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Invariant measure of gaps in degenerate competing three-particle
systems

Sandro Franceschi1,a, Tomoyuki Ichiba2,b Ioannis Karatzas3,c and Kilian Raschel4,d

1Télécom SudParis, Institut Polytechnique de Paris, asandro.franceschi@telecom-sudparis.eu
2Department of Statistics and Applied Probability, University of California Santa Barbara, bichiba@pstat.ucsb.edu

3Department of Mathematics, Columbia University, cik@math.columbia.edu
4University of Angers, CNRS, draschel@math.cnrs.fr

Abstract. We study the gap processes in a degenerate system of three particles interacting through their ranks. We obtain the Laplace
transform of the invariant measure of these gaps, and an explicit expression for the corresponding invariant density. To derive these
results, we start from the basic adjoint relationship characterizing the invariant measure, and apply a combination of two approaches: the
invariance methodology of W. Tutte, thanks to which we compute the Laplace transform in closed form; and a recursive compensation
approach, which leads to the density of the invariant measure as an infinite sum of exponential functions. As in the case of Brownian
motion with reflection or killing at the endpoints of an interval, certain Jacobi theta functions play a crucial role in our computations.

Résumé. Nous étudions le processus des écarts entre particules ordonnées dans un système dégénéré de trois particules en interaction.
Nous obtenons la transformée de Laplace de la mesure invariante de ces écarts ainsi qu’une expression explicite de la densité invariante
correspondante. Pour obtenir ces résultats, nous partons de la “relation adjointe de base” qui caractérise la mesure invariante, et nous
appliquons une combinaison de deux approches : d’abord le concept d’invariants de W. Tutte, grâce auquel nous obtenons une formule
explicite pour la transformée de Laplace ; ensuite une approche récursive dite de compensation, qui conduit à la densité de la mesure
invariante comme somme infinie de fonctions exponentielles. Comme pour le mouvement brownien réfléchi ou tué aux bords d’un
intervalle, certaines fonctions thêta de Jacobi jouent un rôle crucial dans nos calculs.

MSC2020 subject classifications: Primary 60J65, 60K35; secondary 35Q70, 60J70
Keywords: Competing particle systems, Reflected planar Brownian motion, Invariant measure, Tutte’s invariant method, Recursive compensation ap-
proach

1. Introduction and main results

1.1. Degenerate competing three-particle systems

The paper [16] studies degenerate three-particle systems of Brownian particles, in which local characteristics are assigned
by rank. Among these is the system

Xi(·) = xi +

3∑
k=1

δk

∫ ·

0

1Xi(t)=RX
k (t)dt+

∫ ·

0

1Xi(t)=RX
2 (t)dBi(t), i= 1,2,3,

with the notation max1⩽i⩽3Xi(t) =: RX
1 ⩾ RX

2 (t) ⩾ RX
3 (t) := min1⩽i⩽3Xi(t) for the ranks (order statistics) in de-

scending order; with “lexicographic” resolution of ties, i.e., always in favor of the lowest index i; with xi and δi given
real numbers; and with B1(·),B2(·),B3(·) independent scalar Brownian motions.

It is shown in [16] that this system admits a pathwise unique, strong solution, which is free of triple collisions as well
as “non-sticky”, in the sense ∫ ∞

0

1RX
k (t)=RX

ℓ (t)dt= 0 for k < ℓ.
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It is also shown that the two-dimensional process

(1)
(
G(·),H(·)

) ∆
=
(
RX

1 (·)−RX
2 (·),RX

2 (·)−RX
3 (·)

)
is a degenerate Brownian motion in the nonnegative orthant [0,∞)2 with oblique reflection on its boundaries:

(2)

{
G(t) = x1 − x2 + (δ1 − δ2)t−W (t)− 1

2L
H(t) +LG(t),

H(t) = x2 − x3 + (δ2 − δ3)t+W (t)− 1
2L

G(t) +LH(t),

for 0⩽ t <∞. We denote here by W (·) a suitable standard, scalar Brownian motion, and by LZ(·) =
∫ ·
0
1Z(t)=0dZ(t)

the local time at the origin of a semimartingale Z(·)⩾ 0 with continuous paths.
It is shown in [16, Thm 2.3] that, under the Hobson and Rogers [13] conditions

(3) 2(δ3 − δ2) + (δ1 − δ2)
− > 0 and 2(δ2 − δ1) + (δ2 − δ3)

− > 0,

the process
(
G(·),H(·)

)
of (1)–(2) is positive recurrent and has a unique invariant measure π with π

(
(0,∞)2

)
= 1, to

which its time-marginal distributions converge, and exponentially fast, as t→∞.
This invariant probability measure π satisfies, in fact is characterized by, the so-called “Basic Adjoint Relationship”

(BAR) of [12, 18]. This involves also the “lateral measures”

(4) ν1(A)
∆
= Eπ

∫ 2

0

1A(H(t))dLG(t) and ν2(A)
∆
= Eπ

∫ 2

0

1A(G(t))dLH(t)

defined for A ∈ B
(
(0,∞)

)
, see [15, Eq. (2.58)]. Introduce for (x, y) ∈ [0,∞)2 the Laplace transforms

π̂(x, y)
∆
= Eπ

(
e−xG(t)−yH(t)

)
=

∫∫
(0,∞)2

e−xg−yhπ(dg,dh),(5)

ν̂1(y)
∆
=

∫ ∞

0

e−yuν1(du) = lim
x→∞

xπ̂(x, y),(6)

ν̂2(x)
∆
=

∫ ∞

0

e−xuν2(du) = lim
y→∞

yπ̂(x, y).(7)

Using the above notation, the BAR can be cast most concisely as

(8)
[
(x− y)2 + 2(δ2 − δ1)x+ 2(δ3 − δ2)y

]
π̂(x, y) =

(
x− y

2

)
ν̂1(y) +

(
y− x

2

)
ν̂2(x),

as proved in [15, Eq. (2.59)]. Conversely, a probability measure π on B((0,∞)2) is invariant for the process (G(·),H(·))
of gaps if it, together with two finite measures ν1,ν2 on B((0,∞)), satisfies the BAR of (8).

In the arXiv version [15] of the paper [16], the following question was raised: Can the invariant probability measure π
of the two-dimensional process

(
G(·),H(·)

)
of gaps be computed explicitly? See [15, Sec. 2.4]. The goal of the present

paper is to answer this question.

1.2. Main results

In what follows, we set

(9) λ1 := 2(δ2 − δ1) and λ2 := 2(δ3 − δ2).

We will impose the ergodicity conditions introduced in (3); in terms of the quantities λ1 and λ2 defined in (9), they can be
cast as λ2 >

1
2λ

+
1 and λ1 >

1
2λ

+
2 . Again as in [16], and in order to restrict the number of cases to handle, we will impose

the stronger condition

δ1 < δ2 < δ3,

which is equivalent to

(10) λ1 > 0 and λ2 > 0.
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The symmetric case refers to the assumption

(11) λ1 = λ2 = 2(δ2 − δ1) = 2(δ3 − δ2) =: λ > 0.

A): The first main result of this paper gives a simple explicit expression for the Laplace transform of the invariant
distribution.

Theorem 1 (Laplace transform, general case). The Laplace transform (6) of the lateral measure ν1 in (4) is given by

(12) ν̂1(y) =
4π

3λ1λ2
sin

(
π

λ1

λ1 + λ2

)
y(y+ λ2)(y+ 2λ1 + λ2)

cos

(
π
√

λ2
1

(λ1+λ2)2
− 4y

λ1+λ2

)
− cos

(
π λ1

λ1+λ2

) .
Exchanging the variables x↔ y and the parameters λ1 ↔ λ2, we derive a similar expression for the Laplace transform

ν̂2(x) in (7). The bivariate Laplace transform π̂(x, y) in (5) is then obtained via the main equation (8).
As a Laplace transform, the function ν̂1 in (6) is analytic in the half-plane with positive real part (note that the

function cos
√
z =

∑
n⩾0

(−z)n

(2n)! is analytic on C). An immediate consequence of Theorem 1 is that ν̂1 of (12) admits a
meromorphic continuation to the whole of C. A globally meromorphic infinite product representation of ν̂1 will be given
in Section 5, see (53).

In the symmetric case, the above result simplifies as follows:

Corollary 1 (Laplace transform, symmetric case). Assuming (11), the Laplace transform (6) of the lateral measure ν1 in
(4) is given by

(13) ν̂1(y) =
4π

3λ2

y(y+ λ)(y+ 3λ)

cos

(
π
2

√
1− 8y

λ

) .

While the above results provide fairly simple expressions for the Laplace transforms ν̂1(y), ν̂2(x) and π̂(x, y) of the
marginal and the joint distributions, they do not address the question of finding the associated density functions in closed
form. This is the topic of our subsequent results; we shall actually propose two ways to compute these densities.

B): The first method appears as a consequence of Theorem 1 and Corollary 1: classical Mittag-Leffler expansions allow
us to express the trigonometric Laplace transforms (12) and (13) as infinite sums, each term of which may be interpreted
as the Laplace transform of an exponential term.

Introduce the parameters

(14) µ1 =
λ1

λ1 + λ2
and µ2 =

λ2

λ1 + λ2
= 1− µ1,

which belong to (0,1) due to our hypothesis (10).

Theorem 2 (Density on the boundary, general case). For i ∈ {1,2}, the density function νi of the measure νi in (4) is
equal to

(15) νi(u) =−4(λ1 + λ2)
4

3λ1λ2

∑
n∈Z

(n− 1)n(n+ 1)(n− 1 + µi)(n+ µi)(n+ 1+ µi)(n+ µi/2)e
−(n2+µin)(λ1+λ2)u.

See Figure 1 for an example of graph of νi.
Theorem 2 has an interesting reformulation in terms of a certain Jacobi theta-type function, namely

(16) θµi
(q) :=

∑
n∈Z

(
n+

µi

2

)
qn(n+µi), |q|< 1,

which is intimately related to our model and has a direct probabilistic interpretation in terms of Brownian motion condi-
tioned to stay in an interval, see (81) in Appendix B. More precisely, introducing the differential operator

(17) D1[f ] = f ′′′ + 2(λ1 + λ2)f
′′ + λ2(λ2 + 2λ1)f

′,
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we shall show that

(18) ν1(u) =
4(λ1 + λ2)

3λ1λ2
D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u),

compare with (15). A similar expression holds for ν2. Notice that the differential operator (17) corresponds to the poly-
nomial y(y+ λ2)(y+ 2λ1 + λ2) appearing in the formula (12) of Theorem 1, in the sense that

D1 =
d

du

(
d

du
+ λ2

)(
d

du
+ 2λ1 + λ2

)
.

We will elaborate on this connection in Section 4.
Theorem 2 also contains the case of equal parameters λ1 = λ2, corresponding to µ1 = µ2 = 1

2 . However, in this
symmetric case, it is natural to reformulate the bi-infinite summation (15) as a sum over the positive integers, using
natural symmetries. More precisely, one has:

Corollary 2 (Density on the boundary, symmetric case). If λ1 = λ2 = λ, for i ∈ {1,2} the density function νi of the
measure νi in (4) is equal to

νi(u)

λ2
=
∑
n⩾3

(−1)n−1

12
(n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3)(2n+ 1)exp

(
−n(n+ 1)

2
λu

)
(19)

= 420
(
e−6λu − 9e−10λu + 44e−15λu − 156e−21λu + 450e−28λu − . . .

)
, i= 1,2 .

In the context of a two-queue fluid polling model and the corresponding two-dimensional degenerate Brownian motion
reflected normally on the boundary of the nonnegative orthant [0,∞)2, the recent paper [17] analyses a functional equation
quite similar to ours. The main equation (see [17, Eq. (14)]) of that paper corresponds to (8), if the prefactors (x− y

2 )
and (y − x

2 ) are replaced by x and y, respectively. The authors obtain various results, such as the Laplace transform of
the total workload (their Theorem 2, which is close to our Corollary 1, assuming symmetry of the parameters), and the
heavy-traffic stationary workload distribution (their Lemma 4, which resembles our Corollary 2).

FIG 1. Left: graph of the function ν2(u) for the parameters (λ1, λ2) = ( 1
6
, 5
6
). Right: graph of the function θµ(q) in the case µ= 1

2
.

C): The second approach allowing us to calculate the densities is called the “compensation approach”; it is very different
and brings two advantages. The first advantage is that it does not require a bivariate Laplace inversion. The second
advantage is that it works directly for the bivariate density function, without recourse to the univariate boundary density
functions. This approach is inspired by the paper [1], which proposed a compensation methodology for computing the
stationary distribution of certain singular random walks in the positive quarter-plane. While this technique has been
applied to a variety of contexts in discrete probability, our paper contains its first application to diffusions, to the best of
our knowledge.
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Theorem 3 (Density of the invariant measure, general case). The density π(u, v) of the invariant measure π satisfies for
(u, v) ∈ [0,∞)2

(20) π(u, v) =

∞∑
n=0

(
Ccne

−anu−bnv +C ′c′ne
−a′

nu−b′nv
)
,

where

• the sequences (an, bn)n⩾0 and (a′n, b
′
n)n⩾0 are given in (64) and (70),

• the constants C and C ′ are computed in (72),
• the (cn)n⩾0 are defined in (66)–(67), and the (c′n)n⩾0 are obtained from the (cn)n⩾0 after interchanging λ1 and
λ2.

FIG 2. Example of graph of the density π(u, v), on the left for the parameters (λ1, λ2) = ( 1
2
, 1
2
), on the right for ( 1

6
, 5
6
).

See Figure 2 for two illustrations of Theorem 3. The compensation method used to prove Theorem 3 is independent
of the other techniques developed in our paper; however, to obtain the constants C and C ′ in (20), we make use of
Theorem 1.

In the symmetric case, the above result can be simplified as follows:

Corollary 3 (Density of the invariant measure, symmetric case). Introduce three sequences (an)n⩾0, (bn)n⩾0 and
(cn)n⩾0 as follows:1

a2n = (n+ 2)(2n+ 5),
a2n+1 = a2n,

b2n = (n+ 2)(2n+ 3),
b2n+1 = b2n+2,

cn = (−1)n
(
n+ 7

7

)
n+ 4

4
= (−1)n

(n+ 1)(n+ 2)(n+ 3)(n+ 4)2(n+ 5)(n+ 6)(n+ 7)

20160
.

If λ1 = λ2 = λ, one has

π(u, v) = 420
(
p(u, v) + p(v,u)

)
,

where

(21)
p(u, v)

λ2
=
∑
n⩾0

cn exp
(
−λ(anu+ bnv)

)
.

1The first few values of a2n are 10,21,36,55; those of b2n are 6,15,28,45; finally, those of cn are 1,−10,54,−210,660,−1782, see the entry
A053347 in the OEIS (Online Encyclopedia of Integer Sequences).

https://oeis.org/A053347


6

Here are the first few terms in the expansion of p(u, v) in (21):

p(u, v)

λ2
= e−λ(10u+6v) − 10e−λ(10u+15v) + 54e−λ(21u+15v) − 210e−λ(21u+28v)

+ 660e−λ(36u+28v) − 1782e−λ(36u+45v) + 4290e−λ(55u+45v) − . . .

D): In our last result, we show that in the stationary regime, the distribution of the sum G+H of gaps (in the symmetric
case) and the density function νi (in the general case) can be written as an infinite convolution of exponential distributions.

Theorem 4. (i) Assume (11). Under the stationary distribution π, the probability density function σ of the sum
G +H of gaps for the degenerate reflected Brownian motion in (1)–(2), is that of the infinite sum

∑∞
k=1 εk of

independent exponential random variables {εk}k∈N with respective parameters ℓk given by

(22) ℓk :=
λ

8

(
(2k+ 5)2 − 1

)
=

λ

2
(k+ 2)(k+ 3), k ∈N,

namely,

(23) Pπ(G(T ) +H(T ) ∈ dz) = σ(z)dz = Pπ

( ∞∑
k=1

εk ∈ dz

)
; z ∈ [0,∞) .

(ii) For i = 1,2, the density function νi of the measure νi is proportional to an infinite convolution of exponential
densities with parameters k(k+ µi)(λ1 + λ2), for k ∈ Z \ {−1,0,1}.

Preview: In Section 2, we introduce various tools and state some preliminary results. We use here an analytical method
inspired from [8], initially developed for studying discrete random walks in the quadrant. This method has been recently
useful for finding an explicit expression for the Laplace transform of the invariant measure of (non-degenerate) reflected
Brownian motion in the quadrant, see [10]. In Section 3, we use the invariant approach, developed by William Tutte in
the 90’s to enumerate colored triangulations [21] and applied recently to (non-degenerate) reflected Brownian motion
in a quadrant in [6, 9]; this approach allows us to solve a boundary value problem (BVP) stated in Section 2, and thus
prove Theorem 1 and Corollary 1. In Section 4 we establish Theorem 2 and Corollary 2, using computations based on the
Jacobi-type function θµ introduced in (16). Theorem 4 (together with various extensions) is proved in Section 5. Finally,
in Section 6 we prove Theorem 3 and Corollary 3, using the compensation approach.

2. Preliminary analytical results

In this section, we give important preliminary analytical properties of the kernel and the Laplace transforms, adapting to
our framework similar results proved in [10] in the non-degenerate setting.

2.1. Study of the kernel

We recall the condition (10) and denote by K the kernel

(24) K(x, y) := (x− y)2 + 2(δ2 − δ1)x+ 2(δ3 − δ2)y = (x− y)2 + λ1x+ λ2y,

which appears on the left-hand side of the functional equation (8). The set of real zeros of the kernel, namely

(25) P := {(x, y) ∈R2 :K(x, y) = 0},

turns out to be a parabola, see Figure 3. The straight lines

2x− y = 0 and 2y− x= 0,

which appear on the right-hand side of the functional equation (8), are also represented on Figure 3.
We define a function A2 with two branches

(26) A±
2 (x) :=−λ2

2
+ x±

√
λ2
2

4
− (λ1 + λ2)x
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FIG 3. The parabola P and its two branches A+
2 and A−

2 , together with the lines of equation 2y− x= 0 and 2x− y = 0.

which satisfy K
(
x,A±

2 (x)
)
= 0. Due to the square root in (26), the function A2 is bivalued, meaning that for each point

in the domain C, it takes one or two distinct values. By definition, the branch point of these functions, namely

x+ :=
λ2
2

4(λ1 + λ2)

cancels the monomials under the square roots in (26).
In (26), we use the principal determination of the square root. The functions A+

2 and A−
2 are defined and analytic

on the slit complex plane C \ [x+,∞). Due to the square root in their definition, the branches A±
2 are not analytic in

a neighborhood of the cut [x+,∞); however, they admit finite limits on both sides of2 [x+,∞), which are complex
conjugate numbers: for x ∈ [x+,∞) we have A+

2 (x) =A−
2 (x).

Similarly, the functions

(27) A±
1 (y) :=−λ1

2
+ y±

√
λ2
1

4
− (λ1 + λ2)y

satisfy K
(
A±

1 (y), y
)
= 0 and admits the branch point y+ :=

λ2
1

4(λ1+λ2)
. Similar analytical properties hold as for A2.

2.2. Analytic continuation

In Proposition 7 below, we will show that the function ν̂1 of (6) (and ν̂2 of (7)) satisfies a certain boundary value problem,
which will eventually allow us to compute this function explicitly. To that end, we shall need some preliminary results,
which we now develop.

First, we extend ν̂1 meromorphically from its initial domain of definition (the half-plane with non-negative real parts)
to a larger domain, using the functional equation (8) together with a standard analytic continuation procedure inspired
from [6, 8, 10]. In the context of non-degenerate Brownian motion, similar continuation results have been proved in
[6, 10], see in particular [10, Lem. 3] and the proof of [6, Prop. 4.1]. We recall briefly the main details here in order to
make our paper self-contained.

2In the same manner, the function x 7→
√
x is not analytic in the neighborhood of (−∞,0). However, given any fixed point z ∈ (−∞,0), it admits

well-defined limits when x→ z with ℑx > 0 (or ℑx < 0)). These limits are respectively equal to i
√

|z| and −i
√

|z|; in particular they define complex
conjugate numbers.
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Lemma 4 (Analytic continuation). The Laplace transform ν̂1 can be continued analytically to the open connected set

(28) S := {y ∈C :ℜy ⩾ 0 or ℜA+
1 (y)> 0}.

Proof. Initially, ν̂1 is defined on the set {y ∈ C : ℜy ⩾ 0} and analytic on the interior of this set. Similarly, the Laplace
transform ν̂2 is defined on the set {x ∈C :ℜx⩾ 0} and is analytic on its interior. Let us take y in the domain

{y ∈C :ℜA+
1 (y)> 0} ∩ {y ∈C :ℜy > 0}.

Observe that this intersection is non-empty (for example, take y real and large enough), see Figure 4. We then evaluate
the functional equation (8) at the point (A+

1 (y), y), where the kernel vanishes. We thus obtain the formula

(29) ν̂1(y) =−2y−A+
1 (y)

2A+
1 (y)− y

ν̂2

(
A+

1 (y)
)
,

which allows us to continue ν̂1 analytically to the set {y ∈C :ℜA+
1 (y)> 0}. Indeed, the denominator A+

1 (y)−
y
2 cannot

vanish on this set (since the equation A+
1 (y)−

y
2 = 0 has only two solutions, y = 0 and y =−λ1 − 2λ2 < 0 by (10)). We

immediately deduce that ν̂1 is analytic on the set S in (28).

Note that the functions A±
1 are not analytic on S (again due to the square root in their definition); however, this is not

a problem due to the fact that the Laplace transform ν̂1 is naturally analytic on the domain where ℜy > 0.

2.3. An important parabola

We now introduce a parabola, namely P2, which will be used to formulate the BVP in Proposition 7:

(30) P2 :=A±
2

(
[x+,∞)

)
=
{
y ∈C :K(x, y) = 0 for some x ∈ [x+,∞)

}
,

see Figure 4. In the non-degenerate case, a set similar to (30) is introduced in [10, Lem. 4]. However, the fact that (30)
defines a parabola is peculiar to the degeneracy of the kernel; it turns out to be a hyperbola is the non-degenerate case.

Lemma 5 (Parabola P2). The curve P2 in (30) is a parabola described by the equation

(31)
{
y ∈C : (ℑy)2 = (λ1 + λ2)(ℜy) +

1

4
λ2(2λ1 + λ2)

}
.

Proof. On the cut [x+,∞), the quantities A±
2 (x) take complex conjugate values, denoted by ℜy ± iℑy. By (26), they

satisfy {
A+

2 (x) +A−
2 (x) = 2ℜy = −λ2 + 2x,

A+
2 (x)A

−
2 (x) = (ℜy)2 + (ℑy)2 = (−λ2

2 + x)2 + (λ1 + λ2)x− λ2
2

4 .

Eliminating x from these two equations readily gives (31).

We denote D2 the domain inside the parabola P2, see Figure 4; it is defined by

(32) D2 :=
{
y ∈C : (ℑy)2 < (λ1 + λ2)(ℜy) +

1

4
λ2(2λ1 + λ2)

}
.

Lemma 6 (Analyticity inside the parabola P2). The domain D2 is included in the open, connected set S of (28). As a
consequence of Lemma 4, the Laplace transform ν̂1 is analytic in D2.

The inclusion D2 ⊂ S can be visualized on Figure 4. The non-degenerate version of Lemma 6 is given and proved in
[10], see Lemma 5 there. The proof turns out to be simpler in the degenerate case; we provide it below to make our paper
self-contained.

Proof. By the definition of S in (28), it is obvious that D2 ∩ {y ∈C :ℜy ⩾ 0} ⊂ S. It remains to show that

D2 ∩ {y ∈C :ℜy < 0} ⊂ {y ∈C :ℜA+
1 (y)> 0} ⊂ S.

First, observe the inclusion P2 ⊂ {y ∈ C : ℜA+
1 (y)> 0}. Indeed, if y ∈ P2, by definition (30) there exists x ∈ [x+,∞)

such that K(x, y) = 0 and then x = A+
1 (y) > 0. For y such that ℜy = 0, we also have ℜA+

1 (y) ⩾ 0 by (27). Then,
D2 ∩ {y ∈ C : ℜy ⩽ 0} is a bounded domain, and for y on its boundary we have ℜA+

1 (y)⩾ 0. The maximum principle
applied to ℜA+

1 implies ℜA+
1 (y)> 0 for all y in this (open) domain. The proof is complete.
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FIG 4. The y-complex plane; the parabola P2 is drawn in blue; the domain D2 inside the parabola is represented by the blue dotted area; the domain
{y ∈ C : ℜA+

1 (y)> 0} is orange and is bounded by the curves of equation ℜA+
1 (y) = 0; the curve ℜA−

1 (y) = 0 is also represented by the orange
dotted curve.

2.4. Carleman boundary value problem

Define

(33) G(y) :=
2A+

1 (y)− y

2y−A+
1 (y)

· 2y−A+
1 (y)

2A+
1 (y)− y

.

Proposition 7 (Carleman BVP). The Laplace transform ν̂1 satisfies the following Carleman boundary value problem:

• ν̂1 is analytic on the region D2 of (32);
• ν̂1 satisfies the boundary condition

(34) ν̂1(y) =G(y)ν̂1(y), ∀ y ∈ P2.

The reader may refer to [8, Sec. 5] for a brief summary of the theory of (Carleman) boundary value problems; the
term “Carleman” refers to the fact that a shift function (in our case complex conjugation) is needed to state the BVP.
Proposition 6 in [10] contains a result similar to our Proposition 7 in the non-degenerate case. The proof is completely
similar in both cases, we briefly recall the main details below.

Proof. The first point has been seen in Lemma 6. The second point comes from the functional equation (8) evaluated
at (A+

1 (y), y) and (A+
1 (y), y) for y ∈ P2. Noticing that A+

1 (y) = A+
1 (y) ∈ [x+,∞) and that at these points the kernel

vanishes, we obtain the two equations{(
2A+

1 (y)− y
)
ν̂1(y) +

(
2y−A+

1 (y)
)
ν̂2(A

+
1 (y)) = 0,(

2A+
1 (y)− y

)
ν̂1(y) +

(
2y−A+

1 (y)
)
ν̂2(A

+
1 (y)) = 0.

We already encountered the first of these equations in (29). We eliminate now ν̂2(A
+
1 (y)) from these two equations, and

obtain the boundary condition (34).

3. Tutte’s invariant approach

The goal of this section is to provide an explicit solution of the boundary value problem of Proposition 7 via Tutte’s
invariant approach, which was developed in [21] and has been applied recently to similar problems in non-degenerate
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settings; cf. the works [6, 9]. Its application to degenerate cases, although similar in principle, requires some delicate
modifications, as will be shown below.

This method aims to find a decoupling function D, which is analytic (or even rational) in some domain, and such that
the function G of (33) can be expressed as

(35) G(y) =
D(y)

D(y)
, ∀ y ∈ P2.

The above condition is equivalent to

(36)

(
2x−A−

2 (x)
)(
2A+

2 (x)− x
)(

2x−A+
2 (x)

)(
2A−

2 (x)− x
) = D(A+

2 (x))

D(A−
2 (x))

.

Such a decoupling function D will be found in Section 3.2. With its help, Equation (34) may be rewritten as

D(y)ν̂1(y) =D(y)ν̂1(y), ∀ y ∈ P2,

which is equivalent to

D(A+
2 (x))ν̂1(A

+
2 (x)) =D(A−

2 (x))ν̂1(A
−
2 (x)).

The function Dν̂1 is then called an invariant, because we have for it (Dν̂1)(A
+
2 (x)) = (Dν̂1)(A

−
2 (x)).

The goal of Tutte’s invariant method is to express the unknown invariant (here Dν̂1) in terms of a canonical invariant.
This is done in Section 3.3 in the general case. The canonical invariant of our problem is denoted by W and introduced
in Section 3.1; it happens to be a certain conformal gluing function.

3.1. Conformal gluing function

To solve the Carleman boundary value problem of Proposition 7, we need to introduce a canonical conformal gluing
function on the domain D2, which glues together the upper and the lower parts of the parabola P2. In the following
lemma, the principal determinations of the square root

√
· and of the logarithm ln(·) are considered on the slit plane

C \ (−∞,0]. The following lemma is peculiar to the degenerate case; note, however, that conformal mappings associated
with (interior domains of) parabolas are well known in the literature, see for example [2, p. 113] or [17, Lem. 5.1].

Lemma 8 (Conformal gluing function). The function

(37) W (y) = cosh2

(
π

√
y

λ1 + λ2
− λ2

1

4(λ1 + λ2)2

)

and its inverse

W−1(z) =
λ2
1

4(λ1 + λ2)
+

λ1 + λ2

π2
ln2
(√

z −
√
z − 1

)
satisfy the following properties:

1. W is conformal (i.e., W is bijective, analytic, and W−1 is also analytic) from D2 to the slit plane C \ (−∞,0];
2. W glues the parabola P of (25) onto (−∞,0], i.e.,

W (y) =W (y) ∈ (−∞,0], ∀ y ∈ P,

and W is 2-to-1 from P \ {A±
2 (x

+)} to (−∞,0) (which means that W−1 is bivalued on (−∞,0)).

At first sight the function ln2
(√

z −
√
z − 1

)
is analytical only in C \ (−∞,1]. Looking more closely, we see that

this function can be extended by continuity on (0,1] and is then analytic in C \ (−∞,0]. Indeed, for z near (0,1] we
have ln

(√
z −

√
z − 1

)
= ln

(√
z ± i

√
1− z

)
=±iarccos (

√
z), where the sign ± depends on whether we are below or

above (0,1]. The continuity follows from the square on the logarithm, which eliminates the sign. To get some intuition
about the conformal gluing function W , we give below the proof of Lemma 8, following [2, 17].
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Proof. For a > 0 define

z =w(y) := i cosh
(
π
√
ay− 1

4

)
and its inverse function

y =w−1(z) :=
1

4a
+

1

aπ2
ln2
(
−iz −

√
−z2 − 1

)
.

The function w above maps the interior of a parabola to the upper half-plane, see [2, p. 113] or [17, Lem. 5.1]. More
precisely, w is conformal from {

y ∈C :ℜy > a(ℑy)2
}
−→

{
z ∈C :ℑz > 0

}
.

The equation of the parabola P2 is ay2 = x+ b, in accordance with (31), where a and b are chosen as

a :=
1

λ1 + λ2
and b :=

λ2(2λ1 + λ2)

4(λ1 + λ2)
.

Then, noticing that z 7→ i
√
z maps C \ (−∞,0] onto the upper half-plane, we define the functions W−1 and W by

y =W−1(z) :=w−1(i
√
z)− b=

1

4a
− b+

1

aπ2
ln2
(√

z −
√
z − 1

)
and

z =W (y) :=−w2(y+ b) = cosh2
(
π
√
ay+ ab− 1

4

)
,

completing the proof.

3.2. Decoupling function

We recall our notation (9), as well as the expression of the kernel (24), namely K(x, y) = (x− y)2 + λ1x+ λ2y. We
introduce the decoupling polynomials

(38) D1(y) := y(y+ λ2)(y+ 2λ1 + λ2) and D2(x) := x(x+ λ1)(x+ 2λ2 + λ1).

This terminology is justified by the following two lemmas. The identity (39) right below is crucial: it provides the key
step that makes Tutte’s invariant method work in our context. The following Lemmas 9 and 10 are very specific to the
degenerate case; we refer to [6, Sec. 6] for a presentation of Tutte’s invariants methodology in the non-degenerate setting.

Lemma 9 (Decoupling identity). We have

(39)
(
x− y

2

) D1(y)︷ ︸︸ ︷
y(y+ λ2)(y+ 2λ1 + λ2)−

(
y− x

2

) D2(x)︷ ︸︸ ︷
x(x+ λ1)(x+ 2λ2 + λ1)

=
1

2

(
x2 − y2 + (λ1 + 2λ2)x− (2λ1 + λ2)y

) (
(x− y)2 + λ1x+ λ2y

)︸ ︷︷ ︸
K(x,y)

.

This implies that

(40)
2x− y

2y− x
=

x(x+ λ1)(x+ 2λ2 + λ1)

y(y+ λ2)(y+ 2λ1 + λ2)
=

D2(x)

D1(y)
, as long as K(x, y) = 0.

Lemma 10 (Decoupling lemma). The following decoupling relation holds:

(41)

(
2x−A−

2 (x)
)(
2A+

2 (x)− x
)(

2x−A+
2 (x)

)(
2A−

2 (x)− x
) = A+

2 (x)
(
A+

2 (x) + λ2

)(
A+

2 (x) + 2λ1 + λ2

)
A−

2 (x)
(
A−

2 (x) + λ2

)(
A−

2 (x) + 2λ1 + λ2

) .
Accordingly, the function G defined in (33) may be written in the form (35) with D = 1/D1; namely, as

(42) G(y) =
y(y+ λ2)(y+ 2λ1 + λ2)

y(y+ λ2)(y+ 2λ1 + λ2)
=

D1(y)

D1(y)
, ∀y ∈ P2.



12

Proof. Evaluating (40) at (x,A+
2 (x)), then at (x,A−

2 (x)), then dividing, we arrive at (41). Recalling (36), and noticing
that for y ∈ D2 we have y = A−

2 (A
+
1 (y)) and y = A+

2 (A
+
1 (y)), we re-cast (41) in the form (35), (36) with the function

G given as in (42), by continuity on P2, the boundary of the domain D2 in (32). Equation (42) is the analogue of the
decoupling equation (6.1) of [6] in the non-degenerate case.

3.3. Explicit expression of the Laplace transform

Thanks to the decoupling Lemma 10 and the Carleman boundary value problem of Proposition 7, we obtain a new
invariant relationship for ν̂1.

Lemma 11 (Invariance). The Laplace transform ν̂1 satisfies the following invariance relation on the parabola P2:

ν̂1(y)

y(y+ λ2)(y+ 2λ1 + λ2)
=

ν̂1(y)

y(y+ λ2)(y+ 2λ1 + λ2)
, ∀ y ∈ P2.

Proof. This follows directly from Proposition 7 and Lemma 10. A version of this result which applies in the non-
degenerate case is given in [6, Lem. 6.3].

Proof of Theorem 1 and Corollary 1. The key point of Tutte’s invariant method consists in expressing the invariant of
Lemma 11 in terms of the canonical conformal gluing function W studied in Section 3.1. Let us denote

(43) f(y) =
ν̂1(y)

y(y+ λ2)(y+ 2λ1 + λ2)
− ν̂1(0)

λ2(2λ1 + λ2)

W ′(0)

W (y)−W (0)
.

We want to show that f ≡ 0. First, we remark that the function f has no pole at 0: by construction, the residue of f at 0 is
zero. Furthermore, we observe that the points −λ2 and −2λ1 − λ2 are not in D2. Next, Lemma 8 and Lemma 11 imply
that f satisfies the following boundary value problem:

• f is analytic in D2 and continuous on its boundary P2;
• f satisfies the boundary condition f(y) = f(y), for all y ∈ P2;
• f(y)→ 0 when |y| →∞.

These three properties together imply that f ≡ 0, as can be deduced from Lem. 2 in [19, Sec. 10.2]. Indeed, the function
f ◦W−1 is analytic on the whole of C and goes to 0 at infinity, and is therefore equal to 0 using the classical Liouville
theorem. The analyticity of f ◦W−1 on C follows from the fact that on the one hand it is analytic on C \ (−∞,0) by
construction, and on the other hand it is continuous in a neighbourhood of (−∞,0). Morera’s complex analysis theorem
implies that f ◦W−1 is indeed analytic on C.

Thanks to the functional equation (8) and using π̂(0,0) = 1 since π is a probability measure, we can show that

(44) ν̂1(0) =
2

3
(2λ1 + λ2).

Using formula (37), the properties of the cosine, as well as

W (0) = cosh2
(
iπ

λ1

2(λ1 + λ2)

)
,

we obtain

W (y)−W (0) = cos2

(
π

√
λ2
1

4(λ1 + λ2)2
− y

λ1 + λ2

)
− cos2

(
π

λ1

2(λ1 + λ2)

)

=
1

2
cos

(
π

√
λ2
1

(λ1 + λ2)2
− 4y

λ1 + λ2

)
− 1

2
cos

(
π

λ1

λ1 + λ2

)
,

and compute

W ′(0) =
π

λ1
sin
( πλ1

λ1 + λ2

)
.

Substituting these last three computations into (43), and recalling f ≡ 0, we see that the proof of Theorem 1 is now
complete. Corollary 1 follows as an immediate consequence, upon taking λ = λ1 = λ2. Versions of Theorem 1 and
Corollary 1 applicable to the non-degenerate case are given in [6, Thm. 2.4].
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4. Boundary densities

4.1. Relation with the bivariate density

For further use, it is convenient to interpret the densities ν1(v) and ν2(u) of the “lateral measures” in (4) as the special-
isations of the bivariate density π(u, v) at u = 0 and v = 0, respectively. This will be used in particular to compute the
constants C and C ′ appearing in Theorem 3. In the non-degenerate setting, these identities can be found in [6, Sec. 2.2].

Proposition 12 (Specialisations of π). We have π(u,0) = ν2(u) and π(0, v) = ν1(v).

Proof. The initial value formula gives

lim
x→∞

xπ̂(x, y) =

∫
R+

e−yvπ(0, v)dv.

By dividing the functional equation (8) by x and letting x→∞, we obtain

lim
x→∞

xπ̂(x, y) = ν̂1(y) =

∫
R+

e−yvν1(v)dv.

Comparing the two limits, we conclude that π(0, v) = ν1(v). A similar argument shows that π(u,0) = ν2(u).

4.2. Proof of Theorem 2 via Mittag-Leffler expansions

Proof of Theorem 2. We summon now from Theorem 1, in order to provide a proof of Theorem 2. Recall the Jacobi
theta-type function

θµ1
(q) =

∑
n∈Z

(
n+

µ1

2

)
qn(n+µ1), q ∈ (0,1)

introduced in (16), with µ1 =
λ1

λ1+λ2
defined in (14). The reason for introducing this function appears in the following

important technical result, which shows that θµ1
is naturally and intrinsically connected to the Laplace transform of the

lateral measures ν1 in (12), and thus also to its density function ν1 as in (18).

Lemma 13 (Laplace transform of θµ). The Laplace transform of the function u 7→ θµ1

(
e−(λ1+λ2)u

)
is given for any

x⩾ 0, by ∫ ∞

0

θµ1
(e−(λ1+λ2)u)e−uxdu=

1

λ1 + λ2

π sin(πµ1)

cos
(
π
√

µ2
1 − 4x

λ1+λ2

)
− cos

(
πµ1

) .
Before proving Lemma 13, we first show how it implies Theorem 2. Let us recall the decoupling polynomial D1

introduced in (38), and the differential operator D1 introduced in (17) for a smooth function f as

D1[f ] :=D1

(
d

du

)
[f ] = f ′′′ + 2(λ1 + λ2)f

′′ + λ2(λ2 + 2λ1)f
′.

We also introduce its dual operator

D∗
1[f ] :=−f ′′′ + 2(λ1 + λ2)f

′′ − λ2(λ2 + 2λ1)f
′.

Using Theorem 1 and Lemma 13 together, we write the expression (12) as

ν̂1(y) =
4(λ1 + λ2)

3λ1λ2
D1(y)

∫ ∞

0

θµ1

(
e−(λ1+λ2)u

)
e−uydu(45)

=
4(λ1 + λ2)

3λ1λ2

∫ ∞

0

θµ1

(
e−(λ1+λ2)u

)
D∗

1[e
−·y](u)du

=
4(λ1 + λ2)

3λ1λ2

∫ ∞

0

D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u)e−uydu.(46)
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To prove the last equality, we simply integrate by parts in (45) on the dual operator. In that step, we crucially use the fact
that θµ1

and all its derivatives tend to 0 as q→ 1, q < 1. While this property is not clear at all from the definition (16) of
θµ1

, it appears as a direct consequence of the crucial Lemma 15 below, which establishes a Jacobi-type modular identity
for θµ1

.
Thanks to Equation (46) and using classical results on the injectivity of the Laplace transform, we deduce that

ν1(u) =
4(λ1 + λ2)

3λ1λ2
D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u) ,

that is, the claim (18). After some computations and simplifications, one easily finds

D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u) =

∑
n∈Z

(n+ µ1/2)D1

(
−(λ1 + λ2)n(n+ µ1)

)
e−(λ1+λ2)u =−(λ1 + λ2)

3×

∑
n∈Z

(n− 1)n(n+ 1)(n− 1 + µ1)(n+ µ1)(n+ 1+ µ1)(n+ µ1/2)e
−(n2+µ1n)(λ1+λ2)u.

We thus have proved Theorem 2. What remains is to prove Lemma 13.

Proof of Lemma 13. Integrating term by term, one finds∫ ∞

0

θµ1(e
−(λ1+λ2)u)e−uxddu=

∑
n∈Z

n+ µ1

2

x+ (λ1 + λ2)n2 + λ1n
=− 2

µ1(λ1 + λ2)

∑
n∈Z

1 + 2
µ1
n

s2 −
(
1 + 2

µ1
n
)2 ,

where we have set s2 = 1 − 4
µ2
1

x
λ1+λ2

. The right-hand side of the above identity is then computed from the following
classical result, the proof of which is omitted:

Lemma 14 (Mittag-Leffler expansion of shifted cosine). Let µ ∈ (0,1). One has for s ∈C

π

cos(πµs)− cos(πµ)
=− 2

µ sin(πµ)

∑
n∈Z

1 + 2
µn

s2 −
(
1 + 2

µn
)2 .

The proof of Lemma 13 is complete.

Lemma 15 (Jacobi transformation for θµ). For any u⩾ 0,

θµ(e
−u) =

∑
n∈Z

(
n+

µ

2

)
exp
(
−n(n+ µ)u

)
=

π3/2

u3/2

∑
n∈Z

n sin(πµn) exp
(
−π2n2

u
+

µ2u

4

)
.

Proof. Consider the function f(x) = (x + µ
2 )e

−ux(x+µ) and its Fourier transform f̂(y) =
∫∞
−∞ f(x)e−2iπyxdx. The

classical Poisson summation formula expresses now the function of (16) as

θµ(e
−u) =

∑
n∈Z

f(n) =
∑
n∈Z

f̂(n),

where a direct computation gives

f̂(y) =

∫ ∞

−∞

(
x+

µ

2

)
e−ux(x+µ)−2iπyxdx

= e
µ2u
4 +iπyµ

∫ ∞

−∞

(
x+

µ

2

)
e−u(x+µ

2 )2−2iπy(x+µ
2 )dx

= e
µ2u
4 +iπyµ (−1)

2iπ

d

dy

∫ ∞

−∞
e−u(x+µ

2 )2−2iπy(x+µ
2 )dx︸ ︷︷ ︸

√
π
u e−

π2y2

u
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= e
µ2u
4 +iπyµ 1

2iπ

√
π

u

π2

u
2ye−

π2y2

u

= y
π3/2

u3/2

(
sin(πµy)− i cos(πµy)

)
exp
(
−π2y2

u
+

µ2u

4

)
.

The result of Lemma 15 follows directly from this last expression and the Poisson summation formula, noting that the
imaginary parts disappear for parity reasons, when summing over Z.

Remark 16. The Jacobi theta-like function θµ of (16) is positive for q ∈ [0,1). This is not fully clear when looking at the
definition (16), but follows easily from the probabilistic interpretation of θµ provided in Appendix B.

Let us mention the paper [20] by Salminen and Vignat, which interprets the four modular identities for “classical”
theta functions in terms of Brownian motion either reflected or killed at the endpoints of an interval. Here, we introduce
a “novel” theta-like function θµ as in (16), derive for it the modular identity of Lemma 15, and connect it with Brownian
motion conditioned to live forever inside a given interval; see Appendix B for this interpretation and connection.

4.3. Further comments on the symmetric case of Corollary 2

Specializing Theorem 2 to the symmetric case λ= λ1 = λ2 = λ (thus µi =
1
2 in (14)), one finds

ν2(u) =−64

3
λ2
∑
n∈Z

(n− 1)n(n+ 1)(n− 1/2)(n+ 1/2)(n+ 3/2)(n+ 1/4) exp(−n(2n+ 1)λu).

Looking at the exponents appearing in the above exponential terms, a simplification occurs due to the fact that

(47)
{
n(2n+ 1) : n ∈ Z

}
=
{

1
2n(n+ 1) : n⩾ 0

}
.

More precisely, the n(n+1)
2 for even (resp. odd) values of n ⩾ 0 correspond to the n(2n + 1) for non-negative (resp.

negative) values of n. A straightforward change of index gives

ν2(u) =
64λ2

3× 256

∑
n⩾0

(−1)n−1 (n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3)(2n+ 1)

256
exp
(
−n(n+ 1)

2
λu
)
,

which proves Corollary 2, simplifying the prefactor by 3× 256/64 = 12.

Remark 17 (Relation with the Jacobi theta function). Although not crucial for our purpose, it is interesting to observe
that the function θµ in (16) simplifies to a classical Jacobi theta function (sometimes called Jacobi constant) in the
symmetric case µ= 1

2 :

4θ 1
2
(q4) = θ1,1(q) =

∞∑
n=−∞

(−1)nnqn(n+1).

This function, and its generalizations

θm,k(q) =

∞∑
n=−∞

(−1)nn(n− 1) · · · (n− k+ 1)qn
2+mn,

are studied by Huber in [14].

5. Sum of gaps as an infinite sum of independent exponential variables

5.1. The symmetric case

Let us recall the notation of (1)–(3) for the degenerate reflected Brownian motion (G(·),H(·)) . The basic adjoint relation
of (8) describes the stationary distribution π of this process. We now prove the first part of Theorem 4.



16

Proof of Theorem 4 (i). When λ1 = λ2 = λ , the Laplace transform (13) in Corollary 1 has the product form

(48) Eπ[e−y(G(T )+H(T ))] = π̂(y, y) =
ν̂1(y)

2λ
=

ν̂2(y)

2λ
=

∞∏
k=1

ℓk
y+ ℓk

; y ∈ [0,∞)

those of an infinite sum of exponential random variables with parameters (22).
To verify (48), let us apply first the infinite product formula

(49) cos(
√
−1z) = cosh(z) =

∞∏
k=1

(
1 +

4z2

π2(2k− 1)2

)
; z ∈C

of the hyperbolic cosine function to the expression (13), and obtain for y ∈ [0,∞)

ν̂1(y)

2λ
=

2πy(y+ λ)(y+ 3λ)

3λ3 cos((π/2)
√
1− (8y/λ))

=
2π

3λ3
y(y+ λ)(y+ 3λ)

∞∏
k=1

(
1 +

(8y/λ)− 1

(2k− 1)2

)−1

.

Note that the first three terms λ/8y , 9λ/(8(y + λ)) and 25λ/(8(y + 3λ)) with k = 1,2,3 in the infinite product may
be cancelled with the constant multiple of y(y+λ)(y+3λ) . Also, note that after the cancellation, the term in the infinite
product is rewritten as(

1 +
(8y/λ)− 1

(2k− 1)2

)−1

=
(2k− 1)2

(8y/λ) + (2k− 1)2 − 1
=
(
1 +

1

4k(k− 1)

)
· ℓk−3

y+ ℓk−3
; k ⩾ 4 ,

where ℓk is defined in (22) for k ∈N . Thus, with these considerations, we obtain

ν̂1(y)

2λ
=

2π

3
· 9 · 25

83
·

∞∏
k=4

(
1 +

1

4k(k− 1)

)
·

∞∏
k=4

ℓk−3

y+ ℓk−3
=

∞∏
k=1

ℓk
y+ ℓk

,

i.e., (48), because of the infinite product
∏∞

k=4(1 +
1

4k(k−1) ) =
256
75π .

Each exponential random variable εk with parameter ℓk has expectation Eπ[εk] = 1/ℓk , k ∈ N , and hence, the
infinite series

∑∞
k=1 εk has the (finite) expectation

Eπ
∞∑
k=1

εk =

∞∑
k=1

1

ℓk
=

2

λ

∞∑
k=1

1

(k+ 2)(k+ 3)
=

2

3λ
,

in accordance with (2.76) of [15]. This implies
∑∞

k=1 εk <∞ almost surely, hence, the corresponding stationary density
σ in (23) is well defined.

The stationary distribution of the sum G(T ) +H(T ) is given by the infinite convolution of exponential distributions
with parameters {ℓk}k∈N . It is infinitely divisible with Lévy density

∑∞
k=1 e

−ℓkz/z, z > 0, that is,

Eπ[e−y(G(T )+H(T ))] = exp
(
−
∫ ∞

0

(1− e−yz)
1

z

∞∑
k=1

e−ℓkz dz
)
; y ∈ [0,∞) .

The convolution of finitely many exponential distributions is known to be the Coxian (or “hypoexponential” or “phase-
type”) distribution, and is used in queueing theory. The connection between infinite sums of exponential random variables
and infinitely divisible distributions is discussed in [3] and [17].

Moreover, the stationary density function σ of G(T ) +H(T ) provides the marginal stationary density function of
G(T ). It follows from (23) that it has an exponential moment

(50)
∫ ∞

0

eλzσ(z)dz = Eπ[eλ(G(T )+H(T ))] = Eπ[eλ
∑∞

k=1 εk ] = Eπ

[ ∞∏
k=1

eλεk

]
=

∞∏
k=1

Eπ[eλεk ]

=

∞∏
k=1

ℓk
ℓk − λ

=

∞∏
k=1

(
1 +

λ

ℓk − λ

)
=

∞∏
k=1

(
1 +

1

(k(k+ 5)/2) + 1

)
= 2 .
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Observe now that the Laplace transform π̂(x,0) of the marginal stationary distribution of G(T ) (and hence of H(T ) ,
because of the symmetry) is determined from (8) by the Laplace transform π̂(x,x) along the diagonal, i.e.,

Eπ[e−xG(T )] = π̂(x,0) = π̂(0, x) =
λ

x+ λ
[2− π̂(x,x)] ; x⩾ 0 ;

cf. (2.73) in [15]. It follows from the exponential moment (50) that G(T ) has positive stationary density

(51) Pπ(G(T ) ∈ du) = λe−λu
(
2−

∫ u

0

eλzσ(z)dz
)
du = λe−λu

(∫ ∞

u

eλzσ(z)dz
)
du

for u⩾ 0. In particular, the stationary “survival function” of G(T ) is

Pπ(G(T )⩾ u) =

∫ ∞

u

(
λe−λv

∫ ∞

v

eλzσ(z)dz
)
dv =

∫ ∞

u

(e−λ(u−z) − 1)σ(z)dz

= Eπ
[
(eλ(G(T )+H(T )−u) − 1) · 1{G(T )+H(T )>u}

]
; u⩾ 0 .

As will be proved in the following result, the distributions of G(T ) +H(T ) and 2G(T ) +H(T ) are both given by
those of infinite sums

∑
εk of exponential variables, the only difference being that in the first case the sum runs over

k ∈N, while in the second case the index 0 should be added.

Proposition 18. Assume (11). Under the stationary distribution π, the probability density function of the sum 2G(T ) +
H(T ) (and of G(T ) + 2H(T ) by symmetry reasons) is that of the infinite sum

∑∞
k=0 εk of independent exponential

random variables {εk}k∈N with respective parameters ℓk given by (22).

Proof. Evaluating the functional equation (8) at (2y, y), we immediately obtain

(52) Eπ
(
e−y(2G(T )+H(T ))

)
= π̂(2y, y) =

3

2

ν̂1(y)

y+ 3λ
.

Using (48) and noticing with (22) that ℓ0 = 3λ, we obtain the announced result.

5.2. The non-symmetric case

Results involving infinite sums of random variables are also shown in the non-symmetric case. We prove now the second
part of Theorem 4. Observe that Theorem 4 (ii) is an extension of (48) to the non-symmetric case. Indeed, specializing
λ1 = λ2 and thus µi =

1
2 , we immediately obtain via (47) and (22) and that the parameters k(k + µi)(λ1 + λ2), for

k ∈ Z \ {−1,0,1}, reduce to the ℓk , for k ⩾ 1.

Proof of Theorem 4 (ii). We prove that

(53) ν̂1(y) =
2

3
(2λ1 + λ2)

∏
k∈Z\{−1,0,1}

k(k+ µ1)(λ1 + λ2)

y+ k(k+ µ1)(λ1 + λ2)
; y ∈ [0,∞).

(Note that the prefactor 2
3 (2λ1 + λ2) simply corresponds to the value of ν̂1(0) already obtained in (44).)

Let us start from the identity (12) proved in Theorem 1. We invoke the Weierstrass factorization

cosz − cosz0 = (1− cosz0)
∏
k∈Z

(
1−

( z

z0 + 2kπ

)2)
,

which extends (49). In particular,

cos
(
π
√
µ2
1 − 4y

)
− cos(πµ1) = (1− cos(πµ1))

∏
k∈Z

y+ k(k+ µ1)

(k+ µ1

2 )2
.

This implies that the quantity appearing in (12) (after replacing y by (λ1 + λ2)y) is equal to

y(y+ 1+ µ1)(y+ 1− µ1)

cos
(
π
√
µ2
1 − 4y

)
− cos(πµ1)

=

(
(µ1

2 − 1)µ1

2 (µ1

2 + 1)
)2

1− cos(πµ1)

∏
k∈Z\{−1,0,1}

(k+ µ1

2 )2

y+ k(k+ µ1)
.
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Using the identity ∏
k∈Z\{−1,0,1}

(k+ µ1

2 )2

k(k+ µ1)
=

1− cos(πµ1)

π sin(πµ1)

2(1− µ2
1)

(µ1

2 − 1)2µ1(
µ1

2 + 1)2
,

we obtain that

y(y+ 1+ µ1)(y+ 1− µ1)

cos
(
π
√
µ2
1 − 4y

)
− cos(πµ1)

=
µ1

2 (1− µ2
1)

π sin(πµ1)

∏
k∈Z\{−1,0,1}

k(k+ µ1)

y+ k(k+ µ1)
.

Plugging the above identity in (12), we obtain

ν̂1(y) =
4π

3λ1λ2
sin(πµ1)(λ1 + λ2)

3
µ1

2 (1− µ2
1)

π sin(πµ1)

∏
k∈Z\{−1,0,1}

k(k+ µ1)(λ1 + λ2)

y+ k(k+ µ1)(λ1 + λ2)
,

which after simplification coincides exactly with (53).

As a direct consequence of Theorem 4 (ii), one has a generalization of Proposition 18 to the non-symmetric case:

Eπ
(
e−y(2G+H)

)
= π̂(2y, y) =

3

2

ν̂1(y)

y+ 2λ1 + λ2
=

∏
k∈Z\{−1,0}

k(k+ µ1)(λ1 + λ2)

y+ k(k+ µ1)(λ1 + λ2)
.

It is also possible to deduce a result like (51) in the non-symmetric case. Indeed, it follows from the Laplace transforms

Eπ[e−xG(T )] = π̂(x,0) =
2
3 (2λ1 + λ2)− ν̂2(x)

2

x+ λ1
; x⩾ 0 ,

Eπ[e−yH(T )] = π̂(0, y) =
2
3 (λ1 + 2λ2)− ν̂1(y)

2

y+ λ2
; y ⩾ 0 ,

that we can obtain the marginal density functions by the inverse Laplace transforms

Pπ(G(T ) ∈ du) =
1

3
(λ1 + λ2)e

−λ1u
(
2(1 + µ1)− (1 + µ2)

∫ u

0

eλ1z ν̃2(z)dz
)
du ,

Pπ(H(T ) ∈ du) =
1

3
(λ1 + λ2)e

−λ2u
(
2(1 + µ2)− (1 + µ1)

∫ u

0

eλ2z ν̃1(z)dz
)
du

(54)

for u ⩾ 0 , with µi = λi/(λ1 + λ2) , i = 1,2 as in (14). Here, ν̃i is the probability density function of the probability
measure (2(λ1 + λ2)(1 + µi)/3)νi(·) on the positive real line for i = 1,2 in Theorem 4 (ii). Note that the right-hand
formulas in (54) are positive for u⩾ 0, because for the first formula in (54), as in (50), we have∫ ∞

0

eλ1z ν̃2(z)dz =
∏

k∈Z\{−1,0,1}

k(k+ µ2)(λ1 + λ2)

k(k+ µ2)(λ1 + λ2)− λ1
=

∏
k∈Z\{−1,0,1}

k(k+ µ2)

k(k+ µ2)− µ1
=

2(1 + µ1)

1 + µ2
.

We used here the relation µ1 + µ2 = 1, and in the last equality the telescopic structure

k(k+ µ2)

k(k+ µ2)− µ1
=

k

k+ 1

k+ 1− µ1

k− µ1
; k ∈ Z \ {−1,0,1} .

6. Bivariate density via the compensation approach

6.1. A PDE for the stationary distribution

Let us denote by π(u, v) the density of the invariant measure, and recall the parameters λ1, λ2 introduced in (9). In the
manner of [11, (8.5)], we may state the following partial differential equation (PDE) satisfied by this probability density
function:

(55)


G∗π(u, v) = 0 for (u, v) ∈R2

+,

∂R∗
1
π(0, v) + 2λ1π(0, v) = 0 for v ∈R+,

∂R∗
2
π(u,0) + 2λ2π(u,0) = 0 for u ∈R+,
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where we denote

(56)



G∗ =

(
∂

∂x
− ∂

∂y

)2

+ λ1
∂

∂x
+ λ2

∂

∂y
,

R =

(
1 − 1

2
− 1

2 1

)
,

R∗ = 2Σ−Rdiag(R)−1diag(Σ) =
(

2 −3
−3 2

)
,

Σ =

(
2 −2
−2 2

)
.

6.2. The Compensation Approach: Basic Principle, Questions

Using our notations (55)–(56), let us introduce the sets of functions
H0 = {f ∈ C2(R2

+) : G∗f = 0},

H1 =H0 ∩ {f ∈ C2(R2
+) : ∂R∗

1
f(0, ·) + 2λ1f(0, ·) = 0},

H2 =H0 ∩ {f ∈ C2(R2
+) : ∂R∗

2
f(·,0) + 2λ2f(·,0) = 0},

and observe that the requirement π ∈H1 ∩H2 is equivalent to the system (55).
We look now for exponential functions in H0, H1 and H2. We have

e−au−bv ∈H0 ⇐⇒K∗(a, b) := (a− b)2 − λ1a− λ2b= 0(57)

⇐⇒ (a, b) ∈ P∗ := {(x, y) ∈R2 : (x− y)2 − λ1x− λ2y = 0}.(58)

Similarly,

e−au−bv ∈H1 ⇐⇒ (a− b)2 − λ1a− λ2b= 0 and 2a− 3b− 2λ1 = 0

⇐⇒ (a, b) ∈ P∗ ∩L1, where L1 := {(x, y) ∈R2 : 2x− 3y− 2λ1 = 0}

⇐⇒ (a, b) = (λ1,0) or (a, b) = (a0, b0) := (4λ1 + 6λ2,2λ1 + 4λ2),(59)

and symmetrically

e−a′u−b′v ∈H2 ⇐⇒ (a′ − b′)2 − λ1a
′ − λ2b

′ = 0 and 2b′ − 3a′ − 2λ2 = 0

⇐⇒ (a′, b′) ∈ P∗ ∩L2, with L2 := {(x, y) ∈R2 : 2y− 3x− 2λ2 = 0}(60)

⇐⇒ (a′, b′) = (0, λ2) or (a′, b′) = (a′0, b
′
0) := (4λ1 + 2λ2,6λ1 + 4λ2).

The parabola P∗ in (58), the lines L1 and L2 in (59)–(60), the points (a0, b0) and (a′0, b
′
0) defined above, can be visualized

on Figure 5.
The main idea of the compensation approach [1] is to start with an exponential function in H1 (resp. H2) and to add

another exponential, so that the sum of the two terms belongs to H2 (resp. H1). This step is the first compensation, but
this sum of two functions is still not in H1 (resp. H2). Therefore, we have to compensate again with another exponential
term, and so on. We eventually compensate with an infinite sum of exponential functions in such a way that the final sum
be in H1 ∩H2. The following equation is a visualization of this approach:

(61) p(u, v) :=

∈H1 ∈H1 ∈H1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
c0e

−a0u−b0v + c1e
−a1u−b1v + c2e

−a2u−b2v + c3e
−a3u−b3v + c4e

−a4u−b4v + · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸
∈H2 ∈H2

.
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A symmetric construction holds for a first term in H2:

(62) p′(u, v) :=

∈H1 ∈H1︷ ︸︸ ︷ ︷ ︸︸ ︷
c′0e

−a′
0u−b′0v + c′1e

−a′
1u−b′1v + c′2e

−a′
2u−b′2v + c′3e

−a′
3u−b′3v + c′4e

−a′
4u−b′4v + · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

∈H2 ∈H2 ∈H2

.

This approach raises several questions, which we will answer in the remainder of the paper:

• What are the explicit values of the constants an, bn and cn in (61)? (And a symmetric question for (62).) We will
answer this question in Section 6.3.

• For any values of C and C ′, the linear combination

(63) Cp(u, v) +C ′p′(u, v)

is a solution to the PDE (55). Is it possible to find the invariant distribution among these infinitely-many solutions?
If yes, how to adjust the constants C and C ′ so as to find the unique invariant distribution? We will answer this
question in Section 6.4.

Remark 19 (Starting points of the sequences (an)n⩾0 and (bn)n⩾0 of the compensation procedure). Although the point
(λ1,0) ∈ P∗ ∩ L1 is formally a solution to (59), it is not possible to choose it as a starting point of the compensation
approach. Indeed, the exponential eλ1u does not converge to 0 when v → ∞ and u = 0. The procedure must thus be
initialized at (a0, b0) ∈ P∗ ∩L1, see again (59). A similar remark applies to the point (0, λ2).

Remark 20 (Skew symmetry). The intersection P∗ ∩L1 ∩L2 of the sets introduced in (58), (59) and (60) is empty most
of the time, except in the so-called skew symmetric case. For example, when

R=

(
1 − 1

2
− 3

2 1

)
,

we have P∗ ∩L1 ∩L2 = {(3λ2 + 2λ1,2λ2 + λ1)} and we find again [16, Eq. (A.22)]

π(u, v) = (3λ2 + 2λ1)(2λ2 + λ1)e
−(3λ2+2λ1)u−(2λ2+λ1)v.

6.3. Computation of the compensation constants

We now obtain explicit formulas for the sequences (an)n⩾0, (bn)n⩾0 and (cn)n⩾0 appearing in (61) (and Theorem 3).
We will prove the following:

Proposition 21. With (a0, b0) determined in (59), the sequence defined by, for all n⩾ 0,

(64)

{
a2n = a0 + 2n(a0 − b0) + n2λ1 + n(n+ 1)λ2,

b2n = b0 + 2n(a0 − b0) + n(n− 1)λ1 + n2λ2,
and (a2n+1, b2n+1) = (a2n, b2n+2)

satisfies the following statement:

e−anu−bnv ∈H0, ∀ n ∈N.

Proof. As explained in (57), e−anu−bnv ∈H0 if and only if K∗(a, b) = 0. With a few simple but tedious computations,
we can verify that for all n ∈N we have K∗(an, bn) = 0 which concludes the proof.

We also give a more constructive procedure that enabled us to determine these sequences. We need to introduce ζ and
η two automorphisms of the parabola P∗ in (58), defined by

ζ(x, y) = (x,2x− y+ λ2) and η(x, y) = (2y− x+ λ1, y).

By construction, these satisfy, for (x, y) ∈ P∗ such that K∗(x, y) = 0, that ζ(x, y) ∈ P∗ and η(x, y) ∈ P∗, i.e.

K∗(ζ(x, y))=K∗(η(x, y))= 0.

These automorphisms can be visualized on Figure 5. They allow us to define recursively the sequences (an)n⩾0 and
(bn)n⩾0: {

(a2n, b2n) = (ηζ)n(a0, b0),
(a2n+1, b2n+1) = ζ(ηζ)n(a0, b0) = (a2n, b2n+2).
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We have ηζ(x, y) = (3x − 2y + 2λ2 + λ1,2x − y + λ2); and a straightforward computation allows us to verify the
recurrence relation

ηζ(a2n, b2n) = (3a2n − 2b2n + 2λ2 + λ1,2a2n − b2n + λ2) = (a2n+2, b2n+2),

which proves (64).

Proposition 22. The sequence (cn)n⩾0 defined by induction as follows: c0 = 1 and for n⩾ 0,

(65)


c2n+1 = −c2n

3a2n − 2b2n + 2λ2

3a2n+1 − 2b2n+1 + 2λ2
,

c2n+2 = −c2n+1
−2a2n+1 + 3b2n+1 + 2λ1

−2a2n+2 + 3b2n+2 + 2λ1
,

satisfies the compensation approach of (61), i.e. for all n ∈N we have{
c2ne

−a2nu−b2nv + c2n+1e
−a2n+1u−b2n+1v ∈H2,

c2n+1e
−a2n+1u−b2n+1v + c2n+2e

−a2n+2u−b2n+2v ∈H1.

Proof. For all n ∈N let us define

f2n(u, v) := c2ne
−a2nu−b2nv + c2n+1e

−a2n+1u−b2n+1v.

Let us recall that

H2 =H0 ∩ {f ∈ C2(R2
+) : ∂R∗

2
f(·,0) + 2λ2f(·,0) = 0}.

Proposition 21 implies that f2n ∈H0. We also have

∂R∗
2
f2n(u,0) + 2λ2f2n(u,0) = c2n(3a2n − 2b2n + 2λ2)e

a2nu + c2n+1(3a2n+1 − 2b2n+1 + 2λ2)e
a2n+1u = 0,

remembering that a2n = a2n+1 and the relation (65). Then f2n ∈H2 and a similar reasoning shows that f2n+1(u, v) :=
c2n+1e

−a2n+1u−b2n+1v + c2n+2e
−a2n+2u−b2n+2v ∈H1 and thus completes the proof.

Corollary 23. The sequence (cn)n⩾0 is piecewise polynomial: if n is even, then

(66) cn = (n+ 2)(n+ 4)2(n+ 6)
(n+ 2µ2)(n+ 2+ 2µ2)(n+ 4+ 2µ2)(n+ 6+ 2µ2)

3072µ2(1 + µ2)(2 + µ2)(3 + µ2)
,

and if n is odd

(67) cn =−(n+ 1)(n+ 3)(n+ 5)(n+ 7)
(n+ 1+ 2µ2)(n+ 3+ 2µ2)

2(n+ 5+ 2µ2)

3072µ2(1 + µ2)(2 + µ2)(3 + µ2)
.

As n→∞,

(68) cn ∼ 1

3072µ2(1 + µ2)(2 + µ2)(3 + µ2)
(−1)nn8.

If λ1 = λ2, then both (66) and (67) reduce to

cn = (−1)n
(n+ 1)(n+ 2)(n+ 3)(n+ 4)2(n+ 5)(n+ 6)(n+ 7)

20160
= (−1)n

(
n+ 7

7

)
n+ 4

4
.

Proof. We start by reformulating the recurrence relation (65). We have

3a2n − 2b2n + 2λ2

3a2n+1 − 2b2n+1 + 2λ2
=

(n+ 4)(n+ 2+ 3µ2)

(n+ 2)(n+ µ2)
.
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FIG 5. The parabola P∗ is represented in red, the line L1 in blue, L2 in green, the starting point (a0, b0) in blue and (a′0, b
′
0) in green. The automor-

phisms ζ and η on the parabola allow us to define the sequences (an, bn)n⩾0 and (a′n, b
′
n)n⩾0 .

Similarly, we have

−2a2n+1 + 3b2n+1 + 2λ1

−2a2n+2 + 3b2n+2 + 2λ1
=

(n+ 3)(n+ 4+ µ2)

(n+ 1)(n+ 2+ µ)
.

We immediately obtain via (65) that

(69) c2n+2 = c2n
(n+ 3)(n+ 4)(n+ 4+ µ2)

(n+ 1)(n+ 2)(n+ µ2)
,

which shows that c2n admits a telescopic structure. More precisely, denoting Tn = (n+1)(n+2) and Un = n+µ2, (69)
can be rewritten as

c2n+2 = c2n
Tn+2

Tn

Un+4

Un
.

We conclude that c2n = TnTn+1

T0T1

UnUn+1Un+2Un+3

U0U1U2U3
. Replacing n by n

2 , this coincides with the value of cn announced in
(66). The proof of (67) would be similar.

Symmetric formulas hold for the sequences (a′n)n⩾0, (b′n)n⩾0 and (c′n)n⩾0 in (62):

(70) (a′2n, b
′
2n) =

(
a′0 + 2n(b′0 − a′0) + n2λ1 + n(n− 1)λ2, b

′
0 + 2n(b′0 − a′0) + n(n+ 1)λ1 + n2λ2

)
,

and (a′2n+1, b
′
2n+1) = (a′2n+2, b

′
2n). We finally introduce c′0 = 1 and we have

(71)


c′2n+1 = −c′2n

3b′2n − 2a′2n + 2λ1

3b′2n − 2a′2n+1 + 2λ1
,

c′2n+2 = −c′2n+1

−2b′2n+1 + 3a′2n+1 + 2λ2

−2b′2n+2 + 3a′2n+2 + 2λ2
.
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The sequence (c′n)n⩾0 admits the same exact and asymptotic expressions as (cn)n⩾0, provided λ1 and λ2 are inter-
changed.

6.4. Computation of the convex combination

Proposition 24. The function p(u, v) in (61) evaluated at v = 0 is equal to

p(u,0) =− 1

3µ2(1 + µ2)(2 + µ2)(3 + µ2)
×∑

n⩾2

(n− 1)n(n+ 1)(n− 1 + µ)(n+ µ)(n+ 1+ µ)(n+ µ/2) exp(−(n2 + µn)(λ1 + λ2)u).

Proof. We start from the expression of p(u, v) given in (61). Since a2n = a2n+1 (see Proposition 21), we can group the
terms as follows:

p(u,0) =
∑
n⩾0

(c2n − c2n+1)e
−a2nu.

Using the expression of c2n and c2n+1 given in Proposition 23 and after some simplification, we obtain

c2n − c2n+1 =− 1

3µ2(1 + µ2)(2 + µ2)(3 + µ2)
×

(n+ 1)(n+ 2)(n+ 3)(n+ 1+ µ)(n+ 2+ µ)(n+ 2+ µ)(n+ 2+ µ/2).

Moreover, one can reformulate a2n =
(
(n+2)2+µ(n+2)

)
(λ1+λ2). We then immediately deduce Proposition 24.

Similarly, we have:

Proposition 25. The function p′(u, v) in (62) evaluated at v = 0 is equal to

p′(u,0) =− 1

3µ1(1 + µ1)(2 + µ1)(3 + µ1)
×∑

n⩽−2

(n− 1)n(n+ 1)(n− 1 + µ)(n+ µ)(n+ 1+ µ)(n+ µ/2) exp(−(n2 + µn)(λ1 + λ2)u).

As a consequence of Propositions 24 and 25, we obtain that there exists a unique choice of constants C and C ′, namely
formula (72) of Corollary 26, such that the convex combination Cp(u,0)+C ′p′(u,0) in (63) is equal to the formula (15)
for the density function νi(u) given in Theorem 2.

We furthermore conjecture that it must be the unique choice of C and C ′ such that Cp(u, v) +C ′p′(u, v) is a positive
function. This should follow from a result of uniqueness of positive solutions of the PDE (55).

Corollary 26 (Values of the constants C and C ′). Taking

(72) C :=
4(λ1 + 2λ2)(2λ1 + 3λ2)(3λ1 + 4λ2)

λ1
and C ′ :=

4(λ2 + 2λ1)(2λ2 + 3λ1)(3λ2 + 4λ1)

λ2
,

we have

ν2(u) =Cp(u,0) +C ′p′(u,0) and ν1(v) =Cp(0, v) +C ′p′(0, v).

Proof. This follows directly from Propositions 24 and 25, and Theorem 2.

It is interesting to note that by construction, remembering (68), C and C ′ are such that

cn/c
′
n −→

n→∞
C ′/C.
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Statement 27 (Statement equivalent to Theorem 3). The bivariate density π(u, v) is given by Cp(u, v)+C ′p′(u, v), with
C and C ′ as in (72).

Proof of Statement 27 and Theorem 3. Let f(u, v) =Cp(u, v)+C ′p′(u, v), which satisfies the PDE (55) by construc-
tion of p and p′ with the principle of the compensation approach. We also define f1(v) = f(0, v) and f2(u) = f(u,0).
By simple integration by parts, the PDE implies that the Laplace transforms f̂ , f̂1 and f̂2 satisfy the same functional
equation (8) as the one satisfied by π̂, i.e.[

(x− y)2 + 2(δ2 − δ1)x+ 2(δ3 − δ2)y
]
f̂(x, y) =

(
x− y

2

)
f̂1(y) +

(
y− x

2

)
f̂2(x).

Corollary 26 implies that ν̂1(y) = f̂1(y) and ν̂2(x) = f̂2(x). Therefore, the functional equations satisfied by π̂ and f̂

imply that π̂(x, y) = f̂(x, y) and we conclude that the density π(u, v) = f(u, v). See [7, Thm 5.1] for the classical result
on the injectivity of the Laplace transform.

Appendix A: Homogeneity relations

A.1. Homogeneity relations in the general case

Lemma 28 (Homogeneity relations, general case). Denote by π̂(x, y;λ1, λ2), ν̂1(y;λ1, λ2) and ν̂2(x;λ1, λ2) the Laplace
transforms associated to the parameters λ1 and λ2. Let us recall that

µ1 =
λ1

λ1 + λ2
and µ2 =

λ2

λ1 + λ2
.

We have the homogeneity relations π̂((λ1 + λ2)x, (λ1 + λ2)y;λ1, λ2) = π̂(x, y;µ1, µ2),
ν̂1((λ1 + λ2)y;λ1, λ2) = (λ1 + λ2)ν̂1(y;µ1, µ2),
ν̂2((λ1 + λ2)x;λ1, λ2) = (λ1 + λ2)ν̂2(x;µ1, µ2).

At the level of densities, it readsπ(x, y;λ1, λ2) = (λ1 + λ2)
2π((λ1 + λ2)x, (λ1 + λ2)y;µ1, µ2),

ν1(y;λ1, λ2) = (λ1 + λ2)
2ν1((λ1 + λ2)y;µ1, µ2),

ν2(x;λ1, λ2) = (λ1 + λ2)
2ν2((λ1 + λ2)x;µ1, µ2).

Proof. An immediate computation starting from the functional equation yields

(73)
(
(x− y)2 +

λ1

λ1 + λ2
x+

λ2

λ1 + λ2
y
)
π̂((λ1 + λ2)x, (λ1 + λ2)y;λ1, λ2)

=
(
x− y

2

) ν̂1((λ1 + λ2)y;λ1, λ2)

(λ1 + λ2)
+
(
y− x

2

) ν̂2((λ1 + λ2)x;λ1, λ2)

(λ1 + λ2)
.

On the other hand,

(74)
(
(x− y)2 + µ1x+ µ2y

)
π̂(x, y;µ1, µ2) =

(
x− y

2

)
ν̂1(y;µ1, µ2) +

(
y− x

2

)
ν̂2(x;µ1, µ2).

Comparing (73) and (74), noting that π̂(0,0;λ1, λ2) = π̂(0,0;µ1, µ2) = 1 and recalling the uniqueness property for the
solution to the main functional equation (8) corresponding to a probability measure, stated at the end of Section 1.1, we
deduce the first statement of the lemma concerning the Laplace transforms. The relations at the level of densities follow
directly.

A.2. Homogeneity relations in the symmetric case

In the symmetric case λ1 = λ2 = λ, we explain how to reduce to the case λ= 1. This can help to reduce the number of
parameters.
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Lemma 29 (Homogeneity relations, symmetric case). In the symmetric case, denote by π̂(x, y;λ), ν̂1(y;λ) and ν̂2(x;λ)
the Laplace transforms associated to the parameter λ. We have the homogeneity relations

(75)

 π̂(λx,λy;λ) = π̂(x, y; 1),
ν̂1(λy;λ) = λν̂1(y; 1),
ν̂2(λx;λ) = λν̂2(x; 1).

At the level of densities, it reads π(x, y;λ) = λ2π(λx,λy; 1),
ν1(y;λ) = λ2ν1(λy; 1),
ν2(x;λ) = λ2ν2(λx; 1).

Proof. First of all, the homogeneity relations on the densities are immediate consequences of the identities (75) on the
Laplace transforms, on which we therefore focus. A first direct proof of (75) is obtained using the explicit formulas given
in Corollary 1 and the main functional equation (8), which in the symmetric case reads(

(x− y)2 + λx+ λy
)
π̂(x, y;λ) =

(
x− y

2

)
ν̂1(y;λ) +

(
y− x

2

)
ν̂2(x;λ),

where we added λ in our notation to emphasize the dependence on this parameter.
We may now give a second approach for proving (75). An immediate computation starting from the above functional

equation yields

(76)
(
(x− y)2 + x+ y

)
π̂(λx,λy;λ) =

(
x− y

2

) ν̂1(λy;λ)

λ
+
(
y− x

2

) ν̂2(λx;λ)

λ
.

On the other hand,

(77)
(
(x− y)2 + x+ y

)
π̂(x, y; 1) =

(
x− y

2

)
ν̂1(y; 1) +

(
y− x

2

)
ν̂2(x; 1).

Comparing (76) and (77), and recalling the uniqueness property for the main functional equation (8), stated at the end of
Section 1.1, we deduce that there exists a constant α> 0 such that

(78)

 π̂(λx,λy;λ) = απ̂(x, y; 1),
ν̂1(λy;λ) = αλν̂1(y; 1),
ν̂2(λx;λ) = αλν̂2(x; 1).

Evaluating (78) at x= y = 0 and using the normalization π̂(0,0;λ) = π̂(0,0; 1) = 1, one finds that α should be equal to
1.

Appendix B: Some remarks on the function θµ of (16)

B.1. A probabilistic interpretation of the function θµ

Not surprisingly, the Jacobi theta-like function θµ in (16) admits a direct probabilistic interpretation (see (81) below)
in terms of Brownian motion conditioned to stay forever in the unit interval [0,1]. More specifically, for t > 0 and
x, y ∈ (0,1), let qt(x, y) be the associated transition probability density. As recalled in [5, Eq. (2.1)], one has

qt(x, y) =
sin(πy)

sin(πx)
eπ

2t/2pt(x, y),

where pt(x, y) is the transition probability density function of the killed Brownian motion in [0,1], namely,

(79) pt(x, y) =
1

2
√
2πt

∑
n∈Z

(
exp
(
− (x− y+ 2n)2

2t

)
− exp

(
− (x+ y− 2 + 2n)2

2t

))
,

see Section 6 in Appendix A.1 of [4]. As explained in [5, Sec. 2.1], it is actually possible to start the process at x = 0
(using the idea of entrance density measure), and obtain the density function

(80) qt(0, y) = lim
x→0

qt(x, y) = sin(πy)
∑
n∈Z

n sin(nπy) exp
(
−π2(n2 − 1)

t

2

)
,
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see [5, Eq. (2.5)]. In terms of the function qt(0, y) defined in (80), the Jacobi transformation of our Lemma 15 leads
directly to

(81) θµ(e
−2/t) =

1

sin(πµ)

(
πt

2

)3/2

exp

(
µ2

2t
− π2t

2

)
qt(0, µ).

As a conclusion, up to a simple prefactor function, the theta function θµ exactly describes the entrance density measure
of the killed Brownian motion in [0,1] starting from 0.

The recent paper [5] by Bougerol and Defosseux contains a further interpretation of qt(0, µ) (and thus of θµ via (81)) as
a space-time non-negative harmonic function for a killed Brownian motion in a certain affine cone. We shall not elaborate
on this connection here, except to say that it is natural to expect a strong link between our model and space-time Brownian
motion, as suggested by our Equation (2), the starting point of this entire investigation.

B.2. Connection with the Ramanujan theta function

The Ramanujan theta function is classically defined for a, b ∈C such that |ab|< 1 by

f(a, b) =
∑
n∈Z

a
n(n+1)

2 b
n(n−1)

2 .

If we introduce

g(a, b) =
∑
n∈Z

na
n(n+1)

2 b
n(n−1)

2 =
(
a
∂

∂a
− b

∂

∂b

)
f(a, b),

then the function of (16) can be expressed as

θµ(q) = g
(
q1+µ, q1−µ

)
+

µ

2
f
(
q1+µ, q1−µ

)
.

This connection is not central for our purpose, but is nevertheless interesting to observe.
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