
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Beyond Transformers for Function Learning

Permalink
https://escholarship.org/uc/item/4wg2h9g1

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
Segert, Simon
Cohen, Jonathan

Publication Date
2023

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wg2h9g1
https://escholarship.org
http://www.cdlib.org/

Beyond Transformers for Function Learning
Simon Segert (ssegert@princeton.edu)

Princeton Neuroscience Institute, Washington Road
Princeton, NJ 08544 USA

Jonathan Cohen (jdc@princeton.edu)
Princeton Neuroscience Institute, Washington Road

Princeton, NJ 08544 USA

Abstract

The ability to learn and predict simple functions is a key aspect
of human intelligence. Recent works have started to explore
this ability using transformer architectures, however it remains
unclear whether this is sufficient to recapitulate the extrapola-
tion abilities of people in this domain. Here, we propose to ad-
dress this gap by augmenting the transformer architecture with
two simple inductive learning biases, that are directly adapted
from recent models of abstract reasoning in cognitive science.
The results we report demonstrate that these biases are help-
ful in the context of large neural network models, as well as
shed light on the types of inductive learning biases that may
contribute to human abilities in extrapolation.
Keywords: Artificial Intelligence; Psychology; Pattern
Recognition; Neural Networks

Introduction
People often reliably identify patterns or rules in small
amounts of data, and extrapolate them to domains out of the
range of the training data. Despite its seeming simplicity,
this process has proved deceptively hard for most neural net-
works, which often require orders of magnitude more training
data. The extrapolation of scalar functions has also been used
as an informative test case for abstract reasoning for both hu-
mans (DeLosh, Busemeyer, & McDaniel, 1997) and neural
networks (Segert & Cohen, 2022b) alike.

Recently, the transformer architecture has shown promis-
ing abilities to interpolate simple scalar functions (von Os-
wald et al., 2022; Garg, Tsipras, Liang, & Valiant, 2022).
However, it remains unclear whether such models can match
human abilities on the more challenging and informative task
of extrapolating simple, scalar functions. Moreover, to the
extent that they fall short in doing so, an important question
is: what kinds of modifications or inductive biases would im-
prove their performance? In particular, can ideas from cogni-
tive science be scaled up to aid performance of models using
this architecture?

In this work, we propose two such learning biases that
are heavily adapted from previous cognitive models, and that
we hypothesize would lead to such an improvement. We
term them “Relational Bottleneck” and “Adaptive Attentional
Window” . The first has been used in models of abstract
rule learning, as a way to enforce a separation between con-
tent and relations (Webb, Sinha, & Cohen, 2021; Kerg et al.,
2022). The second has been proposed in the context of a cog-
nitive model of function learning (Segert & Cohen, 2022a),

and may be thought of as the assumption that the value of
a function at a given timepoint depends only the values at
a small number of nearby timepoints, with the exact length
scale needing to be learned.

Our contribution is first to show how each of these biases
can be implemented in the transformer architecture, and sec-
ondly to show that their presence improves the performance
of this model on extrapolation of the sorts of scalar functions
that are easy for people.

Finally, as a collateral benefit, we show that the method
we use to implement the relational bottleneck yields uncer-
tainty estimates without any additional computation, which
standard function learning transformers (such as in (Garg et
al., 2022)) do not provide.

The remainder of the paper is structured as follows: We
first provide background and further explanation of the two
learning biases. We also describe how we implemented these
in the context of a transformer architecture, and how the re-
sulting architecture can also be used to naturally model uncer-
tainty. We then empirically evaluate the resulting model and
compare it with a standard transformer. Finally we conclude
with an overview of related work and general discussion.

Background
Linear Autoregressive Function
Learning-Motivating Adaptive Attention Window
Function learning, that is, the study of peoples’ abilities to in-
terpolate and extrapolate scalar functions from a small num-
ber of observations, is a classic topic in cognitive psychology
(DeLosh et al., 1997; McDaniel & Busemeyer, 2005). The
most popular models of peoples’ function learning abilities
are based on Gaussian Processes (Lucas, Griffiths, Williams,
& Kalish, 2015; Schulz, Tenenbaum, Duvenaud, Speeken-
brink, & Gershman, 2017; Wilson, Dann, Lucas, & Xing,
2015). While this framework is able to explain many spe-
cific phenomena, it has the disadvantage of requiring pre-
specification of a class of functional or distributional forms,
and also makes some predictions that are qualitatively at odds
with human behavior, especially in cases where there is not
a simple parametric underlying pattern to the data (Segert &
Cohen, 2022a). It has subsequently been proposed that these
issues can be addressed using linear autoregressive models
(ibid.) In this case, the value of the function at a location

1937
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

i∈N is assumed to be a linear combination of a small number
of preceding values: f (i) = ∑

L
j=1 w j f (i− j), with the param-

eters w j fit to a given function, and the “window length” L
being a hyperparameter. A crucial feature of this model is the
assumption of dependence of f (i) on only a small number of
nearby values of f . This property is psychologically appeal-
ing, as it naturally maps onto constraints on human memory
or processing. It is also mathematically convenient, since it
limits the total number of parameters w j that must be fit. Due
to the success of this simple and general model at fitting hu-
man extrapolation performance, we hypothesize that an adap-
tation of the finite window length will be beneficial for trans-
formers in function learning tasks as well.

Systematic Generalization with Neural
Networks-Motivating Relational Bottleneck
While the first bias was motivated by a cognitive model of
function learning, use of a relational bottleneck was mo-
tivated by models of abstraction and relational reasoning
(Webb et al., 2021; Kerg et al., 2022), and a correspondence
between such tasks and function learning. To see this, we first
consider that a simple function such as a line can be thought
of as a kind of simple abstract rule (e.g., increment a fixed
amount for each segment) or, alternatively, a relation between
each point and the next. The aforementioned works have
considered how to design neural networks to systematically
extract and apply abstract rules in visual reasoning settings,
such as detecting whether two images are the same or differ-
ent. These models have the ability to learn a rule on a given
collection of inputs (e.g., stars) and then apply the same rule
to a different set of unseen images (e.g., circles). At a high
level, such models work by constructing a similarity matrix
between encoded representations of objects, and forcing the
remainder of processing to be done on this pattern of sim-
ilarities. In this way, the part of the model responsible for
learning and applying the rule do not (by design) have access
to “sensory” details of specific objects, and thus are forced
to learn and use second-order relational patterns. We refer to
this as the Relational Bottleneck assumption. Due to the suc-
cess of these models, we hypothesize that the inductive bias
of focusing on the pattern of relations between the values of a
function, rather than the raw values themselves, will also aid
transformers in function learning tasks.

To give a bit more detail on the models, the ESBN
model (Webb et al., 2021) uses a mechanism of binding and
similarity-based retrieval in an external memory, in order to
force a reasoning module to operate only on patterns of sim-
ilarities. The ESBN mechanism has also been adapted for
another simple form of extrapolation, namely counting with
integers (Dulberg, Webb, & Cohen, 2021). This further sug-
gests that it may be possible to also adapt it to the case of
extrapolating smooth function as well (after all, an increasing
linear function is very similar to a sequence of consecutive
integers).

The CoRelNet model (Kerg et al., 2022) can be regarded
an abstraction of ESBN model, that implements the bottle-

neck in a simpler and more explicit form. This model takes a
sequence of objects as input, and runs each through a shared
encoder module, to obtain representations zi ∈ Rd for each
object i = 1, . . . ,n. These are used to construct a representa-
tional similarity matrix Si j =< zi,z j >. Finally a reasoning
module (architecturally an MLP) is used to read out the an-
swer from the similarity matrix.

Transformers and Function Learning
Finally, we give a brief overview of the Transformer archi-
tecture (Vaswani et al., 2017) as we employ it. As in previ-
ous work on modeling sequences, we will employ a decoder-
only transformer architecture (Radford et al., 2019). At the
specification level, the transformer architecture T F takes as
input a list of vectors {vi}N

i=1 and returns as output a list
consisting of a “transformed” version of each input vector:
T F({vi}N

i=1) = {ṽi}n
i=1. Some recent works have used this

architecture as a model for function learning (von Oswald et
al., 2022; Garg et al., 2022). In these works, the input is
a sequence of ordered-pairs {(xi,yi)}i of observations of the
values of a function f , together with a query point of the form
(xq,0), where xq is a point at which the value of the function
is to be estimated. The set of such points are passed through a
transformer, and the transformed vector corresponding to the
query point is finally passed through a learned linear decoder
in order to obtain an estimate for f (xq).

Since the details of the architecture are described in many
other papers (e.g. (Vaswani et al., 2017)) we will instead
highlight two main features that are particularly relevant to
our purposes. The first is permutation equivariance, mean-
ing that if the input vectors are re-ordered according to some
permutation, then the output vectors will also be reordered
in the same way. Symbolically, T F({vσ(i)}N

i=1) = {ṽσ(i)}n
i=1,

where σ is any permutation. This property means that the in-
put to the transformer can be regarded as an unordered set,
rather than as an ordered list. This is important because it
means that the input does not have to be a one-dimensional
sequence, which property we will exploit subsequently. The
second property is the presence of masking. When comput-
ing self-attention weights between elements in the input se-
quence, it is common to impose a value of 0 on the weight
between certain pairs. This is often done, for example, when
the inputs have a canonical temporal ordering, and one does
not want to allow one input to attend to those that occur in the
future (Radford et al., 2019). This process can be regarded
as a special case of multiplicative weighting of the attention
weights, where each gating factor is either 0 or 1. We exploit
this in the next section when discussing the Adaptive Win-
dow.

Methods
As indicated above, we aim to incorporate two inductive bi-
ases from the cognitive science literature into a transformer,
to determine whether these improve its ability to extrapolate:
(1)Relational Bottleneck, and (2) Adaptive Attention Win-
dow. We begin by describing the form of the similarity met-

1938

ric we use for the relational bottleneck (tailored to the context
of function learning), followed by our implementation of the
two inductive biases in the context of the transformer archi-
tecture.

In what follows, we will represent a scalar function as a
list of x-y observations: {(xi,yi)}N

i=1 where xi,yi ∈ R Further-
more, we will assume for the sake of simplicity, and following
(Segert & Cohen, 2022a), that the x points are equally spaced
along the horizontal axis: xi = i, i = 1, . . . ,N.

Form of Similarity Measure
In the ESBN and CoRelNet, the form of the similarity is
given by either a cosine similarity or dot product similar-
ity between the vectors. However, our case differs in that
we are dealing with scalar functions (that is, each value of
the function lives in a one-dimensional vector space), and
we want to consider the similarity between the values of the
function at different time points. The cosine and dot product
similarity metrics have undesirable properties for such one-
dimensional spaces, which make them unsuitable for our ap-
plication. More specifically, the cosine similarity is degen-
erate in this context, which follows directly from the defi-
nition ⟨v,w⟩

∥v∥∥w∥ that the cosine similarity of any two non-zero
one-dimensional vectors will be equal to 1. The dot product
similarity ⟨v,w⟩ is also not suitable for one-dimensional vec-
tors, due to its dependence on the scale of the values. For ex-
ample, the dot product similarity between two small numbers
is smaller than between a large number and a much larger
number, even if the two small numbers are extremely close
to each other while the two large numbers are very far from
each other. For these reasons, we use negative Euclidean dis-
tance as our measure of similarity, so that the (dis)similarity
between two observations is defined as

S(x,y) = x− y

where values with absolute value near zero correspond to very
similar observations, and those with large absolute values cor-
respond to dissimilar ones. We choose a signed rather than
unsigned distance because this will make it easier to translate
from a similarity value to a raw function value, as we discuss
further in the next section.

Incorporating Similarity Matrix Bottleneck
As discussed in the previous section, the critical inductive
bias in the ESBN and CoRelNet architectures is the impo-
sition of an architectural constraint to allow the ”reasoner”
in the model to see only similarity scores between pairs of
inputs, rather than raw input values. Accordingly, in the
case of predicting a scalar function, we restrict the reasoning
component of our network, rather than seeing the raw val-
ues {yi}i≤N of the function, to see only the similarity matrix
{S(yi,y j)}i≤N, j≤N , with S as defined in the previous section.
Having specified the desired input, we now consider the de-
sired target. We argue that, given that we restrict the net-
work to consider only relational information, it would defeat

the purpose if the prediction target was the raw value yN+1.
What, then, should the network predict? We posit that the
natural prediction target, given the desideratum of imposing
a Relational Bottleneck, is for the network to predict the N+1
st row of the similarity matrix. Fortunately, this can easily
be accomplished using a standard transformer architecture.
We exploit the fact mentioned in the transformer description
above that the input to a transformer can be an arbitrary set.
We simply construct a set which consists of all values of the
similarity matrix, together with their positions within the ma-
trix, as well as a set of query points that encode the locations
at which we want the model to predict the similarity values.
That is, given an input {(xi,yi)}N

i=1, we construct the follow-
ing set:

X = {(xi,x j,S(yi,y j))}i< j≤N ∪{(i,N +1,0)}i≤N+1

Due to (anti)symmetry of the similarity function, it is
enough to consider only the lower triangular part of the ma-
trix i < j. This also helps to alleviate memory demands
of the implementation. This set is first passed through a
learned linear projection into Rdmodel , and then fed into a
transformer. The outputs of the transformer correspond-
ing to the elements (i,N + 1,0) are finally passed through a
learned linear decoder in order to obtain predictions for the
next row of the matrix. This model is trained by minimiz-
ing the mean-square-error of the output relative to the vector
{Sim(yi,yN+1)}i=1,...,N+1. We refer to this model as the Rela-
tional Transformer.

Incorporating Adaptive Attention Window
Following the autoregressive linear function learning model
from (Segert & Cohen, 2022a), as well as the general trans-
former architecture, we map the window length L to the trans-
former implementations simply by masking out any attention
weights between observations that are separated by a distance
> L on the x-axis. However, in order to facilitate gradient-
based learning, we do not actually impose such a hard-cutoff,
but rather parameterize a multiplicative mask on input-to-
input attention weights, using a learnable monotonic function
of the distance between the inputs, thus allowing the network
to learn the most effective interaction length scale. We refer
to this as a Learned Attention Window.

We first explain the implementation of the Learned Win-
dow for the case of a standard transformer model, such as
in (Garg et al., 2022), that takes as input {(xi,yi)}N

i=1 ∪
{(xN+1,0)} and is trained to predict yN+1. In this case, we
would impose a multiplicative gating on the corresponding
attention self-attention weight between (xi,yi) and (x j,y j), by
a factor of Fθ(|xi−x j|)1xi>x j , where F is a positive decreasing
function such that F(0) = 1, with θ being learnable parame-
ters. Here the indicator function 1xi>x j enforces the standard
causal constraint on mask values (Radford et al., 2019). Note
that a gating of only 1xi>x j would correspond to the standard
upper-triangular mask. We parameterize F using a decreasing
sigmoidal form, Fa,b(x) =

1−σ(x/b−a)
1−σ(−a) , a,b > 0,σ(x) = 1

1+e−x

although other choices are possible.

1939

The implementation of the Adaptive Window for the Re-
lational Transformer is similar. In this case, the input to the
model is instead a set of tuples of the form (xi,x j,S(yi,y j)).
Given two such tuples (xi,x j,S(yi,y j)) and (xi′ ,x j′ ,S(yi′ ,y j′)),
we impose a multiplicative gating factor on the self-attention
weight between them as follows:

Fθ(|xi − xi′ |)Fθ(|x j − x j′ |)1i>i′1 j> j′

. In this way, the gating factor decays with both horizontal
and vertical distance within the similarity matrix. Further-
more, the indicator functions enforce a constraint similar to
the standard causality constraint in the one-dimensional case.
In that case, each element in a sequence is only allowed to at-
tend to elements to the left of itself, whereas in the relational
case, each entry in the similarity matrix is only allowed to
attend to elements to the left and above itself.

Function Extrapolation with Relational
Transformer
Given a set of values {(xi,yi)}N

i=1, the Relational Transformer
model predicts the “similarity profile” of yN+1, that is to say,
the vector containing the similarity of yN+1 with all preceding
yi. However, at test time what we want is yN+1 itself. In order
to recover this value from the predicted similarity profile, we
exploit the fact that the similarity function has a known and
simple mathematical form, namely an arithmetic difference.

Let ẑN+1 denote the predicted similarity profile. By defi-
nition, the i-th component (ẑN+1)i is the model’s prediction
of S(yN+1,yi). That is, (ẑN+1)i is the model’s estimate of
yN+1 − yi. Thus by simply adding yi, we can convert this es-
timate of yN+1 −yi into an estimate of yN+1 itself. Doing this
for each i ≤ N, we obtain an ensemble of estimates (ŷN+1)i
for yN+1, defined by

(ŷN+1)i = (ẑN+1)i + yi

Note that we have used the invertibility of the similarity
function in a key way (more precisely, of the function S(x, ·)
for any x). This is why we used signed distance rather than
euclidean distance when defining the similarity function. We
return to this point in the discussion section.

Thus the output of the Relational Transformer model can
be modified to yield an ensemble of estimates for ŷN+1. In
turn, given an ensemble, we can naturally give both a point
estimate and an uncertainty estimate for yN+1. We define the
point estimate as

ŷN+1 = Mediani≤N(ŷN+1)i

.
The uncertainty estimates are treated similarly, with the un-

certainty in the estimate being defined as the sample standard
deviation of the ensemble (ŷN+1)i, i ≤ N.

Comparison model
Since our objective is to understand what inductive biases are
useful to transformers, we will consider as a control a model

following (Garg et al., 2022). In this model, we first construct
a set {(xi,yi)}N

i=1 ∪{(xN+1,0)}, and then pass each vector in
the set through a shared learned linear embedding to R2 →
Rdmodel . The resulting set of vectors is then fed through a
transformer, and the output vector corresponding to the token
(xN+1,0) is passed through a learned linear decoder Rdmodel →
R1 to obtain the model’s prediction of yN+1. This model is
trained using mean-square-error of the prediction relative to
the true value yN+1. We will sometimes refer to this as the
1d Transformer model, to distinguish it from the Relational
Transformer model above.

Experiment details
Models were trained on a next-timestep prediction objective
using squared error loss as described in the previous section.

In our experiments we consider functions of length N = 20,
which is similar to values used in similar psychological exper-
iments, e.g. (Ciccione & Dehaene, 2021). The training data
for each model consisted of a combination of lines, sinusoids,
and Radial Basis Function (RBF) curves, following previous
works such as (Schulz et al., 2017; Segert & Cohen, 2022b).

The lines were sampled with slopes in [−.1, .1]. The si-
nusoids were sampled with periods in [5,12], amplitudes in
[.8,1.2] and phases in [0,2π]. The RBF curves were sam-
pled from a Gaussian distribution with mean 0 and covari-
ance Ci j = e−.5∗(i− j)2/σ2

, where σ = 3. When sampling train-
ing curves, each of the above three classes was sampled with
probability 1/3, and then the parameters within each class
were sampled as described above in order to generate the ac-
tual curve. Additionally, all curves had random uniform noise
added to the y values with mean 0 and σ = .1.

Both the Relational Transformer and one-dimensional
transformer models have an embedding dimension of
dmodel = 256, with 8 attention heads and 12 layers. We do
not use dropout.

All models were trained on a total of 320000 curves using
a batch size of 32. We used the Adam optimizer with default
parameters and learning rate of 10−4. Each model was trained
3 times from different random initializations. All simulations
were done using PyTorch.

Results
In table 1, we consider extrapolation results on the three
classes of curves. We sampled a total of 2500 new curves
evenly split among the three classes linear,sine, and rbf.
We used each model to extrapolate the function to the
points xN+1, . . . ,xN+10 in an autoregressive fashion, similar
to (Radford et al., 2019). That is, after we have obtained
the model’s prediction ŷN+1 for the value at xN+1, we con-
struct a new input set consisting of the original observations
{(xi,yi)}N

i=1 together with the observation (xN+1, ŷN+1) and a
query for the next point (xN+2,0). We repeat this process un-
til we have obtained the requisite number of extrapolated val-
ues. We then computed the mean square error of the model

1940

extrapolation with the true value of the function at the corre-
sponding 10 points.

We can see that the omnibus effect of introducing either
the finite window length or the relational transformer is a sig-
nificant improvement in performance (compare second and
third rows of table with first). However, the breakdown ac-
cording to curve types is quite different. In particular, the 1d
transformer with Learned Window attains poor performance
on linear curves, but compensates with large improvements
for sines and RBF curves, compared to the baseline. This
is somewhat at odds with psychological data suggesting that
people can extrapolate lines more accurately than oscillations
(Ciccione & Dehaene, 2021; Kalish, 2013). By contrast, the
similarity transformer improves on both lines and sines com-
pared to the baseline, while preserving the relative difficulty
between them. Finally, the variant with both a learned win-
dow and relational bottleneck attains the best performance of
all, suggesting that both biases together are helpful for accu-
rately predicting simple functions, moreso than either on its
own.

Uncertainty Estimation Results
As mentioned previously, the relational transformer model
has the property of natively estimating uncertainty of its own
estimates. To evaluate this capability, we generate extrapola-
tions out to t = 10 steps as before, and average the predicted
standard deviation at each step. We show in table 2 the re-
sults for the Relational Transformer, both with and without
the learned window.

For the sake of having a comparison, we now consider the
question of an optimal value for these estimates. For the cases
of lines and sinusoids, we recall that they are generated us-
ing an underlying deterministic function corrupted by iid ex-
ogenous noise. A perfectly predictive and calibrated model,
therefore, would be able to infer the underlying function, and
would thus have an uncertain value that is equal to the exoge-
nous noise, which in our case was σ = .1. The RBF func-
tions are slightly different, because even in the absence of ex-
ogenous noise, the functions are sampled from a distribution
rather than generated according to a deterministic formula,
and thus they have an irreducible amount of unpredictability.
However we can still define an optimal uncertainty estimate
using the underlying kernel of the RBF process. More pre-
cisely, we define the optimal uncertainty estimate σt to be
the standard deviation of the RBF posterior distribution of
yt+N |y1, . . . ,yN . For direct comparison with the models, we
average these standard deviation values over t = 1, . . . ,10 to
obtain the value in the table. It is a mathematical fact that
the posterior variance does not in fact depend on observed
values y1, . . . ,yn of the function (Lucas et al., 2015), and con-
sequently all RBF curves have the same optimal uncertainty
value.

In this case, the uncertainty estimates for the similarity
transformer with and without the masking are essentially in-
distinguishable, for the cases of lines and sines. Both tend

to underestimate the uncertainty for lines, and overestimate
for sinusoids. We thus see the same order-of-difficulty effect
as in the MSE values. Interestingly, the similarity transformer
significantly underestimates the variance of RBF curves com-
pared to the version with the masking. Thus we see another
benefit to having both biases in the model, rater than just the
Similarity Bottleneck.

Related work
Scalar Function Learning
Scalar function learning has been a classic topic in cognitive
psychology (DeLosh et al., 1997; McDaniel & Busemeyer,
2005; Bott & Heit, 2004), and has recently gained popularity
as a test case for large neural network models as well.

Modern modeling approaches of function learning are typ-
ically based on Gaussian Processes (Schulz et al., 2017; Wil-
son et al., 2015; Lucas et al., 2015) and autoregressive linear
models (Segert & Cohen, 2022a). Suggestively, the Gaussian
Process approach relies very heavily and explicitly on the no-
tion of a similarity matrix, namely the covariance kernel of
the process. There, however, the usage of the matrix concep-
tually differs somewhat from its usage in the present work, in
that the matrix is there assumed to have a known parametric
form, rather than constructed from the input data as we do.

The general simplicity/tractability of the space and ground-
ing in psychological data have also made it appealing as a test
bed for neural networks. For example, in (Segert & Cohen,
2022b), the authors used scalar function learning tasks anal-
ogous to those from the psychological literature to analyze a
variety of self-supervised learning models, as well as to build
models that more closely match patterns of human behavior.
Works such as (Garg et al., 2022; von Oswald et al., 2022)
have begun to systematically evaluate the function learning
capabilities of transformers, however they have focused more
on iid interpolation, and less on the extrapolation/prediction
setting that concerns us.

Relational Reasoning with Neural Networks
As outlined previously, our approach on the Relational Bot-
tleneck is directly inspired by (Webb et al., 2021; Kerg et al.,
2022), in which a form of abstract reasoning is attained by
forcing a network to attend to strictly relational information,
encoded as a pattern of similarities between a sequence of
inputs to the network.

The same tasks in the ESBN, as well as some general-
ization to more complex images have been addressed in the
recent GAMR model (Vaishnav & Serre, 2023);however de-
spite the similar objective, the mechanism of the model is
quite different from ESBN and CoRelNet, relying instead on
a learned visual attention policy.

The property of working with similarity and relational in-
formation has also been a key ingredient in many previ-
ous models, albeit not with the absolute separation imposed
by CoRelNet and ESBN. For example, the transformer ar-
chitecture itself (Vaswani et al., 2017) is built on a simple

1941

Table 1: Extrapolation accuracy, mean square error. Values are mean and standard error, over 3 copies of each network. We
show an average over all test curves, as well as broken down by curve type.

all lin rbf sine
1d transformer 0.545±0.060 0.109±0.005 1.501±0.164 0.213±0.047
1d transformer, learned window 0.415±0.022 0.368±0.045 0.810±0.020 0.056±0.005
relational transformer 0.401±0.017 0.073±0.020 1.109±0.044 0.163±0.042
relational transformer, learned window 0.365±0.016 0.069±0.026 1.063±0.030 0.085±0.014

Table 2: Estimated uncertainty results for the Relational Transformer model. Note that the baseline transformer model does not
have any way to natively estimate uncertainty, so corresponding values are not shown. Values are mean and standard error, over
3 copies of each network. Optimal values are defined as in main text.

all lin rbf sine
relational transformer 0.211±0.019 0.068±0.015 0.399±0.028 0.241±0.023
relational transformer, learned window 0.281±0.050 0.092±0.024 0.603±0.135 0.238±0.022
optimal .1 .802 .1

form of all-to-all attention determined by patterns of similar-
ity among inputs. Models such as the Differentiable Neural
Dictionary (Pritzel et al., 2017) and Neural Turing Machine
(Graves, Wayne, & Danihelka, 2014) also make use of simi-
larity computations in a key way, namely as attention patterns
to lookups in external memory. Another strategy is to impose
strong priors on the pattern of attention weights by imposing
a graph structure on the data and allowing each node to attend
directly only to nodes that are connected by short paths along
the graph (Battaglia, Hamrick, others, Li, & Pascanu, 2018;
Veličković et al., 2017; Bronstein, Bruna, LeCun, Szlam, &
Vandergheynst, 2017) This technique often requires strong
assumptions about graph structure, and may not generalize
to continuous cases such as scalar functions.

The general motivation behind the similarity matrix itself,
namely of separating “sensory” from ”abstract” processing,
have also been employed in the context of neuroscience. For
example (Whittington et al., 2020) achieves a form of flexi-
ble generalization in navigation tasks by enforcing a separate
“abstract” network whose processing is divorced from the ex-
plicit perceptual information coming into the network. This
model has been argued to be formally equivalent to a basic
transformer with a specific form of positional encoding and
key lookup (Whittington, Warren, & Behrens, 2022).

Limitations and Future Work
While we have tried to motivate our specific choice of similar-
ity function from mathematical considerations, it is not clear
whether this is the best possible choice. In future work, it
will be interesting to explore whether a model would be able
to learn an appropriate similarity function directly from data,
rather than having it pre-specified.

Further, we recall that the current form of the model also
requires an invertible similarity function in order to read out
raw values. Thus signed distance is workable but unsigned
is not. As not all similarity functions of interest have this
property, it is an interesting direction for future work to relax

this assumption while keeping the same ensembling property
of the model.

Discussion
Inspired by abilities of recent Cognitive Science models
(namely ESBN/CoRelNet, and MaxEnt Function Learning),
we have built models to predict scalar functions that impose
a bottleneck through computation of a relational matrix, and
imposition an adaptive attention window. We proposed how
to implement both of these biases in the context of a stan-
dard transformer model, and found that both individually im-
proved the extrapolation performance of a transformer model
on scalar functions, with the greatest gain coming in a model
that incorporated both. Furthermore,we showed that our Re-
lational Transformer method can naturally be extended to
give uncertainty estimates, differentiating it from transformer
models of this task such as (Garg et al., 2022).

Thus, we have shown that ideas from cognitive science can
be profitably adapted to large deep learning models to im-
prove performance on the kinds of tasks that people are good
at. On the other hand, our work also generalizes and ex-
tends aspects of the cognitive models which it adapts. Firstly,
while the ESBN and CoRelNet models were trained in a su-
pervised multiple-choice setting, we have here extended the
Relational Bottleneck property of these models to the case of
a generative, self-supervised prediction objective. Secondly,
in (Segert & Cohen, 2022a), the window length parameter L
is treated as a descriptive hyperparameter, and is not given
a principled normative account. In our Learnable Window
implementation, by contrast, we effectively promote L to a
learnable parameter which can be optimized alongside the
rest of the model in an end-to-end fashion. In future work,
it would be extremely interesting to consider the L of the
learned model with those estimated from data on people.

Acknowledgements
This project was supported by a Vannevar Bush Faculty Fel-
lowship from the Office of Naval Research (ONR N00014-

1942

22-1-2002). SS is also supported by a T32 Training Grant in
Computational Neuroscience (T32MH065214).

References

Battaglia, P., Hamrick, J., others, ., Li, Y., & Pascanu, R.
(2018). Relational inductive biases, deep learning, and
graph networks. arXiv preprint, 1806.01261.

Bott, L., & Heit, E. (2004). Nonmonotonic extrapolation
in function learning. Journal of Experimental Psychol-
ogy:Learning, Memory, and Cognition.

Bronstein, M., Bruna, J., LeCun, Y., Szlam, A., & Van-
dergheynst, P. (2017). Geometric deep learning: going
beyond euclidean data. IEEE Signal Processing Magazine.

Ciccione, L., & Dehaene, S. (2021). Can humans perform
mental regression on a graph? accuracy and bias in the
perception of scatterplots. Cognitive Psychology.

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997).
Extrapolation: The sine qua non for abstraction in function
learning. Journal of Experimental Psychology: Learning,
Memory and Cognition.

Dulberg, Z., Webb, T., & Cohen, J. (2021). Modelling the
development of counting with memory-augmented neural
networks. In Proceedings of the cognitive science society.

Garg, S., Tsipras, D., Liang, P., & Valiant, G. (2022). What
can transformers learn in-context? a case study of simple
function classes. arXiv preprint, 2208.01066.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing
machines. arXiv preprint, 1410.5401.

Kalish, M. (2013). Learning and extrapolating a periodic
function. Mem Cognit.

Kerg, G., Mittal, S., Rolnick, D., Bengio, Y., Richards, B., &
Lajoie, G. (2022). On neural architecture inductive biases
for relational tasks. arXiv Preprint, 2206.05056.

Lucas, C. G., Griffiths, T. L., Williams, J. J., & Kalish, M. L.
(2015). A rational model of function learning. Psycho-
nomic Bulletin and Review.

McDaniel, M., & Busemeyer, J. (2005). The conceptual basis
of function learning and extrapolation: Comparison of rule-
based and associative-based models. Psychonomic Bulletin
and Review.

Pritzel, A., Uria, B., Srinivasan, S., Puigdomenech, A.,
Vinyals, O., Hassabis, D., . . . Blundell, C. (2017). Neural
episodic control. In International conference on machine
learning.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &
Sutskever, I. (2019). Language models are unsupervised
multitask learners. In Openai blog.

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink,
M., & Gershman, S. J. (2017). Compositional inductive
biases in function learning. Cognitive Psychology, 99, 44-
79.

Segert, S., & Cohen, J. (2022a). Maximum entropy function
learning. In Proceedings of the cognitive science society
(p. 1462-1468).

Segert, S., & Cohen, J. (2022b). A self-supervised framework
for function learning and extrapolation. Transactions in
Machine Learning Research.

Vaishnav, M., & Serre, T. (2023). Gamr: A guided attention
model for (visual) reasoning. In International conference
on learning representations.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A., . . . Polosukhin, I. (2017). Attention is all you
need. In Neural information processing systems.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., & Bengio, Y. (2017). Graph attention networks. arXiv
preprint, 1710.10903.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., & Vladymyrov, M.
(2022). Transformers learn in-context by gradient descent.
arXiv preprint, 2212.07677.

Webb, T., Sinha, I., & Cohen, J. (2021). Emergent symbols
through binding in episodic memory. In international con-
ference in learning representations.

Whittington, J., Muller, T., Mark, S., Chen, G., Barry,
C., Burgess, N., & Behrens, T. (2020). The tolman-
eichenbaum machine: Unifying space and relational mem-
ory through generalization in the hippocampal formation.
Cell.

Whittington, J., Warren, J., & Behrens, T. (2022). Relat-
ing transformers to models and neural representations of
the hippocampal formation. In International conference on
learning representations.

Wilson, A. G., Dann, C., Lucas, C. G., & Xing, E. P. (2015).
The human kernel. In Neural information processing sys-
tems.

1943

