Full Stack Approach for Efficient Deep Learning Inference

By

Sehoon Kim

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Kurt Keutzer, Chair
Professor Jiantao Jiao
Professor Gopala Anumanchipalli
Professor Song Han

Fall 2024

Full Stack Approach for Efficient Deep Learning Inference

Copyright 2024
by
Sehoon Kim

Abstract
Full Stack Approach for Efficient Deep Learning Inference
by
Sehoon Kim
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Kurt Keutzer, Chair

Recent advancements in Al technologies have led to unprecedented growth in model sizes,
particularly with the advent of large language models (LLMs). While these models have
shown great capabilities in various domains, their exponential scaling has introduced signif-
icant inference-time overheads, such as increased memory requirements, latency, and com-
putational costs, thereby making efficient deployment and serving challenging. This thesis
addresses these challenges through a full-stack approach that enhances efficiency across four
key components of the Al inference stack: model optimization, inference methods, model
architectures, and applications.

For model optimization, we introduce quantization techniques to optimize inference-time
compute and memory requirements. I-BERT optimizes compute by leveraging integer-only
quantization, which achieves up to a 3.5x latency speedup and enables deployment of the
Transformer architectures on integer-only hardware. SqueezeLLLM, which employs extremely
low-bit weight quantization, effectively reduces memory requirements without sacrificing
accuracy during LLM inference. For enhanced inference methods, we present the Big Little
Decoder, a speculative decoding framework that accelerates autoregressive LLM inference
by up to 2x through a collaboration between small and large models. Regarding model
architectures, we propose an efficient design for speech recognition using a Temporal U-Net
structure, which improves inference efficiency by shortening input sequence lengths. Finally,
at the application level, we introduce LLMCompiler, a framework for efficiently orchestrating
multiple function calls in LLM-based applications, which reduces execution latency and
costs while enhancing robustness by decomposing complex user inputs into smaller, easier
tasks. Collectively, these contributions provide a full-stack strategy for optimizing Al model
inference from low-level systems to high-level applications to enable the efficient deployment
and serving of state-of-the-art Al solutions.

To my family, whose unwavering love, support, and belief in me have been the foundation
of this journey.

i

Contents

Contents ii
List of Figures \%
List of Tables xiii
1 Introduction 1
2 Compute Optimization: Integer-only Transformer Quantization 5
2.1 Imntroduction 5
2.2 Methodology 7
2.3 Results e 14
2.4 Related Work 18
2.5 Conclusions 19
3 Memory Optimization: Dense-and-Sparse Quantization for Large Lan-

guage Models 20
3.1 Introduction 20
3.2 Memory Wall 22
3.3 Methodology 23
3.4 Evaluations 28
3.5 Related Work 33
3.6 Conclusion s 35
Efficient Inference Method: Speculative Decoding with Big Little Decoder 36
4.1 Introduction 36
4.2 Methodology 38
4.3 Evaluations 44
4.4 Related Work 48
4.5 Conclusion 50

Efficient Model Architecture: Efficient Transformer for Automatic Speech
Recognition 51

il

5.1 Introduction 51
5.2 Architecture Design 53
5.3 Results 59
54 Related Work 64
5.5 Conclusions 65
6 Efficiency in Agentic Applications: LLM Compiler for Parallel Function
Calling 66
6.1 Introduction 66
6.2 Methodology 68
6.3 LLMCompiler Detailso 71
6.4 Results. 71
6.5 Discussion 79
6.6 Related Work 83
6.7 Conclusions e 84
7 Conclusion 85
7.1 Review e 85
7.2 TImpact of Our Work 87
7.3 Future Directions 88
Bibliography 91
A Compute Optimization: Integer-only Transformer Quantization 113
A.1 Quantization Methods 113
A.2 FError Term of Equation 2.3 114
A.3 Experimental Details 114
B Memory Optimization: Dense-and-Sparse Quantization for Large Lan-
guage Models 116
B.1 Data Skew in Per-channel Sparsity Pattern 116
B.2 Ablation Studies 116
B.3 Quantization Cost Analysis 122
B.4 Comparison with Other Weight-only Quantization Methods 124
B.5 Additional Hardware Profiling Results 126
B.6 Additional Experiment Results 127
B.7 Limitations 127
C Efficient Inference Method: Speculative Decoding with Big Little Decoder132
C.1 Experimental Details 132
C.2 Details of Early Exiting Strategy in the BiLD Framework 133
C.3 Comparison with Other Speculative Decoding Frameworks 135

C.4 BiLD with Sampling 138

v

C.5 Additional Analysis 139
Efficiency in Agentic Applications: LLM Compiler for Parallel Function

Calling 143
D.1 Experimental Details oo 143
D.2 Analysis 144
D.3 Additional Discussions about Related Works 148
D.4 User-Supplied Examples for LLMCompiler Configuration 149
D.5 Pre-defined LLMCompiler Planner Prompts 151
D.6 ParallelQA Benchmark Generation 152
D.7 Details of the Game of 24 and the Tree-of-Thoughts Approach 153

D.8 Details of WebShop Experiments 154

List of Figures

1.1

1.2

2.1

2.2

The evolution of the number of parameters of state-of-the-art models over the
years, along with the Al accelerator memory capacity. The number of parameters
in Transformer models has been exponentially increasing by the rate of 410x every
two years, while the single GPU memory has only been scaled at a rate of 2x
EVETY TWO VEATS. o v v v e e e e e e e e e e e
A full-stack perspective on improving the efficiency of Al solutions, spanning
from low-level systems to high-level applications. From the bottom to the top in
this figure, this thesis covers efficiency improvement across four key components
at different layers of the inference stack: model optimization (Chapter 2 and 3),
inference methods (Chapter 4), model architectures (Chapter 5), and applications
(Chapter 5).

Comparison of different quantization schemes applied to the self-attention layer
in the Transformer architecture. (Left) Simulated quantization, where all oper-
ations are performed with floating point arithmetic. Parameters are quantized
and stored as integer, but they are dequantized into floating-point for inference.
(Middle) Simulated quantization, where only a part of operations are performed
with integer arithmetic. Because the Softmax in this figure is performed with
floating point arithmetic, the input to the Softmax should be dequantized; and
the output from the Softmax should be quantized back into integer to perform
the subsequent integer MatMul. (Right) The integer-only quantization that we
propose. There is neither floating point arithmetic nor dequantization during the
entire inference. Lo
(Left) Comparison between RELU, GELU, h-GELU and i-GELU. (Right) Com-
parison between exponential (exp) and our integer-only exponential (i-exp).

3.1

3.2

3.3

3.4

3.5

3.6

3.7

(Left) SqueezeLLM incorporates two key approaches: (i) sensitivity-based non-
uniform quantization (Section 3.3), where quantization bins are allocated closer to
sensitive values, and (ii) the Dense-and-Sparse decomposition (Section 3.3), which
retains both sensitive values and outlier values as full-precision sparse format.
When applied to LLaMA-7B with 3-bit quantization, our method outperforms
the state-of-the-art methods [61, 166] by a large perplexity margin of over 0.3
on the C4 benchmark. (Right) By applying our methods to LLaMA models of
varying sizes, we can achieve improved trade-offs between perplexity and model
SIZE. . L e e
Normalized runtime for LLaMA-7B when reducing the bit precision for the weights
with sequence lengths of 128 (left) and 2048 (right). Results were obtained using
a roofline-based performance model for an A5000 GPU. Reducing only the pre-
cision of the weights (and not the activations) is sufficient to obtain significant
latency reductions.
(Top) The weight distribution of one output channel in LLaMA-7B. The top-20
sensitive values are marked in red. (Bottom) Weight distributions after 3-bit
quantization using uniform and sensitivity-based non-uniform quantization. In
the latter case, the quantized values are clustered around the sensitive values.
The distributions of the (normalized) absolute weight values, for the output layers
in MHA and the down layers in FFN across different layers in LLaMA-7B. Note
that the distributions exhibit outlier patterns across all layers, with 99% of the
values clustered within ~10% of the entire range.
The illustration of the Dense-and-Sparse decomposition. The left figure plots the
magnitude of a weight matrix (I¥) in the LLaMA 65B model, which contains a
few outliers. These outliers contribute to the large range of values in the original
weight matrix which significantly degrades the quantization performance. This
matrix, however, can be decomposed into a sparse matrix .S (Right) that contains
the outliers and the remaining dense matrix D (Middle). The dense matrix D
then exhibits a significantly smaller range, making accurate quantization much
easier. The sparse matrix S can be kept in full precision with minimal memory
and runtime overhead. Lo Lo
Perplexity comparison PT(Q methods for 3-bit LLaMA quantization, evaluated
on C4. The x-axes are the relative model sizes with respect to the model size in
FP16. Different size-perplexity trade-offs are achieved by adjusting the group size
for GPTQ and AWQ and the sparsity level for ours. Our quantization method
consistently and significantly outperforms GPTQ and AWQ across all model size
regimes, with a more pronounced gap in lower-bit and smaller model sizes.
Comparison of PTQ methods applied to Vicuna v1.1. Blue / yellow / red rep-
resent the number of times that the quantized model won / tied / lost against
the baseline FP16 model. This evaluation was performed using the methodology
from Vicuna.

vi

21

23

24

26

27

29

4.1

4.2

4.3

4.4

4.5

[lustration of (Left) the normal autoregressive decoding procedure of a large
model and (Right) BiLD that consists of a small model and a large model. In
BiLD, the small model generates tokens autoregressively (i.e., sequentially) until
it hands over control to the large model. The large model then takes as input the
tokens generated by the small model in parallel, allowing for non-autoregressive
(i.e., parallel) execution to generate the next token. This improves end-to-end
latency by allowing for more efficient utilization of underlying hardware.

Quality of text generation for different proportions of the large model’s engage-
ment on the small model’s prediction, evaluated on the validation datasets of
(Left) WMT 2014 De-En translation [9]; and (Right) CNN/DailyMail summa-
rization [99]. We see that the small models can achieve a comparable or better
generation quality to the large models if ~20% of their incorrect predictions were
substituted.
(Top) The fallback policy. When the small model generates tokens autoregres-
sively, if the prediction probability of a specific token is below the predefined fall-
back threshold value arpg, the prediction is deemed to be not confident enough,
and control is then shifted to the larger model to produce the corresponding to-
ken. (Bottom) The rollback policy. If the large model takes over the control, it
produces its own predictions for all previous tokens, as well as the current token.
If the prediction probability from the large model for a previously generated token
deviates from the small model’s prediction by a distance metric d exceeding the
predetermined rollback threshold agp, the small model’s prediction is regarded
as incorrect. In such a case, we roll back all predictions made by the small model
that follow the corresponding token. L.
Generation quality and average end-to-end latency of processing a single exam-
ple on 4 different benchmarks. We report BLEU for machine translation and
ROUGE-L for summarization as performance metrics. The green and blue lines
are unaligned and aligned BiLD, respectively. The X marks are the vanilla in-
ference with the baseline large models. For comparison, two horizontal lines
are plotted to indicate the BLEU/ROUGE-L score of the vanilla inference and 1
point degradation from it. The latency on the x-axis is normalized by the baseline

latency.
Ablation study results for BiLD on (Left) IWSLT 2017 De-En translation and

(Right) XSUM summarization tasks without the rollback or fallback policy. Aligned

small models were used in all cases. The result demonstrates that BiLD expe-
riences significant performance degradation without either policy in both tasks.
The horizontal lines indicate the vanilla inference score and 1 point degradation
fromit. . ..

vil

37

4.6

5.1

5.2

9.3

5.4

Application of the BiLD framework to the early exit problem using the mT5-
small model as the large model and its first layer as the small model, evaluated
on (Left) the IWSLT 2017 De-En and (Right) WMT 2014 De-En benchmarks.
The x marks indicate the latency and BLEU score of the mT5-small models.
The horizontal lines indicate the vanilla inference score and 1 point degradation
from it.

(Left) We perform a series of systematic studies on macro and micro architecture
to redesign the Conformer architecture towards our Squeezeformer architecture.
The bars and the line indicate the WER on LibriSpeech test-other dataset and
the FLOPs, respectively. For each design modification, we strictly improve WER
until our final Squeezeformer model outperforms Conformer by 1.40% WER im-
provement with the same number of FLOPs. See Table 5.1 for the details. (Right)
LibriSpeech test-other WER vs. FLOPs for Squeezeformer and other state-of-the-
art ASR models. Conformer-CTC* is our own reproduction to the best perfor-
mance as possible and the others are the reported numbers in their papers [141,
178, 13]. Our architecture scales well to smaller and larger models to constantly
outperform other models by a large margin throughout the entire FLOPs range.
See Table 5.3 for the details. For both plots, the lower the WER, the better;
however, we plotted in reverse for better visualization.
(Left) The Conformer architecutre and (Right) the Squeezeformer architecture
which comprises of the Temporal U-Net structure for downsampling and upsam-
pling of the sampling rate, the standard Transformer-style block structure that
only uses Post-Layer Normalization, and the depthwise separable subsampling
layer.
Cosine similarity between two embedding vectors of neighboring speech frames
with varying adjacency distances across the Conformer blocks. The temporal
dimension is downsampled after the 7th block and upsampled before the 16th
block in the Temporal U-Net structure.
(Left) Back-to-back preLN and postLN at the boundary of the blocks. (Right)
The preLLN can be replaced with the learned scaling that readjusts the magnitude
of the activation that goes into the subsequent module.

viii

6.1

6.2

6.3

6.4

An illustration of the runtime dynamics of LLMCompiler, in comparison with
ReAct [307], given a sample question from the HotpotQA benchmark [304]. In
LLMCompiler (Right), the Planner first decomposes the query into several tasks
with inter-dependencies. The Executor then executes multiple tasks in parallel,
respecting their dependencies. Finally, LLMCompiler joins all observations from
the tool executions to produce the final response. In contrast, sequential tool
execution of the existing frameworks like ReAct (Left) leads to longer execution
latency. In this example, LLMCompiler attains a latency speedup of 1.8 on the
HotpotQA benchmark. While a 2-way parallelizable question from HotpotQA
is presented here for the sake of simple visual illustration, LLMCompiler is capa-
ble of managing tasks with more complex dependency patterns (Figure 6.2 and
Section 6.4).
Overview of the LLMCompiler framework. The Function Calling Planner gen-
erates a DAG of tasks with their inter-dependencies. These tasks are then dis-
patched by the Task Fetching Unit to the Executor in parallel based on their
dependencies. In this example, Task $1 and $2 are fetched together for parallel
execution of two independent search tasks. After each task is performed, the
results are forwarded back to the Task Fetching Unit to unblock the dependent
tasks after replacing their placeholder variables (e.g., the variable $1 and $2 in
Task $3) with actual values. Once all tasks have been executed, the final answer
is delivered to the user.
Examples of questions with different function calling patterns and their depen-
dency graphs. HotpotQA and Movie Recommendation datasets exhibit pattern
(a), and ParallelQA dataset exhibits patterns (b) and (c), among other patterns.
In (a), we need to analyze each company’s latest 10-K. In (b), we need three
searches for each school, followed by one addition and one comparison operation.
In (c), we need to search for each state’s annual healthcare spending in each
sector, sum each state’s spending, and then perform a comparison.
Distributions of the number of function calls when running the Movie Recom-
mendation benchmark on ReAct (Left), ReAct with specific prompts to avoid
early stopping (Middle, corresponding to ReAct' in Table 6.1), and LLMCompiler
(Right). LLMCompiler (Right) consistently completes the search for all 8 movies,
whereas ReAct (Left) often exit early, demonstrated by about 85% of examples
stopping early. Although the custom prompts shift ReAct’s histogram to higher
function calls (Middle), they still fall short of ensuring comprehensive searches
for all movies. gpt-3.5-turbo is used for the experiment.

X

6.5

6.6

6.7

7.1

B.1

B.2

The Movie Recommendation accuracy of the examples that are categorized by the
number of function calls on ReAct, measured both on ReAct and LLMCompiler.
The plot indicates that in ReAct, a decrease in the number of function calls
correlates with lower accuracy, indicating that premature exits lead to reduced
accuracy. In contrast, when the same examples are evaluated using LLMCompiler,
which ensures complete searches for all eight movies before reaching a decision,
they achieve higher and more consistant accuracy than those processed by ReAct.
gpt-3.5-turbo is used for the experiment, and the results are averaged over 3
different runs. L
Distributions of the number of function calls when running the HotpotQA bench-
mark on ReAct (Left) and LLMCompiler (Right). While LLMCompiler (Right)
consistently completes the task within 2 function calls, which is expected as Hot-
potQA exhibits a 2-way parallelizable pattern, ReAct (Left) shows that around
10% of the examples undergo repetitive (>4) function calls, resulting in a di-
verging behavior of the framework. LLaMA-2 70B is used for the experiment.
The HotpotQA accuracy of the examples that are categorized by the number
of function calls on ReAct, measured both on ReAct and LLMCompiler. The
plot indicates that in ReAct, repetitive function calls of more than or equal to
four times can result in a significant accuracy degradation due to its infinite
looping and diverging behavior. On the other hand, when the same examples are
evaluated using LLMCompiler, which ensures only two searches per example, they
achieve a higher of around 50%. LLaMA-2 70B is used for the experiment.

Potential future extensions of the full-stack view of designing solutions for efficient
and scalable Al algorithms and systems.

Histograms of the number of non-zero entries per output channel in 7 different
linear layers in the first LLaMA-7B block. The histograms reveal the presence
of a few channels that contain significantly more non-zero entries than others,
highlighting the skew in the sparsity patterns across different channels within the
linear layers.
(Left) Model size (normalized by the size of the FP16 model) and perplexity trade-
off with different percentages of sensitive values included in the sparse matrix.
Here, no outlier values are included in the sparse matrix. (Right) Comparison
of the performance when the sensitive values are not removed as the sparse ma-
trix (only outlier values are removed) to the case where 0.05% of the sensitive
values are removed. In both cases, the trade-offs are obtained by controlling the
percentage of outlier values included in the sparse matrix.

81

B.3

B4

C.1

C.2

C.3

C4

D.1

Model size (normalized by the size of the FP16 model) and perplexity trade-offs
of grouping and the Dense-and-Sparse decomposition on 3-bit quantization of
LLaMA-7B. Here, we compare SqueezeLLM with (i) grouping using group sizes
of 1024 and 512 (green), (ii) a hybrid approach that combines a group size of 1024
with a sparsity level of 0.05% (blue), and (iii) the Dense-and-Sparse decomposi-
tion approach with varying sparsity levels (violet). The pure Dense-and-Sparse
decomposition always outperforms both grouping and the hybrid approach.

Model size (normalized by the size of the FP16 model) and perplexity trade-
offs for 3-bit quantization of the LLaMA-7B model using layer-wise perturbation
minimization versus final output perturbation minimization as a non-uniform
quantization objective. The trade-off is obtained by adjusting the sparsity level of
the outliers being extracted. Across all sparsity levels, the OBD framework, which
is the foundation for SqueezeLLLM, consistently outperforms the OBS framework
as an alternative approach. L

The trade-off curves between inference latency and BLEU score for BiLD and
CALM in the early exiting setting for (Left) IWSLT 2017 De-En and (Right)
WMT 2014 De-En. The x marks indicate the vanilla inference latency and
BLEU score of the mT5-small models. The horizontal lines indicate the vanilla
inference score and 1 point degradation from it. BiLLD outperforms CALM across
all speedup regimes by up to 2 ~ 2.5 points better BLEU score, demonstrating
the effectiveness of our approach for the early exiting strategy.
FLOPs, MOPs (memory operations), arithmetic intensity, and latency speedup
comparison of vanilla inference and BiLD on the CNN/DailyMail benchmark.
BiLLD approach results in a remarkable reduction in MOPs due to the improved
token-level parallelism, resulting in significantly higher arithmetic intensity.

Example text sequences that BiLD generates with the validation set of IWSLT
2017 De-En, compared to the ground truths and the outputs of the large and small
baselines. For BiLLD, tokens generated by the large model are highlighted in red,
while all the other tokens are generated by the small model. This illustrates that
with a small engagement of the large model, BiLD can correct not only inaccurate
vocabulary but also wrong semantics of the text that the small model would have
otherwise generated.
The trade-off between latency and generation quality (ROUGE-L) for the aligned

X1

119

139

BiLD model on two summarization tasks: (Left) XSUM and (Right) CNN/DailyMail.

Each curve represents a different rollback threshold, with smaller thresholds in-
dicating more rollbacks. The trade-off can be further obtained within each curve
with different fallback thresholds, where larger scatter sizes indicate larger fall-
back thresholds. A larger fallback threshold implies more fallbacks.

Latency on the ParallelQA benchmark grouped by the number of maximum par-
allelizable tasks.

D.2 Visualization of the Tree of Thoughts (ToT) in the Game of 24. Each node
represents a distinct proposal, beginning with the root node and branching out
through the application of single operations by the thought proposer. Subsequent
states are evaluated by the state evaluator for their potential to reach the target
number 24. The ToT retains the top-5 states according to their values.

Xil

List of Tables

2.1

2.2

2.3

24

3.1

Comparison of different approximation methods for GELU. The second column
(Int-only) indicates whether each approximation method can be computed with
integer-only arithmetic. As metrics for approximation error, we report L? and
L distance from GELU across the range of [-4,4].
Integer-only quantization result for RoBERTa-Base and RoBERTa-Large on the
development set of the GLUE benchmark. Baseline is trained by the authors
from the pre-trained models, and I-BERT is quantized and fine-tuned from the
baseline. We also report the difference (Diff) between the baseline accuracy and
the I-BERT accuracy.
Inference latency speedup of INTS inference with respect to FP32 inference for
BERT-Base and BERT-Large. Latency is measured for different sentence lengths
and batch sizes. L
Accuracy of models that use GELU, h-GELU and i-GELU for GELU computa-
tion. Note that the former is full-precision, floating point computation while the
latter two are integer-only approximations.

Perplexity comparison of LLaMA models quantized into 3 and 4 bits using dif-
ferent methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2.
We compare the performance of different methodologies by grouping them based
on their model sizes. In the first group, we compare dense-only SqueezeLLM with
non-grouped GPTQ. In the second group, we compare SqueezeLLM with a spar-
sity level of 0.45% to GPTQ and AWQ with a group size of 128. For comparison,
we add speedup and peak memory usage numbers, which we provide more de-
tails in Table 3.3. Further results for LLaMA-30/65B and other models including
LLaMA-2 7/13/70B are provided in Appendix B.6. T Since SpQR does not release
their kernel implementation, we conduct our best-effort comparison using their
reported speedup numbers. See Section 3.4 for details. ¥ GPTQ with activation
ordering incurs a significant latency penalty as elements in the same channel are
associated with different scaling factors, resulting in distributed memory accesses
(Section 3.4). GPTQ without activation ordering alleviates the latency issue at
the cost of a substantial perplexity degradation.

xiii

3.2

3.3

4.1

5.1

5.2

5.3

5.4

9.5

Comparison of PT(Q methods on zero-shot MMLU accuracy applied to Vicuna
v1l.1 and v1.3. We add peak memory usage in GB for comparison. Additional
results on 5-shot MMLU evaluation can be found in Appendix B.6.
Latency (s) and peak memory usage (GB) of 3-bit LLaMA when generating 128
tokens on an A6000 GPU. The table compares the FP16 baseline, non-grouped
and grouped GPT(Q with activation ordering, and SqueezeLLM with different
sparsity levels. For comparison, we include bitwidth and perplexity (PPL) on the
C4 benchmark. See Table B.11 for additional results on generating 1024 tokens,
and see Table B.12 for additional benchmarking results on an A100 GPU.

The summary of Figure 4.4 which compares the generation quality and latency
speedup of BiLD against vanilla inference with large baseline models. The first
row reports the vanilla inference, and the second and third rows report unaligned
BiLD. The fourth and fifth rows report aligned BiLLD. In both cases of unaligned
and aligned BiLD, we report the speedup with minimal BLEU/ROUGE-L score
degradation (second and fourth rows), and within ~1 point degradation (third
and fifth rows).

Starting from Conformer as the baseline, we redesign the architecture towards
Squeezeformer through a series of systematic studies on macro and micro archi-
tecture. Note that for each design change, the WER on LibriSpeech test-clean
and test-other datasets improves consistently. For comparison, we include the
number of parameters and FLOPs for a 30s input in the last two columns.

Detailed architecture configurations for Conformer-CTC (baseline) and Squeeze-
former. For comparison, we include the number of parameters and FLOPs for a
30s input in the last two columns.
WER (%) comparison on LibriSpeech dev and test datasets for Squeezeformer and

X1v

33

54

other state-of-the-art CTC models for ASR including Conformer-CTC, QuartzNet [141],

CitriNet [178], Transformer-CTC [165], and Efficient Conformer-CTC [13]. For
comparison, we include the number of parameters, FLOPs, and throughput (Thp)
on a single NVIDIA Tesla A100 GPU for a 30s input in the last three columns.
*The performance numbers for Conformer-CTC are based on our own reproduc-
tion to the best performance as possible. All the other performance numbers are
from the corresponding papers. "With and fwithout the grouped attention.

Ablation studies for the design choices made in Squeezeformer, including Tempo-
ral U-Net, LayerNorm, and activation in the convolution module. *Without the
upsampling layer, the model fails to converge.
WER (%) comparison on TIMIT test split for Squeezeformer and Conformer-CTC
that are trained on LibriSpeech with and without finetuning. For comparison,
we also include the number of parameters and FLOPs.

61

6.1

6.2

6.3

B.1

B.2

B.3

B.4

B.5

Accuracy and latency comparison of LLMCompiler compared to the baseline on
different benchmarks, including HotpotQA, Movie Recommendation, our custom
dataset named ParallelQA, and the Game of 24. For HotpotQA and Movie Rec-
ommendation, we frequently observe looping and early stopping (Section 6.4).
To minimize these behaviors as much as possible, we incorporated ReAct-specific
prompting which we denote as ReActf. ReAct (without T) indicates the original
results without this prompting. We do not include the latency for the original Re-
Act since looping and early stopping make precise latency measurement difficult.
Input and output token consumption as well as the estimated cost on HotpotQA,
Movie Recommendation, and our custom dataset named ParallelQA. The cost is

XV

computed based on the pricing table of the GPT models used for each benchmark. 73

Performance and Latency Analysis for WebShop. We evaluate LLMCompiler with
two models: gpt-4 and gpt-3.5-turbo and compare LLMCompiler against three
baselines: ReAct, LATS, and LASER. We report success rate and average score
in percentage. We reproduce the success rate and average score for ReAct, while
those for LATS and LASER are from their papers. N denotes the number of
examples used for evaluation. L

Hardware profiling of latency and memory usage using different kernel imple-
mentations for LLaMA 7B, 13B, 30B, and 65B quantized into 3-bit when gen-
erating 128 tokens on an A6000 GPU. The first row shows the performance of
SqueezeLLM without sparsity as a reference. The second row shows the perfor-
mance of SqueezeLLM with a sparsity level of 0.45% using a standard kernel for
processing a CSR matrix. The third row shows the performance of SqueezeLLM
with a sparsity level of 0.45% using a balanced sparse kernel that allocates 10
nonzeros per thread, thereby more efficiently handling skewed sparse matrices.
Ablation study comparing sensitivity-agnostic and sensitivity-based non-uniform
quantization on the LLaMA-7B model with 3-bit quantization, measured by per-
plexity on the C4 benchmark. The baseline model in FP16 achieves a perplexity
of T.08. . . . e
Perplexity scores on Wikitext2 for the LLaMA-2 7B model, quantized using non-
uniform (SqueezeLLM'’s sensitivity-based quantization) and uniform (RTN) ap-
proaches with 3 and 4-bit precision with varying levels of sparsity.
Perplexity scores on C4 and WikiText2 for the LLaMA-2 7B model, quantized
using SqueezeLLM with 4-bit and 3-bit with different sparsity level. In particular,
the sparsity levels of 3-bit quantization are selected to match their average bit
widths to that of 4-bit quantization without sparsity.
Peak memory requirement in GB when quantizing different LLaMA models.

117

B.6 End-to-end latency breakdown of quantizing different LLaMA models. Latency
is broken down into (i) Fisher information computation on a A100 system and
(ii) sensitivity-based k-means clustering on Intel Xeon Gold 6126 with 48 cores.
In the last column, we provide the end-to-end time for GPTQ as reported in the
original paper.
B.7 Perplexity on C4 and Wikitext2 of the LLaMA2 7B model after 4-bit quantiza-
tion, with varying sizes of the calibration dataset used for computing the Fisher
information matrix. Lo
B.8 Perplexity on Wikitext2 of the LLaMA2 13B and 70B models quantized into 4,
3, and 2 bits using SqueezeLLM and QulP [18]. For QulP, we use the perplexity
numbers that are reported in the original paper as well as our own reproduction
using the official codebase. Following the perplexity evaluation method of the
QulP paper, we use sequence length of 4096 (different from other experiments
that use sequence length of 2048).o
B.9 Perplexity on Wikitext2 of all LLaMA and LLaMA2 models quantized into 4 and
3 bits using SqueezeLLM and OmniQuant [18]. For OmniQuant, we directly use
the perplexity numbers that are reported in the original paper.

Xvi

125

B.10 Perplexity on Wikitext2 of all LLaMA2 models quantized into 2 bits using Squeeze LLM

and OmniQuant [18]. For OmniQuant, we directly use the perplexity numbers
that are reported in the original paper.
B.11 Latency (s) and peak memory usage (GB) of 3-bit LLaMA when generating 1024
tokens on an A6000 GPU. The table compares the FP16 baseline, non-grouped
and grouped GPT(Q with activation ordering, and SqueezeLLM with different
sparsity levels. For comparison, we include bitwidth and perplexity on the C4
benchmark.
B.12 Matrix-vector kernel runtime (in seconds) for generating 128 tokens, benchmarked

on an A100 GPU. Our kernel implementation attains 1.5-2.5x performance speedups

relative to the fp16 matrix-vector multiply kernel across different model sizes with-
out any additional optimizations or tuning. We include GPTQ (with group size
128) without reordering for comparison against the latency of uniform quantiza-
tion with grouping.
B.13 Perplexity comparison of LLaMA-30B and 65B models quantized into 4 and 3
bits using different methods including RTN, GPTQ, AWQ and SpQR on C4 and
WikiText-2. We compare the performance of GPTQ, AWQ, and SqueezeLLM in
groups based on similar model sizes. In the first group, we compare dense-only
SqueezeLLM with non-grouped GPTQ. In the subsequent groups, we compare
SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes. T SpQR does not report their near-3-bit performance. However, in
the case of 65B model, its 3-bit perplexity on Wikitext-2 can be inferred from
the trade-off curve in Figure 8 of their paper. This comparison indicates that the

gap between SpQR and SqueezeLLLM can be larger in the lower-bitwidth regimes. 128

B.14 Perplexity comparison of LLaMA2 models quantized into 4 and 3 bits using dif-
ferent methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2.
We compare the performance of GPTQ, AWQ), and SqueezeLLM in groups based
on similar model sizes. In the first group, we compare dense-only SqueezeLLM
with non-grouped GPTQ. In the subsequent groups, we compare SqueezeLLM
with different levels of sparsity to GPTQ and AWQ with different group sizes.
Note that all GPTQ results are with activation reordering.
B.15 Perplexity comparison of OPT 1.3B, 2.7B, and 6.7B models quantized into 4 and
3 bits using different methods including RTN, GPTQ, AWQ and SpQR on C4 and
WikiText-2. We compare the performance of GPTQ, AWQ, and SqueezeLLM in
groups based on similar model sizes. In the first group, we compare dense-only
SqueezeLLM with non-grouped GPTQ. In the subsequent groups, we compare
SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes. Note that all GPTQ results are with activation reordering. “div”
means that the perplexity is diverged.
B.16 Perplexity comparison of OPT 13B and 30B models quantized into 4 and 3 bits
using different methods including RTN, GPTQ, AWQ and SpQR on C4 and
WikiText-2. We compare the performance of GPTQ, AWQ, and SqueezeLLM in
groups based on similar model sizes. In the first group, we compare dense-only
SqueezeLLM with non-grouped GPTQ. In the subsequent groups, we compare
SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes. Note that all GPTQ results are with activation reordering. “div”
means that the perplexity is diverged. L.
B.17 Comparison of PT(Q methods on five-shot MMLU accuracy applied to Vicuna
v1l.1 and v1.3. We add peak memory usage in GB for comparison.

C.1 Model configurations of the large and small models for each evaluation task. For
comparison, the number of layers, hidden dimension, FFN dimension, and the

XVvil

number of decoder parameters (without embeddings) for each model are provided. 133

C.2 Comparison of BiLLD to other rejection sampling based speculative sampling
methods proposed in [156, 20] on IWSLT and XSUM. For BiLD, we include two
BiLLD configurations: the one that matches latency and the other that matches
BLEU/ROUGE-L scores as compared to the rejection sampling based methods.
Note that BiLD consistently outperforms other methods by achieving either (1)
improved BLEU/ROUGE-L scores with equivalent latency gains, or (2) improved
latency gains while retaining the same performance score.

C.3 Comparison of the percentage of fallback and rollback (rejection) occurrences
of BiLD and other rejection sampling based speculative sampling methods [156,
20]. While achieving even better BLEU/ROUGE-L scores in IWSLT and XSUM,
BiLLD involves noticeably fewer number of fallbacks and rollbacks, resulting in a
significantly better latency speedup. L.

C4

D.1

D.2

D.3

D4

BiLD with nucleus sampling (p=0.8) on IWSLT and XSUM. Similar to the greedy
decoding case, our method achieves a ~1.5x speedup without compromising per-
formance and a ~1.8x speedup with a modest 1-point BLEU/ROUGE score
reduction with sampling. Lo

A latency comparison between using and not using streaming in the Planner.
Streaming yields consistent latency improvement across different benchmarks, as
it enables the Task Fetching Unit to start task execution immediately as each task
is produced by the Planner. The impact of streaming is especially notable in the
ParallelQA benchmark, where tool execution times are long enough to effectively
hide the Planner’s execution time.
Accuracy and latency comparison of LLMCompiler compared to ReAct on the
HotpotQA bridge benchmark. ReAct’ denotes ReAct with additional prompting
that minimizes looping and early stopping, similar to Table 6.1.
Qualitative comparison between LLMCompiler and other frameworks including
ReAct [307], TPTU (SA for Sequential Agent and OA for One-step Agent) [224],
ViperGPT [256] and HuggingGPT [237].
Accuracy and latency speedup comparison of LLMCompiler compared to ReAct
and TPTU (SA for Sequential Agent and OA for One-step Agent) on the Hot-
potQA comparison benchmark using gpt-3.5-turbo. ReAct! and TPTU-SAT de-
note ReAct and TPTU-SA with additional prompting that minimizes looping
and early stopping, respectively, similar to Table 6.1.

XVviil

Xix

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Kurt Keutzer, for
his invaluable advice and guidance throughout my Ph.D. journey. His support extended far
beyond academic advice — his insights on entrepreneurial mindset, ability to interpret indus-
trial trends, and effective communication and presentation skills have profoundly influenced
not only my academic career but also how I navigate life. After 4.5 years of working under
his advice, I learned how to think critically, strategize effectively, and present my work in the
most impactful way. I feel fortunate to have been his student and am deeply appreciative of
his unwavering support to become an individual researcher.

I would also like to extend my appreciation to Amir Gholami, who was my closest collab-
orator throughout my research journey. Amir played a pivotal role in helping me establish
myself in the research world, offering invaluable technical guidance and engaging in countless
in-depth discussions. Beyond technical insights, he taught me invaluable lessons on team
management and collaboration, which will serve as a solid foundation as I continue to grow
as a researcher and leader in the future.

Next, I would like to acknowledge Professor Jiantao Jiao, Professor Gopala Anumanchipalli,
and Professor Song Han for serving on both my qualifying exam and dissertation committee
to provide constructive feedback and valuable advice on shaping my research directions. Ad-
ditionally, I would like to acknowledge Professor Michael Mahoney and Professor Sophia Shao
for their detailed guidance and insights on various projects throughout my Ph.D. journey.

I was very fortunate to have had the opportunity to work with many talented collabora-
tors at Berkeley, from whom I have learned a lot. I would like to thank Coleman Hooper,
Suhong Moon, and Nicholas Lee for our close collaborations on various projects. Working
with them significantly expanded the scope of my research, allowing me to build deeper in-
sights into hardware, algorithms, and many other domains. I would also like to acknowledge
Zhewei Yao, Zhen Dong, Sheng Shen, and Xiuyu Li for our exciting collaborative works
on efficient ML research. My special thanks go to Woosuk Kwon for his consistently in-
sightful feedback on ML systems research. I would also like to acknowledge Karttikeya
Mangalam for his remarkable insights on model training. Without his input, my first model
training project, Squeezeformer, would not have reached its completion. I would like to
appreciate Josh Minwoo Kang, Jenny Hwang, and Hasan Genc for our collaboration on
hardware-software co-design. Finally, I enjoyed the process of brainstorming and building
research ideas together with Rishabh Tiwari and Haocheng Xi, even during our brief over-
lap. T would also like to acknowledge the privilege of mentoring and collaborating with a
group of extraordinary students: Lutfi Eren Erdogan, Ryan Tabrizi, Sid Jha, Monishwaran
Maheswaran, Hiva Mohammadzadeh, Thanakul Wattanawong, Sean Lin, Aditya Tomar,
Kerem Dilmen, Sebastian Zhao, and many others. I greatly enjoyed co-developing ideas and
exploring directions together.

Moreover, I am deeply thankful to my mentors and collaborators from the industry who
have greatly enriched my Ph.D. journey. I would like to acknowledge the Narada team, with
whom I explored the dynamics of entrepreneurship: David Park, Amir Gholami, Zizheng Tai,

XX

Thanakul Wattanawong, Nicholas Lee, Lutfi Eren Erdogan, and Amogh Tantradi. I am also
grateful to Mohammad Shoeybi and Vijay Anand Korthikanti, who mentored me during
my internship at NVIDIA, offering invaluable guidance and support. Additionally, I was
honored to have worked closely with Amir Yazdanbakhsh and Suvinay Subramanian from
Google, Maxwell Horton and Mahyar Najibi from Apple, June Paik from Furiosa AI, and
Woosang Lim from POSCO Holdings. Lastly, I sincerely acknowledge the generous support
of the Korea Foundation for Advanced Studies (KFAS) for the unwavering encouragement
and assistance throughout my journey.

Last but not least, I would like to express my gratitude to my family. Their unwavering
love, support, and belief in me have been the foundation of this journey. Their constant
encouragement and support were the greatest driving force that enabled me to persevere
through challenges and complete this journey.

Chapter 1

Introduction

Al technologies have made unprecedented advances across a wide range of domains includ-
ing natural language processing, computer vision, and speech recognition. However, the
prevalent strategy of scaling mode sizes has introduced substantial inference-time overheads,
leading to challenges in deploying and serving state-of-the-art models efficiently. For exam-
ple, as shown in Figure 1.1, since the introduction of the Transformer architecture [266] in
2017 with 65M parameters, model sizes have grown exponentially — by 410x every two years
— opening up the era of large language models (LLMs), highlighted by GPT-3 with 175B
parameters and other billion-scale models. This growth has far outpaced GPU memory scal-
ing, which has only doubled every two years. Consequently, the expansion in model size has
not only resulted in significant memory requirements, often exceeding the capacity of a sin-
gle GPU, but also introduced challenges in latency, power efficiency, and the computational
costs of running these large models.

To address this issue and reduce the runtime overhead of AI solutions, full-stack op-
timization across the Al inference stack is essential. As shown in Figure 1.2, this thesis
will cover improving efficiency across four key components at different hierarchies of the in-
ference stack: model optimization, inference methods, model architecture, and application.
These span from the hardware-facing layer at the bottom to the user-facing layer at the top,
addressing efficiency holistically from low-level systems to high-level applications.

Model Optimization. Model optimization is a key approach for deploying models effi-
ciently by reducing their size and enabling more efficient use of underlying hardware resources
such as compute and memory. Common techniques include quantization, which compresses
model weights and activations by using lower-bit precision (e.g., 8-bit) instead of standard
32-bit or 16-bit floating-point (i.e., FP32 or FP16), and pruning, which removes less impor-
tant weights from the model. These methods, often applied after model architecture design
and training are completed, enable models to maintain comparable accuracy while signif-
icantly reducing computational and memory requirements, making them more suitable on
resource-constrained environments.

CHAPTER 1. INTRODUCTION 2

Al and Memory Wall

E 10TB Baidu RecSys

10000 [J

Transformer Size: 410x / 2 yrs Switch Transformer
i Al HW Memory: 2x /2 yrs []
1000 y y GShard Megatron-Turing
°] [o
o GPT-3
=] [}
2 100
¥ E
3] Microsoft T-NLG
(=] 4 A100-80 (80GB) H100 (80GB)
o MegatronLM @ ® °
5 10 V100 (32GB) TPUV3 (32GB) [}
8 E 200 (1aca ® L] A100 (40GB)
£ R () ° GPT-2
o] L4 TPUV2 (16GB) °
© 1
o E BERT
. GPT-1
Inception V4 ResNext101 Transformer
0.1 P ° o ®
1 ResNet50 DenseNet
[} (X
cort—P—m""mr- - 7771
2016 2017 2018 2019 2020 2021 2022

YEAR

Figure 1.1: The evolution of the number of parameters of state-of-the-art models over the
years, along with the Al accelerator memory capacity. The number of parameters in Trans-
former models has been exponentially increasing by the rate of 410x every two years, while
the single GPU memory has only been scaled at a rate of 2x every two years.

This thesis introduces quantization techniques aimed at improving both compute and
memory efficiency during Transformer inference. In Chapter 2, we present - BERT, a method
that enhances compute efficiency by leveraging integer-only quantization. By conducting
the entire inference process with integer arithmetic, I-BERT not only achieves up to a 3.5x
speedup in latency, but also enables the deployment of Transformer models on integer-only
hardware. Chapter 3 introduces SqueezeLLM, a quantization technique that optimizes mem-
ory efficiency during LLM inference via extremely low-bit weight quantization. Given that
memory operations often become the major bottleneck in autoregressive generation tasks
of LLMs, SqueezeLLLM offers a precise quantization strategy that preserves the underlying
weight distributions with reduced bitwidths (e.g. 3 or 4 bits), significantly lowering memory
requirements without sacrificing model accuracy.

Inference Methods. To efficiently serve large-scale models, it is also essential to under-
stand their inference dynamics in order to minimize redundant operations and maximize
resource utilization. In Chapter 4, we introduce Big Little Decoder (BiLD), a speculative
decoding framework designed to address the inefficiencies of memory operations during au-
toregressive inference of LLMs. Autoregressive generation is often memory-bound, as each
token generation requires a costly memory operation to load a large weight matrix. There-
fore, it is essential to reduce run-time memory traffic in order to improve inference efficiency.

CHAPTER 1. INTRODUCTION 3

@ i icati LLMCompiler
Al (Agentic) Application Mcomel:
§ § Model Architecture Squeezeformer
[Chapter 5]

Big Little Decoder

-—
g Inference Method (Chapter 4]

6()
Model Optimization

&

Figure 1.2: A full-stack perspective on improving the efficiency of Al solutions, spanning
from low-level systems to high-level applications. From the bottom to the top in this figure,
this thesis covers efficiency improvement across four key components at different layers of
the inference stack: model optimization (Chapter 2 and 3), inference methods (Chapter 4),
model architectures (Chapter 5), and applications (Chapter 5).

I-BERT SqueezellLM
[Chapter 2] [Chapter 3]

BiLLD tackles this challenge by leveraging collaboration between small and large models —
the smaller model quickly generates multiple tokens, while the larger model intermittently
reviews and refines the small model’s predictions. This approach allows the large model
to perform non-autoregressive execution to process multiple tokens within a single itera-
tion, resulting in a 2x inference speedup without compromising the quality of the generated
output.

Model Architectures. Post-training methods for enhancing efficiency, such as model op-
timization and better inference methods, have gained popularity due to their flexibility to
be applied after model design and training; however, further efficiency gains often require
developing new model architectures tailored to specific domains. A key factor in this process
is the use of inductive bias, which plays a critical role in guiding model design. Inductive
bias [185] refers to the assumptions made by a learning algorithm that allow it to generalize
from finite training data to a general model of the domain. For instance, convolutional neural
networks (CNNs) use locality as an inductive bias for image-based tasks in computer vision,
demonstrating how domain-specific inductive biases can inform better architecture design.

CHAPTER 1. INTRODUCTION 4

Transformers have demonstrated impressive performance when provided with a large
amount of data even with their minimal inductive bias. However, this approach may be less
effective for smaller models or in relatively data-scarce domains. In these scenarios, designing
architectures with strong, domain-specific inductive biases can lead to more efficient and
effective model performance, especially when data or computational resources are limited. To
this end, in Chapter 5, we introduce a more compact architecture for speech recognition. By
focusing on the redundancies along the temporal axis of continuous speech signals, we propose
a Temporal U-Net structure that significantly enhances efficiency by effectively shortening
the input sequence length. This design leads to a more accurate speech recognition model
within a fixed resource budget, enhancing both performance and efficiency.

AT Applications. Recent advancements in the reasoning capabilities of LLMs have ex-
panded their potential beyond content generation, enabling them to solve more complex
problems. A key factor behind this expanded problem-solving ability is their function (or
tool) calling capability, which allows LLMs to invoke external functions and integrate their
outputs to assist in task completion. This ability to integrate function calls has enabled a
paradigm shift in how LLM-based applications are developed, leading to the rise of agen-
tic applications. In these applications, LLMs actively interact with their environments by
taking actions and gathering information through external functions, enabling them to au-
tonomously complete user tasks.

As a consequence, to improve the efficiency of these LLM-based applications, it is not
enough to focus solely on optimizing the efficiency of a single model — whether through model
optimization, better inference methods, or more efficient model architectures. It is equally
important to enhance the efficiency of the dynamic interactions between LLMs and their
external functions for building more efficient, scalable, and responsive agentic applications.
In Chapter 6, we introduce LLMCompiler that efficiently orchestrates multiple function calls
by decomposing user inputs into executable tasks and their interdependencies. LLMCompiler
significantly reduces execution latency and costs by running independent tasks in parallel,
while also enhancing the robustness of complex tasks by breaking down user inputs into
smaller, manageable tasks. This approach takes a step toward building more efficient and
scalable agentic applications that are capable of handling increasingly sophisticated work-
flows.

Chapter 2

Compute Optimization: Integer-only
Transformer Quantization

2.1 Introduction

The recent Transformer based Neural Network (NN) models [266], pre-trained from large
unlabeled data (e.g., BERT [43], RoBERTa [171], and the GPT family [213, 214, 12]), have
achieved a significant accuracy improvement when fine-tuned on a wide range of Natural
Language Processing (NLP) tasks such as sentence classification [269] and question answer-
ing [218]. Despite the state-of-the-art results in various NLP tasks, pre-trained Transformer
models are generally orders of magnitude larger than prior models. For example, the BERT-
Large model [43] contains 340M parameters. Much larger Transformer models have been
introduced in the past few years, with even more parameters [214, 12, 240, 223, 305, 153,
215]. Efficient deployment of these models has become a major challenge, even in data
centers, due to limited resources (energy, memory footprint, and compute) and the need
for real-time inference. Obviously, these challenges are greater for edge devices, where the
compute and energy resources are more constrained.

One promising method to tackle this challenge is quantization [142, 48, 292, 320, 293,
119], a procedure that compresses NN models into smaller sizes by representing parameters
and/or activations with low bit precision, e.g., 8-bit integer (INTS) instead of 32-bit floating
point (FP32). Quantization reduces memory footprint by storing parameters/activations in
low precision. With the recent integer-only quantization methods, one can also benefit from
faster inference speed by using low-precision integer multiplication and accumulation, instead
of floating-point arithmetic. However, previous quantization schemes for Transformer based
models use simulated quantization (aka fake quantization), where all or part of operations
in the inference (e.g., GELU [95], Softmax, and Layer Normalization [3]) are carried out
with floating point arithmetic [236, 318, 8] (Figure 2.1 Left and Middle). This approach has
multiple drawbacks for deployment in real edge application scenarios. Most importantly, the
resulting NN models cannot be deployed on neural accelerators or popular edge processors

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER

QUANTIZATION 6
Q(INTS) K (INT8) V (INT8) Q(INTS) K (INT8) V (INT8) Q (INT8) K (INT8) V (INTS)
v v 4 v v
Dequantize) [Matmul(NT8) | [MatMul(INT) |
7 P2y v INT32
[MatMul(FP32) | (Dequantize) INT32
l FP32 v FP32 ¥
([Softmax(FP32)) [softmax(FP32) | [softmax(NT32) |
v FP32
FP32 [Quantize] INT8
v v INT8 \ \
[™Matvul(FP32) | [MmatMul(NT8) | [Matmul(INT8) |
v v v
Simulated quantization I-BERT

Figure 2.1: Comparison of different quantization schemes applied to the self-attention layer
in the Transformer architecture. (Left) Simulated quantization, where all operations are
performed with floating point arithmetic. Parameters are quantized and stored as integer,
but they are dequantized into floating-point for inference. (Middle) Simulated quantization,
where only a part of operations are performed with integer arithmetic. Because the Softmax
in this figure is performed with floating point arithmetic, the input to the Softmax should
be dequantized; and the output from the Softmax should be quantized back into integer
to perform the subsequent integer MatMul. (Right) The integer-only quantization that we
propose. There is neither floating point arithmetic nor dequantization during the entire
inference.

that do not support floating-point arithmetic. For instance, the recent server class of Turing
Tensor Cores has added high throughput integer logic that is faster than single/half-precision.
Similarly, some of the edge processor cores in ARM Cortex-M [1] family for embedded systems
only contain integer arithmetic units, and they can only support NN deployment with the
integer-only kernels [148]. Moreover, one has to consider that compared to the integer-
only inference, the approaches that use floating point arithmetic are inferior in latency and
power efficiency. For chip designers wishing to support BERT-like models, adding floating
point arithmetic logic occupies larger die area on a chip, as compared to integer arithmetic
logic. Thus, the complete removal of floating point arithmetic for inference could have a
major impact on designing applications, software, and hardware for efficient inference at the
edge [1] (Figure 2.1 Right).

While prior work has shown the feasibility of integer-only inference [119, 310], these
approaches have only focused on models in computer vision with simple CNN layers, Batch
Normalization (BatchNorm) [117], and ReLU activations. These are all linear or piece-wise
linear operators. Due to the non-linear operations used in Transformer architecture, e.g.,
GELU, Softmax, and Layer Normalization (LayerNorm), these methods cannot be applied to
Transformer based models. Unlike ReLU, computing GELU and Softmax with integer-only
arithmetic is not straightforward, due to their non-linearity. Furthermore, unlike BatchNorm
whose parameters/statistics can be fused into the previous convolutional layer in inference,

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 7

LayerNorm requires the dynamic computation of the square root of the variance for each
input. This cannot be naively computed with integer-only arithmetic. Another challenge is
that processing GELU, Softmax, and LayerNorm with low precision can result in significant
accuracy degradation [318, 8]. For these reasons, other quantization methods such as [318,
236, 8] keep these operations in FP32 precision.

In this work, we propose [-BERT to address these challenges. I-BERT incorporates a
series of novel integer-only quantization schemes for Transformer based models. Specifically,
our contributions are:

e We propose new kernels for the efficient and accurate integer-only computation of
GELU and Softmax. In particular, we approximate GELU and Softmax with lightweight
second-order polynomials, which can be evaluated with integer-only arithmetic. We
utilize different techniques to improve the approximation error, and achieve a maxi-
mum error of 1.8 x 1072 for GELU, and 1.9 x 1073 for Softmax. See Section 2.2 and 2.2
for details.

e For LayerNorm, we perform integer-only computation by leveraging a known algorithm
for integer calculation of square root [34]. See Section 2.3 for details.

e We use these approximations of GELU, Softmax, and LayerNorm to design integer-
only quantization for Transformer based models. Specifically, we process Embedding
and matrix multiplication (MatMul) with INT8 multiplication and INT32 accumula-
tion. The following non-linear operations (GELU, Softmax, and LayerNorm) are then
calculated on the INT32 accumulated result and then requantized back to INT8. We
represent all parameters and activations in the entire computational graph with inte-
gers, and we never cast them into floating point. See Figure 2.1 (Right) for a schematic
description.

e We apply I-BERT to RoBERTa-Base/Large, and we evaluate their accuracy on the
GLUE [269] downstream tasks. I-BERT achieves similar results as compared to a
full-precision baseline. Specifically, I-BERT outperforms the baseline by 0.3 and 0.5
on the GLUE downstream tasks for RoBERTa-Base and RoBERTa-Large, respectively.
See Table 2.2 in Section 2.3 for details.

e We deploy INT8 BERT models with the integer-only kernels for non-linear operations
on a T4 GPU using TensorRT [193]. We show that INTS inference achieves up to 4x
speedup as compared to FP32 inference. See Table 2.3 in Section 2.3 for details.

2.2 Methodology

Basic Quantization Method

Under uniform symmetric quantization scheme, a real number x is uniformly mapped to
an integer value ¢ € [—2°71 2071 — 1], where b specifies the quantization bit precision. The

formal definition is: .
0= Qla,b.8) = e TS0, (2.1)

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 8

where Q is the quantization operator, Int is the integer map (e.g., round to the nearest
integer), clip is the truncation function, « is the clipping parameter used to control the
outliers, and S is the scaling factor defined as a/(2°~! — 1). The reverse mapping from the
quantized values ¢ to the real values (aka dequantization) is:

T =DQ(q, 5) = Sg~ z, (2:2)

where DQ denotes the dequantization operator. This approach is referred to as uniform sym-
metric quantization. It is uniform because the spacing between quantized values and their
corresponding mapping to real values is constant. However, several different non-uniform
quantization methods have also been proposed [293, 320, 28, 203]. While non-uniform quan-
tization approaches may better capture the distribution of parameters/activations than uni-
form quantization, they are in general difficult to deploy on hardware (as they often require
a look-up table which results in overhead). Thus, we focus only on uniform quantization in
this work. In addition, this approach is symmetric because we clip the values symmetrically
within a range [—a, al; while in asymmetric quantization, the left and right sides of this
range could be asymmetric/different. Finally, we use static quantization where all the scal-
ing factors S are fixed during inference to avoid the runtime overhead of computing them.
See Section A.1 for more details on quantization methods.

Non-linear Functions with Integer-only Arithmetic

The key to integer-only quantization is to perform all operations with integer arithmetic
without using any floating point calculation. Unlike linear (e.g., MatMul) or piece-wise
linear operations (e.g., ReLU), this is not straightforward for non-linear operations (e.g.,
GELU, Softmax, and LayerNorm). This is because the integer-only quantization algorithms
in previous works [310, 119] rely on the linear property of the operator. For example,
MatMul(Sq) is equivalent to .S - MatMul(q) for the linear MatMul operation. This property
allows us to apply integer MatMul to the quantized input ¢ and then multiply the scaling
factor .S to obtain the same result as applying floating point MatMul to the dequantized input
Sq. Importantly, this property does not hold for non-linear operations, e.g., GELU(Sq) #
S - GELU(g). One naive solution is to compute the results of these operations and store
them in a look up table [148]. However, such an approach can have overhead when deployed
on chips with limited on-chip memory, and will create a bottleneck proportional to how fast
the look up table could be performed. Another solution is to dequantize the activations and
convert them to floating point, and then compute these non-linear operations with single
precision logic [318, 8]. However, this approach is not integer-only and cannot be used on
specialized efficient hardware that does not support floating point arithmetic, e.g., ARM
Cortex-M [1].

To address this challenge, we approximate non-linear activation functions, GELU and
Softmax, with polynomials that can be computed with integer-only arithmetic. Computing
polynomials consists of only addition and multiplication, which can be performed with integer
arithmetic. As such, if we can find good polynomial approximations to these operations, then

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 9

Algorithm 1 Integer-only Computation of Second-order Polynomial a(x + b)? + ¢

1: Input: ¢,5: quantized input and scaling factor
2: Output: q,u, Souwr: quantized output and scaling factor

3: function I-PoLry(q, 5) >gS =2
4 gy« [b/S]

5 g+ |c/aS?|

6: Sout — LCLSQJ

T Qout < (q + %)2 + dc

8 return ¢uu, Sout > Gout Sour = a(x + b)% + ¢
9: end function

we can perform the entire inference with integer-only arithmetic. For instance, a second-
order polynomial represented as a(z + b)? + ¢ can be efficiently calculated with integer-only
arithmetic as shown in Algorithm 1.

Polynomial Approximation of Non-linear Functions

There is a large body of work on approximating a function with a polynomial [251]. We use
a class of interpolating polynomials, where we are given the function value for a set of n 4 1
different data points {(xo, fo),- .-, (Zn, fn)}, and we seek to find a polynomial of degree at
most n that exactly matches the function value at these points. It is known that there exists
a unique polynomial of degree at most n that passes through all the data points [281]. We
denote this polynomial by L, defined as:

L(z) = Zfili(z) where [;(z) = H xx—_x; (2.3)
=0 0<j<n ™t Y
JFi

Interestingly for our problem, we have two knobs to change to find the best polynomial
approximation. Since we know the actual target function and can query its exact value for
any input, we can choose the interpolating point (z;, f;) to be any point on the function.
The second knob is to choose the degree of the polynomial. While choosing a high-order
polynomial results in smaller error (see Appendix A.2), there are two problems with this.
First, high-order polynomials have higher computational and memory overhead. Second, it
is challenging to evaluate them with low-precision integer-only arithmetic, as overflow can
happen when multiplying integer values. For every multiplication, we need to use double
bit-precision to avoid overflow. As such, the challenge is to find a good low-order polynomial
that can closely approximate the non-linear functions used in Transformers. This is what
we discuss next, for GELU and Softmax, in Section 2.2 and 2.2, respectively, where we show
that one can get a close approximation by using only a second-order polynomial.

n Algorithm 1, |-] means the floor function. Note that, gy, gc, and S, can be pre-computed under
static quantization. That is to say, there is no floating point calculation, e.g., of S/b, in inference.

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 10

Integer-only GELU

GELU [95] is a non-linear activation function used in Transformer models, defined as:

GELU(z) :=x - % [1 + erf(%)])
(2.4)

where erf(x) : / exp (—t%)dt.
\/_

Here, erf is the error function. Figure 2.2 shows the behaviour of the GELU function
(shown in red). GELU has a similar behaviour as ReLU (shown in green) in the limit of
large positive/negative values, but it behaves differently near zero. Direct evaluation of the
integration term in erf is not computationally efficient. For this reason, several different
approximations have been proposed for evaluating GELU. For example, [95] suggests using
Sigmoid to approximate erf:

GELU(z) =~ zo(1.702x), (2.5)

where o(+) is the Sigmoid function. This approximation, however, is not a viable solution for
integer-only quantization, as the Sigmoid itself is another non-linear function which requires
floating point arithmetic. One way to address this is to approximate Sigmoid with the
so-called hard Sigmoid (h-Sigmoid) proposed by [106] (designed in the context of efficient
computer vision models) to obtain an integer-only approximation for GELU:

ReLUG(1.702z + 3)
6

We refer to this approximation as h-GELU. Although h-GELU can be computed with integer
arithmetic, we observed that replacing GELU with h-GELU in Transformers results in a
significant accuracy drop. This is due to the large gap between h-GELU and GELU as
depicted in Table 2.1.2 Figure 2.2 (left) also shows the noticeable gap between those two
functions.

A simple way to address the above problem is to use polynomials to approximate GELU,
by solving the following optimization problem:

h-GELU(z) :=z ~ GELU(x). (2.6)

2

mm—HGELU()—x- 1{1%—L(

a,b,c

\if’} (2.7)

st. L(z) =a(x+b)? +

where L(x) is a second-order polynomial used to approximate the erf function. Directly
optimizing Equation 2.7 results in a poor approximation since the definition domain of erf
contains the entire real numbers. To address this, we only optimize L(z) in a limited range
since erf approaches to 1 (—1) for large values of . We also take advantage of the fact that

2Later in our ablation study, we show this can lead to accuracy degradation of up to 2.2 percentages, as
reported in Table 2.4.

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER

QUANTIZATION 11

—— y = RelU(x) y = h-GELU(x) L0l — y=exp(x) — y = i-exp(x)

Lol — ¥=GEW(X) — y=i-GELU(X)
0.00 [— 08

1.5{-0.05
-0.10 0.6

1.0{-0.15

0.4

0.2

0.0

Figure 2.2: (Left) Comparison between RELU, GELU, h-GELU and i-GELU. (Right) Com-
parison between exponential (exp) and our integer-only exponential (i-exp).

Table 2.1: Comparison of different approximation methods for GELU. The second column
(Int-only) indicates whether each approximation method can be computed with integer-only
arithmetic. As metrics for approximation error, we report L? and L distance from GELU
across the range of [-4, 4].

Int-only L2 dist L dist

zo(1.702z) X 0.012 0.020
h-GELU v 0.031 0.068

i-GELU (Ours) v 0.0082 0.018

erf is an odd function (i.e., erf(—x) = —erf(z)), and thus only consider approximating it in
the positive domain. After finding the best interpolating points, i.e., (z;, f;) in Equation 2.3,
and applying these adjustments we arrive at the following polynomial:

L(z) = sgn(z) [a(clip(|z|, max = —b) + b)* + 1], (2.8)

where a = —0.2888 and b = —1.769, and sgn denotes the sign function.® Using this polyno-
mial we arrive at i-GELU, the integer-only approximation for GELU, defined as:

2 V2

Algorithm 2 summarizes the integer-only computation of GELU using i-GELU. We il-
lustrate the behaviour of i-GELU in Figure 2.2 (left). As one can see, i-GELU closely

LGELU®x) = 2 - — {1 + L(i)] . (2.9)

3Note that L(x) is approximating GELU in the range of [0, —b].

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 12

Algorithm 2 Integer-only GELU

1: Input: ¢,S: quantized input and scaling factor
2: Output: guu, Sowr: quantized output and scaling factor

3: function I-ERF(q, 5) >gS=ux
4: a,b,c <+ —0.2888,—1.769, 1

5. Gsgn, q < sgn(q), clip(|g|, max = —b/5)

6: qr,Sp < I-PoLy(q, S) with a,b,c > Equation 2.8
7 Qout, Sout — QsgnqdL, SL

8 return ¢uus, Sout > QoutSout == erf(z)
9: end function

10: function I-GELU(q, 5) >gS=ux
11: Qerf, Serf I_ERF(Q7 S/\/i)

12: 1 < Ll/serfj

13: Qout, Sout — Q(qerf + Ch), SSerf/2

14: return Gouts Sout > qgutSout ~ GELU(IL‘)
15: end function

[N)

approximates GELU, particularly around the origin. We also report the approximation er-
ror of i-GELU along with h-GELU in Table 2.1, where i-GELU has an average error of
8.2 x 107 and a maximum error of 1.8 x 1072, This is ~ 3x more accurate than h-GELU
whose average and maximum errors are 3.1 x 1072 and 6.8 x 1072, respectively. Also, i-GELU
even slightly outperforms the Sigmoid based approximation of Equation 2.5, but without us-
ing any floating point arithmetic. Note that computing the Sigmoid requires floating point.
Later in the results section, we show that this improved approximation, actually results in
better accuracy of i-GELU as compared to h-GELU (see Table 2.4).

Integer-only Softmax

Softmax normalizes an input vector and maps it to a probability distribution:

Softmax(x); := ﬂ, where x = [z1,..., 2] (2.10)

Z?:l EXp T

Approximating the Softmax layer with integer arithmetic is quite challenging, as the expo-
nential function used in Softmax is unbounded and changes rapidly. As such, prior Trans-
former quantization techniques [8, 318] treat this layer using floating point arithmetic. Some
prior work have proposed look up tables with interpolation [231], but as before we avoid
look up tables and strive for a pure arithmetic based approximation. In addition, although
[92] proposes polynomial approximation methods for the exponential function, it uses signif-
icantly high-degree polynomials, and is only applicable on a limited finite domain.

Similar to GELU, we cannot use a high-order polynomial, but even using such polynomial
is ineffective in approximating the exponential function in Softmax. However, it is possible

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 13

Algorithm 3 Integer-only Exponential and Softmax

1: Input: ¢,S: quantized input and scaling factor
2: Output: guu, Sowr: quantized output and scaling factor

3: function I-ExP(q, S) >gS ==
4: a,b,c <+ 0.3585,1.353,0.344

5 Qme < [In2/5]

6: 24 [—q/qm2]
7.
8
9

dp < 4t Zqm2 > ¢S =p
qr, S < I-PoLY(g,, S) with a,b, ¢ > Equation 2.13
Gout, Sout — QL>>27 SL

10: return quu, Sout > GoutSout = €xp(x)

11: end function

12: function I-SOFTMAX(q, S) >gS ==
13: ¢+ q—max(q)

14 Qexp, Sexp < I-EXP(G, S)

15: Qout, Sout < Qexp/sum(Qexp>7 Sexp

16: return ¢uus, Sout > QoutSout = Softmax(x)
17: end function

to address the problem by limiting the approximation range of Softmax. First, we subtract
the maximum value from the input to the exponential for numerical stability:

€xXp (xz - l'max)

D251 €XD (Z) — Tax)

Softmax(x); = : (2.11)

where Ty, = max;(x;). Note that now all the inputs to the exponential function, i.e.,
T; = T; — Tmax, Decome non-positive. We can decompose any non-positive real number z as
7 = (—In2)z 4 p, where the quotient z is a non-negative integer and the remainder p is a
real number in (—1In 2, 0]. Then, the exponential of can be written as:

exp(Z) = 277 exp(p) = exp(p)>>z, (2.12)

where >> is the bit shifting operation. As a result, we only need to approximate the expo-
nential function in the compact interval of p € (—In2,0]. This is a much smaller range as
compared to the domain of all real numbers. Interestingly, a variant of this method was used
in the Itanium 2 machine from HP [259, 39], but with a look up table for evaluating exp(p).

We use a second-order polynomial to approximate the exponential function in this range.
To find the coefficients of the polynomial, we minimize the L? distance from exponential
function in the interval of (—In2,0]. This results in the following approximation:

L(p) = 0.3585(p + 1.353)% + 0.344 ~ exp(p). (2.13)

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 14

Algorithm 4 Integer-only Square Root

1: Input: n: input integer
2: Output: integer square root of n, i.e., |/n]

3: function I-SQRT(n)
4: if n =0 then return 0
Intialize zo to 2P%#(/21 and i to 0
repeat
Tit1 + [(zi + [n/zi])/2]
if x;11 > x; then return z;
0: elset+—1+1
10: end function

Substituting the exponential term in Equation 2.12 with this polynomial results in i-exp:
i-exp(Z) := L(p)>>z (2.14)

where z = |—%/In2| and p = & + zIn2. This can be calculated with integer arithmetic.
Algorithm 3 describes the integer-only computation of the Softmax fucntion using i-exp.
Figure 2.2 (right) plots the result of i-exp, which is nearly identical to the exponential
function. We find that the largest gap between these two functions is only 1.9 x 1073,
Considering that 8-bit quantization of a unit interval introduces a quantization error of
1/256 = 3.9 x 1073, our approximation error is relatively negligible and can be subsumed
into the quantization error.

2.3 Results

Integer-only LayerNorm

LayerNorm is commonly used in Transformers and involves several non-linear operations,
such as division, square, and square root. This operation is used for normalizing the input
activation across the channel dimension. The normalization process is described as:

c
— 1 1
T = xa,u where ,uzaz:xi and o = EZ(:@;—M)?. (2.15)

Here, 1 and o are the mean and standard deviation of the input across the channel dimension.
One subtle challenge here is that the input statistics (i.e., 4 and o) change rapidly for NLP
tasks, and these values need to be calculated dynamically during runtime. While computing
1 is straightforward, evaluating o requires the square-root function.

The square-root function can be efficiently evaluated with integer-only arithmetic through
an iterative algorithm proposed in [34], as described in Algorithm 4. Given any non-negative

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 15

Table 2.2: Integer-only quantization result for RoBERTa-Base and RoBERTa-Large on the
development set of the GLUE benchmark. Baseline is trained by the authors from the pre-
trained models, and I-BERT is quantized and fine-tuned from the baseline. We also report
the difference (Diff) between the baseline accuracy and the I-BERT accuracy.

(a) RoBERTa-Base

Precision Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Aveg.

Baseline FP32 X 87.8 87.4 90.4 92.8 946 61.2 91.1 909 78.0 86.0
I-BERT INTS 4 87.5 87.4 90.2 92.8 95.2 62.5 90.8 91.1 79.4 86.3
Diff -0.3 0.0 -0.2 00 406 +1.3 -03 +0.2 +1.440.3

(b) RoBERTa-Large

Precision Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLLA STS-B MRPC RTE Avg.

Baseline FP32 X 90.0 89.9 92.8 94.1 96.3 68.0 92.2 91.8 86.3 89.0
I-BERT INTS8 4 90.4 90.3 93.0 94.5 96.4 69.0 92.2 93.0 87.0 89.5
Dift +0.4 +0.4 +0.2 +04 +0.1 +1.0 00 +1.2 +0.7 40.5

integer input n, this algorithm iteratively searches for the exact value of |\/n] based on
Newton’s Method and only requires integer arithmetic. This algorithm is computationally
lightweight, as it converges within at most four iterations for any INT32 inputs and each
iteration consists only of one integer division, one integer addition, and one bit-shifting
operation. The rest of the the non-linear operations in LayerNorm such as division and
square are straightforwardly computed with integer arithmetic.

In this section, we first measure the accuracy of I-BERT using the General Language
Understanding Evaluation [269] (GLUE) benchmark (Section 2.3). Then, we discuss the
latency speedup of I-BERT using direct hardware deployment and compare it with pure
FP32 model (Section 2.3). Finally, we conduct ablation studies to showcase the effectiveness
of our integer-only approximation methods (Section 2.3).

Accuracy Evaluation on GLUE

We implement I-BERT on the RoBERTa [171] model using [197]. For the integer-only
implementation, we replace all the floating point operations in the original model with the
corresponding integer-only operations that were discussed in Section 2.2. In particular, we
perform MatMul and Embedding with INT8 precision, and the non-linear operations with
INT32 precision, as using INT32 for computing these operations has little overhead. See
Section A.3 for implementation details. For each of the GLUE downstream tasks, we train
both FP32 baseline and integer-only [-BERT models, and evaluate the accuracy on the
development set. See Appendix A.3 and A.3 for training and evaluation details. While we

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 16

Table 2.3: Inference latency speedup of INTS inference with respect to FP32 inference for
BERT-Base and BERT-Large. Latency is measured for different sentence lengths and batch
sizes.

Sequence Length 128 256

Batch Size 12 4 8|1 2 4 g |Aw
BERT-Base |2.42 3.36 3.39 3.31|3.11 2.96 2.94 3.15| 3.08
BERT-Large |3.20 400 3.98 3.81|3.19 3.51 3.37 3.40 | 3.56

only test RoBERTa-Base/Large, our method is not restricted to RoBERTa. The integer-
only approximations can be performed for any NN models including Transformers that uses
similar non-linear operations.

The integer-only quantization results for RoBERTa-Base/Large are presented in Ta-
ble 2.2. As one can see, -BERT consistently achieves comparable or slightly higher ac-
curacy than baseline. For RoBERTa-Base, I-BERT achieves higher accuracy for all cases
(up to 1.4 for RTE), except for MNLI-m, QQP, and STS-B tasks, where we observe a small
accuracy degradation up to 0.3. We observe a similar behaviour on the RoBERTa-Large
model, where I-BERT matches or outperforms the baseline accuracy for all the downstream
tasks. On average, I-BERT outperforms the baseline by 0.3/0.5 for RoOBERTa-Base/Large,
respectively.

Latency Evaluation

We evaluate the latency speedup of INTS8 inference of I-BERT, by direct deployment on
a Tesla T4 GPU with Turing Tensor Cores that supports accelerated INTS8 execution. Al-
though T4 GPU is not a pure integer-only hardware, we select it as our target device due to
its extensive software support [193, 25], and in particular Nvidia’s TensorRT library [193].
Furthermore, as we do not exploit any T4-specific exclusive features or requirements, our
work can be extensively deployed on other hardware as well. See Section A.3 for the detailed
environment setup. For evaluation, we implement two variants of BERT-Base/Large: (1)
pure FP32 models using naive FP32 kernels for non-linear operations; and (2) quantized
INT8 models using customized kernels for the non-linear operations. The customized ker-
nels compute GELU, Softmax, and LayerNorm based on the integer-only methods described
in Section 2.2. We measure the inference latency for different sequence lengths (128 and 256)
and batch sizes (1, 2, 4, and 8).

Table 2.3 shows the inference latency speedup of INT8 models with respect to FP32
models. As one can see, the INT8 inference of I-BERT is on average 3.08x and 3.56x
faster than pure FP32 inference for BERT-Base and BERT-Large, respectively, achieving
up to 4.00x speedup. The result implies that, when deployed on specialized hardware that
supports efficient integer computations, [-BERT can achieve significant speedup as com-

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 17

Table 2.4: Accuracy of models that use GELU, h-GELU and i-GELU for GELU computation.
Note that the former is full-precision, floating point computation while the latter two are
integer-only approximations.

Int-only QNLI SST-2 MRPC RTE Avg.

GELU X 944 96.3 92.6 8.9 923
h-GELU v 943 96.0 92.8 84.8 92.0

i-GELU 4 94.5 96.4 93.0 87.0 92.7

pared to FP32 models. Further speedups are possible with NVIDIA’s custom Transformer
plugins [187] which fuse the multi-head attention and Softmax layers (see Section A.3).

While the greatest value of our work will become evident when our approach enables
quantization on lower-end microprocessors without floating-point hardware, this demonstra-
tion must wait for improved software support for implementing quantized NN models on
those processors. In the meantime, we believe the promise of our approach is illustrated by
these latency reductions shown above.

Ablation Studies

Here, we perform an ablation study to show the benefit of i-GELU as compared to other
approximation methods for GELU, and in particular h-GELU in Equation 2.6. For compar-
ison, we implement two variants of I-BERT by replacing i-GELU with GELU and h-GELU,
respectively. The former is the exact computation of GELU with floating point arithmetic,
and the later is another integer-only approximation method for GELU (see Section 2.2). We
use RoBERTa-Large model as baseline along with the QNLI, SST-2, MPRC, and RTE tasks.
All models are trained and fine-tuned according to the procedure described in Section 2.3,
and the final accuracies are reported in Table 2.4.

As one can see, replacing GELU with h-GELU approximation results in accuracy degra-
dation for all downstream tasks except for MRPC. Accuracy drops by 0.5 on average and
up to 1.1 for RTE task. Although accuracy slightly improves for MRPC, the amount of
increase is smaller than replacing GELU with i-GELU. This empirically demonstrates that
h-GELU is not sufficiently tight enough to approximate GELU well. Approximating GELU
with i-GELU results in strictly better accuracy for all four downstream tasks than h-GELU.
In particular, i-GELU outperforms h-GELU by 0.7 on average, and it achieves comparable
or slightly better result to the non-approximated full-precision GELU. i-GELU also performs
better than GELU, which is quite interesting, but at this time, we do not have an explanation
for this behaviour.

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 18

2.4 Related Work

Efficient Neural Network. There are several different approaches to reduce the memory
footprint, latency, and power of modern NN architectures. These techniques can be broadly
categorized into: (1) pruning [89, 158, 179, 151, 186, 303, 183, 55, 75, 217, 180, 227]; (2)
knowledge distillation [100, 184, 209, 221, 228, 253, 122, 258, 264, 255, 276, 298]; (3) efficient
neural architecture design [116, 226, 257, 106, 149, 38|; (4) hardware-aware NN co-design [87,
74, 145]; and (5) quantization. Here, we only focus on quantization and briefly discuss the
related work.

Quantization. For quantization, the parameters and/or activations are represented with
low bit precision [28, 32, 48, 119, 219, 320, 337, 157, 293, 33, 273]. While this line of research
mostly focuses on CNN models, there have been recent attempts to introduce quantization
techniques into Transformer based models as well. For example, [8] and [318] propose an 8-bit
quantization scheme for Transformer based models and compress the model size up to 25% of
the original size. Another work [236] applies uniform and mixed-precision to quantize BERT
model, where a second-order sensitivity method is used for the mixed-precision setting. [56]
quantizes a different subset of weights in each training iteration to make models more robust
to quantization. Recently, there have been attempts to quantize BERT with even lower
precision. [317] presents a 3/4-bit centroid-based quantization method that does not require
fine-tuning. [326, 6] leverage knowledge distillation [100] to ternarize/binarize weights. [123]
combines knowledge distillation and learned step size quantization [53] method to achieve
up to 2-bit quantization of BERT.

However, to the best of our knowledge, all of the prior quantization work on Transformer
based models use simulated quantization (aka fake quantization), where all or part of opera-
tions are performed with floating point arithmetic. This requires the quantized parameters
and/or activations to be dequantized back to FP32 for the floating point operations. For
example, [236, 317] perform the entire inference using floating point arithmetic, as schemat-
ically shown in Figure 2.1 (left). While [8, 318, 326, 6] attempt to process Embedding
and MatMul efficiently with integer arithmetic, they keep the remaining operations (i.e.,
GELU, Softmax, and LayerNorm) in FP32, as illustrated in Figure 2.1 (middle). However,
our method I-BERT uses integer-only quantization for the entire inference process—i.e.,
without any floating point arithmetic and without any dequantization during the entire
inference. This is illustrated in Figure 2.1 (right). This allows more efficient hardware de-
ployment on specialized accelerators or integer-only processors [1] as well as faster and less
energy-consuming inference. While we focus on uniform quantization, our method is com-
plementary to other mixed and/or low-precision methods, and can be deployed for those
settings as well.

To briefly discuss, there are also several quantization works for computer vision. [119]
introduces an integer-only quantization scheme for popular CNN models, by replacing all
floating point operations (e.g., convolution, MatMul, and ReLU) with integer operations.
Similarly, the recent work of [310] extends this approach to low precision and mixed precision
dyadic quantization, which is an extension of integer-only quantization where no integer

CHAPTER 2. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 19

division is used. However, both of these works are limited to CNN models that only contain
linear and piece-wise linear operators, and they cannot be applied to Transformer based
models with non-linear operators, e.g., GELU, Softmax, and LayerNorm. Our work aims
to address this limitation by extending the integer-only scheme to the Transformer based
models without accuracy drop.

2.5 Conclusions

We have proposed I-BERT, a novel integer-only quantization scheme for Transformers,
where the entire inference is performed with pure integer arithmetic. Key elements of I-
BERT are approximation methods for nonlinear operations such as GELU, Softmax, and
LayerNorm, which enable their approximation with integer computation. We empirically
evaluated I-BERT on RoBERTa-Base/Large models, where our quantization method im-
proves the average GLUE score by 0.3/0.5 points as comapred to baseline. Furthermore,
we directly deployed the quantized models and measured the end-to-end inference latency,
showing that I-BERT can achieve up to 4.00x speedup on a Tesla T4 GPU as compared to
floating point baseline. As part of future work, one could consider using our approximation
to improve the training speed as well. For instance, one could consider replacing GELU
with i-GELU during training. Also, further studies are needed to evaluate the performance
benefit of i-GELU as compared to GELU.

20

Chapter 3

Memory Optimization:
Dense-and-Sparse Quantization for
Large Language Models

3.1 Introduction

Recent advances in Large Language Models (LLMs) trained on massive text corpora, with
up to hundreds of billions of parameters, have showcased their remarkable problem-solving
capabilities across various domains [12, 216, 229, 50, 101, 30, 244, 325, 260, 262]. However,
deploying these models for inference has been a significant challenge due to their demanding
resource requirements. For instance, the LLaMA-65B model requires at least 130GB of
RAM to deploy in FP16, which exceeds current GPU capacity. Even storing such large-sized
models has become costly and complex.

As will be discussed in Section 3.2, the main performance bottleneck in LLM inference for
generative tasks is memory bandwidth rather than compute. This means that the speed at
which we can load and store parameters becomes the primary latency bottleneck for memory-
bound problems, rather than arithmetic computations. However, recent advancements in
memory bandwidth technology have been significantly slow, compared to the improvements
in computes, leading to the phenomenon known as the Memory Wall [207, 72]. Consequently,
researchers have turned their attention to exploring algorithmic methods to overcome this
challenge.

One promising approach is quantization, where model parameters are stored at lower
precision, instead of the typical 16 or 32-bit precision used for training. For instance, it has
been demonstrated that LLM models can be stored in 8-bit precision without performance
degradation [311], where 8-bit quantization not only improves the storage requirements by
half but also has the potential to improve inference latency and throughput. As a result,
there has been significant research interest in quantizing models to even lower precisions.
A pioneering approach is GPTQ [61] which uses a training-free quantization technique that

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION

FOR LARGE LANGUAGE MODELS 21
LLaMA-7B Performance (3-bit) LLaMA Performance
7504 % S0Q-7B-3bit —e— Baseline (FP16)
282 Non \ —k— SqueezelLM (Ours)
L uniform 7.251 % SQ-7B-4bit
< \ o 7B
() <t 7.00 I
c - O 0o * 1
S 18.0 Sensitivity SOTA Uniform s 6.75 SQ-13B-3bit\ |
%‘ 7 __ocased ____ Quantization | > | sQ-13B-abit X\ | Same size \,138
b] D&S 5 6.501 0.85 beltter PPL |
g 7.8 Sensitive D&S > V !
o values Outlier S 6.25 - Same Size
values & $Q-30B-3bit X better PPL
76 6.001 SQ-30B-4bit *\¢ o208
s Ok
5.75 4 Q-65B-3bit "\ 658
$Q-65B-4bit ¥ N
7.4 T T T u y u T
2 4 8 16 32 64 128
RTN SqueezelLM Model Size (GB, log scale)

Figure 3.1: (Left) SqueezeLLM incorporates two key approaches: (i) sensitivity-based non-
uniform quantization (Section 3.3), where quantization bins are allocated closer to sensitive
values, and (ii) the Dense-and-Sparse decomposition (Section 3.3), which retains both sen-
sitive values and outlier values as full-precision sparse format. When applied to LLaMA-7B
with 3-bit quantization, our method outperforms the state-of-the-art methods [61, 166] by a
large perplexity margin of over 0.3 on the C4 benchmark. (Right) By applying our methods
to LLaMA models of varying sizes, we can achieve improved trade-offs between perplexity
and model size.

achieves near-lossless 4-bit quantization for LLM models with over tens of billions of param-
eters. However, achieving high quantization performance remains challenging, particularly
with lower bit precision and for relatively smaller models (e.g., < 50B parameters).
Contributions. In this paper, we conduct an extensive study of low-bit precision quan-
tization, and we identify limitations in existing approaches. Based on the insight that
the memory, rather than the compute, is the primary bottleneck in LLM inference with
generative tasks, we introduce SqueezeLLLM, a post-training quantization framework with
a novel sensitivity-based non-uniform quantization and Dense-and-Sparse decomposition.
These techniques enable lossless compression even at precisions as low as 3 bits with reduced
model sizes and faster inference without compromising model performance. Our detailed
contributions include:

e Sensitivity-based Non-Uniform Quantization: We demonstrate that uniform
quantization of prior works is sub-optimal for LLM inference for two reasons. First, the
weight distributions in LLMs exhibit clear non-uniform patterns (Figure 3.3). Second,
the inference computation in prior works does not fully benefit from uniform quanti-
zation as the arithmetic is performed in FP16 precision, not in reduced precision. To
address these, we propose a novel sensitivity-based non-uniform quantization method
to achieve more optimal LLM quantization, which significantly improves the perplexity
of 3-bit LLaMA-7B from 28.26 of uniform quantization to 7.75 on C4 (Section 3.3).

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 22

e Dense-and-Sparse Quantization: The weights in LLMs contain significant outliers,
making low-bit quantization extremely challenging. To address this, we propose a
simple solution that decomposes weights into dense and sparse components. The sparse
part holds outlier values in full precision using efficient sparse storage methods, and
the dense part can have a more compact range to aid quantization. By extracting only
0.45% of the weight values as the sparse component, we further improve the perplexity
of LLaMA-7B from 7.75 to 7.58 on C4 (Section 3.3).

e Evaluation: We extensively test SqueezeLLM on various models on language modeling
tasks using the C4 and WikiText2 datasets as well as on the MMLU [97] and Vicuna
benchmarks [27] (Section 3.4). Furthermore, our deployed models on A6000 GPUs
also exhibit significant latency gains of up to 2.4x compared to the FP16 baseline,
showcasing the effectiveness of our method in terms of both quantization performance
and inference efficiency (Section 3.4).

3.2 Memory Wall

Inference behavior broadly falls into two categories: compute-bound inference that is limited
by computational throughput, and memory-bound inference that is bottlenecked by the rate
at which data can be fed into the processing cores from memory. Arithmetic intensity, the
ratio of compute to memory operations, is a typical metric used to assess this behavior.
High and low arithmetic intensity indicates a compute-bound and memory-bound problem,
respectively. For memory-bound problems, the speedup can be achieved by reducing the
memory traffic rather than compute since the compute units in hardware are often under-
utilized waiting to receive data from memory.

Generative LLM inference exhibits extremely low arithmetic intensity compared to other
workloads! [133]. This is because it consists almost entirely of matrix-vector operations,
which limits the data reuse as each weight load can only process a single vector for a single
token, and cannot be amortized across the multiple vectors for different tokens. This low
arithmetic intensity needs to be contrasted with the compute operations on a typical GPU
which is orders of magnitude higher than the memory operations.? The disparity between
compute and memory bandwidth, along with the growing memory requirements of deep
learning, has been termed the Memory Wall problem [72]. To further illustrate this problem,
we used a simple roofline-based performance modeling approach [133] to study LLaMA-7B’s
runtime on an A5000 GPU with different bit precisions (Figure 3.2). While we assume that
all computations are kept at FP16, we see that the latency decreases linearly as we reduce
the bit precision, indicating that the main bottleneck is memory, not compute.

ITo be precise, we limit this discussion to single batch inference where the arithmetic involves matrix-
vector operations. For large batch inference, compute can become important.

2For instance, A5000 GPU has peak computational throughput of 222 TeraFLOPs per second, which is
290x higher than the peak memory bandwidth of 768 GigaBytes per second.

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION

FOR LARGE LANGUAGE MODELS 23
Sequence Length 128 Sequence Length 2048
1.0 1.0 Nonlinear Operations
MHA Act-to-Act Matmuls

) MHA FC Layers

£ 0.8 0.81 W= FFN FC Layers

€

3

@ 0.6

©

()

N

g 0.4 1

S

<0.2
0.0

0.0-
16-bit 8-bit 4-bit 16-bit 8-bit 4-bit
Weight Bit Precision Weight Bit Precision

Figure 3.2: Normalized runtime for LLaMA-7B when reducing the bit precision for the
weights with sequence lengths of 128 (left) and 2048 (right). Results were obtained using
a roofline-based performance model for an A5000 GPU. Reducing only the precision of the
weights (and not the activations) is sufficient to obtain significant latency reductions.

In summary, in generative LLM inference, loading weights into memory is the primary
bottleneck, while the cost of dequantization and FP16 computation is relatively small. Thus,
by quantizing just the weights to lower precision, while leaving the activations in full pre-
cision, we can attain significant speedup as well as reduced model size. Given this insight,
the appropriate strategy is to minimize the memory size even if it may add overhead to
arithmetic operations.

3.3 Methodology

Sensitivity-Based Non-uniform Quantization

As in Figure 3.3 (Top), weight distributions in LLMs demonstrate non-uniform patterns. The
main task for quantization is to find an optimal way to allocate distinct quantized values
(e.g., 8 for 3 bits) in a way that preserves model performance. A widely used approach in
LLM quantization works is uniform quantization, where the weight range is evenly divided
into bins. This has two main issues. First, uniformly distributing quantized values is sub-
optimal as weight distributions are typically non-uniform. Second, while the main advantage
of uniform quantization is efficient integer computation, this does not lead to end-to-end
latency improvement in memory-bound LLM inference. Therefore, we have chosen non-
uniform quantization, which allows for a more flexible allocation of the representative values.

Finding an optimal non-uniform quantization configuration translates into solving a k-
means problem. Given a weight distribution, the goal is to determine k centroids that
best represent the values (e.g., k=8 for 3-bit). This optimization problem for non-uniform

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 24

Original Weight Distribution

v Top-20 Sensitive Values

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Non-uniform Quantization

s Uniform
Il Sensitivity-aware Non-uniform
¥ Top-20 Sensitive Values

anin

-008 -0.06 —-0.04 =-002 000 002 004 006 0.8
Figure 3.3: (Top) The weight distribution of one output channel in LLaMA-7B. The top-20
sensitive values are marked in red. (Bottom) Weight distributions after 3-bit quantization
using uniform and sensitivity-based non-uniform quantization. In the latter case, the quan-
tized values are clustered around the sensitive values.

quantization can be formulated as

Qw)” = argéﬂinHW — Wollz, (3.1)

where W denotes the weights and Wy, is the corresponding quantized weights (i.e., [Q(w)
for w € W), represented by k distinct values {qi, - -- , ¢z }. Here, the optimal solution Q(w)*
can be obtained by 1-dimensional k-means clustering, which clusters the parameters into
k clusters and assign the centroid of each cluster as ¢;’s. While this already outperforms
uniform quantization, we propose an improved sensitivity-based clustering algorithm.
Sensitivity-Based K-means Clustering. The quantization objective is to represent the
model weights with low-bit precision with minimal perturbation in the model output [47].
While quantization introduces perturbations in each layer, we need to minimize the overall
perturbation with respect to the final loss, rather than focusing on individual layers, as it
provides a more direct measure of the end-to-end performance degradation after quantiza-
tion [151]. To achieve this, we need to place the k-means centroids near the values that are
more sensitive with respect to the final loss, rather than treating all weight values equally,
as in Equation 3.1. To determine more sensitive values, we perform Taylor expansion to
analyze how the loss changes in response to perturbations in the weights W:

LWq) ~ LW) —g" (W — W) (3.2)
+ %(W — Wo)TH(W — W) (3.3)

where g and H = E[%E(W)] are the gradient and Hessian of the loss at W. Assuming

that the model has converged, the gradient g can be approximated as zero which gives us

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 25

the following formula for computing how much the model gets perturbed after quantization:

Q(w)* = argénin(W — W) TH(W — Wy). (3.4)

In the new optimization target, as compared to Equation 3.1, the perturbation of each weight
after quantization, i.e., W — W), is weighted by the scaling factor introduced by the second-
order derivative, H. This highlights the importance of minimizing perturbations for weights
with large Hessian values, as they have a greater impact on the overall perturbation of the
final output. In other words, the second-order derivative serves as a measure of importance
for each weight value.

Due to the cost of computing the Hessian, we use an approximation to the Hessian based
on the Fisher information matrix J, which can be calculated over a sample dataset D as
H~F= ﬁ > deD gaga " . This only requires computing gradient for a set of samples, which
can be calculated efficiently with existing frameworks. To make the optimization objective
in Equation 3.4 more feasible, we further approximate the Fisher information matrix as a
diagonal matrix by assuming that the cross-weight interactions are negligible. This simplifies
our objective target as follows:

Q(w)* ~ argénin(W — Wg) "diag(F)(W — Wo) (3.5)

N
= arg mlnz .F:” (wl — Q(wz))2
Q =1

(3.6)

An important consequence of Equation 3.5 is the weighted k-means clustering setting, where
the centroids will be pulled closer to these sensitive weight values. In Figure 3.3, we illus-
trate the top-20 sensitive values based on the Fisher information of the exemplary weight
distribution. At the bottom, the quantized values assigned by uniform quantization (green)
are compared to those assigned by the sensitivity-based k-means approach (purple), which
achieves a better trade-off by placing centroids near sensitive values, effectively minimiz-
ing quantization error. With 3-bit LLaMA-7B, sensitivity-based non-uniform quantization
achieves much lower perplexity of 7.75 compared to the 28.26 perplexity of round-to-nearest
uniform quantization on C4 (Figure 3.1 and Section 3.4)

Dense-and-Sparse Quantization

Another challenge in low-bit LLM quantization is outlier values [10, 40, 285, 286]. In Fig-
ure 3.4, we plot the normalized weight distributions of different layers in LLaMA-7B, which
demonstrate that ~99.9% of the weights are concentrated in a narrow range of ~10% of
the entire distribution. Naively quantizing the weights with a large range will significantly
degrade performance, especially at low precisions. However, this also implies opportunity
as the range of the weight values can be contracted by a factor of 10 simply by removing a

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION

FOR LARGE LANGUAGE MODELS 26
Output Proj. Weight Distribution Down Proj. Weight Distribution

g LOfpprmmrrnmn percentile FEFIFHIERET] 1 THHRRNURREE percentile TFFFHIEEET] 1
T 100% 100%
Z o3I mm 99.99% FNERERERED 1 TRERERERENN = 99.99% || LLLITD 1
< . 99.9% . 99.9%
° S S TRERRINEINE m 99% 1 TRRRRARNARE . 9% 1
2
g o4t I I H HIt i R R R R R AR R AR R AR R R AR i
=
30.2;
e}
<

o
o

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer

Figure 3.4: The distributions of the (normalized) absolute weight values, for the output
layers in MHA and the down layers in FFN across different layers in LLaMA-7B. Note that
the distributions exhibit outlier patterns across all layers, with 99% of the values clustered
within ~10% of the entire range.

small number of outlier values (e.g., 0.1%), yielding a significant improvement in quantiza-
tion resolution. This will then help the sensitivity-based k-means centroids to focus more on
the sensitive values rather than a few outliers.

Motivated by this, we introduce a method to filter out outliers from the weight matrix W
by performing a simple yet effective decomposition into a sparse matrix (S) containing the
outliers and the remaining dense matrix (D) that can be quantized much more effectively
thanks to its significantly reduced range of values. That is, W = D+ S where D = W[Tj, <
W < Thax] and S = Wlw < Tiyin or w > Thax]. Here, Tiyin/max are thresholds that define
outliers based on the percentile of the distribution. This Dense-and-Sparse decomposition
process is visually illustrated in Figure 3.5.

Importantly, the overhead of this decomposition is minimal, since the number of outlier
values is small (e.g., 0.5% of the entire values). Therefore, the sparse matrix can be stored
efficiently using methods like the compressed sparse row (CSR) format. Inference is also
straightforward with the decomposition as in WX = DX + SX, two kernels for dense and
sparse multiplication can be overlapped, and the sparse part (SX) can benefit from sparse
kernels (Section 3.3).

Sensitivity-Based Sparse Matrix. In addition to isolating outliers into a sparse ma-
trix, we’ve also discovered the advantage of precisely representing a small number of highly
sensitive weight matrix values. These values can be easily identified based on the Fisher
information (Section 3.3). This not only maintains sensitive values with FP16 to avoid their
impact on the model output, but also prevents the centroids of Equation 3.5 from skewing
towards the sensitive values. We have observed that extracting only 0.05% of these sensi-
tive values across layers substantially enhances quantization performance (Appendix B.2).
Altogether, with 3-bit LLaMA-7B, extracting 0.45% of outlier and sensitive values further
reduces the perplexity from 7.67 to 7.56 (Figure 3.1 and Section 3.4).

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 27

W

Magnitude

Original Weight Matrix Dense Matrix Sparse Matrix
Large Range, Hard to quantize Small Range, Easy to quantize <1% Outliers, Kept in FP16

Figure 3.5: The illustration of the Dense-and-Sparse decomposition. The left figure plots
the magnitude of a weight matrix (W) in the LLaMA 65B model, which contains a few
outliers. These outliers contribute to the large range of values in the original weight matrix
which significantly degrades the quantization performance. This matrix, however, can be
decomposed into a sparse matrix S (Right) that contains the outliers and the remaining
dense matrix D (Middle). The dense matrix D then exhibits a significantly smaller range,
making accurate quantization much easier. The sparse matrix S can be kept in full precision
with minimal memory and runtime overhead.

Dense-and-Sparse Kernel Implementation

To efficiently process non-uniformly quantized values, we implement 3/4-bit CUDA LUT-
based kernels for matrix-vector multiplication between compressed weight matrices and un-
compressed activation vectors. These kernels load the compressed weights and dequantize
them piece-by-piece to minimize memory bandwidth utilization. The compressed matrices
store 3/4-bit indices, which correspond to LUT entries containing FP16 values associated
with the bins obtained from non-uniform quantization. After dequantization, all arithmetic
is performed in FP16.

To optimize the handling of our Dense-and-Sparse representation, we develop kernels for
sparse matrix-vector multiplication that load a matrix in CSR format and a dense activation
vector, inspired by [54]. Since the non-zero entry distributions are highly skewed across rows
(Appendix B.1), assigning a single thread per row can be inefficient due to uneven workload
distribution among threads. Thus, we implement balanced hybrid kernels based on [58] by
assigning an equal number of nonzeros per thread; this leads to additional synchronization
across threads due to rows being processed by multiple threads, but leads to a more balanced
work assignment. We set the number of threads such that there were 10 nonzeros per thread.
The dense non-uniform kernel and balanced sparse kernels are launched in one call to avoid
overhead from summing the outputs from these separate operations.

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 28

3.4 Evaluations

Experiment Setup

Models and Datasets. We have conducted comprehensive evaluations of SqueezeLLM
using various models on different tasks. First, in the language modeling evaluation, we
apply SqueezeLLM to the LLaMA [262], LLaMA2 [261] and OPT [325] models and measure
the perplexity of the quantized models on the C4 [216] and WikiText2 [182] datasets with
a chunk size of 2048. We also evaluate the domain-specific knowledge and problem-solving
ability through the MMLU benchmark [97] using the instruction-tuned Vicuna (v1.1 and
v1.3) models. We used the Language Model Evaluation Harness to run zero-shot evaluation
across all tasks [64]. Finally, we evaluate the instruction following ability following the
methodology presented in [27]. To do so, we generate answers for 80 sample questions and
compared them to the answers generated by the FP16 counterpart using the GPT-4 score.
To minimize the ordering effect, we provide the answers to GPT-4 in both orders, resulting
in a total of 160 queries.

Baseline Methods. We compare SqueezeLLM against PTQ methods for LLMs including
RTN as well as state-of-the-art methods including GPTQ [61], AWQ [166] and SpQR [42]. To
ensure a fair comparison, we use GPTQ with activation ordering throughout all experiments
unless specified, which addresses the significant performance drop that would otherwise
occur. For AWQ, we use official quantized models or reproduce using their official code if
they are not available except for LLaMA 65B with group size 256, which ran into OOM even
on A100-80G. Evaluations are then conducted based on our perplexity method. For SpQR,
we rely on the paper’s reported numbers since their perplexity evaluation methodology is
identical to ours. SpQR aims to enhance 3-bit and 4-bit models by introducing grouping,
bi-level quantization, and sparsity, making them approximately 4 and 4.6 bits on average
for LLaMA. In contrast, SqueezeLLM aims to preserve 3 and 4-bit as closely as possible,
minimizing any extra model size overhead. Therefore, we present our best-effort comparison
of SpQR and SqueezeLLM by comparing 3-bit SpQR models, which average around 4 bits,
and our 4-bit models, both of which possess similar model sizes.

Quantization Details. For SqueezeLLM, we adopt channel-wise quantization where each
output channel is assigned a separate lookup table. We use 2 different sparsity levels: 0%
(dense-only) and 0.45% (0.05% sensitive values and 0.4% outlier values, as discussed in Sec-
tion 3.3). For measuring sensitivity, we use 100 random samples from the Vicuna training set
for Vicuna models and C4 training set for the others. While grouping can also be incorpo-
rated with our method, we found it sub-optimal as compared to extracting sensitive/outlier
values with sparsity (Appendix B.2).

Latency Profiling. We measure the latency and peak memory usage for generating
128 and 1024 tokens on an A6000 machine using the Torch CUDA profiler. As an official
implementation of GPTQ (in particular, the grouped version) is not available, we imple-

ment an optimized kernel for single-batch inference based on the most active open-source
codebase [76].

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION

FOR LARGE LANGUAGE MODELS 29
LLaMA-7B 3bit 825 LLaMA-13B 3bit LLaMA-30B 3bit LLaMA-65B 3bit
o5 2573 . .
7.2 6.6
3 8.00
5°° 7.75 \ . 6.4 \
>
§8-5 7.50 n ::: I 6.2 S
o . X T \
880 e 725 A&.‘ 6.4 —_— 6.0 % .
* - e A N\
15 o 7.00 **‘ o A os —_— 4

0.190 0.195 0.200 0.190 0.195 0.200 0.190 0.195 0.200 0.38 0.39 0.40 0.41
Relative Model Size Relative Model Size Relative Model Size Relative Model Size

—e— GPTQ —a— AWQ —k— SqueezelLM (Ours)

Figure 3.6: Perplexity comparison PT(Q methods for 3-bit LLaMA quantization, evaluated
on C4. The x-axes are the relative model sizes with respect to the model size in FP16.
Different size-perplexity trade-offs are achieved by adjusting the group size for GPTQ and
AWQ and the sparsity level for ours. Our quantization method consistently and significantly
outperforms GPTQ and AWQ across all model size regimes, with a more pronounced gap in
lower-bit and smaller model sizes.

To compare latency with SpQR, we rely on their reported speedup numbers to make our
best-effort comparison, as their kernel implementation is not publicly available. Regarding
AWQ, we use the GPT(Q kernel without activation ordering since they exhibit identical be-
havior during inference. Although AWQ has released their own kernel implementation, their
3-bit kernels are not publicly available. Furthermore, they have incorporated optimizations
that are unrelated to quantization, such as LayerNorm and positional embedding, which
are universally applicable to other quantization methods. To ensure a fair comparison with
other methods, we refrained from using their released kernels.

Main Results

Table 3.1 shows quantization results for LLaMA along with the baseline methods. The
models are grouped based on their size to better compare size-perplexity trade-offs. See
Figure 3.6 for a visual illustration. Below we use LLaMA-7B as the main example to discuss
the impact of dense-only and Dense-and-Sparse quantization, and we then discuss how these

trends extend to larger models. We provide the full evaluation result on all LLaMA models
in Table B.13.

Dense-only Quantization. In Table 3.1 (Top), we compare dense-only SqueezeLLM with
0% sparsity level and GPT(Q without grouping. With 4-bit quantization, our method exhibits
minimal degradation compared to the FP16 baseline, with only ~0.1 perplexity degradation
on C4 and WikiText2, while reducing the model size by 3.95x. Moreover, when compared
to non-grouped GPT(Q our method shows significant perplexity improvement of up to 0.22.

The performance gap between the two methods becomes more pronounced with 3-bit
quantization. SqueezeLLM outperforms GPTQ by a substantial margin of 1.80/1.22 points
on C4/WikiText2 with a 5.29x compression rate. This is only 0.67/0.55 points off from
the FP16 baseline. This demonstrates the effectiveness of the sensitivity-based non-uniform
method for ultra-low-bit quantization.

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 30

Table 3.1: Perplexity comparison of LLLaMA models quantized into 3 and 4 bits using different
methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2. We compare the
performance of different methodologies by grouping them based on their model sizes. In the
first group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the second
group, we compare SqueezeLLM with a sparsity level of 0.45% to GPTQ and AW(Q with
a group size of 128. For comparison, we add speedup and peak memory usage numbers,
which we provide more details in Table 3.3. Further results for LLaMA-30/65B and other
models including LLaMA-2 7/13/70B are provided in Appendix B.6. T Since SpQR does
not release their kernel implementation, we conduct our best-effort comparison using their
reported speedup numbers. See Section 3.4 for details. ¥ GPTQ with activation ordering
incurs a significant latency penalty as elements in the same channel are associated with
different scaling factors, resulting in distributed memory accesses (Section 3.4). GPTQ
without activation ordering alleviates the latency issue at the cost of a substantial perplexity
degradation.

LLaMA-7B | 3-bit 4-bit
Method Avg. Bits PPL Speed Mem | Avg. Bits PPL Speed Mem
(comp. rate) | C4 Wiki up (GB) | (comp. rate) | C4 Wiki| wup (GB)
Bascline | 16 | 7.08 568 | 1x 127 16 | 708 568 1x 127
RTN 3 (5.33) 28.26 25.61 | 2.3x 2.9 4 (4.00) 7.73 6.29 | 2.0x 3.7
GPTQ 3 (5.33) 9.55 7.55 | 2.3x 2.9 4 (4.00) 743 594 | 2.0x 3.7
SpQR - - - - - 3.94 (4.06) | 7.28 5.87 | 1.2x" N/A
SqueezeLLM 3.02 (5.29) | 7.75 6.32 | 2.1x 2.9 4.05 (3.95) | 7.21 5.79 | 1.8x% 3.8
GPTQ (g128, no 1"eorder)i 3.24 (4.93) |10.09 8.85 2.0x 3.0 4.24 (3.77) | 7.80 6.07 | 1.6x 3.8
GPTQ (ngS)i 3.24 (4.93) 7.89 6.27 | 0.2x 3.0 4.24 (3.77) | 7.21 5.78 | 0.4x 3.8
AWQ (g128) 3.24 (4.93) | 7.90 6.44 | 20x 3.0 | 424 (3.77) | 7.22 582 | 1.6x 3.8
SqueezeLLM (0.45%) 3.24 (4.93) | 7.56 6.13 | 1.9% 3.1 4.27 (3.75) | 7.18 5.77 | 1.7x 4.0
LLaMA-13B | 3-bit 4-bit
Method Avg. Bits PPL Speed Mem | Avg. Bits PPL Speed Mem
(comp. rate) | C4 Wiki | up (GB) | (comp. rate) | C4 Wiki| up (GB)
Baseline ‘ 16 ‘ 6.61 5.09 ‘ 1x 24.6 16 ‘ 6.61 5.09 ‘ 1x 24.6
RTN 3 (5.33) 13.24 11.78 | 2.7x 5.3 4 (4.00) 6.99 5.53 | 2.3x 6.8
GPTQ 3 (5.33) 8.22 6.22 2.7x 5.3 4 (4.00) 6.84 5.29 | 2.3x 6.8
SPQR - - - - - 3.96 (4.04) | 6.72 522 | 1.2xT N/A
SqueezeLLM 3.02 (5.30) | 7.08 5.60 | 2.4x 5.4 4.04 (3.96) |6.71 5.18 | 2.0x 6.9
GPTQ (g128, no reorder)i 3.25 (4.92) 7.16 5.53 | 2.2x 5.7 4.25 (3.77) | 6.71 5.18 | 1.9% 7.2
GPTQ (g128)} 3.25 (4.92) | 7.12 547 | 02x 5.6 | 4.25(3.77) | 6.70 517 | 04x 7.0
AWQ (g128) 3.25 (4.92) 7.08 5.52 2.2x 5.7 4.25 (3.77) | 6.70 5.21 | 1.9% 7.2
SqueezeLLM (0.45%) 3.24 (4.94) | 6.92 5.45| 22x 58 | 4.26 (3.76) | 6.68 5.17| 1.9x 7.3

Dense-and-Sparse Quantization. By leveraging the Dense-and-Sparse quantization, we

achieve a further reduction in the perplexity gap from the FP16 baseline

, as shown in Ta-

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 31

Table 3.2: Comparison of PTQ methods on zero-shot MMLU accuracy applied to Vicuna
v1l.1 and v1.3. We add peak memory usage in GB for comparison. Additional results on
5-shot MMLU evaluation can be found in Appendix B.6.

Avg. | 7B (vl.1) 13B (v1.1) 7B (v1.3) 13B (v1.3) 33B (v1.3)

Method bit Acc Mem Acc Mem Acc Mem Acc Mem Acc Mem
Baseline | 16 | 39.1% 127 | 41.2% 24.6 | 40.2% 127 | 43.3% 24.6 | 49.5% OOM
AWQ (g128) 4.25 38.0% 3.8 40.4% 7.2 39.6% 3.8 42.2% 7.2 49.5% 17.2
SqueezeLLM 4.05 | 38.8% 3.8 392% 6.9 39.3% 3.8 | 44.1% 6.9 48.0% 175
SqueezeLLM (0.45%) | 4.26 | 39.4% 4.0 | 41.0% 7.3 39.5% 4.0 43.8% 7.3 | 49.9% 18.7
AWQ (g128) 3.25 | 36.5% 3.0 37.6% 5.7 37.4% 3.0 40.7% 5.7 46.4% 13.2
SqueezeLLM 3.02 36.0% 2.9 37.2% 5.4 35.1% 2.9 40.5% 5.4 46.2% 12.5
SqueezeLLM (0.45%) | 3.24 | 37.7% 3.1 |39.4% 58 |37.6% 3.1 |40.8% 5.8 |47.7% 14.7

ble 3.1. This improvement is particularly significant with 3-bit quantization, where extract-
ing just 0.45% of the values yields around 0.2 perplexity improvement. This enables nearly
lossless compression with less than 0.1/0.5 perplexity deviation from the FP16 baseline for
4/3-bit, respectively.

Both GPTQ and AWQ use a grouping strategy to enhance performance with a slight

overhead in model size. However, we demonstrate that SqueezeLLM with a sparsity level
of 0.45% consistently outperforms both GPTQ/AWQ with a group size of 128 in all sce-
narios with comparable model sizes. This is more pronounced for 3-bit quantization, where
SqueezeLLM with a 0.45% sparsity level outperforms both GPTQ/AWQ with a group size
of 128 by up ~0.3 perplexity.
Results on Larger Models. In Table 3.1 (13B) and Table B.13 (30/65B), we observe that
the trend in 7B extends to larger models, where SqueezeLLM consistently outperforms other
PTQ methods across all models and bit widths. Such a trend is also illustrated in Figure 3.6
for 3-bit quantization where even dense-only SqueezeLLLM achieves comparable perplexity
to grouped GPTQ/AWQ. With sparsity, we can further improve perplexity, reducing the
gap from the FP16 baseline to less than 0.1/0.4 perplexity points for 4/3-bit quantization.
Notably, with 3-bit quantization, our approach achieves up to a 2.1x reduction in perplexity
gap from the FP16 baseline compared to existing methods. Further ablation studies on our
design choices are provided in Appendix B.2, and additional results on the LLaMA2 and
OPT models can be found in Appendix B.6.

Quantization of Instruction Following Models

Instruction tuning has emerged as a method for improving the model’s ability to respond to
user commands. We explore the quantization of instruction-following models to demonstrate
the benefits of SqueezeLLLM in terms of accuracy preservation by applying it to the Vicuna
models, and evaluating the performance with the following approaches.

MMLU Evaluation. We first evaluate the baseline and quantized models on the MMLU
benchmark where the weighted accuracy in the zero-shot setting is provided in Table 3.2 for

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION

FOR LARGE LANGUAGE MODELS 32
4-bit GPTQ 25 85 GPTQ 39 71
SqueezelLM 20 70 SqueezellLM 18 73
0 40 80 120 160 0 40 80 120 160
3-bit GPTQ 145 GPTQ 12 107
AWQ (g128) 9 105 AWQ (g128) 26 86
SqueezelLM 14 92 SqueezelLM (0.45%) 29 66
0 40 80 120 160 0 40 80 120 160
Vicuna-7B Vicuna-13B

Figure 3.7: Comparison of PTQ methods applied to Vicuna v1.1. Blue / yellow / red
represent the number of times that the quantized model won / tied / lost against the baseline
FP16 model. This evaluation was performed using the methodology from Vicuna.

Vicuna models. As we can see, 3-bit SqueezeLLM achieves higher accuracy for all models
compared to AWQ and also preserves the FP16 baseline accuracy with 4-bit quantization.
5-shot results are provided in Appendix B.6.

Instruction-Following Ability. Another approach for evaluating instruction-following
ability is to ask GPT-4 to rank the generated responses as presented in [27]. As shown
in Figure 3.7, SqueezeLLM without sparsity achieves near-perfect performance (i.e., 50/50
split) with 4-bit quantization for both Vicuna-7B and 13B, outperforming GPTQ with the
same model size. In the case of 3-bit quantization, SqueezeLLM outperforms both GPTQ
and AWQ with comparable model sizes. In the case of the Vicuna-13B model, achieving a
near-perfect 50/50 split for 3-bit quantization.

Hardware Deployment and Profiling

We show the latency and peak GPU memory usage of SqueezeLLM in Table 3.3 on an A6000
GPU for different configurations when generating 128 tokens. We observe that the LUT-
based non-uniform approach in SqueezeLLLM (3rd row) shows up to 2.4x speedup compared
to the FP16 baseline, and exhibits comparable latency and peak memory usage to the uniform
quantization of non-grouped GPTQ (2nd row). This indicates that the overhead associated
with LUT-based dequantization is small, especially considering the significant perplexity
gains it enables.

Additionally, when incorporating sparsity, we still observed latency gains relative to the
FP16 baseline. As shown in Table 3.3, keeping 0.45% of parameters in FP16 (4th row)
only adds around 10% latency overhead relative to the dense-only implementation, while
still resulting in up to 2.2x speed up compared to the FP16 baseline. In contrast, when
accounting for permutation, the GPTQ runtime is degraded heavily (5th row). This latency
penalty is due to permutation, which means that elements in the same channel need to be
scaled using different scaling factors (which are accessed using group indices); it is challenging
for these distributed memory accesses to be performed efficiently, as GPUs rely heavily on

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 33

Table 3.3: Latency (s) and peak memory usage (GB) of 3-bit LLaMA when generating
128 tokens on an A6000 GPU. The table compares the FP16 baseline, non-grouped and
grouped GPT(Q with activation ordering, and SqueezeLLM with different sparsity levels.
For comparison, we include bitwidth and perplexity (PPL) on the C4 benchmark. See
Table B.11 for additional results on generating 1024 tokens, and see Table B.12 for additional
benchmarking results on an A100 GPU.

Method Avg. 7B 13B 30B 65B
bit | PPL Lat Mem | PPL Lat Mem | PPL Lat Mem | PPL Lat Mem
Baseline \ 16 \ 7.08 3.2 127 \ 6.61 5.6 24.6 \ 5.98 OOM OOM\ 5.62 OOM OOM
GPTQ 3 955 14 29 |822 21 53 |731 4.0 12.3 | 6.70 6.7 24.0
SqueezeLLM 3.02 | 775 15 29 | 708 24 54 |[6.37 4.0 125 | 5.99 7.6 24.5
GPTQ (g128) 3.25 | 7.89 13.7 3.0 |7.12 242 56 |6.47 619 129 |6.01 1178 25.1
SqueezeLLM (0.45%) | 3.24 | 7.56 1.7 3.1 |6.92 25 58 |6.23 4.4 14.7 | 5.84 838 28.0

coalesced memory accesses in order to optimally use memory bandwidth. This shows how
our Dense-and-Sparse quantization methodology allows for both higher accuracy as well
as better performance relative to GPT(Q. Additional evaluation results on generating 1024
tokens are provided in Table B.11, where we observe a similar trend.

3.5 Related Work

Transformer Quantization. Quantization methods can be broadly categorized based on
whether retraining is required or not [70]. Quantization-Aware Training (QAT) requires
retraining the model to adapt its weights to help recover accuracy after quantization [318,
236, 134, 328, 326, 6], whereas Post-Training Quantization (PTQ) does not involve retrain-
ing [332, 14, 241, 194, 160]. While QAT often results in better accuracy, it is often infeasible
for LLMs due to the expensive retraining cost and/or lack of access to the training data and
infrastructure. As such, most works on LLM quantization have focused on PTQ [311, 40,
61, 296, 316, 166]. Our work also focuses on the PTQ approach.

Quantization methods can be also classified as uniform or non-uniform [70]. Uniform
quantization [61, 166, 42, 318, 236, 134, 113, 170], which uniformly divides weight ranges
into bins, has gained popularity since it allows faster computation by using quantized pre-
cision arithmetic. However, recent hardware trends indicate that faster computation does
not necessarily translate to improved end-to-end latency or throughput [72], particularly
in memory-bound tasks like generative LLM inference (Section 3.2). Furthermore, uniform
quantization can be sub-optimal when the weight distribution is non-uniform, as in LLMs
(Figure 3.3).

Hence, we focus on non-uniform quantization, which non-uniformly allocates quantization
bins without constraints for a more accurate representation of weights and smaller quantiza-
tion errors. While it does not support integer arithmetic for computational acceleration, this

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 34

drawback is not significant for memory-bound problems, as in our focus, where the primary
bottleneck lies in memory bandwidth rather than computation. Among non-uniform quan-
tization methods [120, 31], the most similar work to ours is GOBO [317], which introduces a
k-means clustering-based look-up table approach. Our work introduces two novel methods as
compared to GOBO: (i) sensitivity-based methods; and (ii) Dense-and-Sparse quantization
methodologies, which yield substantial improvements within the k-means-based non-uniform
quantization framework.

LLM Quantization. With the increasing popularity of LLMs, weight-only quantization
has surfaced as a promising approach to reduce memory consumption and enhance inference
efficiency. GPTQ [61] has been a pioneering work, and AWQ [166] and SpQR [42] have also
suggested the weight-only quantization schemes concurrent to our work. Our work, however,
is different in two key aspects. First, our work employs non-uniform quantization, as opposed
to uniform quantization of the aforementioned works. In particular, our sensitivity-based
non-uniform quantization not only better represents non-uniform distributions of weights,
but it also strategically reduces the impact on more sensitive values, thereby enabling more
aggressive quantization without performance degradation. Second, while previous works
quantize weights in a way that layer-wise output activations remain unaffected, our approach
targets preserving the model’s final output. This strategy of minimizing the final loss, as
shown in Appendix B.2, leads to better quantization performance since it is a direct measure
of the end-to-end performance degradation after quantization.

Non-uniform Quantization. For low-bit LLM quantization, [41] has recently introduced
the NF datatype, highlighting the importance of non-uniform quantization. However, our
approach differs by offering a more dynamic non-uniform representation that accounts for
both weight distributions and sensitivity of values, as opposed to the static, hard-coded NF
datatype that assumes the normal distribution of the weights. While previous studies [88,
301] have used k-means clustering in quantization, our work pioneers its application in LLM
quantization. Furthermore, we introduce the novel sensitivity-based weighted k-means clus-
tering strategy, enabling lossless sub-4-bit quantization by significantly reducing performance
degradation, in contrast to the sensitivity-agnostic counterpart (Figure 3.1).

Outlier-Aware Quantization. Among the various challenges in low-bit Transformer quan-
tization, one key issue is the presence of outliers [140], which can unnecessarily increase the
quantization range. To address this issue, outlier-aware quantization methods have been
investigated [10, 40, 285, 286, 296]. Notably, [40] keeps outlier activations in floating-point,
while [285] transfers outlier factors to later layers without affecting functionality. These
focus on activations, which is not a concern in our work where all activations are in floating-
point. Our Dense-and-Sparse quantization instead tackles weight outliers for low-bit LLM
quantization.

Concurrently to our work, SpQR [42] also explores outlier extraction in the context
of weight quantization. While SpQR has shown a promising result on outlier extraction,
SqueezeLLM, leveraging sensitivity-based non-uniform quantization, achieves precise quan-
tization with significantly lower (e.g., 0.05%) or even zero sparsity levels. This is critical for

CHAPTER 3. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 35

both reducing model size and improving inference speed, as higher sparsity often degrades
latency. Furthermore, SqueezeLLM uses outlier extraction as a direct solution to prevent
outliers from negatively impacting quantization performance, bypassing the need for using
the grouping strategy as an indirect solution. This contrasts with SpQR, which relies on
fine-grained grouping that leads to increased model size and a more complex quantization
process such as the bi-level quantization scheme.

Dense-and-Sparse Decomposition. Matrix decomposition into dense and sparse com-
ponents has been explored in attention map decomposition [19, 37], leveraging the fact that
attention patterns often present low-rank characteristics with a few outliers. To the best of
our knowledge, however, our research is the first to apply the dense-and-sparse decompo-
sition strategy to weight matrices to improve quantization performance. Additionally, we
uniquely incorporate both outlier and sensitive values within the sparse matrix, which yields
considerable improvement in post-quantization performance.

3.6 Conclusion

We have presented SqueezeLLM which attempts to address the Memory Wall problem as-
sociated with generative LLM inference that is memory-bound. SqueezeLLLM incorporates
two novel ideas that allow ultra-low precision quantization of LLMs with negligible degra-
dation in generation performance: the sensitivity-based non-uniform quantization method;
and the Dense-and-Sparse decomposition that resolves the outlier issue. We have evalu-
ated SqueezeLLM on a wide range of models and datasets that assess language modeling,
problem-solving, and instruction-following capabilities of quantized models, where we have
demonstrated that our quantization method can consistently outperform the previous state-
of-the-art methodologies.

36

Chapter 4

Efficient Inference Method:
Speculative Decoding with Big Little
Decoder

4.1 Introduction

In recent years, the Transformer [266] has become the de-facto model architecture for a wide
range of Natural Language Processing tasks. The potential of the Transformer architecture
has been further enhanced by the emergence of Large Language Models (LLMs) with up to
hundreds of billions of parameters trained on massive text corpora [12, 216, 229, 50, 101,
29, 244, 325, 260]. Despite their performance, efficiently running these models for inference
is a challenge due to their large model size and runtime complexity. This limits their use in
many applications that require real-time responses.

These computational inefficiencies are particularly pronounced in autoregressive gener-
ative tasks such as machine translation [16, 9], summarization [99], and language model-
ing [182]. For these tasks, models need to run iteratively to generate tokens sequentially, as
each token is dependent on the previously generated tokens. This requires the models to load
weight matrices, as well as the cached keys and values of previously generated tokens [210],
for each token generation, thus preventing parallelization of the loaded values across multiple
tokens. This makes autoregressive text generation memory bandwidth constrained during
inference [124]. As a consequence, autoregressive generative tasks suffer from low hardware
utilization as well as high inference latency [133]. In contrast, non-autoregressive tasks, such
as text classification [269], can process the entire input sequence with a single weight load,
which is then shared across all input tokens in parallel. Given the increasing popularity of
text generation tasks, in light of advancements in LLMs, it is critical to improve the infer-
ence latency and runtime efficiency of autoregressive decoding processes despite the potential
sacrifice in generation quality.

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING

@ several @ famous 3 songs @ are (8 composed ® composed

\ @ Several @ famous @ songs @ are --— T T T T
t | S b
1

Large Model Small Model ! Large Model

(#parameter ~10N) (#parameter N) H (#parameter ~10N)
1
. . . 0 $ q K !

T ‘4\ ‘J J ‘J <s> Several famous songs : T T T T T
<s> Several famous songs are - => <s> Severa famous songs are
L r J L T J L Y J
Autoregressive (sequential) Autoregressive (sequential) Non-autoregressive (parallel)

latency: D +Q@Q+@®+@ +® > latency: D+ +@+@D+E (D+@+@+@+B >» B)

Figure 4.1: Illustration of (Left) the normal autoregressive decoding procedure of a large
model and (Right) BiLD that consists of a small model and a large model. In BiLD, the
small model generates tokens autoregressively (i.e., sequentially) until it hands over control
to the large model. The large model then takes as input the tokens generated by the small
model in parallel, allowing for non-autoregressive (i.e., parallel) execution to generate the
next token. This improves end-to-end latency by allowing for more efficient utilization of
underlying hardware.

To overcome this, non-autoregressive decoding [81, 278, 163, 254, 283, 233, 152, 69,
84] has been explored to maximize token-level parallelization and reduce the inference la-
tency of generative tasks by generating multiple tokens simultaneously. This approach can
be more computationally efficient than the regular autoregressive process. However, non-
autoregressive decoding suffers from text generation quality issues due to its assumption
of conditional independence between output tokens [127]. In order to achieve comparable
performance to that of autoregressive processes, it generally requires complex and often task-
dependent training strategies, supplementary hinting information that guides the decoding
process [278, 163, 254, 283, 233|, and knowledge distillation [335].

In this paper, we introduce a novel framework named Big Little Decoder (BiLD) that can
be applied to various text generation scenarios to reduce inference latency without additional
training iterations or modifications to the existing training pipeline or model architecture.
As illustrated in Figure 4.1 (Right), the BiLD framework consists of two decoder models,
a large model and small model, that work collaboratively to generate text sequences. In
particular, only the small model is executed autoregressively to generate the majority of
the text, taking advantage of its small runtime overhead. The large model only engages
occasionally to refine the small model’s inaccurate predictions, thus allowing for efficient non-
autoregressive execution. This autoregressive small, non-autoregressive large scheme results
in a substantial improvement of up to ~2x in end-to-end inference latency, compared to
regular autoregressive execution, while maintaining similar or better generation quality. The
effectiveness of our framework is also supported by our observation that the predictions made
by small and large models only slightly disagree, and thus the small model can match the
performance of the large model with a minimal refinement of its own predictions (Figure 4.2,
Section 4.2).

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 38

In summary, our main contributions are as follows:

e We introduce BiLD, a general framework that allows faster inference of various text
generation applications. Our framework is designed to coordinate a large model and a
small model such that the large model is only executed infrequently and efficiently in
a non-autoregressive manner to refine the small model’s inaccurate predictions.

e We propose two policies for BiLLD: the fallback policy that allows the small model to
hand control over to the large model if it is not confident enough (Section 4.2), and
the rollback policy that allows the large model to review and correct the small model’s
inaccurate predictions (Section 4.2).

e We introduce a simple yet effective technique for aligning the predictions of the small
model with those of the large model. By incorporating this prediction alignment tech-
nique into the BiLD framework, we can further enhance its performance with minimal
additional effort (Section 4.2).

e We apply BiLD for 4 different text generation scenarios including IWSLT 2017 De-
En [16] and WMT 2014 De-En [9] for machine translation, XSUM [188] and CNN/
DailyMail [99] for summarization. Compared to the full autoregressive execution, BiLD
achieved a speedup of up to 1.85x without generation quality degradation and 2.12x
allowing ~1 point degradation on an NVIDIA T4 GPU (Section 4.3).

4.2 Methodology

Motivating Examples

Although large models tend to produce higher-quality text, they also result in longer end-to-
end latencies, which can be further exacerbated by the regressive process of predicting one
token at a time. However, in many text generation scenarios we demonstrate that a model
that is an order of magnitude smaller than a larger model can achieve comparable generation
quality to the larger model, provided that a few erroneous predictions are corrected. This
implies that only a small fraction of the small model’s predictions deviate from those of the
larger model. To validate this claim, we evaluate two different generative scenarios, machine
translation with mT5 [302] on WMT 2014 De-En [9] and summarization with T5 [216] on
CNN/DailyMail [99] by running the large model along the small model for every decoding
iteration. See Section 4.3 for more details on these models. Then, we measure the likelihood
of the large model predicting the same token that the small model generates. If the likelihood
is below a certain threshold, we assume that the small model’s prediction is not accurate
enough, and we replace it with the large model’s prediction. By controlling the threshold,
we can adjust the proportion of the large model’s engagement.

Figure 4.2 plots the text generation quality on the validation dataset of each benchmark
for different proportions of the large model’s engagement. The results exhibit a clear trend
across the tasks where the small models with ~10x smaller sizes can retain the large model’s
generation quality only if approximately 20% of their inaccurate predictions were substituted

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 39

WMT 2017 De-En, mT5 CNN/DailyMail, T5

p——

w
N

—

I
=
ul

w
=

41.0

N

©
D
©
o

BLEU (higher better)
3
ROUGE-L (higher better)
s
o

28

0 20 40 60 80 100 0 20 40 60 80 100
% Large Model % Large Model

Figure 4.2: Quality of text generation for different proportions of the large model’s engage-
ment on the small model’s prediction, evaluated on the validation datasets of (Left) WMT
2014 De-En translation [9]; and (Right) CNN/DailyMail summarization [99]. We see that
the small models can achieve a comparable or better generation quality to the large models
if ~20% of their incorrect predictions were substituted.

by the large model. While this experiment assumes an ideal case where the predictions of
the large model are available as ground truth in every iteration, it nonetheless demonstrates
the feasibility of achieving the text generation quality of the large model while maintaining
the low inference latency of the small model.

Problem Formulation

At nth decoding iteration, the small model and the large model each take as input a partially
generated output text y1.,-1 = (y1, - ,¥Yn_1), and then generate a probability distribution
over entire vocabulary ps(y|y1.n—1) and pr(y|y1.n—1), respectively. Then, the next token y, s
and y,, 1, are sampled from the probability distributions,

Yn,s ™~ ps(y|y1:n—1) and Yn,L ™~ pL(y|y1:n—1>' (41)

Depending on whether to use the small model or the large model for the nth decoding step,
the nth token y, can be either y, ¢ or y, . When deciding which model to use, it is not
feasible to run the large model along with the small model for every decoding step to verify
the predictions of the small model, as in the experiments in Section 4.2. Thus, it is necessary
to hand over the control to the large model only when the small model is likely to make
an inaccurate prediction based on a policy 7(y1.,—1) that returns a boolean value {0, 1}
indicating whether to use the large model:

yn,S it ™ yl:n—l)

yn,L if 7T(Z/1:n71)

(1) (4.2)

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 40

The objective, therefore, is to design a lightweight policy 7 that leads to high text gener-
ation quality with the minimum end-to-end latency by invoking the large model only when
necessary. In order to illustrate the mechanism by which latency is reduced, consider a simple
case where the small model has generated tokens y; through y, autoregressively. If the large
model takes over the control and predicts the next token, v, 1, it can now take multiple input
tokens (y; through v,,) in parallel, thus allowing for non-autoregressive inference. It is worth
noting that this non-autoregressive approach would require the same amount of FLOPs as
a regressive approach that predicts y; through y,., sequentially; however, it is much faster
on hardware due to its token-level parallelism and increased arithmetic intensity [289]. In
other words, processing multiple tokens in a single memory operation is more efficient than
individually processing tokens with separate memory operations, as memory accesses can
be more costly than arithmetic operations in decoding tasks [133]. If the latency saving
from running the large model non-autoregressively outweights the additional cost of running
the small model, there is a net latency reduction. Therefore, the aim of this approach is
not to reduce the number of FLOPs, but rather to improve the hardware utilization and
arithmetic intensity of the decoding process. More detailed analysis on this can be found
in Appendix C.5. Figure 4.1 provides a high-level overview of how the small and the large
models in BiLLD coordinates for text generation.

We now focus on constructing an appropriate policy 7 for our framework. Here, we intro-
duce two simple policies, the fallback and rollback policies, which (despite their simplicity)
result in high performance with significant latency reduction. We discuss the details in the
following subsections.

Fallback Policy: Small Model Knows When to Stop Predictions

The first principle of the policy is that the small model should be able to determine when
to hand over control to the large model. Whenever the small model lacks confidence in its
prediction, it is better to allow the large model to take over. Confidence (or uncertainty,
in reverse) quantification has been an active research area [62, 128], and any lightweight
confidence metric can serve as a potential candidate. Here, we find it sufficient with a simple
policy based on the maximum prediction probability, i.e., max, ps(y|y1.n—1), similar to the
observations made in [94]. If the maximum prediction probability is lower than a certain
threshold arpg, then the small model’s prediction is regarded to be not confident enough,
and we fallback to the large model to generate the next token. Note that this does not entail
a runtime overhead. Figure 4.3 (Top) illustrates the fallback policy.

Fallback Policy: If max,ps(y|y1.n—1) < app, then fallback to the large model and set
Yn = Yn,L-

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING

WITH BIG LITTLE DECODER

Fallback Threshold a;;=0.6

41

| P PR A S N

N . Fallback
OIS 075 " 557:::::::::::.9I.9\‘ ois Several famous songs are composing
Several famous people are singing ===-=1
A 1\ A A :
! Large Model
Small Model : (#parameter ~10N)
(#parameter N) |
1
1
A | 1t f 1
<s> Several famous people are l—==3> <s> Several famous people are
- . Rollback Threshold agz; = 2
Rollback N distance: d =3 o

[N T N P B

S) (I composin
Several famous peyle e sinxng everal famous S®S are posing
| S N NS N t 1 I
Small Model
(#parameter N) Large Model
(#parameter ~10N)
(N R R B
<s> Several famous pe}Mle B3 T T T T T

<s> Several famous people are

Generated Text: Several famous songs

Figure 4.3: (Top) The fallback policy. When the small model generates tokens autore-
gressively, if the prediction probability of a specific token is below the predefined fallback
threshold value app, the prediction is deemed to be not confident enough, and control is
then shifted to the larger model to produce the corresponding token. (Bottom) The rollback
policy. If the large model takes over the control, it produces its own predictions for all pre-
vious tokens, as well as the current token. If the prediction probability from the large model
for a previously generated token deviates from the small model’s prediction by a distance
metric d exceeding the predetermined rollback threshold agpg, the small model’s prediction
is regarded as incorrect. In such a case, we roll back all predictions made by the small model
that follow the corresponding token.

Rollback Policy: Large Model Knows When to Revert Predictions

While the fallback policy allows the large model to take over when the small model is not
confident enough, it is still possible that the small model is over-confident in its incorrect
predictions [83]. Moreover, a single incorrect prediction at an early decoding iteration can
lead to a catastrophic effect [232], as it will affect all subsequent token predictions. To avoid
such cases, it is desirable to have the large model review the small model’s predictions and
ensure the validity of each prediction. In our framework, this comes without any extra cost.

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 42

When the large model is provided with the tokens generated by the small model for its
non-autoregressive prediction of the next token, it also produces its own predictions for all
the previous decoding steps. That said, given the partially generated text v,.,, it generates
pL(Y|y1.m) for all previous and current decoding steps m = 1,--- n, which can be used to
validate the small model’s previous predictions.

Therefore, for some distance metric d(-,-) that compares two probability distributions,
we find the smallest decoding step m such that

d(ps(ylyr:m), PL(YlY1:m)) > arB (4.3)

for a predetermined threshold agpg. If such m exists, we regard the small model’s previous
prediction ¥, to be inaccurate, and we rollback all predictions that follow, i.e., y,, through
Yn, since they are all dependent on the wrong prediction. We then replace y,, with y,, .
of the large model. We will discuss in Section 4.3 that the cross-entropy loss between the
small model’s hard label and the large model’s soft label (which measures the likelihood of
obtaining the small model’s prediction from the large model’s output) is a good choice for the
metric d. Rollback may incur additional latency due to the need for duplicated computation
for the reverted tokens. However, we demonstrate in Section 4.3 the net advantage of rollback
as the improved text generation quality outweighs the additional latency. See Figure 4.3
(Bottom) for a detailed illustration of the rollback policy.

Rollback Policy: If there exists a minimum m € [1,n—1] such that d(ps(y|y1.m), 2L (Y|Y1:m)) >
agp, then rollback the predictions (Y, -+ ,yn) and set Ym = Ym.L-

Big Little Decoder

Taken together, the Big Little Decoder (BiLD) framework consists of one small model,
one large model, and a policy that determines which model to use for each decoding iteration.
The policy comprises two components: the fallback policy to fall back to the large model
when the small model’s prediction is not confident enough; and a rollback policy to roll
back the small model’s predictions if they deviate from the predictions of the large model.
Algorithm 5 provides a summary of the end-to-end algorithm.

Model Prediction Alignment

BiLD is a general framework that imposes no restriction on the selection of small and large
models as long as they use the same vocabulary. Therefore, as will be demonstrated in
Section 4.3, two independently trained models can compose BiLLD to achieve a significant
latency improvement. Nevertheless, when two models are trained separately, they may gen-
erate sequences with similar or identical semantic meanings but using different vocabularies.
For instance, one model may produce the phrase “writing is hard” while the other may
generate “writing is difficult”. Because the BiLLD policy relies on the degree of agreement

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 43

Algorithm 5 Big Little Decoder
1: y < [bos]
2: while y[—1] # eos
3: pg < SmallModel(y)

4: if max(ps[—1]) > arp

5: # Use the small model’s predicton

6: y < y + [sample(ps[—1])]

7. else

8: # Fallback to the large model

9: pr < LargeModel(y)
10 m < min. index such that d(pr[m], ps[m]) > ars
11: if m exists
12: # Rollback: use the large model’s prediction
13: y <= y[: m] + [sample(p,[m])]
14: else
15: # Don’t rollback: use the large model’s prediction
16: y <y + [sample(pr [—1])]

17: return y

between the large and small models, such a vocabulary-level discrepancy can result in unnec-
essary disagreements that roll back the small model’s prediction without any improvement
in generation quality.

In order to address this issue and further optimize the BiLD performance, we present
a simple approach called model prediction alignment that aids in aligning the predictions
produced by the small and large models. To achieve this, we leverage a calibration dataset
X1 = {2} that well represents the input sentence distribution. We then generate the
corresponding output sequence for each input sequence using the large model, resulting in
Veal = {y¥} where y® = argmaxpy(y|z®). Subsequently, we fine-tune the small model
using the calibration examples (Zcal, Yea1) € (Xear, Veal)-

The underlying rationale of this approach is to increase the likelihood of the small model
generating sequences that would have been generated by the large model. This can minimize
the distance between the small model and the large model’s predictions per each token, i.e.,
d(ps(y|x, y1.m), pL(y|T, y1.m)), throughout the decoding process, thereby avoiding unneces-
sary rollbacks. Despite its simplicity, our experiments in Section 4.3 demonstrate that this
approach can be incorporated into the BiLD framework with minimal effort to significantly
enhance the performance. We further emphasize that this method does not introduce any
additional complexity or hyperparameters to the normal training pipeline. This is compa-
rable to knowledge distillation [100], an alternative method for aligning model predictions,
which requires modifications to the training pipeline, access to internal hidden states such
as logits, and additional hyperparameter tuning.

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 44

4.3 Evaluations

Experiment Setup

Models and Datasets. To access the generalizability and validity of BiLLD in various
text generation settings, we have selected IWSLT 2017 De-En [16] and WMT 2014 De-
En [9] for machine translation benchmarks and XSUM [188] and CNN/DailyMail [99] for
summarization benchmarks. We used mT5-large and small [302] for machine translation and
T5-large and small [216] for summarization as our target models, where the size of the models
differ by approximately a factor of 20. Our framework is built on top of PyTorch [204] and
the HuggingFace Transformers library [290] along with their pre-trained checkpoints.

Training. We fine-tune the pre-trained models on the target benchmarks for 500k steps
to obtain the baseline small and large models. To train the aligned small models via the
prediction alignment method (Section 4.2), we generate output sequences from the input
sequences of the training datasets using the fully trained large models to create calibration
datasets. We then fine-tune the pre-trained small models on the calibration dataset using the
same training recipes and the number of steps as the baseline small models. More training
details can be found in Appendix C.1. Throughout the paper, we refer to BiLD with the
baseline and aligned small models as unaligned and aligned BiLD, respectively.

Inference. All inference evaluations are conducted on a single NVIDIA T4 GPU of a
GCP nl-standard-4 instance, using a batch size 1, which is a common use case for online
serving [232]. For the distance metric d in Equation 4.3 for the rollback policy, we use the
cross-entropy loss between the small model’s hard label and the large model’s soft label. For
BiLD inference, we sweep over different fallback and rollback thresholds to explore different
trade-offs between generation quality and latency. More evaluation details can be found in
Appendix C.1.

Main Results

The main results are illustrated in Figure 4.4, which shows the trade-off between text genera-
tion quality and average end-to-end latency per example, normalized by the vanilla inference
latency of the pure large baseline models. The trade-offs are obtained by controlling the fall-
back and rollback thresholds. Table 4.1 summarizes the results, with the second and third
rows corresponding to unaligned BiLLD. When coupled with the normally fine-tuned baseline
small models, BiLD achieves an average speedup of 1.50x across all benchmarks, with up
to 1.71x speedup on CNN/DailyMail without any degradation in text generation quality
(2nd row). By allowing ~1 point degradation, BiLLD achieves an average speedup of 1.70x,
with up to 2.05x speedup (3rd row). Note that unaligned BiLLD is a pure plug-and-play
solution that does not require additional training effort or cost beyond preparing small and
large models independently.

In addition, Figure 4.4 shows the efficacy of the prediction alignment method, leading
to a consistent improvement of aligned BiLD over unaligned BiLD. As summarized in the

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 45

Table 4.1: The summary of Figure 4.4 which compares the generation quality and latency
speedup of BiLLD against vanilla inference with large baseline models. The first row reports
the vanilla inference, and the second and third rows report unaligned BiLLD. The fourth and
fifth rows report aligned BiLLD. In both cases of unaligned and aligned BiLD, we report the
speedup with minimal BLEU/ROUGE-L score degradation (second and fourth rows), and
within ~1 point degradation (third and fifth rows).

Task (Model) | Machine Translation (mT5) | Summarization (T5)

Datasot IWSLT WMT XSUM CNN/DailyMail
BLEU Speedup BLEU Speedup | ROUGE-L Speedup ROUGE-L Speedup

Vanilla Inference | 40.32 - 31.38 - | 35.08 - 41.54 -

BiLD (Unaligned) 40.33 1.43x 31.28 1.34x 35.12 1.48x 41.44 1.71x
39.44 1.58x 30.47 1.43x 34.02 1.72x 40.57 2.05%

BiLD (Aligned) 40.24 1.62x 31.26 1.47x 35.05 1.50x 41.52 1.85x
39.13 1.78% 30.33 1.70% 33.95 1.80x 40.96 2.12x

forth and fifth rows of Table 4.1, aligned BiLD that incorporates the aligned small mod-
els yields an average speedup of 1.61x, with up to 1.85x speedup (4th row). Within ~1
point degradation, it achieves an average speedup of 1.85x, with up to 2.12x speedup (5th
row). The results also demonstrate that both unaligned and aligned BiLD outperform the
baseline BLEU/ROUGE-L scores in the high-latency regime, which can be attributed to
the ensembling effect of using two different models, as also studied in prior work [181]. In
Appendix C.5, we provide examples of text sequences generated by BiLLD, which demon-
strate that the large model’s engagement in BiLD decoding not only improves the prediction
accuracy but also prevents incorrect predictions from impacting the future ones.

We have additionally conducted a performance comparison of our method with the specu-
lative sampling method proposed in [20] on the IWSLT 2017 De-En and XSUM benchmarks.
We implement and evaluate it in the same environment as our main BiLLD experiments using
the same baseline large and small models. We apply a fixed window size of [3, 10]. On
the IWSLT benchmark, speculative sampling achieves a BLEU score of 39.93 with a 1.28x
speedup, while BiLLD (unaligned) achieves a 0.61 higher BLEU score with similar speedup, or
a 0.21x more latency gain with a similar BLEU score. On the XSUM benchmark, specula-
tive sampling achieves a ROUGE-L score of 35.00 with a 1.25x speedup. In contrast, BiLLD
achieves up to a 0.30 ROUGE-L score gain with a faster latency, or up to 0.22x more latency
gain with a better ROUGE-L score. We provide more detailed comparisons in Appendix C.3.

Ablation Studies

We have further conducted two ablation studies to validate the individual components of
BiLD by (1) removing the rollback policy, and (2) removing the fallback policy. When
removing the rollback policy, we use the same fallback thresholds as the main experiments

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING

IWSLT 2017 De-En, mT5 WMT 2014 De-En, mT5 XSUM, T5 CNN/DailyMail, T5
41.8
40.5
» / 5| 3150 / // = [. = /
5 1.6x faster B a10s | 8350 5% faster gas -
z = . " 1] [9] 1.9x faster
g 40.0 < E 2 2414
. o 2 31.00 @ [}
5 ‘b*&a 5 < 345 5412
< 395 A < 2 245
k=) ©30.75 ’ < <
< | £ 3 " 21410
S 390 >30.50 w 34.0 w
ﬂ : ¥ Vanilla Inference H 7777777 ¥ - -Vanilla-Inference g X Vanilla Inference g 40.8 ¥ Vanilla Inference
o —— BILD (Aligned) @ 30,25 —— BILD (Aligned) Q —— BILD (Aligned) Q —— BILD (Aligned)
38.5 —— BILD (Unaligned) —— BiLD (Unaligned) 335 —— BILD (Unaligned) 40.6 —— BILD (Unaligned)
00 - | L .- 1 o[
06 07 08 09 10 06 0.7 08 09 1.0 06 07 08 09 10 05 06 07 08 09 10

Normalized avg latency per example Normalized avg latency per example Normalized avg latency per example Normalized avg latency per example

Figure 4.4: Generation quality and average end-to-end latency of processing a single example
on 4 different benchmarks. We report BLEU for machine translation and ROUGE-L for
summarization as performance metrics. The green and blue lines are unaligned and aligned
BiLLD, respectively. The X marks are the vanilla inference with the baseline large models.
For comparison, two horizontal lines are plotted to indicate the BLEU/ROUGE-L score of
the vanilla inference and 1 point degradation from it. The latency on the x-axis is normalized
by the baseline latency.

IWSLT 2017 De-En, mT5 XSUM, T5
______________________________ o AV 3
;" * ’GL: 350 N
E 40.0 2
1] Ke]
o 5 34.5
T 395 5
c 7 o
(=] N
= : 34.0
~ 39.0 ¥ Vanilla Inference o Vanilla Inference
@ : — BILD o BILD
m --- BiLD (No RB) 8 33.5 BiLD (No RB)
38.5] BiLD (No FB) o BiLD (No FB)
0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
Normalized avg latency per example Normalized avg latency per example

Figure 4.5: Ablation study results for BiLD on (Left) IWSLT 2017 De-En translation and
(Right) XSUM summarization tasks without the rollback or fallback policy. Aligned small
models were used in all cases. The result demonstrates that BiLD experiences significant
performance degradation without either policy in both tasks. The horizontal lines indicate
the vanilla inference score and 1 point degradation from it.

to control the generation quality and latency trade-off. When removing the fallback policy,
we use the same rollback thresholds as the main experiments. Additionally, we apply fallback
after a fixed number of small model executions (swept over [3, 10]), similar to [20].

Figure 4.5 illustrates the results of these ablation studies on IWSLT 2017 De-En for
machine translation and XSUM for summarization with aligned BiLD. The results show
that the rollback policy consistently produces better generation quality across all latency
regimes, particularly in the high-BLEU/ROUGE regime where the large model’s engagement
via rollback is crucial in correcting small model’s wrong predictions. This demonstrates that,

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING

WITH BIG LITTLE DECODER 47
IWSLT 2017 De-En, mT5 WMT 2014 De-En, mT5
L e T s I L
= 1.4x faster ~27.0
£ 36.2 2
B 9268
© 36.0 < o
S @9@ 5 26.6
358 S £
=] 2 26.4
w w
- —
m 35.6 X Vanilla Inference | @ X Vanilla Inference
_____________ — BiLD | %21~ | — 8iD
35.4
0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
Normalized avg latency per example Normalized avg latency per example

Figure 4.6: Application of the BiLLD framework to the early exit problem using the mT5-
small model as the large model and its first layer as the small model, evaluated on (Left) the
IWSLT 2017 De-En and (Right) WMT 2014 De-En benchmarks. The x marks indicate the
latency and BLEU score of the mT5-small models. The horizontal lines indicate the vanilla
inference score and 1 point degradation from it.

despite the additional latency overhead from the duplicated computation of reverted tokens,
the improvement in text generation quality outweighs this cost. Similarly, removing the
fallback policy and periodically handing over control to the large model after a fixed number
of token generations leads to significant performance degradation. Taken together, these
results highlight that both policies are critical components of BiLD.

Early Exiting Strategy in the BiLD Framework

So far, we have demonstrated how BiLLD can be used as a general framework for accelerating
the text generation process by incorporating a small model and a large model. However,
having two separate models is not a limitation as they can be combined into a single model
by using a subset of a larger model, such as a few of its early layers, as a smaller model.
This approach resembles the early exit strategy, which is a popular method for accelerating
the decoding process [232]. This section demonstrates how the early exiting strategy can be
reframed within the BiLD framework.

To demonstrate the applicability of using the early exiting strategy within the BiLD
framework, we use mT5-small model as the large model and the first (out of 8) layer as the
small model, and evaluate it on two machine translation benchmarks: TWSLT 2017 De-En
and WMT 2014 De-En. To ensure consistency between the prediction made after the first
layer and the one made after the last layer, we train the model with the average loss of these
two layers, similar to [52, 232]. The prediction head is shared for these two layers. More
training and evaluation details can be found in Appendix C.2.

Figure 4.6 illustrates the results, where for each benchmark, BiLLD achieves up to 1.60x
and 1.74x speedup within less than one point BLEU score drop, respectively. This demon-
strates the extensibility of the BiLD framework to early exit problems. In Appendix C.2, we

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 48

further provide a detailed comparison of our results with CALM [232], another framework
that incorporates early exiting for fast Transformer decoding. Compared to CALM, BiLD
offers two advantages that contribute to better generation quality: (1) in BiLLD, even if an
early exited prediction (i.e., prediction made by the smaller model) is incorrect, it can be
corrected and replaced using the rollback policy; (2) the key and value caches for skipped
layers are filled with actual values instead of being computed from the exiting layer’s hidden
states, leading to reduced error propagation and improved decoding stability. As a result,
when tested on IWSLT 2017 De-En and WMT 2014 De-En using mT5-small, BiLD achieves
a BLEU score improvement of up to ~2 points over CALM in both datasets (Figure C.1).

4.4 Related Work

Efficient Transformer Decoding Inference

A variety of approaches have been proposed to increase the speed and reduce the overall infer-
ence costs of Transformers. Well-known approaches include efficient architecture design [115,
138, 149, 255, 275, 295], quantization [134, 236, 317, 318, 311, 294, 40], pruning [63, 227,
144, 183, 268, 55, 146], and neural architecture search [21, 245, 246, 271, 299, 312]. While
these methods are generally suitable for Transformer-based tasks, some of the works have
been focused on efficient decoding mechanisms to reduce the cost of autoregressive tasks.

One popular line of research that shares similarity to our work is non-autoregressive de-
coding. Non-autoregressive decoding, also known as parallel decoding, was first introduced
in [81] as a method to reduce inference latency by producing multiple output tokens in
parallel, thus avoiding sequential text generation. Subsequent work has further improved
the performance of non-autoregressive models by incorporating auxiliary or hinting infor-
mation [278, 163, 254, 283, 233] to ensure more accurate parallel decoding, or by allowing
multiple additional iterations to refine any inaccurate predictions [152, 69, 84]. Such a multi-
iteration decoding scheme has also been proposed in [287, 80, 250], which generates texts
with fewer steps than the autoregressive scheme by inserting or deleting multiple tokens per
iteration. However, these works require complex and often task-dependent training strategies
and/or auxiliary information to achieve comparable performance to that of autoregressive
models. In contrast, our methodology aims for a plug-and-play solution that does not require
any complex training pipeline.

Our work is also related to the approaches that reduce the decoding cost by making
decoders shallow. [127] demonstrates that increasing the depth of encoders and decreas-
ing the depth of decoders can reduce decoding latency while still preserving performance.
CALM [232] recently introduces early exiting, which dynamically adjusts the depth of the
decoder for each token generation by terminating the inference at a middle layer, rather
than executing until the end layer. While our method shares the same goal of accelerat-
ing decoding, we take a different approach by improving decoding parallelism rather than by
skipping unnecessary computation. In addition, our framework offers several advantages over

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 49

CALM: (1) our method is a fully black box approach that does not involve any modifications
to model structures, while CALM requires modifications such as state propagation for the
skipped layers; (2) our approach does not require changes to the training pipeline, whereas
CALM requires averaged loss across all layers to ensure layer consistency; (3) our approach
can be also applied without any training which is critical in various LLM use cases where
training is either infeasible or prohibitively expensive. In Section 4.3, we also show that
the early exiting strategy can be implemented in our framework to yield significantly better
generation quality, further demonstrating the generalizability of our method to a wider range
of problems.

Use of Multiple Models

Coordinating the use of multiple models has also been explored in knowledge distillation and
ensemble learning. Knowledge distillation is a widely adopted methodology for enhancing
the performance of smaller models by training them to replicate the behavior of larger,
more complex models [100]. When applied to the Transformer architecture, this approach
involves distilling the final logits [228, 258] and/or hidden states of a larger model, such as
the attention map [255, 122, 276]. In contrast to knowledge distillation, which leverages the
knowledge of a large model solely during the training time to improve the training of a smaller
model, our method is a run-time solution applied during the decoding process. Therefore,
our approach can be more adaptive to run-time behaviors and does not add complexity to
training.

Ensemble learning is another approach for coordinating multiple models, wherein multiple
models are trained independently and their predictions are combined to improve overall
performance. Ensemble learning has been found to yield promising results for Transformer
inference [199, 114, 300, 181, 102], particularly when the models aggregated are pre-trained
on different datasets and use different techniques. However, ensemble learning generally
requires running multiple models and combining their predictions at run-time, which can
be computationally expensive and not optimized for latency. Our research aims to optimize
both model performance and run-time latency.

Concurrently and independently of our work, [156, 20] also propose an interesting al-
gorithm to accelerate generative inference using a more powerful model to score and spec-
ulatively sample predictions from a less powerful model. While [156, 20] offer unbiased
estimators that match the stronger model’s probability distributions, our extensive empiri-
cal evaluation shows that our approach can deliver superior latency-performance trade-offs,
due to its non-random rollback (i.e., rejection) policy as well as the dynamic fallback window
size. See Section 4.3 and Appendix C.3 for an in-depth comparison.

CHAPTER 4. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 50

4.5 Conclusion

In this work, we have introduced Big Little Decoder (BiLD), a framework that reduces end-to-
end inference latency for a wide variety of text generation tasks without the need for training
or modifying the existing models. In essence, our framework couples a large and small
decoder model together to generate text more efficiently. In particular, we start inference
with a small model which runs autoregressively for the majority of the time to generate
text with a low inference cost, while the large model is executed non-autoregressively to
refine the small model’s inaccurate predictions. BiLD incorporates two policies, the fallback
policy, which hands control to the large model when the small model is uncertain, and
the rollback policy, which allows the large model to revert the small model’s inaccurate
predictions. Our framework is evaluated across various text generation scenarios, including
machine translation, summarization, and language modeling. Running on an NVIDIA Titan
Xp GPU, with no performance drop BiLD achieved an average speedup of 1.52x, with
improvements of up to 2.18x on some tasks. Furthermore, when a 1 point degradation in
performance was allowed, BiLD achieved an average speedup of 1.76x with speedups of up
to 2.38x on some tasks.

51

Chapter 5

Efficient Model Architecture:
Efficient Transformer for Automatic
Speech Recognition

5.1 Introduction

The increasing success of end-to-end neural network models has been a huge driving force
for the drastic advancements in various automatic speech recognition (ASR) tasks. While
both convolutional neural networks (CNN) [329, 159, 141, 178, 90] and Transformers [322,
167, 321, 165, 125] have drawn attention as popular backbone architectures for ASR models,
each of them has several limitations. Generally, CNN models lack the ability to capture
global contexts and Transformers involve prohibitive computing and memory overhead. To
overcome these shortcomings, Conformer [82] has recently proposed a novel convolution-
augmented Transformer architecture. Due to its ability to synchronously capture global and
local features from audio signals, Conformer has become the de facto model not only for
ASR tasks, but also for various end-to-end speech processing tasks [85]. Furthermore, it has
also achieved state-of-the-art performance in combination with recent developments in self-
supervised learning methodologies as well [330, 189]. While the Conformer architecture was
introduced as an autoregressive RNN-Transducer (RNN-T') [77] model in its original setting,
it has been adopted with less critique to non-autoregressive schemes such as Connectionist
Temporal Classification (CTC) [78] as well [191].

Despite being a key architecture in speech processing tasks, the Conformer architecture
has some limitations that can be improved upon. First, Conformer still suffers from the
quadratic complexity of the attention mechanism limiting its efficiency on long sequence
lengths. This problem is further highlighted by the long sequence lengths of typical audio
inputs as also pointed out in [238]. Furthermore, the Conformer architecture is relatively
more complicated than Transformer architectures used in other domains such as in nat-
ural language processing [43, 266, 213] or computer vision [49, 57, 263]. For instance, the

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER

FOR AUTOMATIC SPEECH RECOGNITION 52
71.7 72.0
6.0 57.0 57.0 58.4 58.4 61
42.7 -®
—_ .Y
6.5 GFLOPs 6.50 [-
©
— 6.89 6.89 b
o " § £ . L
=~ 5 z £ X 9 ~AtA
; ko] ~ -B (7] ©) et
2 [¥] [% 3 o o’ o
= g 2 3 S o 101 Squeezeformer (Ours)
© L} < 3 t:_ = v --@-- CitriNet
o &l = I = @ 111 --A-+ Efficient Conformer
£ n = =3 0 a
D £ < = £ = ! +:¥-. Conformer-CTC"
0 2 F S » a 121 -
i : + T + + w --l-- QuartzNet
13 -
10 20 30 40 50 100 200 300
Conformer-CTC-M Squeezeformer-M GFLOPs (log scale)

Figure 5.1: (Left) We perform a series of systematic studies on macro and micro architec-
ture to redesign the Conformer architecture towards our Squeezeformer architecture. The
bars and the line indicate the WER on LibriSpeech test-other dataset and the FLOPs,
respectively. For each design modification, we strictly improve WER until our final Squeeze-
former model outperforms Conformer by 1.40% WER improvement with the same number
of FLOPs. See Table 5.1 for the details. (Right) LibriSpeech test-other WER vs. FLOPs
for Squeezeformer and other state-of-the-art ASR models. Conformer-CTC* is our own re-
production to the best performance as possible and the others are the reported numbers
in their papers [141, 178, 13]. Our architecture scales well to smaller and larger models to
constantly outperform other models by a large margin throughout the entire FLOPs range.
See Table 5.3 for the details. For both plots, the lower the WER, the better; however, we
plotted in reverse for better visualization.

Conformer architecture incorporates multiple different normalization schemes and activation
functions, the Macaron structure [174], as well as back-to-back multi-head attention (MHA)
and convolution modules. This level of complexity makes it difficult to efficiently deploy the
model on dedicated hardware platforms for inference [134, 192, 314]. More importantly, this
raises the question of whether such design choices are necessary and optimal for achieving
good performance in ASR tasks.

In this paper, we perform a careful and systematic analysis of each of the design choices
with the goal of achieving lower word-error-rate (WER) for a given computational budget.
We developed a much simpler and more efficient hybrid attention-convolution architecture
in both its macro and micro-design that consistently outperforms the state-of-the-art ASR
models. In particular, we make the following contributions in our proposed Squeezeformer
model:

e We find a high temporal redundancy in the learned feature representations of neigh-

boring speech frames especially deeper in the network, which results in unnecessary
computational overhead. To address this, we incorporate the temporal U-Net structure

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 53

in which a downsampling layer halves the sampling rate at the middle of the network,
and a light upsampling layer recovers the temporal resolution at the end for training
stability (Section 5.2).

e We redesign the hybrid attention-convolution architecture based on our observation
that the back-to-back MHA and convolution modules with the Macaron structure are
suboptimal. In particular, we propose a simpler block structure similar to the standard
Transformer block [266, 43], where the MHA and convolution modules are each directly
followed by a single feed forward module (Section 5.2).

e We finely examine the micro-architecture of the network and found several modifica-
tions that simplify the model overall and greatly improve the accuracy and efficiency.
This includes (i) activation unification that replaces GLU activations with Swish (Sec-
tion 5.2), (i) Layer Normalization simplification by replacing redundant pre-Layer
Normalization layers with a scaled post-Layer Normalization which incorporates a
learnable scaling for the residual path that can be merged with other layers to be
zero-cost during inference (Section 5.2), and (iii) incorporation of a depthwise sepa-
rable convolution for the first sub-sampling layer that results in a significant floating
point operations (FLOPs) reduction (Section 5.2).

e We show that the Squeezeformer architecture scales well with both smaller and larger
models and consistently outperforms other state-of-the-art ASR models when trained
under the same settings (Table 5.3, Section 5.3). Furthermore, we justify the final
model architecture of Squeezeformer with a reverse ablation study for the design choices
(Table 5.4, Section 5.3).

5.2 Architecture Design

The Conformer architecture has been widely adopted by the speech community and is used
as a backbone for different speech tasks. At a macro-level, Conformer incorporates the
Macaron structure [174] comprised of four modules per block, as shown in Figure 5.2 (Left).
These blocks are stacked multiple times to construct the Conformer architecture. In this
work, we carefully reexamine the design choices in Conformer, starting first with its macro-
architecture, and then its micro-architecture design. We choose Conformer-CTC-M as the
baseline model for the case study, and we compare word-error-rate (WER) on LibriSpeech
test-other as a performance metric for each architecture. Furthermore, we measure FLOPs
on a 30s audio input as a proxy for model efficiency. While we acknowledge that FLOPs may
not always be a linear indicator of hardware and runtime efficiency, we choose FLOPs as it
is hardware agnostic and is statically computable. However, we do measure the final end-
to-end throughput of our changes, ensuring up to 1.34x consistent improvement in runtime
for different versions of Squeezeformer (Table 5.3).

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER

FOR AUTOMATIC SPEECH RECOGNITION 54
Decoder Decoder é- ---------- [Postin] ; ;5-t|-_|:1 ------- (-3;-5
Conformer | 4oms | o [Saveszetomer | oms | |
Block Block ! |
T $: ;
2N X 4 I Squeezeformer E i
Conformer fons ! N X Block 80ms ! :
Block
Conformer i Squeezeformer H
Block goms : N-1 x Block aoms
Convolution DW Sep. Conv
Subsampling Subsampling
Conformer Squeezeformer

Figure 5.2: (Left) The Conformer architecutre and (Right) the Squeezeformer architecture
which comprises of the Temporal U-Net structure for downsampling and upsampling of the
sampling rate, the standard Transformer-style block structure that only uses Post-Layer
Normalization, and the depthwise separable subsampling layer.

Table 5.1: Starting from Conformer as the baseline, we redesign the architecture towards
Squeezeformer through a series of systematic studies on macro and micro architecture. Note
that for each design change, the WER on LibriSpeech test-clean and test-other datasets
improves consistently. For comparison, we include the number of parameters and FLOPs for
a 30s input in the last two columns.

Model ‘Design change ‘test—clean test-other ‘ Params (M) ‘ GFLOPs
Conformer-CTC-M | Baseline 3.20 7.90 27.4 71.7
+ Temporal U-Net (Section 5.2) 2.97 7.28 27.5 57.0
+ Transformer-style Block (Section 5.2) 2.93 7.12 27.5 57.0
+ Unified activations (Section 5.2) 2.88 7.09 28.7 58.4
+ Simplified LayerNorm (Section 5.2) 2.85 6.89 28.7 58.4
Squeezeformer-SM + DW sep. subsampling (Section 5.2) 2.79 6.89 28.2 42.7
Squeezeformer-M + Model scale-up (Section 5.2) 2.56 6.50 55.6 72.0

Macro-Architecture Design

We first focus on designing the macro structure of Squeezeformer, i.e., how the blocks and
modules are organized in a global scale.

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 95

=
o

—— Conformer
1 ---- Conformer w/ Temporal U-Net

Cosine Similarity
© o o o o o o
w E w [e)] ~ [o5] o

o
N

©
il

2 4 6 8 10 12 14 16
Conformer Block Index

Figure 5.3: Cosine similarity between two embedding vectors of neighboring speech frames
with varying adjacency distances across the Conformer blocks. The temporal dimension
is downsampled after the 7th block and upsampled before the 16th block in the Temporal
U-Net structure.

Temporal U-Net Architecture

The hybrid attention-convolution structure enables Conformer to capture both global and
local interactions. However, the attention operation has a quadratic FLOPs complexity
with respect to the input sequence length. We propose to lighten this extra overhead by
computing attention over a reduced sequence length. In the Conformer model itself, the
input sampling rate is reduced from 10ms to 40ms with a convolutional subsampling block
at the base of the network. However, this rate is kept constant throughout the network, with
all the attention and convolution operations operating at a constant temporal scale.

To this end, we begin by studying the temporal redundancy in the learned feature repre-
sentations. In particular, we analyze how the learned feature embeddings per speech frame
are differentiated through the Conformer model depth. We randomly sample 100 audio sig-
nals from LibriSpeech’s dev-other dataset, and process them through the Conformer blocks,
recording their per-block activations. We then measure the average cosine similarity between
two neighboring embedding vectors. The results are plotted as the solid lines in Figure 5.3.
We observe that the embeddings for the speech frames directly next to each other have an
average similarity of 95% at the topmost layer, and even those 4 speech frames away from
each other have a similarity of more than 80%. This reveals that there is an increasing
temporal redundancy as inputs are processed through the Conformer blocks deeper in the
network. We hypothesize that this redundancy in feature embedding vectors causes unnec-

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 56

essary computational overhead and that the sequence length can be reduced deeper in the
network without loss in accuracy.

As our first macro-architecture improvement step, we change the Conformer model to
incorporate subsampling of the embedding vectors after it has been processed by the early
blocks of the model. In particular, we keep the sample rate to be 40ms up to the 7th
block, and afterward we subsample to a rate of 80ms per input sequence by using a pooling
layer. For the pooling layer we use a depthwise separable convolution with stride 2 and
kernel size 3 to merge the redundancies across neighboring embeddings. This decreases the
attention complexity by 4x and also reduces the redundancies of the features. This temporal
downsampling shares similarities with computer vision models, which often downsample the
input image spatially to save compute and develop hierarchical level features [93, 243, 57,
161], and with the approach of Efficient Conformer [13].

However, the temporal downsampling alone leads to an unstable and diverging training
behaviour (Section 5.3). Omne possible reason for this is the lack of enough resolution for
the decoder after subsampling the rate to 80ms. The decoder maps an embedding for each
speech frame into a single label, e.g., character, and therefore requires sufficient resolution
for successful decoding of the full sequence. Inspired from successful architectures for dense
prediction in computer vision such as U-Net [222], we incorporate the Temporal U-Net
structure to recover the resolution at the end of the network through an upsampling layer
as shown in Figure 5.2. This upsampling block takes the embedding vectors processed by
the 40ms and 80ms sampling rates, and produces an embedding with a rate of 40ms by
adding them together via a skip connection. To the best of our knowledge, the closest work
to our Temporal U-Net is the approach proposed in [208], in which the U-Net structure is
incorporated into a fully-convolutional model to downsample sleep signals.

This change not only reduces the total FLOPs by 20% compared to Conformer!, but also
improves the test-other WER by 0.62% from 7.90% to 7.28% (Table 5.1, 2nd row). Further-
more, analyzing the cosine similarity shows that the Temporal U-Net architecture prevents
the neighboring embeddings from becoming too similar to each others at the later blocks, in
particular at the final block directly connected to the decoder, as shown in Figure 5.3 as the
dashed lines.

Transformer-Style Block

The Conformer block consists of a sequence of feed-forward (‘F’), multi-head attention
(MHA, ‘M’), convolution (‘C’), and another feed-forward module (‘F’). We denote this as
the FMCF structure. Note that the convolutional kernel sizes in ASR models are rather
large, e.g., 31 in Conformer, which makes its behaviour similar to attention in mixing global
information. This is stark contrast to convolutional kernels in computer vision, which often
have small 3 x 3 kernels and hence benefit greatly from attention’s global processing. As such,

'The total FLOPs is for the entire model. If we just study the attention block, the Temporal U-Net
structure reduces the FLOPs by 2.31x and 2.53x FLOPs reduction for processing 30s and 60s audio signals
as compared to Conformer-CTC-M baseline, respectively.

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION o7

placing the convolution and MHA module with a similar functionality back-to-back (i.e., the
MC substructure) does not seem prudent. Hence, we consider an MF /CF structure, which
is motivated by considering the convolution module as a local MHA module. Furthermore,
we drop the Macaron structure [174], as MHA modules followed by feed-forward modules
have been more widely adopted in the literature [266, 213, 43, 49]. In a nutshell, we simplify
the architecture to be similar to the standard Transformer network and denote the blocks
MF and CF substructures, as shown in Figure 5.2. This modification further improves the
test-other WER by 0.16% from 7.28% to 7.12% and marginally improves the test-clean WER
without affecting the FLOPs (Table 5.1, 3rd row).

Micro-Architecture Design

So far we have designed the macro structure of Squeezeformer by incorporating seminal ar-
chitecture principles from computer vision and natural language processing into Conformer.
In this subsection, we now focus on optimizing the micro structure of the individual mod-
ules. We show that we can further simplify the module architectures while improving both
efficiency and performance.

Unified Activations

Conformer uses Swish activation for most of the blocks. However, it switches to a Gated
Linear Unit (GLU) for its convolution module. Such a heterogeneous design seems over-
complicated and unnecessary. From a practical standpoint, the use of multiple activations
complicates hardware deployment, as an efficient implementation requires dedicated logic
design, look up tables, or custom approximations [314, 192, 134|. For instance, on low-
end edge devices with no dedicated vector processing unit, supporting additional non-linear
operations would require additional look up tables or advanced algorithms [68, 67]. To
address this, we propose to replace the GLU activation with Swish, unifying the choice
of activation function throughout the entire model. We keep the expansion rate for the
convolution modules. As shown in the 4th row of Table 5.1, this change does not entail
noticeable changes in WER and FLOPs but only simplifies the architecture.

Simplified Layer Normalizations

Continuing our micro-architecture improvements, we note that the Conformer model incor-
porates redundant Layer Normalizations (LayerNorm), as shown in Figure 5.4 (Left). This
is because the Conformer model contains both a post-LayerNorm (postLN) that applies
LayerNorm in between the residual blocks, as well as pre-LayerNorm (preLLN) which applies
LayerNorm inside the residual connection. While it is hypothesized that preLN stabilizes
training and postLN benefits performance [272], these two modules used together lead to
redundant back-to-back operations. Aside from the architectural redundancy, LayerNorm
can be computationally expensive [314, 134] due to its global reduction operations.

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER

FOR AUTOMATIC SPEECH RECOGNITION 58
—Q —®
Module 2 Module 2

| PreLN |
Block 2

Module 1 Module 1

Figure 5.4: (Left) Back-to-back preLN and postLN at the boundary of the blocks. (Right)
The preLLN can be replaced with the learned scaling that readjusts the magnitude of the
activation that goes into the subsequent module.

However, we found that naively removing the preLN or postLN leads to training insta-
bility and convergence failure (Section 5.3). Investigating the cause of failure, we observe
that a typical trained Conformer model has orders of magnitude differences in the norms of
the learnable scale variables of the back-to-back preLN and postLN. In particular, we found
that the preLN would scale down the input signal by a large value, giving more weight to
the skip connection. Therefore, it is important to use a scaling layer when replacing the
preLN component to allow the network to control this weight. This idea is also on par
with several training stabilization strategies in other domains. For instance, NF-Net [11]
proposed adaptive (i.e., learnable) scaling before and after the residual blocks to stabilize
training without normalization. Furthermore, DeepNet [272] also recently proposed to add
non-trainable rule-based scaling to the skip connections to stabilize preLN in Transformers.

Inspired by these computer vision advancements, we propose to replace preLN with a
learnable scaling layer that scales and shifts the activations, Scaling(z) = vz + 5, with
learnable scale and bias vectors v and (8 of the size of feature dimension. For homogeneity of
architectural design, we then replace the preLN throughout all the modules with the postLLN-
then-scaling as illustrated in Figure 5.2 (Right) and make the entire model postLLN-only. Note
that the learned scaling parameters can be merged into the weights of the subsequent linear
layer, as the architecture illustrated in Figure 5.2 (Right), and hence have zero inference
cost. With the learned scaling, our model further improves the test-other WER by 0.20%
from 7.09% to 6.89% (Table 5.1, 5th row).

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 59

Depthwise Separable Subsampling

We now shift our focus from the Conformer blocks to the subsampling block. While it is easy
to overlook this single module at the beginning of the architecture, we note that it accounts
for a significant portion of the overall FLOPs count, up to 28% for Conformer-CTC-M
with a 30-second input. This is because the subsampling layer uses two vanilla convolution
operations each of which has a stride 2. To reduce the overhead of this layer, we replace
the second convolution operation with a depthwise separable convolution while keeping the
kernel size and stride the same. We leave the first convolution operation as is since it is
equivalent to a depthwise convolution with the input dimension 1. This saves an additional
22% of the baseline FLOPs without a test-other WER drop and even a 0.06% improvement
in test-clean WER (Table 5.1, 6th row). An important point to note here is that generally
depthwise separable convolutions are hard to efficiently map to hardware accelerators, in part
due its low arithmetic intensity. However, given the large FLOPs reduction, we consistently
observe an overall improvement in the total inference throughput of up to 1.34x as reported
in Table 5.3, as compared to the baseline Conformer models.

We name our final model with all these improvements as Squeezeformer-SM. Compared
to Conformer-CTC-M, our initial baseline, Squeezeformer-SM improves WER by 1.01% from
7.90% to 6.89% with 40% less FLOPs. Given the smaller FLOPs of Squeezeformer-SM, we
also scale up the model to a similar FLOPs cost as Conformer-CTC-M. In particular, we
scale both depth and width of the model together following the practice in [46]. Scaling up
the model achieves additional test-other WER gain of 0.39% from 6.89% to 6.50% (Table 5.1,
7th row), and we name this architecture Squeezeformer-M.

5.3 Results

Experiment Setup

Models. Following the procedure described in Section 5.2, we construct Squeezeformer
variants with different size and FLOPs: we apply the macro and micro-architecture changes
in Section 5.2 to construct Squeezeformer-XS, SM, and ML from Conformer-S, M, and L,
retaining the model size. Afterwards, we construct Squeezeformer-S, M, and L by scaling up
each model to match the FLOPs of the corresponding Conformer. The detailed architecture
configurations are described in Table 5.2.

While there are multiple options available for the decoder such as RNN-Transducer
(RNN-T) [77] and Connectionist Temporal Classification (CTC) [78], we use a CTC decoder
whose non-autoregressive decoding method benefits training and inference latency [178].
However, the main focus of this work is the model architecture design of the encoder, which
can be orthogonal to the decoder type.

Another subtlety when evaluating models is the use of external language models (LM). In
many prior works [125, 280, 86, 321, 175, 200], decoders are often augmented with external
LMs such as pre-trained 4-gram or Transformer, which boost the final WER by re-scoring

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 60

Table 5.2: Detailed architecture configurations for Conformer-CTC (baseline) and Squeeze-
former. For comparison, we include the number of parameters and FLOPs for a 30s input
in the last two columns.

Model | # Layers Dimension # Heads | Params (M) | GFLOPs
Conformer-CTC-S 16 144 4 8.7 26.2
Squeezeformer-XS 16 144 4 9.0 15.8
Squeezeformer-S 18 196 4 18.6 26.3
Conformer-CTC-M 16 256 4 27.4 71.7
Squeezeformer-SM 16 256 4 28.2 42.7
Squeezeformer-M 20 324 4 55.6 72.0
Conformer-CTC-L 18 512 8 121.5 280.6
Squeezeformer-ML 18 512 8 125.1 169.2
Squeezeformer-L 22 640 8 236.3 277.9

the outputs in a more lexically accurate manner. However, we compare the results without
external LMs to fairly compare the true representation power of the model architectures
alone — external LMs can be incorporated as an orthogonal optimization afterward.

Training Details. Because the training recipes and codes for Conformer have not been
open-sourced, we train it to reproduce the best performance numbers as possible. We train
both Conformer-CTC and Squeezeformer on the LibriSpeech-960hr [201] for 500 epochs on
Google’s cloud TPUs v3 with batch size 1024 for the small and medium variants and 2048
for the large variants. We use AdamW [173] optimizer with weight decay 5e-4 for all models.

For learning rate scheduling, we extend the widely used Noam Annealing [266] to addi-

tionally support the number of steps to maintain the peak learning rate Tjea [238] and the
lrpcakTéi

decay rate d. That is, Ir(t) = lrpT—(‘")*kt for t < Tp, Irpeax for Ty <t < Ty + Theak, and =Toe)?
for t > Ty + Theax, Where ¢ is the step number, Irpeqy is the peak learning rate, and T is the
warmup steps. Note that the Noam annealing is a special case with d = 0.5 and Tjeax = 0.
We find warming up for 20 epochs, maintaining the peak learning rate for additional 160
epochs, and decaying with d = 1 work well in many cases, and fix these values throughout
all experiments. We use the peak learning rate 2e-3, 1.5e-3, and {1, 0.5}e-3 for the small,
medium, and large variants, respectively. We use SentencePiece [143] tokenizer with the vo-
cabulary size 128, and the same dropout setting as in [82]. Finally, for data augmentation,
we only use SpecAugment [202] with 2 frequency masks in [0, 27], and 5 (for all the small
variants, Conformer-M and Squeezeformer-SM), 7 (for Squeezeformer-M) or 10 (for the large
variants) time masks with the masking ratio of [0, 0.05].

Evaluation Details. We evaluate the final models on both clean and other datasets using
CTC greedy decoding. For both Conformer-CTC and Squeezeformer, we additionally mea-
sure the throughput on a single NVIDIA’s Tesla A100 GPU machine (GCP a2-highgpu-1g
instance) using 30s audio inputs as an indicator of hardware performance. Here, we use

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 61

Table 5.3: WER (%) comparison on LibriSpeech dev and test datasets for Squeezeformer
and other state-of-the-art CTC models for ASR including Conformer-CTC, QuartzNet [141],
CitriNet [178], Transformer-CTC [165], and Efficient Conformer-CTC [13]. For comparison,
we include the number of parameters, FLOPs, and throughput (Thp) on a single NVIDIA
Tesla A100 GPU for a 30s input in the last three columns. *The performance numbers for
Conformer-CTC are based on our own reproduction to the best performance as possible. All
the other performance numbers are from the corresponding papers. TWith and *without the
grouped attention.

Model | dev-clean dev-other test-clean test-other | Params (M) | GFLOPs | Thp (ex/s)
Conformer-CTC-S* [82] 4.21 10.54 4.06 10.58 8.7 26.2 613
QuartzNet 5x5 [141] 5.39 15.69 - - 6.7 20.2 -
Citrinet 256 [178] - - 3.78 9.60 10.3 16.8 -
Squeezeformer-XS 3.63 9.30 3.74 9.09 9.0 15.8 763
Conformer-CTC-M* [82] 2.94 7.80 3.20 7.90 27.4 1.7 463
QuartzNet 5x10 [141] 4.14 12.33 - - 12.8 38.5 -
QuartzNet 5x15 [141] 3.98 11.58 3.90 11.28 18.9 55.7 -
Citrinet 512 [178] - - 3.11 7.82 37.0 63.1 -
Eff. Conformer-CTCT [13] - - 3.57 8.99 13.2 26.0 -
Eff. Conformer-CTC* [13] - - 3.58 8.88 13.2 32.5 -
Squeezeformer-S 2.80 7.49 3.08 7.47 18.6 26.3 602
Squeezeformer-SM 2.71 6.98 2.79 6.89 28.2 42.7 558
Conformer-CTC-L* [82] 2.61 6.45 2.80 6.55 121.5 280.6 200
Citrinet 1024 [178] - - 2.52 6.22 143.1 246.3 -
Squeezeformer-M 2.43 6.51 2.56 6.50 55.6 72.0 431
Squeezeformer-ML 2.34 6.08 2.61 6.05 125.1 169.2 268
Transformer-CTC [165] 2.6 7.0 2.7 6.8 255.2 621.1 -
Squeezeformer-L 2.27 5.77 2.47 5.97 236.3 277.9 207

CUDA 11.5 and Tensorflow 2.5, and test with the largest possible batch size that saturates
the machine.

Main Results

In Table 5.3 we compare the WER of Squeezeformer with Conformer-CTC and other state-of-
the-art CTC-based ASR models including QuartzNet [141], CitriNet [178], Transformer [165],
and Efficient Conformer [13] on the clean and other datasets. Note that the performance
numbers for Conformer-CTC? are based on our own reproduction to the best performance
as possible due to the absence of public training recipes or codes. For simplicity, we denote
WER as test-clean/test-other without % throughout the section.

2The WER results exhibit some differences from the original paper [82] due to the difference in decoder.
The original Conformer uses RNN-T decoder, which is known to generally result in better WER than
CTC [327, 13, 178].

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 62

Table 5.4: Ablation studies for the design choices made in Squeezeformer, including Temporal
U-Net, LayerNorm, and activation in the convolution module. *Without the upsampling
layer, the model fails to converge.

Ablation | Model | dev-clean dev-other
Ours ‘ Squeezeformer-M ‘ 2.43 6.51
Temporal U-Net (Section 5.2), No skip connection 2.78 7.38
No upsampling N/A* N/A*
LayerNorm (Section 5.2) PostLN only 5.60 14.00
PreLN only 3.02 8.27
Convolution module (Section 5.2) | No Swish | 253 6.73

Squeezeformer vs. Conformer. Our smallest model Squeezeformer-XS outperforms
Conformer-CTC-S by 0.32/1.49 (3.74/9.09 vs. 4.06/10.58) with 1.66x FLOPs reduction.
Compared with Conformer-CTC-M, Squeezeformer-S achieves 0.12/0.43 WER improvement
(3.08/7.47 vs. 3.20/7.90) with 1.47x smaller size and 2.73x less FLOPs, and Squeezeformer-
SM further improves WER by 0.41/1.01 (2.79/6.89 vs. 3.20/7.90) with a comparable size and
1.70x less FLOPs. Compared with Conformer-CTC-L, Squeezeformer-M shows 0.24/0.05
WER improvement (2.56/6.50 vs. 2.80/6.55) with significant size and FLOPs reductions of
2.18x and 3.90x, respectively, and Squeezeformer-ML shows 0.19/0.50 WER improvement
(2.61/6.05 vs. 2.80/6.55) with a similar size and 1.66x less FLOPs. Finally, our largest
model Squeezeformer-L improves WER by 0.33/0.58 upon Conformer-CTC-L with the same
FLOPs count, achieving the state-of-the-art result of 2.47/5.97.

Squeezeformer vs. Other ASR Models. As can be seen in Table 5.3, our model
consistently outperforms QuartzNet, CitriNet, and Transformer with comparable or smaller
model sizes and FLOPs counts. A notable result is a comparison against Efficient-Conformer:
our model outperforms the efficiently-designed Efficient Conformer by a large margin of
0.79/1.99 (2.79/6.89 vs. 3.58/8.88) with the same FLOPs count. The overall results are
summarized as a plot in Figure 5.1 (Right) where Squeezeformer consistently outperforms
other models across all FLOPs regimes.

Ablation Studies

In this section, we provide additional ablation studies for the design choices made for indi-
vidual architecture components using Squeezeformer-M as the base model. See Table 5.4.
Unless specified, we use the same hyperparameter settings as in the main experiment.

Temporal U-Net. In the 2nd row of Table 5.4, the model clearly underperforms by
0.35/0.87 without the skip connection from the downsampling layer to the upsampling layer.
This shows that the high-resolution information collected in the early layers is critical for
successful decoding. The 3rd row in Table 5.4 shows that our model completely fails to

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 63

Table 5.5: WER (%) comparison on TIMIT test split for Squeezeformer and Conformer-
CTC that are trained on LibriSpeech with and without finetuning. For comparison, we also
include the number of parameters and FLOPs.

Model | without finetuning with finetuning | Params (M) | GFLOPs
Conformer-S 18.09 13.41 8.7 26.2
Squeezeformer-XS 16.31 12.89 9.0 15.8
Conformer-M 13.91 10.95 27.4 1.7
Squeezeformer-S 13.78 11.26 18.6 26.3
Squeezeformer-SM 13.65 10.50 28.2 42.7
Conformer-L 13.41 10.03 121.5 280.6
Squeezeformer-M 13.44 10.32 55.6 72.0
Squeezeformer-ML 11.35 9.96 125.1 169.2
Squeezeformer-L ‘ 12.92 9.76 ‘ 236.3 ‘ 277.9

converge without the upsampling layer due to training stability, even with several different
peak learning rates of {0.5, 1.0, 1.5}e-3.

LayerNorm. In the 4th line of Table 5.4, we show that WER drops significantly by 3.17/7.49
when we apply the PostLN-only scheme without the learned scaling layer. Another alterna-
tive design choice is to apply the PreLN-only scheme without the learned scaling, which also
results in a noticeable WER degradation of 0.59/1.76 as shown in the 5th line of Table 5.4.
In both cases, the model fails to converge, so we report the best WER before divergence.
The results suggest that the learned scaling layer plays a key role for training stabilization
and better WER.

Convolution Module. When ablating the GLU activation in the convolution modules,
another possible design choice is to drop it without replacing it with the Swish activation.
This, however, results in 0.10/0.22 worse WER, as shown in the last line of Table 5.4.

Transferability to Unseen Datasets

In Table 5.5, we additionally evaluate the transferability of Squeezeformer trained on Lib-
riSpeech to unseen TIMIT [66] dataset with and without finetuning. In both cases, we used
the same SentencePiece tokenizer as Librispeech training. For finetuning, we used the same
learning rate scheduler as in Section 5.3 with the peak learning rate lrpe.x in {0.5, 1, 2, 5}e-4,
2 epochs of warmup (7p), and 0 epoch of maintaining the peak learning rate (Tpeax). All the
other training recipes are the same as Section 5.3. We use Conformer-CTC as the baseline
model to compare against, and we report WER measured on the test split. As can be seen
in the table, the general trend aligns with the LibriSpeech results in Table 5.3: under smaller
or same FLOPs and parameter counts, Squeezeformer outperforms Conformer-CTC, both
with and without finetuning.

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 64

5.4 Related Work

The recent advancements in end-to-end ASR can be broadly categorized into (1) model
architecture and (2) training methods.

Model Architecture for End-to-end ASR. The recent end-to-end ASR models are typ-
ically composed of an encoder, which takes as input a speech signal (i.e., sequence of speech
frames) and extracts high-level acoustic features, and a decoder, which converts the ex-
tracted features from the encoder into a sequence of text. The model architecture of the
encoder determines the representational power of an ASR model and its ability to extract
acoustic features from input signals. Therefore, a strong architecture is critical for overall
performance.

One of the popular choices for a backbone model architecture is convolutional neural net-
work (CNN). End-to-end deep CNN models have been first explored in [329, 159], and further
improved by introducing depth-wise separable convolution [242, 265, 107] in QuartzNet [141]
and the Squeeze-and-Excitation module [112] in CitriNet [178] and ContextNet [90]. How-
ever, since CNNs often fail to capture global contexts, Transformer [266] models have also
been widely adopted in backbone architectures due to their ability to capture long-range
dependencies between speech frames [322, 167, 321, 165, 125]. Recently, [82] has proposed a
novel model architecture named Conformer, which augments Transformers with convolutions
to model both global and local dependencies efficiently. With the Conformer architecture as
our starting point, we focus on designing a next-generation model architecture for ASR that
is simpler, more accurate, and more efficient.

The hybrid attention-convolution architecture of Conformer has enabled the state-of-the-
art results in many speech tasks. However, the quadratic complexity of the attention layer
still proves to be cost prohibitive at larger sequence lengths. While different approaches
have been proposed to reduce the cost of MHA in ASR [323, 324, 17, 238], their main focus
is not changing the overall architecture design, and their optimizations can also be applied
to our model, as they are orthogonal to the developments for Squeezeformer. Efficient-
Conformer [13] introduces the progressive downsampling scheme and grouped attention to
reduce the training and inference costs of Conformer. Our work incorporates a similar
progressive downsampling, but also introduces an up-sampling mechanism with skip con-
nections from the earlier layers inspired by the U-Net [222] architecture in computer vision
and the U-Time [208] architecture for sleep signal analysis. We find this to be critical for
training stability and overall performance. In addition, through systematic experiments,
we completely refactor the Conformer block by carefully redesigning both the macro and
micro-architectures.

Training Methodology for End-to-end ASR. In the past few years, various self-supervised
learning methodologies based on contrastive learning [5, 330, 270] or masked prediction [108,
24, 4] have been proposed to push forward the ASR performance. While a model pre-trained
with self-supervised tasks generally outperforms when finetuned on a target ASR task, train-

CHAPTER 5. EFFICIENT MODEL ARCHITECTURE: EFFICIENT TRANSFORMER
FOR AUTOMATIC SPEECH RECOGNITION 65

ing strategies are not the main focus in this work as they can be applied independently to
the underlying architecture.

5.5 Conclusions

In this work, we performed a series of systematic ablation studies on the macro and mi-
cro architecture of the Conformer architecture, and we proposed a novel hybrid attention-
convolution architecture that is simpler and consistently achieves better performance than
other models for a wide range of computational budgets. The key novel components of
Squeezeformer’s macro-architecture is the incorporation of the Temporal U-Net structure
which downsamples audio signals in the second half of the network to reduce the temporal
redundancy between adjacent features and save compute, as well as the MF /CF block struc-
ture similar to the standard Transformer-style which simplifies the architecture and improves
performance. Furthermore, the micro-architecture of Squeezeformer simplifies the activations
throughout the model and replaces redundant LayerNorms with the scaled postLN, which is
more efficient and leads to better accuracy. We also drastically reduce the subsampling cost
at the beginning of the model by incorporating a depthwise separable convolution. We per-
form extensive testing of the proposed architecture and find that Squeezeformer scales very
well across different model sizes and FLOPs regimes, surpassing prior model architectures
when trained under the same settings. Our code along with the checkpoints for all of the
trained models is open-sourced and available online [131].

66

Chapter 6

Efficiency in Agentic Applications:
LLM Compiler for Parallel Function
Calling

6.1 Introduction

Recent advances in the reasoning capability of Large Language Models (LLMs) have ex-
panded the applicability of LLMs beyond content generation to solving complex prob-
lems [284, 139, 308, 7, 277, 336, 26, 306, 65]; and recent works have also shown how this
reasoning capability can be helpful in improving accuracy for solving complex and logical
tasks. The reasoning capability has also allowed function (i.e., tool) calling capability, where
LLMs can invoke provided functions and use the function outputs to help complete their
tasks. These functions range from a simple calculator that can invoke arithmetic operations
to more complex LLM-based functions.

The ability of LLMs to integrate various tools and function calls could enable a funda-
mental shift in how we develop LLM-based software. However, this brings up an important
challenge: what is the most effective approach to incorporate multiple function calls? A no-
table approach has been introduced in ReAct [307], where the LLM calls a function, analyzes
the outcomes, and then reasons about the next action, which involves a subsequent function
call. For a simple example illustrated in Figure 6.1 (Left), where the LLM is asked if Scott
Derrickson and Ed Wood have the same nationality, ReAct initially analyzes the query and
decides to use a search tool to search for Scott Derrickson. The result of this search (i.e.,
observation) is then concatenated back to the original prompt for the LLM to reason about
the next action, which invokes another search tool to gather information about Ed Wood.

ReAct has been a pioneering work in enabling function calling, and it has been integrated
into several frameworks [150, 169]. However, scaling this approach for more complex appli-
cations requires considerable optimizations. This is due to the sequential nature of ReAct,
where it executes function calls and reasons about their observations one after the other.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

Question: Were Scott Derrickson and Ed Wood of the same nationality?
ReAct LLMCompiler
LLM @J Function Calling Planner %D
Thought: | need to search Scott Derrickson. $1 = search(Scott Derrickson)
Action: search(Scott Derrickson) $2 = search(Ed Wood) DAG of tasks
" Tool invocation W Parallel tool invocations
Search Tool Q Search Tool Q) Search Tool Q
Observation: ... Scott Derrickson (born July 16, 1966) Observation: ... Scott Derrickson (born July Observation: ... Edward Wood Jr was an
is an American filmmaker ... 16, 1966) is an American filmmaker ... American filmmaker, actor, and ...
W Appended to prompt v hd
S LLM ®r LM
g Thought: | need to search Ed Wood. Thought: They are both American filmmakers.
) Action: search(Ed Wood) Executor Action: finish(yes)

"W Tool invocation
Search Tool Q

Observation: ... Edward Wood Jr was an American
filmmaker, actor, and

W Appended to prompt
LLM

Thought: They are both American filmmakers.
Action: finish(yes)

53 Latency Speedup: 1.8x

Figure 6.1: An illustration of the runtime dynamics of LLMCompiler, in comparison with
ReAct [307], given a sample question from the HotpotQA benchmark [304]. In LLMCompiler
(Right), the Planner first decomposes the query into several tasks with inter-dependencies.
The Executor then executes multiple tasks in parallel, respecting their dependencies. Finally,
LLMCompiler joins all observations from the tool executions to produce the final response.
In contrast, sequential tool execution of the existing frameworks like ReAct (Left) leads to
longer execution latency. In this example, LLMCompiler attains a latency speedup of 1.8x
on the HotpotQA benchmark. While a 2-way parallelizable question from HotpotQA is
presented here for the sake of simple visual illustration, LLMCompiler is capable of managing
tasks with more complex dependency patterns (Figure 6.2 and Section 6.4).

This approach, along with the agent systems that extend ReAct [129, 308, 212, 225, 252],
may lead to inefficiencies in latency and cost, due to the sequential function calling and
repetitive LLM invocations for each reasoning and action step. Furthermore, while dynamic
reasoning about the observations has benefits in certain cases, concatenating the outcomes
of intermediate function calls could disrupt the LLM’s execution flow, potentially reducing
accuracy [297]. Common failure cases include repetitive invocation of the same function,
which is also highlighted in the original paper [307], and early stopping based on the partial
intermediate results, as will be further discussed in Section 6.4 and Section 6.5.

To address this challenge, we draw inspiration from classical compilers, where optimizing
instruction executions in traditional programming languages has been extensively explored.
A key optimization technique in compilers involves identifying instructions that can be exe-
cuted in parallel and effectively managing their dependencies. Similarly, one can envision a
compiler, tailored for LLM function calling, which can efficiently orchestrate various function
calls and their dependencies. This shares a similar philosophy with the recent studies that
align LLMs with computer systems [126, 198]. To this end, we introduce LLMCompiler, a

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 68

novel framework that enables parallel multi-tool execution of LLMs across different models
and workloads. To the best of our knowledge, LLMCompiler is the first framework to optimize
the orchestration of LLM function calling that can not only improve latency and cost, but
also accuracy, by minimizing interference from the outputs of intermediate function calls. In
more detail, we make the following contributions:

e We introduce LLMCompiler, an LLM compiler that optimizes the parallel function
calling performance of LLMs. At a high level, this is achieved by introducing three
key components: (i) a Function Calling Planner (Section 6.2) that identifies an execu-
tion flow; (ii) a Task Fetching Unit (Section 6.2) that dispatches the function calls in
parallel; (iii) an Executor (Section 6.2) that executes the dispatched tasks using the
associated functions.

e We evaluate LLMCompiler on embarrassingly parallel patterns using HotpotQA [304]
and Movie Recommendation [249], where we observe 1.80% /3.74x speedup and 3.37x /
6.73x cost reduction compared to ReAct (Section 6.4).

e To test the performance on more complex patterns, we introduce a new benchmark
called ParallelQA which includes various non-trival function calling patterns. We show
up to 2.27x speedup, 4.65x cost reduction, and 9% improved accuracy compared to
ReAct (Section 6.4).

e We evaluate LLMCompiler’s capability in dynamic replanning, which is achieved through
a feedback loop from the Executor back to our Function Calling Planner. For the
Game of 24 [308], which requires repeated replanning based on the intermediate results,
LLMCompiler demonstrates a 2x speedup compared to Tree-of-Thoughts (Section 6.4).

e We show that LLMCompiler can explore the interactive decision-making environment
effectively and efficiently. On WebShop, LLMCompiler achieves up to 101.7x speedup
and 25.7% improved success rate compared to the baselines (Section 6.4).

6.2 Methodology

To illustrate the components of LLMCompiler, we use a simple 2-way parallel example in Fig-
ure 6.2. To answer “How much does Microsoft’s market cap need to increase to exceed Apple’s
market cap?,” the LLM first needs to conduct web searches for both companies’ market caps,
followed by a division operation. While the existing frameworks, including ReAct, perform
these tasks sequentially, it is evident that they can be executed in parallel. The key question
is how to automatically determine which tasks are parallelizable and which are interdepen-
dent, so we can orchestrate the execution of the different tasks accordingly. LLMCompiler
accomplishes this through a system that consists of the following three components: a Func-
tion Calling Planner (Section 6.2) that generates a sequence of tasks and their dependencies;
a Task Fetching Unit (Section 6.2) that replaces arguments based on intermediate results
and fetches the tasks; and an Executor (Section 6.2) that executes the tasks with associated
tools. To use LLMCompiler, users are only required to provide tool definitions, and optional
in-context examples for the Planner, as will be further discussed in Section 6.3.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING 69
Executor
Function Calling Planner %3 [oot || |[Tool |
User Input Task
Fetching Fetches Memory Memory
“How much does @ = search(Microsoft Market Cap) 3 Task
Microsoft's market cap € = search(Apple Market Cap) —> Unit < 1| 7ol ||| Tool |
need to increase to exceed = math(@ / @) “ Resolves) 3%
Apple's market cap?” @ = 11m() Q ‘ 2 , Dependency ﬁ
DAG of Tasks *
P Tools
. Q search || [math @) 1lm

Figure 6.2: Overview of the LLMCompiler framework. The Function Calling Planner gener-
ates a DAG of tasks with their inter-dependencies. These tasks are then dispatched by the
Task Fetching Unit to the Executor in parallel based on their dependencies. In this example,
Task $1 and $2 are fetched together for parallel execution of two independent search tasks.
After each task is performed, the results are forwarded back to the Task Fetching Unit to
unblock the dependent tasks after replacing their placeholder variables (e.g., the variable $1
and $2 in Task $3) with actual values. Once all tasks have been executed, the final answer
is delivered to the user.

Function Calling Planner

The Function Calling Planner is responsible for generating a sequence of tasks to be executed
along with any dependency among them. For instance, Tasks $1 and $2 in Figure 6.2
are two independent searches that can be performed in parallel. However, Task $3 has
a dependency on the outcomes of the first and second searches. Therefore, the Planner’s
role is to automatically identify the necessary tasks, their input arguments, as well as their
inter-dependencies using the sophisticated reasoning capability of LLMs, essentially forming
a directed acyclic graph of task dependencies. If a task is dependent on a preceding task, it
incorporates a placeholder variable, such as $1 in Task 3 of Figure 6.2, which will later be
substituted with the actual output from the preceding task (Section 6.2).

The Planner in LLMCompiler leverages LLMs’ reasoning capability to decompose tasks
from natural language inputs. To achieve this, the Planner LLM incorporates a pre-defined
prompt that guides it on how to create dependency graphs and to ensure correct syntax (see
Appendix D.5 for details). Besides this, users also need to supply tool definitions and optional
in-context examples for the Planner. These examples provide detailed demonstrations of task
decomposition specific to a problem, helping the Planner to better understand the rules.
Further details on user-supplied information for LLMCompiler are elaborated in Section 6.3.
In Section 6.3, we introduce an additional optimization for the Planner that streams tasks
as soon as they are created, instead of waiting to complete the entire planning process.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 70

Task Fetching Unit

The Task Fetching Unit, inspired by the instruction fetching units in modern computer
architectures, fetches tasks to the Executor as soon as they are ready for (parallel) execution
based on a greedy policy. Another key functionality is to replace variables with the actual
outputs from preceding tasks, which were initially set as placeholders by the Planner. For
the example in Figure 6.2, the variable $1 and $2 in Task $3 would be replaced with the
actual market cap of Microsoft and Apple. This can be implemented with a simple fetching
and queuing mechanism without a dedicated LLM.

Executor

The Executor asynchronously executes tasks fetched from the Task Fetching Unit. As the
Task Fetching Unit guarantees that all the tasks dispatched to the Executor are independent,
it can simply execute them concurrently. The Executor is equipped with user-provided tools,
and it delegates the task to the associated tool. These tools can be simple functions like a
calculator, Wikipedia search, or API calls, or they can even be LLM agents that are tailored
for a specific task. As depicted in the Executor block of Figure 6.2, each task has dedicated
memory to store its intermediate outcomes, similar to what typical sequential frameworks
do when aggregating observations as a single prompt [307]. Upon completion of the task,
the final results are forwarded as input to the tasks dependent on them.

Dynamic Replanning

In various applications, the execution graph may need to adapt based on intermediate results
that are a priori unknown. An analogy in programming is branching, where the path of
execution is determined only during runtime, depending on which branch conditions are
satisfied. Such dynamic execution patterns can also appear with LLM function calling. For
simple branching (e.g., if-else statements) one could statically compile the execution flow and
choose the right dynamically based on the intermediate results. However, for more complex
branching it may be better to do a recompilation or replanning based on the intermediate
results.

When replanning, the intermediate results are sent back from the Executor to the Func-
tion Calling Planner which then generates a new set of tasks with their associated dependen-
cies. These tasks are then sent to the Task Fetching Unit and subsequently to the Executor.
This cycle continues until the desired final result is achieved and can be delivered to the
user. We show an example use case of this in Section 6.4 for solving the Game of 24 using
the Tree-of-Thoughts approach.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 71

6.3 LLMCompiler Details

User-Supplied Information

LLMCompiler requires two inputs from the user:

1. Tool Definitions: Users need to specify the tools that LLMs can use, including their
descriptions and argument specifications. This is essentially the same requirement as
other frameworks like ReAct and OpenAl function calling.

2. In-context Examples for the Planner: Optionally, users can provide LLMCompiler
with examples of how the Planner should behave. For instance, in the case of Fig-
ure 6.2, users may provide examples illustrating expected inter-task dependencies for
certain queries. These examples can assist the Planner LLM in understanding how to
use various tools and generate the appropriate dependency graph for incoming inputs
in the correct format. In Appendix D.4, we include the examples that we used in our
evaluations.

Streamed Planner

The Planner may incur a non-trivial overhead for user queries that involve a lot of tasks as it
blocks the Task Fetching Unit and the Executor, which must wait for the Planner output be-
fore initiating their processes. However, analogous to instruction pipelining in modern com-
puter systems, this can be mitigated by enabling the Planner to asynchronously stream the
dependency graph, thereby allowing each task to be immediately processed by the Executor
as soon as its dependencies are all resolved. In Table D.1, we present a latency comparison
of LLMCompiler with and without the streaming mechanism across different benchmarks.
The results demonstrate consistent latency improvements with streaming. Particularly, in
the ParallelQA benchmark, the streaming feature leads to a latency gain of up to 1.3x. This
is attributed to the math tool’s longer execution time for ParallelQA, which can effectively
hide the Planner’s latency in generating subsequent tasks, unlike the shorter execution times
of the search tool used in HotpotQA and Movie Recommendation.

6.4 Results

In this section, we evaluate LLMCompiler using a variety of models and problem types. We
use both the proprietary GPT models and the open-source LLaMA-2 model, with the latter
demonstrating LLMCompiler’s capability in enabling parallel function calling in open-source
models. Furthermore, there are various types of parallel function calling patterns that can
be addressed with LLMs. This ranges from embarrassingly parallel patterns, where all tasks
can be executed in parallel without any dependencies between them, to more complex depen-
dency patterns, as illustrated in Figure 6.3. Importantly, we also assess LLMCompiler on the
Game of 24 benchmark, which involves dynamic replanning based on intermediate results,

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING 72
(a) Analyze Apple and Microsoft's latest 10-K (b) If Stanford and UCLA were to merge, would they (€) Which has higher total healthcare expenses, Florida
form and compare their sales forecast. have more Nobel laureates than UC Berkeley? or New York, considering both public and private sectors?
‘ search ‘ ‘ search ‘ { search ‘ ‘ search ‘ { search ‘ ‘ search ‘ ‘ search J
il L) L)) ()) U)\

output ‘ maM ‘ math ‘ ‘ math ‘

‘ math ‘ ‘ math ‘
¥) ¥
output output

Figure 6.3: Examples of questions with different function calling patterns and their depen-
dency graphs. HotpotQA and Movie Recommendation datasets exhibit pattern (a), and
ParallelQA dataset exhibits patterns (b) and (c), among other patterns. In (a), we need to
analyze each company’s latest 10-K. In (b), we need three searches for each school, followed
by one addition and one comparison operation. In (c), we need to search for each state’s
annual healthcare spending in each sector, sum each state’s spending, and then perform a
comparison.

highlighting its adaptability to dynamic dependency graphs. Finally, we apply LLMCompiler
to the WebShop benchmark to showcase its potential in decision-making tasks. Overall, we
start presenting results for simple execution patterns, and then we move to more complex
ones.

Embarrassingly Parallel Function Calling

The simplest scenario involves an LLM using a tool repeatedly for independent tasks such
as conducting parallel searches or analyses to gather information on different topics, like the
pattern depicted in Figure 6.3 (a). While these tasks are independent of each other and can
be executed in parallel, ReAct, along with other LLM solutions as they stand, would need to
run sequentially. This leads to increased latency and token consumption due to its frequent
LLM invocations for each tool usage, as also illustrated in Figure 6.1. In this section, we
demonstrate how LLMCompiler can identify parallelizable patterns and execute independent
tasks concurrently to resolve this issue. To do so, we use the following two benchmarks:

e HotpotQA: A dataset that evaluates multi-hop reasoning [304]. We only use the
comparison dev set. This contains 1.5k questions comparing two different entities, thus
exhibiting a 2-way embarrassingly parallel execution pattern. An example question is
shown in Figure 6.1.

e Movie Recommendation: A dataset with 500 examples that asks to identify the
most similar movie out of four options to another set of four movies, exhibiting an
8-way embarrassingly parallel pattern [249].

Experimental Setups. As a baseline method, we compare LLMCompiler with ReAct. We
follow the ReAct setup [307] using the same Wikipedia search tool that LLMs can use to
search for information. We did not include the lookup tool since it is not relevant to our

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 73

Table 6.1: Accuracy and latency comparison of LLMCompiler compared to the baseline on
different benchmarks, including HotpotQA, Movie Recommendation, our custom dataset
named ParallelQA, and the Game of 24. For HotpotQA and Movie Recommendation, we
frequently observe looping and early stopping (Section 6.4). To minimize these behaviors
as much as possible, we incorporated ReAct-specific prompting which we denote as ReAct!.
ReAct (without 1) indicates the original results without this prompting. We do not include
the latency for the original ReAct since looping and early stopping make precise latency
measurement difficult.

| | GPT (Closed-source) | LLaMA-2 70B (Open-source)
Benchmark Method
| | Acc (%) | Latency (s) Speedup | Acc (%) | Latency (s) Speedup
ReAct 61.52 - - 54.74 - -
ReAct! 62.47 7.12 1.00x 54.40 13.44 1.00x
HotpotQA | A1 Parallel Func. | 62.05 4.42 1.61x - - -
LLMCompiler 62.00 3.95 1.80x 57.83 9.58 1.40x
ReAct 68.60 - - 70.00 - -
: ReAct! 72.47 20.47 1.00x 70.60 33.37 1.00x
Movie Rec. | AT Parallel Func. | 77.00 7.42 2.76x - - -
LLMCompiler 77.13 5.47 3.74x 77.80 11.83 2.82%
ReAct 89.09 35.90 1.00x 59.59 15.47 1.00x
ParallelQA OAI Parallel Func. 87.32 19.29 1.86 % - - -
LLMCompiler 89.38 16.69 2.15x% 68.14 26.20 2.27x
Game of 24 Tree-of-Thoughts 74.00 241.2 1.00x 30.00 952.06 1.00x
ame o LLMCompiler 75.33 83.6 2.89x 32.00 456.02 2.09x

Table 6.2: Input and output token consumption as well as the estimated cost on HotpotQA,
Movie Recommendation, and our custom dataset named ParallelQA. The cost is computed
based on the pricing table of the GPT models used for each benchmark.

Tokens Cost Cost

Benchmark Method In. Out. ($/1k) Red.
ReAct 2900 120 5.00 1.00x

HotpotQA OAI Para. Func. 2500 63 2.66 1.87x%
LLMCompiler 1300 80 1.47 3.37x

ReAct 20000 230 20.46 1.00x

Movie Rec. OAI Para. Func. 5800 160 6.14 3.33x
LLMCompiler 2800 115 3.04 6.73 %

ReAct 46000 470 480 1.00x

ParallelQA OAI Para. Func. | 25000 370 260 1.81x
LLMCompiler 9200 340 103 4.65x

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 74

problem setting. We have optimized the prompt and in-context examples for both ReAct
and LLMCompiler to the best of our abilities. For all experiments across these datasets, we
use gpt-3.5-turbo (1106 release). For the experiments using GPT, we additionally report the
results using OpenAl’s parallel function calling capability, which was announced concurrently
with our work. We also show how LLMCompiler can be effectively combined with the open-
source LLaMA-2 70B model to provide the model with parallel function calling capabilities.
For all experiments, we have measured accuracy, end-to-end latency, as well as input and
output token usage. See Appendix D.1 for details on experimental setups.

Accuracy and Latency. We report the accuracy, end-to-end latency, and relative speed-
up of LLMCompiler compared to ReAct in Table 6.1. First, we observe that ReAct consis-
tently achieves lower accuracy compared to OpenAl parallel function calling and LLMCompiler.
We identify two main failure modes in ReAct: (1) the tendency for redundant generation
of prior function calls, a point also noted in the original ReAct paper [307]; and (2) prema-
ture early stopping based on the incomplete intermediate results. In Section 6.5, we offer
a detailed analysis demonstrating how these two prevalent failure cases significantly hurt
ReAct’s accuracy, and how they can be resolved with LLMCompiler, leading to an accuracy
enhancement of up to 7 — 8%. Furthermore, we have conducted interventional experiments
in which we incorporated ReAct-specific prompts to avoid repetitive function calls and early
stopping. ReAct! in Table 6.1 refers to ReAct with this ReAct-specific prompt. The ReAct-
specific prompt yields a general accuracy improvement with ReAct! as compared to the
original ReAct. Nevertheless, LLMCompiler still demonstrates on-par and better accuracy
than ReAct', as such prompting does not serve as a perfect solution to completely avoiding
the erroneous behavior of ReAct.

Additionally, when compared to ReAct!, LLMCompiler demonstrates a noticeable speedup
of 1.80x and 1.40x on HotpotQA with GPT and LLaMA | respectively. Similarly, LLMCompiler
demonstrates 3.74x and 2.82x speedup on Movie Recommendation with each model. Note
that we benchmark the latency of LLMCompiler against that of ReAct! since the repeating
and early stopping behavior of the original ReAct as discussed above makes its latency un-
predictable and unsuitable for a fair comparison. LLMCompiler demonstrates a speedup of
up to 35% compared to OpenAl parallel function calling whose latency gain over ReAct is
1.61x and 2.76 x on each benchmark.

Costs. Another important consideration of using LLMs is cost, which depends on the in-
put and output token usage. The costs for GPT experiments are provided in Table 6.2.
LLMCompiler is more cost-efficient than ReAct for cost, as it involves less frequent LLM
invocations. Interestingly, LLMCompiler also outperforms the recent OpenAl parallel func-
tion calling in cost efficiency. This is because LLMCompiler’s planning phase is more prompt

I Unfortunately, we are unable to conclude why this is the case, as OpenAl has not publicly disclosed any details
about their function calling mechanism. One speculation is that there might be additional overheads to validate the
function and argument names and to convert them into a system prompt. Nevertheless, we have seen a consistent
trend with multiple runs over several days.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 75

length efficient than that of OpenAl parallel function calling since our Planner’s in-context
examples are rather short and only include plans, not observations (see Appendix D.5).

Parallel Function Calling with Dependencies

The cases considered above are rather simple, as only one tool is used and all tasks can be
executed independently of one another. However, similar to code execution in traditional
code blocks, we may encounter function calling scenarios that involve more complex depen-
dencies. To systematically evaluate the capability to plan out function calling in scenarios
that involve complex task dependencies, we have designed a custom benchmark called Par-
allelQA. This benchmark is designed to incorporate non-trivial function calling patterns,
including three different types of patterns in Figure 6.3 (b) and (c). Inspired by the IfQA
benchmark [315], ParallelQA contains 113 examples that involve mathematical questions on
factual attributes of various entities. In particular, completing the task requires using two
tools (i.e., search and math tools), with the second tool’s argument depending on the result
of the first tool’s output. We have meticulously included questions that are answerable only
with information from Wikipedia’s first paragraph, effectively factoring out the failure cases
due to unsuccessful searches. See Appendix D.6 for more details in ParallelQA.

Experimental Setups. Similar to Section 6.4, we use ReAct [307] as the main baseline.
Here, both ReAct and LLMCompiler are equipped with two tools: (1) the search tool, iden-
tical to the one mentioned in Section 6.4; and (2) the math tool, which solves mathematical
problems. The math tool is inspired by the Langchain [150]’s LLMMathChain, which uses
an LLM as an agent that interprets input queries and invokes the numexpr function with
the appropriate formula. This enables the math chain to address a broad spectrum of math
problems that are written both in mathematical and verbal form. See Appendix D.1 for
more details on experimental setups.

Accuracy and Latency. As shown in the ParallelQA row of Table 6.1, LLMCompiler
arrives at the final answer with an average speedup of 2.15x with gpt-4-turbo and 2.27x
with LLaMA-2 70B, by avoiding sequential execution of the dependency graphs. Beyond the
latency speedup, we observe higher accuracy of LLMCompiler with the LLaMA-2 model as
compared to that of ReAct, due to the reasons discussed in Section 6.4. Particularly in the
LLaMA-2 experiment, where LLMCompiler achieves around a 9% increase in accuracy, we
note that ~20% of the examples experienced repetitive function calls with ReAct, aligning
with our observations from the accuracy analysis detailed in Section 6.5. Additionally, a
comprehensive analysis of LLMCompiler’s failure cases is provided in Section 6.5, where we
note minimal Planner failures, highlighting LLMCompiler’s effectiveness in breaking down
problems into complex multi-task dependencies.

Cost. Similar to Section 6.4, LLMCompiler demonstrates substantial cost reductions of
4.65x and 2.57x compared to ReAct and OpenAl’s parallel function calling, respectively,

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 76

as indicated in Table 6.2. This efficiency stems from LLMCompiler’s reduced frequency of
LLM invocations, which is also the case with OpenAl’s parallel function calling, which is
limited to planning out immediate parallelizable tasks, not the entire dependency graph. For
example, in Figure 6.3 (c¢), OpenAI’s method would necessitate three distinct LLM calls for
initial search tasks, following math tasks, and the final math task. In contrast, LLMCompiler
achieves this with a single LLM call, planning all tasks concurrently.

Parallel Function Calling with Replanning

In the previous sections, we have discussed cases in which dependency graphs can be deter-
mined statically. However, there are cases where dependency graphs need to be constructed
dynamically depending on intermediate observations. Here, we consider one such dynamic
approach in the context of the Game of 24 with the Tree-of-Thoughts (ToT) strategy pro-
posed in [308]. The Game of 24 is a task to generate 24 using a set of four numbers and
basic arithmetic operations. For example, from the numbers 2, 4, 4, and 7, a solution could
be 4 x (7 —4) x 2 = 24. ToT approaches this task through two iterative LLM processes:
(i) the thought proposer generates candidate partial solutions by selecting two numbers and
applying an operation (e.g. 2, 3, 7 from 2, 4, 4, 7 by calculating 7 - 4); (ii) the state evaluator
assesses the potential of each candidate. Only the promising candidates are then processed in
subsequent iterations of the thought proposer and state evaluator until 24 is reached. Details
about the Game of 24 benchmark and the ToT strategy can be found in Appendix D.7.

While ToT achieves significant improvement at solving the Game of 24, its sequential,
breadth-first search approach through the state tree can be time-consuming. LLMCompiler
offers a faster alternative by enabling parallel execution of the thought proposer and the
subsequent feasibility evaluator, akin to a parallel beam search method.

Experimental Setups. Although LLMCompiler offers latency advantages, solving this
problem with a single static graph is not feasible, as the Planner cannot plan out the thought
proposing stage before identifying the selected candidates from the state evaluator of the pre-
vious iteration. Consequently, the Planner is limited to planning only within one iteration
at a time. To address this, we resort to LLMCompiler’s replanning capability. In particu-
lar, LLMCompiler is equipped with three tools: thought proposer and state_evaluator,
which are both LLMs adapted from the original ToT framework, and top_k_select, which
chooses the top k£ candidates from the thought _proposer based on the state_evaluator’s
assessment. After all these tools are executed, LLMCompiler can decide to “replan” if no
proposal reaches 24, triggering the Planner to devise new plans using the shortlisted states
from top k_select of the previous iteration. In this way, LLMCompiler can dynamically
regenerate plans of each iteration, being able to tackle highly complex tasks that require
iterative replanning based on the outcomes of previous plans.

To evaluate LLMCompiler’s performance on the Game of 24, we use 100 different instances
of the game. For each problem, we consider the output as successful if its operations are

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 7

valid and yield 24 while also using the provided numbers exactly once each. Further details
on experiment setups are outlined in Appendix D.1.

Success Rate and Latency. In the last two rows of Table 6.1, we explore the latency and
success rate of LLMCompiler in comparison to the baseline described in [308] on the Game
of 24 benchmark. With the gpt-4 model, LLMCompiler demonstrates a 2.89x enhancement
in latency while slightly improving the success rate compared to the baseline. Similarly,
when applied with the LLaMA-2 model, LLMCompiler shows a 2.01x improvement in la-
tency, again without compromising on success rate. These results demonstrate not only a
significant latency reduction without quality degradation, but also the replanning capability
of LLMCompiler for solving complex problems.

Application: LLMCompiler in Interactive Decision Making Tasks

In this section, we demonstrate that LLMCompiler can explore language-based interactive
environments effectively by benchmarking LLMCompiler on WebShop [309]. As highlighted
in [239, 307, 309], WebShop exhibits considerable diversity, which requires extensive explo-
ration to purchase the most appropriate item. While recent work feature advanced explo-
ration strategies and show promising results [334, 176], their approaches are largely based
on a sequential and extensive tree search that incurs significant latency penalties. Here,
LLMCompiler showcases an exploration strategy that is both effective and efficient with the
use of parallel function calling. Our method enables broader exploration of items in the
environment, which improves success rate compared to ReAct. At the same time, this ex-
ploration can be parallelized, yielding up to 101.7x speedup against baselines that perform
sequential exploration.

Experimental Setups. We evaluate LLMCompiler against three baselines on this bench-
mark, ReAct [307], LATS [334], and LASER [176], using 500 WebShop instructions. The
evaluation metrics are success rate, average score, and latency. More details of the WebShop
environment and the baseline methods are provided in Appendix D.8. For this experiment,
LLMCompiler is equipped with two tools: search and explore. The search function trig-
gers the model to generate and dispatch a query that returns a list of typically ten items
from the Webshop environment. The explore function then clicks through links for each
of the found items and retrieves information about options, prices, attributes, and features
that are available. Finally, based on the gathered information, LLMCompiler decides on the
item that best matches the input instruction for purchasing. Further details on experiments
can be found in Appendix D.1.

Performance and Latency. Our approach significantly outperforms all baseline mod-
els as shown in Table 6.3. When using gpt-3.5-turbo, LLMCompiler achieves a 28.4% and
6% improvement in success rate against ReAct and LATS; with gpt-4, our method im-
proves upon ReAct and LASER by 20.4% and 5.6%, respectively. In terms of latency,

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 78
Table 6.3: Performance and Latency Analysis for WebShop. We evaluate LLMCompiler with
two models: gpt-4 and gpt-3.5-turbo and compare LLMCompiler against three baselines:
ReAct, LATS, and LASER. We report success rate and average score in percentage. We
reproduce the success rate and average score for ReAct, while those for LATS and LASER
are from their papers. N denotes the number of examples used for evaluation.

Model | Method | Succ. Rate Score | Latency (s) | N
ReAct 19.8 54.2 5.98 500

35 tube | LATS 380 759 | 1066 | 50
Ept-o. LLMCompiler 44.0 72.8 10.72 50
LLMCompiler 48.2 74.2 10.48 500

ReAct 35.2 58.8 19.90 500

gpt-4-0613 LASER 50.0 75.6 72.16 500
LLMCompiler 55.6 7.1 26.73 500

LLMCompiler exhibits a 101.7x and 2.69x speedup against LATS and LASER. While we
note that LLMCompiler execution is slightly slower than ReAct on this benchmark, mainly
due to the Planner overhead, we also highlight that the gains in success rate far outweigh
the minor latency penalty.

We further delve into why LLMCompiler attains such an improved success rate and score
compared to ReAct. Based on our observations, we discover that the ReAct agent tends to
commit to a decision with imperfect information, a scenario that can arise when the agent
has not gathered sufficient details about the features and options available for items. This
observation was also noted in [239] — without exploring more items in the environment, the
agent struggles to differentiate between seemingly similar choices, ultimately failing to make
the correct decision. In contrast, LLMCompiler undergoes further exploration by visiting all
ten items found by search and retrieving relevant information about each item. We find
that employing an effective search strategy is critical to decision-making tasks such as the
WebShop benchmark.

The relatively high performance of LATS can also be explained in terms of its exploration
scheme. In this framework, the agent executes a brute-force search through the state and
action space of Webshop, exploring as many as 30 trajectories before making the final pur-
chase. While this approach provides richer information for decision-making, the end-to-end
execution becomes prohibitively slow.

We report that our method, LLMCompiler, outperforms LASER by an average score of 1.5.
When compared to LATS, this score is within the standard deviation range of our method.
The average score for LLMCompiler, along with its standard deviation, is 72.8 +4.01 for gpt-
3.5-turbo. Further note that while the performance differences are marginal, our method
exhibits significant execution speedup, 101.7x over LATS and 2.69x over LASER.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING 79

ReAct ReAct + additional prompts LLMCompiler
1.0 1.0 1.0
0.8 0.8 0.8 1
0.6 0.6 0.6 1
0.4 0.4 1
0.2 0.2

0.0- 0.0 ; ; , "
4 5 6 7 4 5 6 7 8
Function Calls # Function Calls # Function Calls

Figure 6.4: Distributions of the number of function calls when running the Movie Recom-
mendation benchmark on ReAct (Left), ReAct with specific prompts to avoid early stopping
(Middle, corresponding to ReAct! in Table 6.1), and LLMCompiler (Right). LLMCompiler
(Right) consistently completes the search for all 8 movies, whereas ReAct (Left) often exit
early, demonstrated by about 85% of examples stopping early. Although the custom prompts
shift ReAct’s histogram to higher function calls (Middle), they still fall short of ensuring com-
prehensive searches for all movies. gpt-3.5-turbo is used for the experiment.

6.5 Discussion

Accuracy Analysis: ReAct vs. LLMCompiler

In this section, we conduct a detailed analysis that compares the accuracy of both ReAct
and LLMCompiler, highlighting two failure cases that are prevalent in ReAct: (i) premature
early stopping; and (ii) repetitive function calls. Furthermore, we demonstrate that while
those failure cases negatively impact the ReAct accuracy, they can be effectively addressed
by LLMCompiler, thereby yielding the improved accuracy of our framework. We analyze two
specific scenarios: the Movie Recommendation evaluation with GPT, where ReAct often
prematurely stops, leading to significantly lower accuracy compared to LLMCompiler (68.60
vs. 77.13 in Table 6.1); and the HotpotQA evaluation with LLaMA-2 70B, where ReAct’s
repetitive function calls result in a notable accuracy degradation compared to LLMCompiler
(70.00 vs. 77.80 in Table 6.1).

Premature Early Stopping of ReAct. ReAct frequently suffers from premature early
stopping, ceasing function calls too early, and making decisions based on incomplete informa-
tion. A clear example of this is observed in the Movie Recommendation benchmark, where
ReAct often searches for fewer than the required 8 movies before delivering its final answer.
In Figure 6.4 (Left), we illustrate the distribution of the number of function calls within Re-
Act (using GPT) across thhe Movie Recommendation benchmark. Here, we observe around
85% of the examples exhibit early stopping, making decisions without completing all 8 movie
searches. This contrasts with LLMCompiler (Right), where almost all examples (99%) com-

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING 80
85 1 *
[J
80 {
< * K
\575- / \ /
£ | *
S 0. ¢
< /./
65 /’ —e— ReAct
. —%— LLMCompiler

5 6 7 8
Function Calls on ReAct

Figure 6.5: The Movie Recommendation accuracy of the examples that are categorized by
the number of function calls on ReAct, measured both on ReAct and LLMCompiler. The
plot indicates that in ReAct, a decrease in the number of function calls correlates with lower
accuracy, indicating that premature exits lead to reduced accuracy. In contrast, when the
same examples are evaluated using LLMCompiler, which ensures complete searches for all
eight movies before reaching a decision, they achieve higher and more consistant accuracy
than those processed by ReAct. gpt-3.5-turbo is used for the experiment, and the results
are averaged over 3 different runs.

plete the full search of 8 movies. Although adding specific prompts to ReAct to prevent early
stopping shifts the distribution towards more function calls (Figure 6.4, Middle), resulting
in an accuracy improvement from 68.60 to 72.47 (ReAct' in Table 6.1), it is nevertheless an
imperfect solution.

To further assess how early stopping negatively impacts accuracy, we categorize Movie
Recommendation benchmark examples by their number of function calls in ReAct. We
then evaluated these groups using LLMCompiler, ensuring complete search results for all 8
movies. Figure 6.5 reveals that fewer function calls in ReAct correlate with lower average
accuracy (green line). Conversely, if these examples were processed through LLMCompiler,
with complete searches for all eight movies, they consistently attained higher accuracy (pur-
ple line). This not only indicates that ReAct struggles with premature exits (which is not
fully addressed by prompting), but the earlier it stops, the greater the decline in accuracy,
contributing to the overall accuracy drop observed in Table 6.1. In contrast, LLMCompiler
effectively addresses this issue.

Repetitive Function Calls of ReAct. Another common failure case of ReAct is its
tendency for repetitive function calls, often leading to infinite loops or exceeding the context

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING &1
ReAct LLMCompiler
1.0 1.0
0.81 0.81
0.6 1 0.6 1
0.4 0.4
0.2 0.2
0.0- 0.0 T - r
1 2 3 4+ (div.) 1 2 3 4+ (div.)
Function Calls # Function Calls

Figure 6.6: Distributions of the number of function calls when running the HotpotQA bench-
mark on ReAct (Left) and LLMCompiler (Right). While LLMCompiler (Right) consistently
completes the task within 2 function calls, which is expected as HotpotQA exhibits a 2-way
parallelizable pattern, ReAct (Left) shows that around 10% of the examples undergo repet-
itive (>4) function calls, resulting in a diverging behavior of the framework. LLaMA-2 70B
is used for the experiment.

//O

60 *

50 1 \ S
B *:
2401
o
>
9301
<

201

—e— ReAct
10{ —*— LLMCompiler o

2 3 4+ (div.)
Function Calls on ReAct

Figure 6.7: The HotpotQA accuracy of the examples that are categorized by the number
of function calls on ReAct, measured both on ReAct and LLMCompiler. The plot indicates
that in ReAct, repetitive function calls of more than or equal to four times can result in a
significant accuracy degradation due to its infinite looping and diverging behavior. On the
other hand, when the same examples are evaluated using LLMCompiler, which ensures only

two searches per example, they achieve a higher of around 50%. LLaMA-2 70B is used for
the experiment.

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 82

length limit. This problem is particularly noticeable in the HotpotQA benchmark where
ReAct repeatedly calls the same function if the Wikipedia search returns insufficient infor-
mation about the searched entity. Although HotpotQA is inherently 2-way parallelizable,
as illustrated in Figure 6.6, we observe that about 10% of its examples require more than
four function calls in ReAct, usually resulting in an infinite loop or a divergent behavior. In
contrast, LLMCompiler executes only two function calls for most examples.

To show how the repetitive function calls impact the overall accuracy, we conduct an
accuracy analysis similar to the previous case. In Figure 6.7, we categorize HotpotQA
benchmark examples by the number of function calls in ReAct, and then we compare their
accuracy on both ReAct and LLMCompiler. The analysis reveals that examples that launch
two function calls in ReAct maintain the same accuracy in LLMCompiler. However, cases
with more than four function calls in ReAct, which often lead to divergent behavior, show
less than 10% accuracy in ReAct. On the other hand, when these examples are processed
with LLMCompiler, they achieve around 50% accuracy by circumventing repetitive calls.
It is worth noting that there are instances with three function calls in ReAct, where an
extra search can lead to improved accuracy by retrying with an alternate entity name when
the initial search fails, yielding a better accuracy than LLMCompiler. While this shows a
potential adaptability advantage of ReAct, such instances represent less than 3% of cases.

Failure Case Analysis of LLMCompiler

This section delves into a qualitative analysis of LLMCompiler’s failure cases on the Paral-
lelQA benchmark, which can be broadly attributed to failures in the Planner, Executor, or
the final output process. Failures in the final output process refer to cases when LLMs are
unable to use the observations collected from tool execution (which are incorporated into
the context) to deliver the correct answer to the user. Among the 10.6% (36 examples) of
LLMCompiler’s total failures reported in Table 6.1, we have noted that the Planner, Execu-
tor, and final output process contributed to 8%, 64%, and 28% of the failures, respectively.
The Planner’s 8% failure rate is exclusive to LLMCompiler. For instance, the Planner would
incorrectly map inputs and outputs by assigning a wrong identifier as an input to a sub-
sequent task, thereby forming an incorrect DAG. However, with adequate tool definitions
and in-context examples, Planner errors are significantly reduced (only 3 instances in total
throughout our evaluation), highlighting the LLM’s capability to decompose problems into
complex multi-task dependencies.

The remaining 92% of the total failures are attributed to the Executor and the final
output process. The Executor accounts for most of these failures (64%), with common
issues like the math tool choosing wrong attributes or mishandling unit conversions. For the
final output process (28% of failures), errors include incorrect conclusions from the gathered
observations, such as failing to pick the smallest attribute from the collected data. It’s
worth noting that these problems are not exclusive to LLMCompiler, but they also occur in
ReAct. Nevertheless, LLMCompiler tends to have slightly fewer failures in these areas than
ReAct, as it provides only relevant contexts to each tool, aiding in more accurate information

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 83

extraction. We believe that optimizing the structure of the agent scratchpad, rather than
simply appending observations, could further reduce failures in the final output process.

6.6 Related Work

Latency Optimization in LLMs

Various studies have focused on optimizing model design [137, 60, 166, 42, 146, 59, 135,
20, 156] and systems [147, 313, 109, 110] for efficient LLM inference. Optimizations at the
application level, however, are less explored. This is critical from a practical point of view for
situations involving black-box LLM models and services where modifications to the models
and the underlying inference pipeline are highly restricted.

Skeleton-of-Thought [190] recently proposed to reduce latency through application-level
parallel decoding. This method involves a two-step process of an initial skeleton generation
phase, followed by parallel execution of skeleton items. However, it is primarily designed
for embarrassingly parallel workloads and does not support problems that have inherently
interdependent tasks, as it assumes no dependencies between skeleton tasks. This limits its
applicability in complex scenarios such as coding [22, 177, 96, 2] or math [98, 97] problems,
as also stated in the paper [190]. LLMCompiler addresses this by translating an input query
into a series of tasks with inter-dependencies, thereby expanding the spectrum of problems
it can handle.

Concurrently to our work, OpenAl has recently introduced a parallel function calling
feature in their 1106 release, enhancing user query processing through the simultaneous
generation of multiple function calls [196]. Despite its potential for reducing LLM execu-
tion time, this feature has certain limitations, as it is exclusively available for OpenAl’s
proprietary models. However, there is a growing demand for using open-source models
driven by the increasing number of open-source LLMs as well as parameter-efficient training
techniques [154, 111, 105] for finetuning and customization. LLMCompiler enables efficient
parallel function calling for open-source models, and also, as we will show later in Section 6.4,
it can potentially achieve better latency and cost.

Plan and Solve Strategy

Several studies [291, 205, 211, 336, 91] have explored prompting methods of breaking down
complex queries into various levels of detail to solve them, thereby improving LLM’s perfor-
mance in reasoning tasks. Specifically, Decomposed Prompting [129] tackles complex tasks
by decomposing them into simpler sub-tasks, each optimized through LLMs with dedicated
prompts. Step-Back Prompting [333] enables LLMs to abstract high-level concepts from
details to enhance reasoning abilities across various tasks. Plan-and-Solve Prompting [274]
segments multi-step reasoning tasks into subtasks to minimize errors and improve task ac-
curacy without manual prompting. However, these methods primarily focus on improving

CHAPTER 6. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 84

the accuracy of reasoning benchmarks. In contrast, LLMCompiler uses a planner to identify
parallelizable patterns within queries, aiming to reduce latency while maintaining accuracy.

In addition to the aforementioned works, ViperGPT [256] TPTU [224], and Hugging-
GPT [237] and have introduced end-to-end plan-and-solve frameworks. LLMCompiler sets
itself apart by providing a general framework that enables efficient and accurate function
calling in a broader range of problems. This stems from LLMCompiler’s capabilities in (i)
planning and replanning; (ii) parallel execution; and (iii) addressing a wider range of problem
domains, which will be discussed in more detail in Appendix D.3.

Another notable work is ReWOO [297] which employs a planner to separate the reasoning
process from the execution and observation phases to decrease token usage and cost as
compared to ReAct. Our approach is different from ReWOO in multiple aspects. First,
LLMCompiler allows parallel function calling which can reduce latency as well as cost. Second,
LLMCompiler supports dynamic replanning which is important for problems whose execution
flow cannot be determined statically in the beginning (Section 6.4).

Tool-Augmented LLMs

A notable work is Toolformer [230], which produces a custom LLM output to let the LLM
decide what the inputs for calling the functions should be and where to insert the result.
This approach has inspired various tool calling frameworks [164, 237]. ReAct [307] proposed
to have LLMs interact with external environments through reasoning and action generation
for improved performance. Gorilla [206] introduced a finetuned LLM designed for function
calling, and ToolLLM [212] and RestGPT [248] have extended LLMs to support real-world
APIs. Moreover, OpenAl [195] released their own function calling capabilities, allowing their
LLMs to return formatted JSON for execution.

6.7 Conclusions

Existing methods for invoking multiple functions with LLMs resort to sequential and dy-
namic reasoning. As a result, they suffer from inefficiencies in latency, cost, and accuracy. As
a solution, we introduced LLMCompiler, a compiler-inspired framework that enables efficient
parallel function calling across various LLMs, including open-source models like LLaMA-
2 and OpenAl’'s GPT series. By decomposing user inputs into tasks with defined inter-
dependencies and executing these tasks concurrently through its Planner, Task Fetching
Unit, and Executor components, LLMCompiler demonstrates substantial improvements in
latency (up to 3.7x), cost efficiency (up to 6.7x), and accuracy (up to ~9%), even outper-
forming OpenAT’s parallel function calling feature in latency gains. We look forward to future
work building upon LLMCompiler that will improve both the capabilities and efficiencies of
LLMs in executing complex, large-scale tasks, thus transforming the future development of
LLM-based applications.

85

Chapter 7

Conclusion

7.1 Review

While the common approach of scaling model and dataset sizes has driven remarkable ad-
vances in Al technologies over the past few years, it has also introduced significant inference-
time overheads, including increased latency, memory demands, and power consumption, all of
which hinder the efficient deployment of state-of-the-art models. In this thesis, we presented
a full-stack view of improving the efficiency of large-scale AI models, addressing optimization
at four different levels within the inference stack.

Model Optimization. Model optimization is a key strategy for efficient model deployment
by enabling more effective utilization of hardware resources, such as compute and memory.
In this thesis, we focused on quantization, a widely adopted method for model optimization
that represents model weights and activations using lower-bit precision (e.g. 8-bit or lower).
Quantization not only reduces static storage and peak run-time memory requirements by
using smaller bit widths to represent model weights but also enables efficient integer com-
putation, which can further improve latency and power consumption of model inference.

In Chapter 2, we introduced I-BERT, a quantization scheme designed to optimize com-
pute efficiency during Transformer inference. In particular, -BERT proposes integer-only
quantization that allows the entire inference process to be executed using integer arithmetic.
By leveraging integer-only quantization, [-BERT enables the deployment of Transformer
models on integer-only logical units or processors, such as Turing Tensor Cores in NVIDIA
GPUs and ARM processors [1], resulting in up to a 3.5x inference speedup for encoder
models like BERT [43] and RoBERTa [171].

In Chapter 3, we introduced SqueezeLLM, a quantization scheme designed to optimize
memory efficiency during Transformer inference. While I-BERT demonstrated signifi-
cant improvements in compute-bound workloads, the autoregressive generation process in
decoder-based LLMs tends to be rather memory-bound. In such cases, optimizing compu-
tational resources (e.g., integer-processing units) has a limited impact on overall latency,
as the primary bottleneck will be the time spent loading weight matrices from memory.

CHAPTER 7. CONCLUSION 86

Based on this observation, SqueezeLLLM proposes sensitivity-based nonuniform quantization
and Dense-and-Sparse decomposition, allowing for more aggressive bit precision reduction
with minimal accuracy degradation. By minimizing memory loading times, SqueezeLLM
achieves a 2x speedup with near-lossless prediction performance, using 3-bit quantization
on memory-bound LLMs such as LLaMA [262].

Inference Methods. For efficient inference, it is often necessary to revisit inference meth-
ods, i.e., how models are executed, to reduce redundant operations and maximize resource
utilization. This is becoming increasingly important with the growing popularity of LLMs
that rely on autoregressive generation, which is highly memory-inefficient due to its repeti-
tive and unparallelizable memory operations. As a result, there is an increasing demand for
optimized inference methods that better amortize memory load costs across more compute
operations, thereby enhancing overall inference latency.

In Chapter 4, we introduced a speculative decoding framework named Big Little Decoder
(BiLLD) that addresses the inefficiencies of memory operations during autoregressive infer-
ence. BiLLD proposes a collaborative generation strategy using two models of different sizes:
the smaller model quickly generates multiple tokens, while the larger model periodically
reviews and refines those predictions. This approach enables the larger model to perform
non-autoregressive execution, processing multiple tokens in a single iteration and yielding a
2x speedup in inference without compromising the generation quality of the large model.

Model Architectures. Model architecture design is another indispensable component in
achieving efficient inference. Inductive bias [267], the assumptions made by a learning algo-
rithm to generalize from finite training data to a general model of the domain, have played
a key role in guiding model design. While Transformers have shown significant performance
improvements when trained on large datasets even with minimal inductive bias, incorporat-
ing domain-specific inductive biases can be essential when designing more compact models
or working in data-scarce environments.

In Chapter 5, we introduced Squeezeformer, a more efficient model architecture fam-
ily for automatic speech recognition. Unlike the discrete inputs in the written language
domain, from which the Transformer architecture originated, the speech domain consists
of continuous input signals. To leverage this domain-specific characteristic, Squeezeformer
incorporates a Temporal U-Net structure, which downsamples along the temporal axis to
eliminate redundancy in speech inputs. This approach significantly reduces sequence length,
thereby cutting computational costs and improving inference efficiency.

AT Applications. Finally, in Chapter 6, we expanded the scope of efficiency from optimizing
individual models to also considering the external components (e.g., functions) they interact
with in agentic applications. With recent advances in the reasoning capabilities of LLMs,
these models have been integrated with external functions to create agentic applications. In
such applications, LLMs actively engage with their environments by executing actions and
retrieving information using external functions to complete complex user tasks autonomously.

CHAPTER 7. CONCLUSION 87

As a result, enhancing the efficiency of dynamic interactions between LLMs and these
external functions has become crucial for developing more efficient, scalable, and responsive
agentic applications. This motivated the introduction of the LLMCompiler framework that
efficiently orchestrates multiple function calls by decomposing user inputs into executable
tasks and their interdependencies. LLMCompiler has demonstrated not only a significant
reduction in execution latency and costs by running independent tasks in parallel, but also
improved robustness by breaking down complex user inputs into smaller, manageable tasks.

7.2 Impact of Our Work

This thesis is a compilation of my research publications — I-BERT [130], SqueezeLLM [137],
BiLD [135], Squeezeformer [136], and LLMCompiler [132] — which were presented at major
AT conferences, ICML and NeurIPS, from 2021 to 2024. Beyond their academic recognition,
these works have significantly impacted both research communities and the industry, as well
as open-source communities. In this section, we summarize some of the impacts of our work.

I-BERT [134], introduced in January 2021 on arXiv, was the first integer-only quantiza-
tion scheme for the Transformer architecture, enabling Transformer inference to be carried
out entirely using integer arithmetic. This contribution led to I-BERT being selected for
an Oral presentation at ICML 2021. Additionally, I-BERT was immediately integrated
into the HuggingFace Transformers library as one of the earliest officially supported models,
contributing to the broader adoption of efficient Transformer inference in open-source and
industrial applications.

Two years after the introduction of I-BERT, we have witnessed a significant shift in
AT models and applications, moving from million-scale Transformer models to billion-scale
LLMs, and from encoder-based models (e.g., BERT) to generative decoder models (e.g., GPT
and LLaMA). This shift has also changed the workload characteristics from being primarily
compute-bound to more memory-bound. In response to this change, SqueezeLLM [137] was
introduced in June 2023 on arXiv as a new quantization scheme specifically designed for
generative LLMs to better optimize their memory-bound characteristic. Not only was this
work accepted to ICML 2024, but it also became one of the pioneering low-bit quantiza-
tion methods for LLMs. As quantization has since become indispensable for efficient LLM
inference, SqueezeLLM has laid the foundation for numerous subsequent studies on LLM
quantization that followed.

Squeezeformer [136], introduced in June 2022 on arXiv and accepted in NeurIPS 2022,
is an efficient automatic speech recognition model that achieved up to a 3% improvement in
word-error-rate compared to state-of-the-art models including Conformer [82] with the same
computational budget. It was also integrated into NVIDIA’s official NeMo codebase, one of
the most widely adopted open-source frameworks for speech applications. This highlights
the growing demand for efficient speech recognition solutions as well as its contribution to
the speech recognition field within both academic and industry contexts.

CHAPTER 7. CONCLUSION 88

LLMCompiler [132] was introduced in December 2023 on arXiv as the pioneering at-
tempt to improve the efficiency of LLM-based agentic applications. Accepted to ICML 2024,
LLMCompiler demonstrated significant performance gains, achieving up to 4x speedup, 7x
cost reduction, and 9% accuracy improvement across various function-calling benchmarks
compared to the widely used ReAct-based solutions [307]. LLMCompiler has also gained
substantial traction in the open-source community, accruing 1.5k stars on GitHub in a few
months after its publication. Additionally, the LLMCompiler framework has been integrated
into the most widely used open-source LLM frameworks such as Llamalndex and LangChain,
further showcasing its broad applicability and high demand for building scalable, robust
agentic applications in diverse LLM-based communities.

Finally, this thesis has also been inspired by several key survey papers we published. In
2021, [71] was published as a book chapter in Low-Power Computer Vision, providing a com-
prehensive overview of recent quantization techniques and their impact. This work became
pivotal in introducing quantization and its benefits to a broader audience. In February 2023,
[133] was introduced as a survey paper that emphasized the importance of the full-stack view
of making Transformer inference more efficient to address the growing compute and mem-
ory demands of large-scale models — a central theme of this thesis. Additionally, “Al and
Memory Wall” [73], initially published as a blog post in early 2021, raised awareness among
the broader public about the increasing trend of AI workloads becoming memory-bound
(where we introduced the earlier version of Figure 1.1). As memory bottleneck became a
critical issue for large-scale models, the paper was revisited and invited to the IEEE MICRO
Journal Special Issue in 2024, inspiring various efforts to address memory challenges in LLM
inference, including our own works [135, 137].

7.3 Future Directions

In this section, we discuss potential future extensions of the full-stack view of designing
solutions for efficient and scalable Al algorithms and systems (Figure 7.1).

Memory-Optimized AI Model and System Design. With the increasing popularity
of autoregressive and large-scale models [220, 168], model inference is becoming increasingly
memory-bound. As illustrated in Figure 1.1, the rapid expansion of state-of-the-art Trans-
former models (growing 410x every two years) contrasts with the much slower improvement
in memory bandwidth of underlying hardware (2x every two years). The memory-bound
inference behavior is further exacerbated by the wide adoption of long-context models and
their applications. For instance, with context length over 32k, the KV cache can surface as
a dominant contributor to memory traffic, potentially consuming more memory bandwidth
than model weights [103].

To bridge the gap between model requirements and hardware constraints, further inves-
tigation into memory optimization techniques for both models and systems is necessary. As
demonstrated in our previous works [137, 103, 135, 104], reevaluating the memory-compute
trade-offs by prioritizing memory efficiency, even at the cost of additional computation, will

CHAPTER 7. CONCLUSION 89

ESEB Al (Agentic) Application Efficient Compound Al System
e N
[% Model Architecture } Small Specialized Models
& Y,
£

= Inference Method N

Memory-Optimized

Models and Systems
J

e,
[ﬁ' Model Optimization]

>
%
-

Figure 7.1: Potential future extensions of the full-stack view of designing solutions for efficient
and scalable AT algorithms and systems.

be crucial for alleviating the memory pressure of future workloads. This may call for more
aggressive compression techniques, such as variable-length encoding or binary/ternary quan-
tization, alongside system architectures designed to support them. Additionally, developing
more memory-efficient methods for managing long contexts will be an important research
direction. These approaches could include advanced quantization techniques [103, 172], KV
cache eviction and partial retrieval mechanisms [331, 162], or even paradigm shifts in model
architectures to manage long contexts with less memory overheads [79, 36].

Small Models for Specialized Domains and Tasks. LLMs these days demonstrate
high problem-solving capabilities in general tasks. This breakthrough, however, often relies
on a dramatic scale-up of the model size and training data, which can be impractical for
designing smaller models. To address this, the following two directions can be considered for
developing small specialist models.

(i) Domain and task-specific model architecture: When designing models for particular
domains, considering the unique characteristics of each domain can enable more efficient
architectures than simply applying the existing Transformer architecture [136]. Even within
the NLP domain, current language models may not necessarily be optimal for emerging tasks
such as retrieval-augmented generation (RAG), multi-turn conversation, and function calling.
Different tasks have unique patterns for retrieving and storing important contexts; however,
the current Transformer architecture only offers a single interface through the KV cache,
which serves as a general, one-size-fits-all solution but may not be optimal for individual
task. This motivates that the Transformer architecture needs to be revisited for individual
domains and tasks, thereby enhancing their efficiency in various applications.

CHAPTER 7. CONCLUSION 90

(ii) Training dataset synthesis: Developing small models often faces challenges due to
insufficient parametric memory and limited reasoning and generalization capabilities for un-
seen tasks. This frequently requires additional training on target tasks to ensure the desired
performance. Using larger language models to synthesize and augment training datasets can
offer a viable solution, enabling rather smaller models to acquire the capabilities to solve
various sophisticated tasks [279]. This approach — focusing on a specific problem domain
and synthesizing corresponding datasets — along with advancements in model architectures,
will be crucial in paving the way for sub-billion-scale specialist models.

Compound AI Systems: Efficiency Beyond a Single Model. Advances in the rea-
soning capabilities of LLMs, driven by increased model capacity and advanced reasoning
methodologies, are expanding their applications beyond content generation to serve as build-
ing blocks for compound Al systems [319]. For instance, LLMs can collaborate with other
models or external functions (e.g., search engines and calculators) to solve more complex
tasks or use retrieval methods for more grounded answers (i.e., RAG). These compound Al
systems offer a new perspective on systems, extending beyond serving or training a single
model to orchestrating multiple models and additional components that the models interact
with. For these systems to be practically useful, it is important to identify and optimize
inference bottlenecks in various components — such as retrievers, function calling, and the
routing/orchestration of multiple models — to improve efficiency in terms of latency, cost, and
context length. Our work on LLMCompiler [132] was the first attempt to focus on enhancing
efficiency, particularly in function calling scenarios, but much work remains to fully realize
the potential of these systems.

91

Bibliography

[10]

[11]

[12]

ARM. Cortex-M, https://developer.arm.com/ip-products/processors/cortex-m. 2020.

Jacob Austin et al. Program Synthesis with Large Language Models. 2021. arXiv:
2108.07732 [cs.PL].

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization”. In:
arXiv preprint arXiv:1607.06450 (2016).

Alexei Baevski et al. “Data2vec: A general framework for self-supervised learning in
speech, vision and language”. In: arXiv preprint arXiv:2202.03555 (2022).

Alexei Baevski et al. “wav2vec 2.0: A framework for self-supervised learning of speech
representations”. In: Advances in Neural Information Processing Systems 33 (2020),
pp- 12449-12460.

Haoli Bai et al. “BinaryBERT: Pushing the Limit of BERT Quantization”. In: arXiv
preprint arXiv:2012.15701 (2020).

Maciej Besta et al. Graph of Thoughts: Solving Elaborate Problems with Large Lan-
guage Models. 2023. arXiv: 2308.09687 [cs.CL].

Aishwarya Bhandare et al. “Efficient 8-bit quantization of transformer neural machine
language translation model”. In: arXiv preprint arXiv:1906.00532 (2019).

Ondrej Bojar et al. “Findings of the 2014 Workshop on Statistical Machine Trans-
lation”. In: Proceedings of the Ninth Workshop on Statistical Machine Translation.
Baltimore, Maryland, USA: Association for Computational Linguistics, June 2014,
pp. 12-58. URL: http://www.aclweb.org/anthology/W/W14/W14-3302.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. “Understanding and
overcoming the challenges of efficient Transformer quantization”. In: arXww preprint
arXiv:2109.12948 (2021).

Andy Brock et al. “High-performance large-scale image recognition without normal-
ization”. In: International Conference on Machine Learning. PMLR. 2021, pp. 1059—
1071.

Tom B Brown et al. “Language models are few-shot learners”. In: arXiv preprint
arXiv:2005.14165 (2020).

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2308.09687
http://www.aclweb.org/anthology/W/W14/W14-3302

BIBLIOGRAPHY 92

[13]

[14]

[15]

[16]

Maxime Burchi and Valentin Vielzeuf. “Efficient conformer: Progressive downsam-
pling and grouped attention for automatic speech recognition”. In: 2021 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU). IEEE. 2021, pp. 8-
15.

Yaohui Cai et al. “ZeroQ: A novel zero shot quantization framework”. In: Proceedings
of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition. 2020,
pp- 13169-13178.

Daniel Cer et al. “Semeval-2017 task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation”. In: arXiv preprint arXiv:1708.00055 (2017).

Mauro Cettolo et al. “Overview of the IWSLT 2017 Evaluation Campaign”. In: Pro-
ceedings of the 14th International Conference on Spoken Language Translation. Tokyo,
Japan: International Workshop on Spoken Language Translation, Dec. 2017, pp. 2—
14. URL: https://aclanthology.org/2017.iwslt-1.1.

Xuankai Chang et al. “End-to-end ASR with Adaptive Span Self-Attention.” In:
INTERSPEECH. 2020, pp. 3595-3599.

Jerry Chee et al. “Quip: 2-bit quantization of large language models with guarantees”.
In: Advances in Neural Information Processing Systems 36 (2024).

Beidi Chen et al. “Scatterbrain: Unifying sparse and low-rank attention”. In: Advances
in Neural Information Processing Systems 34 (2021), pp. 17413-17426.

Charlie Chen et al. “Accelerating Large Language Model Decoding with Speculative
Sampling”. In: arXiv preprint arXiv:2302.01318 (2023). arXiv: 2302.01318 [cs.CL].

Daoyuan Chen et al. “AdaBERT: Task-adaptive bert compression with differentiable
neural architecture search”. In: arXiv preprint arXiv:2001.04246 (2020).

Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: (2021).
arXiv: 2107.03374 [cs.LG].

Patrick H Chen and Cho-jui Hsieh. “A comparison of second-order methods for deep
convolutional neural networks”. In: openreview under ICLR 2018 (2018).

Sanyuan Chen et al. “WavLM: Large-scale self-supervised pre-training for full stack
speech processing”. In: arXiv preprint arXiw:2110.13900 (2021).

Tiangi Chen et al. “TVM: An automated end-to-end optimizing compiler for deep
learning”. In: 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). 2018, pp. 578-594.

Wenhu Chen et al. Program of Thoughts Prompting: Disentangling Computation from
Reasoning for Numerical Reasoning Tasks. 2023. arXiv: 2211.12588 [cs.CL].

Wei-Lin Chiang et al. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% *
ChatGPT Quality. Mar. 2023. URL: https ://1lmsys . org/blog/2023-03-30-
vicuna/.

https://aclanthology.org/2017.iwslt-1.1
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2211.12588
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

BIBLIOGRAPHY 93

[28]
[29]
[30]
[31]

[32]

Jungwook Choi et al. “PACT: Parameterized clipping activation for quantized neural
networks”. In: arXiv preprint arXiv:1805.06085 (2018).

Aakanksha Chowdhery et al. “Palm: Scaling language modeling with pathways”. In:
arXiv preprint arXiw:2204.02511 (2022).

Aakanksha Chowdhery et al. “Palm: Scaling language modeling with pathways”. In:
Journal of Machine Learning Research 24.240 (2023), pp. 1-113.

Insoo Chung et al. “Extremely low bit transformer quantization for on-device neural
machine translation”. In: arXiv preprint arXiv:2009.07453 (2020).

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “BinaryConnect:
Training deep neural networks with binary weights during propagations”. In: Ad-
vances in neural information processing systems. 2015, pp. 3123-3131.

Matthieu Courbariaux et al. “Binarized neural networks: Training deep neural net-
works with weights and activations constrained to+ 1 or-17. In: arXiv preprint
arXiv:1602.02830 (2016).

Richard Crandall and Carl B Pomerance. Prime numbers: a computational perspec-
tive. Vol. 182. Springer Science & Business Media, 2006.

Ido Dagan, Oren Glickman, and Bernardo Magnini. “The PASCAL recognising tex-
tual entailment challenge”. In: Machine Learning Challenges Workshop. Springer.
2005, pp. 177-190.

Tri Dao and Albert Gu. “Transformers are SSMs: Generalized models and efficient al-
gorithms through structured state space duality”. In: arXiwv preprint arXiw:2405.21060
(2024).

Jyotikrishna Dass et al. “Vitality: Unifying low-rank and sparse approximation for
vision transformer acceleration with a linear taylor attention”. In: 2023 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE.
2023, pp. 415-428.

Mostafa Dehghani et al. “Universal transformers”. In: arXw preprint
arXiv:1807.03819 (2018).

Jérémie Detrey and Florent de Dinechin. “A parameterized floating-point exponential
function for FPGAs”. In: Proceedings. 2005 IEEE International Conference on Field-
Programmable Technology, 2005. IEEE. 2005, pp. 27-34.

Tim Dettmers et al. “GPT3. int8 (): 8-bit Matrix Multiplication for Transformers at
Scale”. In: Advances in Neural Information Processing Systems. 2022.

Tim Dettmers et al. “Qlora: Efficient finetuning of quantized llms”. In: Advances in
Neural Information Processing Systems 36 (2024).

Tim Dettmers et al. “SpQR: A Sparse-Quantized Representation for Near-Lossless
LLM Weight Compression”. In: arXiv preprint arXiv:2306.03078 (2023). arXiv:
2306.03078 [cs.CL].

https://arxiv.org/abs/2306.03078

BIBLIOGRAPHY 94

[43]
[44]

[45]

[46]

[47]

Jacob Devlin et al. “BERT: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

Jesse Dodge et al. “Fine-tuning pretrained language models: Weight initializations,
data orders, and early stopping”. In: arXiv preprint arXiv:2002.06305 (2020).

William B Dolan and Chris Brockett. “Automatically constructing a corpus of sen-
tential paraphrases”. In: Proceedings of the Third International Workshop on Para-
phrasing (IWP2005). 2005.

Piotr Dollar, Mannat Singh, and Ross Girshick. “Fast and accurate model scaling”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2021, pp. 924-932.

Zhen Dong et al. “HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural
Networks”. In: NeurlPS’19 workshop on Beyond First-Order Optimization Methods
in Machine Learning. (2019).

Zhen Dong et al. “HAWQ): Hessian aware quantization of neural networks with mixed-
precision”. In: Proceedings of the IEEE International Conference on Computer Vision.
2019, pp. 293-302.

Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image
recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

Nan Du et al. “GLAM: Efficient scaling of language models with mixture-of-experts”.
In: International Conference on Machine Learning. PMLR. 2022, pp. 5547-5569.

Vage Egiazarian et al. “Extreme Compression of Large Language Models via Additive
Quantization”. In: arXiv preprint arXiv:2401.06118 (2024).

Maha Elbayad et al. “Depth-adaptive transformer”. In: arXiv preprint
arXiv:1910.10073 (2019).

Steven K Esser et al. “Learned step size quantization”. In: arXiv preprint
arXiv:1902.08153 (2019).

Georgii Evtushenko. “Sparse Matrix-Vector Multiplication with CUDA”. In:
hitps://medium.com/analytics-vidhya/sparse-matriz-vector-multiplication-with-cuda-

42d191878¢8f (2019).

Angela Fan, Edouard Grave, and Armand Joulin. “Reducing transformer depth on
demand with structured dropout”. In: arXiv preprint arXiv:1909.11556 (2019).

Angela Fan et al. “Training with quantization noise for extreme fixed-point compres-
sion”. In: arXiv preprint arXiv:2004.07320 (2020).

Haoqi Fan et al. “Multiscale Vision Transformers”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 6824-6835.

BIBLIOGRAPHY 95

[58]

Goran Flegar and Enrique S Quintana-Orti. “Balanced CSR sparse matrix-vector
product on graphics processors”. In: Furo-Par 2017: Parallel Processing: 23rd Inter-
national Conference on Parallel and Distributed Computing, Santiago de Compostela,
Spain, August 28-September 1, 2017, Proceedings 23. Springer. 2017, pp. 697-709.

Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can Be Ac-
curately Pruned in One-Shot. 2023. arXiv: 2301.00774 [cs.LG].

Elias Frantar et al. “GPTQ: Accurate Post-training Compression for Generative Pre-
trained Transformers”. In: arXiv preprint arXiv:2210.17323 (2022).

Elias Frantar et al. “GPTQ: Accurate Post-Training Quantization for Generative
Pre-trained Transformers”. In: arXiv preprint arXiv:2210.17325 (2022).

Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning”. In: international conference on machine
learning. PMLR. 2016, pp. 1050-1059.

Trevor Gale, Erich Elsen, and Sara Hooker. “The state of sparsity in deep neural
networks”. In: arXiv preprint arXiv:1902.09574 (2019).

Leo Gao et al. A framework for few-shot language model evaluation. 2021.

Luyu Gao et al. “PAL: Program-aided Language Models”. In: arXiv preprint
arXiv:2211.10435 (2022).

John S Garofolo. “Timit acoustic phonetic continuous speech corpus”. In: Linguistic
Data Consortium, 1993 (1993).

Xue Geng et al. “Hardware-aware exponential approximation for deep neural net-
work”. In: (2018).

Xue Geng et al. “Hardware-aware softmax approximation for deep neural networks”.
In: Asian Conference on Computer Vision. Springer. 2018, pp. 107-122.

Marjan Ghazvininejad et al. “Mask-predict: Parallel decoding of conditional masked
language models”. In: arXiv preprint arXiv:1904.09324 (2019).

Amir Gholami et al. “A survey of quantization methods for efficient neural network
inference”. In: arXiv preprint arXiv:2103.13630 (2021).

Amir Gholami et al. “A survey of quantization methods for efficient neural network
inference”. In: Low-Power Computer Vision. Chapman and Hall/CRC, 2022, pp. 291—
326.

Amir Gholami et al. “AT and Memory Wall”. In: IEEE Micro (2024), pp. 1-5.
Amir Gholami et al. “Al and memory wall”. In: IEEE Micro (2024).

Amir Gholami et al. “SqueezeNext: Hardware-Aware Neural Network Design”. In:
Workshop paper in CVPR (2018).

https://arxiv.org/abs/2301.00774

BIBLIOGRAPHY 96

[75]

[80]

[87]

8]

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews. “Compressing bert:
Studying the effects of weight pruning on transfer learning”. In: arXiv preprint
arXiv:2002.08307 (2020).

GPTQ-For-LLaMA. https://qgithub.com/quwopquop200/GPTQ-for-LLaMa.

Alex Graves. “Sequence transduction with recurrent neural networks”. In: arXiv
preprint arXiv:1211.3711 (2012).

Alex Graves et al. “Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks”. In: Proceedings of the 23rd international
conference on Machine learning. 2006, pp. 369-376.

Albert Gu and Tri Dao. “Mamba: Linear-time sequence modeling with selective state
spaces”. In: arXiv preprint arXiv:2312.00752 (2023).

Jiatao Gu, Changhan Wang, and Junbo Zhao. “Levenshtein transformer”. In: Ad-
vances in Neural Information Processing Systems 32 (2019).

Jiatao Gu et al. “Non-autoregressive neural machine translation”. In: arXiv preprint
arXiv:1711.02281 (2017).

Anmol Gulati et al. “Conformer: Convolution-augmented transformer for speech
recognition”. In: arXiv preprint arXiv:2005.08100 (2020).

Chuan Guo et al. “On calibration of modern neural networks”. In: International
conference on machine learning. PMLR. 2017, pp. 1321-1330.

Junliang Guo, Linli Xu, and Enhong Chen. “Jointly masked sequence-to-sequence
model for non-autoregressive neural machine translation”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. 2020, pp. 376-385.

Pengcheng Guo et al. “Recent developments on ESPNet toolkit boosted by Con-
former”. In: ICASSP 2021-2021 IEEFE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2021, pp. 5874-5878.

Kyu J Han, Ramon Prieto, and Tao Ma. “State-of-the-art speech recognition using
multi-stream self-attention with dilated 1d convolutions”. In: 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU). IEEE. 2019, pp. 54-61.

Song Han and B Dally. “Efficient methods and hardware for deep learning”. In:
University Lecture (2017).

Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding”. In: Inter-
national Conference on Learning Representations (2016).

Song Han et al. “Learning both weights and connections for efficient neural network”.
In: Advances in neural information processing systems. 2015, pp. 1135-1143.

Wei Han et al. “ContextNet: Improving convolutional neural networks for automatic
speech recognition with global context”. In: arXiv preprint arXiv:2005.03191 (2020).

BIBLIOGRAPHY 97

[91]

[92]

[98]

[99]
[100]
[101]
[102]
[103]
[104]
[105]

[106]

Shibo Hao et al. Reasoning with Language Model is Planning with World Model. 2023.
arXiv: 2305.14992 [cs.CL].

James W Hauser and Carla N Purdy. “Approximating functions for embedded and
ASIC applications”. In: Proceedings of the 44th IEEE 2001 Midwest Symposium on
Circuits and Systems. MWSCAS 2001 (Cat. No. 01CHS37257). Vol. 1. IEEE. 2001,
pp. 478-48]1.

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770-778.

Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-

of-distribution examples in neural networks”. In: arXiv preprint arXiw:1610.02136
(2016).

Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (GELUs)”. In: arXiv
preprint arXiv:1606.08415 (2016).

Dan Hendrycks et al. “Measuring Coding Challenge Competence With APPS”. In:
NeurIPS (2021).

Dan Hendrycks et al. “Measuring Massive Multitask Language Understanding”. In:
Proceedings of the International Conference on Learning Representations (ICLR)
(2021).

Dan Hendrycks et al. “Measuring Mathematical Problem Solving With the MATH
Dataset”. In: NeurIPS (2021).

Karl Moritz Hermann et al. “Teaching machines to read and comprehend”. In: Ad-
vances in neural information processing systems. 2015, pp. 1693-1701.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: Workshop paper in NIPS (2014).

Jordan Hoffmann et al. “Training Compute-Optimal Large Language Models”. In:
arXiv preprint arXiw:2203.15556 (2022).

Chris Hokamp et al. “Dyne: Dynamic ensemble decoding for multi-document sum-
marization”. In: arXiv preprint arXiv:2006.08748 (2020).

Coleman Hooper et al. “Kvquant: Towards 10 million context length llm inference
with kv cache quantization”. In: arXiv preprint arXiv:2401.18079 (2024).

Coleman Hooper et al. “Speed: Speculative pipelined execution for efficient decoding”.
In: arXiv preprint arXiv:2310.12072 (2023).

Neil Houlsby et al. “Parameter-efficient transfer learning for NLP”. In: International
conference on machine learning. PMLR. 2019, pp. 2790-2799.

Andrew Howard et al. “Searching for MobilenetV3”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 1314-1324.

https://arxiv.org/abs/2305.14992

BIBLIOGRAPHY 98

107]

[108]

[109]
[110]
[111]

[112]

[113]
[114]

[115]
[116]

[117)

[118]

119

[120]

[121]

[122]

Andrew G Howard et al. “MobileNets: Efficient convolutional neural networks for
mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

Wei-Ning Hsu et al. “Hubert: Self-supervised speech representation learning by
masked prediction of hidden units”. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 29 (2021), pp. 3451-3460.

https://github.com/NVIDIA /TensorRT-LLM.
https://huggingface.co/text-generation-inference.

Edward J Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In:
International Conference on Learning Representations. 2022.

Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation networks”. In: Proceedings
of the IEEFE conference on computer vision and pattern recognition. 2018, pp. 7132—
7141.

Yafeng Huang et al. “Output Sensitivity-Aware DETR Quantization”. In: (2023).

Ngo Quang Huy, Tu Minh Phuong, and Ngo Xuan Bach. “Autoencoding Language
Model Based Ensemble Learning for Commonsense Validation and Explanation”. In:
arXiv preprint arXiv:2204.03324 (2022).

Forrest N Tandola et al. “SqueezeBERT: What can computer vision teach NLP about
efficient neural networks?” In: arXiv preprint arXiv:2006.11316 (2020).

Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters andj 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. “First Quora Dataset Release:
Question Pairs.(2017)”. In: URL https://data. quora. com/First-Quora-Dataset-
Release-Question-Pairs (2017).

Benoit Jacob et al. “Quantization and training of neural networks for efficient integer-
arithmetic-only inference”. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2018, pp. 2704-2713.

Yongkweon Jeon et al. “Mr. BiQ: Post-Training Non-Uniform Quantization based on
Minimizing the Reconstruction Error”. In: Proceedings of the IEEE/CVFE Conference
on Computer Vision and Pattern Recognition. 2022, pp. 12329-12338.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. “LLM-Blender: Ensembling Large
Language Models with Pairwise Ranking and Generative Fusion”. In: arXw preprint
arXiv:2306.02561 (2023).

Xiaoqi Jiao et al. “Tinybert: Distilling bert for natural language understanding”. In:
arXiv preprint arXiw:1909.10351 (2019).

BIBLIOGRAPHY 99

[123]
[124]
[125]
[126]
[127]

[128]

[129]

[130]
131]
132]

[133]
[134]

[135]
[136]

137]
[138]
[139)]

[140]

Jing Jin et al. “KDLSQ-BERT: A Quantized Bert Combining Knowledge Distillation
with Learned Step Size Quantization”. In: arXiv preprint arXiv:2101.05938 (2021).

Michiel de Jong et al. “FiDO: Fusion-in-Decoder optimized for stronger performance
and faster inference”. In: arXiv preprint arXiv:2212.08153 (2022).

Shigeki Karita et al. “A comparative study on Transformer vs RNN in speech appli-
cations”. In: 2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU). IEEE. 2019, pp. 449-456.

Andrej Karpathy. Intro to Large Language Models. 2023.

Jungo Kasai et al. “Deep encoder, shallow decoder: Reevaluating non-autoregressive
machine translation”. In: arXiv preprint arXiv:2006.10369 (2020).

Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learn-
ing for computer vision?” In: Advances in neural information processing systems 30
(2017).

Tushar Khot et al. “Decomposed Prompting: A Modular Approach for Solving Com-
plex Tasks”. In: The Eleventh International Conference on Learning Representations.
2023.

Sehoon Kim. https://github.com/kssteven18/I-BERT. 2021.
Sehoon Kim. https://github.com/kssteven18/Squeezeformer.

Sehoon Kim et al. “An LLM compiler for parallel function calling”. In: arXiw preprint
arXiv:2812.04511 (2023).

Sehoon Kim et al. “Full Stack Optimization of Transformer Inference: a Survey”. In:
arXiv preprint arXiw:2302.14017 (2023).

Sehoon Kim et al. “I-BERT: Integer-only bert quantization”. In: arXiv preprint
arXiv:2101.01321 (2021), pp. 5506-5518.

Sehoon Kim et al. Speculative decoding with big little decoder. 2024.

Sehoon Kim et al. “Squeezeformer: An Efficient Transformer for Automatic Speech
Recognition”. In: arXiv preprint arXiv:2206.00888 (2022).

Sehoon Kim et al. SqueezeLLM: Dense-and-Sparse Quantization. 2023. arXiv: 2306 .
07629 [cs.CL].

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. “Reformer: The Efficient Trans-
former”. In: International Conference on Learning Representations. 2019.

Takeshi Kojima et al. Large Language Models are Zero-Shot Reasoners. 2023. arXiv:
2205.11916 [cs.CL].

Olga Kovaleva et al. “BERT busters: Outlier dimensions that disrupt transformers”.
In: arXiv preprint arXiv:2105.06990 (2021).

https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2205.11916

BIBLIOGRAPHY 100

141]
[142]

[143]

[144]

[145]

[146]

[147]

[148]
[149]

[150]
[151]

[152]

[153]
[154]

[155]

[156]

Samuel Kriman et al. “QuartzNet: Deep automatic speech recognition with 1d time-
channel separable convolutions”. In: ICASSP. IEEE. 2020, pp. 6124-6128.

Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient
inference: A whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

Taku Kudo and John Richardson. “Sentencepiece: A simple and language independent

subword tokenizer and detokenizer for neural text processing”. In: arXiv preprint
arXiv:1808.06226 (2018).

Eldar Kurtic et al. “The Optimal BERT Surgeon: Scalable and Accurate Second-
Order Pruning for Large Language Models”. In: arXiv preprint arXiv:2203.07259
(2022).

Kiseok Kwon et al. “Co-design of deep neural nets and neural net accelerators for
embedded vision applications”. In: 2018 55th ACM/ESDA /IEEE Design Automation
Conference (DAC). IEEE. 2018, pp. 1-6.

Woosuk Kwon et al. “A Fast Post-Training Pruning Framework for Transformers”.
In: arXiv preprint arXiv:2204.09656 (2022). arXiv: 2204.09656 [cs.CL].

Woosuk Kwon et al. “Efficient Memory Management for Large Language Model Serv-
ing with PagedAttention”. In: Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles. 2023.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. “CMSIS-NN: Efficient neural net-
work kernels for arm cortex-m cpus”. In: arXiv preprint arXiv:1801.06601 (2018).

Zhenzhong Lan et al. “Albert: A lite bert for self-supervised learning of language
representations”. In: arXiv preprint arXiv:1909.11942 (2019).

Langchain. https://github.com/langchain-ai/langchain.

Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”. In: Advances
in neural information processing systems. 1990, pp. 598-605.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. “Deterministic non-
autoregressive neural sequence modeling by iterative refinement”. In: arXiv preprint
arXiv:1802.06901 (2018).

Dmitry Lepikhin et al. “GShard: Scaling giant models with conditional computation
and automatic sharding”. In: arXiv preprint arXiv:20006.16668 (2020).

Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-
Efficient Prompt Tuning. 2021. arXiv: 2104.08691 [cs.CL].

Hector Levesque, Ernest Davis, and Leora Morgenstern. “The winograd schema chal-
lenge”. In: Thirteenth International Conference on the Principles of Knowledge Rep-
resentation and Reasoning. Citeseer. 2012.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. “Fast inference from transformers
via speculative decoding”. In: International Conference on Machine Learning. PMLR.
2023, pp. 19274-19286. arXiv: 2211.17192 [cs.LG].

https://arxiv.org/abs/2204.09656
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2211.17192

BIBLIOGRAPHY 101

157]
[158]
[159]

[160]

[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]

[170]

[171]
172]

[173]

Fengfu Li, Bo Zhang, and Bin Liu. “Ternary weight networks”. In: arXiv preprint
arXiv:1605.04711 (2016).

Hao Li et al. “Pruning filters for efficient convnets”. In: arXiww preprint
arXiv:1608.08710 (2016).

Jason Li et al. “Jasper: An end-to-end convolutional neural acoustic model”. In: arXiwv
preprint arXiv:1904.03288 (2019).

Xiuyu Li et al. “Q-Diffusion: Quantizing Diffusion Models”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2023,
pp. 17535-17545.

Yanghao Li et al. “Improved Multiscale Vision Transformers for classification and
detection”. In: arXiv preprint arXiv:2112.01526 (2021).

Yuhong Li et al. “Snapkv: Llm knows what you are looking for before generation”.
In: arXiv preprint arXiv:2404.14469 (2024).

Zhuohan Li et al. “Hint-based training for non-autoregressive machine translation”.
In: arXiv preprint arXiv:1909.06708 (2019).

Yaobo Liang et al. TaskMatriz. AI: Completing Tasks by Connecting Foundation Mod-
els with Millions of APIs. 2023. arXiv: 2303.16434 [cs.AI].

Tatiana Likhomanenko et al. “Rethinking evaluation in ASR: Are our models robust
enough?” In: arXiv preprint arXiv:2010.11745 (2020).

Ji Lin et al. “AWQ: Activation-aware Weight Quantization for LLM Compression and
Acceleration”. In: (2023). arXiv: 2306.00978 [cs.CL].

Chunxi Liu et al. “Improving RNN Transducer based ASR with auxiliary tasks”. In:
2021 IEEE Spoken Language Technology Workshop (SLT). IEEE. 2021, pp. 172-179.

Hao Liu et al. “World model on million-length video and language with ringattention”.
In: arXiv preprint arXiv:2402.08268 (2024).

Jerry Liu. Llamalndezr. Nov. 2022. DOI: 10 .5281/zenodo . 1234. URL: https://
github.com/jerryjliu/llama_index.

Yijiang Liu et al. “NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quan-
tization for Vision Transformers”. In: Proceedings of the IEEE/CVE Conference on
Computer Vision and Pattern Recognition. 2023, pp. 20321-20330.

Yinhan Liu et al. “RoBERTa: A robustly optimized bert pretraining approach”. In:
arXiv preprint arXiw:1907.11692 (2019).

Zirui Liu et al. “Kivi: A tuning-free asymmetric 2bit quantization for kv cache”. In:
arXiv preprint arXiv:2402.02750 (2024).

Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In:
International Conference on Learning Representations. 2019.

https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2306.00978
https://doi.org/10.5281/zenodo.1234
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index

BIBLIOGRAPHY 102

[174]
[175]
[176]
[177]

[178]

[179]
[180]

[181]

[182]
[183]
[184]
[185]
[186]
[187]

[188]

[189)]

[190]

Yiping Lu et al. “Understanding and improving Transformer from a multi-particle
dynamic system point of view”. In: arXiv preprint arXiv:1906.02762 (2019).

Christoph Liischer et al. “RWTH ASR Systems for LibriSpeech: Hybrid vs Attention—
w/o Data Augmentation”. In: arXiv preprint arXiv:1905.03072 (2019).

Kaixin Ma et al. LASER: LLM Agent with State-Space Exploration for Web Naviga-
tion. 2023. arXiv: 2309.08172 [cs.CL].

Aman Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. 2023. arXiv:
2303.17651 [cs.CL].

Somshubra Majumdar et al. “Citrinet: Closing the gap between non-autoregressive
and autoregressive end-to-end models for automatic speech recognition”. In: arXiv
preprint arXiv:2104.01721 (2021).

Huizi Mao et al. “Exploring the regularity of sparse structure in convolutional neural
networks”. In: Workshop paper in CVPR (2017).

Yihuan Mao et al. “Ladabert: Lightweight adaptation of bert through hybrid model
compression”. In: arXiv preprint arXiv:2004.04124 (2020).

Yoshitomo Matsubara et al. “Ensemble Transformer for Efficient and Accurate Rank-
ing Tasks: an Application to Question Answering Systems”. In: arXiwv preprint
arXiv:2201.05767 (2022).

Stephen Merity et al. “Pointer sentinel mixture models”. In: International Conference
on Learning Representations. 2017. arXiv: 1609.07843 [cs.CL].

Paul Michel, Omer Levy, and Graham Neubig. “Are sixteen heads really better than
one?” In: arXiv preprint arXiv:1905.10650 (2019).

Asit Mishra and Debbie Marr. “Apprentice: Using knowledge distillation techniques
to improve low-precision network accuracy”. In: arXww preprint arXiw:1711.05852
(2017).

Tom M Mitchell. “The need for biases in learning generalizations”. In: (1980).

Pavlo Molchanov et al. “Pruning convolutional neural networks for resource efficient
inference”. In: arXiv preprint arXiv:1611.06440 (2016).

Purnendu Mukherjee et al. Real-Time Natural Language Understanding with BERT
Using TensorRT, hhttps://developer.nvidia.com/blog/nlu-with-tensorrt-bert/. 2019.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. “Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme summarization”.
In: arXiv preprint arXiv:1808.08745 (2018).

Edwin G Ng et al. “Pushing the limits of non-autoregressive speech recognition”. In:
arXiv preprint arXiw:2104.03416 (2021).

Xuefei Ning et al. Skeleton-of-Thought: Large Language Models Can Do Parallel De-
coding. 2023. arXiv: 2307.15337 [cs.CL].

https://arxiv.org/abs/2309.08172
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2307.15337

BIBLIOGRAPHY 103

[200]

201]

202]
203]
204]

[205]
206]

207]

208]

[209)]

NVDIA Nemo. https://github.com/NVIDIA/NeMo.
NVDLA Primer. http://nvdla.org/primer.html. 2021.
NVIDIA. TensorRT: hitps://developer.nvidia.com/tensorrt. 2018.

Sangyun Oh et al. “Non-uniform Step Size Quantization for Accurate Post-training
Quantization”. In: Computer Vision—-ECCYV 2022: 17th Furopean Conference, Tel
Aviv, Israel, October 25-27, 2022, Proceedings, Part XI. Springer. 2022, pp. 658-673.

OpenAl. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].
OpenAl. New models and developer products announced at DevDay. 2023.

Myle Ott et al. “FairSeq: A Fast, Extensible Toolkit for Sequence Modeling”. In:
Proceedings of NAACL-HLT 2019: Demonstrations. 2019.

Charles Packer et al. MemGPT: Towards LLMs as Operating Systems. 2023. arXiv:
2310.08560 [cs.AI].

Liu Pai. “QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explana-
tion system based on ensemble of language model”. In: Proceedings of the Fourteenth
Workshop on Semantic Evaluation. 2020, pp. 415-421.

Jing Pan et al. “ASAPP-ASR: Multistream CNN and self-attentive SRU for SOTA
speech recognition”. In: arXiv preprint arXiv:2005.10469 (2020).

Vassil Panayotov et al. “Librispeech: an ASR corpus based on public domain au-

dio books”. In: 2015 IEEFE international conference on acoustics, speech and signal
processing (ICASSP). IEEE. 2015, pp. 5206-5210.

Daniel S Park et al. “Specaugment: A simple data augmentation method for automatic
speech recognition”. In: arXiv preprint arXiv:1904.08779 (2019).

Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. “Value-aware quantization for train-
ing and inference of neural networks”. In: Proceedings of the Furopean Conference on

Computer Vision (ECCV). 2018, pp. 580-595.
Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).
Pruthvi Patel et al. “Is a question decomposition unit all we need?” In: 2022.

Shishir G. Patil et al. Gorilla: Large Language Model Connected with Massive APIs.
2023. arXiv: 2305.15334 [cs.CL].

David A Patterson. “Latency lags bandwith”. In: Communications of the ACM 47.10
(2004), pp. 71-75.

Mathias Perslev et al. “U-Time: A fully convolutional network for time series seg-
mentation applied to sleep staging”. In: Advances in Neural Information Processing
Systems 32 (2019).

Antonio Polino, Razvan Pascanu, and Dan Alistarh. “Model compression via distil-
lation and quantization”. In: arXiv preprint arXiv:1802.05668 (2018).

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2305.15334

BIBLIOGRAPHY 104

[210]
[211]
212]
[213]
[214]
[215]

[216]

217]

[218]

[219]

[220]
[221]

[222]

[223]
[224]

[225]

Reiner Pope et al. “Efficiently Scaling Transformer Inference”. In: arXiv preprint
arXiv:2211.05102 (2022).

Ofir Press et al. Measuring and Narrowing the Compositionality Gap in Language
Models. 2023. arXiv: 2210.03350 [cs.CL].

Yujia Qin et al. “Toolllm: Facilitating large language models to master 16000+ real-
world apis”. In: arXiv preprint arXiv:2307.16789 (2023).

Alec Radford et al. Improving language understanding by generative pre-training.
2018.

Alec Radford et al. “Language models are unsupervised multitask learners”. In: Ope-
nAl blog 1.8 (2019), p. 9.

Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: arXiv preprint arXiv:1910.10683 (2019).

Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: The Journal of Machine Learning Research 21.1 (2020), pp. 5485—
5551.

Alessandro Raganato, Yves Scherrer, and Jorg Tiedemann. “Fixed encoder self-

attention patterns in transformer-based machine translation”. In: arXiv preprint
arXiv:2002.10260 (2020).

Pranav Rajpurkar et al. “SQuAD: 100,000+ questions for machine comprehension of
text”. In: arXiv preprint arXiv:1606.05250 (2016).

Mohammad Rastegari et al. “XNOR-Net: Imagenet classification using binary con-
volutional neural networks”. In: FEuropean Conference on Computer Vision. Springer.
2016, pp. 525-542.

Machel Reid et al. “Gemini 1.5: Unlocking multimodal understanding across millions
of tokens of context”. In: arXiv preprint arXiv:2403.05530 (2024).

Adriana Romero et al. “FitNets: Hints for thin deep nets”. In: arXiv preprint
arXiv:1412.6550 (2014).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer. 2015, pp. 234-241.

C Rosset. “Turing-NLG: A 17-billion-parameter language model by microsoft”. In:
Microsoft Blog (2019).

Jingqing Ruan et al. “T'ptu: Task planning and tool usage of large language model-
based ai agents”. In: arXiv preprint arXiv:2308.03427 (2023).

Yangjun Ruan et al. “Identifying the Risks of LM Agents with an LM-Emulated
Sandbox”. In: arXiv preprint arXiv:2309.15817 (2023).

https://arxiv.org/abs/2210.03350

BIBLIOGRAPHY 105

[226]

[227]

[228]
[229]
[230]
[231]
[232]

[233]

[234]

[235]

236]
237]

238

[239)]
[240]

[241]

Mark Sandler et al. “MobilenetV2: Inverted residuals and linear bottlenecks”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 4510-4520.

Victor Sanh, Thomas Wolf, and Alexander M Rush. “Movement pruning: Adaptive
sparsity by fine-tuning”. In: arXiv preprint arXiv:2005.07683 33 (2020), pp. 20378—
20389.

Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

Teven Le Scao et al. “BLOOM: A 176B-Parameter Open-Access Multilingual Lan-
guage Model”. In: arXiv preprint arXiv:2211.05100 (2022).

Timo Schick et al. “Toolformer: Language models can teach themselves to use tools”.
In: arXiv preprint arXiv:2302.04761 (2023).

Nicol N Schraudolph. “A fast, compact approximation of the exponential function”.
In: Neural Computation 11.4 (1999), pp. 853-862.

Tal Schuster et al. “Confident adaptive language modeling”. In: arXiv preprint
arXiv:2207.07061 (2022).

Chenze Shao et al. “Minimizing the bag-of-ngrams difference for non-autoregressive
neural machine translation”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 34. 01. 2020, pp. 198-205.

Wengi Shao et al. “Omniquant: Omnidirectionally calibrated quantization for large
language models”. In: arXiv preprint arXiv:2308.13137 (2023).

Noam Shazeer and Mitchell Stern. “Adafactor: Adaptive Learning Rates with Sub-
linear Memory Cost”. In: International Conference on Machine Learning. 2018,
pp. 4596-4604.

Sheng Shen et al. “Q-BERT: Hessian Based Ultra Low Precision Quantization of
BERT.” In: AAAIL Vol. 34. 05. 2020, pp. 8815-8821.

Yongliang Shen et al. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends
in Hugging Face. 2023. arXiv: 2303.17580 [cs.CL].

Kyuhong Shim, Jungwook Choi, and Wonyong Sung. “Understanding the role of self
attention for efficient speech recognition”. In: International Conference on Learning
Representations. 2021.

Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning.
2023. arXiv: 2303.11366 [cs.AI].

Mohammad Shoeybi et al. “Megatron-LM: Training multi-billion parameter language
models using gpu model parallelism”. In: arXiv preprint arXiv:1909.08053 (2019).

Gil Shomron et al. “Post-training sparsity-aware quantization”. In: Advances in Neu-
ral Information Processing Systems 34 (2021), pp. 17737-17748.

https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.11366

BIBLIOGRAPHY 106

[242]
[243]

[244]

[245]
[246]

[247)

[248]
[249]
[250]
[251]
252]
[253]
[254]
[255]
[256]
[257]

[258]

Laurent Sifre and Stéphane Mallat. “Rigid-motion scattering for texture classifica-
tion”. In: arXiv preprint arXiv:1403.1687 (2014).

K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: International Conference on Learning Representations. 2015.

Shaden Smith et al. “Using deepspeed and megatron to train megatron-turing nlg
530b, a large-scale generative language model”. In: arXwv preprint arXiv:2201.11990
(2022).

David So, Quoc Le, and Chen Liang. “The evolved transformer”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 5877-5886.

David R So et al. “Primer: Searching for efficient transformers for language modeling”.
In: arXiv preprint arXiv:2109.08668 (2021).

Richard Socher et al. “Recursive deep models for semantic compositionality over a
sentiment treebank”. In: Proceedings of the 2013 conference on empirical methods in
natural language processing. 2013, pp. 1631-1642.

Yifan Song et al. RestGPT: Connecting Large Language Models with Real-World
RESTful APIs. 2023. arXiv: 2306.06624 [cs.CL].

Aarohi Srivastava et al. “Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models”. In: arXiv preprint arXiv:2206.04615 (2022).

Mitchell Stern et al. “Insertion transformer: Flexible sequence generation via inser-
tion operations”. In: International Conference on Machine Learning. PMLR. 2019,
pp. H976-5985.

Gilbert W Stewart. Afternotes on numerical analysis. STAM, 1996.

Theodore R. Sumers et al. Cognitive Architectures for Language Agents. 2023. arXiv:
2309.02427 [cs.AI].

Siqi Sun et al. “Patient knowledge distillation for bert model compression”. In: arXiv
preprint arXiv:1908.09355 (2019).

Zhiging Sun et al. “Fast structured decoding for sequence models”. In: Advances in
Neural Information Processing Systems 32 (2019).

Zhiging Sun et al. “Mobilebert: a compact task-agnostic bert for resource-limited
devices”. In: arXiv preprint arXiv:2004.02984 (2020).

Didac Suris, Sachit Menon, and Carl Vondrick. ViperGPT: Visual Inference via
Python Ezecution for Reasoning. 2023. arXiv: 2303.08128 [cs.CV].

Mingxing Tan and Quoc V Le. “EfficientNet: Rethinking model scaling for convolu-
tional neural networks”. In: arXiv preprint arXiv:1905.11946 (2019).

Raphael Tang et al. “Distilling task-specific knowledge from bert into simple neural
networks”. In: arXiv preprint arXiv:1903.12136 (2019).

https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2303.08128

BIBLIOGRAPHY 107

[259]

[260]
[261]
262]

263

[264]

[265]
[266]

267
268]
269)]

1270]

271]
272]
[273]
[274]

[275]

James W Thomas et al. The libm library and floatingpoint arithmetic in HP-UX for
Itanium-based systems. Tech. rep. Technical report, Hewlett-Packard Company, Palo
Alto, CA, USA, 2004.

Romal Thoppilan et al. “Lamda: Language models for dialog applications”. In: arXiv
preprint arXiv:2201.08239 (2022).

Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models”. In:
arXiv preprint arXiw:2307.09288 (2023).

Hugo Touvron et al. “LLaMA: Open and efficient foundation language models”. In:
arXiv preprint arXiv:2302.13971 (2023). arXiv: 2307.09288 [cs.CL].

Hugo Touvron et al. “Training data-efficient image transformers & distillation
through attention”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 10347-10357.

Iulia Turc et al. “Well-read students learn better: On the importance of pre-training
compact models”. In: arXiv preprint arXiv:1908.08962 (2019).

Vincent Vanhoucke. “Learning visual representations at scale”. In: 2014.

Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. Vol. 30. 2017, pp. 5998-6008.

Roman Vershynin. “Introduction to the non-asymptotic analysis of random matrices”.
In: arXiv preprint arXiv:1011.3027 (2010).

Elena Voita et al. “Analyzing multi-head self-attention: Specialized heads do the
heavy lifting, the rest can be pruned”. In: arXiv preprint arXiv:1905.09418 (2019).

Alex Wang et al. “GLUE: A multi-task benchmark and analysis platform for natural
language understanding”. In: arXiv preprint arXiv:1804.07461 (2018).

Chengyi Wang et al. “Unispeech: Unified speech representation learning with labeled
and unlabeled data”. In: International Conference on Machine Learning. PMLR.
2021, pp. 10937-10947.

Hanrui Wang et al. “HAT: Hardware-aware transformers for efficient natural language
processing”. In: arXiv preprint arXiv:2005.14187 (2020).

Hongyu Wang et al. “DeepNet: Scaling Transformers to 1,000 Layers”. In: arXiv
preprint arXiv:2203.00555 (2022).

Kuan Wang et al. “HAQ: Hardware-Aware Automated Quantization”. In: In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition (2019).

Lei Wang et al. “Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought
Reasoning by Large Language Models”. In: arXiv preprint arXiv:2305.04091 (2023).

Sinong Wang et al. “Linformer: Self-Attention with Linear Complexity”. In: arXiv
preprint arXiv:2006.04768 (2020).

https://arxiv.org/abs/2307.09288

BIBLIOGRAPHY 108

[276]
277]

[278]

[279]

[280]

[281]

[282]

[283]
[284]
[285]

[236]

[287]

[288]

[289)]

[290]

Wenhui Wang et al. “Minilm: Deep self-attention distillation for task-agnostic com-
pression of pre-trained transformers”. In: arXiv preprint arXiv:2002.10957 (2020).

Xuezhi Wang et al. Self-Consistency Improves Chain of Thought Reasoning in Lan-
guage Models. 2023. arXiv: 2203.11171 [cs.CL].

Yiren Wang et al. “Non-autoregressive machine translation with auxiliary regulariza-
tion”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01.
2019, pp. 5377-5384.

Yizhong Wang et al. “Self-instruct: Aligning language models with self-generated
instructions”. In: arXiv preprint arXiw:2212.10560 (2022).

Yongqgiang Wang et al. “Transformer-based acoustic modeling for hybrid speech recog-
nition”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2020, pp. 6874-6878.

Edward Waring. “Vii. problems concerning interpolations”. In: Philosophical trans-
actions of the royal society of London (1779).

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. “Neural network accept-

ability judgments”. In: Transactions of the Association for Computational Linguistics
7 (2019), pp. 625641,

Bingzhen Wei et al. “Imitation learning for non-autoregressive neural machine trans-
lation”. In: arXiv preprint arXiv:1906.02041 (2019).

Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language
models”. In: vol. 35. 2022, pp. 24824-24837.

Xiuying Wei et al. “Outlier suppression: Pushing the limit of low-bit transformer
language models”. In: arXiv preprint arXiv:2209.13325 (2022).

Xiuying Wei et al. “Outlier Suppression+: Accurate quantization of large lan-
guage models by equivalent and optimal shifting and scaling”. In: arXiv preprint
arXiv:2304.09145 (2023).

Sean Welleck et al. “Non-monotonic sequential text generation”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 6716-6726.

Adina Williams, Nikita Nangia, and Samuel R Bowman. “A broad-coverage chal-

lenge corpus for sentence understanding through inference”. In: arXiv preprint
arXiv:1704.05426 (2017).

Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an insightful
visual performance model for multicore architectures”. In: Communications of the

ACM 52.4 (2009), pp. 65-76.

Thomas Wolf et al. “Transformers: State-of-the-art natural language processing”.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. 2020, pp. 38—45.

https://arxiv.org/abs/2203.11171

BIBLIOGRAPHY 109

291]
292]

203]

204]
[295]

[296]

297]
298]

299]

[300]
[301]
[302]

303]

[304]

[305]

Tomer Wolfson et al. “Break It Down: A Question Understanding Benchmark”. In:
Transactions of the Association for Computational Linguistics (2020).

Bichen Wu et al. “Mixed precision quantization of convnets via differentiable neural
architecture search”. In: arXiv preprint arXiv:1812.00090 (2018).

Jiaxiang Wu et al. “Quantized convolutional neural networks for mobile devices”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 4820-4828.

Xiaoxia Wu et al. “Extreme Compression for Pre-trained Transformers Made Simple
and Efficient”. In: arXiv preprint arXiv:2206.01859 (2022).

Zhanghao Wu et al. “Lite transformer with long-short range attention”. In: arXwv
preprint arXiv:2004.11886 (2020).

Guangxuan Xiao et al. “SmoothQuant: Accurate and Efficient Post-Training Quan-
tization for Large Language Models”. In: Proceedings of the 40th International Con-
ference on Machine Learning. Vol. 202. Proceedings of Machine Learning Research.
PMLR, 23-29 Jul 2023, pp. 38087-38099.

Binfeng Xu et al. ReWOO: Decoupling Reasoning from Observations for Efficient
Augmented Language Models. 2023. arXiv: 2305.18323 [cs.CL].

Canwen Xu et al. “Bert-of-theseus: Compressing bert by progressive module replac-
ing”. In: arXiv preprint arXiv:2002.02925 (2020).

Jin Xu et al. “NAS-BERT: task-agnostic and adaptive-size BERT compression with
neural architecture search”. In: Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery € Data Mining. 2021, pp. 1933-1943.

Yige Xu et al. “Improving bert fine-tuning via self-ensemble and self-distillation”. In:
arXiv preprint arXiv:2002.10345 (2020).

Yuhui Xu et al. Deep Neural Network Compression with Single and Multiple Level
Quantization. 2018. arXiv: 1803.03289 [cs.LG].

Linting Xue et al. “mT5: A massively multilingual pre-trained text-to-text trans-
former”. In: arXiv preprint arXiv:2010.11934 (2020).

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 5687-5695.

Zhilin Yang et al. “HotpotQA: A dataset for diverse, explainable multi-hop question
answering”. In: arXiv preprint arXiv:1809.09600 (2018).

Zhilin Yang et al. “XLNet: Generalized autoregressive pretraining for language un-
derstanding”. In: Advances in neural information processing systems. 2019, pp. 5753~
5763.

https://arxiv.org/abs/2305.18323
https://arxiv.org/abs/1803.03289

BIBLIOGRAPHY 110

[306]
[307]
1308]
[309]
[310]
[311]
[312]

313

314]
315]
316]

[317]

[318]

319

[320]

321]

Zonglin Yang et al. Language Models as Inductive Reasoners. 2022. arXiv: 2212.10923
[cs.CL].

Shunyu Yao et al. “React: Synergizing reasoning and acting in language models”. In:
arXiv preprint arXiv:2210.03629 (2022).

Shunyu Yao et al. Tree of Thoughts: Deliberate Problem Solving with Large Language
Models. 2023. arXiv: 2305.10601 [cs.CL].

Shunyu Yao et al. WebShop: Towards Scalable Real-World Web Interaction with
Grounded Language Agents. 2023. arXiv: 2207.01206 [cs.CL].

Zhewei Yao et al. “HAWQV3: Dyadic Neural Network Quantization”. In: arXiw
preprint arXiv:2011.10680 (2020).

Zhewei Yao et al. “ZeroQuant: Efficient and Affordable Post-Training Quantization
for Large-Scale Transformers”. In: arXiv preprint arXiv:2206.01861 (2022).

Yichun Yin et al. “AutotinyBERT: Automatic hyper-parameter optimization for ef-
ficient pre-trained language models”. In: arXiv preprint arXiv:2107.18686 (2021).

Gyeong-In Yu et al. “Orca: A distributed serving system for {Transformer-Based}
generative models”. In: 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 2022, pp. 521-538.

Joonsang Yu et al. “NN-LUT: Neural Approximation of Non-Linear Operations for
Efficient Transformer Inference”. In: arXiv preprint arXiv:2112.02191 (2021).

Wenhao Yu et al. I[fQA: A Dataset for Open-domain Question Answering under Coun-
terfactual Presuppositions. 2023. arXiv: 2305.14010 [cs.CL].

Zhihang Yuan et al. “RPTQ: Reorder-based Post-training Quantization for Large
Language Models”. In: arXiv preprint arXiv:2304.01089 (2023).

Ali Hadi Zadeh et al. “Gobo: Quantizing attention-based nlp models for low latency
and energy efficient inference”. In: 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE. 2020, pp. 811-824.

Ofir Zafrir et al. “Q8BERT: Quantized 8bit bert”. In: arXiv preprint
arXiv:1910.06188 (2019).

Matei Zaharia et al. “The Shift from Models to Compound Al Systems”. In: BAIR
Blog: https: // bair. berkeley. edu/ blog/ 2024/ 02/ 18/ compound - at —
systems/ (2024).

Dongqing Zhang et al. “LQ-Nets: Learned quantization for highly accurate and com-
pact deep neural networks”. In: Proceedings of the European conference on computer
vision (ECCYV). 2018, pp. 365-382.

Frank Zhang et al. “Faster, simpler and more accurate hybrid asr systems using
wordpieces”. In: arXiv preprint arXiw:2005.09150 (2020).

https://arxiv.org/abs/2212.10923
https://arxiv.org/abs/2212.10923
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2305.14010
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

BIBLIOGRAPHY 111

322]

[323]

[324]

325]
326]

[327]

328
329
330]

331]

[332]

[333]
[334]

[335]

Qian Zhang et al. “Transformer transducer: A streamable speech recognition model
with Transformer encoders and RNN-T loss”. In: ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020,
pp. 7829-7833.

Shucong Zhang et al. “On the usefulness of self-attention for automatic speech recog-
nition with Transformers”. In: 2021 IEEE Spoken Language Technology Workshop
(SLT). IEEE. 2021, pp. 89-96.

Shucong Zhang et al. “Stochastic attention head removal: A simple and effec-
tive method for improving Transformer based ASR models”. In: arXiv preprint
arXiw:2011.04004 (2020).

Susan Zhang et al. “OPT: Open pre-trained transformer language models”. In: arXiv
preprint arXiv:2205.01068 (2022). arXiv: 2205.01068 [cs.CL].

Wei Zhang et al. “Ternarybert: Distillation-aware ultra-low bit bert”. In: arXiv
preprint arXiv:2009.12812 (2020).

Xiaohui Zhang et al. “Benchmarking LF-MMI, CTC And RNN-T Criteria For Stream-
ing ASR”. In: 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE. 2021,
pp. 46-51.

Yifan Zhang et al. “QD-BEV: Quantization-aware View-guided Distillation for Multi-
view 3D Object Detection”. In: (2023).

Ying Zhang et al. “Towards end-to-end speech recognition with deep convolutional
neural networks”. In: arXiv preprint arXiv:1701.02720 (2017).

Yu Zhang et al. “Pushing the limits of semi-supervised learning for automatic speech
recognition”. In: arXiv preprint arXiv:2010.10504 (2020).

Zhenyu Zhang et al. “H20: Heavy-hitter oracle for efficient generative inference of
large language models”. In: Advances in Neural Information Processing Systems 36
(2024).

Ritchie Zhao et al. “Improving neural network quantization without retraining using
outlier channel splitting”. In: International conference on machine learning. PMLR.
2019, pp. 7543-7552.

Huaixiu Steven Zheng et al. Take a Step Back: Evoking Reasoning via Abstraction in
Large Language Models. 2023. arXiv: 2310.06117 [cs.LG].

Andy Zhou et al. Language Agent Tree Search Unifies Reasoning Acting and Planning
in Language Models. 2023. arXiv: 2310.04406 [cs.AI].

Chunting Zhou, Graham Neubig, and Jiatao Gu. “Understanding knowledge distilla-
tion in non-autoregressive machine translation”. In: arXwv preprint arXiv:1911.02727
(2019).

https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.04406

BIBLIOGRAPHY 112

[336] Denny Zhou et al. “Least-to-Most Prompting Enables Complex Reasoning in Large
Language Models”. In: The Eleventh International Conference on Learning Represen-
tations. 2023.

[337] Shuchang Zhou et al. “DoReFa-Net: Training low bitwidth convolutional neural net-
works with low bitwidth gradients”. In: arXiv preprint arXiv:1606.06160 (2016).

113

Appendix A

Compute Optimization: Integer-only
Transformer Quantization

A.1 Quantization Methods

Symmetric and Asymmetric Quantization

Symmetric and asymmetric quantization are two different methods for uniform quantization.
Uniform quantization is a uniform mapping from floating point € [Tumin, Tmax] to b-bit
integer ¢ € [—2°71,2°=1 —1]. Before the mapping, input x that does not fall into the range of
[Zmin, Tmax] should be clipped. In asymmetric quantization, the left and the right side of the
clipping range can be different, i.e., —xin # Tmax. However, this results in a bias term that
needs to be considered when performing multiplication or convolution operations [119]. For
this reason, we only use symmetric quantization in this work. In symmetric quantization,
the left and the right side of the clipping range must be equal, i.e., —Zyin = Tmax = @, and
the mapping can be represented as Equation 2.1.

Static and Dynamic Quantization

There is a subtle but important factor to consider when computing the scaling factor, S.
Computing this scaling factor requires determining the range of parameters/activations (i.e.,
a parameter in Equation 2.1). Since the model parameters are fixed during inference, their
range and the corresponding scaling factor can be precomputed. However, activations vary
across different inputs, and thus their range varies. One way to address this issue is to
use dynamic quantization, where the activation range and the scaling factor are calculated
during inference. However, computing the range of activation is costly as it requires a scan
over the entire data and often results in significant overhead. Static quantization avoids this
runtime computation by precomputing a fixed range based on the statistics of activations
during training, and then uses that fixed range during inference. As such, it does not have

APPENDIX A. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 114

the runtime overhead of computing the range of activations. For maximum efficiency, we
adopt static quantization, with all the scaling factors fixed during inference.

A.2 Error Term of Equation 2.3

As one can see, the polynomial approximation of Equation 2.3 exactly matches the data at
the interpolating points (z;, f;). The error between a target function f(z) and the polynomial
approximation L(z) is then:

x)— L(x)| = |—=(x —x9) ... (x — xp) |, .
@) = L] = | Gy @ = 20 =) (A1)
where ¢ is some number that lies in the smallest interval containing xq, ..., z,. In general,
this error reduces for large n (for a properly selected set of interpolating points). Therefore,
a sufficiently high-order polynomial that interpolates a target function is guaranteed to be a
good approximation for it. We refer interested readers to [251] for more details on polynomial

interpolation.

A.3 Experimental Details

Implementation

In I-BERT, all the MatMul operations are performed with INTS precision, and are accu-
mulated to INT32 precision. Furthermore, the Embedding layer is kept at INTS8 precision.
Moreover, the non-linear operations (i.e., GELU, Softmax, and LayerNorm) are processed
with INT32 precision, as we found that keeping them at high precision is important to en-
sure no accuracy degradation after quantization. Importantly, note that using INT32 for
computing these operations has little overhead, as input data is already accumulated with
INT32 precision, and these non-linear operations have linear computational complexity. We
perform Requantization [310] operation after these operations to bring the precision down
from INT32 back to INT8 so that the follow up operations (e.g., next MatMuls) can be
performed with low precision.

Training

We evaluate I-BERT on the GLUE benchmark [269], which is a set of 9 natural language
understanding tasks, including sentimental analysis, entailment, and question answering.
We first train the pre-trained RoBERTa model on the different GLUE downstream tasks
until the model achieves the best result on the development set. We report this as the
baseline accuracy. We then quantize the model and perform quantization-aware fine-tuning
to recover the accuracy degradation caused by quantization. We refer the readers to [310] for

APPENDIX A. COMPUTE OPTIMIZATION: INTEGER-ONLY TRANSFORMER
QUANTIZATION 115

more details about the quantization-aware fine-tuning method for integer-only quantization.
We search the optimal hyperparameters in a search space of learning rate {5e — 7,1le —
6,1.5e — 6,2e — 6}, self-attention layer dropout {0.0,0.1}, and fully-connected layer dropout
{0.1,0.2}, except for the one after GELU activation that is fixed to 0.0. We fine-tune up to
6 epochs for larger datasets (e.g., MNLI and QQP), and 12 epochs for the smaller datasets.
We report the best accuracy of the resulting quantized model on the development set as
I-BERT accuracy.

Accuracy Evaluation on the GLUE Tasks

For evaluating the results, we use the standard metrics for each task in GLUE. In partic-
ular, we use classification accuracy and F1 score for QQP [118] and MRPC [45], Pearson
Correlation and Spearman Correlation for STS-B [15], and Mathews Correlation Coefficient
for CoLA [282]. For the remaining tasks [288, 218, 247, 35], we use classification accuracy.
For the tasks with multiple metrics, we report the average of them. Since there are two
development sets for MNLI [288], i.e., MNLI-match (MNLI-m) for in-domain evaluation,
and MNLI-mismatch (MNLI-mm) for cross-domain evaluation, and we report the accuracy
on both datasets. We exclude WNLI [155] as it has relatively small dataset and shows an
unstable behaviour [44].

Environment Setup for Latency Evaluation

We use TensorRT 7.2.1 to deploy and tune the latency of BERT-Base and BERT-Large
models (both INT8 and FP32) on Google Cloud Platform virtual machine with a single
Tesla T4 GPU, CUDA 11.1, and cuDNN 8.0.

We should also mention that the most efficient way of implementing BERT with Ten-
sorRT is to use NVIDIA’s plugins [187] that optimize and accelerate key operations in the
Transformer architecture via operation fusion. Our estimates are that INTS8 inference us-
ing NVIDIA’s plugins is about 2 times faster than naively using TensorRT APIs. However,
we cannot modify those plugins to support our integer-only kernels as they are partially
closed sourced and pre-compiled. Therefore, our latency evaluation is conducted without
fully utilizing NVIDIA’s plugins. This leaves us a chance for further optimization to achieve
our latency speedup relative to FP32 even more significant. As such, one could expect the
potential for a further ~ 2x speed up with INT8 quantization.

116

Appendix B

Memory Optimization:
Dense-and-Sparse Quantization for
Large Language Models

B.1 Data Skew in Per-channel Sparsity Pattern

Figure B.1 provides the distribution of nonzero entries per output channel across different
linear layers in the first LLaMA-7B block. This plot shows that the nonzero distribution is
heavily skewed, with a few channels containing a much larger proportion of nonzero values.
This skewed distribution makes it challenging to efficiently perform computations using the
sparse matrix, as it is difficult to distribute the nonzero elements evenly across parallel
processing units. This motivates our modified kernel for handling channels with a large
number of outliers in order to reduce the runtime overhead of the sparse matrices. As
outlined in Table B.1, we observed over 100% added runtime overhead when employing a
standard CSR-based kernel. However, if we allocate each thread to process a fixed number of
nonzeros (rather than having each thread process an entire row) we were able to drastically
reduce the runtime overhead to 10-20% with both sensitive values and outliers.

B.2 Ablation Studies

Sensitivity-Based Quantization.

In our ablation study, we investigate the impact of sensitivity-based weighted clustering on
the performance of non-uniform quantization. In Table B.2, we compared the performance
of sensitivity-based and sensitivity-agnostic approaches in the context of 3-bit quantization
of the LLaMA-7B model. For sensitivity-agnostic quantization, we apply non-weighted k-
means clustering at sparsity levels of 0%, 0.05%, and 0.45%. The results demonstrate that
while non-uniform quantization alone can reduce the perplexity from 28.26 (of RTN uniform

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS

~ Key (MHA)

~Query (MHA)

Value (MHA)

__Out (MHA)

0 200

0

10° 10°
10? 102
10t

|||.I||
5 10

10*

E)

1] 10

] 1 L

50 100

0 50

Num. nonzero values Num. nonzero values Num. nonzero values Num. nonzero values

Gate (FFN)

Up (FFN)

_ Down (FFN)

104 |
103
102
10!

10° N

R LIN

103

102

10!

1] 100 |

0

200

400 0

1000 2000 0 50

100

. Num. nonzero values Num. nonzero values Num. nonzero values

117

Figure B.1: Histograms of the number of non-zero entries per output channel in 7 different
linear layers in the first LLaMA-7B block. The histograms reveal the presence of a few
channels that contain significantly more non-zero entries than others, highlighting the skew
in the sparsity patterns across different channels within the linear layers.

Table B.1: Hardware profiling of latency and memory usage using different kernel implemen-
tations for LLaMA 7B, 13B, 30B, and 65B quantized into 3-bit when generating 128 tokens
on an A6000 GPU. The first row shows the performance of SqueezeLLM without sparsity as
a reference. The second row shows the performance of SqueezeLLM with a sparsity level of
0.45% using a standard kernel for processing a CSR matrix. The third row shows the per-
formance of SqueezeLLM with a sparsity level of 0.45% using a balanced sparse kernel that
allocates 10 nonzeros per thread, thereby more efficiently handling skewed sparse matrices.

Sparse Sparsity Latency (Seconds) Peak Memory (GB)
Kernel Level 7B 13B 30B 658 7B 13B 30B 658
- | 0% | 15 24 40 76 | 29 54 125 245
Standard 0.45% 3.9 6.2 12.5 14.4 3.2 5.8 13.7 28.0
Balanced 0.45% 1.7 2.6 4.4 8.8 3.1 5.8 14.7 28.0

quantization) to 18.08 without considering sensitivity, incorporating sensitivity-based clus-
tering is critical in reducing the perplexity to 7.75. This improvement is consistent across

all sparsity levels.

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 118

Table B.2: Ablation study comparing sensitivity-agnostic and sensitivity-based non-uniform
quantization on the LLaMA-7B model with 3-bit quantization, measured by perplexity on
the C4 benchmark. The baseline model in FP16 achieves a perplexity of 7.08.

Method | Sensitivity-Agnostic (|) Sensitivity-Based (|)
SqueezeLLM 18.08 7.75
SqueezeLLM (0.05%) 8.10 7.67
SqueezeLLM (0.45%) 7.61 7.56
LLaMA-7B 3bit LLaMA-7B 3bit
* \ —e— Sensitive values not removed
7.74 1 7.66 —k— Sensitive values removed (0.05%)
N S
C 7.72 - .64
o o *,
> > 7.62
= 7.70 s
5 3 \
= —= 7.60 b S
2 7.681 o
[} [}
o 8 7.58
7.66 1
7.56 *
0.189 0.190 0.191 0.192 0.193 0.194 0.195 0.190 0.192 0.194 0.196 0.198 0.200 0.202 0.204
Model Size Model Size

Figure B.2: (Left) Model size (normalized by the size of the FP16 model) and perplexity
trade-off with different percentages of sensitive values included in the sparse matrix. Here,
no outlier values are included in the sparse matrix. (Right) Comparison of the performance
when the sensitive values are not removed as the sparse matrix (only outlier values are
removed) to the case where 0.05% of the sensitive values are removed. In both cases, the
trade-offs are obtained by controlling the percentage of outlier values included in the sparse
matrix.

Impact of Sparsity Levels on SqueezeLLM

In Figure B.2 (Left), we present the perplexity results of the 3-bit quantized LLaMA-7B
model on the C4 benchmarks, with varying percentages of sensitive values extracted as the
sparse matrix, ranging from 0% to 0.2%. The plot demonstrates that the perplexity gain
diminishes as the sparsity level of the sensitive values exceeds 0.05%. Therefore, we maintain
a fixed sparsity level of 0.05% for the sensitive values throughout all experiments.
Furthermore, in Figure B.2 (Right), we compare the performance when the sensitive
values are not removed as the sparse matrix (only outlier values are removed) to the case
where 0.05% of the sensitive values are removed. In both scenarios, we control the sparsity
level by increasing the percentage of outlier values included in the sparse matrix to obtain

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 119

LLaMA-7B 3bit

7.671 % —e— Grouping
% Dense-and-Sparse + Grouping
7.66 —*— Dense-and-Sparse
8 7.65
g
>\7.64
s
S 7.63 * x
o
T 7.62
Q.
7.61
7.60 *
0.190 0.192 0.194 0.196 0.198 0.200 0.202

Model Size

Figure B.3: Model size (normalized by the size of the FP16 model) and perplexity trade-offs
of grouping and the Dense-and-Sparse decomposition on 3-bit quantization of LLaMA-7B.
Here, we compare SqueezeLLM with (i) grouping using group sizes of 1024 and 512 (green),
(ii) a hybrid approach that combines a group size of 1024 with a sparsity level of 0.05%
(blue), and (iii) the Dense-and-Sparse decomposition approach with varying sparsity levels
(violet). The pure Dense-and-Sparse decomposition always outperforms both grouping and
the hybrid approach.

the trade-off curves. The results indicate that the sparsity configuration with both sensitive
values and outlier values consistently outperforms the configuration with only outlier values.

Impact of Grouping on SqueezeLLM

In Figure B.3, we explore the effectiveness of incorporating grouping into SqueezeLLM as an
alternative approach to improve quantization performance. We compare three configurations:
SqueezeLLM with (i) grouping using group sizes of 1024 and 512 (green), (ii) a hybrid
approach that combines a group size of 1024 with a sparsity level of 0.05% (blue), and (iii)
the Dense-and-Sparse decomposition approach with varying sparsity levels (violet), where
0.05% of sensitive values are kept and the percentage of outlier values is adjusted. The results
clearly demonstrate that both grouping and the hybrid approach result in suboptimal trade-
offs compared to the pure Dense-and-Sparse decomposition approach.

This can be attributed to two factors. First, the Dense-and-Sparse decomposition is a
direct solution to the outlier issue. In contrast, while grouping can mitigate the impact of
outliers to some extent by isolating them within individual groups, it does not provide a
direct solution to this issue. Second, grouping can introduce significant overhead in terms

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 120

LLaMA-7B 3bit

8.11

—e— Layer-wise Perturbation
—k— Final Output Perturbation (Ours)

Perplexity on C4
~ ~ ©
@ © 2

N
q

7.61

0.190 0.192 0.194 0.196 0.198 0.200 0.202
Model Size

Figure B.4: Model size (normalized by the size of the FP16 model) and perplexity trade-offs
for 3-bit quantization of the LLaMA-7B model using layer-wise perturbation minimization
versus final output perturbation minimization as a non-uniform quantization objective. The
trade-off is obtained by adjusting the sparsity level of the outliers being extracted. Across all
sparsity levels, the OBD framework, which is the foundation for SqueezeLLM, consistently
outperforms the OBS framework as an alternative approach.

of storage requirements when combined with non-uniform quantization, since it needs to
store one LUT per group. This can be a considerable overhead compared to the uniform
quantization approach, where only a scaling and zero point value per group need to be stored.

Comparison of Optimization Objectives for Non-uniform
Quantization: Minimizing Layer-wise Perturbation versus Final
Output Perturbation

While our method targets minimizing the perturbation of the final output of the model
during quantization, it is worth noting that minimizing the layer-wise perturbation can also
be considered as an alternative. Most existing solutions for LLM quantization including
GPTQ [61], AWQ [166], and SpQR [42] have used the latter objective, which aims to min-
imize the perturbation of output activations in individual layers. In this ablation study,
we demonstrate that minimizing the final output perturbation is a superior objective to
minimizing the layer-wise perturbation.

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 121

Table B.3: Perplexity scores on Wikitext2 for the LLaMA-2 7B model, quantized using non-
uniform (SqueezeLLLM’s sensitivity-based quantization) and uniform (RTN) approaches with
3 and 4-bit precision with varying levels of sparsity.

Bit Width | Sparsity Level (%) Avg. Bit Width | Uniform (PPL) Nonuniform (PPL)

16-bit | 0 16 | 5.47 5.47
0 4.04 6.12 5.62

0.05 4.09 5.95 5.59

4-bit 0.45 4.26 5.95 5.57
2 5.01 5.95 5.55

4.5 6.20 5.94 5.53

0 3.02 542.00 6.18

0.05 3.07 27.38 6.05

3-bit 0.45 3.24 26.58 5.96
L5 3.98 25.97 5.81

4.5 5.18 23.58 5.73

When minimizing the layer-wise perturbation, the optimization objective for determining
the non-uniform quantization configuration can be reformulated as arg ming ||[WX — Wy X||3,
where X denotes a batch of input activations. This object can be approximated as a weighted
k-means clustering problem, where each weight is weighted by the square of the corresponding
input activation size. This indeed results in the activation-based sensitivity /importance
metric as in the AWQ framework [166].

In Figure B.4, we compare the perplexity on the C4 dataset for 3-bit quantization of the
LLaMA-7B model using both objectives. Across all sparsity levels obtained by adjusting the
number of outliers being extracted, SqueezeLLM based on final loss perturbation minimiza-
tion outperforms the alternative of using layer-wise perturbation minimization by a large
margin of up to around 0.3 perplexity points.

Impact of Non-uniform Quantization versus Dense-and-Sparse
Decomposition

In Table B.3, we perform a detailed analysis to further disambiguate the impact of non-
uniform quantization and the Dense-and-Sparse decomposition.

Uniform vs. Non-uniform Quantization. As can be seen in Table B.3, across all
bitwidths and sparsity levels, our non-uniform quantization has noticeable improvements
over uniform quantization.

Sparsity Levels. Furthermore, we also report the results with varying sparsity levels of
the Dense-and-Sparse decomposition in Table B.3. As expected, higher levels of sparsity
consistently result in improved performance in any scenario. However, there are diminishing
returns for larger values of sparse decomposition since only a small portion of the weight

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 122

Table B.4: Perplexity scores on C4 and WikiText2 for the LLaMA-2 7B model, quantized
using SqueezeLLM with 4-bit and 3-bit with different sparsity level. In particular, the
sparsity levels of 3-bit quantization are selected to match their average bit widths to that of
4-bit quantization without sparsity.

Bit Width | Sparsity Level (%) Avg. Bit Width | C4 (PPL) WikiText2 (PPL)

16-bit | 0 16 | 6.97 5.47
4bit | 0 4.04 | 712 5.62

. 1.5 3.98 7.35 5.81
3-bit 2.5 4.22 7.32 5.80

Table B.5: Peak memory requirement in GB when quantizing different LLaMA models.

Model | Peak Memory (GB)

LLaMA-7B 33
LLaMA-13B 61
LLaMA-30B 149
LLaMA-65B 292

values are outliers or sensitive. As a consequence, saving additional values into the sparse
format does not help as much beyond a certain level, and instead results in higher average
bitwidth. This is in line with the conclusions in the main experiments where we found a
sparsity level of 0.45% sufficient for the performance gain.

Impact of Dense-and-Sparse Decomposition versus Precision

In Table B.4, we additionally demonstrate that increasing the bit width of the dense compo-
nent results in higher improvement in perplexity compared to increasing the sparsity level.
Note that 4-bit LLaMA-2 7B model without any sparsity outperforms the 3-bit counter-
parts with sparsity levels of 1.5% and 2.5% that have similar or even larger model sizes.
This observation aligns with the sensitivity level ablation study in Appendix B.2, since the
Dense-and-Sparse decomposition is only effective to the extent of removing the outliers and
sensitive values from the parameters. Increasing the sparsity level beyond that will not be
effective and results in diminishing returns.

B.3 Quantization Cost Analysis

Memory Requirement

In Table B.5, we report the memory requirement of SqueezeLLM when quantizing different
model sizes from 7B to 65B. Note that our method can have a higher memory requirement

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 123

Table B.6: End-to-end latency breakdown of quantizing different LLaMA models. Latency is
broken down into (i) Fisher information computation on a A100 system and (ii) sensitivity-
based k-means clustering on Intel Xeon Gold 6126 with 48 cores. In the last column, we
provide the end-to-end time for GPTQ as reported in the original paper.

Model | Fisher Computation (min) K-means (min) | GPTQ (min)

LLaMA-7B 0.3 11 10
LLaMA-13B 0.6 17 21
LLaMA-30B 1.3 45 45
LLaMA-65B 2.5 80 96

Table B.7: Perplexity on C4 and Wikitext2 of the LLaMA2 7B model after 4-bit quantization,
with varying sizes of the calibration dataset used for computing the Fisher information
matrix.

Data Examples ‘ C4 Wikitext2

1 7.89 6.41
2 7.81 6.22
5 7.73 6.20
10 7.72 6.17
20 7.72 6.16
100 7.72 6.18

than GPTQ. This is because SqueezeLLM performs quantization based on minimizing the
perturbation to the loss function of the model which requires computing the Fisher informa-
tion matrix. GPTQ, on the other hand, performs quantization by minimizing the perturba-
tion to the output activation of the individual layer, which does not require back-propagating
the gradient through the model to compute the Fisher information matrix. However, this
is a one-time cost, and as demonstrated below, this gradient computation process is fast,
taking only 2-3 minutes even for the largest 65B model.

Quantization Time

In Table B.6, we additionally assess the end-to-end time for (i) computing the Fisher infor-
mation on an A100 system and (ii) performing sensitivity-based K-means clustering on Intel
Xeon Gold 6126 with 48 cores, which are two major procedures in SqueezeLLM. Note that
the time for computing the Fisher information matrix is minimal, taking only 2.5 minutes
with the largest 65B model. K-mean clustering can take 11 min for the 7B model and up to
80 min for the 656B model. Overall, the computational time requirement of SqueezeLLM is
on par with that of GPTQ.

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 124

Table B.8: Perplexity on Wikitext2 of the LLaMA2 13B and 70B models quantized into 4,
3, and 2 bits using SqueezeLLM and QulP [18]. For QulP, we use the perplexity numbers
that are reported in the original paper as well as our own reproduction using the official
codebase. Following the perplexity evaluation method of the QulP paper, we use sequence
length of 4096 (different from other experiments that use sequence length of 2048).

Model | Config. Avg. Bit Width | LLaMA2-13B LLaMA2-70B

QulP (original paper) 4-bit 4 - 3.53
QulP (our repr) 4-bit 4 4.81 3.65
SqueezeLLM 4-bit 4.05 4.67 3.21
QulP (original paper) 3-bit 3 - 3.85
QulP (our repr) 3-bit 3 5.25 3.84
SqueezeLLM 3-bit 3.02 5.01 3.55
QulP (original paper) 2-bit 2 - 6.33
QulP (our repr) 2-bit 2 20.54 6.20
SqueezeLLM 2-bit 2.01 61.25 10.86
SqueezeLLM 2-bit + 0.1% 2.05 7.91 5.04
SqueezeLLM 2-bit + 0.45% 2.22 7.43 4.71

Data Efficiency

In Table B.7, we provide data efficiency analysis in terms of the number of data samples to
calculate the Fisher information matrix (gradients) for sensitivity-based non-uniform quan-
tization. While we used a calibration set of 100 data samples throughout the paper, a
calibration set with as few as 10 examples is typically sufficient to achieve the desired quan-
tization performance. Note that both GPT(Q and AWQ require 100-200 data points for
calibration as reported in the AWQ paper [166].

B.4 Comparison with Other Weight-only
Quantization Methods

In this section, we compare SqueezeLLM with more recent weight-only quantization methods
including QulP [18] and OmniQuant [234].

Comparison with QulIP

Here, we provide a quantitative comparison of our method to QUIP. Given that the QulP
paper only reports performance evaluation of LLaMA2-70B among all LLaMA models, we
enrich our comparison by additionally incorporating our own reproduction based on their
official codebase. Different from other experiments that use sequence length of 2048, we use
sequence length of 4096, following the perplexity evaluation method of the QulP paper. In
Table B.8, we compare the perplexity scores on Wikitext2 for LLaMA2 13B and 70B models

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 125

Table B.9: Perplexity on Wikitext2 of all LLaMA and LLaMA2 models quantized into 4
and 3 bits using SqueezeLLM and OmniQuant [18]. For OmniQuant, we directly use the
perplexity numbers that are reported in the original paper.

Model ‘ Config. Avg. Bit Width ‘ 7B 13B 30B 65B 2-7TB 2-13B 2-70B

Baseline ‘ 16-bit 16 ‘ 5.68 5.09 4.1 3.53 5.47 4.88 3.32
Omniquant 4-bit 4 5.86 5.21 4.25 3.71 5.74 5.02 3.47
SqueezeLLM 4-bit 4.05 5.79 5.18 4.22 3.76 5.62 4.99 3.41
Omniquant 4-bit (g128) 4.24 5.77 5.17 4.19 3.62 5.58 4.95 3.4
SqueezeLLM | 4-bit (0.45%) 4.27 5.77 5.17 4.18 3.63 5.57 4.96 3.39
Omniquant 3-bit 3 6.49 5.68 4.74 4.04 6.58 5.58 3.92
SqueezeLLM 3-bit 3.02 6.32 5.60 4.66 4.05 6.18 5.36 3.77
Omniquant 3-bit (g128) 3.24 6.15 5.44 4.56 3.94 6.03 5.28 3.78
SqueezeLLM | 3-bit (0.45%) 3.24 6.13 545 444 3.88 5.96 5.23 3.63

Table B.10: Perplexity on Wikitext2 of all LLaMA2 models quantized into 2 bits using
SqueezeLLM and OmniQuant [18]. For OmniQuant, we directly use the perplexity numbers
that are reported in the original paper.

Model | Config. Avg. Bit Width | 2-7B 2-13B 2-70B

Baseline | 16-bit 16 | 5.47 4.88 3.32
OmniQuant 2-bit 2 37.37 17.21 7.81
SqueezeLLM 2-bit 2.01 35.49 41.02 9.44
SqueezeLLM 2-bit (0.1%) 2.05 13.64 8.56 5.38
OmniQuant 2-bit (g128) 2.24 11.06 8.26 6.55
SqueezeLLM | 2-bit (0.45%) 2.22 10.79 7.91 4.99

quantized to 4, 3, and 2-bit. Note that we did not include a comparison on LLaMA2 7B as
we were unable to achieve reasonable performance with QulP, as was also reported in [51].

The table indicates that dense-only SqueezeLLM consistently achieves superior perfor-
mance over QUIP, across all model sizes and quantization bitwidth. With 2bit quantization,
we noticed that solely relying on dense-only quantization may not yield results as compet-
itive as those of QulP. However, by incorporating just 0.1% sparsity (additional 0.05 bit;
0.05% outlier values 4+ 0.05% sensitive values), SqueezeLLM significantly outperforms QulP
by a considerable margin.

Comparison with OmniQuant

In Table B.9, we compare the perplexity of our method to OmniQuant on WikiText2 using
sequence length of 2048. In particular, the table reports the perplexity numbers of 4 and
3-bit quantized models across all LLaMA and LLaMA2 models. For OmniQuant, we directly
use the numbers reported in the original paper. Omniquant and SqueezeLLM are grouped
in the table so that their model sizes are roughly the same. This comparison demonstrates

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 126

Table B.11: Latency (s) and peak memory usage (GB) of 3-bit LLaMA when generating
1024 tokens on an A6000 GPU. The table compares the FP16 baseline, non-grouped and
grouped GPTQ with activation ordering, and SqueezeLLM with different sparsity levels. For
comparison, we include bitwidth and perplexity on the C4 benchmark.

Method Avg. 7B 13B 30B 65B
bit |PPL Lat Mem |PPL Lat Mem |PPL Lat Mem |PPL Lat Mem
Baseline \ 16 \ 7.08 26.5 13.1 \ 6.61 47.0 25.2 \ 5.98 OOM OOM\ 5.62 OOM OOM
GPTQ 3 7.55 126 3.3 |6.22 19.1 6.0 |5.76 36.8 13.8 | 558 60.2 26.2
SqueezeLLM 3.02 632 136 34 |560 21.2 6.1 |[466 378 16.1 |4.05 66.9 29.9
GPTQ (g128) 3.25 | 6.27 110.7 3.4 |547 176.1 6.2 |4.83 500.8 14.3 |4.55 955.2 27.3
SqueezeLLM (0.45%) | 3.24 | 6.13 14.6 3.6 |5.45 222 6.5 | 444 425 174 |3.88 8235 324

that SqueezeLLM generally outperforms OmniQuant with the same model size and memory
constraints.

Additionally, Table B.10 demonstrates the same comparison using 2-bit quantization.
With 2-bit quantization, the table shows that OmniQuant without grouping outperforms
dense-only SqueezeLLM on the 13B and 70B models. This can be attributed to OmniQuant’s
learnable clipping ranges via a few iterations of training that effectively account for outliers.
SqueezeLLM’s sensitivity-based nonuniform quantization alone does not inherently address
this. Handling outliers can be particularly critical for 2-bit quantization where weights should
be represented with only four values. Nevertheless, introducing a 0.1% sparsity remarkably
enhances SqueezeLLM’s performance with a minimal memory overhead increase of 0.05 bit.
This perplexity improvement is also persistent when comparing OmniQuant with a group
size 128 and SqueezeLLM at a 0.45% sparsity level with roughly the same size.

B.5 Additional Hardware Profiling Results

In Table B.11, we provide additional hardware profiling results using a sequence length of
1024. All the experimental setups and details are identical to Section 3.4 and Table 3.3.

Additionally, in Table B.12, we demonstrate that our custom CUDA kernels (both in-
cluding and without including outliers) attain significant speedups of 1.5-2.5x relative to the
fp16 baseline. These results were obtained without any additional optimizations or tuning
specifically for the A100, demonstrating how our kernels are easily portable across different
GPUs and do not introduce complexity.

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 127

Table B.12: Matrix-vector kernel runtime (in seconds) for generating 128 tokens, bench-
marked on an A100 GPU. Our kernel implementation attains 1.5-2.5x performance speedups
relative to the fp16 matrix-vector multiply kernel across different model sizes without any ad-
ditional optimizations or tuning. We include GPTQ (with group size 128) without reordering
for comparison against the latency of uniform quantization with grouping.

. . Model
Method Bit Width 7B 13B 30B
Baseline | 16 | 1.21 2.32 5.56

GPTQ (g128)
SqueezeLLM
SqueezeLLM (0.45%)

GPTQ (g128)
SqueezeLLM
SqueezeL.LLM (0.45%)

0.92 1.51 3.24
0.83 1.52 3.66
1.09 1.87 4.25

0.62 1.03 2.39
0.56 0.97 2.26
0.83 1.32 2.86

Lo W | A

B.6 Additional Experiment Results

Perplexity Evaluation

In Table B.13, we provide the full experimental results on LLaMA [262]. Furthermore, in
Table B.14, B.15 and B.16, we provide additional experimental results on LLaMA2 [261] and
OPT [325] models.

5-shot MMLU Evaluation

In Table B.17, we provide additional results on 5-shot MMLU evaluation using the Vicuna
vl.1 (7/13B) and Vicuna v1.3 (7/13/33B) models. We see a similar trend as the zero-
shot MMLU evaluation results where SqueezeLLM consistently outperforms the baseline
quantization methods with the same model size.

B.7 Limitations

While our empirical results primarily focus on generation tasks, the proposed ideas in this
work are not inherently limited to decoder architectures. However, we have not yet conducted
thorough assessments of our framework’s effectiveness on encoder-only or encoder-decoder
architectures, as well as other neural network architectures. Additionally, it is important to
note that our hardware performance modeling approach relies on a simulation-based method
using a roofline model, which entails making simplified assumptions about the hardware’s
inference pipeline.

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 128

Table B.13: Perplexity comparison of LLaMA-30B and 65B models quantized into 4 and 3
bits using different methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2.
We compare the performance of GPTQ, AWQ, and SqueezeLLM in groups based on similar
model sizes. In the first group, we compare dense-only SqueezeLLM with non-grouped
GPTQ. In the subsequent groups, we compare SqueezeLLM with different levels of sparsity
to GPTQ and AWQ with different group sizes. T SpQR does not report their near-3-bit
performance. However, in the case of 65B model, its 3-bit perplexity on Wikitext-2 can be
inferred from the trade-off curve in Figure 8 of their paper. This comparison indicates that
the gap between SpQR and SqueezeLLLM can be larger in the lower-bitwidth regimes.

LLaMA-30B | 3-bit | 4-bit
Avg. Bits | PPL (|) | Avg. Bits | PPL ({)
Method (comp. rate) | C4 Wiki | (comp. rate)| C4 Wiki
Baseline ‘ 16 ‘ 5.98 4.10 ‘ 16 ‘ 5.98 4.10
RTN 3 (5.33) 28.53 14.89| 4 (4.00) 6.33 4.54
GPTQ 3(5.33) | 7.31 576| 4(4.00) [6.20 4.43
SPQR - - - | 389 (411) |6.08 4.25
SqueezeLLM 3.02 (5.31) | 6.37 4.66| 4.03 (3.97) |6.06 4.22
GPTQ (g128) 3.25 (4.92) | 6.47 4.83 | 4.25 (3.77) |6.07 4.24
AWQ (g128) 3.25 (4.92) | 6.38 4.63 | 4.25 (3.77) |6.05 4.21
SqueezeLLM (0.45%) | 3.25 (4.92) | 6.23 4.44| 4.25 (3.77) |6.04 4.18

LLaMA-65B | 3-bit | 4-bit
Avg. Bits | PPL (|) | Avg. Bits | PPL ({)
Method (comp. rate)| C4 Wiki | (comp. rate) | C4 Wiki
Baseline ‘ 16 ‘ 5.62 3.53 ‘ 16 ‘ 5.62 3.53
RTN 3 (5.33) 12.77 10.59| 4 (4.00) 5.86 3.92
GPTQ 3(5.33) | 670 558 | 4(4.00) |[5.81 4.11
SpQR 3 (5.33) - 42" | 3.90 (4.10) |5.70 3.68
SqueezeLLM 3.02 (5.30) | 5.99 4.05| 4.04 (3.96) |5.69 3.76
GPTQ (g128) 3.25 (4.92) | 6.01 4.55 | 4.25 (3.77) | 5.60 3.76
AWQ (g128) 3.25 (4.92) | 5.94 4.00 | 4.25 (3.77) |5.68 3.67
SqueezeLLM (0.45%) | 3.24 (4.94) | 5.84 3.88 | 4.26 (3.76) |5.67 3.63

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 129

Table B.14: Perplexity comparison of LLaMA2 models quantized into 4 and 3 bits using dif-
ferent methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2. We compare
the performance of GPTQ, AWQ, and SqueezeLLM in groups based on similar model sizes.
In the first group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the
subsequent groups, we compare SqueezeLLM with different levels of sparsity to GPTQ and
AWQ with different group sizes. Note that all GPTQ results are with activation reordering.

LLaMA2-7B ‘ 3-bit ‘ 4-bit
Avg. Bits PPL (}) Avg. Bits | PPL ({)
Method (comp. rate)| C4 Wiki |(comp. rate)| C4 Wiki
Baseline | 16 | 6.97 547 | 16 | 6.97 5.47
RTN 3 (5.33) 404.45 542.86 4 (4.00) 7.72 6.12
GPTQ 3 (5.33) 10.45 8.97 4 (4.00) 7.42 5.90
SqueezeLLM 3.02 (5.29) | 7.72 6.18 | 4.05 (3.95) |7.12 5.62
GPTQ (g128) 3.24 (4.93) | 7.97 625 | 4.24 (3.77) | 7.23 5.72
AWQ (g128) 3.24 (4.93) | 7.84 624 | 4.24 (3.77) | 7.13 5.72
SqueezeLLM (0.45%) | 3.24 (4.93) | 7.51 5.96 | 4.27 (3.75) |7.08 5.57
LLaMA2-13B | 3-bit | 4-bit
Avg. Bits | PPL (|) | Avg. Bits | PPL (/)
Method (comp. rate)| C4 Wiki | (comp. rate) | C4 Wiki
Baseline | 16 | 6.47 4.88 | 16 | 6.47 4.88
RTN 3 (5.33) 12.50 10.68 4 (4.00) 6.83 5.20
GPTQ 3 (5.33) 8.27 6.17 4 (4.00) 6.74 5.08
SqueezeLLM 3.02 (5.30) |6.97 5.36 | 4.04 (3.96) |6.57 4.99
GPTQ (g128) 3.25 (4.92) | 7.06 5.31 | 4.25 (3.77) | 6.57 4.96
AWQ (g128) 3.25 (4.92) | 6.94 5.32 | 4.25 (3.77) |6.56 4.97
SqueezeLLM (0.45%) | 3.24 (4.94) | 6.82 5.23 | 4.26 (3.76) |6.54 4.96
LLaMA2-70B | 3-bit | 4-bit
Avg. Bits | PPL (]) | Avg. Bits | PPL ({)
Method (comp. rate)| C4 Wiki|(comp. rate)| C4 Wiki
Baseline | 16 | 5.52 3.32 | 16 | 5.52 3.32
RTN 3 (5.33) 10.02 7.52 4 (4.00) 5.80 3.67
GPTQ 3 (5.33) 6.69 4.86 4 (4.00) 5.70 3.59
SqueezeLLM 3.02 (5.30) | 5.83 3.77| 4.04 (3.96) |5.58 3.41
GPTQ (g128) 3.25 (4.92) | 5.87 3.88 | 4.25 (3.77) | 5.59 3.42
AWQ (g128) 3.25 (4.92) | 5.81 3.74 | 4.25 (3.77) |5.58 3.41
SqueezeLLM (0.45%) | 3.24 (4.94) | 5.73 3.63| 4.26 (3.76) |5.57 3.39

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS 130

Table B.15: Perplexity comparison of OPT 1.3B, 2.7B, and 6.7B models quantized into 4
and 3 bits using different methods including RTN, GPTQ, AWQ and SpQR on C4 and
WikiText-2. We compare the performance of GPTQ, AWQ, and SqueezeLLM in groups
based on similar model sizes. In the first group, we compare dense-only SqueezeLLM with
non-grouped GPTQ. In the subsequent groups, we compare SqueezeLLM with different levels
of sparsity to GPTQ and AWQ with different group sizes. Note that all GPT(Q results are
with activation reordering. “div” means that the perplexity is diverged.

OPT-1.3B | 3-bit | 4-bit
Avg. Bits PPL () Avg. Bits PPL ({)
Method (comp. rate)| C4 Wiki | (comp. rate)| C4 Wiki
Baseline ‘ 16 ‘ 14.72 14.62 ‘ 16 ‘ 14.72 14.62
RTN 3(5.43) | div. div. 4 (4) 24.68 48.19
SqueezeLLM 3.04 (5.26) |16.42 16.30| 4.09 (3.91) |15.01 14.94
AWQ (g128) 3.25 (4.93) | 16.28 16.32 | 4.25 (3.77) | 15.04 14.95
SqueezeLLM (0.5%) | 3.25 (4.92) |15.84 15.76| 4.30 (3.72) [14.94 14.83
OPT-2.7B | 3-bit | 4-bit
Avg. Bits PPL (}) Avg. Bits PPL ()
Method (comp. rate)| C4 Wiki |(comp. rate)| C4 Wiki
Baseline |16 | 1317 1247 16 | 13.17 12.47
RTN 3 (5.33) div. div. 4 (4) 17.52 16.92
SqueezeLLM 3.04 (5.26) |14.45 13.85| 4.07 (3.93) |13.38 12.80
AWQ (g128) 3.25 (4.93) | 16.28 16.32 | 4.25 (3.77) | 13.39 12.73
SqueezeLLM (0.5%) | 3.25 (4.92) |13.88 13.43| 4.29 (3.73) |13.30 12.60
OPT-6.7B | 3-bit | 4-bit
Avg. Bits | PPL () | Avg. Bits | PPL (})
Method (comp. rate)| C4 Wiki |(comp. rate)| C4 Wiki
Baseline ‘ 16 ‘ 11.74 10.86 ‘ 16 ‘ 11.74 10.86
RTN 3(5.33) | div. div. 4 (4) 13.38 12.10
SpPQR - - - | 3.94 (4.06) | 11.98 11.04
SqueezeLLM 3.02 (5.29) |12.44 11.70| 4.05 (3.96) |11.85 11.03
SpPQR - - - | 4.27 (3.74) | 11.88 10.91
AWQ (g128) 3.25 (4.92) | 12.30 11.41| 4.25 (3.77) | 11.86 10.93
SqueezeLLM (0.5%) | 3.26 (4.90) |12.18 11.31| 4.28 (3.73) |11.83 10.92

APPENDIX B. MEMORY OPTIMIZATION: DENSE-AND-SPARSE QUANTIZATION
FOR LARGE LANGUAGE MODELS

131

Table B.16: Perplexity comparison of OPT 13B and 30B models quantized into 4 and 3
bits using different methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-
2. We compare the performance of GPTQ, AWQ, and SqueezeLLM in groups based on

similar model sizes.

In the first group, we compare dense-only SqueezeLLM with non-

grouped GPTQ. In the subsequent groups, we compare SqueezeLLM with different levels of
sparsity to GPTQ and AWQ with different group sizes. Note that all GPTQ results are with
activation reordering. “div”’ means that the perplexity is diverged.

OPT-13B | 3-bit | 4-bit
Avg. Bits PPL () Avg. Bits PPL ()

Method (comp. rate)| C4 Wiki |(comp. rate)| C4 Wiki
Baseline | 16 |11.20 10.12| 16 [11.20 10.12
RTN 3(5.33) | div. div. 4 (4) 12.35 11.32
SpQR - - - | 393 (4.07) |11.34 10.28
SqueezeLLM 3.02 (5.29) [12.69 11.76| 4.05 (3.96) |11.29 10.24
SpQR - - - | 4.27 (3.74) | 11.27 10.22
AWQ (g128) 3.25 (4.92) | 12.61 10.67 | 4.25 (3.77) | 11.28 10.22
SqueezeLLM (0.5%) | 3.26 (4.90) |11.57 10.54| 4.28 (3.73) |11.26 10.22

OPT-30B | 3-bit | 4-bit

Avg. Bits PPL ({) Avg. Bits | PPL ()

Method (comp. rate)| C4 Wiki | (comp. rate)| C4 Wiki
Baseline | 16 [10.69 956 | 16 |10.69 9.56
RTN 3(5.33) | div. div. 4 (4) 11.90 10.98
SpQR - - ~ | 3.94 (4.06) | 10.78 9.54
SqueezeLLM 3.01 (5.31) |11.10 10.17| 4.03 (3.97) [10.75 9.65
SpQR. - - - | 4.26 (3.76) | 10.73 9.50
AWQ (g128) 3.25 (4.92) |10.96 9.85 | 4.25 (3.77) | 10.75 9.59
SqueezeLLM (0.5%) | 3.26 (4.90) |10.93 9.77 | 4.28 (3.73) |10.72 9.61

Table B.17: Comparison of PT(Q methods on five-shot MMLU accuracy applied to Vicuna
v1.1 and v1.3. We add peak memory usage in GB for comparison.

Method Avg. 7B (v1.1) 13B (v1.1) 7B (v1.3) 13B (v1.3) 33B (v1.3)
etho bit Acc Mem Acc Mem Acc Mem Acc Mem Acc Mem
Baseline | 16 | 45.3% 12.7 | 50.0% 24.6 | 45.6% 127 | 51.6% 24.6 | 60.1% OOM
AWQ (g128) 4.25 | 44.1% 3.8 48.8% 7.2 44.8% 3.8 50.7% 7.2 59.6% 17.2
SqueezeLLM 4.05 | 44.3% 3.8 48.4% 6.9 44.3% 3.8 50.5% 6.9 59.6% 16.5
SqueezeLLM (0.45%) | 4.26 | 44.7% 4.0 49.7% 7.3 44.9% 4.0 51.4% 7.3 60.0% 17.7
AWQ (g128) 3.25 41.4% 3.0 46.3% 5.7 42.5% 3.0 48.4% 5.7 56.3% 13.3
SqueezeLLM 3.02 40.4% 2.9 45.6% 5.4 41.0% 2.9 47.4% 5.4 55.7% 12.4
SqueezeLLM (0.45%) | 3.24 | 42.2% 3.1 | 48.2% 58 | 43.2% 3.1 | 48.8% 58 | 58.2% 13.7

132

Appendix C

Efficient Inference Method:
Speculative Decoding with Big Little
Decoder

C.1 Experimental Details

Training Details

For machine translation, we use IWSLT 2017 German-English [16] and WMT 2014 German-
English [9] as target benchmarks, and mT5 [302] as a target model. We use the 8-layer
mT5-small and the 24-layer mT5-large as the small and large models. For summarization,
we use XSUM [188] and CNN/DailyMail [99] as target benchmarks, and T5 [216] as a target
model. We use T5-small and Tb5-large with 6 and 24 layers, respectively, for the small and
large models. Table C.1 summarizes the size and configuration of each model. All the models
are fine-tuned from the pre-trained checkpoints of the HuggingFace library [290] for 500k
steps using a batch size of 16. We use Adafactor optimizer [235] with constant learning rate
of {0.5, 1, 2, 5}e—4 for the small models and {0.5, 1}e—4 for the large models. We refer
to the normally fine-tuned models on the validation datasets as the baseline small and large
models.

When training aligned small models via the prediction alignment method described in
Section 4.2, we first generate calibration datasets using the input sequences from the training
datasets of each benchmark. We then use the fully trained large model to generate output
sequences through greedy sampling with a beam size of 1. To ensure a fair comparison, we
fine-tune pre-trained small models (rather than the baseline small models that are already
fine-tuned on the training datasets) on the calibration datasets using the same training
recipes and the number of training steps as described above. This decision is based on
our observation that fine-tuning a baseline model using the calibration dataset tends to
improve generation quality, likely due to the increased number of training examples and data
augmentation effects, which makes it difficult to make a fair comparison between unaligned

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 133

Table C.1: Model configurations of the large and small models for each evaluation task. For
comparison, the number of layers, hidden dimension, FFN dimension, and the number of
decoder parameters (without embeddings) for each model are provided.

Task ‘ Model ‘ # Layers dim FFN dim # Params
Machine mT5-large [302] 24 1024 2816 409M
Translation | mT5-small [302] 8 512 1024 25M
g arizatio T5-large [216] 24 1024 4096 402M
(HHIMAHZAHON | 5 small [216] 6 512 2048 25M

BiLLD and aligned BiLLD. However, in practice, one can obtain aligned models by applying
the prediction alignment method directly to the fine-tuned baseline small models to achieve
the best performance.

Evaluation Details

All inference evaluations including latency measurement are conducted on a single NVIDIA
T4 GPU of a GCP nl-standard-4 instance with 4 vCPUs and 15GB memory. For inference,
we use batch size 1, which is a common use case for online serving [232]. For the distance
metric d in Equation 4.3 for the rollback policy, we use the cross-entropy loss between the
small model’s hard label and the large model’s soft label. This measures the (negative log)
likelihood of obtaining the small model’s prediction from the large model’s output. For
BiLD inference, we sweep over different fallback and rollback thresholds to explore different
trade-offs between generation quality and latency. For the machine translation tasks, we use
fallback thresholds in [0.5, 0.9] and rollback thresholds in [1, 10]. For the summarization
tasks, fallback thresholds in [0.2, 0.6] and rollback thresholds in [2, 6]. We keep the maximum
generation length of the small model to 10 to avoid high rollback costs. In Appendix C.5,
we provide a detailed analysis of how varying the fallback and rollback thresholds impacts
the trade-offs between generation quality and latency in the BiLLD framework.

C.2 Details of Early Exiting Strategy in the BiLD
Framework

Training and Evaluation Details

The training and evaluation details for BiLD as well as for CALM are as follows.

BiLD. We use the mT5-small model as the large model and the first (out of 8) layer as the
small model, and evaluate it on two machine translation benchmarks: TWSLT 2017 De-En
and WMT 2014 De-En. To ensure consistency between the prediction made after the first

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 134

layer and the one made after the last layer, we fine-tune the pre-trained mT'5 model using
the average loss of the first and the final layers, similar to [52, 232]. That is, £ = (£ +L£_1)
where £; and £_; are the negative log-likelihood loss after the first layer and the final layer.
The prediction head is shared for these two layers. We fine the pre-trained mT5-small model
on each benchmark for 500k steps using a batch size of 16. Similar to the main experiments,
we use Adafactor optimizer [235] with constant learning rate of {0.5, 1, 2, 5}e—4. For
evaluation, we use fallback thresholds in [0.2, 0.8] and rollback thresholds in [0.5, 1.5].

CALM. To reproduce CALM [232] in our experimental setup, we have fine-tuned the pre-
trained mT5-small model on IWSLT 2017 De-En and WMT 2014 De-En datasets. We employ
the averaged loss across all layers, i.e., L = Zle w; L1, where w; = i/ Zle j, which was
introduced in the paper to ensure the layer consistency. We use Adafactor optimizer [235]
with constant learning rate of {0.5, 1, 2, 5}e—4 for 500k training steps. To make a fair
comparison, we match the BLEU score of the fine-tuned model to that of BiLD’s models
Among the two training-free confidence measures introduced in the CALM paper, softmax-
based and hidden-state saturation-based measures, we have chosen to use the latter approach
as an early exiting criterion. That said, if the cosine similarity between the current layer’s
hidden states and the previous layer’s hidden states exceeds a certain threshold, we perform
early exiting. We have found that the softmax-based alternative is not applicable in our
evaluation scenario due to the large output vocabulary (more than 200k for mT5, which is
~ 10x larger than T5), which significantly increases latency overhead. As described in the
paper, when early exiting happens, the hidden states of the exited layer are propagated down
to the remaining layers to compute the key and value caches. To achieve different trade-offs
between latency and generation quality, we sweep over A in [0.7, 0.98] and ¢ in {0, 1, 2, 4,
8} in the decaying threshold function.

Performance Comparison between BiLD and CALM

Figure C.1 illustrates the BLEU score and latency curves of BiLLD compared to CALM in the
early exiting setting. In both tasks, our method achieves significantly better BLEU scores
with the same latency speedup, yielding up to around 2 point better BLEU score in the
~ 1.5x speedup regime. This can be attributed to two factors. First, in BiLD, even if an
early exited prediction (i.e., prediction made by the smaller model) is incorrect, it can be
corrected and replaced using the rollback policy. Therefore, an error in the early exited layer
is propagated less drastically to the future prediction. Second, the key and value caches for
skipped layers are filled with actual values instead of being computed from the exiting layer’s
hidden states. This also leads to reduced error propagation and improved decoding stability.

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING

WITH BIG LITTLE DECODER 135
IWSLT 2017 De-En, mT5 WMT 2014 De-En, mT5
36.5F oo - 2% 27.0 o
S 36.01 =1 5
b ’ 2265
3 / 3
P ¥ 5 26.0
< 4 <
o ‘ o
i€ 35.0 s < 255
; "/ ¥ Vanilla Inference ; /% Vanilla Inference
Y345 ! ° 5.0 e -
[a) K BiLD o ’ —— BILD
/' --- CALM f --- CALM
34.01 4 24.5 4
0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
Normalized avg latency per example Normalized avg latency per example

Figure C.1: The trade-off curves between inference latency and BLEU score for BiLD and
CALM in the early exiting setting for (Left) IWSLT 2017 De-En and (Right) WMT 2014 De-
En. The x marks indicate the vanilla inference latency and BLEU score of the mT5-small
models. The horizontal lines indicate the vanilla inference score and 1 point degradation
from it. BiLLD outperforms CALM across all speedup regimes by up to 2 ~ 2.5 points better
BLEU score, demonstrating the effectiveness of our approach for the early exiting strategy.

C.3 Comparison with Other Speculative Decoding
Frameworks

Concurrently and independently of our work, [156, 20] also propose an algorithm to accelerate
generative inference using a more powerful model to score and speculatively sample predic-
tions from a less powerful model. While the rejection sampling-based approach in [156,
20] offers unbiased estimators that match the stronger model’s probability distributions,
our extensive empirical evaluation shows that our approach can deliver superior latency-
performance trade-offs, due to its non-random rollback (i.e., rejection) policy as well as the
dynamic fallback window size. Below, we provide distinctions in detailed methodologies and
quantitative comparison, as well as our insights on better latency and performance of our
approach.

Differences in Methodology

While the idea of using two models with different sizes can be deemed similar to the specula-
tive decoding frameworks in [156, 20], we have clear distinctions in detailed methodologies.

(1) Non-Random Prediction Rollback Approach: The primary difference lies in how
we decide the rollback (e.g., rejection) of predictions from the small model. In our rollback
policy, we propose to make the rejection decision based on the distance between the small
and large model predictions, which differs from the rejection sampling policy outlined in
[156, 20]. While [156, 20] propose an unbiased estimator on the large model’s prediction,
Figure 4.2 demonstrates that combining predictions from both models through our distance-

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 136

Table C.2: Comparison of BiLD to other rejection sampling based speculative sampling
methods proposed in [156, 20] on IWSLT and XSUM. For BiLD, we include two BiL.D
configurations: the one that matches latency and the other that matches BLEU/ROUGE-L
scores as compared to the rejection sampling based methods. Note that BiLD consistently
outperforms other methods by achieving either (1) improved BLEU/ROUGE-L scores with
equivalent latency gains, or (2) improved latency gains while retaining the same performance
score.

Dataset IWSLT XSUM
BLEU Speedup | ROUGE-L Speedup
Vanilla Inference ‘ 40.32 - ‘ 35.08 -
Rejection Sampling Based [156, 20] | 39.93 1.28x 35.00 1.25x%
BiLD (Match Latency) 40.54 1.23x 35.30 1.42%
BiLD (Match BLEU/ROUGE-L) 39.87 1.49x 34.96 1.50x

based rejection approach can surpass the exclusive utilization of the large model’s prediction
probability. BiLLD seeks to find and utilize this optimal performance point without introduc-
ing much runtime cost. We have a further discussion below about how our rejection policy
benefits text-generation performance.

(2) Dynamic Fallback Window Size: Additionally, we introduce the dynamic fallback
window size in our fallback policy. In [156, 20], the window size remains a fixed hyperparam-
eter; however, it is also highlighted in [20] that the window size can have a noticeable impact
on end-to-end latency. Our approach offers an efficient and robust solution: adjusting the
window size at runtime based on the small model’s confidence level in run-time. Our ablation
study (Figure 4.5) demonstrates that omitting the fallback policy and periodically transi-
tioning control to the large model, as proposed in [156, 20], can result in notable latency
degradation.

(3) Model Alignment Enhancement: Beyond the core framework, we introduce a model
alignment method to align the small model’s predictions with those of the large model. This
enhances the framework by reducing unnecessary rejections and can be incorporated with
minimal adjustments to the training pipeline.

Quantitative Comparisons

In Table C.2, we provide a comprehensive quantitative comparison between our method
and [156, 20] across two different datasets: IWSLT for machine translation and XSum for
summarization. In order to ensure a fair comparison that isolates the impact of the frame-
works themselves, we employ the baseline (non-aligned) small model for all experiments.

We maintained the same evaluation setup and hyperparameter space that are outlined in
Appendix C.1.

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 137

Table C.3: Comparison of the percentage of fallback and rollback (rejection) occurrences
of BiLLD and other rejection sampling based speculative sampling methods [156, 20]. While
achieving even better BLEU/ROUGE-L scores in IWSLT and XSUM, BiLD involves no-
ticeably fewer number of fallbacks and rollbacks, resulting in a significantly better latency
speedup.

Task ‘ Method ‘ BLEU/ROUGE-L Speedup ‘ % Fallback % Rollback

IWSLT | Rejection Sampling Based [156, 23] 39.93 1.28% 23.24% 9.81%
BiLD (Better BLEU) 40.33 143% | 21.09% 1.56%

XSUM | Rejection Sampling Based [156, 23] 35.00 1.25x% 36.84% 24.24%
BiLD (Better ROUGE-L) 35.12 1.48 % 32.33% 6.41%

Table C.2 includes two BiLLD configurations: the one that matches latency and the other
that matches BLEU/ROUGE-L scores as compared to the rejection sampling-based methods.
Across all experiments, BiLD consistently outperforms speculative decoding. It achieves
either (1) notably improved BLEU/ROUGE-L scores with equivalent latency gains, or (2)
superior latency gains while retaining the same BLEU/ROUGE-L scores.

Insights on Better Latency and Performance

Quantitative analysis reveals a consistent trend where our method, when compared to other
speculative decoding frameworks, effectively enhances both text generation quality and la-
tency. We provide insights and explanations into why our approach surpasses speculative
decoding frameworks.

(1) Better text generation quality

Ensembling effect: The power of blending outputs from multiple models has been well-
explored in various fields. This is also the case in open-source LLM models which exhibit
diverse strengths and weaknesses due to variations in data, architectures, and hyperparam-
eters, making different models complementary to each other [121]. In fact, we show such
effects of blending multiple model outputs in Figure 2, where a combination of 20% of the
large model’s prediction with the small model’s prediction outperforms the exact imitation
of the large model’s behavior. Our approach offers fallback and rollback policies that effi-
ciently exploit optimal ensemble point, which produces superior output quality compared to
the unbiased estimate of the large model in [156, 20].

Rollback policy that leads to higher performance: Our method adopts a rejec-
tion policy that completely discards the small model’s prediction if it significantly deviates
from the large model’s counterpart, based on cross entropy-based distance metric. This
contrasts with speculative decoding, where the decision involves a stochastic rejection sam-
pling process. We empirically observe that BiLD ’s hard rejection policy allows a better

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 138

BLEU/ROUGE-L score with significantly fewer number of rollbacks (rejections) than the
stocastic rejection policy of speculative decoding as described in Table C.3. We hypothesize
that this boost in predictive performance stems from our hard rollback policy, which prevents
potentially erroneous predictions by ruling out stochasticity. We additionally hypothesize
that such a strategy can address exposure bias, mitigating the impact of a single early-stage
misprediction on subsequent predictions.

(2) Lower end-to-end latency Furthermore, our fallback policy introduces a dynamic
fallback window size (i.e. number of small model’s consecutive iterations) that is determined
based on the run-time prediction confidence of the small model. This is in contrast with
speculative decoding which adopts a static window size. The advantages of the dynamic
window size are two-fold:

Less fallbacks: The dynamic window size enables the small model to persist in making
predictions when it is confident, thus minimizing the unnecessary engagement of the large
model. This is supported by Table C.3 where BiLLD involves fewer number of fallbacks
(23.24% — 21.09% and 36.84% — 32.33%) than [156, 20] while achieving better performance.

Less rollbacks/rejections: The dynamic window size further enables preemption of
the small model when it is uncertain, which avoids rollback of the small model’s wrong
predictions. This is also supported by Table C.3 where BiLLD involves significantly fewer
number of rollbacks (9.81% — 1.56% and 24.24% — 6.41%) than [156, 20] while achieving
better performance.

Minimizing both fallbacks and rollbacks/rejections reduces unnecessary computation
which directly translates to end-to-end latency improvement.

C.4 BiLD with Sampling

Our approach isn’t restricted to greedy decoding, but it can seamlessly extend to sampling
methods. The only modification is to perform random sampling instead of greedy sampling
when drawing a token from both the small model and the large model while using the same
fallback and rollback policy. This is because both the fallback and rollback policies, based
on the maximum prediction probability, serve as an effective indicator of the small model’s
uncertainty in prediction and potential inaccuracies, regardless of the sampling method. The
following table illustrates the latency versus performance trade-off of the sampling-based
approach, specifically using nucleus sampling with p=0.8, similar to [23]. This evaluation
follows the same environment as other experiments outlined in the paper, and both cases
involve aligned small models.

Table C.4 exhibits the BLEU/ROUGE-L score of BiLD on the IWSLT and XSUM bench-
marks as well as their relative speedup. As can be seen in the table, our method exhibits
a similar trend to the greedy decoding case. It achieves a ~1.5x speedup without com-
promising performance and a ~1.8x speedup with a modest 1-point BLEU/ROUGE score
reduction.

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 139

Table C.4: BiLD with nucleus sampling (p=0.8) on IWSLT and XSUM. Similar to the greedy
decoding case, our method achieves a ~1.5x speedup without compromising performance
and a ~1.8x speedup with a modest 1-point BLEU/ROUGE score reduction with sampling.

Dataset IWSLT XSUM
BLEU Speedup ROUGE-L Speedup
Vanilla Inference | 39.24 - 34.00 -
BiLD 39.72 (4+0.48) 1.51x 34.34 (+0.34) 1.22x
39.26 (+0.02) 1.63x 34.04 (+0.04) 1.45%
38.27 (—0.97) 1.80x 33.10 (—0.90) 1.85%
Model Analysis of Vanilla Inference vs BiLD
g | - Vanilla Inference 4.96
HN BiLD
o
34
S
T 3
o}
N
E 3 1.85
S
= o 1.11 1 1 1
l'“-”
0- . ;
FLOPs(!) MOPs({) Arithmetic Speedup(T)
Intensity(1)

Figure C.2: FLOPs, MOPs (memory operations), arithmetic intensity, and latency speedup
comparison of vanilla inference and BiLLD on the CNN/DailyMail benchmark. BiLD ap-
proach results in a remarkable reduction in MOPs due to the improved token-level paral-
lelism, resulting in significantly higher arithmetic intensity.

C.5 Additional Analysis

Model Analysis of BiLD: FLOPs, MOPs, and Arithmetic Intensity

Figure C.2 compares average FLOPs, MOPs (memory operations), arithmetic intensity, and
the latency speedup of the vanilla inference and BiLD on the CNN/DailyMail benchmarks.
For BiLLD, we use the model with roughly the same ROUGE-L score as the vanilla inference,
and all the numbers are normalized by the numbers of the vanilla inference. The figure
illustrates that BiLD exhibits slightly higher FLOPs compared to the vanilla inference. This
is due to the fact that the autoregressive and non-autoregressive executions have the same

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING

WITH BIG LITTLE DECODER 140
Ground Truth And Siftables are an example of a new ecosystem of tools for manipulating digital information.

Large And the Siftables are an example of a new generation of manipulation tools for digital data.

Small And the if you look at the ifleses are an example of a new generation of technologies for manipulation of digital data.
BiLD (ours) And the Siftables are an example of a new generation of manipulation of digital data.

Ground Truth Which is great, because the Romans did not actually think that a genius was a particularly clever individual.

Large That's great. The Romans didn't really think that a genius was a particularly smart individual.

Small That's great. The tube didn't really think that a genius was a particularly lonely individual.

BiLD (ours) That's great. The Romans didn't really think that a genius was a particularly smart individual.

Ground Truth The viral particles then were released from the cells and came back and killed the E. coli.

Large The viral particles then were released by the cells and came back and killed E. coli.

Small The viral particles were then released by the cells and came back and killed E. Coke.

BiLD (ours) The viral particles then were released by the cells and came back and killed E. coli.

Figure C.3: Example text sequences that BiLLD generates with the validation set of IWSLT
2017 De-En, compared to the ground truths and the outputs of the large and small baselines.
For BiLD, tokens generated by the large model are highlighted in red, while all the other
tokens are generated by the small model. This illustrates that with a small engagement of
the large model, BiLLD can correct not only inaccurate vocabulary but also wrong semantics
of the text that the small model would have otherwise generated.

amount of FLOPs, and BiLLD involves additional overhead of running the small model along-
side. However, in the case of MOPs, BiLD demonstrates a significant ~5x reduction of
memory operations. This can be attributed to the capability of BiLD to process multiple
tokens with a single weight load, thereby enhancing token-level parallelism and maximizing
data reuse. In contrast, this is not the case in the vanilla inference where a single weight
load can only process a single token. Consequently, BiLD achieves a significantly higher
arithmetic intensity, which is approximately 5 times larger than the vanilla inference. Arith-
metic intensity [289] measures the number of arithmetic operations that can be performed
per memory operation. Given that memory operations can contribute more to the overall
inference latency than arithmetic operations in many Transformer decoding scenarios [133],
decreasing memory operations and increasing arithmetic intensity can effectively alleviate the
inference bottleneck. This leads to an overall latency speedup of 1.85x on actual hardware.

Examples of Generated Sequences

Figure C.3 provides examples of text sequences generated by BiLLD on the validation set
of IWSLT 2017 De-En, along with the ground truths (i.e., labels) and outputs of the pure
large and small baseline models. The tokens generated from the large model of BiLLD are
highlighted in green, while all the other tokens are generated by the small model. The results

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 141

XSUM, T5 CNN/DailyMail, T5

41.8
35.00 <
34.75

— Rollback threshold 3.0
—— Rollback threshold 4.0

I
=
[o)]

I
=
»

I
=
N

—— Rollback threshold 1.0
—— Rollback threshold 2.0
—— Rollback threshold 3.0
—— Rollback threshold 4.0 —— Rollback threshold 5.0
33.50 Rollback threshold 5.0 - —— Rollback threshold 6.0
Rollback threshold 6.0 Rollback threshold 7.0

ROUGE-L (higher better)
G B OE
N
(6]
ROUGE-L (higher better)

I
=
o

0.55 0.60 0.65 0.70 0.475 0.500 0.525 0.550 0.575 0.600
Normalized avg latency per example Normalized avg latency per example

Figure C.4: The trade-off between latency and generation quality (ROUGE-L) for the aligned
BiLD model on two summarization tasks: (Left) XSUM and (Right) CNN/DailyMail. Each
curve represents a different rollback threshold, with smaller thresholds indicating more roll-
backs. The trade-off can be further obtained within each curve with different fallback thresh-
olds, where larger scatter sizes indicate larger fallback thresholds. A larger fallback threshold
implies more fallbacks.

illustrate that the small model often produces low-quality texts, by predicting inaccurate
tokens which can alter the meaning of the entire sentence. To contrast, it is observed
from the examples that BiLLD is able to improve the text generation quality by letting the
large model interrupt when the small model generates incorrect tokens. Particularly, in the
examples provided, BiLLD tends to be as strong as the large model at predicting terminologies.
Overall, the large model’s engagement in BiLLD decoding not only improves the prediction
accuracy but also prevents incorrect predictions from impacting the future ones.

Impact of Fallback and Rollback on Performance

We have explored how the BiLLD framework can achieve different trade-offs between latency
and generation quality by adjusting fallback and rollback thresholds. In this section, we
present a detailed analysis of how these thresholds affect the performance using the aligned
BiLD model on two different summarization tasks, XSUM and CNN/DailyMail, as illus-
trated in Figure C.4. Different curves in the plot represent different rollback thresholds,
and each scatter point within the curve represents different fallback thresholds. Note that
a small rollback threshold implies more rollback, while a larger fallback threshold implies
more fallback.

We observe a general trend where smaller rollback thresholds (i.e., more rollbacks) result
in better generation quality but longer latency. This trend is expected because, with more
rollback, we preempt more small model’s predictions that can be potentially inaccurate by

APPENDIX C. EFFICIENT INFERENCE METHOD: SPECULATIVE DECODING
WITH BIG LITTLE DECODER 142

sacrificing the latency. Similarly, there is also a general trend that smaller fallback thresholds
(i.e., fewer fallbacks) result in faster latency but a worse generation quality. However, we
observed that lowering the fallback rates beyond a certain point can actually hurt both the
latency and generation quality. This is because inaccurate predictions that the small model

should have fallen back are later rolled back, incurring an extra ‘flush’ cost for the tokens
that follow.

143

Appendix D

Efficiency in Agentic Applications:
LLM Compiler for Parallel Function
Calling

D.1 Experimental Details

Our experiments evaluate two different common scenarios: (1) using API-based closed-source
models; and (2) using open-source models with an in-house serving framework. We use
OpenAl’s GPT models as closed-source models, in particular, gpt-3.5-turbo (1106 release)
for HotpotQA and Movie Recommendation, gpt-4-turbo (1106 release) for ParallelQA, and
gpt-4 (0613 release) for Game of 24. Experiments on HotpotQA, Movie Recommendation,
and ParallelQA were all conducted in November 2023 after the 1106 release. The Game
of 24 experiments were conducted over a two-month period from September to October
2023. For an open-source model, we use LLaMA-2 [262], which was hosted on 2 A100-
80GB GPUs using the vLLM [147] framework. All the runs have been carried out with
zero temperature, except for thought _proposer and state_evaluator for the Game of 24
evaluation, where the temperature is set to 0.7. Since OpenAl has randomness in outputs
even with temperature 0, we have conducted 3 runs, and we reported the average accuracy.
Across ReAct, OpenAl parallel function calling, and LLMCompiler, we perform 3, 1, and
5-shot learning for HotpotQA, Movie Recommendation, and ParallelQA, respectively; the
same examples across different methods were used to ensure a fair comparison. For the
Game of 24, we use 2 in-context examples for the Planner. We use the same instruction
prompts across different methods for a fair comparison, except for ReAct’ in Section 6.4
with additional ReAct-specific prompts. For WebShop experiment, we use gpt-4-0613 with
8k context window and gpt-3.5-turbo model with 16k context window.

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 144

D.2 Analysis

Parallel Speedup Modeling

While LLMCompiler shows noticeable latency gain in various workloads, it is not achieving
the N x latency speedup for N-way parallel workloads. This is mostly due to the over-
head associated with LLMCompiler’s Planner and final answering process that cannot be
parallelized. In our Movie Recommendation experiment, LLMCompiler’s Planner and the
answering process have an overhead of 1.88 and 1.62 seconds on average, respectively, whose
combined overhead already comprises more than half of LLMCompiler’s overall latency in
Table 6.1. Another source of overhead is the straggler effect among the parallel tasks when
they need to join together. We observe the average latency of the slowest search to be 1.13
seconds, which is nearly 2x the average latency of all tasks, which is 0.61 seconds. Below,
we provide an analytical latency modeling of ReAct, LLMCompiler, and LLMCompiler with
streaming, and we provide an analysis of achievable latency speedup.

In this section, our focus is on embarrassingly parallelizable workload (pattern Fig-
ure 6.3(a)), as this allows for a clearer understanding of the impact of each component
on potential latency gains. For the precise latency analysis, we consider three key compo-
nents: the Planner, the Task Fetching Unit, and the Executor, in Figure 6.2. Assume that
the Planner generates N different tasks to be done. We define P; as the Planner’s output
corresponding to the i-th atomic task. Each P; is a blueprint for a specific atomic task, which
we refer to as F;. The execution of FE; involves a specific function call using the appropriate
tool. The latency function of each unit in the system is defined to quantify the time taken
for specific operations. For the Planner, the latency is denoted as Tp(P;), representing the
time taken by the Planner to generate the plan P;. Similarly, for the Executor, the latency,
Tg(E;), corresponds to the time required to complete the task F;. We ignore the latency of
Task Formulation Unit, as it is negligible in this section. Our focus here is on comparing the
latency models of ReAct [307], and LLMCompiler.

To begin our analysis of ReAct’s latency, we express its total latency as:

" =Y " (TH(P) + Tp(E:)) . (D.1)

i=1

Here, the superscript R refers to ReAct. In the ReAct agent system, the process typically
involves initial thought generation, followed by action generation and the acquisition of
observations through function calls associated with the tool. The creation of both thought
and action are collectively considered as part of generating P;. It is important to note that
while the Planner’s latency is denoted with a superscript (indicating ReAct), the Executor’s
latency does not have such a superscript. This is because the function calling and the tools
execution remain the same between ReAct and LLMCompiler.

For LLMCompiler, where all parallelizable tasks are processed concurrently, the total
latency is determined by the slowest task among these tasks. Hence, the latency model for

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 145

LLMCompiler can be represented as:

ZTP)+ max Tr(Ey). (D.2)

This expression captures the sum of all planning times plus the execution time of the longest
task, reflecting the system’s focus on parallel execution.

Further, if the Planner employs streaming of the dependency graph, the latency model
undergoes a modification and can be expressed as:

ZTC)+ Tp(Ey). (D.3)

It is important to note that 7°¢ < T°. This implies that the streaming mechanism allows
for a more efficient handling of task dependencies, potentially reducing overall latency.

In evaluating the potential speedup achievable with the LLMCompiler framework com-
pared to ReAct, the speedup metric, denoted as 7, is defined as follows:

TR ZZV1 (TE(B) + TE(Ez))

Tc ~ SN TS (P) + maxger, v Te(Ey) (B4

fy:

This ratio represents the comparative efficiency of LLMCompiler over ReAct, considering
both planning and execution latencies.

To estimate the upper bound of this speedup, Ymax, we assume that the executor latency
Tg(E;) is dominant over the planning latency Tp(P;) and all the latencies of executing tasks
remain the same. Under this assumption, the upper bound is calculated as:

N
Yo >ic1 In(E) =N
T maxger, v Tr(Ey) ’

(D.5)

indicating the theoretical maximum speedup, Ymax, i equal to the number of tasks, N.

On the other hand, the lower bound of the speedup, v, is observed when the planning
latency is the predominant factor. Given that the planning latencies of both ReAct and
LLMCompiler are generally similar, the minimum speedup is approximated as:

N

N ~ . .
> T (P)
From these observations, we can conclude that to achieve significant latency gains with

LLMCompiler, it is crucial to (i) reduce the planner overhead and (ii) minimize the occurrence
of stragglers.

“Ymin ~

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING 146
Latency vs. # Parallelizable Tasks
501 —e— ReAct
40 —k— LLMCompiler (Ours) °

Latency (s)
N w
i
[]

\.\

2 3 4 5
Number of Parallelizable Tasks

Figure D.1: Latency on the ParallelQA benchmark grouped by the number of maximum
parallelizable tasks.

Latency versus Number of Parallelizable Tasks

In Figure D.1, we also report a more detailed latency breakdown on ParallelQA where we
show the end-to-end latency as a function of the number of parallel tasks. This is often
referred to as weak-scaling in high-performance computing, where the ideal behavior is to
have a constant latency as the number of tasks is increased. We can see that ReAct’s latency
increases proportionally to the number of tasks, which is expected as it executes the tasks
sequentially. In contrast, the latency of LLMCompiler increases at a much smaller rate, as
it can perform multiple function calls in parallel when possible. The reason the end-to-end
latency increases slightly with LLMCompiler is due to the overhead of the Planner, which
needs to generate plans initially, and which cannot be parallelized. We provide a further
analysis of this in Appendix D.2.

Latency Comparison Between Using and not Using Streamed
Planner

In Table D.1, we present a latency comparison of LLMCompiler with and without the stream-
ing mechanism of the Planner across different benchmarks.

Additional Experiments on the HotpotQA Bridge Benchmark

In our main experiments in Section 6.4, we used the comparison benchmark in HotpotQA
to demonstrate the capability of LLMCompiler in efficiently executing 2-way parallelizable
workloads. The other part of the benchmark, called ‘bridge,” involves sequential tasks such as

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 147

Table D.1: A latency comparison between using and not using streaming in the Planner.
Streaming yields consistent latency improvement across different benchmarks, as it enables
the Task Fetching Unit to start task execution immediately as each task is produced by the
Planner. The impact of streaming is especially notable in the ParallelQA benchmark, where
tool execution times are long enough to effectively hide the Planner’s execution time.

Benchmark | w/o streaming (s) ~w/ streaming (s) | Latency speedup

HotpotQA 4.00 3.95 1.01x
Movie Rec. 5.64 5.47 1.03x
ParallelQA 21.72 16.69 1.30x

Table D.2: Accuracy and latency comparison of LLMCompiler compared to ReAct on the
HotpotQA bridge benchmark. ReAct’ denotes ReAct with additional prompting that mini-
mizes looping and early stopping, similar to Table 6.1.

Method | Accuracy (%) Latency (s)

ReAct 22.7 7.07
ReActt 23.1 6.42
LLMCompiler 26.3 4.70

“What government position was held by the woman who portrayed Corliss Archer in the film
Kiss and Tell?” LLMCompiler is not limited to the comparison benchmark, but it can also be
applied to the bridge benchmark due to its replanning capability: initially, it searches for the
woman who played Corliss Archer in the film Kiss and Tell, and then, through replanning,
searches the government position held by this woman for the example above.

Similar to our experiments with the comparison benchmark, Table D.2 compares
LLMCompiler against ReAct and ReAct with the additional prompt that avoids repetitive
function calling and early stopping (ReAct’) on the bridge benchmark. We observe 4 and
3% accuracy improvement, respectively, which is attributed to ReAct’s repetitive function
invocation — even with the additional prompt (ReAct’), we have still observed 5% of the
examples failing with this issue. Furthermore, such repetitive function call also accounts
for the slightly higher latency of ReAct compared to ours. This experiment demonstrates
that LLMCompiler allows for efficient and accurate function calling for both parallel and
sequential workloads.

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 148

Table D.3: Qualitative comparison between LLMCompiler and other frameworks includ-
ing ReAct [307], TPTU (SA for Sequential Agent and OA for One-step Agent) [224],
ViperGPT [256] and HuggingGPT [237].

Method ‘ Planning Replanning Parallel Execution Domain
ReAct X - X All
TPTU-SA X - X All
TPTU-OA (0] X X All

ViperGPT (0] X X Limited

HuggingGPT (@) X O Limited
LLMCompiler O O Q) All

D.3 Additional Discussions about Related Works

TPTU [224], HuggingGPT [237], and ViperGPT [256] have introduced end-to-end plan-and-
solve frameworks. In this section, we discuss how LLMCompiler distinguishes itself from other
frameworks from various angles, including the capabilities in (i) planning and replanning; (ii)
parallel execution; and (iii) addressing a wider range of problem domains. Refer to Table D.3
for the summary.

Parallel Execution: Parallel execution is a critical feature in the LLMCompiler framework
that allows for efficient function calling and job completion. While the One-step Agent in
TPTU (i.e., TPTU-OA) incorporates planning, it does not enable parallel function calling,
as it only decomposes a user input into a sequence of functions and the associated arguments
without their inter-dependencies. ViperGPT generates Python codes. However, ViperGPT,
by itself, does not support parallel execution without a dedicated parallel processing engine
since the standard Python interpreter lacks support for parallel execution. While Hugging-
GPT enables parallel execution, it strictly targets models in HuggingFace, making it hard
to apply in a wide range of problems and domains that LLMCompiler supports.

Planning and Replanning: The TPTU’s Sequential Agent (i.e., TPTU-SA) is an iterative
framework like ReAct [307] that executes one action per iteration. While TPTU-OA, Hug-
gingGPT, and ViperGPT are all planning-based frameworks that plan out multiple actions
prior to execution, they lack replanning capabilities. LLMCompiler, in contrast, incorporates
the replanning mechanism to generate a new set of tasks when the previous plans are not
sufficient enough to deliver the response back to the user. This enables LLMCompiler to
adapt plans based on intermediate results that are a priori unknown, without the need for
introducing complex branching logic, thereby extending the scope of problems that it can
address.

Problem Domains: ViperGPT and HuggingGPT aim for vision tasks via Python code
generation and models in HuggingFace, respectively, showing significant promise in these
specific areas. In contrast, LLMCompiler targets a general framework that enables efficient

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 149

Table D.4: Accuracy and latency speedup comparison of LLMCompiler compared to ReAct
and TPTU (SA for Sequential Agent and OA for One-step Agent) on the HotpotQA compar-
ison benchmark using gpt-3.5-turbo. ReAct’ and TPTU-SAT denote ReAct and TPTU-SA
with additional prompting that minimizes looping and early stopping, respectively, similar
to Table 6.1.

Method | Accuracy (%) Speedup

ReAct 61.52 -
ReAct! 62.47 1x
TPTU-SA 34.16 -
TPTU-SA' 44.59 1.09x
TPTU-OA 57.50 1.35%
LLMCompiler 62.00 1.51x

and accurate function calling in a wide range of problem domains, rather than restricting
itself to specific fields.

Quantitative Comparison between LLMCompiler and TPTU

Additionally, in Table D.4, we additionally provide accuracy and latency speedup of
LLMCompiler against TPTU-SA and TPTU-OA. Since the official implementation of TPTU
is not available, we implemented TPTU-SA and TPTU-OA based on the prompts provided in
the original paper. As can be seen in the table, the results clearly demonstrate LLMCompiler’s
latency and accuracy benefit over both TPTU-SA and TPTU-OA. Compared with TPTU-
SA, LLMCompiler exhibits a significant accuracy improvement due to TPTU’s prevalent issue
with repetitive function calls. Note that this issue is not fully mitigated even with better
prompting (TPTU-SAT), leading to ~15% of examples failing with repetitive function calls.
Compared with both TPTU-SA and TPTU-OA, LLMCompiler also benefits from reduced
latency through parallel task execution. Overall, the results are consistent with the main
experiments and analysis against other baseline methods (i.e., ReAct and OpenATI’s parallel
function calling).

D.4 User-Supplied Examples for LLMCompiler
Configuration

LLMCompiler provides a simple interface that allows for tailoring the framework to different
use cases by providing tool definitions as well as optional in-context examples for the Planner.
Below, we provide the Planner example prompts that are used to set up the framework for
the Movie Recommendation and Game of 24 benchmarks with only a few lines of prompts.

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 150

Movie Recommendation Example Prompts

Question: Find a movie similar to Mission Impossible, The Silence of
the Lambs, American Beauty, Star Wars Episode IV - A New Hope
Options:

Austin Powers International Man of Mystery

Alesha Popvich and Tugarin the Dragon

In Cold Blood

Rosetta

1. search("Mission Impossible")

2. search("The Silence of the Lambs")

3. search("American Beauty")

4. search("Star Wars Episode IV - A New Hope")

5. search("Austin Powers International Man of Mystery")
6. search("Alesha Popvich and Tugarin the Dragon")
7. search("In Cold Blood")

8. search("Rosetta")

Thought: I can answer the question now.

9. finish()

HAHH

Game of 24 Example Prompts

Question: "1 2 3 4", state_list: [""]
$1 = thought proposer("1 2 3 4", "")
$2 = state_evaluator("1 2 3 4", "$1")

$3 = top k select("1 2 3 4", ["$1"], ["$2"])
$4 = finish()
#it#

Question: "1 2 3 4", state_list: ["1+2=3(left:3 3 4)","2-1=1(left:1 3
4)" "3-1=2(left:2 2 4)","4-1=3(left:2 3 3)","2x1=2(left:2 3 4)"]

$1 = thought proposer("1 2 3 4", "1+2=3(left:3 3 4)")
$2 = thought_proposer("1 2 3 4", "2-1=1(left:1 3 4)")
$3 = thought_proposer ("1 2 3 4", "3-1=2(left:2 2 4)")
$4 = thought_proposer("1 2 3 4", "4-1=3(left:2 3 3)")
$5 = thought_proposer("1 2 3 4", "2x1=2(left:2 3 4)")

$6 = state_evaluator("1 2 3 4", "$1")
$7 = state_evaluator("1 2 3 4", "$2")
$8 = state_evaluator("1 2 3 4", "$3")

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 151

$9 = state_evaluator("1 2 3 4", "$4")
$10 = state_evaluator("1 2 3 4", "$5")

$11 = tOpJ{,SGIGCt(Hl 23 4", [n$1n, ||$2n’ ||$3||, ||$4||, ||$5n]’ ["$6",
||$7||’ "$8", ||$9n, ||$10||])

$12 = finish()

#HHH

D.5 Pre-defined LLMCompiler Planner Prompts

The pre-defined LLMCompiler Planner prompt provides it with specific instructions on how
to break down tasks and generate dependency graphs while ensuring that the associated
syntax is formatted correctly. This prompt contains specific rules such as assigning each
task to a new line, beginning each task with a numerical identifier, and using the $ sign to
denote intermediate variables.

- Each action described above contains input/output types and
descriptions.

- You must strictly adhere to the input and output types for each
action.

- The action descriptions contain the guidelines. You MUST strictly
follow those guidelines when you use the actions.

- Each action in the plan should strictly be one of the above types.
Follow the Python conventions for each action.

- Each action MUST have a unique ID, which is strictly increasing.

- Inputs for actions can either be constants or outputs from preceding
actions. In the latter case, use the format $id to denote the ID of
the previous action whose output will be the input.

- Ensure the plan maximizes parallelizability.

- Only use the provided action types. If a query cannot be addressed
using these, invoke the finish action for the next steps.

- Never explain the plan with comments (e.g. #).

- Never introduce new actions other than the ones provided.

In addition to user-provided functions, the Planner includes a special, hard-coded finish
function. The Planner uses this function either when the plan is sufficient to address the user
query or when it can no longer proceed with planning before executing the current plan, i.e.,
when it deems replanning necessary. When the Planner outputs the finish function, its plan
generation stops. Refer to Appendix D.4 for examples of the Planner’s usage of the finish
function in planning. The definition of the finish function is as below and is included as a
prompt to the Planner along with the definitions of other user-provided functions.

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 152

finish():

- Collects and combines results from prior actions.

- A LLM agent is called upon invoking join to either finalize the user
query or wait until the plans are executed.

- join should always be the last action in the plan, and will be
called in two scenarios:

(a) if the answer can be determined by gathering the outputs from
tasks to generate the final response.

(b) if the answer cannot be determined in the planning phase before
you execute the plans.

D.6 ParallelQA Benchmark Generation

Inspired by the IfQA benchmark [315], our custom benchmark ParallelQA contains 113
examples that are designed to use mathematical questions on factual details of different
entities to answer questions, thus requiring a mix of search and mathematical operations
that are interdependent in various ways. For instance, the benchmark includes examples
like “If Texas and Florida were to merge and become one state, as well as California and
Michigan, what would be the largest population density among these 2 new states?” requires
four parallel search tasks, followed by math tasks dependent on the search outcomes, that
can be executed in parallel.

The main objective of the benchmark is to quantify the framework’s ability to decompose
an input into multiple tasks to derive an answer. Therefore, we have meticulously selected 56
distinct entities across various domains whose attributes can be accessible from Wikipedia
search. By minimizing tool execution (i.e., Wikipedia search) failures, we have aimed our
benchmark to effectively assess the frameworks’ abilities to decompose questions into multiple
tasks, plan them out, and derive final answers based on observations. Furthermore, to
incorporate diverse execution patterns, we crafted various dependency patterns that perform
unary and binary math operations after searching for additional information about entities
in a given question. We have also curated different questions that accommodate different
numbers of maximally parallelizable tasks, ranging from 2 to 5, and we have included varying
numbers of joins between parallel function calls as well to increase problem complexity. For
instance, we have 2 and 3 joins in Figure 6.3 (b) and (c), respectively. The benchmark
contains 113 different examples, that were populated by GPT-4 based on the aforementioned
criteria and labeled by humans afterward.

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR

PARALLEL FUNCTION CALLING 153
Input: 2,4,4,7
r---- %M _____ -
I 4+4-8 7-4=3 7/2=3.5 : Thought Proposer @’
| (left: 2, 7, 8) (left: 2, 3, 4) (left: 3.5, 4, 4) | Inputi2,4,4,7
1 // ossible next steps:
4-2=2 2%3-6 : 4/2=2 : State Evaluator @3
(left: 2, 3) (left: 4, 6) I (left: 2, 3) I e ghven numbers an reach 24
I e e e e e e e = = |
4%6=24
(left: 24)

Figure D.2: Visualization of the Tree of Thoughts (ToT) in the Game of 24. Each node
represents a distinct proposal, beginning with the root node and branching out through the
application of single operations by the thought proposer. Subsequent states are evaluated
by the state evaluator for their potential to reach the target number 24. The ToT retains
the top-5 states according to their values.

D.7 Details of the Game of 24 and the
Tree-of-Thoughts Approach

The Game of 24 is a mathematical reasoning game that challenges players to manipulate
a given set of four numbers, using the basic arithmetic operations of addition, subtraction,
multiplication, and division, to arrive at the number 24. The rule of this game is that the
given numbers must be used only once. For instance, given the numbers 2, 4, 4, and 7, one
possible solution is 4 x (7—4) x 2 = 24. This is a non-trivial reasoning benchmark for LLMs,
highlighted by the fact that even advanced models like GPT-4 exhibit only a 4% success
rate, even when using chain-of-thought prompting [308].

In ToT, the problem is solved in several steps. At each step, the LLM, referred to as the
thought proposer, generates thoughts. Each thought is a partial solution that consists of two
numbers and an arithmetic operation between them. Then, these thoughts are fed into the
state evaluator which assigns a label for each of them. These labels are ‘sure,” ‘likely,” and
‘impossible,” which are given to thoughts to denote how likely they could produce 24 with
additional arithmetic operations between the result and the remaining numbers. Only the
thoughts that are likely to produce 24 continue onto the next step. This process is illustrated
in Figure D.2.

APPENDIX D. EFFICIENCY IN AGENTIC APPLICATIONS: LLM COMPILER FOR
PARALLEL FUNCTION CALLING 154

D.8 Details of WebShop Experiments

WebShop Environment

The WebShop environment simulates an online shopping platform. Tasks are designed for the
agent to find the item that best matches the given instruction. For instance, if the instruction
specifies, “I am looking for a queen-sized bed that is black, and priced lower than 140.00
dollars,” the agent’s task is to pinpoint the bed that precisely fits these criteria: “queen-
sized,” “black,” and “priced under 140.00 dollars.” For each item, there is an associated
reward measuring how well this item matches the instruction based on price, item options,
and other details contained in the item page. The evaluation metrics are the success rate—the
proportion of episodes where the selected product satisfies all requirements—and the average
score—the mean reward across episodes.

Baseline Methods

In addition to ReAct, we use LASER [176] and LATS [334] as baseline methods to compare
against LLMCompiler. LASER [176] solves tasks through a state-exploration approach. In
the context of WebShop, the possible environment pages are encoded as different states (e.g.,
search page, item page, and item detail subpage). Actions are used to transition between
these states, such as executing a search query, selecting an item, checking the item detail,
navigating the next search page and so on. The Webshop exploration is therefore reduced
to a search problem on the given state-space graph.

Using a variant of Monte Carlo Tree Search, LATS [334] plans its actions by constructing
a decision tree, evaluating potential moves based on their likelihood of success, and selecting
actions through a balance of exploration and exploitation. The agent then adapts its strategy
based on feedback from the environment, learning from both successes and failures to refine
its decision-making process. This iterative approach allows LATS to navigate complex online
shopping tasks, albeit much more slowly due to its exhaustive tree search.

	Contents
	List of Figures
	List of Tables
	Introduction
	Compute Optimization: Integer-only Transformer Quantization
	Introduction
	Methodology
	Results
	Related Work
	Conclusions

	Memory Optimization: Dense-and-Sparse Quantization for Large Language Models
	Introduction
	Memory Wall
	Methodology
	Evaluations
	Related Work
	Conclusion

	Efficient Inference Method: Speculative Decoding with Big Little Decoder
	Introduction
	Methodology
	Evaluations
	Related Work
	Conclusion

	Efficient Model Architecture: Efficient Transformer for Automatic Speech Recognition
	Introduction
	Architecture Design
	Results
	Related Work
	Conclusions

	Efficiency in Agentic Applications: LLM Compiler for Parallel Function Calling
	Introduction
	Methodology
	LLMCompiler Details
	Results
	Discussion
	Related Work
	Conclusions

	Conclusion
	Review
	Impact of Our Work
	Future Directions

	Bibliography
	Compute Optimization: Integer-only Transformer Quantization
	Quantization Methods
	Error Term of Equation 2.3
	Experimental Details

	Memory Optimization: Dense-and-Sparse Quantization for Large Language Models
	Data Skew in Per-channel Sparsity Pattern
	Ablation Studies
	Quantization Cost Analysis
	Comparison with Other Weight-only Quantization Methods
	Additional Hardware Profiling Results
	Additional Experiment Results
	Limitations

	Efficient Inference Method: Speculative Decoding with Big Little Decoder
	Experimental Details
	Details of Early Exiting Strategy in the BiLD Framework
	Comparison with Other Speculative Decoding Frameworks
	BiLD with Sampling
	Additional Analysis

	Efficiency in Agentic Applications: LLM Compiler for Parallel Function Calling
	Experimental Details
	Analysis
	Additional Discussions about Related Works
	User-Supplied Examples for LLMCompiler Configuration
	Pre-defined LLMCompiler Planner Prompts
	ParallelQA Benchmark Generation
	Details of the Game of 24 and the Tree-of-Thoughts Approach
	Details of WebShop Experiments

