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Abstract

We have previously shown that a biologically realistic spiking
neuron  implementation  of  an  action  selection/execution
system (constrained by the neurological  connectivity of the
cortex, basal ganglia, and thalamus) is capable of performing
complex  tasks,  such  as  the  Tower  of  Hanoi,  n-Back,  and
semantic  memory  search.   However,  because  the  neural
implementation approximates a strict rule-based structure of a
production system, such models have involved hand-tweaking
of multiple parameters to get the desired behaviour.  Here, we
show that a simple, local, online learning rule can be used to
learn these parameters, resulting in neural models of cognitive
behaviours that are more reliable and easier to construct than
with prior methods. 

Keywords: neural engineering framework; neural production
systems; semantic pointer architecture; spiking neurons; basal
ganglia; neural cognitive architectures

Introduction
In  previous  work  (Stewart  &  Eliasmith,  2009;  Stewart,
Choo,  &  Eliasmith,  2010),  we  have  shown  how  spiking
neurons  can  be  used  to  build  biologically  plausible
approximations of traditional production systems, and that
these models also harness the sophisticated pattern matching
capabilities of neural networks, leading to novel capabilities.
This formed the core of Spaun (Eliasmith et al., 2012), the
first  and  so  far  only  spiking  neuron  model  capable  of
performing multiple cognitive  tasks,  and is  central  to  the
more  general  Semantic  Pointer  Architecture  for  building
neually plausible cognitive models (Eliasmith, 2013).  Since
then, this system has formed an important part of biological
models of the Tower of Hanoi (Stewart & Eliasmith, 2011),
bandit  tasks  (Stewart,  Bekolay,  &  Eliasmith,  2012),
command  parsing  (Stewart  &  Eliasmith,  2013),  sentence
parsing (Stewart, Choo, & Eliasmith, 2014), the n-Back task
(Gosmann  &  Eliasmith,  2015),  action  planning  (Blouw,
Eliasmith,  &  Tripp,  2016),  speech  production  (Kröger,
Bekolay,  & Blouw, 2016) and the effects  of  reduction of
dopamine  on  speech  production  (Senft  et  al.,  2016),
hierarchical  reinforcement  learning  of  navigation  and
abstract  action  rules  (Rasmussen,  Voelker,  &  Eliasmith,
2017), and semantic memory search (Kajić et al., 2017).

However, building neural implementations of these kinds
of  cognitive  tasks  imposes  new  challenges  on  the
researcher.  In particular, since the neurons  approximate a
production  system,  they  do  not  provide  the  same  simple
algorithmic  programmability  that  a  production  system
affords  with  its  IF-THEN  rules.   This  has  meant  that

creating  the  models  listed  above  required  careful  hand-
tuning of some parameters.

In  this  paper,  we  present  a  method  for  automatically
learning  these  parameters  such  that  the  model's  desired
overall overt behaviour is achieved.  This greatly simplifies
the  process  of  constructing  neural  models  with  complex
rule-like  behaviour,  and  sheds  light  on  potential
mechanisms for how neurobiological systems may learn to
perform such tasks.

Neural Action Selection and Execution
The  generic  form  of  our  neural  approximation  of  a
production system is shown in Figure 1.   The neurons in
cortex  represent  state  information,  i.e.,  the  set  of
information that can be used for selecting which action to
perform next.  This can consist of visual information, the
contents of working memory, the state of the motor system,
and so on.  (These approximately correspond to Buffers in
ACT-R).   We  use  the  Neural  Engineering  Framework
(Eliasmith & Anderson, 2003) to organize spiking neurons
to form distributed representations of  these values,  which
can be scalars, vectors, or functions. 

Figure 1: The cortex-basal ganglia-thalamus loop that forms
the neural action selection and execution system.  Neurons
(dark circles) and connections are shown only for the inputs
to the action selection system.  These connections compute

the utility (Ui) of each of the actions i, given the current
cortex state.  The basal ganglia selects the action with the

highest utility, and the thalamus executes that action.
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The connections between cortex and the first stage of the
basal  ganglia  (the  striatum)  compute  the  utility of  each
action.  The basal  ganglia  determines the largest  of these
utility values,  which is the action that  should be selected.
Connections via the thalamus execute the action, resulting in
changed cortical state.

More  specifically,  the  neurons  in  the  different  cortical
areas  form  a  distributed  representation  of  whatever  state
information  is  needed  for  the  model.   This  state  is,  in
general, a D-dimensional vector represented by the spiking
activity  of  N neurons  (where  N is  generally  much larger
than D).  In Figure 1, we show three groups of four neurons
each,  representing  three  different  state  variables.   In  a
typical  model,  these  state  variables  would  consist  of
~25,000  neurons  representing  a  ~500  dimensional  value.
Given such a large state space, we can represent symbols by
using  randomly  chosen  500-dimensional  vectors  to
represent different concepts (A, B, C, ONE, TWO, THREE,
LETTERS,  NUMBERS,  etc.).   Importantly,  by using  the
approach of Vector Symbolic Architectures (Gayler, 2003),
such a representation can also be generalized to represent
complex  combinations  of  symbols,  giving  the
compositionality needed for cognitive models.  The details
of  the  construction  and  deconstruction  of  symbol-like
structures in these systems are not needed for the purposes
of this paper,  but see (Stewart,  Choo, & Eliasmith, 2010)
and (Eliasmith, 2013) for further details.

The  striatum neurons  in  the  input  to  the  basal  ganglia
represent the utility of each action.  In Figure 1, we show
four actions, and each action's utility is represented by three
neurons.  In the real model, we use 100 neurons per action
(including both striatal  D1 and D2 neurons).   These  100
neurons again form a distributed representation of the utility
of the action given the current cortical state information.

To  cause  this  to  happen,  we  need  to  determine  the
connection  weights  between  the  cortical  neurons  and  the
striatal neurons such that when the cortical neurons fire with
a particular  pattern,  the striatal  neurons will  fire  with the
pattern that represents the correct utility value.

For example, suppose we have an action that should occur
if the visual  cortical  neurons are  representing the number
TWO.  We might  then say that  we want the connections
from  cortex  to  striatum  to  approximate  the  following
function,  where  s is  the  vector  currently  represented  in
cortex:

However, neural firing patterns are never going to be exact,
so the cortical neurons will never (or very rarely) fire with
the exact ideal pattern that we have chosen to mean TWO.
This  means  the  above  function  will,  in  practice,  always
return  0  and  so  the  connection  weights  that  closely
approximate that function will be all zeros. Instead, we want
a  function  that  will  give  a  high  utility  if  the  represented
value is close to TWO, and a low utility if it is farther from
TWO.  For this, we use the dot product:

We use the Neural Engineering Framework (NEF; Eliasmith
& Anderson, 2003) to directly solve for the ideal connection
weights  that  best  approximate this  function.   Importantly,
the NEF demonstrates  that  linear  functions are  extremely
easy for neural connections to approximate, so we know that
this function will be well-approximated.

The above technique (using neurons to represent vectors,
and  solving  for  connection  weights  that  approximate
functions on those vectors) is used for all the neurons and
connections in the model.  In previous work (e.g.,  Stewart,
Choo, & Eliasmith, 2010; Eliasmith, 2013) we have shown
how the basal ganglia model finds the largest of these utility
values  and  how  the  thalamus  model  is  used  to  route
information between cortical  areas  to execute the actions.
However, in this paper we take a closer look at the problems
encountered  when  deciding  upon  the  functions  to  be
approximated to compute these utilities.

Approximating AND and OR
Suppose we want an action that will only occur if the visual
cortex  contains  LETTER  and  the  contents  of  working
memory are  A.   In  a  standard  production  system,  this  is
simple to specify, since AND is a primitive operation when
defining production rules.   However,  if  we instead try to
specify this operation using neurons,  it  is  difficult  for the
neurons to be precise.  Rather, we might get the neurons to
approximate this function:

Now, the utility will only be large (near 1) if both the visual
cortex  v is near the pattern for LETTER and the working
memory neurons m are near the pattern for A.  This seems
to be a good implementation of AND, but it is important to
note that if the memory contains B instead of A, this action
will still get chosen if no other actions have a utility higher
than 0.5.  In other words, this attempt at implementing AND
is highly dependent on the definition of the  other actions.
As the number of actions increases, the interaction between
the various actions becomes more complex.

A similar problem occurs with OR.  If we want an action
that occurs if v is NUMBER or if m is C, we may compute
the utility with something like this:

This will produce a large value (near 1) if either case is true.
However, if it turns out that both v  is near NUMBER and m
is  near  C,  then this action will  get  an even  higher  utility
(near 2), causing it to overwhelm other actions that may also
have large utilities.  Indeed, this action may be selected even
if  v  is  only  somewhat  near  NUMBER  and  m  is  only
somewhat near C.

These problems may be mitigated by adding scaling factors
to these equations.  For example,  we may do the following:

It  is  these  scaling  factors  that  are  sometimes  “hand-
tweaked”  when  making  complex  neural  action  selection

1087



models using our methods.  We now present a method for
eliminating  this  hand-tweaking  by  having  the  neural
network learn the correct connection weights to perform the
task correctly.

Supervised Learning of Action Selection
Rather  than  hand-tweaking  the  scaling  factors  in  the  U
functions  (that  is,  trying  to  find  values  that  consistently
produce the desired behaviour in the context of all the other
U functions), we instead propose to use an online learning
rule.   That is,  we initialize the model with zero for these
parameters, and then adjust these values while the model is
running based on its performance.

The simplest online error-driven learning rule is the delta
rule (Widrow & Hoff, 1960):

This is meant for situations where the adjustable parameters
ωij are weights on values xi that produce the weighted sum yj

(i.e.  ).   The  desired target  value  is  tj and  the
learning rate is α.  We have previously shown how this rule
can  be  adapted  to  distributed  representations  in  spiking
neurons (Bekolay, Kolbeck, & Eliasmith, 2013), where we
refer to it as the PES rule.

Since  this  is  exactly  the  right  configuration  for  the
parameters in our utility equations U, we can directly apply
this learning rule, if we can determine a target  value  tj at
every point in time while the simulation is running.

Determining the error signal (tj  - yj)
To apply the above rule, we need a measure of the error that
is currently being made.  To get the target value, we need to
know what the utilities should be right now.  However, this
is exactly what we don't know (since if we did know what
the utilities of each action should be, we would just use that
as the equation for  U).  However, what we can compute is
what would an ideal action selection system do in this case.
That is, we can use a standard production system (or any
other appropriate action selection system) given the current
state information and see what action it would take.  This
standard production system is not constrained to be neurally
plausible, so it can do perfect AND and OR operations.  We
then use this to form an estimate of tj:

For yj we have two options.  The standard approach would
be  to  simply  use   (i.e.  the  utility  values  as
currently computed by the neural system).  This is what this
learning  rule  was  designed  for.   However,  given  our
estimate of tj, this may not be the right rule.  For example, if
action 1 has a utility of 0.9 and all the other actions have a
utility smaller than 0.9, then action 1 will be selected, but
even if action 1 is supposed to be selected, this learning rule
would treat that as an error and try to adjust the parameters
such that the utility is larger.  That is, even when the system
is producing the correct behaviour, the weights will still be
adjusted.

To avoid this, we can also estimate yj as the output of the
action selection system.  That is, 

This gives us two possible ways of measuring the error: we
can either use the input to the action selection system (Uj) or
we can  use  the  output  of  the  action  selection  system (yj,
above).  Both cases are investigated here.

Determining the learning inputs xi

We  must  also  determine  what  to  use  for  xi.   One
straightforward  option  is  to  use  the  base  terms  from the
equations used to generate the U functions.  For example, if
one  of  our  U functions  is  the  above-mentioned  utility
function  , then we might
use   and   as  x1 and  x2.  The learning
rule would then learn the weights  ω1,3 and  ω2,3.   In  a full
system with multiple utility functions,  all  of  the different
terms would create a long list of x values.

However,  since the cortical values are already stored in
terms of neurons, and those values such as 
are  being  computed  by  connection  weights  from  those
neurons, there is a second alternative.  We can use the same
learning rule, with the same error signal, to  directly adjust
the connection weights from the neurons themselves.  That
is, we let xi be the neural activity of the cortical neurons, and
ωij is  then  the  connection  strength  between  the  cortical
neurons and the striatal neurons.

By using the neurons themselves, we are increasing the
range of possible functions that the learning rule can find.
That  is,  when using the parameter-based  approach,  the  U
functions are constrained to the linear weighted sums of the
particular terms that we have identified for xi.  But, if we use
the neural activity for xi, then the learning rule has access to
the full space of possible functions that can be approximated
by connection weights out of those neurons.  Interestingly,
using the learning rule in this way makes it mathematically
identical to the PES learning rule that we have previously
used to model reinforcement learning, and in that case it was
also  used  to  learn  the  connections  between  cortex  and
striatum (Stewart, Bekolay, & Eliasmith, 2012).

However, the drawback of using the neurons themselves
is that we greatly increase the number of parameters  ωij to
learn.   This  makes  the  learning  more  computationally
intensive, and will likely require a lower learning rate.  Both
options are investigated here.

Example Model
To  test  this  approach  to  learning,  we  chose  a  simple
cognitive  task  with  two  cortical  state  variables  and  six
actions.   If  the visual  system contains  LETTER, then the
production system should cycle the working memory state
through A → B → C → A (and so on).  If the visual system
contains NUMBER, then the working memory should cycle
through ONE → TWO → THREE → ONE (and so on).
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This can be thought of as the following set of production
rules:

IF THEN

v=LETTER AND m=A m=B

v=LETTER AND m=B m=C

v=LETTER AND m=C m=A

v=NUMBER AND m=ONE m=TWO

v=NUMBER AND m=TWO m=THREE

v=NUMBER AND m=THREE m=ONE

When  the  system  is  run,  an  external  input  to  the  visual
cortical  neurons  is  set  to  change  it  from  LETTER  to
NUMBER (and back) every second.

To convert this into a neural model, we need to define the
utility functions for each action.  If we were doing this by
hand  using  the  typical  approach,  we  might  use  the
following:

However, performance may improve if those parameters are
tweaked, and indeed if other terms are added.

Evaluation Metrics
To  determine  whether  the  optimization  does,  in  fact,
improve performance, we define two separate measures to
characterize the quality of the model.

First, we report the number of correct transitions over 2.0
seconds  (1.0  seconds  with  the  input  to  visual being
LETTER, and 1.0 with it being NUMBER).  However, we
have to be careful as to how to define a correct transition,
since  neurons are  being used to  represent  the contents  of
working memory, and those contents are a numerical vector,
not  an  abstract  symbol.   There  is,  however,  an  ideal
(randomly chosen) vector for each of the basic terms (ONE,
TWO,  THREE,  A,  B,  C,  LETTER,  NUMBER).
Furthermore,  given  the  neural  activity  of  the  working
memory  neurons,  we  can  compute  the  vector  they  are
currently  representing  (using  the  NEF).   This  numerical
vector can then be compared to the ideal vectors.  Here, we
use the dot product for this comparison.  We define a correct
transition as  going from a previous time point  where,  for
example,  the vector  is  closest  to A,  and at  the next  time
point it is closest to B.  If LETTER is currently in  visual,
then the correct transitions are A→B, B→C, and C→A. For
NUMBER  they  are  ONE→TWO,  TWO→THREE,  and
THREE→ONE.  For  this  metric,  we  simply  count  the
number of times this correct transitioning occurs.

For  the  second  metric,  we determine  the  proportion  of
time that the working memory contains the correct type of
value.  That is, if the visual cortex neurons are representing
LETTER,  then  the  vector  in  working  memory should  be
closer to A, B, or C than it is to ONE, TWO, or THREE
(and  vice-versa  for  NUMBER).   This  second  metric  is
simply the proportion of time this is true.

When computing the metrics, we always  measure when
learning is off.  That is, we perform one cycle with learning
on, and then one cycle with learning off where we actually
compute the metrics.  With this approach, we ensure that the
measured  performance  is  based  on  the  system  actually
learning  to  respond  correctly  to  the  input,  rather  than
responding based on the training signal itself.

Results
We start by learning using the input to the action selection
system  to  compute  the  error,  and  using  the  separate
mathematical terms to provide a small set of parameters ωij

to learn.  This is shown in Figure 2.
We  note  that  slower  learning  rates  lead  to  improved

performance  on  the  first  metric  (number  of  correct
transitions),  but  worse  performance  on the  second metric
(percentage  of  time  spent  in  the  correct  states).
Furthermore,  the  model  reaches  a  peak  performance  of
around 20 transitions per cycle, and does not improve with
more training.

Figure 2: Effects of different learning rates when learning
from the base terms and the action selection input.  Shaded

areas are 95% bootstrap confidence intervals.
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Figure 3 shows the model when we use neurons for learning
and the action selection input for the error value.  Here we
find a marked improvement in both metrics, although with
too low a learning rate the system does not improve.

Figure 3: Effects of different learning rates when learning
from the base terms and the action selection input.  Shaded

areas are 95% bootstrap confidence intervals.

Figures 4 and 5 show the same systems as 2 and 3, but with
the output of the action selection system as the source of the
error in the training signal.  Both of these show extremely
poor  performance,  including  effects  where  performance
increases temporarily, but then decreases back down to the
(poor) baseline performance.

Conclusions and Future Work
The  presented  results  indicate  that  we  can  use  online
supervised learning to learn the utility functions needed for
cognitive models that use neural action selection.  

Interestingly,  we  found  the  best  performance  when
learning directly off of the neurons themselves.  This makes
the  learning  process  harder  (in  terms  of  computational
power requirements and the number of  ωij terms that must
be learned), but it also greatly reduces the effort required by
the modeller.  In particular, rather than having to define the
basic terms in the utility functions (e.g.  ),
the  learning  system  will  directly  deal  with  the  neural
representations,  allowing  it  to  find  much  more  complex
functions that produce the desired behaviour more reliably.

Oddly, using the output from the action selection system
for  training  does  not  work  at  all.   This  is  somewhat
surprising, and more work is needed to investigate this.

Figure 4: Effects of different learning rates when learning
from the base terms and the action selection output.  Shaded

areas are 95% bootstrap confidence intervals.

Figure 5: Effects of different learning rates when learning
from the base terms and the action selection output.  Shaded

areas are 95% bootstrap confidence intervals.
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It  should also be noted that, as in many learning systems,
the learning rate itself is extremely important.  Too small a
learning rate leads to systems that take long amounts of time
(and computational power) to learn (or do not learn at all).
Too high a learning rate and the system does not reliably
improve.  Fortunately, there are numerous techniques in the
machine learning literature for dealing with this difficulty,
(e.g., changing learning rates based on performance).

More importantly, however, we next need to evaluate this
learning system on more complex cognitive tasks, such as
our  existing  the  Tower  of  Hanoi  and  left-corner  parser
models.  This will provide a more robust test of the practical
benefits of the learning system.

Finally,  there  is  a  deeper  theoretical  question  and
possibility that needs to be examined further.  In particular,
can  the  supervised  learning  system  presented  here  be
considered  of  a  model  of  how  people  learn  complex
cognitive  tasks?   All  we  have  shown  so  far  is  that  this
learning  system  is  a  useful  tool  for  constructing  neural
cognitive  models.   We  could  simply  treat  it  as  such  a
technical  tool  that  provides  a  novel  way  of  more  easily
generating  neural  cognitive  models  that  perform  desired
tasks.  However, the fact that this learning system applies
directly  to  the very same neural  connections between the
cortex and striatum that are used in models of reinforcement
learning, and the fact that the learning rule itself is one that
is local and biologically plausible, suggests that perhaps the
technique  we  have  presented  here  could  be  biologically
implemented.   That  is,  rather  than  treating  the  resulting
model  as  a  simulation  of  someone  who  has  previously
learned the task (as is common in both our neural models
and in non-neural  cognitive  modelling),  we can  treat  this
supervised  learning  system as  a  model  of  the  process  of
learning the task.  However, in order to do this, we would
need to tackle one significant question: where does this ideal
target value tj come from?  That is, what neural mechanism
provides an indication of what action ought to be performed
next?  It  seems possible that some combination of mental
models and learning by instruction may be able to provide
such a training signal,  but more research must be done to
investigate this possibility.

Acknowledgments
This work was supported by AFOSR grant FA9550-17-1-
0026,  NSERC  Discovery  grant  261453,  and  the  Canada
Research Chairs program.

References 
Bekolay,  T.,  Kolbeck,  C.,  and  Eliasmith,  C.  (2013).

Simultaneous  unsupervised  and  supervised  learning  of
cognitive  functions  in  biologically  plausible  spiking
neural  networks.  35th  Annual  Conference  of  the
Cognitive Science Society, 169–174.

Blouw, P., Eliasmith, C, and Tripp, B. (2016). A scaleable
spiking  neural  model  of  action  planning.  38th  Annual
Conference of the Cognitive Science Society

Eliasmith,  C.  (2013).   How  to  build  a  brain:  A  neural
architecture for biological cognition. Oxford University
Press, New York, NY.

Eliasmith, C. & Anderson, C. (2003).  Neural Engineering:
Computation,  representation,  and  dynamics  in
neurobiological systems. Cambridge: MIT Press.

Eliasmith,  C.,  Stewart,  T.C.,  Choo,  X.,  Bekolay,  T.,
DeWolf,  T, Tang,  Y., Rasmussen, D.  (2012).  A large-
scale model of the functioning brain.  Science, 388:6111,
1202-1205.

Gayler,  R.  (2003).  Vector  symbolic  architectures  answer
Jackendoff’s  challenges  for  cognitive  neuroscience.
International Conference on Cognitive Science.

Gosmann,  J.  and  Eliasmith,  C.  (2015).  A  spiking  neural
model  of  the  n-back  task.  37th  Annual  Meeting  of  the
Cognitive Science Society.

Kajic, I.,  Gosmann, J., Komer,  B.,  Orr,  R., Stewart,  T.C.,
and  Eliasmith,  C.  (2017).   A  Biologically  Constrained
Model of Semantic Memory Search.  Annual Meeting of
the Cognitive Science Society. 

Kröger, B.J., Bekolay, T., and Blouw, P. (2016). Modeling
motor  planning  in  speech  production  using  the  neural
engineering  framework.  Electronic  Speech  Signal
Processing (ESSV), 15–22.

Rasmussen, D., Voelker, A.R., and Eliasmith, C. (2017). A
neural  model  of  hierarchical  reinforcement  learning.
PLoS ONE, 12:7, 1–39.

Senft,  V.,  Stewart,  T.C.,  Bekolay,  T.,  Eliasmith,  C.,  and
Kröger,  B.J.  (2015).  Reduction  of  dopamine  in  basal
ganglia and its effects on syllable sequencing in speech: a
computer simulation study. Basal Ganglia 6:1, 7-17.

Stewart,  T.C.,  Bekolay,  T.,  and  Eliasmith,  C.  (2012)
Learning  to  select  actions  with  spiking  neurons  in  the
basal ganglia.  Frontiers in Neuroscience, 6:2, 1-14.

Stewart,  T.C.,  Choo,  X.,  and  Eliasmith,  C.  (2010).
Symbolic reasoning in spiking neurons:  A model of  the
cortex/basal ganglia/thalamus loop.  Annual Meeting of
the Cognitive Science Society.

Stewart, T.C., Choo, X., and Eliasmith, C. (2014).  Sentence
processing  in  spiking  neurons:  A biologically  plausible
left-corner  parser.   Annual  Meeting  of  the  Cognitive
Science Society. 

Stewart, T.C. and Eliasmith, C. (2009) Spiking neurons and
central  executive  control:  The  origin  of  the  50-
millisecond cognitive cycle.  International Conference on
Cognitive Modelling.

Stewart,  T.C.  and  Eliasmith,  C.  (2011)  Neural  cognitive
modelling:  A  biologically  constrained  spiking  neuron
model of the Tower of Hanoi task.  33rd Annual Meeting
of the Cognitive Science Society.

Stewart, T.C. and Eliasmith, C. (2013). Parsing Sequentially
Presented  Commands  in  a  Large-Scale  Biologically
Realistic  Brain  Model.   35th  Meeting  of  the  Cognitive
Science Society.

Widrow, B. and Hoff, M. E. Jr. (1960). Adaptive switching
circuits.  IRE  Western  Electric  Show  and  Convention
Record, Part 4, 96-104.

1091


	Supervised Learning of Action Selection in Cognitive Spiking Neuron Models
	Terrence C. Stewart (tcstewar@uwaterloo.ca) Sverrir Thorgeirsson (sverrir.thorgeirsson@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca)
	Centre for Theoretical Neuroscience, University of Waterloo 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
	Introduction
	Neural Action Selection and Execution
	Approximating AND and OR

	Supervised Learning of Action Selection
	Determining the error signal (tj - yj)
	Determining the learning inputs xi

	Example Model
	Evaluation Metrics

	Results
	Conclusions and Future Work
	Acknowledgments
	References



