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Abstract

An ongoing challenge in neuromorphic computing is to devise general and computationally
efficient models of inference and learning which are compatible with the spatial and temporal
constraints of the brain. The gradient descent backpropagation rule is a powerful algorithm that is
ubiquitous in deep learning, but it relies on the immediate availability of network-wide information
stored with high-precision memory. However, recent work shows that exact backpropagated
weights are not essential for learning deep representations. Random backpropagation replaces
feedback weights with random ones and encourages the network to adjust its feed-forward weights
to learn pseudo-inverses of the (random) feedback weights. Here, we demonstrate an event-
driven random backpropagation (eRBP) rule that uses an error-modulated synaptic plasticity for
learning deep representations in neuromorphic computing hardware. The rule is very suitable for
implementation in neuromorphic hardware using a two-compartment leaky integrate & fire neuron
and a membrane-voltage modulated, spike-driven plasticity rule. Our results show that using eRBP,
deep representations are rapidly learned without using backpropagated gradients, achieving nearly
identical classification accuracies compared to artificial neural network simulations on GPUs,
while being robust to neural and synaptic state quantizations during learning.

I. INTRODUCTION

Biological neurons and synapses can provide the blueprint for inference and learning machines
that are potentially thousandfold more energy efficient than mainstream computers. However, the
breadth of application and scale of present-day neuromorphic hardware remains limited, mainly
due to a lack of general and efficient inference and learning algorithms compliant with the spatial
and temporal constraints of the brain.
Machine learning and deep learning are well poised for solving a broad set of applications
using neuromorphic hardware, thanks to their general-purpose, modular, and fault-tolerant nature
[1], [2], [3]. One outstanding question is whether the learning phase in deep neural networks
can be efficiently carried out in neuromorphic hardware as well. Performing learning online
can confer continuous adaptability in dynamic or less controlled environments (where no prior,
representative dataset exists) and more fine-grained context awareness to behaving cognitive agents,
while reducing the energetic footprint of learning. However, deep learning usually relies on the
immediate availability of network-wide information stored with high-precision memory. The non-
locality of deep learning on a brain-like substrate is due to the gradient descent Back-Propagation
(BP) rule [4], which requires the transpose of the feedforward matrices in the feedback path. In
digital computers, the access to this information funnels through the von Neumann bottleneck,
which dictates the fundamental limits of the computing substrate. Distributing computations along
multiple cores (such as in GPUs) is a popular solution to mitigate this problem, but even there
the scalability of BP is often limited by its memory-intensive operations [5].
Here, we build on the recent advances in approximate forms of the gradient BP rule [6], [7], [8]
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Figure 1: Network Architecture for Event-driven Random Backpropagation (eRBP) and example
spiking activity during training. The network consists in feed-forward layers for prediction and
feedback layers for supervised training with labels (targets) L. Full arrows indicate synaptic
connections, dashed arrows indicate synaptic plasticity modulation. In this example, digits 7,2,1,0,4
were presented in sequence to the network. The digit pixel values were transformed to spike trains
using a Spike Response Model. All other neurons in the network implemented two-compartment
leaky I&F neurons. The error is the difference between labels (L) and predictions (P), offset by
500Hz.

PI Dataset Network Cilassification Error
eRBP peRBP RBP (GPU) BP (GPU)

MNIST 784-100-10 3.89% 3.65% 2.85% 2.19%
MNIST 784-200-10 2.85% 2.68% 2.15% 1.81%
MNIST 784-500-10 2.75% 2.24% 2.08% 1.8%
MNIST 784-200-200-10 3.30% 2.48% 2.42% 1.91%

Table I: Bold indicates online trained spiking network

for training spiking neurons of the type used in neuromorphic hardware to perform supervised
learning. These approximations solve the non-locality problem by replacing BP weights with
random ones, leading to remarkably little loss in classification performance on benchmark tasks
[8], [9]. Although a general theoretical understanding of random BP (RBP) is still lacking, extended
simulations and analyses of linear networks show that, during learning, the network adjusts its
feed-forward weights to learn an approximation of the pseudo-inverse of the (random) feedback
weights, which is at least equally good in communicating gradients.
We describe how an event-driven implementation of RBP can be tightly embedded with the neuron
dynamics, and lay out the foundations of neuromorphic deep learning machines. Our results show
that MNIST classification performances of the on-line trained spiking network are nearly identical
to those of equivalent artificial neural networks running on digital computers. Finally, we show
that eRBP is robust in fixed width simulations with limited neural and synaptic state precision.

II. EVENT-DRIVEN RANDOM BACKPROPAGATION

Event-driven RBP (eRBP) is a presynpatic spike-driven rule modulated by top-down errors
and gated by the membrane voltage of the postsynaptic neuron. The idea behind this additional
modulation factor is similar in spirit to previous biologically plausible models of three-factor
plasticity rules [10], and was argued to subserve supervised, unsupervised and reinforcement



learning, an idea that was also reported in [8]. The eRBP learning rule can be summarized as
follows:

∆w = T [t] Θ(V [t])Spre(t) (1)

where Spre(t) is the pre-synaptic spike train, and a Θ is the derivative of the spiking neuron’s
activation function evaluated at the post-synaptic membrane potential V [t]. For the final output
(prediction) layer, T is equal to the classification error E, similarly to the delta rule. For hidden
layers, the T is equal to the error multiplied by a random vector Gi, i.e. T =

∑
j GijEj . All Gij

are fixed during the learning.
For Integrate & Fire (I&F) neurons, we find that a boxcar function in place of Θ provides very
good results, while being more amenable to hardware implementation than computing the exact
derivative of the activation function. This choice is motivated by the fact that the activation function
of leaky I&F neurons with absolute refractory period can be approximated by a threshold unit with
saturation. Using a boxcar function with boundaries Vmin and Vmax, the eRBP update consist
of additions and comparisons only, and can be captured using the following operations for each
neuron:

function ERBP
for k ∈ {presynaptic spike addresses Spre(t)} do

if Vmin < V < Vmax then wk(t)← wk(t) + T (t),
end if

end for
end function

This rule is reminiscent of membrane voltage-based rules, where spike-driven plasticity is induced
only when membrane voltage is inside an eligibility window [11], [12]. Furthermore, ERBP does
not require “causal” updates of Spike Timing Dependent Plasticity (STDP), so reverse look-up
tables or recently studied approximate forms of STDP are not necessary [13]. The learning rule
assumes that the T (t) modulation is available at the pre-synaptic synapses. In the following section,
we show how eRBP can be realized in a neural network of Integrate & Fire (I&F) neurons.

A. A Spiking Network for eRBP with Error-Coding Neurons

The network used for eRBP consists of one or two feed-forward layers (Fig. 1), although
results can be generalized to any feedforward connectivity between any number of layers. The top
layer, labeled P , is the prediction. The feedback from the error population is fed back directly
to the hidden layers‘ neurons. This type of feedback is also called “skipped RBP”[9]. This direct
feedback simplifies the delivery of the error modulation to the hidden neurons and improves the
performance of the learning on standard benchmarks [9].
The proposed network is composed of three types of neurons:
1) Error-coding neurons are non-leaky I&F neurons following the linear dynamics:

C
d

dt
V E
i = wL(SP

i (t)− SL
i (t)) + bE

if V E > V E
T then V E ← V E − V E

T ,
(2)

where SP
i (t) and SL

i (t) are spike trains from prediction neurons and labels (teaching signal),
respectively and bE is a fixed common bias. The notation for time dependencies of V and U are
omitted to reduce clutter. The firing rate of the error-coding neurons is proportional to a linear
rectification of the inputs. When the prediction neurons classify correctly, the two terms on the
rhs cancel and the neuron fires at a constant rate r̄ = bE

CEV E
T

. When an error occurs, the firing



rate deviates linearly from r̄ down to the rectification point.
2) Hidden neurons follow current-based leaky I&F dynamics:
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if Vi(t) > VT then V h
i ← 0 during refractory period τrefr.

where Sd
k(t) and Sh

j (t) are the spike trains of the data neurons and the hidden neurons, respectively,
Ih are current-based synapse dynamics, σwηhi (t) a Poisson process of rate 100Hz, and ξp is a
stochastic Bernouilli process with probability p. The latter type of stochasticity was previously
shown to be beneficial for regularization and decorrelation of spike trains, while being easy to
implement in neuromorphic hardware [2]. In this work, we consider feed-forward networks, i.e
the weight matrix Wh is restricted to be upper diagonal. Each neuron is equipped with a separate
“dendritic” compartment Uh

i following similar subthreshold dynamics as the membrane potential
and where SE(t) is the spike train of the error-coding neurons and WE is a fixed random matrix
such that for every hidden neuron i,

∑
j W

E
ij = 0. This condition ensures that the spontaneous

firing rate of the error-coding neurons does not bias the learning. The synaptic weights dynamics
follow a dendrite-modulated and neural state-gated rule:

d

dt
Wh

ij = Wh
ij + Uh

i Θ(V h
i )Sh

j (t). (3)

3) Prediction neurons, synapses and synaptic weight updates follow the same dynamics as the
hidden neurons except for the dendritic compartment:
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gU

)
, (4)

where the extra bias term −r̄Cd

gU
counteracts the effect of the spontaneous firing rate of the error-

coding neurons.

B. Experimental Setup and Software Simulations

We trained fully connected feed-forward networks MNIST hand-written digits, separated
in three groups, training, validation, and testing (50000, 10000, 10000 samples respectively).
During a training epoch, each of the training diits were presented in sequence during 250ms.
The pixel intensities of the samples were transformed into spike trains online using “sigmoid
neurons”, i.e. a Spike Response Model [14] with an exponential activation (hazard) function
and a refractory period matching those of the hidden and prediction neurons. We tested eRBP
using two configurations: one with additive noise (σw > 0, p = 1, labeled eRBP), and one with
multiplicative noise implemented as blank-out noise on the connections (blank-out probability
p < 1 and σw = 0, labeled peRBP). Stochasticity was beneficial in reducing synchronization
across hidden and prediction layers. Furthermore, to prevent the network from learning (spurious)
transitions between digits, the synaptic weights did not update in the first 50ms window of each
digit presentation.
We tested eRBP training on two different implementations: 1) Spiking neural network based
on the Auryn simulator [15], and 2) Hardware compatible simulator with quantized neural
states and weights. Results are compared against GPU implementations of RBP and standard
BP performed in Theano [16] using an equivalent, non-spiking neural network. We focus



Figure 2: (Left) MNIST Classification error on a fully connected 784-200-200-10 network. The
spiking network converged after 60 epochs. (Right) Classification error and number of synaptic
operations using first spikes upon stimulus onset in the 784-200-10 network. Horizontal line is
2.85%.

on Permutation-Invariant (PI) tasks to emphasize that the network was unstructured (e.g. no
convolutions or poolings).

III. RESULTS

A. Spiking Networks with eRBP Learn with High Accuracy

We tested eRBP in networks consisting of one and two hidden layers (Tab. I), although eRBP
can generalize to deeper networks as well. Rather than optimizing for absolute classification
performance, we compare to equivalent artificial (non-spiking) neural networks trained with RBP
and standard BP, with free parameters fine-tuned to achieve high accuracy on the classification
tasks. On most network configurations eRBP achieved performances equivalent to those achieved
with RBP in artificial networks. ERBP equipped with probabilistic connections (peRBP) performed
better overall, and more so for the deeper, 784-200-200-10, network. This is because, as learning
progresses, a significant portion of the neurons tend to fire near their maximum rate and
synchronize their spiking activity across layers as a result of large synaptic weights (and thus
pre-synaptic inputs). Synchronized spike activity is not well captured by a simple firing rate
model, which is inherently assumed by the eRBP formulation. However, probabilistic connections
that randomly blank-out pre-synaptic spikes, effectively introduce irregularity in the pre-synaptic
spike-trains to improve learning. Additive noise, on the other hand, has relatively small effect
when the magnitude of the pre-synaptic input is large. Overall, the learned classification accuracy
is comparable with those obtained with offline training of spiking neural networks (e.g. GPUs)
using exact standard backpropagation [17].

B. Classification with Single Spikes

The response of the 784-200-10 network after stimulus onset is about one synaptic time
constant. Using the first spike after τs = 4ms from the stimulus onset for classification leads
to less than 4.5% error (Fig. 2), and improves steadily as the number output layer spikes increase.
Classification using the first spike incurred 53407 synaptic operations (averaged over 10000 test
samples), which can potentially result in sub-micro joule energy per classification in dedicated
neuromorphic hardware [18]. The low latency and accurate response may seem at odds with the
inherent firing rate code underlying the network computations. However, a code based on the time



of the first-spike is consistent with a firing rate code, since a neuron with a high firing rate is
expected to fire first [14]. In addition, the onset of the stimulus provokes a burst of synchronized
activity, which further favors the rapid onset of the response. These results suggest that despite
the underlying firing rate code, eRBP takes advantage of the spiking dynamics, comparably to
spiking networks trained exclusively for single-spike classification [19]

C. Spiking Networks Equipped with ERBP Learn Rapidly

The spiking neural network eRBP requires fewer epochs to reach the peak classification
performance compared to the artificial neural network running RBP. The artificial neural network
was trained using minibatches of nbatch = 100 data samples. Minibatches improve learning speed
in conventional hardware thanks to vectorization libraries or leveraging GPUs, and lead to smoother
convergence. However, the weight updates are averaged over the minibatch, resulting in nbatch
times fewer weight updates per epoch compared to the spiking network per epoch where nbatch
is effectively equal to one Standard artificial neural networks can be trained using nbatch = 1, but
learning becomes much slower on standard platforms because the operations cannot be vectorized
across data samples. Such faster learning of the spiking network is a fortunate by-product of on-
line gradient descent, given that potentials applications of neuromorphic hardware often involve
real-time streaming data.

D. Learning with Low Precision, Fixed Point Representations

The effectiveness of stochastic gradient descent degrades when the precision of the synaptic
weights using a fixed point representation is smaller than 16 bits [20]. This is because quantization
determines the smallest learning rate and bounds the range of the synaptic weights, thereby
preventing averaging the variability across dataset iterations. The tight integration of memory with
computing circuits as pursued in neuromorphic chip design is challenging due to space constraints
and memory leakage. For this reason, full precision (or even 16 bit) computer simulations of
spiking networks may be unrepresentative of performance that can be attained in dedicated
neuromorphic chip due to quantization of neural states and parameters, and synaptic weights.
Extended simulations suggest that the random BP performances at 10 bits precision is indis-
tinguishable from unquantized weights [9], but whether this is the case for online learning
without using minibatches was not yet tested. Here, we hypothesize that 8 bit synaptic weight
is a good trade-off between learnability and hardware footprint. To demonstrate robustness to
such constraints, we simulate quantized versions of the eRBP network using low precision fixed
point representations (8 bits per synaptic weight and 16 bits for neural states). Consistent with
existing findings, our simulations of eRBP in a quantized 784-100-10 network show that eRBP
still performs reasonably well under these conditions (Fig. 3). While many weights aggregate at
the boundaries, a majority of them remain between the boundaries.

IV. CONCLUSION

Our results demonstrates that general purpose deep learning using streaming spike-event
data in neuromorphic platforms at artificial neural network proficiencies is realizable. ERBP
can be implemented in a very compact fashion, while using local synaptic plasticity rules
modulated by global error on a neuron-to-neuron basis. Although our experiments targeted
digital neuromorphic implementations, membrane-voltage based learning rules implemented in
mixed-signal neuromorphic hardware [12] are compatible with eRBP provided that synaptic
weight updates can be modulated by an external signal on a neuron-to-neuron basis. Thus, the
recent advances in neuromorphic engineering and emerging nanotechnologies combined with
eRBP can become key to ultra low-power processing in space and power constrained platforms.



Figure 3: (Left) MNIST Classification error using a fully connected 784-100-10 network with
quantized synaptic weights and neural states (8 bits and 16 bits respectively) (Right) Synaptic
weights of the quantized network after training.

In tandem with developments in deep learning and recurrent neural networks, we envision that
such RBP techniques will enable the embedded learning of pattern recognition, attention, working
memory and action selection mechanisms which promise transformative hardware architectures
for embedded computing.
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