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Abstract

Studies have found that when innovation involves recombining
cultural traits, partially-connected populations produce higher
levels of cultural complexity than fully-connected populations
by avoiding cultural homogenization. However, population
connectedness is only one of many factors that could promote
cultural diversity and thus cultural complexity. Here, we exam-
ine whether people’s preference for copying members of their
own social group could also fill this role. Our simulations re-
veal that even in fully-connected populations, ingroup-biased
transmission results in greater cultural complexity than unbi-
ased transmission. Moreover, in partially-connected popula-
tions, this bias interacts with population structure to produce
even higher levels of cultural complexity than population struc-
ture alone. Finally, by incorporating population turnover into
our model, we shed light on the trade-off between promoting
cultural diversity versus limiting cultural loss.

Keywords: cultural diversity; innovation; cumulative cultural
evolution; ingroup copying bias; connectedness

Introduction

Humanity’s unprecedented technological and cultural sophis-
tication has been widely attributed to our capacity for cumu-
lative cultural evolution (Boyd & Richerson, 1985). Over
time, we have accumulated an increasingly diverse and com-
plex set of cultural products and practices, including tech-
nologies, scientific theories, and forms of social organiza-
tion that far exceed what any single generation could devise
on its own (Tomasello, 1999). This accumulation can be
observed across a variety of interrelated measures (Enquist,
Ghirlanda, Jarrick, & Wachtmeister, 2008), such as in the ef-
ficiency, amount, and complexity of our cultural traits (be-
haviors, concepts, material products, etc.). Various factors
are thought to affect this cultural accumulation, including
transmission fidelity (Lewis & Laland, 2012; Montrey &
Shultz, 2020), intelligence (Stout & Hecht, 2017), behavioral
conservatism (Marshall-Pescini & Whiten, 2008), life his-
tory (Wakano & Miura, 2014), and prosociality (Tomasello,
1999).

However, one of the most influential lines of inquiry has
been into the role of demography. Theoretical models pre-
dict that larger populations should support more complex cul-
ture because frequent opportunities for social learning stem
the rate of cultural loss (Henrich, 2004; Powell, Shennan,
& Thomas, 2009). Otherwise, complex cultural traits are
lost with the death of their creators, forcing future genera-

tions to rediscover or reinvent rather than build upon existing 5
1

knowledge. While this idea has drawn criticism (Andersson
& Read, 2016) and empirical evidence is mixed (Buchanan,
O’Brien, & Collard, 2015; Collard, Buchanan, O’Brien, &
Scholnick, 2013), proponents have argued that cultural com-
plexity is not expected to covary with population size per se.
Rather, it is expected to covary with effective population size,
defined as the number of individuals actively engaged in so-
cial learning (Derex & Mesoudi, 2020). At minimum, this
means that the frequency of intergroup contact (i.e., popula-
tion connectedness) needs to be considered, which varies con-
siderably according to ethnographic studies (Kline & Boyd,
2010; Migliano et al., 2020).

Population structure may affect cultural complexity in
other ways as well. Historical analysis (Basalla, 1988) and
theoretical models alike (Lewis & Laland, 2012) suggest that
innovation (the production of new or better cultural traits) fre-
quently involves recombining existing traits (Enquist et al.,
2008). For example, examination of U.S. patent records from
1790 to 2010 reveals that the majority of inventions patented
during this period combined at least two earlier technolo-
gies (Youn, Strumsky, Bettencourt, & Lobo, 2015). Cumu-
lative cultural evolution can thus been characterized as an au-
tocatalytic process (Gabora & Steel, 2020), where each ad-
ditional trait presents new opportunities for recombination,
eventually sparking a positive feedback loop (Gabora & Steel,
2017). This could help explain why human culture has been
observed to grow exponentially (Enquist et al., 2008) in do-
mains ranging from the technological evolution of Paleolithic
stone tools (Stout, 2011) to the rate of contributions to chem-
istry, biology, economics, mathematics, and medicine since
the early modern period (Lehman, 1947).

One important consequence of this view is that cultural
diversity (possessing a wide range of cultural traits) drives
cultural complexity (Enquist, Ghirlanda, & Eriksson, 2011).
This is well-illustrated by organizational research, which
shows that ethnically diverse groups tend to produce higher
quality ideas (McLeod, Lobel, & Cox, 1996). However, this
also means that population structure has another avenue for
influencing cultural complexity: by either speeding or delay-
ing cultural homogenization (people’s tendency to converge
on a similar set of cultural traits). Both experimental (Derex
& Boyd, 2016; Fay, De Kleine, Walker, & Caldwell, 2019)
and theoretical findings (Cantor et al., 2021; Derex, Per-

6reault, & Boyd, 2018; Migliano et al., 2020) corroborate this
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idea. These reveal that partially-connected populations pro-
duce greater cultural complexity than fully-connected popu-
lations by giving diverse cultural traditions the opportunity to
flourish.

That being said, population connectedness is only one of
many factors that could promote cultural diversity by slow-
ing cultural homogenization. Barriers to the flow of social
information are often not just structural, in that individuals
lack contact, but also behavioral, in that they are unwilling to
share information (Derex & Mesoudi, 2020). For example,
ethnographic studies reveal that certain types of knowledge,
such as medicinal plant use, are shared more freely between
kin than non-kin (Salali et al., 2016), and theoretical models
suggest that such kin-biased transmission can promote cul-
tural diversity (Migliano et al., 2020).

In addition to kin-biased transmission, people employ a
wide variety of other social learning strategies (Kendal et al.,
2018) that could affect cultural diversity. For example, anal-
ysis of contemporary hunter-gatherer societies shows that in-
teraction rates tend to be governed more strongly by ritual
relationships than kinship (Hill, Wood, Baggio, Hurtado, &
Boyd, 2014). The apparent importance of non-kin social re-
lationships, such as who participates in particular rituals to-
gether (Hill et al., 2014), aligns with recent psychological
findings. These reveal that people use social group member-
ship to determine whom to observe and copy, even when these
groups are arbitrary, novel, and devoid of intergroup compe-
tition (Montrey & Shultz, 2022). Surprisingly, this bias has
also been found to produce intergroup differences in behavior
in intermixed groups (Montrey & Shultz, 2022). This raises
the possibility that even in a fully-connected population, the
mere perception of a group identity could bias copying along
group lines and spur the creation of distinct cultural tradi-
tions.

Here, we examine whether an ingroup copying bias could
slow cultural homogenization enough to promote cultural
complexity. Because previous models of population connect-
edness have typically examined highly isolated subpopula-
tions (Derex et al., 2018), it is not readily apparent whether
a probabilistic copying bias could have a similar effect, par-
ticularly in intermixed groups. To answer this question, we
develop a model where innovation depends on recombina-
tion. We then introduce ingroup-biased transmission into
fully-connected populations and test how this affects cultural
complexity. Next, we examine how this bias interacts with
population structure. In the context of cultural complexity,
the issue of how population structure and transmission biases
interact has only recently begun to be examined (Migliano
et al., 2020). It is therefore unclear whether these factors
will mitigate or reinforce one another. Finally, by implement-
ing population turnover, we address how cultural complexity
varies with the reliability of social learning. Because models
of cultural evolution have traditionally focused on either inno-
vation or social learning, they have often ignored the trade-off
between cultural diversity, which collapses when copying is

too frequent, and cultural loss, which accelerates when copy-
ing is not frequent enough.

Methods

We model a population of n individuals divided into g equally
sized groups. Each individual is described by its group mem-
bership and cultural repertoire. This repertoire consists of the
set of cultural traits the individual possesses (e.g., its toolkit).
Each trait is characterized by its type (a unique random string)
and level of complexity (C).

Innovation

During the innovation phase, each individual innovates with
probability pjnovare. If the individual’s cultural repertoire is
empty, it discovers a novel trait of a new type and complexity
level C = 1. If the individual’s repertoire is not empty, it tries
to innovate on the trait it is currently exhibiting, which yields
a new trait of the same type but with complexity level C + 1.

Models of cumulative cultural evolution often capture the
relationship between innovation and cultural diversity in one
of two ways. The explicit approach involves specifying
precise relationships between cultural traits that determine
whether they can be recombined into new traits of higher
complexity (Enquist et al., 2011; Gabora & Steel, 2020;
Migliano et al., 2020). The implicit approach abstracts away
from these details and describes the relationship between in-
novation and cultural diversity as a mathematical function
instead (Creanza, Kolodny, & Feldman, 2017; Derex et al.,
2018; McElreath, 2010).

Here, we adopt an implicit similar scheme to the one used
by Derex et al. (2018). We assume that for an individual to
successfully innovate on a trait of complexity C, the size of
its cultural repertoire must equal or exceed C* (rounded to
the nearest whole number). Parameter u reflects how strongly
innovation depends on cultural diversity, and thus describes
how often innovation involves recombination rather than re-
finement (Enquist et al., 2011). If u = 1, innovation does
not depend on cultural diversity at all because any individual
trying to innovate on a trait of complexity C already has at
least C! = C traits in its repertoire. This removes any upper
bound on trait complexity and captures scenarios where inno-
vation revolves exclusively around refinement. When u > 1,
innovating on a trait requires a larger repertoire containing
multiple types of traits. For example, if u = 1.2, innovat-
ing on a trait of complexity C = 3 requires a repertoire of
312 ~ 4 traits. If u = 1.8, innovating instead requires a reper-
toire of 3!'® ~ 7 traits, which reflects a stronger relationship
between cultural diversity and innovation. This reflects sce-
narios where innovation involves recombining existing traits.

Social Learning

During the social learning phase, with probability p,py, each
individual learns from a random neighbor by observing the
trait it is currently exhibiting. If the trait is of an unfamil-
iar type, the individual learns a rudimentary version (C = 1).
If the trait is of a known type, then the individual compares
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the trait’s complexity (C') to that of its own similar trait (C).
Less complex traits (C' < C) are disregarded, whereas more
complex traits (C' > C) allow the individual to learn an incre-
mentally more complex trait of the same type (C+1).

This captures two important features of human social
learning. First, simple traits are learned quickly, whereas
complex traits require a greater investment of time (Wakano
& Miura, 2014). Second, because copying a complex trait
is a multi-step process, individuals can have more than one
cultural parent (Enquist, Strimling, Eriksson, Laland, & Sjos-
trand, 2010). This aligns with the observation that highly
complex traits, such as stone knapping techniques, tend to
be learned iteratively through repeated exposure to multiple
demonstrators and that relevant aspects of a complex trait are
often imperceptible to naive individuals (Whiten, 2015).

We model ingroup biases in social learning as an increased
probability of copying ingroup members. With probability
Dbias» Tather than copying any random neighbor, individu-
als seek out a neighbor belonging to their own group in-
stead. This reflects the notion that people use social group
membership to decide whom to observe and copy (Montrey
& Shultz, 2022), a tendency that may even extend to in-
fants (Buttelmann, Zmyj, Daum, & Carpenter, 2013). If
Prias = 0, individuals ignore group membership and copy en-
tirely at random. To ensure that copying preferences do not
alter network topology, we restrict ppiqs < 1.

Behavior

During the behavior phase, each individual exhibits the most
complex trait in its cultural repertoire. If multiple traits are
equally complex, it selects one at random. We assume that
complex traits are favored over simple ones because com-
plexity is often indicative of improvement. For example, the
development of increasingly elaborate knapping techniques
allowed early hominins to produce ever-more efficient stone
tools (Stout, Semaw, Rogers, & Cauche, 2010). This assump-
tion also helps capture the notion of path dependence, where
early innovations tend to constrain later ones (David, 2007).

Population Structure

We consider two types of social structure: complete graphs
and relaxed caveman graphs. In complete graphs, each indi-
vidual is fully-connected to all other individuals. Groups are
intermixed and there are no structural barriers to the flow of
information. In relaxed caveman graphs, intragroup connec-
tions are much more common than intergroup connections,
which causes groups to form insular cliques. Such graphs are
produced by fully connecting group members to one another
and then randomly rewiring each connection with probability
Prewire- This rewiring results in a limited number of inter-
group connections.

Simulation

At the start of the simulation, the population has no cultural
knowledge. Each time step begins with the innovation phase,
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Figure 1: Cultural complexity over time. Ingroup-biased
transmission (ppiqs > 0) results in higher levels of cultural
diversity and complexity than unbiased transmission (ppiqs =
0). Each population is fully-connected.

in which individuals learn independently, followed by the so-
cial learning phase, in which individuals observe one another
in random order. This is followed by the behavior phase, in
which individuals choose which behavior to exhibit. Finally,
individuals are replaced with probability p,epiace by individu-
als belonging to the same group but with empty cultural reper-
toires.

Cultural Complexity

We operationalize cultural complexity as the average com-
plexity level of each individual’s current (i.e., most complex)
cultural trait. This reflects a population’s capacity to produce
and maintain complex cultural products and practices, a hall-
mark of cumulative cultural evolution (Tomasello, 1999). It
is worth noting, however, that because cultural complexity is
contingent on cultural diversity, this measure also reflects the
average size of individuals’ cultural repertoires.

Results

By default, we consider a fully-connected population of n =
400 individuals divided into g = 20 groups, where innovation
israre (Pinnovare = -01), social learning is reliable (pcopy = .8),
population turnover is slow (pyepiace = -001), and innovation
depends moderately on cultural diversity (u = 1.5). We run
simulations for 10,000 time steps to allow cultural trends to
stabilize. Results are averaged over 20 simulation. Error en-
velopes represent bootstrapped 95% confidence intervals.

Ingroup Copying Bias

Even in fully-connected populations, a preference for copy-
ing ingroup members (ppiss > 0) yields higher levels of cul-
tural complexity (Figure 1). By slowing the rate of intergroup
copying, cultural repertoires homogenize more slowly, giving
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Figure 2: Stabilized cultural complexity as a function of in-
group copying bias strength. If copying is highly unreliable
(Peopy = -05), such biases can result in cultural loss. However,
if copying is even slightly more reliable (pcopy = .1 or .2),
such biases can slow cultural homogenization without overly
restricting the flow of information. Each populations is fully-
connected.

each group the opportunity to develop a unique set of com-
plex traits before these traits diffuse through the broader pop-
ulation. This increased cultural diversity then spurs further
innovation, resulting in even more complex traits.

Cultural Diversity vs. Cultural Loss

When social learning is highly unreliable (pcopy = .05), in-
group copying biases can have a deleterious effect on cultural
complexity (Figure 2). This occurs because the flow of in-
formation is too restricted for complex traits to be reliably
preserved when individuals are replaced, and strong biases in
copying exacerbate this problem. However, as social learn-
ing becomes more reliable, the need to stem cultural loss be-
comes less dire. If social learning is even slightly more reli-
able (pcopy = .1 or .2), ingroup-biased transmission can slow
cultural homogenization without overly restricting the flow of
information, resulting in higher levels of cultural complexity.

Connectedness

Having established that social learning strategies, much like
population connectedness, can influence cultural complexity,
it is worth asking whether these factors interact. For example,
in a population structure that promotes cultural complexity,
would an ingroup copying bias offer any further advantage?
To answer this question, we first place our population on a re-
laxed caveman graph (pewire = -2). Next, we find the level
of population connectedness that maximizes cultural com-
plexity in the absence of an ingroup copying bias. Because
groups in this context form insular cliques, with far more
intragroup than intergroup connections, we can manipulate
connectedness by varying the number of groups (g) in the
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Figure 3: Stabilized cultural complexity as a function of
ingroup copying bias strength. Intermediate levels of con-
nectedness (g = 50) produce greater cultural complexity than
weakly (g = 100) or strongly connected (g = 5) populations.
In all three cases, ingroup-biased transmission promotes cul-
tural complexity. Each population is placed on a relaxed cave-
man graph.

population (Derex et al., 2018). Intuitively, the more groups
there are in the population, the less likely these groups are to
be interconnected.

Consistent with previous theoretical (Derex et al., 2018)
and empirical (Derex & Boyd, 2016) results, we find that in-
termediate levels of connectedness (g = 50) produce greater
cultural complexity than weakly (g = 100) or strongly con-
nected populations (g = 5). Varying the strength of the in-
group copying bias reveals that ingroup-biased transmission
promotes cultural complexity at all three levels of connect-
edness (Figure 3). Notably, ingroup-biased transmission in-
teracts with intermediate levels of connectedness to produce
even higher levels of cultural complexity than population
structure alone.

Other Parameters

In the following section, we examine how various parameters
affect cultural complexity and, where qualitative differences
exist, how they interact with ingroup-biased transmission. In
all cases, we consider fully-connected populations.

Population Size Larger populations (n) are conducive to
cultural complexity because they create additional opportu-
nities to discover new traits or innovate on existing ones (Fig-
ure 4a). This is consistent with classic demographic models
of cultural evolution, which predict that larger populations
should support more sophisticated cultural traits (Henrich,
2004).

Number of Groups When social learning is unbiased, the
number of groups (g) has no effect on cultural complex-
ity because group membership has no behavioral signifi-
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Figure 4: Stabilized cultural complexity as a function of (a) population size, (b) number of groups, (c) innovation rate, (d)
social learning reliability, (e) replacement rate, and (f) innovation’s dependence on cultural diversity. Each population is fully-

connected.

cance. However, when social learning is biased toward in-
group members, dividing the population into smaller groups
further restricts the flow of information, which delays cultural
homogenization and boosts cultural complexity (Figure 4b).

Innovation As predicted by previous models (Kandler &
Laland, 2009), higher rates of innovation (pjnnovare) generally
result in greater cultural complexity (Figure 4c). The more in-
novations occur before cultural traits diffuse and homogenize,
the more diverse the population’s cultural repertoire, allowing
for more complex innovations. That being said, when social
learning is unbiased, extremely high rates of innovation can
fail to maximize cultural complexity. This occurs because in-
dividuals end up with so many cultural traits that they have
difficulty deciding which of these to innovate on.

Social Learning When social learning is unreliable, com-
plex innovations are consistently lost before they can spread
through the population. As a result, increasing social learn-

ing reliability (pcopy) initially stimulates cultural complexity
(Figure 4d). Much of the cumulative cultural evolution litera-
ture has focused on this phenomenon and has frequently em-
phasized the importance of transmission fidelity to the build
up of complex cultural traits (Andersson, 2013; Lewis & La-
land, 2012; McElreath, 2010; Montrey & Shultz, 2020; Ten-
nie, Call, & Tomasello, 2009). However, when cultural loss
has to be balanced against cultural diversity, increasing social
learning reliability past a certain threshold hurts innovation
more than it prevents cultural loss. As culture rapidly ho-
mogenizes, cultural complexity drops.

Replacement Rate The more frequently individuals are re-
placed (prepiace). the more often cultural traits are lost be-
fore they can spread through social learning. Longer lifes-
pans thus promote cultural complexity by reducing cultural
loss (Figure 4e). This aligns with the view that increased
longevity played a key role in enhancing human cultural ca-
pacities (Kaplan, Hill, Lancaster, & Hurtado, 2000; Montrey
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& Shultz, 2020; Stout & Hecht, 2017).

Innovation’s Dependence on Cultural Diversity When
innovation does not depend on cultural diversity (u= 1), there
is no downside to cultural homogenization. Cultural com-
plexity is limited only by a population’s rate of cultural loss.
However, as the relationship between innovation and cultural
diversity grows stronger, it becomes exponentially more diffi-
cult to innovate on existing traits, which sharply curtails cul-
tural complexity (Figure 4f).

Discussion

In recent years, population structure has been increas-
ingly invoked to explain patterns of human cultural evolu-
tion (Creanza et al., 2017; Kline & Boyd, 2010; Powell et al.,
2009). To date, studies have largely focused on how popu-
lation structure can impact cultural diversity by constraining
the flow of social information (Cantor et al., 2021; Derex et
al., 2018; Kobayashi, Ohtsuki, & Wakano, 2016; Migliano
et al., 2020). However, the question of whether probabilistic
transmission biases can have a similar effect has gone rela-
tively unexplored. We find that a preference for copying in-
group members slows the rate of cultural homogenization and
thus promotes cultural complexity. Although this bias inter-
acts with population structure to produce even higher levels
of cultural complexity, its effects are observed even in fully-
connected populations. Therefore, much like structural barri-
ers, behavioral barriers may play an important role in cultural
complexity (Derex & Mesoudi, 2020).

Models of cumulative cultural evolution have tradition-
ally focused on social learning’s ability to prevent cultural
loss (Andersson, 2011; Enquist et al., 2010; Henrich, 2004;
Lewis & Laland, 2012; Montrey & Shultz, 2020). For this
reason, frequent and accurate copying has often been viewed
as an unalloyed good. While models focusing on how cultural
traits are produced have presented an important counterpoint
to this perspective by stressing the downsides of excessive
social learning (Cantor et al., 2021; Derex & Boyd, 2016;
Migliano et al., 2020), these in turn have generally neglected
the role of cultural loss (Derex & Mesoudi, 2020). By includ-
ing population turnover, our model allows us to examine how
these competing pressures interact, revealing that ingroup-
biased transmission benefits cultural complexity only so long
as social learning is reliable. When social learning is unreli-
able, strong biases do more harm than good because the cul-
tural diversity they produce cannot be preserved.

This could help explain why humans evolved an ingroup
copying bias in the first place. As frequent and accurate so-
cial learners (Montrey & Shultz, 2020), our species may have
been particularly likely to benefit from this bias’ tendency to
produce cultural diversity. These findings also suggest that
transmission biases could have different effects on cultural
complexity across various populations. For example, soci-
eties with writing (Kempe, Lycett, & Mesoudi, 2014), insti-
tutionalized pedagogy (Boyette & Hewlett, 2018), or tech-
niques for accurately transmitting oral traditions (Filliozat,

2004) could benefit more than societies without similar mech-
anisms for stabilizing cultural transmission.

In our work, we draw a distinction between network topol-
ogy, which describes the existence of social connections, and
the probability that an individual will actually be copied.
However, this dichotomy could plausibly be captured using
a weighted graph, where some pairs of individuals are more
likely to interact than others. In this sense, our results reveal
the importance of examining not just the presence or absence
of social connections, but the strength between them as well.

Although recent anthropological models have begun to in-
corporate such connection weight information, for example
on the basis of frequency of contact (Migliano et al., 2020),
such approaches may nevertheless fail to adequately capture
transmission biases for at least two reasons. First, social
learning strategies could influence copying probabilities in
ways not reflected by frequency of contact alone. For exam-
ple, the ingroup copying bias has been shown to persist even
after controlling for how much more often ingroup members
are observed (Montrey & Shultz, 2022). This highlights the
benefits of measuring cultural transmission rates through em-
pirical correlations in cultural traits rather than inferring them
from social contact (Salali et al., 2016). Second, because
some social learning strategies are either context-dependent
(e.g., copy if uncertain) or content-dependent (e.g., payoft-
biased transmission), it is not apparent how these could be
captured through network topology alone.

Finally, our results add to a growing body of research
showing that transmission biases are an important factor in
cumulative cultural evolution (Kendal et al., 2018). For ex-
ample, several studies have found that conformity bias can
hinder cultural complexity by impeding the spread of novel
innovations (Eriksson, Enquist, & Ghirlanda, 2007; Kan-
dler & Laland, 2009). Although the apparent contradiction
between conformity bias and cultural complexity has lead
some researchers to speculate that people may not be as con-
formist as social psychologists once believed (Kandler & La-
land, 2009), our findings highlight another possible explana-
tion: the ingroup copying bias could serve an important anti-
majoritarian function in large populations, which invariably
comprise diverse social groups. People’s tendency to employ
multiple social learning strategies in tandem (Kendal et al.,
2018) could thus counteract conformity bias’ drive toward
cultural homogenization, laying a foundation for the cultural
diversity and complexity that we widely observe.
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