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Abstract

We explore a wide variety of patterns of closed surfaces that minimize the elastic bending energy 

with fixed surface area and volume. To avoid complicated discretization and numerical 

instabilities for sharp surfaces, we reformulate the underlying constrained minimization problem 

by constructing phase-field functionals of bending energy with penalty terms for the constraints, 

and develop stable numerical methods to relax these functionals. We report our extensive 

computational results with different initial surfaces. These results are discussed in terms of the 

reduced volume, and are compared with the known results obtained using the sharp-interface 

approach. Finally, we discuss the implications of our numerical findings.

I. INTRODUCTION

Bending energy contributes crucially to physical and biological properties of closed 

surfaces. Examples of such properties in biology include the biconcave shape of a red blood 

cell and the different equilibrium states of cell membranes [1–6]. Macroscopically the 

bending energy of a closed surface is often modeled by the surface integral of the square of 

mean curvature (i.e., the average of two principal curvatures). This integral is the principal 

term in the widely used Canham–Helfrich functional, an integral over the surface of a 

quadratic polynomial of mean curvature [1, 7]. One of the interesting problems related to the 

interfacial phenomenon is the minimization of bending energy with fixed surface area and 

enclosed volume [6, 8, 9]. In this work, we study numerically such a problem to explore a 

variety of different patterns.

The numerical implementation for minimizing the bending energy of closed surfaces, with 

or without constraints, is in general very challenging as it amounts to solving a problem of 
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geometrical flow, the Willmore flow [10]. This is a nonlinear fourth-order partial differential 

equation. With a usual sharp-interface formulation and a fixed finite-difference spatial grid, 

the numerical discretization of such an equation can be very complicated and the stability of 

numerical solution is hard to achieve. An alternative approach is to use a phase-field 

representation of the surface [11–13]. This means that a phase field, a continuous function 

defined on the entire computational domain, takes values close to one constant (say, 0) 

outside the closed surface and another constant (say, 1) inside, but smoothly varies its values 

from one of the constants to another in a thin transition region that represents the surface. 

Such an approach has been widely used in studying surface and interface problems arising in 

many scientific areas, such as materials physics, complex fluids, and biomolecular systems, 

cf. [11–27] and the references therein.

In our current work, we develop a phase-field model to minimize the bending energy of a 

closed surface with fixed surface area and enclosed volume. We use the phase-field 

description of the bending energy that has been mathematically analyzed thoroughly in [28–

31]. We enforce the surface-area and volume constraints by penalty terms. This is similar in 

part to the method used in [30] but is different from some other methods, such as the 

Lagrange multipliers method used in [22, 31, 32]. In [31], the volume constraint results from 

a Model-B-like formulation of the underlying relaxation dynamics, involving high-order 

spatial derivatives. One of the reasons that we use penalty terms is for easier numerical 

implementation. We minimize our phase-field functional by solving the gradient-flow partial 

differential equations, using a finite-difference spectral method. We report our extensive 

numerical results of a wide variety of equilibrium patterns resulting from minimizing the 

bending energy with fixed surface area and enclosed volume in three-dimensional space (or 

fixed perimeter and enclosed area in two-dimensional space). In three-dimensional space 

which is of most practical interest, these patterns are analyzed using the reduced volume 

(i.e., the ratio of volume to that of the unit ball). In particular, we compare our results with 

the known, sharp-interface results for the three-dimensional axisymmetric case [8].

The rest of this paper is organized as follows: In Section II, we describe our phase-field 

energy functionals and the related gradient flows. In Section III, we present briefly our 

numerical methods. In Section IV, we report and analyze our computational results. Finally, 

in Section V, we draw conclusions.

II. PHASE-FIELD ENERGY FUNCTIONAL AND RELATED GRADIENT FLOW

We consider the minimization of bending energy of closed surfaces, possibly with multiple 

connected components, that have fixed surface area A and fixed volume V enclosed by the 

surface, where A and V are two positive constants. Let ε be a positive number such that ε ≪ 

1. Let Ω denote our computational domain in ℝ2 or ℝ3. We define the phase-field functional 

of all smooth functions u = u(x) (x ∈ Ω)

(II.

1)

where
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(II.2)

(II.3)

The first term in (II.1) approximates the bending energy. In this term, the parameter κ > 0 is 

the bending modulus, and

(II.4)

is a double-well potential with the “two wells” 0 and 1. The second term in (II.1) is a penalty 

term. It enforces the surface area to be A. The quantity MA(ε) is a function of ε such that 

MA(ε) > 0 and MA(ε) → ∞ as ε → 0. The term Aε(u) defined in (II.2) is a phase-field 

description of the area of interface separating the regions where a phase field u takes the 

values 0 and 1, respectively. With the prefactor chosen precisely to be 18 in (II.4), it is 

known that Aε[u] converges (in certain sense of functional convergence called Γ-

convergence) to the surface area in the sharp-interface limit (i.e., in the limit ε → 0) [33–35]. 

The third term in (II.1) is also a penalty term. It enforces the volume to be V, since Vε(u) 

defined in (II.3) approximates the volume of the region defined by u ≈ 1. The quantity 

MV(ε) is positive, and depends also on ε. Moreover, MV(ε) → ∞ as ε → 0.

Heuristically, if the first term (the integral term) in the functional Eε[u] is small, then the 

integrand will be close to 0. That means u solves approximately the Euler–Lagrange 

equation corresponding to the variational problem of minimizing Aε(u) that is defined in (II.

2). This minimization leads to W(u) ≈ 0 for ε ≪ 1. Therefore, u ≈ 1 or 0 in Ω. 

Mathematical studies indicate that Aε(u) is now close to the interfacial area and Vε(u) is 

close to the volume of the region where u ≈ 1 [33–35].

To minimize the functional (II.1), we consider the relaxation dynamics, i.e., the gradient 

flow

(II.5)

where t is the time, M(ε) > 0 is a mobility constant that can depend on ε, and δEε/δu is the 

variational derivative of Eε. Direct calculations lead to

(II.

6)

Combining (II.5) and (II.6), we therefore obtain the time-dependent equation that we need to 

solve
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(II.7)

We choose our computational domain Ω to be a box in ℝ2 or ℝ3, and use the periodic 

boundary condition. Initial solutions u(0) = u(0)(x) (x ∈ Ω) will be specified in the numerical 

computation. As the functional Eε is highly nonconvex, different initial solutions can lead to 

different final, stable, steady-state solutions that are local minimizers of the functional Eε.

III. NUMERICAL METHODS

In this section, we describe briefly our numerical methods for solving the gradient-flow 

equation (II.7). We present our methods for the three-dimensional case and omit those, 

similar and simpler, for the two-dimensional case. We choose our computational box to be a 

cube (−L/2, L/2) × (−L/2, L/2) × (−L/2, L/2) for some L > 0 and cover it by a uniform finite-

difference grid with grid size h in each direction. We choose a time step Δt > 0 and denote tm 

= mΔt (m = 0, 1, …). For a given function u(x, t), we denote by u(m) = u(m)(x) an 

approximation of u(x, tm).

We rewrite Eq. (II.7) into

where

We design accordingly our semi-implicit splitting scheme to discretize the time variable for 

Eq. (II.7):

where u(0) is a given initial solution. Here all the nonlinear terms, collected in the B term, 

are treated explicitly. Rearranging terms, we obtain

(III.1)
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For a fixed m, we solve Eq. (III.1) using a finite-difference Fourier spectral method. To do 

so, we discretize spatially both sides of Eq. (III.1), and then use the discrete Fourier 

transform to obtain the corresponding system of linear equation in the Fourier space. This is 

a diagonal system so that it can be solved directly. Finally, we transform back to the real 

space to obtain the numerical solution to (III.1).

We choose our constant mobility M(ε) = 1/ε. To stabilize our numerical computations, we 

vary the two penalty parameters MA(ε) and MV(ε) in the time iteration (III.1). For instance, 

we set

(III.2)

and replace MA(ε) and MV(ε) in (II.7) by MA(ε, m) and MV(ε, m), respectively. After certain 

number of steps, say, m = 1000, we freeze MA(ε) and MV(ε) in (III.1).

Algorithm

1. Select a tolerance δ > 0. Select an initial solution u(0) and compute the energy 

Eε[u(0)]. Set m = 0.

2. Solve Eq. (III.1) for u(m+1) using the Fourier spectral method.

3. Calculate the energy Eε[u(m+1)].

4. If |Eε[u(m)] − Eε[u (m+1)]| < δ then stop. Otherwise, change m to m + 1 and go back 

to Step (2).

IV. COMPUTATIONAL RESULTS

A. Two-Dimensional (2D) Results

We first present our 2D computational results, where the volume and area reduce to the 2D 

perimeter and area, respectively. We fix the area V and select different values of perimeter 

A. For instance, we fix V = π and choose A to be 2.5V, 4V, and 5V, respectively. For each 

value A/V we run our code. We choose our computational domain to be Ω = (−3, 3)2 and 

cover it by a uniform grid of 128 × 128 grid points. We set ε = 0.1, κ = 1, M(ε) = 0.5, and Δt 

= 10−5. The initial phase-field function u(0) = u(0)(x) is taken to represent a circle, ellipse, or 

“bean”.

Figures 1–3 display some of our computational results. In each row of these figures, the first 

picture is the initial configuration and the last picture is the steady-state solution. The two 

pictures in between are some intermediate states of u. In the red region u is 1 and in the blue 

region u is 0. We observe from these computational results a diverse family of minimum-

energy configurations which depend on the initial configuration and increase in complexity 

as the perimeter-to-area ratio increases. In particular, we see clearly from Figures 1 and 2 

that the final equilibrium shapes with higher perimeter-to-area ratios have more small pieces 

that have larger total perimeters.
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B. Three-Dimensional (3D) Results

In the 3D computations, we fix the constant area A in the functional Eε to be 4π, the area of 

unit sphere, and use the reduced volume Vredu = V/(4π/3) as a new parameter, where V the 

constant volume in the functional Eε and 4π/3 is the volume of unit ball. We choose the 

computational domain Ω = (−1.5, 1.5)3 and cover it by a uniform grid of 128 × 128 × 128 

grid points. Our other parameters are ε = 0.2, κ = 1, M(ε) = 0.5, and Δt = 10−5.

We choose five different types of initial phase-field functions u(0) = u(0)(x). The first four of 

them are in the form of

where the function dis(x) and the parameter r are given by

1. Sphere:

where x = (x1, x2, x3);

2. Prolate:

3. Oblate:

4. Parachute:

where

The last initial phase-field function is chosen to represent a cube:

5. Cube:
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We first consider the axisymmetric 3D geometries. In Figure 4, we present the final 

equilibrium configurations with different reduced volumes and oblate initials. Each row 

displays a sequence of four snapshots of numerical computations at different times, with the 

first one being the initial shape and the last one the equilibrium. The small 2D images are 

cross sections of the corresponding 3D shapes. For the reduced volume Vredu = 0.667 (top 

row), the oblate initial evolves into a discocyte. For Vredu = 0.5 (bottom row), the oblate 

initial shrinks, with the two poles getting closer and then merging, going through a 

topological change, and finally evolves into a torus.

In Figure 5, we start with a parachute initial. For Vredu = 0.75 and 0.60 (top two rows), the 

equilibriums are parachute shape. Note that a smaller reduced volume corresponds to a 

smaller open hole at the south pole. Once the reduced volume becomes even smaller (bottom 

row), the open hole at south pole merges and the equilibrium becomes a concentric sphere.

Figure 6 shows a phase diagram of the axisymmetric 3D equilibriums. There are three 

curves that correspond to three different initial shapes: prolate, oblate, and parachute. Each 

curve is the bending energy (defined to be the final minimum energy divided by 8πκ) vs. the 

reduced volume. The 2D cross sections of three representative solutions correspond to the 

reduced volume Vredu = 0.8, 0.6, 0.57, respectively. We observe that, for Vredu ≥ Vpr↔ob ≈ 

0.65, the prolate shape is energetically the most favorable one. For the reduced volume Vredu 

∈ (Vob↔pa, Vpr↔ob) ≈ (0.597, 0.65), the oblate shape has the lowest bending energy. If Vredu 

≤ Vob↔pa ≈ 0.597, the parachute shape is the most stable one. The two critical values of the 

reduced volume, Vob↔pa and Vpr↔ob agree with the corresponding values reported in [8]. 

Note that in [8] it is pointed out that, as Vredu decreases, the oblate shape finally self-

intersects. This will not happen here as our phase-field model can describe the topological 

changes: the merge of the biconcave region in the center of the oblate and eventually the 

form of a torus, cf. Figure 4. Similarly, for the parachute branch with Vredu decreasing, the 

two tips in the cross-section view will merge (the open hole at bottom will close), and the 

parachute shape undergoes a topological change into a concentric sphere, cf. Figure 5.

Note that analytical formulas can be obtained for the sharp-interface limit of some of the 

phase-field energy minimizers. For instance, if the energy minimizer is a torus, then the 

distance R from the center of the tube to that of the torus and the radius r of the tube are 

given by R = 3/(2πVredu) and r = 2Vredu/3, respectively. respectively. If the energy 

minimizer is a concentric sphere, we can solve the system of equations R2 + r2 = 1 and R3 − 

r3 = Vredu to determine the outer and inner radii R and r, respectively.

We now explore more 3D patterns that are the (local) minimizers of our phase-field 

bending-energy functional with constrained volume and area. In Figure 7, we start from a 

unit sphere and take five different values of the reduced volume. In each of the five cases, 

the sphere evolves into a small ball with six handles which become thinner and longer as the 

reduced volume decreases. In Figure 8, we start from a cubic initial. With three different 
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values of the reduced volume, we observe even more complicated equilibrium shapes. In 

Figure 9, the initial shape is an ellipsoid. We observe the topological changes in the 

relaxation dynamics.

It is clear that the initial shapes determine the final shapes. For instance, final shapes with 

sphere initials tend to be more rounded or at least more symmetric, cf. Figure 7. Final shapes 

with ellipsoid initials are more elongated in one direction, same as in the initial ellipsoid, cf. 

Figure 9. Moreover, we observe that for smaller reduced volumes the final equilibrium 

surfaces are in general smoother and have larger curvatures. These result from the balance of 

minimizing the bending energy and satisfying the surface-area and volume constraints. 

Breaking into more components of surface increases the surface area while keeping the same 

volume, and also smoothens the surface, reducing the bending energy.

Figure 10 shows the dependence of the final equilibrium bending energy and the 

corresponding equilibrium shape on the reduced volume.

Finally, in Figures 11 and 12, we display drawings that resemble our computational results 

to show how the surface is evolved during the relaxation. Figure 11 shows a sequence of 

cross sections of 6 three-dimensional configurations during the time evolution of relaxation 

dynamics starting with a sphere. Figure 12 shows a sequence of 6 configurations during the 

time evolution of relaxation dynamics starting with an ellipsoid. For a high reduced volume, 

the phase field usually stops evolving at phase 2 or 3. For a low reduced volume, the phase 

field progresses to phase 5 or 6. Again, with the same volume, equilibrium shapes with 

lower reduced volumes often have more branches to create larger surface areas. It is 

interesting to see from Figure 11 that an initial sphere evolves finally to a sphere inside a 

concentric shell. All of these configurations are spherically symmetric. But many of the 

intermediate configurations are not spherically symmetric. The existence of such particular 

intermediate states may depend on the choice of numerical parameter ε that characterizes the 

width of diffuse surface and the dynamic parameters of penalty MA(ε, m) and MV(ε, m).

V. CONCLUSIONS

We have constructed a phase-field bending-energy functional with penalty terms enforcing 

the constraint of surface area and volume. We have also designed and implemented a semi-

implicit, finite-difference, Fourier spectral method to solve numerically the gradient flow, 

minimizing the phase-field functional. The use of penalty terms with dynamic parameters of 

penalty makes the computation more stable. Our extensive numerical results reveal a wide 

range of different energy-minimizing configurations. Comparison with existing results 

indicates that our models and methods are accurate and reliable.

In general, initial shapes determine the final, locally energy-minimizing shapes. With a 

smaller reduced volume, the final surface breaks up into several components to increase the 

surface area while keeping the volume fixed. For a larger reduced volume, the final surface 

often has one component (no break up) but can have large curvatures. Break up and 

smoothness result from the competition between the minimization of bending energy and the 

surface-area and volume constraints. High-energy configurations often correspond to 
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medium values of reduced volume, since for such values no break up is needed to satisfy the 

constraints but more complicated topologies appear.

We remark that the spontaneous curvature, an important quantity in membrane modeling, 

can be included approximately in our model and numerical implementation. For instance, 

we can replace the bending energy term, the κ-term, in (II.1) by [36]

where H0 is a constant representing the spontaneous curvature, and study the resulting 

functional Eε. Note that ε|∇u|2 ≈ W(u)/ε for small ε > 0. This implies that the terms inside 

the pair of brackets are approximations to . The integral of 

the square of this sum, with an effective parameter H0, is exactly the bending energy with 

the spontaneous curvature, proposed as in Eq. (2.1) in [36]. Figure 13 shows our phase-field 

computational results that include the parameter of spontaneous curvature H0.

We point out that our phase-field relaxation is a method of steepest descent. Like any such a 

method, it can only capture locally energy-minimizing states for which suitable initial states 

are known. Consequently, many local minimizers may not be discovered as the energy 

landscape can be very complicated. In fact, for a given reduced volume, we have seen from 

our computations that there are often many different local minimizers of the bending energy 

functional. Moreover, a method of steepest descent does not in general describe the real 

dynamics. Therefore, it is often unable to sample all the states to provide the “ensemble 

average” such as the statistically weighted energy value.

Nevertheless, what we have presented is a first step toward understanding a complicated 

system. In addition to exploring different surface patterns as it is done in this work, we can 

apply our relatively simple and reliable computational model and method to study other 

problems, such as the stability of vesicles [37, 38]. In order for our phase-field approach to 

be able to treat more realistic systems, however, we have to develop new method to describe 

the surface fluctuations [39]. These are among the directions we plan to pursue.
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FIG. 1. 
(Color online) Configurations started with a circle. Each row displays a sequence of 4 

snapshots of numerical computations at different times, with the first being a circle (initial 

shape) and the last the steady-state configuration. The perimeter-to-area ratios are 2.5, 4, and 

5, respectively, from top to bottom.
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FIG. 2. 
(Color online) Configurations started with an ellipse. Each row displays a sequence of 4 

snapshots of numerical computations at different times, with the first being an ellipse (initial 

shape) and the last the steady-state configuration. The perimeter-to-area ratios are 2, 3.5, 4, 

5.5, and 6.5, respectively, from top to bottom.
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FIG. 3. 
(Color online) Configurations started with a “bean”. Each row displays a sequence of 4 

snapshots of numerical computations at different times, with the first being a “bean” (initial 

shape) and the last the steady-state configuration. The perimeter-to-area ratios are 7 (top 

row) and 8 (bottom row), respectively.
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FIG. 4. 
(Color online) Configurations with different reduced volumes and oblate initials. Each row 

displays a sequence of four snapshots of numerical computations at different times, with the 

first being the initial shape and the last the steady-state configuration. Small 2D images are 

cross sections of the corresponding 3D shapes. The reduced volumes are 0.667 (top) and 

0.500 (bottom).
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FIG. 5. 
(Color online) Configurations with different reduced volumes, started with a parachute. 

Each row displays a sequence of four snapshots of numerical computations at different 

times, with the first being the initial shape and the last the steady-state configuration. The 

reduced volumes are 0.75, 0.60, and 0.25, respectively, from top to bottom.
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FIG. 6. 
(Color online) The bending energy v.s. reduced volume Vredu. The three branches of prolate, 

oblate, and parachute shapes are displayed. The two critical values of reduced volume from 

prolate to oblate and from oblate to parachute are Vpr↔ob ≈ 0.65 and Vob↔pa ≈ 0.597, 

respectively. These results agree well with those obtained using the sharp-interface model 

[8].
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FIG. 7. 
(Color online) Configurations with different reduced volumes, all started with a unit sphere. 

Each row displays a sequence of four snapshots of numerical computations at different 

times, with the first being an initial unit sphere and the last the steady-state configuration. 

The reduced volumes are 0.423, 0.411, 0.333, 0.250, and 0.167, respectively, from top to 

bottom.
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FIG. 8. 
(Color online) Configurations with different reduced volumes, all started with a cube. Each 

row displays a sequence of four snapshots of numerical computations at different times. The 

reduced volumes are 0.45, 0.35, and 0.25, respectively, from top to bottom.
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FIG. 9. 
(Color online) Configurations with different reduced volumes, all started with an ellipsoid. 

Each row displays a sequence of four snapshots of numerical computations at different 

times, with the first being an initial ellipsoid and the last the steady-state configuration. 

Small 2D images are cross sections of the corresponding 3D shapes. The reduced volumes 

are 0.600, 0.577, 0.429, 0.333, and 0.328, respectively, from top to bottom.
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FIG. 10. 
(Color online) The dependence of the relaxed (local) minimum energy and the 

corresponding configurations on the reduced volume. Each initial is an ellipsoid. The 

reduced volumes of the representative equilibriums are 0.600, 0.577, 0.556, 0.536, 0.517, 

0.500, 0.484, 0.469, 0.455, 0.441, 0.429, and 0.333, respectively, from left to right.
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FIG. 11. 
Cross sections of an evolving surface. Initial profile is a sphere.
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FIG. 12. 
Phase-field evolution of a surface. Initial profile is an ellipsoid (not shown here). Grey lines 

show the boundary of the interior regions and the shape of the back side of the 

configuration.
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FIG. 13. 
(Color online) Equilibrium configurations with different spontaneous curvature H0 = 2, 4, 6, 

and 8, respectively, from left to right. The reduced volume is fixed to be 0.6.
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