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RESEARCH Open Access

Improving program targeting to combat
early-life mortality by identifying high-risk
births: an application to India
Antonio P. Ramos1*, Robert E. Weiss1 and Jody S. Heymann2

Abstract

Background: It is widely recognized that there are multiple risk factors for early-life mortality. In practice most
interventions to curb early-life mortality target births based on a single risk factor, such as poverty. However, most
premature deaths are not from the targeted group. Thus interventions target many births that are at not at high
risk and miss many births at high risk.

Methods: Using data from the second wave of Demographic and Health Surveys from India and a hierarchical
Bayesian model, we estimate infant mortality risk for 73.320 infants in India as a function of 4 risk factors. We show
how this information can be used to improve program targeting. We compare our novel approach against
common programs that target groups based on a single risk factor.

Results: A conventional approach that targets mothers in the lowest quintile of income correctly identifies only
30% of infant deaths. By contrast, using four risk factors simultaneously we identify a group of births of the same
size that includes 57% of all deaths. Using the 2012 census to translate these percentages into numbers, there were
25.642.200 births in 2012 and 4.4% died before the age of one. Our approach correctly identifies 643.106 of 1.128.
257 infant deaths while poverty only identifies 338.477 infant deaths.

Conclusion: Our approach considerably improves program targeting by identifying more infant deaths than the
usual approach that targets births based on a single risk factor. This leads to more efficient program targeting. This
is particularly useful in developing countries, where resources are lacking and needs are high.

Keywords: Early-life mortality, Program targeting, Risk factors, Bayesian hierarchical model

Background
Inequality in early-life mortality (ELM) is a funda-
mental dimension of social inequality. For example,
the Millennium Development Goals (MDG) include
reduction in ELM among its goals [1, 2]. For the 195
countries with available data, 68% failed to achieve
the reductions in ELM established by Goal 4 by 2015
[3, 4]. Earlier studies have suggested that the MDG
would be difficult to achieve precisely because of high
levels of inequality in ELM that plague many coun-
tries [5–7].

Within countries, inequality in ELM is usually de-
fined in terms of differences in average mortality across
different levels of a single risk factor. For example, dis-
parities have been documented across income groups,
race and ethnic groups and place of residency [8–13].
Current ELM health policies often target births based
on a single risk factor, most commonly poverty, for
simplicity and because infants in poor households have
higher average mortality rates compared to infants in
richer households [6, 8, 14–18]. Essentially, this ap-
proach uses membership in a group defined by a single
risk factor as a proxy for being a birth at a higher risk
of premature death.
The most common interventions that target births based

on poverty are perhaps Cash Transfer Programs (CTP),
now widely implemented in many low- and middle-income
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countries [19–21]. However, there are many other types of
child health interventions that target births from poor fam-
ilies [22–24]. While births from the poorest families have
higher mortality rates than other births, targeting births
based solely on poverty – or based on any other risk factor
– ignores within-group heterogeneity, where births from
the same group may have very different mortality risks
[5, 25–27]. Targeting groups that are highly heteroge-
neous in mortality risk is inefficient for program target-
ing because it allocates resources to lower-risk births
not in need of program resources. In particular, groups
with highest average mortality are not exclusively popu-
lated by high-risk births, and high-risk births exist in
other groups despite lower average mortality. As an ex-
ample, our own calculation using data from the Demo-
graphic and Health Surveys for 50 countries from 1970
to 2005 shows that the poorest 20% in each country
only contains 30% of all infant deaths from that period.
We develop methodology that improves program target-

ing by simultaneously combining information from several
risk factors. We also set out allocation rules to guide pro-
gram targeting. We illustrate our approach with a statis-
tical analysis of data from India. We include risk factors
identified in the literature that are potentially available for
policymakers in other high-mortality and low-resource
settings [28, 29]. Further, we purposely have chosen only a
few risk factors to demonstrate the power of our approach
even when limited information is available, and to facilitate
actual policy interventions as several risk factors can make
targeting more complex. Our objective is to elucidate
methods useful for policymakers who will design policy in-
terventions in high-mortality and low-resource settings.

Methods
Data source
We analyze data on 73,320 births from the second wave
of the National Family Health Surveys (NFHS) in India,
also known as the Demography and Health Surveys
(DHS), (https://dhsprogram.com/). This is a nationally
representative survey, conducted in 1998–1999, and the
last wave in which participants’ district level was re-
ported. Because geographic location is an important risk
factor, we use this wave rather than the most recent to
illustrate our methodology. We use infant mortality as
our outcome and analyze the last five years of births.
In our statistical model we use districts (436), which

are the districts in which the infant was born; wealth
quintiles (five categories) of the household in which the
mother lived at the time of the survey; maternal educa-
tion (four categories), which is the highest attained level
of education of the mother at the time of the interview;
and the age of the mother at the birth of the infant.
Table 1 summarizes the data.

Statistical analysis
Our analysis is a two-step procedure. As mortality risk is a
latent variable, we estimate it for each birth in our data
using a statistical model. Second, we classify births into
small sub-groups to identify groups for program targeting.
We use a Bayesian hierarchical model to predict mortality

risk for each birth. The outcome Yi is whether the fifth birth
survived to the age of 1 or not. The model predicts i, the
underlying mortality risk for birth i. We include as predic-
tors the main effects for maternal age, maternal education,
household wealth, and district and all two-, three-, and
four-way interactions. The main effects and interactions in
the regression model are modeled as either fixed or random
effects. If a particular effect, either main or interaction, has
more than 20 unique levels, we include it as random effect.
For example, the main effect of district and the 3-way inter-
action of age x education x wealth are modeled as random
effects. Otherwise, the effects are treated as fixed effects.
For random effects, we estimate the prior variance of the
random effects. For the fixed effect, we take its prior vari-
ance x a known value. We use R and the package
MCMCglmm to t our statistical models [30, 31].
After estimating mortality risk, we cross-classify births

into small subgroups by geographical location and risk fac-
tors. We rank subgroups by average mortality risk, from
highest to the lowest mortality risk. The conventional ap-
proach targets infants in the lowest wealth quintile, which
comprises 20% of the births. Thus, to construct a compar-
able intervention group with our method, we allocate sub-
groups, starting with the highest mortality subgroups, until
the total percentage adds up to 20% of all births. We con-
sider three scenarios: 1) district: policymakers are allowed

Table 1 Summary statistics for the births in our data set

Risk factor Number of births

Maternal age

< 18 9391

19–35 60,201

> 35 3728

Wealth index

Lowest quintile 14,951

Second quintile 14,492

Middle quintile 15,159

Fourth quintile 15,753

Highest quintile 12,965

Maternal education

No education 40,341

Primary 11,941

Secondary 15,808

Higher 5230

Sample size is 73,320. The number of districts is 436

Ramos et al. Population Health Metrics  (2018) 16:15 Page 2 of 7

https://dhsprogram.com/


to flexibly target different subpopulations in each district;
2) state: target subpopulations can vary by state but all dis-
tricts within the same state must target the same groups;
3) national: the same groups must be targeted for the entire
country. District is the preferred scenario as it allows great-
est flexibility in program targeting. However, we also
consider state and national scenarios to illustrate the use-
fulness of our approach even when policy is subject to con-
straints. Details of our allocation mechanism can be found
in the Additional file 1.

Results
We evaluate first how much variation in mortality risk
exists within and between groups defined by levels of
single risk factors. Figure 1 on the right displays dot
plots of estimated infant mortality risk by risk factors:
maternal education, wealth, and maternal age. Districts
is a box plot on the left.
Lower income quintiles have higher average mortality

risk than the wealthier quantiles. The average risk for
the poorest quintile is 8%. However, 15% of all births in
other richer quintiles have mortality risk higher than the
average risk for the poorest quintile. Maternal education
categories exhibit substantial overlap in mortality risk.
Average mortality risk for births from women with no
education is 6%. However, 27% of infants of mothers
from the other educational categories have mortality risk
higher than 6%. On the left of Fig. 1, we use a dot plot

to display mortality risk by district. Each horizontal line
represents a district, and districts are ordered by median
risk within district. For each district, the solid line shows
the interquartile range of mortality risk, extending from
the 25th percentile to the 75th percentile. District me-
dian levels of mortality risk range from nearly zero up to
15%. Generally, districts with lower median mortality
risk also have lower within-district variation. Within dis-
tricts, the width of the interquartile range varies from
zero up to 10% for districts with wide variation in mor-
tality risk. Thus, districts vary greatly in their level of in-
equality. Overall, these results suggest that groups
defined by levels of a single risk factor have large vari-
ability in mortality risk and this makes program target-
ing based on a single risk factor inefficient.
Table 2 compares the traditional single risk factor program

targeting approach to our approach. Using poverty (lowest
wealth quintile) as a risk factor to predict mortality, the trad-
itional approach correctly identifies 30% of all deaths. How-
ever, our multifactor approach correctly identifies 57%
(district), 40% (state) and 38% (national) of all deaths.
Figure 2 illustrates the efficiency gains from our multi-

factor approach against the conventional approach by
looking at the data at the district level. Each point in a
dot plot is a district, where the y-axis represents the ac-
tual proportion of deaths in that district and the x-axis
represents the estimated proportion of high-risk births
by districts, for each approach. In the left graph, the
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Fig. 1 Distribution of estimated infant mortality risk in India, 1993-1998, by categories of risk factor. The three graphs on the right are box plots for,
from top to bottom, wealth quintiles, four levels of maternal education, and three categories of maternal age. On the left panel is a plot of the range
of the estimated infant mortality risk by district, where districts are ordered by median mortality risk and the horizontal lines extend from the 25% to
the 75% of the distribution. These figures show considerable variation in mortality risk in groups defined by levels of a single risk factor
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relationship is weak between infant mortality rates by dis-
trict and the proportion of deaths in the lowest wealth
quintile. By contrast, the estimated mortality risk by dis-
trict from our statistical model predicts actual deaths at
the district level much more precisely. The maps in Fig. 3
contrast poverty (births from the poorest 20% of mothers)
and the 20% of highest-risk infants based on our statistical
model and infant mortality, all by district.

Discussion
Our results show that poverty alone is an inefficient guide
for program targeting. In contrast, combining information
from multiple risk factors significantly improves program
targeting efficiency. This is an important finding because
program targeting usually uses information from a single
risk factor, such as poverty or maternal education, to define
the targets [8, 14, 32]. The typical assumption is that be-
cause a given group has the highest average mortality risk,
most births with high mortality risk belong to that group.
However, we have shown that (1) not all births from the
highest risk group are at higher mortality risk, and (2)
high-risk births also exist in significant numbers across
other groups. In agreement with previous literature,

geographic location is a particularly important predictor for
India, and the relative importance of each risk factor and
their interactions varies across districts [28, 29]. Thus,
allowing geographic flexibility in designing program inter-
ventions can greatly improve policymakers’ ability to target.
Although we used data from India in 1998, we believe

our findings are directly applicable to other high-mortality,
low-resource settings. First, ELM conditions in India in
1998 are similar to that of many developing countries
today. For example, infant mortality rate in 1988 in India
was 65 deaths per thousand births, which is lower than
2016 figures for countries like Sierra Leone (83 deaths per
thousand births), Central Africa Republic (90 deaths per
thousand births), Democratic Republic of Congo (72
deaths per thousand births), Somalia (83 deaths per thou-
sand births), and many other countries. In addition, using
data from 100 DHS surveys from 50 lower-middle income
countries (LMICs) from 1970 to 2010, we find that the dis-
tribution of ELM across the spectrum of income is similar
to that in India. Births from the 20% poorest families ac-
count for approximately 30% of all deaths, while roughly
70% of all infant deaths occur outside the 20% poorest
families. Thus, it seems that targeting based only on in-
come in most LMICs will generate program targeting inef-
ficiencies that our methodology can improve upon. The
relative importance of different risk factors and the nu-
ances of program targeting are different in different coun-
tries, but these differences can be accommodated within
our methodology.
Second, many interventions in global health target the

poor. The most common interventions are perhaps Cash
Transfer Programs (CTP), currently widely implemented
in many LMICs. Many of these programs also intervene

Table 2 Classi_cation rates comparing statistical approaches
against the convetional approach that target poverty (lowest
quintile)

Target group % of correctly classified deaths

Poorest quintile 30%

District 57%

State 40%

National 38%
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Fig. 2 District level comparisons: comparing the fraction of high risk births with infant mortality rates by district. In both panels, district mor- tality
rates are plotted on the y-axis. In the left panel the x-axis is the proportion of births from poor families, those in the lowest wealth quintile. In the
right panel the x-axis is the fraction of high risk births (20% highest risk births) identified by our model. Our estimates based on the statistical
model match more closely the actual mortality rates than using the lowest quintile as a proxy for mortality risk
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in infant and child health [19, 20]. For example, in Burkina
Faso, families enrolled in conditional cash transfer
schemes were required to obtain quarterly child growth
monitoring at local health clinics for all children under
60 months of age [21]. The famous randomized controlled
trial (RCT) “Lentils for Vaccines” in India targeted the
poor, as do most RCTs that aim to increase vaccine up-
take, good nutrition, or general child health [22]. Many
anti-poverty programs target child health, such as in Peru
[23]. Finally, it is often recommended that poor births
should be the target of global health interventions [24].
It is important to stress that our approach is not a cri-

tique of programs that target the poor, as we believe that
the poor are targeted for good reasons. However, we also
believe that our approach can increase program effi-
ciency in high-mortality, low-resource settings.
Finally, even if a given program already targets births

based on multiple risk factors (e.g. poor families from
rural areas) our approach can still be useful in increasing
program efficiency. This is the case because our ap-
proach allows policymakers to combine multiple risk
factors simultaneously to estimate mortality risk more
accurately. Using our approach, policymakers do not
need to decide ex-ante which factors define higher-risk
groups. Instead, policymakers can use our approach to
let the data decide which demographics have higher
mortality risk to guide their targeting decisions.
In this paper we explore the role of a few risk factors

in predicting early mortality, which were purposely
chosen to produce implementable policy recommenda-
tions. However, there are a number of other variables
that have been linked to ELM, such as sanitation, water
supply, birth spacing, and so on. These data are rou-
tinely collected by health surveys and governments.

Future studies should explore these factors to establish
which ones are most useful in improving program tar-
geting. Flexible statistical models including Bayesian
semi-parametric and machine learning models can han-
dle a large number of risk factors and interactions,
allowing us to investigate numerous risk factors simul-
taneously [33, 34]. These statistical methods have proven
useful in many contexts where predicting a rare event
was a key scientific objective. However, the challenge
with more data and more complex models is to make
clear policy recommendations.
Finally, our approach can be applied to other health out-

comes. For example, maternal mortality is closely related
to ELM and is a major health problem in LMICs, where
more than 289,000 women die during pregnancy and
childbirth from preventable causes every year [35, 36].
Among the 122 million women who have a live birth an-
nually, 10% suffer complications and disability. Developing
countries account for 99% of global maternal deaths, the
majority of which are in sub-Saharan Africa and southern
Asia. Programs usually target mothers based on a single
or a few risk factors [35]. Our methodology adapts natur-
ally to improve program targeting by exploring combina-
tions of risk factors for maternal mortality and health.
In this paper we illustrate the usefulness of our ap-

proach using data from India. To actually implement pol-
icies in India or any other country, policymakers need
data that are representative of the target population. Thus,
the actual implementation of our methods are limited by
current or future data collection. A second limitation is
related to making practical policy recommendations from
more complex statistical models that use additional risk
factors simultaneously. These models can potentially iden-
tify mortality risk more accurately than those that use

Fig. 3 Maps contrasting high risk births by districts: births from the poorest 20 % families, from the 20% higher risk from our statistical model,
and actual infant mortality rates
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fewer risk factors. However, policy recommendations from
these models may not necessarily be feasible for policy-
makers to implement. Policymakers might not be allowed
to target certain demographic groups due to political, cul-
tural, or historical reasons, even if they are at higher risk
of mortality. Moreover, targeting certain groups can be
difficult for logistical reasons. For example, if high-risk
births are geographically spread out in such a way that
each location has only few high-risk births, it may be
costly for policymakers to target births under these
circumstances.

Conclusion
We propose new program targeting methodology that
uses information from multiple risk factors simultan-
eously and a statistical model to better define the target
high-risk population. We use India to illustrate our ap-
proach, showing that it leads to significant improve-
ments in program targeting over the conventional
targeting approach that equates high-risk with the worst
level of a single risk factor. We estimate the unobserved
mortality risk for each infant in our data, and, using
these estimates, we show that the distribution of the
mortality risk is highly variable across groups defined by
a single factor. This suggests that groups defined by a
single risk factor are very heterogeneous in terms of
mortality risk, which leads to inefficient targeting. We
contrast our approach with the conventional approach
to more efficiently identify infant deaths. We compare
the 20% poorest births with the 20% highest risk infants.
Using poverty as a single risk factor correctly identifies
30% of deaths, while our statistical model correctly iden-
tifies 57%. Using India data from 2010 to translate these
percentages into numbers, the statistical models cor-
rectly identify 506,409 more deaths than the conven-
tional approach.
This study supports the view that monitoring inequality

in ELM across births is useful for policy purposes, answer-
ing initial skepticism [16, 25, 37]. Our study suggests that
looking at national averages is not enough to achieve
progress in early-life mortality [5, 7, 25, 38]. Our method-
ology can be used by policymakers in high-mortality,
low-resource settings to improve program intervention
and thus help countries to reduce inequality in ELM and
meet the Sustainable Development Goals.
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