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Abstract

Whether maternal obesity and gestational weight gain (GWG) are associated with early-childhood 

development in low-income, urban, minority populations, and whether effects differ by child sex 

remain unknown. This study examined the impact of prepregnancy BMI and GWG on early 

childhood neurodevelopment in the Columbia Center for Children’s Environmental Health 

(CCCEH) Mothers and Newborns study. Maternal prepregnancy weight was obtained by self-

report and GWG was assessed from participant medical charts. At child age three years, the 

Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley 

Scales of Infant Intelligence (BSID-II) were completed. Sex-stratified linear regression models 

assessed associations between prepregnancy BMI and pregnancy weight gain z-scores with child 

PDI and MDI scores, adjusting for covariates. Of 382 women, 48.2% were normal weight before 

pregnancy, 24.1% overweight, 23.0% obese, and 4.7% underweight. At three years, mean scores 

on the PDI and MDI were higher among girls compared to boys [PDI: 102.3 vs. 97.2, p=0.0002; 

MDI: 92.8 vs. 88.3, p=0.0001]. In covariate adjusted models, maternal obesity was markedly 
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associated with lower PDI scores in boys [b= −7.81, 95% CI: (−13.08, −2.55), p=0.004], but not 

girls. Maternal BMI was not associated with MDI in girls or boys, and GWG was not associated 

with PDI or MDI among either sex (all-p>0.05). We found that prepregnancy obesity was 

associated with lower PDI scores at three years in boys, but not girls. The mechanisms underlying 

this sex-specific association remain unclear, but due to elevated obesity exposure in urban 

populations, further investigation is warranted.
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pregnancy; maternal obesity; gestational weight gain; child development

INTRODUCTION

In the United States, nearly two-thirds of women of reproductive age are affected by 

overweight or obesity1–3 and a majority of women gain excessive weight during pregnancy.
4–7 Maternal obesity and excessive gestational weight gain (GWG) disproportionately affect 

inner-city children and may detrimentally impact child development.8–12 Early cognitive 

development determines, in part, a child’s ability to learn and adapt, and higher childhood 

IQ scores are associated with higher adult IQ scores, education level, professional success, 

and earning potential.13,14 The prevalence of developmental disabilities has risen in the 

United States, affecting 15% of children 3 to 17 years old, and disproportionately affects 

low-income, urban, and minority children.15,16 Given that the brain primarily develops in 

utero and during early infancy, nutritional status and early life exposures are critical during 

this period.

Evidence suggests that maternal prepregnancy adiposity may be associated with reduced 

cognitive development and later cognition in children.11,12,17–22 Additionally, pregnancy 

weight gain may be independently linked to developmental outcomes. Recent data show 

that, from six to 16 years, children of women with excessive GWG may experience negative 

long-term outcomes, including reduced academic achievement and deficits in executive 

function – a composite indicator of general cognition, social acuity, and behavioral control.
23–25 Although the precise etiology is unknown, inflammatory and hormonal mechanisms 

accompanying excess adipose tissue may adversely alter the placental environment leading 

to increased fetal brain inflammation and impaired neural circuitry related to behavior and 

mental health.26–28

Developmental milestones may be affected in a sex-specific manner by a deleterious 

environment in utero. Prenatal exposure to environmental stressors, such as economic 

hardship and environmental toxicants, alters normal fetal growth and neurocognitive 

function.16,29 Responses to these exposures differ between boys and girls, as do growth, 

cognition, and behavior.16,30 Male sex is an independent risk factor for adverse pregnancy 

outcomes and more males experience delayed growth and death during the perinatal period.
31,32 Boys grow at an accelerated rate from conception, such that they are more vulnerable to 

compromised nutrition status or uterine environment.33–37 But, boys experience a slower 

rate of cortical development38,39 that may increase susceptibility to detrimental prenatal 
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exposures, such as inflammation associated with maternal adiposity or environmental 

stressors. Interestingly, a nurturing home environment may remediate adverse effects of 

these exposures on child neurodevelopment;29,30 previously in our cohort we observed sex-

specific associations of the home environment on child development.30 It remains unclear if 

sex-specific differences in neurodevelopment vary by maternal BMI and GWG, and whether 

a nurturing home environment mitigates these effects.

Sex-specific effects from prenatal exposures may be attributable to the divergent 

developmental trajectories of boys and girls.35,36 Neurodevelopment related to maternal 

weight-related factors and child sex has not been examined in a low-income, urban 

population during early childhood. Therefore, we investigated how prepregnancy BMI and 

GWG influence neurodevelopment at child age three in the Columbia Center for Children’s 

Environmental Health (CCCEH) Mothers and Newborns Study. We hypothesized that 

greater prepregnancy BMI, specifically maternal overweight and obesity, and GWG were 

negatively associated with child neurodevelopment at age three, differing by child sex.

METHODS

Design

The design of the Columbia Center for Children’s Environmental Health prospective 

Mothers and Newborns cohort based in Northern Manhattan and South Bronx in New York 

City has been previously reported.40,41 The study was originally designed to evaluate effects 

of prenatal exposure to adverse environmental pollutants on offspring health. Pregnant 

women between the ages of 18-35 years attending prenatal visits at New York Presbyterian 

Medical Center, Harlem Hospital, or a satellite clinic by the 20th week of pregnancy and 

who lived in the area for a minimum of one year were recruited between 1998 and 2006. 

Women were excluded if they had positive HIV status, pre-existing diabetes or hypertension, 

or tobacco or drug use. Although not explicitly measured, women with gestational diabetes 

were likely excluded from the original cohort, since this screening would have occurred 

prior to study enrollment (average prenatal study visit 33.2 weeks gestation).

Prenatal interviews during the second or third trimester were administered by bilingual 

trained interviewers to assess basic demographic, health, lifestyle, lifetime residential, and 

environmental information. At this visit, weight and height prior to the beginning of this 

pregnancy were obtained by self-report and used to calculate prepregnancy BMI. After birth, 

medical charts were abstracted to evaluate prenatal medical history, including total 

pregnancy weight gain, gestational age at delivery, and birthweight. Gestational weight gain 

z-scores that allow total gestational weight gain to be classified as a standardized z-score 

independent of gestational duration, were calculated according to the methods developed by 

Hutcheon et al.42,43 Exposure to environmental pollutant chlorpyrifos (CPF), an 

organophosphate insecticide, was assessed in maternal blood within 24 hours postpartum 

using isotope-dilution gas chromatography-high-resolution mass spectrometry previously 

described.44 DNA adducts of polycyclic aromatic hydrocarbons (PAH), cigarette smoke and 

traffic-related combustion pollutants, were analyzed in extracted white blood cell DNA 

using a high performance chromatography fluorescence method.45 At follow-up visits, 

maternal report of breastfeeding duration was collected at 3, 6, 9, and 12 months.
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At child age three years, trained bilingual research assistants administered the Psychomotor 

Development Index (PDI) and Mental Development Index (MDI)46 of the Bayley Scales of 

Infant Development 2nd Edition (BSID-II). The BSID-II, developed and validated for 

children aged one to 42 months,47,48 is sensitive to effects of toxicants (e.g. lead) on 

development and moderately predicts intelligence and later school performance from scores 

at age three years.47,49–51 Maternal nonverbal intelligence was measured via the Test of 

Non-Verbal Intelligence-Third Edition (TONI-3).52 The nature and quality of the home 

environment were measured by Bradley and Caldwell’s Home Observation for Measurement 

of the Environment (HOME), a tool commonly used in neurotoxicity studies, administered 

in the participant homes.51,53,54

This study was approved by the Institutional Review Board at Columbia University. 

Informed consent was obtained from all participating mothers.

Statistical Analyses

All analyses were conducted using Stata (version 14.2, Stata Corp., College Station, TX, 

USA) with an alpha of 0.05 for statistical tests. A complete case analysis was conducted. In 

order to be included in the primary analytic sample, women required exposure, outcome, and 

covariate data. Descriptive statistics were used to compare exposures, outcomes, and 

covariates by sex.

Multivariable linear regression models estimated associations between maternal-weight 

related exposures with child MDI and PDI scores. Primary exposures were prepregnancy 

BMI category (underweight <18.5 kg/m2, normal weight 18.5-24.9 kg/m2, overweight 

25.0-29.9, obesity ≥30 kg/m2) and gestational-age standardized weight gain (GWG z-score).
42,43 Effect modification was examined by including interaction terms between 

prepregnancy BMI with sex and GWG. We used an alpha <0.1 to account for the lower 

power associated with detecting interaction effects,6,8,55,57 although 0.1 is more conservative 

than 0.15 used in similar studies.8,56,57 Based on previous literature, potential confounders 

included maternal IQ, ethnicity, prenatal smoke exposure, marital or cohabitation (>7 years) 

status, maternal demoralization score,58 use of public assistance, education status, and age at 

BSID-II. The primary model covariates included maternal IQ, ethnicity, tobacco exposure, 

marital/cohabitation status, and age at BSID-II testing. To assess potential confounding by 

total HOME score, this continuous variable was added to the primary model and results 

were examined for beta coefficient change. We also assessed for any bias on outcomes if 

HOME examination occurred after the BSID-II assessment.

We conducted separate sensitivity analyses to assess whether environmental toxicant 

exposures, route of delivery (cesarean section), birthweight, gestational age at delivery, 

breastfeeding initiation, or breastfeeding duration confounded associations by evaluating 

change in effect size for prepregnancy BMI category or GWG z-score of ≥10%. 

Inconsistences in prenatal comorbidity abstraction and child anthropometric measurement 

practices at the three year study visit precluded examination of effects from preeclampsia or 

child body size on associations. Due to small cell counts (n≤5) in some of our prepregnancy 

BMI groups with high toxicant values, we were unable to evaluate effect modification 

between prepregnancy BMI and GWG with PAH or CPF.
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Finally, we used inverse probability weighting to evaluate whether associations were 

affected by attrition or incomplete follow-up at three years, as previously described in this 

cohort.6,59,60 This method estimates and corrects for bias due to missing data by applying 

more weight to returning participants with characteristics similar to baseline characteristics 

in nonreturning participants. Logistic regression models predicted probability of follow-up 

at age three compared to baseline data and included BMI, GWG z-score, gestational age, 

parity, ethnicity, child sex, maternal age, economic hardship, and public assistance status. 

The inverse probability of follow-up was applied as a sampling weight in the primary linear 

models between maternal weight characteristics and child developmental outcomes at three 

years.

RESULTS

Complete data on maternal weight and pertinent covariates were available for 154 African 

American and 228 Dominican dyads (total n=382, Fig. 1). Descriptive characteristics were 

similar between the original cohort (n=727) and dyads in the analytic sample (n=382); 

however, in the analytic sample the proportion of African American mothers was higher 

(40.3%) compared to the original cohort (29.0%) and Dominican mothers was lower 

(59.7%) compared to the original cohort (71.0%). Baseline descriptive characteristics and 

child measures by sex are listed in Table 1. Maternal characteristics did not differ by child 

sex. Based on total gestational weight gain, 13.4% of women in our sample were below, 

23.3% were within, and 63.4% were above the 2009 Institute of Medicine weight gain 

recommendations for respective BMI categories.61 The majority of mothers entering 

pregnancy overweight (77.2%) or with obesity (71.6%) gained weight above these 

recommendations.

At three years among all children, unadjusted mean PDI and MDI scores did not vary by 

maternal prepregnancy BMI category [PDI: F(3,378)=1.53, p=0.21; MDI: (F(3,378)=1.30, 

p=0.27)]. However, unadjusted mean scores were higher among girls compared to boys on 

both PDI (102.3 ± 12.0 vs. 97.2 ± 14.5, p<0.001) and MDI (92.8 ± 10.9 vs. 88.3 ± 12.0, 

p<0.001) (Fig. 2). In adjusted models among all children (n=382), prepregnancy obesity 

(BMI ≥30 kg/m2) was associated with a 3.8-point lower PDI score at child age three 

(p=0.027) compared to women with prepregnancy normal weight; however, we found no 

relationship between prepregnancy overweight or underweight and child PDI scores. 

Further, we observed no associations between GWG z-score and PDI (b= −0.31, p=0.63) or 

MDI (b= −0.58, p=0.29).

Effect modification by sex was examined by including interaction terms between sex and 1) 

prepregnancy BMI category or 2) GWG z-score. For prepregnancy BMI category, we found 

effect modification for both PDI and MDI using an alpha <0.1.6,8,55 Specifically, the 

categorical interaction term p-values were 0.08 and 0.05 respectively for prepregnancy 

overweight and obesity for PDI, and 0.05 among prepregnancy normal weight for MDI. No 

interaction was found between GWG z-score and sex (all interaction p-values >0.1). 

Therefore, we sex-stratified all subsequent multivariable models but included z-score as a 

covariate. In multivariable models for boys, compared to women with normal prepregnancy 

BMI, maternal obesity was associated with lower PDI scores with an effect size of almost 8 
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points (Table 2; Fig. 3). Prepregnancy BMI was not associated with MDI scores for boys or 

girls (Fig. 4), and further, GWG z-scores were not associated with MDI or PDI scores (all 

p>0.05) in sex-stratified models (Table 2). Inverse probability weighting (IPW) was utilized 

to assess for effects of incomplete follow-up on our sex-stratified model results. After 

applying IPW for successful follow-up at age three, we found that the results were 

essentially the same or negligibly different from primary models (data not shown).

In our analyses with the addition of HOME score to the primary sex-stratified models, we 

found that PDI beta coefficient for girls and MDI beta coefficients for boys and girls were 

essentially unchanged (data not shown). However, the addition of the HOME variable to the 

model attenuated the adverse effects of obesity on the PDI beta coefficient for boys of obese 

women from −8.8 points (p=0.001) to −7.8 points (p=0.004, ~12% change).

Over the course of the study, some children had the HOME assessment before (n=206, 

53.9%) or after (n=176, 47.3%) the three year BSID-II visit. As such, we completed a 

sensitivity analysis removing children with HOME assessment conducted after the BSID-II 

visit from the primary sex-stratified models, and found that overall results were essentially 

unchanged. For example, for PDI among boys with HOME assessment before the three year 

BSID-II (n=96), the maternal obesity beta coefficient changed from −7.8 points in the 

primary sample to a −7.4 (p=0.04) in the smaller sample. In this subsample, a positive 

association between GWG z-score and child PDI was observed (b= 3.7, p=0.033).

In separate sensitivity analyses, we added adjustments to the primary sex-stratified 

multivariate models for birthweight, gestational age at delivery, if an infant ever breastfed, 

duration of breastfeeding to one year, route of delivery (cesarean section), and prenatal CPF 

or PAH exposure to examine for potential confounding between these factors and maternal 

weight-related exposures. We did not observe confounding (β change <10%) on the 

relationship between maternal weight-related exposures and child PDI or MDI scores by 

most of these factors (data not shown); however, in our models with PDI outcome in boys, 

inclusion of both birthweight and gestational age in a subset of participants (n=167) 

strengthened estimated associations between boys’ PDI scores and maternal prepregnancy 

obesity category (b= −9.1, p=0.001, 15.6% change from primary model).

DISCUSSION

We found evidence for sex-specific associations between child psychomotor development at 

age three and maternal prepregnancy BMI, but not gestational weight gain. In covariate 

adjusted models in all children, maternal obesity was associated with a decrease in 

psychomotor development, while maternal weight-related measures were not associated with 

child mental development index scores.

Our study is the first to examine the effects of maternal BMI on neurodevelopmental 

differences between sexes or in urban, minority, low-income children in early life. Due to 

previously reported sex-specific effects of adverse prenatal exposures during later childhood,
30 we evaluated for and observed effect modification by child sex. In our primary models, a 

7.8-point deficit in psychomotor development was seen in boys, but not girls, indicating that 
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the relationship between maternal obesity and PDI scores in the overall sample was driven 

by the strong association between maternal obesity and boys’ development. Beyond our 

primary models, we conducted several sensitivity analyses that were mostly consistent with 

our primary findings. However, we found that additional adjustment for birthweight and 

gestational age at delivery in a subset of participants strengthened the primary effect in boys 

by >10%, suggesting positive confounding by these factors.62 Though inclusion of the 

HOME score slightly mediated the primary effect, an 8-unit lower score is striking and may 

have public health implications for boys’ long-term achievement and wellbeing at the 

individual and population level. Indeed, ongoing examination of children in this cohort at 

age 7 using the Wechsler Intelligence Scale for Children IV revealed a continuance of this 

sex-specific neurodevelopmental deficit (Widen et al., unpublished data). Maternal obesity 

and overweight were associated with lower full-scale intelligence quotient, perceptual 

reasoning, processing speed (overweight only), and verbal comprehension (obesity only) 

scores in boys, but not girls (Widen et al., unpublished data).

Epidemiologic evidence suggests maternal obesity is associated with increased odds of 

offspring cognitive deficits or developmental delays.8,11,19,63,64 Maternal obesity and 

excessive gestational weight gain are both associated with autism spectrum disorder,64–66 

but studies that investigated motor development have been inconsistent and are limited in 

early life (age <5y). In the Upstate KIDS study in New York (n=4901 dyads), Wylie el al. 
used maternal questionnaires to investigate the effect of prepregnancy BMI on motor 

development measured by time required for infants to acquire gross motor milestones 

between four and 24 months.67 Despite a predominantly white (83.3%), well-educated 

(81.1% ≥ some college) cohort quite different from the CCCEH, findings were consistent 

with our results: Maternal obesity was associated with a slight delay in infant ability to sit 

and crawl.

Contrary to our findings, in the nationally representative US Department of Education’s 

Early Childhood Longitudinal Study-Birth Cohort (ECLS-B, n=4750), Hinkle and 

colleagues showed strong associations between MDI and prepregnancy overweight and 

obesity, but no association between PDI and prepregnancy BMI in children at 2 years.8 

Interestingly, at kindergarten age in the same cohort, children of mothers with severe 

prepregnancy obesity (class II and III, BMI ≥35 kg/m2) had a higher prevalence of low fine 

and gross motor function (p<0.001) according to the BSID-II,9 suggesting a multifactorial 

influence on early development that begins in pregnancy and extends beyond the postnatal 

period. Conversely, in 355 mother-child dyads, Neggers et al. observed associations between 

maternal obesity with diminished IQ and nonverbal abilities, but not motor development, in 

children at 5 years.63

The mothers in these two cohorts were quite different from our sample of urban, minority 

mothers, which may partly explain these differential findings. The ECLS-B had fewer 

mothers with prepregnancy obesity (14.8%) than our sample (23.0%), while mothers in the 

ECLS-B with prepregnancy BMI ≥35 (6.2%) were generally of lower socioeconomic status 

than normal weight counterparts, with fewer years of education, more likely to live below 

130% of the federal poverty threshold, and more likely to be white (54.3%). Children in 

Neggers’ study were bom to low-income, African American mothers in Birmingham, 
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Alabama and were exposed to a lower rate of prepregnancy overweight (14.4% vs. 24.1% in 

our sample), higher rate of prepregnancy obesity (39.9% vs. 23.0% in our sample), and a 

lower HOME score (37.5 ± 6.9) compared to our sample (39.5 ± 6.2). The equivocal nature 

of these findings indicates that early development requires further investigation to identify 

the influences of gestational weight corollaries on early development.

To our knowledge, the sex-specific differences in motor development among children born 

to mothers with obesity observed in our study have not been previously reported in this age 

group from a similar population. Interestingly, boys in our study appeared more vulnerable 

than girls to an in-utero environment affected by excess maternal adiposity. The 

physiological mechanisms linking maternal adiposity, gestational weight gain, and early 

cognition are intricate and likely differ between boys and girls. Potential mechanisms 

associated with excess adiposity may produce an inimical prenatal environment including 

dysregulation of lipid, insulin and appetite or increased estrogen and inflammatory 

signaling;26,68–70 specific dietary patterns, including high fat diet, excess free fatty acids or 

glucose, or micronutrient deficiencies;20,26,71 altered placental transport mechanisms;68,70,72 

a lipotoxic environment for brain development;73,74 excessive production of reactive oxygen 

species and reduction in placental ATP generation;75–77 or alterations in serotonergic and 

dopaminergic signaling pathways.20

Fetal growth differs between sexes in rate and efficiency of the placental response to 

maternal adiposity;37 boys grow faster, larger, require more placental efficiency to grow at 

this accelerated rate,34,36,81 and male placentas are more vulnerable to placental inefficiency 

from inflammatory, oxidative, and nitrative stress from maternal adiposity.75,76 The placenta 

is the interface of maternal-fetal nutrient exchange and its contributions to sexual 

dimorphism in the origins of health and disease have been well documented.37,82,83 The sex-

specific relationship between excess adiposity and placental abnormalities in key regulatory 

biochemical and molecular mechanisms of growth and development is currently under 

investigation.76,77,84–88 Placental hypertrophy is more common among women with greater 

adiposity86 and some evidence points to alterations in placental nutrient exchange in obese 

and overweight women.89,90 Due to amplified growth, males in utero may be limited by a 

lack of reserve placental capacity and nutrient exchange during critical phases of growth, 

making developmental disparities more pronounced.34,35 As a counterpart to placental 

efficiency, suboptimal maternal dietary intake may limit availability of nutrients at critical 

phases.37 Dietary aberrations associated with overweight and obesity, such as high-fat diet or 

limited nutrient intake,20,26,71 may adversely alter the placental milieu and potentially 

produce augmented adverse effects in boys. However, it remains unclear why only maternal 

obesity was associated with considerably lower psychomotor development scores in boys at 

age three.

This study has several limitations. These results may not be fully generalizable to the current 

US population of women of childbearing age, since our population was specific to low-

income African American and Dominican women in an urban region of the US. Despite 

important roles in development, we were not able to account for paternal characteristics, rate 

or pattern of weight gain, placental size, or prenatal comorbidities (e.g. preeclampsia) as 

these were not routinely measured per the original study design. Although we were not able 
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to account for paternal characteristics, evidence indicates that preconception paternal 

stressors, including nutrition status, metabolic dysregulation, psychosocial distress, and 

environmental contaminants, transform the preconception paternal epigenome and are 

reflected in the germline and offspring phenotype.91–95 Intergenerational transmission of the 

preconception environment may play a fundamental role in neurodevelopment95–97 and 

should be examined in future investigations. Additionally, breastfeeding data were limited 

and breastfeeding continuation was not recorded after child age one. Further, small cell sizes 

hindered any investigation of differences between extreme BMI classes and child 

development. These characteristics may be linked to adverse outcomes and are important to 

consider in future work. Likewise, offspring body size may be on the causal pathway to 

adverse neurodevelopmental outcomes96,97 and is strongly correlated with maternal BMI 

and GWG;98 however, we were unable to examine for effects of child body size on 

associations at this age. There was potential for selection bias due to inclusion restrictions in 

our analyses; to examine for this potential bias, we conducted several sensitivity analyses, 

including inverse probability weighting, and the results did not change meaningfully. 

Finally, although developed specifically for this age group (1-42 months), the BSID-II 

measures are not direct measures of cognition or the richness of development, and an 

updated assessment of mental development in the third edition of the BSID became available 

after this study.98

Despite these limitations, our results are similar to some reports examining the association 

of adiposity with developmental and academic outcomes in childhood, although in different 

populations.63,67 Strengths of this work include investigation of a diverse, low-income urban 

population with robust measures. We were able to examine critical cognitive outcomes, 

psychomotor development and mental development, with a relatively large sample size and 

with adjustment for a range of confounders, including maternal IQ, influence of a nurturing 

home environment, and toxicant exposure.

In our low-income, minority cohort, prepregnancy obesity was associated with lower PDI 

scores at three years only in boys. These sex-specific differences in psychomotor 

development in an understudied population are interesting, but the mechanisms underlying 

this association remain unclear. Our results are consistent with previous analyses in that 

prepregnancy BMI affected early child development, although in different populations and 

ages. Due to the elevated obesity exposure in women entering pregnancy, particularly in 

low-income women, further investigation to disentangle modifiable elements and inform 

practical guidelines and interventions is warranted.
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Figure 1. 
Participant flow diagram
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Figure 2. 
Unadjusted mean PDI and MDI scores (±SD) by child sex (n=382) at age 3 PDI 

psychomotor development index; MDI mental development index

*difference between sexes by BMI p<0.01
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Figure 3. 
Bayley Scales of Infant Development results for boys by prepregnancy BMI category 

(n=170)
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Figure 4. 
Bayley Scales of Infant Development results for girls by prepregnancy BMI category 

(n=212)
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Table 1.

Participant demographics and outcome values by child sex (n=382)

All (n=382) Boys (n=170) Girls (n=212) p-value

Maternal

Prepregnancy BMI Category, % 0.53

 Underweight 4.7 5.9 3.8

 Normal 48.2 48.2 48.1

 Overweight 24.1 21.8 25.9

 Obese 23.0 24.1 22.2

Dominican Ethnicity, % 59.7 58.8 60.4 0.76

Maternal Education < High School, % 34.2 29.3 38.2 0.07

Receipt of public assistance
a
, %

40.9 39.6 41.9 0.66

Never Married, % 67.8 65.9 69.3 0.47

HOME Score
b 39.5 ± 6.2 39.0 ± 6.5 39.8 ± 5.9 0.17

GWG Z-score
c 0.14 ± 1.02 0.24 ± 0.93 0.05 ± 1.08 0.06

Maternal IQ score 85.5 ± 13.5 85.0 ± 13.5 86.0 ± 13.6 0.46

Detectable PAH
d
, n (%)

121 (39.4) 51 (37.5) 70 (40.9) 0.54

High chlorpyrifos
e
 (>6.17 pg/g), n (%)

39 (14.2) 21 (17.5) 18 (11.7) 0.17

Child

Gestational age at delivery, weeks 39.4 ± 1.3 39.4 ± 1.3 39.3 ± 1.2 0.84

Birthweight
f
, g

3367.5 ± 469 3416.6 ± 490 3328.7 ± 448 0.07

Ever breastfed
g
, n (%)

255 (69.9) 128 (77.1) 127 (63.8) <0.01

Breastfeeding duration
g
, weeks

14.5 ± 14.1 13.7 ± 13.4 15.3 ± 14.8 0.36

Age at 3y Bayley test, months 36.7 ± 2.6 36.7 ± 1.9 36.7 ± 3.0 0.99

Psychomotor Development Index score 100.0 ± 13.4 97.2 ± 14.5 102.3 ± 12.0 <0.001

Mental Development Index score 90.8 ± 11.6 88.3 ± 12.0 92.8 ± 10.9 <0.001

Values are means ± SD or percentages.

a
Data available on 169 boys and 210 girls;

b
HOME, Home Observation for Measurement of the Environment;

c
GWG, Gestational weight gain;

d-g
Data available on:

d
136 boys and 171 girls;

e
120 boys and 154 girls;

f
167 boys and 211 girls;

g
166 boys and 199 girls.
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Table 2.

Adjusted sex-specific associations between maternal prepregnancy BMI, pregnancy weight gain and child 

cognitive test scores at age 3, Columbia Center for Children’s Environmental Health enrolled from 1998 to 

2006 (n=382).

Psychomotor Development Index (PDI) Mental Development Index46

β (95% CI) p-value β (95% CI) p-value

Boys (n=170)

Prepregnancy BMI (n)

 Underweight (10) 3.0 (−6.1,12.2) 0.51 −5.1 (−12.7,2.4) 0.18

 Normal Weight (82) Referent Referent

 Overweight (37) −3.6 (−8.9,1.7) 0.18 −0.4 (−4.8,4.0) 0.86

 Obese (41) −7.8 (−13.1,−2.5) <0.005 −1.0 (−5.3,3.3) 0.65

GWG Z-score (170) −0.1 (−2.4,2.2) 0.94 −0.1 (−2.0,2.4) 0.93

Girls (n=212)

Prepregnancy BMI (n)

 Underweight (8) −0.1 (−8.7,8.5) 0.98 −0.9 (−6.5,8.4) 0.80

 Normal Weight (102) Referent Referent

 Overweight (55) 2.4 (−1.5,6.3) 0.22 0.4 (−3.0,3.7) 0.82

 Obese (47) 0.2 (−4.1,4.5) 0.92 2.2 (−1.5,5.8) 0.25

GWG Z-score (212) −0.5 (−2.0,1.0) 0.51 −0.8 (−2.1,0.5) 0.21

Results are estimated β-coefficients for PDI and MDI scores from multivariate linear regression models, controlling for covariates. Normal weight 
prepregnancy BMI is the reference group. The adjustment set included maternal race/ethnicity, marital/cohabitation status, HOME score, maternal 
IQ, home smoking status, and child Bayley age.
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