
delay period of WM tasks (Miller et al., 1991; Todd and Marois,
2004; Fukuda et al., 2015; but see Stokes, 2015; Rose et al., 2016).
However, this delay-period activity could reflect support pro-

cesses rather than the actual memory representations, and show-
ing that the content of the memory can be decoded from a neural
signal provides much stronger evidence that the signal represents
the memory itself (Postle, 2016).

New EEG-based decoding methods show promise for study-
ing the neural coding of human WM (LaRocque et al., 2013;
Foster et al., 2016; Rose et al., 2016; Wolff et al., 2017). These
studies used the scalp distribution of EEG signals to decode or
track the information being held in WM. However, it is quite
plausible that they were actually tracking the direction of spatial
attention. For example, the scalp distribution of alpha-band EEG
activity during the delay period of a spatial WM task was found to
track which of eight locations was being remembered (Foster et
al., 2016), but alpha oscillations are closely linked with spatial
attention (Worden et al., 2000), and observers often maintain
spatial attention on the to-be-remembered location in spatial
WM tasks (Awh et al., 1998, 2000). Indeed, Rihs et al. (2007)
showed that the scalp distribution of alpha-band activity varies
systematically according to which of eight different locations is
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Significance Statement

Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders.
Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of infor-
mation in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is
necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in
human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with
a memory storage signal.
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being attended. Moreover, Foster et al. (2017b) found that alpha-
band activity tracks shifts of spatial attention, and van Ede et al.
(2017) found that alpha-band activity tracks the location of the
item that is currently most relevant in WM. In addition, La-
Rocque et al. (2013) and Rose et al. (2016) used EEG oscillations
to decode the attended stimulus dimension in a WM task, but
they did not attempt to decode the specific feature value being
maintained in WM. It is possible that sustained attention is actu-
ally the mechanism of WM maintenance (Awh and Jonides,
2001), but this is currently an open question (Woodman et al.,
2001; Johnson et al., 2008; Chun et al., 2011; Ester et al., 2012;
Gazzaley and Nobre, 2012; Tas et al., 2016).

Sustained potentials are also present in averaged ERP wave-
forms during the delay period of visual WM tasks (Perez and
Vogel, 2012). These sustained potentials are strongly tied to in-
dividual and group differences in WM storage capacity (Vogel
and Machizawa, 2004; Leonard et al., 2013), but no prior research
has determined whether these potentials represent the features of
the remembered objects.

Both ERPs and fMRI have been used to decode the contents of
WM in orientation memory tasks (Harrison and Tong, 2009;
Serences et al., 2009; Ester et al., 2013; Wolff et al., 2015, 2017),
but these tasks may have encouraged participants to focus atten-
tion on the end of the oriented grating (Fig. 1a), and it is possible
that the direction of spatial attention was being decoded rather
than orientation per se (Fahrenfort et al., 2017). Thus, it is not yet
known whether EEG signals contain information about nonspa-
tial features being maintained in WM.

In the present study, we conducted two EEG decoding exper-
iments, one using a simple orientation task that could potentially
be performed by means of either spatial attention or location-
independent orientation representations (or both), and one that
can dissociate between orientation and location. Given the close
association between sustained ERP responses and WM capacity
(Vogel and Machizawa, 2004), we predicted that these responses
would reflect the specific feature value being maintained in WM.
By contrast, given the close association between alpha-band os-
cillations and attention (Worden et al., 2000; Rihs et al., 2007), we
predicted that these oscillations would reflect the location of the
to-be-remembered object rather its features.

Materials and Methods
Participants. Sixteen college students between the ages of 18 and 30 with
normal or corrected-to-normal visual acuity participated in each exper-
iment for monetary compensation (Experiment 1: 10 female, 6 male;
Experiment 2: 9 female, 7 male). All participants had experience with at
least one prior WM task. The study was approved by the University of
California-Davis Institutional Review Board.

Stimuli and apparatus. Stimuli were generated in MATLAB (MathWorks)
using PsychToolbox (Brainard, 1997; Pelli, 1997) and were presented on
an LCD monitor (Dell U2412M) with a gray background (31.2 cd/m 2) at
viewing distance of 100 cm. A black fixation dot was continuously pres-
ent in the center of the display except during the intertrial interval, and
participants were instructed to maintain fixation on this dot except dur-
ing the response period and intertrial interval.

Experiment 1: behavioral task. We conducted two experiments using
different behavioral tasks. Experiment 1 was designed to establish our
ability to decode the feature value being remembered using both alpha-
band and sustained ERPs in a simple task that could be performed either
by means of spatial attention or orientation memory (or both). Experi-
ment 2 was designed to dissociate spatial attention from orientation.

Experiment 1 used a standard delayed estimation task (Fig. 1b). Each
trial started with a 500 ms presentation of the fixation dot followed by a
200 ms presentation of a black, teardrop-shaped sample stimulus (2.17°
long, 0.8° maximum width) that was centered on the fixation dot. Sixteen
discrete teardrop orientations were used (0°, 22.5°, 45°, 67.5°, 90°, 112.5°,
135°, 157.5°, 180°, 202.5°, 225°, 247.5°, 270°, 292.5°, 315°, and 337.5°),
tested in random order with equal probability. Participants were instructed
to remember the orientation of this teardrop as precisely as possible over
a 1300 ms delay period during which only the fixation dot was visible. A
response ring (radius 2.17°) was then presented to indicate that a re-
sponse should be made; once the participant started moving the mouse
to respond, a test teardrop appeared at the center of the response ring.
Participants were instructed to adjust the orientation of the test teardrop
so that it matched the remembered orientation of the sample teardrop.
The test was identical to the sample, except that its initial orientation was
determined by the mouse pointer position when the participant began to
respond (and was therefore unrelated to the orientation of the sample
teardrop). The orientation of the test teardrop was continuously updated
while the mouse moved so that the tip of teardrop always pointed toward
the current mouse pointer position. This made the tip of the teardrop
highly salient. Once participants were satisfied with the orientation,
they finalized the report by clicking a mouse button. The display then
blanked completely, and the next trial started after a 1000 ms delay. Note
that participants could potentially perform this task by focusing spatial

Figure 1. a, Possible attention-based strategy for remembering an orientation. Maintaining attention on one or both of the extreme ends of the grating over a delay interval could help an
observer reproduce the orientation or detect changes in orientation at the end of the interval. Even if this was not the sole mechanism being used for the task, it would likely be useful for performing
the task, and neural signals related to spatial attention could potentially be sufficient to produce above-chance decoding of the orientation. b, Delayed estimation task used in Experiment 1. On each
trial, participants fixated at the central dot for 500 ms (not shown here) and then saw a 200 ms teardrop. After a 1300 ms delay period, a response ring appeared, followed by a test teardrop as soon
as the participant began moving the mouse. Participants used the mouse to adjust the orientation of the test teardrop until it matched the remembered orientation of the sample teardrop. The tip
of the test teardrop pointed toward the mouse cursor, and participants clicked the mouse button to finalize their report. c, Probability distribution of response errors in Experiment 1, collapsed across
all participants.
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attention onto the location of the sample teardrop’s tip during the delay
period and then adjusting the test teardrop until its tip was at the at-
tended location, without remembering the orientation of the teardrop
per se. Even if they did not use this as the sole memory strategy, they may
have focused attention on the remembered location of the teardrop dur-
ing the delay period as they prepared to make their response.

Each participant completed a total of 640 trials (40 trials for each of the
16 orientations, in random order). Each participant received at least 16
practice trials before beginning the task.

Note that the teardrop-shaped stimuli used in this study provide 360°
of distinct orientations, whereas other classes of commonly used orien-
tation stimuli (e.g., Gabor patches) can produce only 180° of distinct
orientations. In mathematical terms, the present stimuli can be described
in terms of the orientation of a ray, whereas stimuli such as Gabor patches
can be described in terms of the orientation of a line (of infinite length).

Experiment 2: behavioral task. The task in Experiment 2 (see Fig. 4) was
designed to completely dissociate the orientation of the teardrop from its
location, making it possible to determine whether a given neural signal
contains information about location or about orientation (or both). It
was identical to the delayed estimation task used in Experiment 1, except
that the location of the sample and test teardrops varied independently
from trial to trial. Thus, the location of the tip of the sample teardrop
provided no information about the orientation of the teardrop.

We assumed that attention would be directed to the location of the
sample teardrop when it was being perceived and encoded, but the stim-
uli were designed so that maintaining attention on this location would
not allow participants to report the teardrop orientation at the time of
test. In addition, this procedure allowed us to independently decode both
the location and the orientation of the sample teardrop. We predicted
that alpha-band activity could be used to decode the location but not the
orientation of the teardrop, indicating that this signal primarily reflects
spatial attention. By contrast, we predicted that sustained EEG voltages
could be used to decode the orientation of the teardrop, indicating that
this signal reflects a location-independent WM representation. There are
multiple ERP components that track the location being attended (N2pc
and sustained posterior contralateral negativity; Jolicoeur et al., 2008;
Luck, 2012; Fahrenfort et al., 2017), so we assumed that we would be able
to decode the location of the teardrop as well as its orientation from the
ERP signals.

The orientation of a given teardrop was defined by the angular posi-
tion of the tip relative to the center of the object itself (see Fig. 4b, �O). As
in Experiment 1, 16 discrete orientations were possible (0°, 22.5°, 45°,
67.5°, 90°, 112.5°, 135°, 157.5°, 180°, 202.5°, 225°, 247.5°, 270°, 292.5°,
315°, and 337.5°). The tip of the sample teardrop was always located at
one of 16 discrete locations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°,
180°, 202.5°, 225°, 247.5°, 270°, 292.5°, 315°, and 337.5°) on an invisible
circle with a radius of 2.17° that was centered on the fixation dot. Its
location was defined by the angular position of the tip relative to the
center of this invisible circle (see Fig. 4b, �L). The location and orienta-
tion of the sample teardrop on a given trial were chosen at random from
the 256 possible combinations of the 16 orientations and 16 tip locations
so that the orientation and location were completely independent (see
Fig. 4c). For example, the tip of a teardrop with a 45° orientation could be
placed at any of the 16 locations. Similarly, a teardrop with a tip located at
292.5° could have any of the 16 orientations. The only constraint was that
each of the 16 orientations and each of the 16 locations occurred on the
same number of trials (but selected independently of each other). Con-
sequently, remembering the location of the teardrop would not help in
reporting its orientation. Participants were told nothing about the con-
straints on the orientation and location of the teardrop; they were simply
told that the locations of the sample and test teardrops would differ and
that they should adjust the orientation of the test teardrop so that it
matched the orientation of the sample.

Orientation cannot be completely dissociated from location because
orientation is defined by a pattern of change over space. In the present
experiment, teardrop orientation can therefore be defined as the location
of the tip of the teardrop relative to the center or thick end of the tear-
drop. Thus, the contrast between stimulus orientation and stimulus
location can be equivalently framed as a difference between an object-

centered spatial representation (orientation) and an environment-
centered (or retinotopic) spatial representation (which is a fundamental
issue in visual coding; Bisiach, 1996). For the sake of simplicity, however,
the present paper uses the term orientation to mean an object-centered
representation and the terms location and space to refer to an environment-
centered or retinotopic representation.

In orthogonalizing the location and orientation of the teardrop, we
focused on the teardrop’s tip because it was the part of the teardrop that
provided the most precise location information and because the tip al-
ways pointed toward the location of the mouse pointer while the partic-
ipant was attempting to reproduce the sample orientation, making it
highly salient. In theory, the location of the thick end of the teardrop
could provide some information about the teardrop’s orientation in this
task, but a later section will provide evidence that this could not have
influenced our orientation decoding results.

The location of the test teardrop was determined by a new random
combination of orientation and location, selected at random on each
trial, independently of the orientation and the location of the sample
teardrop on that trial. In other words, the test teardrop was selected at
random from among the same set of 256 possibilities as the sample
teardrop. However, when the observer rotated the teardrop, its tip was no
longer constrained to fall on the invisible circle used to define the sample
teardrop locations. Consequently, participants could not use the location
of the test teardrop to guess the orientation of the sample teardrop. In
addition, this task makes it possible to determine whether a decoder that
is trained with orientations at one set of locations can decode orienta-
tions presented at a different set of locations.

After at least 16 practice trials, each participant completed a total of 640
trials (40 for each of the 16 orientations, collapsed across location, which was
also 40 for each of the 16 locations, collapsed across orientation).

EEG recording and preprocessing. The continuous EEG was recorded
using a Brain Products actiCHamp recording system (Brain Products
GmbH). Recordings were obtained from a broad set of scalp sites (FP1,
FP2, F3, F4, F7, F8, C3, C4, P3, P4, P5, P6, P7, P8, P9, P10, PO3, PO4,
PO7, PO8, O1, O2, Fz, Cz, Pz, POz, and Oz), which was similar to the
montage used in the spatial WM study of Foster et al. (2016). Electrodes
on the left and right mastoids were recorded for use as reference sites. The
horizontal electrooculogram (EOG) was recorded from electrodes placed
lateral to the external canthi and was used to detect horizontal eye move-
ments; the vertical EOG was recorded from an electrode placed below the
right eye and was used to detect eyeblinks and vertical eye movements.
Electrode impedances were maintained �50 K�. All signals were re-
corded single-ended and then referenced offline. The EEG was filtered
online with a cascaded integrator-comb antialiasing filter (half-power
cutoff at 130 Hz) and digitized at 500 Hz.

Signal processing and analysis was performed in MATLAB using
EEGLAB Toolbox (Delorme and Makeig, 2004) and ERPLAB Toolbox
(Lopez-Calderon and Luck, 2014). The scalp EEG was referenced off-line
to the average of the left and right mastoids. A bipolar horizontal EOG
derivation was computed as the difference between the two horizontal
EOG electrodes, and a vertical EOG derivation was computed as the
difference between Fp2 and the electrode below the right eye. All the
signals were bandpass filtered (noncausal Butterworth impulse response
function, half-amplitude cutoffs at 0.1 and 80 Hz, 12 dB/oct roll-off) and
resampled at 250 Hz. Portions of EEG containing large muscle artifacts or
extreme voltage offsets (identified by visual inspection) were removed.
Independent component analysis (ICA) was then performed on the scalp
EEG for each subject to identify and remove components that were as-
sociated with blinks (Jung et al., 2000) and eye movements (Drisdelle et
al., 2017). The ICA-corrected EEG data were segmented for each trial
from �500 to �1500 ms relative to the onset of the sample teardrop. To
verify that eye movements did not impact the decoding results, we also
conducted a set of decoding analyses in which trials with eye movements
were excluded and ICA-based correction was not applied (see below).

Decoding overview. We attempted to decode the orientation of the
sample stimulus based on the scalp distribution of two different signals,
the phase-independent alpha-band EEG power and the phase-locked
ERP voltage. To ensure that we were decoding non-overlapping signals in
these two analyses, the ERP decoding procedure was limited to frequen-
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cies �6 Hz, and the alpha-band decoding procedure was limited to fre-
quencies between 8 and 12 Hz. Thus, we could be certain that the ERP
decoding was not contaminated by alpha-band oscillations, which can
masquerade as sustained ERPs under some conditions (Mazaheri and
Jensen, 2008; van Dijk et al., 2010), and we could also be certain that the
alpha-band decoding was not contaminated by low-frequency sustained
potentials. Decoding was performed independently at each time point,
but the statistical analysis focused on temporally contiguous clusters of
above-chance decoding performance.

There are many ways to assess the relationship between a stimulus
parameter such as orientation and a neural signal, but the most common
approaches are forward encoding models and decoding procedures (Ser-
ences et al., 2009; Brouwer and Heeger, 2011; Foster et al., 2016; Fahren-
fort et al., 2017). Here, we chose to focus on decoding because the goal
was to determine whether the signals contain information about the
orientation of the sample stimulus, and above-chance decoding accuracy
provides the most straightforward evidence that such information is
present. Forward encoding models can be very valuable, but they make
assumptions about the nature of the underlying representation that may
not be justified for a given feature dimension and are not relevant to the
questions being asked in the present study. Although we report only the
decoding approach here, we have also applied the forward encoding
approach (using the method of Foster et al., 2016), which yielded a com-
parable pattern of results.

As in other EEG decoding/encoding studies (Foster et al., 2016,
2017b), the data from a given orientation were averaged across multiple
trials to improve the signal-to-noise ratio (after extracting the phase-
independent alpha power or the low-frequency EEG signals), and decod-
ing was performed on these averages rather than on single-trial data. A
separate classifier was trained to discriminate between each orientation
(after averaging across trials) and all the other orientations. Decoding
accuracy was then computed for the average of a set of trials for each
orientation that was left out of the training data. Decoding was consid-
ered correct only if the classifier correctly determined which one of the 16
orientations was being held in WM. Chance performance was therefore
6.25% (1/16).

We focused our oscillatory power analyses on the alpha band, which is
the frequency that exhibited the most consistent relationship with WM in
previous EEG research (Foster et al., 2016). We also conducted explor-
atory analyses of a broad range of frequencies (4 Hz bands between 4 and
48 Hz). Some weak decoding was observed in the low beta range (12–16
Hz), but no clear decoding was present beyond the initial stimulus en-
coding period in any other band, so the present paper will focus only on
the alpha band.

Experiment: 1 decoding analysis. The decoding procedure for Experi-
ment 1 was the same for the alpha-band signals and the low-frequency
ERP signals, except for the initial steps used to isolate the signal-of-
interest. For the alpha-band decoding, the segmented EEG was bandpass
filtered at 8 –12 Hz using the EEGLAB eegfilt() routine, which imple-
ments a two-way least-squares finite impulse response filter with maxi-
mally steep roll-offs and an extremely narrow transition band. The
bandpass filtered EEG segments were then submitted to a Hilbert trans-
form to compute the magnitude of the complex analytic signal, and this
magnitude was then squared to compute total power in the 8 –12 Hz
band at each time point. For the ERP decoding, the segmented EEG was
simply low-pass filtered at 6 Hz, again using the EEGLAB eegfilt() rou-
tine. In both cases, the data were then resampled at 50 Hz (1 data point
per 20 ms) to increase the efficiency of the analyses. For each of the two
signals, this gave us a 4-dimensional data matrix for each participant,
with dimensions of time (100 time points), orientation (16 different
values), trial (40 individual trials for each orientation), and electrode site
(the 27 scalp sites).

We used the combination of a support vector machine (SVM) and
error-correcting output codes (ECOC; Dietterich and Bakiri, 1995) to
classify the orientation of the sample teardrop on the basis of the spatial
distribution of the signal over the 27 scalp electrodes. The ECOC model
solves multiclass categorization problems by combining results from
multiple binary classifiers. This model was implemented through the
Matlab fitcecoc() function. The data were decoded separately for each of

the 100 time points from �500 to �1480 ms (relative to sample array
onset). However, our statistical analyses focused only on the delay inter-
val (the 1300 ms period beginning at the offset of the sample teardrop and
continuing through the last sample before the onset of the test teardrop).

The decoding for a given time point had separate training and test
phases. In the training phase, 16 different SVMs were trained, one for
each orientation. A one-versus-all approach was taken, in which each
SVM was trained to distinguish between one specific orientation and all
the other orientations. In the test phase, new data from each of the 16
orientations was fed into all 16 SVMs, and the set of orientation assign-
ments that minimized the average binary loss across the set of 16 SVMs
was selected (see below). This procedure was used to classify the test data
for each of the 16 orientations.

Separate trials were used for training and testing. Specifically, the de-
coding for each time point used a threefold cross-validation procedure in
which the data from 2/3 of the trials (selected at random) were used to
train the classifier, and then the performance of the classifier was assessed
with the data from the remaining 1/3 of trials. As a first step, we organized
the data with respect to teardrop orientation and then divided the trials
into three equal-sized groups of trials (3 groups of 13 trials for each of the
16 orientations). One random trial from each of the 16 orientations was
omitted because 40 is not evenly divisible by 3. The trials for a given
orientation in each group were averaged together, producing a scalp
distribution for the time point being analyzed (a matrix of 3 groups � 16
orientations � 27 electrodes). The data from two of the three groups
served as a training dataset, and the remaining group served as a testing
dataset. The two training datasets were simultaneously submitted to the
ECOC model with known orientation labels to train the 16 SVMs. Each
SVM learned to perform a binary classification that separated one of the
16 orientations from the other 15 orientations at the current time point.

Next, the set of 16 trained ECOC models was used to predict which of
the 16 orientations was present for each of the unlabeled orientations in
the group of data that were reserved for testing. This was done with the
MATLAB predict() function. This function assigns a class label for each
observation in the testing dataset by minimizing the average binary loss
over the 16 SVMs. The output of this function provides one predicted
orientation for each of the 16 orientations in the testing dataset. Decod-
ing accuracy was then computed by comparing the true orientation labels
with the predicted labels. To be considered correct, we required that the
predicted orientation exactly match the true orientation, providing a
very stringent assessment of decoding. We have conducted additional
analyses examining “near misses”, but those analyses are beyond the
scope of this paper.

This procedure was repeated three times, once with each group of data
serving as the testing dataset. To minimize idiosyncrasies associated with
the assignment of trials to groups, we iterated the entire procedure 10
times with new random assignments of trials to the three groups. After
completing all the iterations of the cross-validation procedure, decoding
accuracy was collapsed across the 16 orientations, across the three cross-
validations, and across the 10 iterations, producing a decoding percent-
age for a given time point that was based on 480 decoding attempts (16
orientations � 3 cross validations � 10 iterations). After this procedure
was applied to each time point, the averaged decoding accuracy values
were smoothed across time points to minimize noise using a five-point
moving window (equivalent to a time window of �40 ms).

The temporal precision resulting from the entire EEG processing and
decoding pipeline was ��50 ms. This was determined by running a 600
ms boxcar function through the portions of the pipeline that produced
low-pass filtering (including the final smoothing step), which produced a
temporally smeared version of the boxcar function. The point at which
this function reached 10% of the maximum voltage was �50 ms before
the beginning and 50 ms after the end of the original boxcar function.
Small ripples extended further in time but were �10% of the original
signal size.

Statistical analysis of decoding accuracy. If the pattern of voltage over
the 27 electrodes contains information about the stimulus orientation,
then decoding accuracy should be greater than chance, which was 1/16
because we used 16 teardrop orientations. To compare decoding accu-
racy to chance at each time point while controlling for multiple compar-
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isons, we used a nonparametric cluster-based Monte Carlo simulation
technique that is analogous to the cluster-based mass univariate ap-
proach that is commonly used in EEG research (Maris and Oostenveld,
2007; Groppe et al., 2011). This method is useful here both because it
provides an intelligent correction for multiple comparisons and because
decoding accuracy may not be normally distributed. This method in-
volved three main steps.

In Step 1, we tested whether the obtained decoding accuracy at each
individual time point during the 1300 ms delay interval was greater than
chance using one-sample t tests comparing the mean accuracy across
participants to chance (1/16). We used one-tailed tests because the SVM
approach could not produce meaningful below-chance decoding. Note
that this excluded the first 200 ms following stimulus onset to minimize
the contribution of sensory activity to the decoding and focus on signals
related to working memory. We then found clusters of contiguous time
points for which the single-point t tests were significant ( p � 0.05), and
the t scores within each such cluster were then summed together to produce
a cluster-level t mass. Each cluster-level t mass was then compared against a
null distribution for the cluster-level t mass that was determined via Monte
Carlo simulations in Step 3. In other words, we asked whether the mass of
a cluster of contiguous, individually significant t values was greater than
the mass that would be expected by chance. This controls the type I error
rate at the cluster level, yielding a probability of 0.05 that one or more
clusters would be significant if true decoding accuracy were at chance
during the entire delay period (Groppe et al., 2011).

In Step 2, we constructed a Monte Carlo null distribution of cluster-
level t mass values. To accomplish this, we first simulated the decoding
accuracy that would be obtained if the decoder randomly guessed the
orientation of the stimulus with no knowledge of the actual orientation.
On each simulated trial, we randomly sampled an integer between 1 and
16 as the response of the decoder for a given target orientation. The
response was scored as correct if it was the same as the target value. This
was repeated 480 times (16 target orientations � 3 cross-validations � 10
iterations), and the 480 scores were aggregated to compute the mean
simulated decoding accuracy at a given time point. This procedure was
repeated independently for each of the 100 time points, just as we inde-
pendently decoded the EEG data at each time point. The resulting series
of decoding accuracy values was then smoothed with a five-point run-
ning average filter. This is the same procedure that was used to quantify
the actual SVM decoding accuracy for a given participant, but using a
random decoder instead of the SVM-based decoder. This procedure was
then repeated 16 times to represent each of our 16 participants.

We then used these simulated decoding accuracy values to compute
the cluster-level t mass using the same procedure described in Step 1
(limited to the time points during the 1300 ms delay period). If there were
no significant t values, the cluster mass was zero. If there was more than
one cluster of individually significant t values, we took the mass of the
largest cluster. This simulated the maximum t mass from a single exper-
iment in which decoding was at chance.

In Step 3, we obtained a null distribution for the cluster mass. This
involved simulating a large number of experiments in which the null
hypothesis is true (i.e., decoding is at chance) and examining the proba-
bility of getting a given maximum cluster mass across these simulated
experiments. Specifically, we conducted 10,000 iterations of the proce-
dure from Step 2, making it possible to construct the null distribution of
the maximum cluster-level t mass (with a resolution of p 	 10 �4). We
then computed the p value corresponding to each cluster in the actual
dataset by examining where each observed t mass fell within the null
distribution. The p value for a given cluster was set based on the nearest
percentiles of the null distribution (using linear interpolation). If the
obtained cluster-level t mass is larger than the maximum of simulated
cluster-level t mass, then we reported p � 10 �4. We rejected the null
hypothesis and concluded that the decoding was above chance for any
observed cluster-level t mass that was in the top 95% of the null distri-
bution (critical t mass 	 12.0717, one-tailed, � 	 0.05). Note that this
analysis was limited to the 1300 ms delay period because the goal was to
test decoding accuracy during working memory maintenance.

Experiment 2: decoding analysis. The decoding procedure for Experi-
ment 2 was identical to that for Experiment 1, with the following excep-

tions. First, we independently decoded the orientation of the teardrop
and the location of the teardrop’s tip. We collapsed across tip locations
when we decoded the orientation, and we collapsed across orientations
when we decoded the tip location. Because orientation and tip location
were completely counterbalanced, the decoding of orientation could not
have been influenced by information about tip location, and vice versa.

In addition to the main statistical testing, we also compared decoding
accuracy for location versus orientation. We used the same cluster mass
approach, but with two differences. First, we used two-tailed t tests be-
cause either feature could conceivably produce more accurate decoding.
Second, the Monte Carlo null distribution was constructed by randomly
swapping labels for the two conditions being compared, matching the
procedure used to compare cluster masses for two waveforms in EEG
experiments (Groppe et al., 2011). The null distribution constructed by
this method represents the probability distribution of the t mass under
the assumption that the obtained decoding accuracy for the two condi-
tions are just different instances sampled from the same distribution. We
computed the p value corresponding to each cluster in the actual dataset
by examining where each observed t mass fell within this null distribu-
tion, and we rejected the null hypothesis if the observed t mass fell within
the top or bottom 2.5% of values from the null distribution [critical t
mass 	 (�1.88, 2.73), two-tailed, � 	 0.05].

As noted earlier, we used the tip of the orientation for the counterbal-
ancing because the tip was the most informative part of the teardrop and
was directly controlled by the mouse pointer. However, one might be
concerned that participants paid attention to some other part of the
teardrop, such as the thick end, causing a small but nonzero association
between the orientation of the teardrop and the location of some part of
the teardrop. For example, the thick end of the rightward-pointing tear-
drops was farther to the left, on average, than the thick end of the leftward
pointing teardrops (see Fig. 4c). However, both the behavioral task and
the decoding algorithm required discriminating between one orientation
and all other possible orientations (i.e., not just leftward vs rightward). In
addition, almost every location of the thick end of the teardrop was
associated with multiple orientations (with all possible combinations of
orientations across the possible locations). As a result, attending to the
thick end of the teardrop did not provide unique information about the
orientation of the teardrop.

For these reasons, it is extremely unlikely that this location informa-
tion could impact our orientation decoding. To provide support for this
assumption, we conducted both an additional analysis and a simulation.
In the additional analysis (described in the Cross-Feature Decoding
Analyses in Experiment 2 section), we trained the orientation decoder
using teardrops presented at one set of locations and then tested the
decoder with data from teardrops that were presented at a different set of
locations. Above-chance level decoding in this analysis provides evidence
that orientation of teardrop can be decoded completely independently of
location.

In addition, we conducted a simulation in which we attempted to
decode teardrop orientation on the basis of the location of the thick end
of each teardrop using the exact x,y coordinates of this location (as if we
had two electrodes, one that perfectly represented the x value and one
that perfectly represented the y value corresponding to the thick end of
the teardrop). Note that the same thick end location can be occupied by
multiple orientations and an area of thick end locations of one orienta-
tion was occupied by thick end locations of other orientations. As a
result, the thick end locations for one orientation were not linearly
separable from the thick end locations of the other orientations in the
two-dimensional space. Consequently, to provide a stronger test of de-
codability, we used a nonlinear SVMs with a Gaussian kernel function,
which optimizes the effective dimensionality of the input space (Burges,
1998). We found that our one-versus-all decoding algorithm with the
kernel function could not decode orientation above chance when pro-
vide with this location information, even though it was given perfect,
noise-free information. As a check on the validity of this simulation
approach, we also attempted to decode the location of the tip of the
teardrop (rather than its orientation) from the x,y coordinate of the tip,
and we found that decoding accuracy was perfect. These simulations
show that our decoding algorithm cannot readily decode orientation on
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the basis of the location information even with
noise-free data (although it can perfectly de-
code location when given noise-free x, y co-
ordinates). Consequently, any above-chance
decoding of teardrop orientation from the ac-
tual EEG data was unlikely to have been based
on the location of the thick end of the teardrop.

Cross-feature decoding analyses in Experiment
2. To further demonstrate that orientation can
be independently decoded from location, we
conducted a cross-feature decoding analysis in
which we trained an orientation decoder using
trials where the stimulus was presented in the
three of the four quadrants of the display and
then tested the ability of this decoder to classify
orientation in trials were the stimulus was pre-
sented in the remaining quadrant (see Fig. 7a).
Similarly, we trained a location decoder using
trials where the stimulus orientation was in the
three of the four quadrants of orientation space
and then tested the ability of this decoder to
classify location in trials were the stimulus was
presented in the remaining set of orientations (see Fig. 7b).

For both orientation and location, this decoding was repeated four
times (4-fold cross-validation), with each quadrant of the irrelevant fea-
ture space serving once as the testing data. As in the main decoding
procedure, this procedure was applied to each time point independently.
Because the quadrants were fixed rather than random, this procedure was
not iterated multiple times (as opposed to the cross-validation procedure
used in the main decoding analysis, which was based on random subsets
of trials). All other aspects of this procedure were identical to the main
decoding procedure.

Although the experiment was designed to have equal numbers of trials
at each orientation and equal numbers of trials at each tip location, we
did not control the number of trials with each orientation-location com-
bination. As a result, the number of trials available for decoding each
feature value in the cross-feature decoding procedure varied randomly
across iterations, which will tend to reduce the maximum accuracy and
reliability of the decoding. Moreover, the cross-feature decoding proce-
dure involved testing the decoder with stimuli that were never used in
training, requiring generalization beyond the training set. Thus, if the
cross-feature decoding accuracy is above chance, this provides a very
stringent test of the ability to decode one dimension with no contribution
from the other dimension.

Because this was a more stringent test, we performed a statistical anal-
ysis that averaged the decoding over all the points during the 1300 ms
delay period. We compared the average accuracy during this window to
chance using a one-sample t test. For the sake of completeness, we also
report the accuracy for each individual time point using the same cluster-
mass Monte Carlo statistical test used for the main decoding analysis.

Decoding after excluding trials with eye movements. In our main analy-
ses, we used ICA-based artifact correction to remove the voltage fluctu-
ations produced directly by the eye movements, but this procedure may
not correct for other differences in neural activity that may result from
sustained changes in eye position. To ensure that the decoding was not
based on signals related to eye position, we conducted an additional set of
decoding analyses using uncorrected data and excluding trials that could
potentially involve systematic shifts in eye position during the delay
interval.

We first computed the mean HEOG (right EOG � left EOG) and
VEOG (lower EOG � upper EOG) voltages over the delay period, and we
subtracted the mean prestimulus voltage to correct for the baseline volt-
age offset. Because systematic eye movements could occur in any direc-
tion in this paradigm, it was not sufficient to rely on the individual HEOG
and VEOG values. We therefore converted the HEOG and VEOG volt-
ages into a vector (in units of degrees rather than units of �V) represent-
ing the angle and amplitude of the eye position relative to the fixation
point, using normative scaling values for HEOG (16 �V/°) and VEOG
(12 �V/°; Lins et al., 1993). We then excluded trials from decoding anal-

yses if the amplitude of the eye movement was 
0.5425° in any direction
(because 0.5425° was half the distance from the fixation dot to the tip
location). This very conservative procedure excluded �55% of the trials
in Experiment 1 (but many or most of these trials were likely rejected
because of noise in the single-trial HEOG and VEOG data, not because of
task-related eye movements). The amplitude of the average eye position
for a given orientation in the remaining trials was extremely small (0.08°,
SEM 	 0.01°), indicating that our rejection procedure was successful.

We used the same procedure to remove trials with eye movements in
Experiment 2, but we used a rejection threshold of 1.085° (because this
was half of the distance to the invisible circle that defined the possible
locations of the teardrop tip). The exclusion procedure removed �25%
of the trials in Experiment 2. The amplitude of the average eye position
for a given orientation or location in the remaining trials was again
extremely small (0.13°, SEM 	 0.01°).

Excluding trials with eye movements led both to a smaller number of
trials and an unequal number of trials for each location and orientation,
which would be expected to decrease the reliability of the decoding.
Consequently, we focused on average decoding accuracy over the delay
period for these analyses.

Code and data availability. Both the data and the MATLAB analysis
scripts are available upon request from G.B.

Results
Experiment 1: behavior
Figure 1c summarizes the behavioral data from Experiment 1. On
each trial, accuracy was quantified as the angular difference be-
tween the orientation of the sample teardrop and the orientation
reproduced by the participant. The mean absolute error was quite
small (5.40°, SEM 	 0.24). We also fit a standard mixture model
to characterize the distribution of response errors in terms of re-
sponse precision and guess rate (Zhang and Luck, 2008). The vast
majority of response errors were clustered �0°, and the mean guess
rate was extremely low (0.7%, SEM	0.2). Mean precision was quite
high (� 	 77.94, SEM 	 5.26).

Experiment 1: scalp distributions
Our decoding methods rely on differences in the scalp distribu-
tion of alpha-band power and sustained ERPs across teardrop
orientations, and Figure 2 shows the grand average scalp maps
(averaged across the entire delay interval) for each orientation.
The alpha-band maps indicate that alpha power over occipital
scalp sites was suppressed (relative to the prestimulus period),
consistent with prior research demonstrating that alpha-band
activity is suppressed over visual cortex during the delay period of

Figure 2. Topography of (a) instantaneous alpha power and (b) ERP activity for each of 16 sample orientations, averaged across
the delay interval and participants in Experiment 1. Both alpha power and ERP amplitude were computed relative to the prestimu-
lus baseline period. The position of each scalp map corresponds to the orientation of the sample teardrop.
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working memory tasks (Fukuda et al., 2015; Erickson et al., 2017).
The ERP maps show a positive voltage over posterior scalp sites
and a negative voltage over anterior scalp sites. This may reflect a
combination of posterior P3-like activity and the negative slow
wave that is often observed in WM tasks (Ruchkin et al., 1990,
1992).

For both the alpha-band activity and the sustained ERPs,
subtle differences in scalp distribution can be seen across the 16
teardrop orientations. However, there is no simple pattern in the
changes. This may reflect the fact that multiple brain regions
exhibit orientation-specific delay activity (Harrison and Tong,
2009), which could produce a complex pattern of activity on the
scalp. However, the lack of a simple pattern is not problematic for
decoding methods, which can discover regularities in the scalp
distributions even if they are complex and subtle. Also, the maps
shown in Figure 2 were averaged across participants and time points,
potentially obscuring information in the single-participant and
single-time point scalp distributions that were used by our decoding
procedure.

Experiment 1: decoding
Figure 3 shows decoding accuracy for Experiment 1, which used a
task that could potentially be performed by means of either spa-
tial attention or orientation memory. Decoding accuracy for
alpha-band activity began to rise above chance (0.0625 	 1/16)

�200 ms after the onset of the sample stimulus, peaked �600 ms,
and remained high until just before the end of the delay period.
The cluster mass test indicated that the decoding was significantly
greater than chance (1 cluster, p � 10�4) for the entire 1300 ms
delay period (Fig. 3a, shaded region). When we excluded trials
with eye movements (eye-movement rejection) rather than using
ICA to subtract the electro-oculogram signals (eye-movement
correction), the decoding was still significantly greater than chance
when averaged across the delay period (t(15) 	 2.8870, p 	 0.0113;
one-sample t test).

ERP-based decoding was also significantly above chance dur-
ing most of the delay period (2 clusters; p � 10�4, p 	 0.015),
even when we used eye-movement rejection instead of correction
(t(15) 	 3.6601, p 	 0.0022; one-sample t test). However, the time
course was somewhat different from that for alpha-based decoding.
Decoding accuracy was quite high (more than twice the chance level)
from �150 – 400 ms after the onset of the sample teardrop, which
likely reflects the N2pc component during the initial processing
of the teardrop (Fahrenfort et al., 2017). Decoding then fell, but
remained significantly above chance until the final 200 –300 ms
of the retention interval. It should be noted that sustained ERP
activity (but not alpha-band activity) becomes less reliable as
time progresses away from the prestimulus baseline period be-
cause of slow drifts in the EEG offset (Luck, 2014), and this may
explain why the decoding accuracy fell to nonsignificant levels by
the end of the delay period. Alternatively, if the late ERP activity
primarily reflects the content of WM rather than spatial atten-
tion, then the decline in ERP-based decoding may reflect reliance
on spatial attention rather than true orientation memory to per-
form the task.

In either case, the present results demonstrate that our meth-
ods can be used to both alpha-band oscillations and sustained
ERPs to successfully decode the orientation being held in WM for
most of the delay interval. However, this decoding could reflect
either sustained spatial attention on the location of the teardrop’s
tip or bona fide representations of the teardrop’s orientation (or
a combination of both). Experiment 2 will distinguish between
these possibilities.

Experiment 2: behavior
In Experiment 2, participants performed the same basic task used
in Experiment 1, except that the locations of the sample and test
teardrops were independently varied (Fig. 4a). Thus, maintaining
attention on the location of the sample teardrop during the delay
period could not be used to remember its orientation.

Figure 4d summarizes the behavioral data from Experiment 2.
The mean absolute error was again quite low (5.40°, SEM 	
0.79). When a mixture model was applied, the mean guess rate
was extremely low (0.3%, SEM 	 0.01) and the mean precision was
quite high (� 	 57.82, SEM 	 7.05). However, the precision was
significantly lower in this experiment than in Experiment 1 (t(30) 	
2.29, p 	 0.029; two-sample t test). This difference could indicate
that location-specific information is useful in maintaining pre-
cise orientation representations, leading to poorer memory when
this information cannot be used (i.e., when the sample and test
stimuli are at different locations). However, it could also reflect
other factors, such as poorer sensory acuity at the peripheral
locations used in the present experiment.

Experiment 2: scalp distributions
Figure 5 shows the grand average scalp topography for each tear-
drop orientation (averaged across the location of the teardrop)
and each teardrop location (averaged across the orientation of

Figure 3. Mean accuracy of (a) alpha-based decoding and (b) ERP-based decoding in Exper-
iment 1. Chance-level performance (0.0625 	 1/16) is indicated by the black horizontal lines.
Gray areas indicate clusters of time points in which the decoding was significantly greater than
chance after correction for multiple comparisons. Note that the first 200 ms following stimulus
onset were excluded from the statistical analysis to minimize any contributions of sensory
activity to the decoding. The orange shading indicates �1 SEM.
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the teardrop). As in Experiment 1, the al-
pha band maps show a suppression of
alpha power over posterior scalp sites (rel-
ative to the prestimulus period), whereas
the ERP maps show a positive voltage over
posterior scalp sites and a negative voltage
over anterior scalp sites.

Experiment 2: decoding
We decoded the orientation of the sample
teardrop (collapsed across tip locations)
using alpha-band activity in one analysis
and ERP activity in another analysis. We
also decoded the tip location (collapsed
across orientations) in a separate pair of
analyses. Figure 6 shows decoding accuracy
for each of these analyses. Alpha-based de-
coding for orientation was extremely weak,
remaining within 0.01 of chance accuracy
at all time points, and the accuracy did not
exceed chance except for a small cluster
of significant time points (1 cluster, p 	
0.026) at �700 ms (Fig. 6a, shaded re-
gion). By contrast, alpha-based decoding
of location was well above chance (1 clus-
ter; p � 10�4) from the beginning of the
delay interval until �1000 ms but then fell
to chance by the end of the delay interval.
Location decoding was significantly more
accurate than orientation decoding (1
cluster; p � 10�4) from the beginning of
the delay period until �1250 ms (Fig. 6c,
red horizontal bar). The same pattern of
results was obtained when we used eye-
movement rejection instead of correction.
Specifically, alpha-based decoding of ori-
entation was near chance (t(15) 	 1.2225,
p 	 0.2404; one-sample t test), but alpha-

Figure 5. Scalp topography of (a) instantaneous alpha power and (b) ERP activity relative to prestimulus baseline for each of
the 16 orientations of the sample teardrop, averaged across the delay interval and participants. The position of each scalp map
corresponds to the orientation of the sample teardrop. Topography of (c) alpha power and (d) ERP activity for each of the 16
locations of the sample teardrop tip, averaged across the delay interval and participants. The position of each scalp map corre-
sponds to the location of the tip of the sample teardrop. Both alpha power and ERP amplitude were computed relative to the
prestimulus baseline period.

Figure 4. a, Two example trials of the delayed estimation used in Experiment 2: on each trial, participants fixated the central dot for 500 ms (not shown) and then saw a 200 ms teardrop. After
a 1300 ms delay period, a second teardrop was presented at a different random location, and the participant used a mouse to adjust this second teardrop’s orientation so that it matched the
remembered orientation of the first teardrop. b, Definition of �L (the angular location of the teardrop tip) and �O (the orientation of the teardrop): �L was defined by the location (in polar
coordinates) of the tip of the teardrop object relative to an invisible circle with a radius of 2.17°, centered on the fixation dot. �O was defined by the orientation of the tip of the teardrop relative to
the center of the teardrop. c, Independence of �L and �O. The tip of a teardrop with a given �O could be presented at any of the 16 �L values, and a teardrop with a given �L could have any of the 16
�O values. d, Probability distribution of response errors collapsed across all participants.
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based decoding of location was greater than chance (t(15) 	
3.2954, p 	 0.0049; one-sample t test).

In contrast to the alpha-based decoding, the ERP-based de-
coding of orientation was robust and significantly greater than
chance (1 cluster; p � 10�4) for almost the entire delay period.
ERP-based location was also significantly above-chance (1 clus-
ter; p � 10�4) for most of the delay period. The ERP-based
decoding was significantly more accurate (1 cluster; p � 10�4)
for location than for orientation for the first �600 ms of the delay
period, but decoding accuracy for location and orientation was sim-
ilar for the last �500 ms of the delay period (Fig. 6d). The same
pattern of results was observed when we used eye-movement rejec-
tion instead of correction. Specifically, ERP-based decoding was
significantly greater than chance for both orientation (t(15) 	
4.03, p 	 0.001; one-sample t test) and location (t(15) 	 5.4763,
p � 10�4; one-sample t test). These results demonstrate that sus-
tained ERPs contain information about the specific orientation be-
ing maintained in WM, but alpha-band oscillations do not.

Experiment 2: cross-feature decoding
As described in Materials and Methods, it is unlikely that the
above-chance decoding of orientation we observed in this exper-
iment was based on the location of the tip of the teardrop or any
other part of the teardrop. To provide a further test of this claim,
we conducted an even more stringent test of the location-
independence of the orientation decoding, in which the decoder
was trained with the data from three of the four quadrants of the
display and then tested on the data from the remaining quadrant
(Fig. 7a). In this analysis, the decoder had no opportunity to learn
the spatial properties of the orientations used in the test set, pro-
viding an even more rigorous test of the location independence of
the decoding. Given that this was a more stringent test with de-

creased statistical power, our main statistical analyses examined de-
coding accuracy averaged across the entire 1300 ms delay period.

As shown in Figure 7c, alpha-based cross-location decoding of
orientation was almost exactly at chance (t(15) 	 0.25, p 	 0.60;
one-sample t test). We computed the corresponding Bayes factor
(Rouder et al., 2009) using the default JZS scaling factor of 0.707,
and we found that the data were 3.8 times more likely to arise
from chance decoding than from above-chance decoding. This
provides positive support for the hypothesis that orientation can-
not be decoded from alpha-band oscillations when a stringent
test is used. In contrast, ERP-based cross-location decoding of
orientation (Fig. 7d) was significantly above chance (t(15) 	 2.99,
p 	 0.0046; one-sample t test). This decoding was greater than
chance for all but two of the participants, and the Bayes factor
indicated that the data were 5.9 times more likely to arise from
above-chance decoding than to arise from chance decoding. Thus,
although it may be impossible to completely dissociate location and
orientation information, the present analyses provide strong evi-
dence that the sustained ERPs contained location-independent in-
formation about orientation.

Figure 8 shows decoding accuracy at each individual time point.
There was no sign of above-chance alpha-based decoding of orien-
tation at any point during the delay period, whereas ERP-based de-
coding of orientation was significantly greater than chance for much
of the delay period (3 clusters; p 	 0.011, p 	 0.035, p � 10�4).
These results provide even stronger evidence that sustained ERP
activity contains information about the orientation being held in
WM, independent of object location, with no evidence of true ori-
entation information in the alpha-band oscillations.

For the sake of completeness, we conducted a parallel cross-
orientation decoding analysis for location, in which the decoder
was trained using three quarters of the orientations and then

Figure 6. Alpha-based decoding accuracy for (a) the orientation of the sample teardrop and (c) the location of the sample teardrop tip. ERP-based decoding accuracy for (b) the orientation of the
sample teardrop and (d) the location of the sample teardrop tip. Each gray area shows a cluster of time points for which the decoding was greater than chance after correction for multiple
comparisons. The red lines in c and d indicate clusters of time points in which the decoding was significantly greater for location than for orientation. The orange shading indicates �1 SEM. Note that
the first 200 ms following stimulus onset were excluded from the statistical analysis to minimize any contributions of sensory activity to the decoding.
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tested on the other quarter (Fig. 7b). When averaged over the
entire delay period, cross-orientation decoding of location was
significantly greater than chance for both alpha-based decoding
(t(15) 	 3.09, p 	 0.0037; one-sample t test) and ERP-based de-
coding (t(15) 	 5.01, p 	 0.00008; one-sample t test; Fig. 7c,d).
Analyses of each individual time point (Fig. 8) provided evidence

of above-chance location decoding across most of the delay pe-
riod for both ERP-based decoding (1 cluster; p � 10�4) and
alpha-based decoding (2 clusters; p � 10�4, p 	 0.026). Thus, as
in the previous analyses, the location of the teardrop could be
decoded independently of its orientation from both alpha-band
activity and sustained ERP activity.

Figure 7. Cross-feature decoding. a, To completely remove the impact of the tip location on the decoding of orientation, we trained the decoders using data from teardrops presented in three
of the four quadrants (indicated by pink locations) and then tested the decoding on trials from the remaining quadrant (indicated by green locations). This was repeated four times, using each
quadrant as the test quadrant once. b, The analogous procedure was used for location decoding. The decoders were trained to decode location using 3⁄4 of the orientations (indicated by pink
teardrops), and then tested with the other 1⁄4 (indicated by green teardrops). c, Alpha-based cross-feature decoding accuracy for orientation and location, averaged over the entire delay period (d)
ERP-based cross-feature decoding accuracy for orientation and location, averaged over the entire delay period for orientation and location. Each participant is represented by a dot, and the mean �
1 SEM are indicated by the line and box. **p � 0.01, ***p � 0.001.

Figure 8. Average cross-feature decoding accuracy at each time point. a, Average accuracy of alpha-based cross-location decoding of orientation. b, Average accuracy of ERP-based cross-location
decoding of orientation. c, Average accuracy of alpha-based cross-orientation decoding of location. d, Average accuracy of ERP-based cross-orientation decoding of location. The orange shading
indicates �1 SEM. Gray areas represent clusters of points with significantly above-chance decoding accuracy after correction for multiple comparisons. Note that the first 200 ms following stimulus
onset were excluded from the statistical analysis to minimize any contributions of sensory activity to the decoding.
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Note that the cross-feature decoding was somewhat less accu-
rate than the original decoding for both orientation and location,
which presumably reflects the fact that cross-feature decoding
requires explicit generalization to stimuli that were not used for
training. In addition, the reliability of the decoding may have
been decreased by the fact that, unlike the main decoding analy-
ses, we could not iterate over multiple random assignments of
stimuli for these analyses. Thus, the lower accuracy in the cross-
feature decoding analyses does not imply that the main analyses
were contaminated by information from the other dimension.

Confusion matrices for Experiments 1 and 2
The main decoding analyses focused on accuracy for exact decoding
of location and orientation, averaged across different stimulus val-
ues. Here, we provide the confusion matrix for each combination of
stimulus value and classification response to provide a more de-
tailed description of the results. Figure 9 shows the probability of
a each possible classification response for each possible stimulus
value, averaged over the delay interval and over participants. Sepa-
rate panels are shown for each combination of signal type (alpha or
sustained ERP) and decoded feature (orientation in Experiment 1,
location in Experiment 2, and orientation in Experiment 2).

In Experiment 1, most of the classification responses were
clustered around the true target value (the central diagonal) for
both the alpha and ERP signals. Interestingly, a given target value
in Experiment 1 was occasionally decoded as being 180° away
from the true value (indicated by the white diagonal lines). This
could reflect the fact that the orientation of an infinite-length line

(as opposed to a ray) cannot be distinguished from an orientation
that is 180° away. However, this result could also indicate that
observers paid attention to the opposite end of the teardrop on
some proportion of trials. In addition, these 180° decoding con-
fusions were rare, and participants exhibited no evidence of 180°
confusions in their behavioral responses (Fig. 4). In Experiment
2, both the alpha-based and ERP-based decoding of location ex-
hibited a high probability of classification responses at or near the
true value, with no obvious evidence of opposite-direction clas-
sification responses.

The ERP-based decoding of orientation in Experiment 2 showed
a broader range of classification responses around the true value
than was observed for orientation in Experiment 1 or for location
in Experiment 2. However, there was still a clear cluster of classi-
fication responses around the true orientation value, and no ob-
vious cluster of responses around the opposite orientation. This
indicates that the decoding was primarily sensitive to ray orien-
tation (with 360° of unique values) rather than line orientation
(with only 180° of unique values). The confusion matrix for
alpha-based decoding of orientation in Experiment 2 showed
very little structure, consistent with the near-chance orientation
decoding accuracy that was obtained for alpha-band activity in
the main analyses.

Discussion
Human scalp EEG activity contains both sustained and oscillat-
ing activity during the delay period of WM tasks (van Dijk et al.,
2010; Perez and Vogel, 2012; Fukuda et al., 2015), possibly re-

Figure 9. Confusion matrices for alpha-based (top row) and ERP-based (bottom row) decoding for Experiment 1 (left column), Experiment 2 location (middle column), and Experiment 2
orientation (right column). Each cell shows the probability of a given classification response (x-axis) for given a stimulus value (y-axis), averaged over the entire delay interval and across observers.
The white diagonal lines indicate classification responses that are 180° from the stimulus value. Note that the values in the top left and bottom right corners of each matrix represent stimulus–
response combinations that are actually adjacent to the stimulus–response combinations in the bottom left and top right corners (because these matrices provide a linear representation of a circular
stimulus space).
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flecting the representation of information across the delay
period. However, these signals might instead reflect support pro-
cesses, such as attentional mechanisms that prevent interference,
rather than the actual WM representations (Sauseng et al., 2009;
Bonnefond and Jensen, 2012). The ability to decode the feature
value being held in WM from a given neural signal provides much
stronger evidence that the signal reflects the WM representation
(Postle, 2016), and the present study therefore sought to deter-
mine whether orientation representations in WM could be de-
coded from scalp EEG activity. Given the close link between
sustained ERP activity and WM capacity for objects (Vogel and
Machizawa, 2004; Vogel et al., 2005), we predicted that the sus-
tained ERP activity would reflect the features of the objects being
maintained in WM. In contrast, given the close relationship be-
tween alpha-band activity and spatial attention (Worden et al.,
2000; Rihs et al., 2007), we predicted that alpha-band oscillations
would primarily reflect the location of the attended object. The
results were consistent with these predictions.

Experiment 1 demonstrated that orientation information in a
WM task could be decoded from the scalp distribution of both
alpha-band oscillations and sustained ERP responses. Previous
research has found that alpha-band activity can decode the loca-
tion being maintained in spatial WM (Foster et al., 2016), but this
is the first demonstration that sustained ERPs can decode delay-
period activity in a WM task. However, it is quite plausible that
participants focused their spatial attention on location of the
teardrop’s tip throughout the delay period as they prepared to
reproduce the teardrop’s orientation at the end of the trial. As a
result, we may have been decoding the direction of spatial atten-
tion rather than a WM representation of orientation per se. This
is especially plausible for the alpha-band activity, which has a
scalp distribution that changes in a fine-grained manner as the
location being attended varies (Rihs et al., 2007).

Distinguishing between spatial attention and the contents
of WM
To distinguish between spatial attention and the contents of WM,
the task used in Experiment 2 independently varied the location
and orientation of the teardrop, and participants were instructed
to remember the teardrop’s orientation independently of its lo-
cation. We found that the orientation being held in WM could be
decoded from sustained ERP activity throughout the delay period,
even though the orientation of the teardrop could not be predicted
from its location. In an even more stringent test of location-
independent orientation decoding, we found that orientation could
be decoded when the decoder was trained with stimuli from one set
of locations and tested with stimuli from a different set of locations.
Thus, sustained ERP activity contains information about the feature
value being held in WM beyond the location of the object. These
results dovetail with previous studies showing that sustained ERP
activity is closely tied to individual and group differences in WM
capacity (Vogel and Machizawa, 2004; Leonard et al., 2013). How-
ever, additional research will be needed to determine whether the
sustained activity that was responsible for the decoding in the pres-
ent study is the same as the sustained activity that has been linked to
WM capacity in previous research.

We also found that ERP activity could be used to decode the
location of the teardrop, especially early in the delay interval. This
likely reflects, at least in part, the N2pc component (Luck, 2012),
which precisely tracks the location of attended objects (Fahren-
fort et al., 2017).

The location of the teardrop could also be decoded from the
scalp distribution of the alpha-band activity, but there was little

or no evidence that alpha-band activity could be used to decode
the orientation of the stimulus consistently throughout the delay
period. Indeed, when we applied the stricter cross-location test of
orientation decoding, alpha-based decoding of orientation was
very close to chance throughout the delay period. Moreover, the
Bayes factor for this analysis provided positive evidence that the
data were more consistent with chance-level decoding than with
above-chance decoding. These results are consistent with prior
evidence that alpha-band activity is closely tied to attention in
perceptual tasks (Adrian and Matthews, 1934; Worden et al.,
2000; Sauseng et al., 2005) and serves to prevent interference in
nonspatial WM tasks (Sauseng et al., 2009; Bonnefond and
Jensen, 2012). The decoding methods used here go beyond the
previous research, however, providing evidence that the scalp
distribution of alpha-band activity contains decodable informa-
tion about the location of an object but little or no decodable
information about the other features of this object. However, it
remains quite plausible that alpha-band activity is used to store
object locations in WM, even when the task does not explicitly
require location memory (Foster et al., 2017a).

Although we found little or no evidence of orientation infor-
mation in alpha-band oscillations (or in any other frequency
band), this should not be taken to indicate that neural oscillations
have no role in object-based WM representations. The present
decoding was based on differences in scalp distribution across
feature values, and it is possible that scalp EEG oscillations (and
LFP oscillations) contain information about feature values in a
non-topographic manner (e.g., by means of phase-amplitude cou-
pling; Sauseng et al., 2009). Because decoding provides important
evidence that a neural signal actually reflects WM representations
rather than support processes (Postle, 2016), it will be important
for future research to determine whether these non-topographic
features of scalp EEG oscillations contain information about the
feature value being maintained in WM.

Orientation, space, and shape
As mentioned earlier, our task required perceiving ray orienta-
tion (360° of unique values) rather than line orientation (180° of
unique values). Both behavioral performance and location-inde-
pendent orientation decoding yielded no evidence of 180° confu-
sions, which may indicate that participants were representing
shape rather than orientation per se (Zhang and Luck, 2008).
However, populations of end-stopped cells in early areas of visual
cortex may be able to code ray orientation (Würtz and Lourens,
2000), so it is also possible that the present results reflect relatively
low-level representations of orientation.

Note that the orientation representations in the present study
may actually be conceived as object-centered spatial representa-
tions. Interestingly, fMRI-based decoding of orientation in pri-
mary visual cortex is not location-specific, and the orientation of
a grating presented in one hemifield can be decoded from the
pattern of activity in either hemisphere (Ester et al., 2009). This
suggests that object-centered representations may involve early
visual cortex and not just high-level areas.

Underlying neural activity
Although the present study found that sustained scalp-recorded
ERP activity contained information about the orientation value
being stored in WM, it is important to ask whether this could be
the result of brief bursts of activity that create the appearance of a
sustained response when averaged across neurons and/or trials.
Our ERP-based decoding was based on data in which activity 
6
Hz was filtered out, so oscillations in the alpha, beta, and gamma
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bands could not have contributed significantly to the decoding.
This includes both the asymmetric alpha oscillations reported by
Mazaheri and Jensen (2008) and van Dijk et al. (2010) and the
gamma-band LFP bursts observed in monkeys by Lundqvist et al.
(2016). However, the gamma bursts were accompanied by single-
unit activity that carried information about the stimulus being
represented; if these bursts of activity were accompanied by non-
oscillating LFPs, the summed activity across a large population of
neurons could have created sustained delay-period activity at the
scalp. In this way, the sustained ERP-based decoding observed in
the present study could reflect infrequent bursts of activity in
individual neurons that produced sustained potentials when av-
eraged across cells. In addition, it is possible that WM-related
EEG signals were present during some portions of the delay pe-
riod on some trials and other portions of the delay period on
other trials rather than being sustained across the entire delay
period on every trial (as observed in single-unit activity by Shafi et
al., 2007).

Nonetheless, the present results put significant constraints on
the neural signals that underlie decoding of WM content from
scalp EEG signals. For example, the present results unambigu-
ously demonstrate that the EEG contains decodable information
about the remembered stimulus value that cannot be directly
explained by oscillating LFPs, and they provide no evidence that
the scalp distribution of alpha-band oscillations carries informa-
tion about the contents of WM. Moreover, the present results
imply that neural representation of orientation in WM is spatio-
topically mapped at a sufficiently coarse cortical scale that it can
be decoded even after the substantial spatial filtering that occurs
when electrical potentials travel from the neurons that generate
them through the brain and skull to the surface of the scalp.
However, additional empirical research and modeling will be
needed to determine the precise nature of the cellular activity that
produces the scalp ERP signals that were decoded in the present
study.
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