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INTRODUCTION

The purpose ef the present paper ie to aecertain if it is
poeeible to determine a phenomenological deecription of the nucleon—

| nucleon interaction 1n terme of a potential, A rurther aim 1e to .

determine with whet uniqueness this potential can be determined
from the preeenx experimente, perticularly those at high energiee.
The program will be to assume a number of potential modele 8o |
adjusted that they fit the low energy region and attempt to correlate
the high energy ecattering with the varioue featuree of each model,
It 18 well known that the experimentel reeulte 1n the
low energy region can be described by an 1nteraetion potentiel; how=
ever, for eufrieiently high energiee relativietic correotione may
be expected to be ot major impertanoe. Deteiled scattering calou-
lations, using a field theory, show that the use of relativistic
momenta correeponde to calculating the kinematical eepeete rela-

tivistically, but that the dynamiell corrections depend on the -
1

-gpecific theory employed. Scattering deduced from a field theory

has, in general,vrelatlrietie corrections proportional to (v/e)z;
for example,retréo Mev (v/e)2 is 0.05 while eppreiimetely 10 percent
corrections are.fbund;By application of the Moller method to the

scalar and veotor meson theorieez.v These corrections do not have

1., Roeenreld, Nuclea Forces (Interscience Publiehere,'Ine., New

“'York), Vol 2, p. 311 ff. It might appear at first sight that

~ corrections. due to spin orbit coupling are of order v/c. Actually,
in a field theory calculation corrections which introduce this
coupling include also a gradient of the potential (e.g., the Thomee
term for the hydrogen atom) which in ecettering produoee an
edditionel factor of v/e, :

H. Snyder and R, E, Marshak, Phye.‘Rev. 72, 1253 (l9h7)



any noticeable similarity (even as to sign) between the various
field theories. Consequentiy;ﬂne shail attempt to fit the data
disregarding any relativistic correction. We may occassionally
recall, however, that an absolute ch01ce should not be made between
potentials each of whlch fits the experimental data to order (v/c) o
This paper shall be diVided 1nto three sections, In the
first and second section we shall conSider the neutron-proton and
‘the proton—proton system, respectively. In the third section we
shall summarize the apparent 31milar1t1es and differences in the
:two 1nteractions and cons1der the need for further expernmental
vand theoretical work as well as mention p0831b111ties for deter-

mining the neutron—neutron interaction.

 SECTION I - THE NEUTRON-PROTON INTERACTION

I, ?Qualitative:Discussion :

The experimental results of the low.energyrregion
(including some-deriVedfquantities)fare summarized in Table I,
None of these experiments give'information~concerning.the'explicit
'radial.dependence of the forces or of the forces‘infother than S-
states, and, in fact even the ranges are determined only approx-
imately. -In the triplet state there is a further uncertainty in
‘the relative central and tensor ranges, This latter uncertainty
would be removed con51derab1y if it were assumed that the magnetic
moment gave a measure of the D—state admixture due to tensor forces.,

Unfortunately, because of uncertain relativistic corrections3 this

R G. Sachs, Phys Rev° 2_, 91 (19&7), H Primakoff Phys° Rev.
12, 118 (1947); G. ‘Breit-and T. Bloch, Phys ‘Rev, j_, 135 (1947).
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forms an unreliable restriction. The.depths-of the various

‘potentials, i.e., singlet and triplet central and triplet. tensor,

are, however, accurately determined for any specified combination

_of ranges.

‘The high energy experiments consist- of angular measure-

ments at 28, 40, 90 and 280 Mev and total cross sections at all

these energies and at some intermediate energies. The experimental

distributions are shown graphically in Figs. 1l and 2. - The total

.-cross sections are tabulated in Table II.

We'propose'to f£it the data at 40 and 90 Mev first- and

then ascertain if the model or models determined will fit the .

‘remaining data. .The reason for -this choice is primarily because

this was the first. data available and it is still the most complete

" and experimentally reliable data: The expansioni(in'Legendre_

’

polynomials, P,(8) for the 90=Mev-distribution,is'
W+ o (8) = o [1 - 0.14P1(8) T 0.68P,(8) + 0.02P4(6)
t o.up .(e)-J

with an estlmated error of L 0.1 for the coefflclents of P (6)
through Ph(e) The most noteworthy result is the near symmetry
about 90°, We have therefore assumed that ‘the hO-Mev angular

distributlon, which has been determlned only in the range 60 —

180 is symmetrlcal about, 90 w1th the consequent expan51on

.mfc"(e) = & (1t 0.26P,(0) O.,OZP.E(G)) 5

‘with an estimated error of 1 0.1 for the P,(6) and P, (6) coefficients.,



The experimental total cross sections are tabulated in Table II.
: The low values for the total cross sections appear to be further
corroboration of the lack of odd harmonics‘in scattering., , A

‘A unique analysis into phase shifts of tbe experimental g
angular distribution is impossible due to the presence of the
mixture of singlet and triplet states as well as the complication
of the tensof force. Nevertheless, on thé simplifying assumption
of scattering with no spin dependence, the 90-Mev angular dis?rifﬂ-
butidn may be analyzed £o give the order of magnitude of the phase
shifts. The results of this are: S wave, 53° £ 5°; P wave, mlno
% 1°%; D wave, 5°EL 1% Since the P and D phase shifts are so
small,'we méy conclude that at 90.Mev~the s scéttering accounts
for about 90 percent of the total scattering cross ssc-:c‘:'t',i.on° The
high energy cross sections, therefore, determine the 'S scattering
fairly unambiguously. The potentials usually considered show
signifiecant differences in S 'scattering above 30-40 Mev when
‘adjusted to have the same loﬁ energy properties. The comparison
then of the‘S wave cross seétions provides one methéd of determining
the potential shape. |

The angular diétribuﬁion at a particular energy yields

information primarily concerning the exchénge character of the
forces., For'example, theories sdch as the "charged" or "neutral®
which predict large scattering in odd states may be immediately
discarded as unacceptable. The low vélues of the high energy Cross
sections also favor theéries without large scattering in odd states.

~ Finally, comparison of angular‘distributions at two or

more high energiés enables one to qistinguish shape features of the
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various potentials. This final comparison is.a critical test of
the potential shape since, while it is'possible with any shape,
by a pfoper choice of'range, to fit the anguiar distribution at
90 Mev and the low energy data simultaneously, it will not, in

general, be possible to also fit the 40-Mev angular distribution.

II. Computational Methods - |
Yarious approximate méthods were employed to avoid the
many tedious numerical integrations required for a comprehensive

investigation of the effect of the many parameters. These are

principally concerned with the integration of the radiel equations

to yield phaee shifts or eigenvalues.,  For a derivation of the
radial equations and the scattering amplitude with the inclusion
of tenser.forces see Appendix 1. ’

Most -of the calculations were done by:tteretion of trial
functions in the integral form of the equations. In order that
this procedure might converge rapidly, it wae~neceseary to have
good initial trial functions, especially in the case of potentials
with a deep hole atrthe”origin. Suitebie triel’fuﬁetione were
provided by the WKB approximatien (explieitly using one-third order
Bessel functions as the esymptotic repreeentetions)g This approx-
1mation has been further extended to the case of ceupled equetionl
as followso

Let the differentiel equetione to be solved be: |

u"+ A(x)u+‘ B(x)w 0 |

| w"-f ,C(x)w'+' B(x)u

1]

0.

b R. E. Langer, Phye.”Rev. 51, 669 (1937).



The desired representation of the solution is then

o .
[

= 'cqs nlo (S/S')% Zi/B(S)

sin n -(s/sv)% z. ,(8) .

S
9

1/3

Where

S kg A+Ci[@—ﬂkfwj}l,i
E 7 3

tann = 1 [Zst“)z.-f al s, |

with x) being a turning point of (S4)”. The 4 and - signs
‘correspond to two independent representations. The Z's'are.Bessel
functions of order one-third, The usual phase integral condition

‘for the bound state is replaced by the similar COndition,

)y Stax o= Sy,
*1

where Xy and x5 are the turning points and S, 1is a root of
J ]
(d/as) (s J. ' J S)] -
(a/as) ()* Lo, )+ 9y )

These representations have been found to yield close approxiﬁafions
to the wave functions at all energies, the S wéve phase shifts |
being, in general, in error by less tﬁan five degrees, aﬁd the |
wave functions exhibiting the correct genérai behavior. When applied
to the bound state, the phase integral condition yields potential

depths that are within 10 percent of the correct value.

A
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The bound deuteron state was numerically iterated using

the variation-iteration® method, using as a trial function the
approximate WKB functioné abov'e° Three iterations‘yielded an
eigenvalue and wavve,f‘unctions with an accuracy of abo‘ut'qqe pe;‘—
cent, The accuracy was essentially limited by t.he‘ nume.rica];
methods used (intervals cc‘arv'respon‘di'ng’ to one- to two-tenths of the
effective range were_used)., | | )

For thé 381+ BDl. sr:a.t.t,eringr state, the appropriate

WKB "functisons_ furnished trial functions for the coupled integral

'syst.em"
w .
u = Asinkx+ M/ 1 5 G, (kx, kx')
' o

X [7,6et) ute) + 22 “‘Vlt(x').w(x')]. dx'

oo

w oz Bgy(i) + u/ h2 f 6, (ix, dox')
._ 5 |

/

.A X{[Vc(Xi) = 21Vt(x¥):l W(X')+ 23. 23 .Vt(.x'?)u(xl )] d.x' ,

where A = 1, B = 0 corresponds to the choice of the positive sign

. 1.2 )
~in (S¢ )" and

N, Svartholm, The binding energies of the lightest atomic .-
nuclei, University of Lund (thesis Phys. Inst. 86 pp. (1945)).
.J, Schwinger, Phys. Rev. 72, 742(A) (1947), and hectographed :
"Notes on nuclear theory," Harvard (1947).
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A = _L cos kx! L—V (x! )u(x )+ 23/26 Vt(x_’)w'(x'_)] dx' ,
H%k ‘ S
v o o A

B = 1 corresponds to the negatiire‘signo Further, | o y

G, (kx, kx') = (1/k) sin kx < cos kx5

Gzl (kx, kx') -(l/k)3 gz-(kx) < k?"gm;2 (kx) » . ..

where x ¢ means the lesser of 'x and x' , and’ gz(kx)r and
g_z(kx) are the regular and irregular spherical Bessel functions
of order 5/2. |

The potential has been written in the form
V(I‘, o ) = Vc(r)+ .6 312 Vt(r) o

The iteration of the integral equations above was carricd out
numerically with the normallzatlon of the trlal functions so
chosen that the iterated functlons matched the trial functlons in
the region where the kernel of the 1ntegral system is largest..
Three 1terat10ns for the S domlnant mode (i.e., with A1, B=0)
and one for the D dominant mode yielded phase shifts with an
accaracy of about twb ﬁercanto

S phase shifts forbthe singlet state, and for the triplet
state without tensor forces, are most quickly determined by straight- &
forward numerical 1ntegration° For other uncoupled states such as

the JBD2 state the phase- shlft was calculated using the varlational

3p

procedure with the 2

component of the plane wave as a trial
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function. The phase shift in thei'BDj-f-BFB_state was computed
using the same procedure as for the vsslﬂf 3Di state. . One-
iteration yielded an accuracy of two percent, . :

The Born approximation-was used to'effect‘the inclusion
of the angular momentuih statesi for »(?.l; in the scattering sum.
The sum was, in general, done by actually summing the individual
terms for 14 3, using calculated phase shlfts, and addlng the
Born cross section from whlch these states had been suitably sub-
tracted (See Appendix 1).- The angular distributions so derived are

aceurate within two to five percent..

11T, Central Forces

We shall con51der in thls section the results of scatter—
ing from a model whlch cons1sts only of central forces 51nce, as

will be seen later, 1t is p0331ble to make a state-by-state

comparlson of the scatterlng from a central force model and from

one whlch 1ncludes tensor forces,

The detalls of 1ow energy scatterlng w1ll not be treated
here, but rather, the reader is referred to the review of Blatt
6
and Jackson o One result of thelr work is that in the expansionv

(the notatlon is explalned in Table I)
kcot3ss = -(1/%a) + 1Ce)e - Sk SR

the shape dependent coefflclent T is suff1c1ently small that

below 6 Mev 1t can be neglected and, in 1nterpret1ng the experlments,

6 J. M, Blatt Phys Rev, 1&, 92 (l9h8) J. M, Blatt and J. D; “Jackson,

Phys. Rev. z_, 18 (1%9)
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the shape independent approximation may be used. The .effective
range in the triplet state is determined, therefore, by the

approximate relation -
(1Pa) = (/g [1- 3Cr/ry) ]

Substituting the experimental values from Table I, we obtain

2 1.68% 00x10 e

‘Figure 3 is a plot of effective range versus intrinsic range for
the triplet state of the various potentials.

The singlet effective range is not determined with as
ﬁuch precision. The determination from the total scattering
eross section is best done in the region from O to'2;Mev, where
the‘triplet scattering is smallest v(see-Figo L). Itluay-alsob

be determined from the capture cross section, (see Table I)

To 51mplify the analysis of the high energy data, 1t is

convenient (and reasonable) to assume: exact symmetry of scattering

about §0° This means that the potential is assumed to be zero
1n odd parity stateso» The experimental results are actually
compatible with a small repulsive potent1a1 1n;odd states, but
this shall be cousidered as a.small perturbatién which will not
essentially alter anyvof the following conclusions° The factor
3(1+ P,) will, therefore, be included as a faﬁtor in the
potential and will have as one consequence that-the total cross
" section cemputed for any radial»dependence will.be the minimum

possible over any other choice of exchange de}ﬁendence° The main
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effect of:any'admissiblefodd ﬁaVe phase shifts:is the'intefference
with the largéfowave‘phase shift;iwhich.is in evidence only in
the angular distribution, and its actual effeci on the total cross
sectionais negligiblé°
y In order to compare different potential'shapes;ﬁthev
effecti%e fangé has been taken as a common'parameter° For example,
we have plotted (Fig. 5) the 8 Wa§e phase shift at 90 Mev for the
various potentials versus the effective range. This device insures
similar low energy behavior for the same abSciSsac‘ A
* In Fig. 6 are plots at 90 Mev, for the'variousfﬁotentials;' '
‘of the total cross section and of L7 times the differential cross
section for scattering at 900 and 180° as functions of the effective
- range on the assumption of no odd parity interaction. For the’
plots of complete total cross section, i.e., the sum of triplét
+and singleﬁ scattering, it is necessary to make somé choice of”é
singlet range corresponding to a particular triplet.fang‘e° LThe
low energy region implies only loose restrictions on thé singlet
range; we may, therefore; choose the singlet range so that the
singlet and triplet intrinsic ranges are equaig» The results for
the complete cross sections are also shown in Fig. 6. From these
plots it is possible to make further limitations on the allowable
- triplet. ranges by'a’doméarison with the experimental values of
S (180‘9)/0'(90°)-° » A

With the Yukawa or exponential potential, a range

adjusted for the 90-Mev ratio predicts a 40-Mev ratio within the

‘experimental limits. However, with the square well potential, - -
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the range required at LO Mev is conéiderably larger than that
-required at 90 Mev. This difference in behavior results

primarily from the more rapid decrease in .c‘(90°) with energy
increase for the "cut-off" potential than for‘the "long-tailed",
potentials. This, in turn, can be interpreted in terms of the

- destructive interference between the S and,D.waves‘at 9O°° In
detail, the S wave phase shift decreases more rapidly_(as a |
function of energy) for the cut—off potentials (Fig. 7). .Further .

the D wave phase shift is nearly a linearly increasing function

~. of energy for the long-tailed potentials, while the increase

with energy is much more rapid for the cut—éff potentialsi(Fig. 8).

For potentials which have a- '"deep hole" at the origin
(e.g., the Yukawa and exponential), the long-tail is necessary to
give a sufficiently long effective range. - However, as the energy
increases the contributions to the S wave phase éhift come from
regions closer to the origin, and, consequently, at high energies
the deep hole (and, therefore, long-tailed) potentials yield |
larger phase shifts than the cut-off potentials (eog,, the square
well or Gauss potentials). These remarks are further illustrated
by reference to Figs. 5 and 7.

~While it is impossible to define the lihits of the

13 cn

singlet effective range with any accuracy, for 3r 1.7 x 10 s

the best fits for the angular distribution are obtained with the
=1
singlet effective range between 2.5 - 3.0 x 10 -3‘cm°
The complete angular distribution is shown in Figs. 9 and

10, for the Yukawa and exponential potentials with ranges chosen

such that they are both good fits of the angular distribution at

A
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9C.Mev° from this the superiority of tﬁe Yukawa angular distri-
bution at 4O Mev is apparent° The totaI cross sections, however,
are in much better agreement with the exponential potential,

The ohly partial waves contributing appreciably to the
cross sections are the S and D waves, consequently, the engUIar
distribution can be expanded in terms'ofnLegendre polynomials™
' P2,'anvah, The coefficient of P, is identical with the total

cross section, that of P, arises primarily from the interference.

o?

between the S and D states, and that of Ph arises prlmarlly from

the comblnatlons of the varlous D states° _These coeff1c1ents

~allow a rapid cemparlson of theory and experiment and are therefore.

tabulated in Table III for all modelé mentioned explicitly°

If we con31der the Yukawa and exponentlal potentlals of

Figs. 9 and 10, we see that the only dlscrepancy with the

experimental values of the coefficients occurs in the magn;tude
of the Ph coefficient which is perhaps a factor of two to three

too large. This is manifested in the angular distribution by a

theoretical prediction that is somewhat too flat in the region

about‘9Q° o , , .
Flgure 9 and Table III show the effect of addlng a M~a”‘LCdL“*”
small repulsive potential in the odd parlty stateso This i;:j:;fy

modification may be expressed by a potential factor, QL-a+ aﬁx).
v—T‘he best fit for this type of exchange interaction is a = 0.55%

0.05.

The large odd state potentlals in the 51ng1et state

requlred by the symmetrical theory produces far too much exchange

scattering for any potentials with a,tail and a range compatible



with low energy scattering. For cut~off potentials such as the
square well, the observed ratio cy'(l80°)/cr(90°) may be.fitted

at 90 Mev with a range of 1.7 - 1.8 x 10713 cm; however, at 40 Mev,
a fit to & (180°)/a(90°) would require a range longer than

2.0 x 10_13 cm. Furthermore, in these latter cases the shape of
the predicted angular diStribution is not.siﬁilar to the experi-

mental results for small angle scattering. The'Symmetrical-theory

can, therefore, be ruled out for central forces,

IV. Tensor Forces

A, The Bound State and Low Energy Scattering

The.existeﬁée of the deuteron quadruﬁdle moment requires
the inclusion of a tensor potential in the neutron-proton inter-
action, We consideryfifst the case where the radial dependence
is chosen the same for bbtﬁ the central and tensor poteﬁtials,'
The'eitreme cases of long-taile& énd cut-off potentials are exempli-
fied by the Yukawa and squafe well, respectively. Calculétions of
thevqﬁadrupole moment have been made for these potentials as a
function of range and tensor depth with the central depﬁh adjusted
to give the correct binding energy. The results are presented
graphically in Figs. 11-13. |

-The calculations of Rarita and Schwinger7 have shown
thatAat least for the choiéevof a square potential, there is only
Slight modification‘of the low energy scattering properties upon
the introduction of tensor forces. Such behaviorvcan be expected

for more general potential shépés with'fénges shorter than the

7.W° Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).
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deuteron radius ‘since the S wave component is determined primarily
from the boundary conditions at the origin and asymptotic&llys°

.Wé can put these arguments on a dquantitative basis by
the consideration of an ﬁequi#alént central potential," "W(r)".
For the potential V(r) = Vc(r) + ¥ 515 Vé(r), the equivalent

central potential for the S wave is

3/2

(eI = Vo(r)+ 27 €V, () R(x) ,

where R(r) is the ratio of the D wave to the S wave. R(r) will be,

in generai, a slowly varying function of - the energy'(aﬁ least in

the region where the pdtential is large). Its form may then be
estimated from cohsidérations'of the bound statersolut;ionso It is
found then that R(r) is zero at the origin, increases to a maximum

#alue (about 0.2 or'003) sdmewhere between the maximum of the S

wave radial function and the tensor force range, and decreases a

symptotically to a small value (somewhere under 0.1). Then if we

 consider the ratio of the equivalent potential "V(r)" to the

central>pbtehtiai Vc(r) (the latter adjusted to give binding by
itself),‘we would find the rAtio to be less than unity at the
origin, greater thénvﬁnity_in the neighborhood‘of the rahge, and
again less than ﬁnit& asymptofically; Thus the éduivalent potential

will be shallower at the origin and asymptbtically,,and will be

':dgeper in the neighborhood of the tensor range.

This can be further illustrated in terms of the WKB

‘approximation. In this approximation, R(r) is independent of energy

8 W. Hefner and R. Peierls, Proc. Roy. Soc. 181, 43 (1942).
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and decreases asymptotically to zero° The equivalent potential in

this approximation is

| N ; A 2
g Vc'*"“.’t“-i-i‘r @V, + _f?) + 8(%V,) ] = .

Since the centrlfugal potentlal is usually large compared to the -

.tensor potential, this may be 51mp11f1ed to
_ o .
"V" - v + l" ( Krvt) Pl

whico is clearly in agreeﬁent Qith the breCeding remarks.,
The analysis of the low energy scattering is again

conveniently cerried out io terms of the eipansion of the phase-
shlft in powers of the energy9 Since the shape-independent
approx1matlon is valld for Yukawa ranges less than 1.4 x 10 -1 cm
and for all square well ranges cons1dered the effectlve range-ls
essentlally determined from the trlplet scatterlng length (The
exp11c1t value of the shapeadependent coefficient as well as the ‘
effective ranges are shown in Table IV for a number of cases., )
We have chosen, therefore, in order to relate the scatterlng
characterlstlcs of a potentlal w1th its ab111ty to produce a
quadrupole moment to plot 1/a‘versus the scattering length

(Fig. 14) with the range indicated parametrlcally along the curvesv
From this plot we can cooclude'thatlwith theveccepted‘value of the
scattering length; the proportioo of tensor'potential must be quite

large, the actual amount being lower for the long-tailed potential.

9'R° Christian, Phys. Rev. 75, 1675 (1949).
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- The low:energy constants fqr.ﬁhe case in which the tensor

‘force range is increased relative to the central force range are

given in Table IV and Fig. 15. From the equivalent potentiai‘we

see that the main effect is to increase the long-tailed character

‘of the potential. This is evident by the decrease in the percentage

D state and by the increase in the shape-depéndent coefficient,

B, High Energy»Spattering'(hO and 90 Mev)

We will attempt in the next paragraphs to gain a

qualitative understanding of the relation between céntral and

tensor scattering. ;Then«we will consider the result of various

models, the calculations being carried out by the methods previously
described,
Aé in the case of central forces we must adjust the

ranges So that only the S and D partial waves contribute to the

cross section. We would then expect that if the tensor force were

a weak effect we could add.the tensor scattering which would be

present in Born approximation. Actually, as we have seen, the

- tenmsor force is far from weak and the approximation can only be

expected to give the'genéral'trend° The characteristic peaking
of the Born approximation cross section around 45 and 135° (the
exact angle depending'upoh thetmddél, rénge, and energy with a
maximum occurring réughly where 2kR sin 6/2~1) is, in fact, the

typeFOft¢orrection:nééded to explain the diéérépancy between the

‘shapes of ﬂhe'eXperimentalléﬁrveé and the central force curves -

shown in Figs. 9 and 10, i.e., such a cbrfection COuid convert the
U;shéped.centfal'fdrcéHCurﬁes”iﬁfo‘thg mofélvééhapéd‘éxperimeﬁtél

curves,
A



For a somewhat more detailed comparison we will again use
the WKB approximation to approximate the equivalent central potentials,
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‘In the approximation whire we neglect the asymptotic
amplitude of the coupled mode, as above, in the evaluation of the
phase shifts there will be no difference between states of different

magnetic quantum number, m however, the WKB approximation yields -

e’
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angular distributions which agree with tﬁe'resulté of a more accurate:
calculﬁtion within 10 to 20 percent. - |

As can be expected on the basis of the "eéuiValent potentialsﬁ,
there is only a small difference in the-tétal scattering from the 331
State° Further; we can summarize the behavior .of the various D
states in the folloWing:-(BDl)'Increasing the tensor depth (i.e.:7 )

decreases the equivalent potential and for strong tensor forces the

resulting'potentiél will be strongly repulsive, (3D2) Increasing ¥

’increaSes the potential depth to such an extent that for 7 =Z,1, the

depth is three to four times as deep as the depth on the central
force model., (3D3) ‘The potential decreases-for increasing ¥ such

that for ¥ 22 1 the potential will be just barely repulsive.

‘(Approximately:the same ‘effects can be achieved by increasing the .

tensor range instead of the depth.)
TO“illustraté these remarks we will consider the high

energy scattering from two extreme examples (calculated exactly):

v(l):The central and tensor depth are approximately equal with the

: - - _ _ -1
square wéll radial dependence of range 2.7 x 10 3 cm; (2) the tensor

depth accounts for practically all the binding with a Yukawa

13 cm., In Table V we have

" summarized the contribution of each state to the total cross

section and indicated the sign of the phase shift (i.e., the averagei

over ms),»'The‘results of the central force model with the same .

range and radial dependences are included for comparison.
Utilizing ﬁhis'comparison'bétween the tensor and central

force models we can conclude that the potential must be long-tailed

in order to maintain the relatively large scattering in the D state
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at 40 Mev without éxcessively large scattering_in the D state at
90 Mev, Cut-off (e.g., square and Gaués) ﬁotentials where the
tensor force has nearly the same range as the central forces are,
‘therefore, unsuitable. . An adaition qf a long shallow tail '

(5 = 6 x 10733

cm) to the square well is reqﬁired in the central
force case to fit with the 4O- and 90-Mev scattering and would,
therefore; also be required for tensor forces. Potentials formed
by the addition of such long=tails,would seem to be indistinguish-
able from naturally long-tailed potehtials such as the exponentiél
or the Yukawa»potentialo- |

- The results of using the Yukawa and exponential radial
dependences (seevFigso‘lé=18) indicate that_the additi§n of tensor
forces causes only relatively small changes in the scattering.
The best fits of the angular‘distribution require slightly longer
ranges than for the purely tensor model., A detailed comparison,
using the'iegendre coefficients, shows that the Ph(e) component is
‘reduced in ihe tensor model. It is this decrease which ailows |
considerably better fits of the angular_distribﬁtion and is there-
fore evidence for the presence of tensor forces in sCatt_eringo The
total cross section is increased, however, approximately 10 percent
with the addition of tensor forces so that the agreement w;th the
experimental value of tﬁg total cross sgction ié poorer,

The same situation holds for the tensor model as for the
central model regarding the intercomparison of the Yukawa and
.exponential potentials. That is, the Yukawa potential fits the
angular distributions,aﬁ_both 40 and 90 Mev noticeably better;

howéever the total cross section is 20 to 30 percént too high. The
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total cross section with the exponential potential is only 10 to 15

percent too high, .Since the long<tail, which is necessary to fit the

" angular distribution, forces the potentials considered here to have

a déep hole also and consequently high cross section, it ﬁould seem

that an»essentially>more complicated radial dependence would be

' necessafy to fit the experimental results more closely.

The exchange character found necessary for the central

force model is also valid, in the main, for the tensor force model

(see Table III). As an example of spin dependent exchange dependence

we have considergd'the‘case when -the central force has a %(l-+' Px)
exchange dependence and the tensor force exchange dependence was of
the form (1 = a 4f aPx), This does not produce as large asymmetries

in the angular distribution as when (1 - a + aPx) is taken as a

‘factor of both the central and tensor potential. The restriction

on the magnitude of a now arises mainly from the increase in the

"total cross section., These limits are estimated to be a = 0,6% 0.1,

. The principal change in the high energy scattering with

increase in tensor range, is according to the WKB arguments, similar

to an increase in the long-tailed character of the potential. The

high energy scattering results are shown in Fig. 19 for the cases
listed in Table IV. -There is an increase in scattering from the
higher states which may be interpreted as the increase in the long-

tailed character or alternatively as showing that the characteristic

- 'Born approximation tensor peaking is displaced to smaller angles.,
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V. Additional N-P Experiment

| The angﬁlar.distribution has been measured at 27.2 and 280
Mev (see Figs. l-and.ZO)o Total cross sectiohs have been measured at
various energies extending from 20 to 270 Mev (see Table I1).

The comparisoﬁ of the.27°2 Mev data with the Yukawa tensor
model is shown in Fig. 20, From this we éeé that again as at LO Mev
the predieteé angular distribution is somewhat flatter thah the
experimental data. The accuracy of the experiment is not sufficient,
- however, to definitely exclude this model. It méy bé.noted by

" reference to Fig. 6 that the ekponential radiai form would predict
an even more isotropic distribution and can therefore probably be
eliminated. The cross section predicted for the Yukawa model is
0.344 bérns as compared with the experimental value of 0.36 T 0,03.
barns. | (

The comparison of the 280 Mev data with the Yukawa tensor
-model is shown in Fig. 17. The agreément is very good; which would
not have been the case if the exponential model.(or any of the
purely central force models),had been used. A striking confirmation

of the general properties of the Yukawa model is thus found from
the high energy datao\

Next we wish to note that all of the models seriously
considered (because of the smallness of the odd state potentials)
predict nearly isotropic distribution at 14 Mev in agreement with

10
the recent experiments of Barschall and Taschek who find isotropy

within their statistical accuracy of six percent,

10 :
H. H. Barschall and R. F. Taschek; Phys. Rev. 75, 1819 (1949) .
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SECTION II - THE PROTON;PROTON'INTERACTION

¢

I. Introduction

In this section we will be concerned with the protor-

11, 12 1
g and 340 Mevw 30 The success

proton scattering dataAatﬁBZJMev
' ﬁhat wés obtained in the nnp‘system'WOuld seem to be sufficient
grounds for expecting that p=p scattering would likewise be
interpretable by means‘dfvétatic poteniialé° In fact we might
be tempted to predict the p-p nucléar potential from our knowledge
of the n-p potential as determined by the high energy 'scattefing°
This prediction could be made either on the hypothesis that the
nuclear potential is chargé independent (ioéo, depends only upon
" whether the tw0’particles are in é singlét or triplet spin state),
" or in terms of an attempt to explain the saturation of nuclear
forces.

If we were to follow the first assumption (the so-
called charge symmetry hypothesis)‘thefe would be no free parameters
entering the p=p theory, since the results of the n-p experiments
are‘quite‘defini’lce° For both singlet and triplet states these
'éxperiments<éhow"that there'ére no (or #ery smali) odd parity
forces. Therefofe‘on the basis of §harge symmetry one might expect
that the n-p and p-p scattering would be quite similar, This is
in obvious diSagfeement with the experimental results as is seen

in Fig. 21.

11

W, K. H, Panofsky and F. Fillmore, Phys. Rev. 79, 57 (1950).
12 - '

Cork, thnston and Richman, Phys. Rev. 79, 71 (1950).
0. Chamberlain and C. Wiegand, Phys. Rev. 79, 81 (1950).
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In érder to better understand the prediction of the charge
symmetric theory we must consider in more detail the/fundamental
differences between n-p and p-p écattering° Firstly,vfbr 32=ﬁev
protons the Coulomb repulsion is dominant in the scattering at
’ angles'iess than 20°, Between 20° and 40° or 500 the angular varia-
tion is governed by the nuclearfCoulomb iﬁterference terms. The
remaining region around 90° is virtually the same as for simple
nuclea¥ scattering. Secondly?'the p=pfsysfem, being composgd of
identicai.particles‘obeying the excluéion principle, has feﬁgr
states than the n-p system3 Specifically only even parity singlet
states and odd parity triplet states can be present. Thus scattering:

1 3

occurs only in S, 3P, ng F, ..., states, and the charge symmetric-

tﬁeory predicts the virtual absence of triplet scattering., The n-p
system, on the contrary, has séattering from both singlet and
triplet even parity states so that a”direct comparison must be
justified. In order to learn what part of the compléte n-p
scattering is singlet scattering we must recall that in order to
lead to the low total n-p cross section the singlet range must be

greéter than 2 x lOm13

cm, This gives an angular distribution for
the singlet cross section that haé an even higher ratio of
<T(180°)/0‘(90°) than the complete scattering from both states,
making a direct comparison‘of the relative angular variation of
the complete n-p and p=p Cros: sections possible in the region
from 500 to 90°° Thﬁs the 32-Mev p-p resulﬁé.show ihat the charge
éymmetry hypothesis is untenable.
Alternatively we could attempt to predict the p-p scattering.

by'directing our attenfion to the phenomenon of the saturation of
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nuclear forces., The n-p experiments rule out the possibility of
n-p repulsive forces of anything like the magnitude required to .
 éxp1ain saturation, The lbw energy experiments show that the :
singlet. p~p forces are attfactiveo Thus the only rémaining_way for
the p-p fofces to lead to saturation would be the existence of
strong repulsive forces in the triplet state. Since the triplet
scattering amplitude is antisymmetric, the scattering from a central
triplet potential is zeroc at 900° Hence such repulsive forces would
.lead to an angular cross section rising even more rapidly on either
side of 90o than that ppedictéd by the charge symmetric_theory and
are conclusively exciuded by the daﬁan _

Thué both the hypothesis of the'charge independence of
nuclear forces and the possibility of strong repulsive forces in
the triplet p-p state such as seem to be required for the saturatibﬁ
of nucle#r forces are already disall§wed by‘the‘p=p_s¢atteringbat »
.32?Mev° The 340-Mev scattering is even more strikingly anomalous
(see Fig. 21). The experiments indicate a nearly spherically
symmetric distribution over the range from Alo,to 90o having an
absolute magnitu&e.that is twice the maximnm\possible for S wave
scattering alone. Since the n-p scattering at 280 Mev was in good
agreément with a non-relativistic potential model it is difficult
to accept.this as a relativistic effect. Again both charge sjmmetry
and repulsive triplet forces would lead“tdlscattéring strdngly
péaked'ailbo‘aﬁd 180° and an drdér of magnitude lower in value aﬁ
90°‘than the observed p=p cross section, and are conélusively'dis=
proVed, This ECattering_is supe:ficially similar to classical hard

sphere scattering. However, since the wave-length of BAO.Mev protons
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is only three or four times shorter than the raﬁée of the attractive
region that must surround and include“such a sphere in order to
explain the iow energy resﬁlts, the sphere cannot be made large enough
to give classical hard sphere scattering at this energy. This point
is discussed in more'detéil below.
In spite of the surprising divergence of the observed

p;p scattéring from that which had been expected previous to the
experiments, it has proved possible to reconcile all the existing
~ data with the écattering predicted from a static nuclear potential.
This model consists*of'a'shaliow §inglet‘potential and a'highly /
singular triplet tensor poten£ialo' The main sectiondf’ this paper.is
concerned with justifying this model. |

In view of the apparently fundamentalvdifferences between
‘the expected and the observed p-p scattering; and the various
complicating factors in the anal&sis of‘the data,; we have'dévoted
the first part of this section to a more or lesé qualitative
discussion of p-p scattering. In this section we will give typical
results for various potential models but will not discuss which
‘radial dependence is to be‘preferredo- Rather weé wish to emphasize the
salient féatures in the analysis in,ordef to furnish a basis for

understanding the calculations which follow in Part III.

II, Qualitative Discussion
,It has been shown by many authors that the experiments

. , . 1 ,
below 14 Mev are compatiable with S wave scattering alone,h and

1h Yost, Wheeler and Breit, Phys. Rev. 49, 174 (1936). Breit,

Condon and Present, Phys. Rev. 50, 825 (1936). Breit, Thaxton
and Eisenbud, Phys. Rev. 55, 1018 (1939). Hoisington, Share
and Breit, Phys. Rev. 56, 884 (1939). H. M, Thaxton and L. E.
Hoisington, Phys. Rev. 56, 1194 (1939).
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" that these experiments have determined only the scattering length

15

and effective range™” . This indicates that no one of the radial
forms usually assumed is to be preferred. It need hardly be -

emphasized that the low energy experimeiits give little information

‘concerning the interactions in states of higher angular momentum

(especially the P state) other than putting upper limits on the

‘magnitudes of the interactions in these states.

The n-p experiments at 4O Mev have sﬁown that there is
scattering in the D state and little scattering in the P state,
and that the magnitudes of these interactions could b'evd'ete'rmirie'd°
It was therefore expected that since the range of forces for the
p-p system is comparable, the scattering would likewise occur pri-
marily in the S, P and D states. |

Tt was observed immediately, as has been pointed out in
L 2, that ‘the data were in good agree-
ment with that predicted by S wave scéﬁtering alone. This is in

definite disagreement with the'scattering predicted by the usual

: potential models, The reason is that the S state interaction

completely specifies the entire singlet interaction, and in
particular the effective range is so long that the D wave predicted

at this energy'is incompatible'with the ekperimental results. (It

would of course be possible to choose a potential that WOuld give

only S scattering at 32 Mev, but the effective range of such a-

5 J. Schwinger,. Phys Rev. 72, Th2A (19&7) J, M, Blatt and J. D,
Jackson, Phys. Rev., 76, 18 (1949), Rev. Mod. Phys, 22, 77 (1950)
H. A. Bethe, Phys. Rev., 76, 38 (19&9) '
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potential would then be much too short to fit the low energy region.)

If we'consider,in detail the predictions of-therusual'
models we find that even for the most cut-off potential (thé square
well) the D phase shift is already tqo-large (00770), and as is to
be expected the more long-tailed Yukawa potential has an even larger
D pﬂage shift_(loho)° The adverse effect of such D phase shifts_
on the angular distribution can bevfeadily seen by reference to the
second panel of Fig., 22. The origin of this effect is destructive
interference between 5- and D-wave scattering in the region around
90°. This interference term is proportional to sinSS sind,
cos (& s -,SDA)PZO (Pz(cos 8) = % cos? e - %—,.) ‘FTAhe usual ‘modells
predict positive values for 6.'8 and SD’ 8o t.hét this term has
a minimum a£-90°_as is observed in the n-p scattering but not in
the p-p case, (Figure Zé also demonstrates that the Coulomb
scéttering has little effect in the region from 50° tp.90° and hence
cannot alter this conclusiono) . |

The central triplet scattering amplitude being anti-
symmetric leads to a cross section:that is zero at 900, and since
there is no interference with the singlet state it can onlyvadd_to
the rise away from 900° Therefore scattering in this'state will
increase ﬁhe discrepancy'between the predictions made from the
central force model and the experiments, A;ternatively we can see
this directly from the fact that the P scattering is proportional
t.o sin2 SP 0052 6,. showing that the 0032 ® term must have a |
‘positive coefficient. These effects are illustrated in the third

panel‘of Fig. 22.

-
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* In order to explain the 32-Mev data, ﬁe require a model
that would predict essentially spherically symmétric scattering
in the abééncenof the Coulomb field. We have already seen that
central force scattering predicted by monatonically decreasing
potential models of the usual radial form is in qualitative dis-'
agreement with‘éxperimént, Conceivably a more c&mﬁlicated-radial»
dependence, such as a repulsiﬁe'lip oh'a square well, could lead °
- to{negligible D phase shifts at 32 Mev. Attempts to build such
models have been unsuccessful because they have effective ranges
too short to fit the low energy data, In view of\tﬁe'straight=
forward interpretation of the n-p scattering and theAinherenﬁ
" difficulty of using such a model to fit the 350-Mev data, it did
not “appear profitable to pursue such models any further.-
| The remaining alternative, within the framework of  the
potential picture, is the possibility that the D wave is masked
by the scattering from tensor forces in the triplet state. A
favorablé result is predicted by the use of the Born approximation
'"td'cémpute*tﬁé scattering (see Fig. 23). (The Born approximation
is valid for the P waves since the centrifugal béfrier’reduces the
“effect of the nuclear potential to a small perturbation.) The
‘scattéring computed*this;ﬁay'is peaked at 90° and hence can add to
the singlet cross section, which aips at 9OQ, to give an almost
flat nuclear cross section. When the Coulomb effects are included
the resulting angular distribution is quite similar to S wave
scattering (see Fig. 24). Thus a proper choice of range and depth

for the tensor potentiél can lead ‘to agreement with the experiments.
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(An alternative way of understanding why the scattering can have a
finite value at 90O even though it takes place in odd states is
that the tensor force brings about a ¢hange in angular momentum,
‘and tesseral harmogics other thaq the Legendre.polynomialsventer
into the scéttéring amplitude, We can then see that the presehce‘

ig

0
sin @ in addition to ¥ (6, @) = cos © leads
2

of ‘Yll(e, @) =e
to terms with a sin2 6 symmetry which when added to the cos
symmetry terms in the singlet scattering could lead to a flat nuclear
cross section.,) |

The 340-Mev data will first be analyzed indepeﬁdently of
the 32.--Mev‘data° ‘The two models so derived Qill then be compared
and reconciled. In order to further emphasize the anomalous naturé
~ of the high ehergy-scattéring, we note that if we assumed (arbi-
trarily) that there were no interactions in other than S states
the predicted éross section would be spherically s&mmetric but
ten or more times too small. (ﬁecall\ihat even the maximum possible
S wave cross section is oniy one-half the measured value.) The
Coulomb Scatterihg.falls to the value of the nﬁclear cross éectién
between 6° and 7o so that Coulomb effects_will be unimportant
beyond about 12° and héve been neglécted in our._a-nalysis°

To analyze the situation in somewhat more detail we shall
first consider the scattering that would result from the singlet
state (since in this staté the potential ié,cdmpletely'specified
by the assumption of a particular radial form), At 350 Mev the
Born approximation is valid for central scaptering and predicts
the strong forward maximum illustrated in Fig. 25. Alternatively

we may view the problem in terms of a partial wave decoxrg_position°
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Only the even Legendre polynomials comprise the scattering amplitude.
The even polynomialé are all 1 at 0" and'1800'and alternate in sign
at 90° (e.g., P(90°) = 1, Py(90°) = =0.5, P,(90°) = 0.375, o)
Scattering by the usual monatonic' potential models predicts that -
all phase shifts will'have the same sign, so that ‘there is con=‘M
structive interference at 0 and’ 180° and destructive ‘interference
at-90°, giving a characteristic peaking of the angular' distribution.
" In order to obtain a flat cross section it would be.
‘necessary to require that the ‘sine of the phase shifts of even
" parity alternate in sign with ‘increasing 47, resulting in a siﬁglet.
~ cross section peéked3at'900¢3 Then if this cross section were added
to the central triplet cross section (which is always zero at 90°)
a flat cross section would result. It does not appéér'poSsibleé
however, to find a singlet potential-that will fit the scattering
. in the low energy region while at the same time predicting the '
required alternation in sign of the high energy phase shifts.’
Before turning to tensor models we will first consider =
the so-called hard sphe;efsdatteringo"To give this type of scatter-
ing phase shifts from high énéular momentum states must be involved
some of which must be greater*théniISOo in oréer to changé.the
" signs of the sines. One can estimate by reference to Fig. 7 of
"Mott and MasSey16 that in order to give agreement with the experi-
ments the phase shifts must be large for angular mementum states

up to ' £ = 20. At this wave-length of 0.5 %1072 cm it might -

16_N9 F. Mott and H. S, W. Massey, THE THEORY OF ATOMIC COLLISIONS,
~ (Oxford University Press, London, second edition) pp. 38-40.



appear that a repulsive core in the cehtral potential would give
this result. An attempt was made using Morse potentials to find E
a model that would predict hard sphere“scaitering af 340 Mev..
These potentials consisted of a repuléive core surrounded by an
attractive region adjusﬁedvto give the correct scatterihg behavior
at low energies, It is found that even in the limiting case where
the repulsive core becomes infinitely high, the low enefgyrexperi—'

13

ments require the radius of the core to‘bevso short (1.2 X'iO- cm)
that at 340 Mev only the lowest angular momentum states are involved
in the scattering (for a?ﬂ} 6, §[4L Oolo), It therefore appears
that the effective range of the potential well will limit_the
radius of any potential té such an extent that hard sphere scatter- -
ing cannot resﬁlto Alternatively we may note that even if ,we do

not fit the low energy scattering, the abéoluteiialue of ﬁhe cross
section predicted by hard sphere scattering would be much too

large. This can easiiy be seen by-noting that the experimental
value is 2 7(2 per steradian while that predicted by hard sphere
scatterint must be of the order of 2(207T)2 since the extent of

the hard core must be approximately 20X.

Again we must appeal to the tensor force in order to
obtain agreement with the gxperimental data.” In fact, if we recall
that at 32'Mev we heeded to add a triplet cross section thgt was
peaked around 90o in order to mask the minimum in the singlet
scattering we see that thé situation at 350 Mev is very similar,

We can again use the tensor force to obtain agreement; for in Born
approximétion scattering depends only on the coﬁbiﬁation kR where

k is the wave mmber and R the range of the potential. That is,
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to produce the same scéttering at a higher energy we need only
contract the range by a factor that is the squafe root. of the
engrgy ratio, and adjust the depth to give the desired absolute
magnitude to @he scattering..

We therefore have indications of a tensor potential'étv
both 32 and 350 Mev, and need only show that-the requirements for-
the two cases are compatible., As the'enefgy changes different-
regions of the potential will play the more dominant role. For
‘example, at 32 Mev the potential region at distances of the order.
of 3 to 4 x 1072 ‘em s most . important while at 340 Mev the
potential region at distances of the order of 1 x 10m'3-cm.has
become impofta'nt° By adjusting the range and dépth‘ofva'tehsor
potential of any given radial form the predictions may be made “
to fit the 32 MéVvexperimental data, HOWEVer, éb 340 Mev the P -
wave protons are able to explore tﬁe potential into considerably
shorter distances and it is necessary to have - a stfong'intéraction
in this region in order to expléin‘the very high BhOeMev—crqés
section. The tensor scattering calculated for a singular potential
in Born approximation aéiillustfated'in-Figa 23 illustrates these
remarks. From the foregoing curves we can also see that an
appreciable fraction of the 32-Mev scattering must be egplained in
terms of tensor forces if we wish to obtain agreement with the
high energy data. These curves further show that the tensor .
potential would probably have little effect below-io.MevlaS'the‘

scattering amounts to less than one percent of the total scattering.



IIT, Calculations

A, Methods

The singlet scattering from a poténtial'qf given radial
form depending on two parameters is completely specified by the
scattering length énd effective range, which are determined by the
scattering below 10-Mev. The general method of determining these
parameters for a given radial dependence is discussed in detail
by Blatt and Jacksonls° The S scattering due to the nuclear po-
tential alone at highef energies was calculated by_direct'nﬁmerical
integration of the"radiﬁl wave_equation-giving the. S phase shift?
The true S phase shift (in the presence of the Coulomb field) was
theﬁ'obtained by treating the Cqﬁi6mb field as a perturbation
according to the method of Chew and Goldbérger;7; The corrections
amounted to approximately oﬁe degree or lessol The D phase Shift
was calculated iﬁ_Bérn approximation considering only the nuclear
forces. (This method was checked by numerical integration in the
case'of the Yukawa potential, corrected for the Coulomb field as
above, The results at 32 Mevs 1033° for the Born approximation,
1.45° for the exact nucleaf_calculation, 1.40° with the Coulomb
correction were assumed to be a satisfactory check.) Higher waves
than the D were found to be negligible at 32 Mev. |

“As was shown in part II, it was not necessary to cal-
culate any odd parity phase shifts due to central forces,’but!the
tensor scattering was requiréd° This was calculated with the

. dm
exact values of the complex phase shifts, §( S, which enter into

17 .
G. F. Chew and M. L. Goldberger, Phys. Rev., 75, 1637 (1949).
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the tensor scattering. The result was in good agreement with that
predicted by the Born approximation. Thefe is a slight tendency
for tﬁe Born approximation t6 predict soﬁ%what larger angular - .
variations than are found 'in the more exact calculations. This-can
readily be understood in terms of the higher approximations of the
Born approximation for then the scattering“amplitude'enﬁering into
each successive iteration (or each successive ¢ollision) is less
well collimated than that entering the previous iteration, due to
: theascatteripg that occurs. A further small difference between -
the exact_énd'the Born'calcﬁlations‘Occurs-in-the abSolute maénitude,‘
'a'tengor force taken with a positive sign (i.e., same sign as for
the deuteron) always has less scattering in the exact calculation
while the tensor force takeniwith‘a~negative'sign7a1Ways has more
scatterlng,J'A comparison between the'exact:predictions-using the
two 51gns and with the result of the Born approximation 1s afforded
by reference to Figs. 26 and 27

‘The phase shlfts arising from the coupled states entering
the exact calculations‘were carried out by iteration (in the manner
described inlSection.I, Part II) after»they‘had'beenﬂcastvin the
form of coupled integral equations. In thé case of the uncoupléd '
: states any of the methods usually appllcable to central scattering
_may be useq We found that the 1ntegral varlational expression
was sufficiently agcpratglwhen the proper compqnent of the plane
wave was used as'a.ﬁrial functibno5‘ o | |

From the relatlvely small dlfferences shown in Flgso 26
Vand 27,‘we declded 1t was unnecessary to carry out the exact

calculatlons for the nuclear part of the scattering, Thls is
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particularly so because we are able to offset any difference in
absolute magnitude by choosing a slightly altered tensor depth-
(which will be determined only very roughly anyway from the present
data). One difficulty with use of the Born approximation.is_that
the intérference term (see Appendix 2, for a derivation of this

term) between the nuclear and Coulomb scattering identically vanishes,
while the exaét calculations at 32 Mev show that the P wave component
of the nuclear scattering interferes appreciably with the‘Coulomb‘

~ scattering. We had therefore to compute two uncoupled phase shifts:
Sloo and Silj:, and alsoviterate the coupléd 3P2+ 3F2;statqw..The
iteration process is rather tedious and as the magnitudes of fge :
phase shifts, we used the:WKB approximation to obtain these phase
shifts. We shall consider this approximation in more detail-below:
If the two independent solutions of the coupled equaﬂions have.the

- asymptotic form

%,

a ~ afL sin(kx - 27/2 +8£L_

(L

where L = £ or 2J - 1 depending upon which is the dominant state,

then the nuclear phase shift may be easily shown to be given by

J
16}2 -8, ) 316 - ), s (211~ ¢SLIm |SLOms) 5 s &)
e2j,.spm:g o af aIf 3PS ¥ 3 {(21-#1)} (SKJm 'SﬂOm) azLSln( 0 GZE

~

R
e=1(sm+6QL) QL LQ =1(8QL+8 LQ)

where now L = 2J = l enly, and we have set a(Q aLL = 1. In the case

3 a
of the P2+ 3 state we have found that the Born approx1mat10n yields
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: » o ) , R , o 2 . .
all quantities in this expression with the exception of G']f'with
‘sufficient accuracy; Thls we have computed by u51ng the "equlvalent
central potentlal" in WKB approx1mat10n and then applylng the Born
n *°
then the sum of two terms one of which is 1dentical with that pre-

approx1mat10n to thls potentlal to obtaln the phase sh:.ft° S

dicted by the Born approx1matlon applied dlrectly to the ‘coupled
equations and the other is of the nature of a correctlon term, ‘and

“has the value.
' o

Ail = (0,,86u)/krf[xv (x)] g (ka) dx,
o 0. .

where we have written the tensor potential; . ..
/) 3o« v) (g 1) - 6]V,
12 t - 1 2 ° 1 24t
and

2% ().

‘This procedure applied to the exponential and Yukawa radial

K (moc/?.)%

dependences.yields the coefficients of the interference_terms within
a few percent the coefficients determined from an‘exaet calculation,

For the 340-Mev scattering the Coulomb scattering was
~neg1ected and the singlet scattering was oomputed‘in Born

" approximation,

B Resuits
The 31nglet cross sectlons for the square,'exponentlal,
and Yukawa models are shown in Flg° 28 In each case the range and

depth have been chosen to agree with Blatt and Jackson's low energy
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analysis, (The range and depth of the Yukawa potential,aﬁd square
well were determlned 1ndependently by Chew and Goldberger before |
the. results of Blatt and Jackson were avallable to us and agree
_ within their ‘assigned limits ef error.) These parametere? together
with.the°s and D phase shifﬁs at 20 and 32 Mev, are collected in
Table I, Clearly there are s1gn1f1cant dlfferences 1n the angular
distributions predlcted by the various models° However, the
magnitude of the D phase shlft is always large enough to yleld a -
curve that has a characterlstlcal}y different shape than the experi—e
mental results in the region from 50° to 90° and too low in absolute
value at 900° The principal reason for this is the presence of a
P2 coefficient in the nﬁclear scatterihg arising from the inter-
ference between the S and the D waves.

The addiﬁion of'a central P wave does not change tﬁe
cross section.at 90o as can be seen in Fig. 29 where we haﬁe
indicated the effect of adding positive and negative P phase shifts -
to the'scattering predicted 5& the Yukawa model (which comes closest
to fitting the 90° point). Clearly théese curves do not agree with
the experimental results, primarily because the nuclear cross section
adds in the region from 50° to 90o (wherelthe Coulomb interference
 can be’neglected)o

It is seen ffom Table VI that the D phase shift increases
as the potential becomes more long-tailed. Siﬁce'the D phase shift
is too large even for the square potential we are forced to turn to
more complicated radial forms if we wish to account for the 32-Mev
_scattefing by cehtfal interactions eloneo Suchva potential mighﬁ

be expected to be repulsive'at long distances and attractive at

T e e —— e
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short diet,axiceso Accordingly some\ettempts.were;madefto,annul_the
D wave by adding.a repulsive iip'to the square well., They met with
-1ittle success, and-having regerd,to-the.inhefent difficulties
~implicit in such an approach when.applied to attempt an explanation
of the 340-Mev results, this. approach was abandoned.

As disCussed;in‘Part-II,wthemeffect,of.adding_tensor force
--in‘the.purely nuclear scattering is to_produce a more nearly spher-

-ically symmetric angular distribution. .The depth of the tensor.

" potential and hence the amplitude of the.scattering may be considered

arbitrary, and must eventuaily be chosen to give egreemen@ with the
. ‘experimental data. In-Fig. 30 we have shown_the result of adding
the tensor scatﬁering to,tﬁe singlet state scattering. Clearlya>
~if the 'same radial dependence is assumed to hold fer;beth_singlet
and triplee.statee,;epprqximate agreement may be obtained for the
exponential potentlal with depth Vt ,,i;SO Mev. If we drop the
restriction that the 31nglet and trlplet potentlals have the same
radial dependence, it is clear that we can obtain better agreement,
especlalLy with the photographic data, by u51ng the combinatlon of
square well for the 31nglet potentlal and Yukawa for the triplet
(see Fig. 31, curve I). (This combination utilizes a square well
. with the constants previenslf found for'the'Singlet state and a
"tensor Yukawa well of range 1.25 x 107" 13 cm and Vt +£22 Mev,)
‘This model gives an angular distribution essentially -
similar to S wave ecattEfing at energies“below:QZ'Mevs' This is
“illustrated in Fig, 31 where the distribution ‘due ‘to this model

at 32 and 20 Mev is compared to S wave scattering. Clearly a =
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precise measurement would be needed even at 20 Mev in order to -
' distingUish between this distribution and S wave séattering,ralthough
it could be distinguished from singlet scattering that included the

D wave, Further, it has been found that the cross section at 90° for
this model.différs by:at most three percent from that due to the
partial S wave from a YukaWa‘poténtial below 32 Mev., Below 20 Mev
the Yukawa singlet scattering at 90° (including the D wave) differs
by at most 11 percent from the cross section predicted by this model,

As was remarked in Part II tensor scattering at 32 Mév-is
only able to explore the tajl of the potential, and‘consequently
there is little uniqueness to the radial form which can be esﬁabliéhed
from the 32-Mev data. To illﬁstrate this we may consider tﬁe Born .
approximaﬂion° In this approximation the triplet differential cross
section (considering only the nuclear part) is proportional to.
s ~[c*@) + AT - o)+ cle)el - 0] ,
where '
a0
C(@)lz‘;%g Vt(r/R)gz(#r) rdr, K = 2k‘sinA9/2 o
¢)

Plots proﬁortional_to,.C(e) are sﬁown in'Fig, 32 as'a_
function of&[ZkR sin (e/zﬂ whgi'g‘c has been adjusted such that
each model predicts almoét the same scattering at’ 32 Mev. (Recall
that the Yukawa potential with R = l¢25_x.10=13 ecm gave a good fit
to the data when comBined with a,shalIOW»singlet potentialo) _Ffom
these plots we find that the following ranges;are practically ,
equivalen£ with réspect to the 32 Mev scattering: R = 3.8 x lO“lBCm
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A =]
13 cm'(exponential), R=1:25x10 3 cm -

(square), R = 1.0 x. 10~
(Yukawa), R = 2.0 x 1005 em? (exp (ér/R)/(r/R)z)°

In the plots of C(8) we have chosen'the scale of the

absciss a such thateS(2kR sin 0/2) = 1 for © = 90° with a k
éorrespdndihg to 32 Mev, For other angles we move up and down:
the abscissa according to sin 6/2 (e.g.s to obtain the value for
C(180°) at 32 Mev read the ordinate for an abscissa .2%). The
'909'poiht}at other énergies can be readily located as.it is given
at an abscissa which"ithheisquare root of the ratio of that
energy to 32 Mev. Thus to obtain the valﬁe of C(90°%) at 350 Mev
‘réad the ordinate at an abscissa of (350/32)%‘; 3:30.

As the energy increases a lérge difference in the.
séattefing occurs between the various models, We shall first
adjust the range and depth of the tensor potential to fit the
" data at 32 Mev, then examine the predictions of the various models
at 340 Mevb' From the predictions of the singlet cross section:at
90° it seems reasonable to-allow appréximately one-third of the
nuclear scattering at 32 Mev to be of tensor origin. This fixes.
~ the depths of the tensor potentials fqr a given range. The ‘
requirement that thé tensor SCattering‘at 32 Mev have sufficient
angular variation to mésk the singlet D wave sets limits on the
range of tﬁe potentials. |
| The 340-Mev cross section is comparable with the fraction
of the 32-Mev cross section attributed to tensor scattering. The
Square,\exponential and Yukawa potentials all give,toé little

Scattering at 340 Mev'(especially around 900)a Shorter ranges for

these forms would give better agreement, but these ranges are
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incompatible.with the 32-Mev data. Cqmpar130n between the‘;adial
forms indicates that'a potential more éingular than the Yukawa might
give agreement. It was found that a_tensor potential of the form -
exp (==r/R)/(r/R)2 with Rz 1.6 x 10,13 cm and Vt~=:t 18 Mev gives
a good fit to both the 32~ and thé BAO—Mev data (séefFigs, 31_and
33).

In order to indicate the essential features of the
singular mode1, we again examine the curves inFi'g° 32. Clearly a

13

square well of range 4 x 10~ cm gives scattering of the correct .

form.to fit-the:32 Mev data, while a square‘well_pf range 1x lOmlB
cm gives 3h0=Mev-scatterihg approximating to tﬂat preqicted ﬁy;thé
singulaf model. - By combining the shallow long rénge square well
with a.deep short fange square well.(whiéh_will #ot be explored by.
32 Mév P wave protons) scattering_approximating tolthat predicted
by the singular model can be obtained. Thus anstréng tensor inter-

13

‘action at distances.less than 1 x 10~ cm is indicated by the 340~
Mev data,-while the 32=Me#vdata gives eVidence of interaction at ‘
greater distances (i.e., of a "tail" in the terminology of potential

models) .



S

SECTION III - SUMMARY‘AND_CONCLUSION

I. _ Summary of N-P Results

. A, Exchange Character

- If the potential has approximately the same radial depéndence
in all states (i.e., even and odd parity, singlet and triplet, central
éndvtensor)rahd the range is chogeﬁ»within limits_set‘by‘the low and
high energy scattering, we pqnclude:that for'a good fit, we‘must have
a z 0,55+ 0.05 in.the space_éxghgnge operator (1 - a + aPy).  More

generally, allowing for a different exchange character in singlet and
triplet_spates; the depths of the odd parity poteptial,‘ Vodd , must
satisfy the approximate relatién_ |

05 3 Mgt 7 Cloa) > -1 Ol
. In the case when the only o&d,force is a tensor force-the effect on
the angular distribution is not as pronouhced as in the central force
case, because of a partiai cancelation.of s-p interference terms. |
The limitation on the strength afises now from a rapid increase in

total cross section (for numerical results see Table III),

B, - Radial Degendepce
"The (3 + 4P,) potentials, when comparéd fOr’équal effective
ranges differ by.at most a factor of two in the total ¢ross sections
or.in the ratio o (180°)/0-(90°) at 40 Mev and 90 Mev, These
differerices may be correlated with general shape features and even
these two energies are quite adequate to distinguish among the

potential shapes. We find that:
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1. A Iongétailéd.poténtial is hécééSary to explain the
large scattering from the higher anguiar ﬁoméhtum‘statés,ét LO. Mev
without violently affecting the 90-Mev~scattering; "On this basis
fhé'séﬁafé and Gauss pbtentials are unacceptable while the'expoﬁential
and Yukawa wells are allowable. The Yukawa potential is the ohly.
pdteﬁtial that has a sufficiently long tail to also be "compatible'
with the 27.2 Mev and 280 Mev angular distributions.

2. The Yukawa potential predicts total cross Séﬁtibné g
‘ﬁhat agree with the experimental resultsvatlenergies béléw 30 Mev

and at 280 Mev but are 20 to 30 percent too high in thé'hO £o 90 Mev
range., This is because of the singular nature of the Yukawa potertial
" which is required at low energies to balance the tail and give the
correct effecti&e range. The exponential which as a smaller tail and
is cohéequently less singular predicts cross sections 10 to 20 per-
“‘ceht léﬁérg The best fit for these potentials (assuming the same -
radial dépendenée in singlet and‘triplet statevand for central and‘
tensor force) is

R = 1035fk 10=13'cm.

MWy = 25.3 Mev
3Vt = 48,2 Mev | - ‘. . (Yukawa)
W, = 39.27 Mev,
and
R = 0.75x 10" cm.
3y, = boMer. ,
3Vt = 128 Mev  :" : (exponential)
Y = 98.6 Mev.
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(For calculations involving the n-p interaction in which it is
desired to neglect the tensor interaction.a Yukawa range of
1.18 x 10 -13 em with 3 67 9 Mev and 1V = 46,7 Mev, may be -
used, ) |

3, The shape of the angular distribution about 90° is
evidence of a tensor force (in the even triplet states) in scattering. /
| Here, with a (3 + %Px) depehdehee, a purely central force yields
a flaﬁtef distribution than an interaction including tensor force.
The latter dlstribution agrees significantly better w1th experlment

G, Singlet Range

The low energy scattering and photo-disintegration

phenomena indicate a sinélet effective range between 2 x 10713

-13

and 3 x 10 cm. The total cross sections at hO:and'9O Mev as
well as the'angﬁlar distribution imply a'singlet range greater

than 2vx'10-13-cm.'

fD° Triplet Range

The triplet effectlve range 1n the shape 1ndependent
approximation is determ;ned from the blndlng energy and the zero
energy‘scattering‘to be l,6§ X 10’l3 Clti, 'Wiﬁh the.long tail
that is necessary to }itvthe high eneréy ecatﬁering the shaﬁe"
independent appfOXimation is not wvalid and we mﬁet fiﬁ direetly ﬁhe
binding energy and trlplet scatterlng 1ength° This yielae SOmeQﬁat '
lower values for the effectlve range (see Table IV) The deter-
mination of the range frem the high energy scattering depee&s uﬁon
the éxplicit model useéd and is compatibie with the’lew energyv

limits only in the case of the long tailed potentials.
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E,v Tensor Force ‘Range

‘The tensor force range may be increased relative to -the
central range by asmuch as a factor of two without. adversely affecting

“either the low or high energy results.,

IT, Summary of'P=P Results
. ‘The 32-Mev data can be fitted by two_eombinations 9f éentral
and tensor force. Bpth have the radial depeqdence singular for the
tensor potential and shallow and cut off for the central potential.
The best fit is with a square well of range 2.6 x 107 en an&
1013

Vy exp(nr/R)/(r/R) radial dependence (w1th R 1;25 i 10 cm and
Vt % 23 Mev) or with a more singular potential Vy exp(nr/R)/(r/R)
(with R = 1.6 x 1071° em and v, = +’18 Mev) - These combinations
give better fits to the photographic data than to the counter dataf
To fit the 340-Mev daﬁa we have shown that a verj,singular

tensor force must be used, such as V, exp(=r/R)/(r/R) The
essentlal feature is that there must be a strong interaction in
reglons less than 0. 5 x 10 -13 ﬁa

| The best fit of the comblned data is therefore obtalned
by u31ng the 51ngular potentlal so adjusted that approx1mately one-
third of the nuclear scatterlng at 32 Mev is accountable to tensor
scattering.

| The present data is not sufflciently exten31ve to permlt

exploratlon of more. than the sallent features of each model The

radial forms are, of course, only partlally speclfled°
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III.,. Conclusions

)

We have shown that i£ is possible to fit with a fair
approximation all the present n-p and p-p data by means of a charge
dependent potential model with monotonous radial depéndences:,

-Quite-apartifrom the potential‘modéi assumed, 'a casual
‘comparison of the p-p data at 32 Mev with the n-p data at 40 Mev
vand, especially a comparison of the 340 Mev p-p data with the
280 Mev n-p data seems to indicate that the nuclear scattering is
cﬁarge”dependento“ This cOmparison_however does not furnish a proof,
for it is possible that the'differenée in the n-p and p=p behavior
could be accoﬁnted for by the various n-p states that do not occur
in p-p system because of thé exclusion principle; Therefore in
order to examine the possibility for charge indebendénce'we must
compare the expli'cit.mbdel_s°

| The most outstanding difference between the two models
is that the p-p requirés an odd ‘tensor interaction to explain the
BAO:Mev7scattering while the n-p system shows none or only a weak
interaction in the odd parity states. To put this on a quantitative
“basis we note from Fig, 23 that the tensor scattering adds about
I, mb/steradian to the p-p cross section at energies between 32 and
340 Mev so that the same forces preSent in odd triplet n-p states
would increase the total napicfoss section by nearly l/h(hzf7(h mb)
or 12 mb, However the measured n-p cross section at 90 Mev is 75 mb
with less than 10 percent uncertainty while the lowest value pre-
dicted by a tensor model with oﬁly even parity states is 87 mb, so

that an additional 12 mb is hard to tolerate,- A similar situation
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exists at 40 and 90 Mev, Alternatively, a Yukawa teﬂsor potential
of ramge 1.35 x 10-13 cm must be 17.4 Mev deep to fit the 32 Mev
data, while the maximum allowabie depth of the n-p tensor potential
for the same states is 9 Mev (see Table III and Fig. 12).

In order to have charge independence one of the first
requirements is to find an n-p model which decreases the even parity
total cross section. ,This-requirement may be shown in the case of
central forces to be incompatible with the requirement that the
potential have a 1§ng-tai1 in order to explain the energy variation
of the angular distribution. To show this we recall that the

effective range is determined from the-formula,

- r- %J’[(,é t 1)2 - uz(x)] ax ,

: R o
.whére' a is the scattering length and u(x) is the zero energy
solution normalized so that for large x, u(x) behaves like ( % +1).
The integrand then differs from zero only inside the range of
nuclear forces-and is positive everywhere since the range. of nuclear
- forces is smaller than the scattering length and the potenfiél is
attréct‘ive° It is therefore clear that if the potential has a long-
| tail; then it must also have a strong attractive region at shert
distances in order to give a sufficiently short effective range°
This . strong aftractive region howevef leads to large s-wave cross
sections at high energies. It follows from the above effective
range argument that if a repulsive cdre‘is.addgg even less of a.
tail‘can be'toleratediso that a fit of the n-p data can not be

attained by this means.
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Tﬁe addition of tensor..forces having the same radial
.dependence as the central force was shown in Section I to increasé»
,‘the‘total cross section, .We must, consegnently, éxamine the .
possibiliiy of using different radial. dependences for the_central_,
and tensor forces. Consider explicitly.the case where the central 
force has a repulsive core combined with a tensor force having a
long tail, The quadrupole moment can-then be achieved by a
relatively weak tensor force. There will then be only a small
modificatiop,of the scattering behavior of the 331-{- 3Dl* statg‘l
(i.e., the state that is predominently an Sustate)‘compared.with
that of the central force.vnThe highef states particularly the
D-statés, will however be affected more strongly by the tensor
force because of its long rangé and may be able to‘éccount.for
experimental angular distributions, Detaile&~calcu1ations with
such a model are needed to aécentain to what extent the n-p total
cross section may be lowered and still retain the corfect angulard
distribution. |

Additional evidénce’for such a model may be cited:
(1) The calculation of the binding energy of the three particle
systems'using the‘kpoﬁnbn-p and p-p inﬁeracﬁion with teﬁsor forces
and,ppstulating‘chafge independence and'the absence of many body
,‘forces lead to binding ehergiesntﬁatbare.too small. The éorréct
binding enérgy is aﬁtained however Qﬁen a purely central: force is
assﬁﬁedeor the n-p andfp-p,interactionyleading one to believé that
the tensor force does not.bind as‘efféctively in thbeebpartiéle-

systems., A long range tenéor force accounts for little of the

IS
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bindihg in the n-p system and hence leads to better values for the
binding enefgy in the three particle system],-so (2) A model using

| the combination of a répulsiveAcore for the central p-p interaction
and a long tailed tensor force has been found by'Jastrow19 to fit the
p-p data. He has also given an explanation of the energy variation of

the cross sections for scattering of neutrons on heévier nuclei using
the repulsive core central‘interaction29.

A more direct knowledge of thé charge independence of -
nuclear forcés would be pSssible if the n-n interaction were khown°
There are several experimental results which-sﬁpport the hypothesis
of charge independence. These are: - (1) the binding energy of mirror
nuclei differs ohly by.an amount attributable to Coulomb forces;

.(2) the excess of thé”pumber'of'neutrons_over the number of brotons
in heavy nuclei is again aécountable by Coulomb forceé; and (3) the

large degree of similarity in n-d and p-d scattering at 3~Mev21 and

18
R. Pease and H. Feshbach, Phys. Rev. 78, 322.(1950); E. GerJuoy

and J. Schwinger, Phys. Rev. 61, 138 ri9h2) '
19 I
R Jastrow, Phys Rev. 79, 389 (1950) .

20
R Jastrow, Bull, Am. Phys. Soc. 25, No. 5, 37 (1950)

21
_Compare experlmental results by S L. Martln, E, H. 5, Burhop,
C. B. Alcock and R, L. F. Boyd, Proc. Phys. Soc. 63, 884 (1950);
Hamouda, J., Halter and P. Scherrer, Phys. Rev. 79, 539 (1950);
J. F, Darby and J. B, Swan, Aust. J. Sci. Res. A. 1, 18 (1948);
J. H., Coon and H. H. Barschall, Phys. Rev. 70, 592 (l9h6), all of
whom used incident neutrons energies of approx1mate1y 3 Mev with
the experimental results of R. Sherr, J. M., Blair, H. R, Kratz,
C. L. Bailey and R. F. Taschek, Phys. Rev. 72, 662 (1947); for
p~d scattering with incident protons of 1.51 to 3.53 Mev.
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22 . , : .
at 5 Mev , in the angular region where interference with Coulomb

scattering is negligible., Unfortunately the,direct comparison of
the n-d and p-d scattering data over this rafige cannot be completely
juétified;fof the addition.of Coulomb forces.alsofaffectsfthe
nuclear phase shifts?B‘(by,amounts up,to‘2O%),, Theoretical work or
the n-d and p-d scattering béth at low and high energies assuming -
the known n-p and p-p interdctions should yield considerable
information on the n-n interaction. The analysis would be consider-
ably simplified if the n-p and p-p interaction were central or
predominantly central, This would be the case at low energies if
the long range tensor force model could be used.

We have thus found that potential models can be found
which independently explain the n-p and p-p scattering but when
taken together they.form a complicated model of nueclear forces,
Additional theoretical work is necessary to determine if-the n-p
and p-p scattering can be accounted for by a simplified chafge

independent nuclear model,

22
Compare experimental results by F, A, Rodgers, H. A. Leiter and
P. G. Kruger, Phys. Rev., 78, 656 (1950); J. C. Allred and L.
Rosen, Phys. Rev. 79, 727—T1950) K. B. Mather, H. J. Karr and
R. 0. Bondelid, Phys. Rev., 78, 292 (1950) all of whom used
approximately lO Mev deuterons on protons (equivalent to 5 Mev
protons on deuterons) with the experimental results of E. Wautuch,
Phys. Rev. 79, 729 (1950) for incidert neutron of energy 4.5 and
5, 5 Mev on deuterons.

23
J. L, Gammeél, Phys. Rev. 78, 321 (1950).
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Finally, we must take notice of the fact that no large

repulsive forces have shown up in either the n-p or the p~-p system*b

of sufficient magnitude to account for nuclear saturation if
saturation is to be predicted from two body forces. 'In both. cases
they would have been very easily detected in the scattering

independent of the potential mode assumed. o ‘.

’
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APPENDIX I

_ For_a scattering problem involving two particles,,ihe,_”

'-‘:Schroedinger equatlon is

Aﬁ” ‘2 @ _.v)t,u @
where V has the form '

V = (L-'ataP) [A<r>+ﬁ<;—l_ B<-)+zrslgc(r)]

M' is the reduced mass and E' the energy in the center of mass systemg
Px is the Majorana space exchange operator, 812 the tensor operator,
A, B and C are radial functions with no singularities except possibly
a 'first order pole at r = 0 and vanish faster than 1/r as r—>ee ,

go that a parametric range, Ty may be defined

for central forces and we may concern ourselves with only the triplet
state, (In-which case we may as well take p=0, and make a corre=
sponding new ¢efin§tién of A(r).) N N

The wave function of a triplet state of given J; m and .
pgrity satisfying the boundary condition at.the origin may be writtén
o : - 4 L _

e - , P
;»Véu?l(rs 0, #, mg) = %i%( qai.(r) f (o, ¢, Mg ) (2)

) The index o4 is as yet undefined and expregses the fact

that the boundary conditien at the: origln (QFQL (O) =0 ) does not

Jm
compil;etely d-et.ermine the wave function, We a,ptieipate tha,t. the ()U

representing a physical state will be particular linear combination
,

¥
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. Jm o
of the (f’ » defined by (2).

The f"z are compounded from the triplet spln functlons and the angular
‘functidfls (spherical harmonics) by recognizing that the individual
functlons each are a basis for representatlon of the rotation group,
and reducing the product functions. That is, representations of the
rotation operator Pp in the angular-functlon and ‘triplet spin functlon
space are

P (o, 1) 2 @it e H

ﬂ“
B X me) = ST ® X o)
R X/a Mg = /“' /4/_,’ )(/a" Mg

respectlvely° Hence the basis function for re resentatlon of the

operator Pp in the various (24+ 1), (24£+ 3) and (2 £ - 1)
-dlmen31onal product spaces 1s obtalned by the unltary transformation

. - Y,
fJIl;('O, g, m's) ='§mf Sﬁ/ (9 ¢) ){ ( S) Wigner notation

M =m-1 ,/Q, i

O : o
Fim(e,;d) = 2 5,4, m m-,u,sl 9:1) Y (e ¢)/T Ashkin-Wu notation

- (Phys. Rev, 73,
p=-l m=A o3 (1948))"

The various elements of the maﬁrices S, are given inlthé'table below,

J
A -1 0 | I S
-1 /éuﬂ) (4‘*%-1) - /gl -M% (220) (€ -p-1) (-4
- 2 1 | L1 | 2_2(2;2+1)‘

{7 I(Q -/«1)(1-/-/«) . 4 | (mel)(f-/f)
rz ¢ v . VI 2 £ (€+1)
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The representation of the tensor operator Slz.in.thexspinwangularl
space is .

Q/ " . .: : i i e
A g\t g
e 2J+1 0 + —73471‘"2’
J o 42 ' 0
J¢l 373(d+1) 0 - 2(J+2)

2d+1 ' - 2041

The result of Substituting (2) in (1) is

QE - U2 .f.)( - V£ (X)> (x) =0 (3)
dx? “
where weiha;e inﬁroduéedv£heﬁiﬁensibnleésbquantities,'i‘zzf/fé and
: : J ‘
X = %g'E'_#o:_°. fhe-ogly non-vgplshlng ‘vst are
J g 2 e e
VJ’J(x’) =,(1-g+a(-) ) °'§;:;9_ LA(X)-i~ ?‘(C(X)J o o ‘.({;a)
J - ,
Vi s 00 = (ara)” Ty [A@ - zzgg;-lz 1c<x>] (ko)

L 2J+ 1

g I+ ' - |
g = (el 0 —ﬁf— (a0 - 232) ?r0<x>J (1)

J _J ';I"'l o'éMl r“
Tyl = Vo, = (l“a’haf(_') ) ﬁ:, [6 g§i+11) Tc(x)]

(4d)
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We notice from (3) and (4) that in t_,hev case. J = { we have a second
order differential equation and in the cases d -‘,‘( +1 we have. |
coupled second order systems-, In the flrst case we may ev1dently

take ot =z L = L. ” . In the other cases we get two solut:.ons which are
regular at the orlgln so ‘v‘:e ’speclfy these g.»s.belng solutlons to the

integral equations

oo | |
; o :
UJ_l,I(‘x). = AJ_l,L 8;_ l(kx)+5GJ l(x x! )(vJ 1, J(x ) UJ_l’I(‘x )

v 5':UJ ('))dx"
A ' i ’ X
t J-1,04 T aH, kA

(5)
J J J
VJ+1 J+§.x. 'J%l,fx_ e

_ where AJ+1 [ are arb:_tra.ry constants s and where . we have let o(. L

(and has the values J-1 or J-I-l), and

GJ(x:x')' - %‘ [8J(‘K X)< Q_J (KX_>]

where x, means the lesser of x and x' and gJ(K x) and g (X x)
are the regular and irregular spherical Bessel functions of order
J+-% , normalized to sines and cosines at infinity. The astptot.ic

behavior of (5) is then of the form

%L(x)' = 8y, ®in (X x E_Kg'}S{L ) (6.)
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U -
TJ-1,d-1" d-1,01° O d-1,d-1

where for example,

J-l J-El) J 1, J-§.X)

J J |
+VJ+1’J"»’§-X?- UJ+ J_<x))g (K_x)dx‘,

and similar relations for the remaining quantities may easily be found,

The solutions are further subject to the Wronskain condition

J : '(UJ - ); (UJ ' -.')'e J +UJ o (UJ )
v . U : ; .
J-1,041 J41,0-1 JHL,IH

. ‘JH

J
.o (UJ.;.]_,J.;]_); UJ+1,"J+_1 ,‘;-0- |
(.
‘ which when evalua.ted for x -——)oo yields the relatlon,
: ( Sln(tg” ' '= gfL) = 2 Sln(SQL = 8 . (8)
and we have chosen aJ[[ = aJ =, 1;
v LL

This condition results from the orthogonality of the solutions, for on
multiplying the differential equations for 'U(L and U L by ‘U] Z

and Ugp respectlvely, integrating and subtracting the same quantities

‘with the indices £ and L interchanged we are led to .the result

J J 7. dJd t J J J | 1

U U - (U U U U
1,02, T o) Y s Y 0 P an)
J
- (U JHL, J_,l) UJ-I"l,Jf—l = constant,

which when evaluated at thve‘ovr:i‘.gin gives the constant equal to’ zero.,
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We will continue setting up the scattering problem. The -
wave function }L/m » representing a given mg . state in the incident
s o .

plane wave, can be expanded on the form- 3 o
‘ - : J,m y’l,m ‘ - ‘ . B |
%xs - Z,L,m L 7L ‘ _ o (9) ’

e TR R | ¢ '
_I%FZJ,[',L‘m b o™ mev. (9

which is asymptotically

Jm J J g
ry b a sin (kr -LZ+8 )£
}Ums —2%F zJ,/,L,m L /L 2 SIL) Jm
(10)
At great distances from the scattering center y/m can be resolved

into the incident plane wave and an outgoing spherical wave

'originating at the scatterer

6 o ,..-.-;)—;v/ .'
%ms~(r,e’¢) ""‘9 elk°r ﬂ;s",—»elkr Fms(e’¢) (10')

T

where © and @ are the co-latitude and azimuth of the direction of
5 :

scattering, k', with respect to any fixed plane passing through the

.spin axis. The expansion of a plane wave into normalized spherical

harmonics is given by

‘ i;g:.. - 2 I “ .( . . | ‘.
e = klr iy (24#1) ‘1 gf ‘(1_(r') lj((e) ' (11)
1l§ 2/ jMf(z@f 1) .ipg[ (kr) ?f; (e;¢) .
r : '

, (11')
Expanding in terms of the spin-angular funptionthhe product
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/ .
ikeF o SE o 4 A
o r/fms = o %ﬂ_‘ LV (24#1) 17 g, (er) S5 o :is' ,  (12)

this gives asymptotically

AKT Ao = _kli" ZJZ Tuw(24+1) .i[ 52
S ND o -

.,_Sin(k'x_" - %[) fJi

J,0,mg

, : (12_.’)

Writing % in the form (10) by adding and vsubtracti‘ng the left and
s : ;

_right hand sides of (12') we find

‘ J '
Bt " Jm J kr- ”+8 .

A Ko / . 2 AL
%s Loy et ){ms + 'SJ(m {ZL b 2 sin( e )

- i f _ kr = 177/ .
- 5%-/ z,,7f(g£+ 1 1 Sf,o_,mSi“Ll??'z__ijﬁ .
(13).

Expanding the term in the curly bracket of (13) we have

ikr m I -Iisz_ — 2/',
{5 = gikr4§ b g (1) e —gmms (42l ) 550 |

en’-lkr Jn

)
| 4 -8
2ikr’ L L '

-J
aeL (i) e

— o A
-8 o ar(al+1) ¢ (i)2
mmg b

J,0,m o

=ikr

" For out-going spherical waves the coefficient of e__r__ must vanish
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for each f we have then m & mg a.nd the follow:.ng system for the

J
detemunatlon of the unknown coeff1c1ents bLm
s Q4L _ _ ‘ 5 .
2,7 ag e 0 . TG s @ (W

L . - Jmsv o
The result of solving for b[ is

Jm ] , J o :S J’ ) )
S -/-—————‘ . 1 SJ N - ' )
by~ = h'fl_(&(-#l);, i e . SJ,’O,mS E when L = J,

ynga)
m 4 % -1 14 d
s - ,—‘-—_ 3"’/;3"‘/
bJ—l - ( J"l SJ OS s © : .
41,1 BT
/'—" J =193.,34:
J . /J
TY20%3 SJOms 8-1,041 ¢ (15b)
" when L = J-1, and
Img {57 °J+1( 5713 L 'eﬂi 5;_,:”_
- l . : ') -
. Jdel D - 'J,O,ms
J-1,1 J“ o agd
+ 291 S, e s‘*'F-D,
J,0,mg J+1,J—1 -
- DR (15¢)
when L' = J+41, where D is the. dete_rminapt',
N S | :
D . e"’l(s:_,/r-/',' §g+l.:+, ) J ) J ) -1(8 -ISH SNS")
= : J+l J+l J 1, J+l °
(16)

We can now write (13) in the form
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- N | \ ,S‘T"“S
r . dkry’ 4 ke : of+1) (2104 _ _ .
A A e Zxﬂ%—l CHRRERR VE T TRIE S

P
218
e

6
321 Tt’ -

0y
61(321-83.)_ J
3L %1

B en

' where we have introduced the abbreviations s

al £
(17)
. 83—' : : ,
- 621 33 , - and : ) (18a)

s
J e1(‘51:. —31.2)4, ]‘(SJOmsizL*_ )ausm(s 8 )

"’l (Sfl +

SJOmS-/2+1
) J J -"1(,8 +8 )
- ag age 2L OLe

(18b)

2(J41)#1  SJot
V " - 1,1
Vad-1t1 S,

In calculations it is convenient to note

' J-1,1
' and 2(J‘_”l:) +1 SJOO = =_|dJd
[T+ iz(J+1)+1 SIFLT iy

J0OO

If we write (17) in the forms

(7”1113 Lye

the ma’c.rix elements

S

' msp,,m ‘ 21

o -
iks

Mg

S

(10%)

ei;?z;l-f; eikr 2 053 ‘ )[’ ' (19)
' Ts T M e

mg=AsTg

are identical with those defined by

r‘Asth.n and Wu and have the explicit form,

| -8” . . '
N og ’”‘S -—
T ok 2 7’&%’(22+1) s s ) (eZI'L'/) Y,o‘c (e,8) .

s/asms P\'

(20)
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The dlfferentlal cross sectlon is found by averaging the square

modulus of F over the mg of the 1n1t1a1 wave, glVlng the result
45 = ‘
dn- s
A I/ | ,97
(20
= L B ST S o
. (=X JJ'}
(;A(e,szf)‘ ,¢)6”
(21)
where
. ) 3‘41\: S”"‘S .
- JJdt 3 1 '
Ep® = %__(ezl‘gf;./,) (219, ) (22)

have, _ ‘ | ' o " (23)
: ne - t 220 t "
dac = Re {Po(e) [6,00 + 2 & ;lo +6:°" o 38‘:' "‘ 25" + 353';' + LE-ZL

» |
+6:L+ 5& +-38 + ua +~:J+'P (e)[zs + 6E"E
"_+6€nr+ 120 amo+ 5” ;6MI hC
ol L'ae/ ot l‘ it 38, +9 4/.:. 5% 5 2|

L paat : : ' it
T Aéef‘ff%éajfwu fpz(e)[aew 2607 + 10E,,

_ ne
+6&° +8a “r h& +§£ 98 % 67’*’ 26, 34'3 gfzz

t 130
25 .z.z._+ 21 2 214, 33 + 5 40 _8_5 2 + 12 ves |
lhei” (qré ﬁré F ,75 “, - 7 5 +

+lll] :

+2500 [ 660" _1_5q5'2—+ e &m,« 12654 662+ 1282 5;?1

‘"Lv

+P (e)[ 10048 4 2%, 36, o , 18,3 e |
L 57£&+-7-51+,€;éz e, +L£ "+7 e p |+
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The total cross section for an unpolarized beam is found
by integrating Eq. (21) over solid angle, with the result,

oz w7 36" Jon,) (z£+1) J}‘“ | (21)

3k

fHe "

v _ ' - ‘ 600 . . e 220 -!nzt
= 5_22{ £, + 25 +E, + 3&+ 26// + 35” + 2§,
3k :

+£”t+ se;"*-f-ae “ 3533"+»~},

-

In actual calculations we gsé épproximate methods fof,'
determining the bhase shifts.that enter into Eq,:(22)°. We have
discussed in the text (See Section I, Part‘2,_Computational Methods.)
thé solution of Eq. (5) for the lowest states., We wish here to discuss
the addition of all the higher states in Born.approximation°

The Born approximation can be made directly on the three
dimensional integral equation correspondiﬁg to the differential Eq. (1)
without the necessity for expanding in spherical harﬁonicsd Thus we

have
- 2
T

(B)_F'. -1 22/ J -1k rX ,)_ ke Xn: 2 (25)

ng T TpomgTHM

ik-r oy .
7 § f [tag o) aostar o7 o
: . (251)

.where

3/2 | |
..,ﬂmu)., _[A<-§O>=z ¥ S,,u,ms/u,u"‘ /B)c( )]
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and the co-latitude arnd azimuth of ¥ with respect. to the spin
axis is denoted by . =L .and /8 . Performing the integrations-

indicated in Eq. (25) we have

‘vas = 2/'4 Xms'/‘ g(l—a).l“‘(K) + aF (L) o o (26)
S r i [0 T - gt
2.8 |
+aY (3, T) ¢(L) } ’
where ' oo | |
R B R
| L . r .{
cx) = 2L §g2 (kr) ¢( £ ) r dr,
% ) o
K = 2k sin 8/2
L = 2k cos 8/2. .;,

Explicitly for the Yukawa potént.‘ial; A( % ) = C(,-i‘-; ) = Vo(eJ/ro/(r/ro)),_
) : = o ALY :

‘we have °

br

F(K) = ____‘0_~ 3
1 +‘(K_ro)2
| L |
C(K) = —‘-D-Il’-é- CILL Y tan™(kr ) )
(Kro) 1+(Kro)g . Kro
= brg ( 2e0) - A ) + _g;(xzjo)é - ).
Mir 2 V

- - o
wher_e b ——F— AV°-.. o



Y

=86e.

Explli 71y for the exponential potentlal A(r/ry) = C(r/ry) =
r

; we have
2br .
F(K) = e——— o
ST (FKrg)AR
oK) = bTo <_L pan~ (Kr J) - » Z(Kr ) 3
(Kr )2 | 7 (1t (k) )2 1H(Kr, )2
- br§< 8(kro) - 2ukr ) 180kr )® - g0tke )® 4 >
where b 2Mﬁf6?'v
°

The differential cross section in Born appfdximation is

Bae = [a-a) F0) aF(L):} ey’ [(1-a) C(K)+a%0(L) - (1-a)a C<K>C(L]
' (27)
To show the relationship with thé phase Shift analysis We may

calculate the RHS of Eq. (25) using Eq. (12) with the result

§ ‘ ey | N
| mes; Z)(ms_ﬂ@+1?(2L+})f;—g—f (fJ'-ms, 21!y fﬁns)gL(;_cr)gl(kr)dr

B

(28)
S | L-¢ éo. 3,
L) s, €y & fgﬂkr)g ) ur) o

k
0 | (29)

~

Comparing Eq. (29) with Eq. (17) we seé that if we make the approximation

X 6‘”\"3 \
2- . , B -
5 1S£,~ 1 L _égx;,s“_ B



which is valid for small phase shifts then we may identify the -

expression for Born phase shifts as

: L/ ’ . oo

8) Tom 5 = L N J

( § oS pme {mry o T | eL(kr)g, (kr)Vyy (r) ar
£ SJoms 2L +1 '

° (30)

The result given by Eq. (30) is seen to be idenﬁical with that
resulting from taking bnly the flrst term 4in-the perturbatlon

approximation of Eq. (25) (with =- 2.L)' and con31staqtly

2L
retaining only terms linear in the pbtential“iﬂ the¢évaluatiéh;of
Eq. (17).

We may clearly write the expre351on for the dlfferentlal

cross section, Eq° (21)

5+ O 5

dn- 3
(31)

The secoﬁd term on the ﬁHS of qu (Bi) ﬁayvbe writﬁen aé
@ . @, ) .9 Ame(mg [
%._Sms 2Re{ Fms(‘Fms- Fms) = %k ZL(!DSAI {Rz 5(6) [(l-a)F(K)-}aF(L)]

[(1~=a) Ql )0 +a0) (110 }
(32)
where .
J .
A LR O e,
2i ,

Rzms<e).= 7’m22+1> (s ) Y (8, 0) ,



-

=58

Qs (K) = 2 2’(\-/"Y (% -3 ) 52 " mM)(:s 3 pomg '_/‘ JOm-/h’T(zQ-f—l
‘(x '(e,o))) ,

- 3/2 A
2 (L) g 2 < ) (F (8,0 5] st 1 jom s_ﬂ)

( 3 st /Mmm -/h?)’(?/-l—l) X (e 0))

v Writing Eq. (32) somewhat 1 more ‘explicitly we have

‘ | . (33)

L [(1-2)F(K)+ aF(L)] { @+ 20% )'Pp(e)
RN AR IS LAO E
bty LR )Pz('e-)h”)} |

+J§"f€ }[(1-a)C(K)+ aC(L)J { (-_Aloo+-A'ot+ %A ZA A )P (e)
(- A+§ 34- g t-= :2Aj‘.)P1(q)

| + (=24 -A"bi‘q- SA’f - 3Aio + Aii' )Pz(e)ho,o}
+ %_k [(z-a)c(x) - ac(L)] g G4, - 34 +% A7, (0)

1t
I ]_5 2t
8- 5t

| +3b_z )P, (8)

40" - 38t el -3
o )

H 6B R (004 (98 - IBD) Py(O)+ ... }
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The third term in Eq. (31), namely _ILS lF o= @)F ‘ 5
AP 3 < mg ' Mg g
can be written out exactly the same as Eq.-(2I)“and Eq. (23), replacing

_JJ Caddm
&K{’ms by zﬁﬂ(’ S  where

w/a 4

We sum-only over those terms in the second and third terms of

'. s\m\x T » o 2 - {_):r:\ _-4"' .
Jotmg g (e215,e ot (Bglmx_ 9 (e.zl&} Y G )

Eq. (31) for which we have evaluated the exact phase shifts, The
resulting angular distribution will then contain the Born approﬁz‘i_,mation :

" shifts fér all the rvemainin'g 'par;;r;ial v}aves;



APPENDIX II , -
‘The triplet cross section is given 'by:

dcr/dSL = 1/:'>1<2 Z (|R|2 R 4»2 NNy, - (14)

B
where
R = of2i (exp[-:.aln s1n2(9/2):| exp ] -=-ia1n cos2(6/2)J>
' ' s1n2(9/2) o 0032(6/2)

N, - %Eﬁ(u ¥ 1ﬂ 1/2 exp [21(ep = &o)]. (slng | 50mg )

X(SlJms - p,|Sf.pms - p.> Eexp‘(ZiSQJms) - 1] ?LP'("GJS) .

a = é2/hv
%= 0y = ten~l (a/p) + ten-l v('a/ﬂ‘-a 1) ..+ tan=l o

?,y(e,ﬁ) ate the normalized tesseral harmonics énd 5 Jms are fhe custo=-
mary (complex) phase shifts thé._t occur in ténsor scattering (defined here
i‘nithe presence of the Ceulémb field)s. v |

In B4, (14) the,tei;m‘ involving |R|2 is just the usual triplet
Coulomb séattering and the terms Z L& ;J. are the uéual nuclear sca‘b-;
tering, The rema.ining‘ terms represent the interfe;“ence between nuclear

and Coulamb scattering,

"In our calculaetions of the tensor scattering the Coulomb modifi- |

- ¢ation of ‘the nuclear phase shift was neglected as the expected order of

magnitude of this modification was very small compared to the P phase
ghifts, Fiurther the nuclear<Coulomb interference terms were calculated

only for the P wave part of the nuclear scattering, These terms cen then

%



~Tle,
~ be written
9P1 (cos 9) sin @y — sin By |
2k2 se gt |
/1 2 201 . 1 .
= qinl §.00 ., L 28 1% 1428 1 ;20
ng:.n 81 # — sin 51 6‘6'! Q‘A )
) 9P; (cos @) I:coé a1 cos ﬁ’l]
R I
1 . ' , . s 1% 1 1 _ 926 1 _ ;
X(g sind 1°° cos 8,7 « % sin 877 cos 8, + —é— B1?g +yg Blzo)a (24)
where = .

e

2]
o
L

' ﬁl == a {n (‘,’2 + 2(0’1 -=-0’6)
§2° = “sin® @/2 7
‘_c-z = ‘cosjz‘e/zw S o
gt ‘_Re, .[95?1? (,?isLJmls'),,.= ] N
B, s . In [oxp (215@31!15')] "
Equation (24) reduces to the expression given by Breit, Kittel, and
' Thaxton, Phys. Rev, 57, 255 (1940), When‘the-céupiihg Between  the SPZ

A aiid“3F2 scatt:eri'ng is neglecfed,
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.Table I

Derived Quantities

Notation

=gL=

3.9 percent

Quantity Maénitude ‘ Source (with error)
'einglet scattering length -1a | -23,68%0,08 x 10-13 cm ortho-para scatterlnﬁ( lfo 03 x 10-13 cm)
: ' crystal-scatterlng b)(£0.05 x 10713 cm)
zero-energy cross section‘®/ (¥0.06 x 10'13-cm)
A o .| 1iquid mirror reflection(d)(eo 02 x 10"13 cm)
radius of deuteron . rq 4,332%0,025 x 10-13 cm binding energy( )
triplet. scettering length 3 5,38£0005 x 10713 cm liquid-mirror reflect10n(+ 1,03 x 10“13 7)
' ortho-para scatterlng (£,09 x 10-13 cm)
orystal scattering (£.15 x 10713 cm)
_ zero energy cross section (%,03 x 10'13 )
'triplet'effecﬁive'renge 'Sr 1.71i0°10 X 10-15 cm from 3,a,(.iO,OB x 10~13 cmj '
(shape ind. apprex.) from Td (20,03 x 10™13 om)
‘singletreffecfive'rahge 'lf 2,5i0,5 x 1_O°13 cm scatterlng between O and 6 Mev a
‘ . photomagnetlc dlSlntegratlon of deuteron(f)
elecﬁriccmmdrupole moment |  Q 2,73%.05 x 10-27 cm? directly determined(g)
percent D=state Wp magnetic dipole moment, neglecting .

relativistic effects

(a)Sutton, Hell, Anderson, Bridge, DeWire, Lavatelli, Long, Snyder, end Williems, Phys. Rev.. 72,1147 (1947).
b. Shull, Wellan, Morton, and Davidson, Phys. Rev, 73 842 (1948).

O

ddRughes, Burgy, and Ringo, Physo_Rev,~79 227 (1950),

R. E. Bell and L. G. Elliott, Phys, Rev. 74, 1552 (1948)3 W, E. Stephens, Rev. Mod. Phys. 19, 19 (1947)

2 3W B, Jones, Jr., Phys, Rev. 74, 364 (1948); Melkonlan Rainwater, and Havens, Physc Rev, 75, 129 (1949)

W, E. Stephens, Phys. Rev, 76 181 (19497—' Tollestrup, Jenkins, Fowler, and Lauritsen, Pﬁ?é. Rev. 75,

1947 (1949)

Ef%H A. Bethe and C. Longmire, Phys, Rev, 77, 647 (1950)°
8/4, Nordsieck, Phys..Reve 58, 310 (1940).



Table

II

High energy total cross sections,
arises from uncertainties in detector efficiency, neutron beam

dlstrlbutlon and variation of cross section with energy,
sin? 55 is determined by subtracting the contributions

®average™

The error in the mesn energy

The

of the higher partial waves as derived from the angular distribu-
tion on the basis of no spin dependence in scattering,

Mean_ Total cross section o T
energy with stazisticgl Detection . | Aver%ge
Mev -error 10° cm, method- sin s
41 £ 4 0,174 % 0,010 Proton recoils |0,67 % 0.11(®)
40% 4 0.202 % 0,007 , clz(nszn)bli 0.76 % 0,11(P)
83 &7 0,083 % 0,004 -~ 612(n, 20)011 ogsévé'o,os(c)
90 ¢ 3 0.079 * 0,007 " Proton recoils |0.68 * 0,08(2)
|ests 0.073 * o;ooév Bi fission | 0.66 * 0.08(2)
156 £ 3 0,0462% 0,0012 Proton recoils(®)
160 £ 15 - 0,0512% o;ooze B fission(?) |
240 £ 15 0.0410% 0,0041 Bi fission(f)
270 £ 15 0.038 £ 0,0015 Bi fission(f)
260 £ 15 "Q,oss_ﬁ”p;odso Proton recoils(E)

v (a)

Hadley, Kelly, Leith, Segre, Wiegand and York, Phys, Rev° 75,
351 (1949) ,

*ﬁvib) R,H, Hlldebrand and C, E, Leith, Phys, Rev, 76, 587 (1949)° also
private communication,

v (e)
v (a)

(e)

Taylor, .

(£)
v’ (g)
v A.BraXew ald

PR 77 s97

Pickavance,
letter to the Edltors of’ ”Nature "

Cassels

J. Deluren snd N, ‘Knable, Phys, Rev, 77, 606 (1950)o

Cook, McMillan, Peterson and Sewell, Phys, Rev, 72, 1264 (1947)

and Randle, to be publléhed as a

Jo 'DéJurén and B, J 'Moyer Phys,

‘Revdﬁ'in press,

Kelly, Leith, Segre and’ Wiegand Phys, Rev, 79, 96 (1950)




A

Model -

- 90 Mev

2,73 x 10=27 em?,

.ngh energ;y scatterlng behavior of various modelso
(R) is the same in singlet and triplet states,
r.is adgusted to Q =

In the above rangé'

For all cases where ¥ # O,
o is the total cross sectien, the

differential cross section being 4’“’0’(6) =0 .Y a, Py (8), where 8, = 1o -

40 Mev,
Exchange Range_ Radial o S R A _
Dependence (1013  pepem- (10"26 ay’ 8y ‘a3’ ay c(180) o(0) | (10=26 ag o (180)]
' em) ence em ) : ' o(90) | o(90) | em?) (907 |
(14Px) /2 1.18 Y o 9.0 o .77 0 239 3,25 | 3,25 | 23.1 .15 1,26
(1+Px)/2 1.18 Y 5.6 99| o 75 | o | .04 | 291 2,91 - - -
(1+Px)/2 1,35 Y of 9.3 | .0 .98 0 l 057 4,6 4.6 22,9 .21 1.45
(14Px)/2 1.35 Y __1,4 0.2 | 0. | .78 o'3 .14 3,20 | 3.20 | 23.1 .24 1.46
£37+.68Px)S 3 1.35 Y 1.9 10.7 | =.20 | .70 12| .12 3,04 2,95 - - -
G24+.76Px)518  1.35 Y 1.9 12,0 | =.35 | .66 .24 . 06 | 2,61 2,46 - - -
445 £ .55-Px 1.35 .Y 1.9 10.3 | =.16 | .78 -.02| .15 | 3.52 2,84 - - -
W4 & o6 Px 1,35 Y 1.9 10.4 | -.32 | 77 | -.05| .16 | 3.78 | 2.48 | - - -
(1+Px)/2 0.7 E o] 7.9 0 .| .99 0 39 4,00 | 4.00 | 21.5 .17 1,30
45 .55 Px 0.7 E o 7.9 | =10 .99 -07| .39 | 4,33 3.69 - - -
|4+ .6 Px 0,7 E. 0 8,0 | =.20 | 1,00 16| .41 | 4,68 | 3,39 | - - -
| (1) /2 0,75 E 1.8 8.7 0 .92 0 .03 3.8 38 || 21.7 18 | 1.33
o1 TYTE)/E 2.0 s of 7.1 -.86'|1.13 -.34) .12 | 9.57 1,59 | 21.3 211 1.42
=&5 qQCTi‘Té)@ 1.8 s Tod =61 .63 =19 »05 3,50 1,30 22,2 04 | 1,14
EXPERIMENTAL VALUE §79= 1.0 |-.14%.10 |.682.10 | ,02£.10 |.11%.10 |3.6 I.6 {3.0%1,0|1w.452,0  |.26%,10]|1.55%,20
* The exchange 'd'e'pexidencje fdrlthe central force is (l-l?l'—'x)/z°
Table III
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Teble IV o

Properties of Selected Yukawa Potentials

Central range| Tensor range ¥ | ®w S 'gr‘ clodr 30

(10-13 cm) (10-13 cm D1 (20-18em)|(107 3em ) 10-39 i) 10" B en
1,18 1,18 5;6 5.3 | 1.56 | 1.48 | .3 | s5.22
1,18 1,69 oelsz | 1. . 1,49 |'1,0 5,29
1,18 - 1,98 0.5 | 2.8 1,76 | -1.50 | 1,2 5,30
1,18 3,91 - |0,16/1.7. | 1,90 | 1,45 | 2,1 5,35
1,18 (No tensor force)| - - 1,67 1,54 .8 5,29
1.35 1.35 - |1.91|4,2 1,71 .| 1.58 .55 5,32
1,35  (No éensor force)| - | = 1,85 1,65" - .96 5,39‘

In the above iﬁ is the effective range as déterminéd_by_
using the deuteron wave functlon° '5T the shape dependent
coefficient,; has been determined from the approximate

relation °T =. 1(5r)2(3 - r) and checked by neglecting

in the exact ex? ssion for °T all terms involving the
coupled D statel9) All the above potentials gave a value of
0,28 (within 2 percent) for the ratio of the cross sections

~ for photomagnetic to photoelectric disintegrations of the

“‘deuteron for the 2,76 Mev Na Y=ray using a value of 2,23 Mev
as the binding energy of the deuteron, [For experimental
values see W, M, Woodward and I,~Halpern, Phys, Rev, 76 107
(1949);: E, Meiners, Phys, Rev, 76 259 (1949)J




Gomparison of Contributions of Varisus States

o7 G

Table V

to Total Crbsé Section

| State

Squaré'we11=

(1026 on )

' Tensor forces Centiral forceés .
(10“’26 om?)

Yukatwa,

Tensor forges- Central Forces

(10’

(10“26 cmz)

2,95%
0,357
,56874

o,72*

3,25%

1,58*

2,21%

8,82f
0,55
1,82+

0,14

9,58%
.‘05 14*
- 0424%

0,33*

iz
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Table VI

Singlet phase shifts at 20 and 32 Mev for various rad:Lal
- forms. adjusted to: fit.the low energy sce.ttenn& :

Phase shift

_ v 32 Mev 20 Mev
Model S Ve R o §: . D ... 8 D
‘ V r<R L R : 1 . g o - ov
|v (r/h)s : 13,273 Mev |2,615 x10~1% cm | 41,99° 0,770° 48,5° 0,26°
g 0 - r>R : ‘ e . .. -

,ve(r/k)svce=r/k' 108,27 Mev |0,7088x107%% om | 47,54%-1,200 -

=rR ‘ . : v .
V,(r/R)=le% © Vool /! 49,350 Mev |1,1417x10~13 cm | 51,150 1,400 .54,2° 0,70

r/ R

* Interpolated




Fig, 1

Fig, 2

Fig, 3

Fig, 4

- Figures

‘Experimentel sngular distribution, The circles are the
‘counter date [see Hadley, Kelly, Leith, Segrdé, Wiegand,

and York, Phys, Rev, 75, 351 (1949)-and Kelly, Leith’

Segré, and Wiegand, Phys,Rev, 79, 96 (1950),].  The hori=-
zontal lines at 90 Mev are the result of the cloud chamber
measurements, [See Brueckner, Hartsough, Hayward, end Powell,
Phys, Rev, 75, 555 (1949),] The crosses at 90 Mev covering
the angular renge from 25° to 74° were determined by a photo=
graphic plate technique, '[R, Wallace, Phys, Rev,, in pressJ
The triangle at 90 Mev covering the angular range from 130°
to 180° were determined by scintillation counter technique,
[R. H, Fox, Phys, Rev,, in press,] -The normalization chosen
agrees with the total cross section as given in Table II,’
The deshed line represents the best fit as determined from

the expension in Legendre polynomisals, - [See Table III ]

(Energy) x (total cross section) vs, energy, The full curve
indicates the general characteristics of a potential model
having a singular behavior at the origin such as. Yukawa

radial dependence, ' '

The triplet effective range for the Yukawa (Y), expcnential

(E), and the square well (8) potentials, The. intrinsic

range is 2,12 R, 3,54 R, and R for the three potentials in

the order named above, R is the ususl parametric range that
occurs in the radisl dependence, i,e,, exp(-r/R)}/(r/R) ep(/R) for
the Yukawa and exponential potentials and a constant potential’

extendipg a distance R for the square well potential,

Low energy triplet scattering on thée assumption of a 3,0x 10‘15v
em singlet effective renge. "This plot yields 5,51 £ 0,16 x 10-13
cm end 1,98 £ 0,26 x 10=13 cm' for the triplet scattering length
end effective range, respectively, The experimental points

_[open circles,'(Bailey,'Bennett,'Bergstgalh, Nuckolls, Richards,
"~ and Williems, Phys, Rev, 70, 583 (1946)), solid circles (Pro=-

fessor J, H, Williems has kindly communicated to us more recent
values of the experiments of Lampi, Freier, and Williams,
Phys, Rev, 76, 188 (1949), Further experiments ene still in
progreSs.)jT_hre from the deta of the Minnesota group,

Triplet § wave scattering at 90 Mev, -

Central force scattering at 40 and 90 Mev, The first column
gives the triplet scattering; the second, the singlet scat-
tering; and the third, the complete scattering (assuming
equal intrinsic ranges), The first row is for the square
well; the second, for the exponential; and the third, for

" the Yukaws potential, In each figure the upper set of three
" curves is for 40 Mev; the lower, for 90 Mev, For each set of

three curves the uppemost is 4w.c(180°); the middle curve is



Fig, 7.

Fig, 8

Fig, 10

Fig, 11

Fig, 12

Fig, 13

- chosen to fit the deuteron and the zero energy soattermg°

=79

the total cross section; and the lower is 4ﬂ°6(90°) (I1lus=-
trated in the first figure by A, B, and C, respectively,) In
all cases the exchange dependence is assumed to be

(1 + Py) [therefore, o(180°) = o(02)], end the depths are

S wave ecattering phase shift illustrated for a triplet

- effective range of 1,65 x 10‘1 cm and a singlet effective
" renge of 3,0 x 10=13 om, .Y, E, and S refer to the Yukaws,

exponential, and square well central potentials, respeotlvely°
The experimental points below 25 Mev are from the data of W,
Sleator, Jr,, Phys, Rev, 72, 207 (1947), and R, Sherr, Phys,
Rev, 68, 240 (1945) (above 20 Mev, see Table II)

D, wave seatterlng° The quantlty plotted is the sine of the

D wave ghase shift for the singlet and triplet Yukawa (labeled
1Y and 4y and for the 81nglet and triplet square well potentials
(labeled 18 and 33),

Scattering at 40 and 90 Mev from an exponential potential,

exp(-r/R), (R = 0,7 x 10-13 cm for both singlet and triplet
states) without tensor force, The solid lines are for 8

(1 + Px)/? exchange dependence° the dotted curves 111ustrate
the effect of incressing the amount of exchange forces, The
total cross sections for this potential are 21.7 x 10'=§

and 7,9 x 10-26 am? at 40 and 90 Mev, respectively, The
experimental points (see. Fig, 1) have. been normalized to £it
the theoretical angular distrlbutlon°

Scattering from the Yukewa potential exp(mr/h)/(r/k) at 40

and 90 Mev for & range R = 1,35 x 10~13.cm for both singlet
and triplet states without temsor force, ' The total cross
sections are 22,9 and 9,3 x 1026 cm? at 40 and 90 Mev
respectively, : '

Quadrupole moment for the square well, The binding energy
used is 2,23 Mev, and the tensor and central ranges, R, are
equal, b is the customary dimensionless well depth, equal

to MY, R/,

Quadrupole MOome; t for the Yukawa Well (The results for

R'=1,185 x 107*° cm are in agreement with those from more i

precise calculations communicated to the author by H,
Feshbach,) ‘The binding energy used is 2,183 Mev, and the
tensor and central ranges, R, are equal b is the oustomery
dimensionless well depth, equal to MV R?/ The curve for

R =1,120 x 10‘13 em, shown as dashed’ is extrapolated

Ratio of central well depth to tensor well _depth for quadrupole
moment equal to 2,73 x 10-27 em?, The binding energy fitted
for the Yukawa (Y) case is 2,183 Mev and: for the square well
(8) case is 2,23 Mev,

~,
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Fig,

Fig,

- Fig.

Fig,

Fig.

Fie.

Fig,

Fig,

Fﬁg.'

14

15

16

17

18

19

20

21

22

23
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Low energy scattering with tensor forces for the Yukewa (Y)

-and the square well (Sz potentials, The renge, R, is indi-

cated (in units of 10-13 cm) paremetrically along *the curves,
(Depths are adjusted to fit the bindlng energy and the quadru-
pole. moment of the deuteron,)

Variation of deuteron fitting parameters for increase of
tensor range, The interaction is that of the Yukawa well
for which the central range is 1,185 x 10-13 cm, Wb is the
percentage of D state; b is the dimensionless central well
depth equal to MV,R?/h; Yb is the tensor well depth, The
binding energy fitted is 2,183 Mev, : o

BEffect of 1ncrea31ng the tensor depth (at 90 Mev) with con-
stant binding energy illustrated for a Yukaws potential
(R = 1,18 x 10=13 cm), - Curve I: ¥ = 0, triplet cross section

= 9,9 x 10-26 cmz Curve II: ¥ = 0,5, *triplet oross section

é ‘Curve III: ¥ = 6, triplet cross section,
=11,1 x 1026 o

Scattering from the Yukews potential (R = 1,35 x 10~13 cm)

at 40, 90, and 280 Mev with inclusion of tensor force, The
total cross sectlons are 23,1 x 10~26 cmz, 9,8 x 10°Zé cm?

end 3,7 x 1026 ¢ - :

Scattering from the exponential potentisl (R = 0,75 x 10-13 cm)
at 40 end 90 Mev with inclusion of tensor force, The total
cross sections are 21,7 x 10=-26 cm2 at 40 Mev and 8,7 x 10-26
cm? at 90 Mev, : .

Effect of inoreasing the tensor renge (at 90 Mev) with con=

stant binding energy and quadrupole moment illustrated for a

- Yukawa potentiel (central range = 1,18 x 107 3cm)° Curve Is

Tensor renge = 1,18 x 10-13 cm, complete cross section = 9,9
x 10~26 cm Curve II¢ Tensor range = 1,69 x 10-13 cm, Ccome=

- plete cross section = 10,6 x 10” 6 em2, Curve III: Tensor

renge = 3,91 x 10-13 em, complete cross section = 10,7 x 107

'Om»o

The 27,2 Mev angular distrlbutlon. [ see Brolley, Coon, and
Fowler, Phys, Rev, 79, 227 (1950),] The solid line is "the
theoretical prediction of the Yukawa tensor model,

Coniparison of n-p and p=p scattéring data,

Effects of S, D, and P waves on 32 Mev seatterlng, The  upper
set of curves glve the nuclear scattering, The lower set
1nclude the -effects of Coulomb forces,

Tensor scattering from a 31ngular potential at various
energies, The energies in Mev are given parametrically on
the curves,
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o Fig,

Fig,

Fig,

Fig,
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Fig.

‘Fig.

Fig.

Fig,

28

29

30

31

32

33
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Effect of adding tensor scattering to~the_singiéﬁhécattering

at 32 Mev, A, Nuclear scattering, B, Scattering including
the effects of Coulomb foreces, .The tensor scattering is
that from a poential of exponential radial dependence

(R =071 x 1013 om, Vi = £ 50 Mev),

Slnglet scatter1ng at 350 Mev as predlcted for a gotentlal
having Yukawa radial dependence R = 1,1416 x 10°*° cm and

(I1) for a square well potential R = 2,615 x~1o=13 om,

Comparison of exact and Born calculatlons for tensor force
scattering at 32 Mev from a potentlal of Yukawa radlal de-

pendence (R = 1,25 x 107 =13

Comparison of exact and Born calculations for tensor force

scattering at 350 Mev fram a potential of Yukews radial de-
" pendence (R = 1,25 x 10‘ cm),

Singlet scattering at 32 Mev from potentials with various

-radial forms adjusted. to fit the low energy scattering, Data

taken from reference 11 (29.4 Mev) end’ 12 (31,8 Mev),

P wave scattering added to the 51ng1et seatterlng predlcted by
the Yukawa potentlal at 32 Mev.: :

Total scatterlng at 32 Mev by s1ng1et and trlplet tensor -
potentials of the same radial form, (The singlet potentials

“have range and depth adjusted to fit the low energy scattering),

A, Square, B, Exponential, €, Yukaws, Data taken from
reference 12 (31 8 Mev) . o -

- Best fit at 32 Mev: eompared to S‘wave and singlet scatterlng
-at 32 and 20 Mev, I, Singlet square well R = 2,615 x 10-13

em and depth 13,273 Mev; triplet tensor. Yukawa potentiel

R=1,25 x 10~} 13 cp and Vi = 23 Mev (or S3oV¢ exp(- /R)/(r/k)z
with R =.1,6 x 10-1% cm'and V£ 18 Mev), II, S wave scattering
III, Singlet scattering from Yukawa potential R = 1,1417 x 10‘15
cm and Vg = 49,350 Mev; no tensor forces,

Born tensor scattering emplitude for various potentials,
The abscissa scale has been adjusted so that all potentials
will give the same sngular distribution at 32 Mev as the
Yukewa potentisl with R = 1,26 x 10-13 cm for a suitable

- choice of depth,

Complete cross section at 350 Mev for various tensor models
adjusted to fit the 32 Mev data, The legend shows the tensor
model used, Data taken from reference 13,

s
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