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ABSTRACT

Motivation: Since the availability of high throughput sequen-

cing tools, the number of known protein sequences has been

growing at an unprecedented rate. On the other hand, infor-

mation about structure or function of proteins is extremely

sparse. Biologists that study proteins make extensive use

of protein search engines to find homologous sequences

whose structure or function are known. One well known mea-

sure for sequence similarity is the Smith-Waterman (SW) ali-

gnment score. As calculating the SW score is computationally

expensive, various approximations for finding homologous

sequences have been suggested, and of these the current

de-facto standard for protein searching are the BLAST and

PSI-BLAST methods of Altschul et al. While BLAST is an effi-

cient approximation algorithm to the optimal SW alignment, it

is still, from a computer science standpoint, a very inefficient

method as it compares the query sequence to each and every

sequence in the database.

Results: We present a method for indexing and searching pro-

teins using amino acid patterns. As a source of patterns, we

use the BLOCKS library of Henikoff and Henikoff [18]. Position

specific scoring matrices are used to identify pattern occur-

rences. Each iteration consists of a “scan” in which we identify

all statistically significant pattern occurrences in the sequence

set; and a refinement stage, in which we use the identified

occurrences to define better PSSMs. The final refined PSSMs

are then used to index proteins in the UniProt Knowledge-

base (UniProtKB), creating an efficient and accurate tool for

searching protein homologues.

Availability: http://biospike.ucsd.edu/

Contact: yfreund@ucsd.edu

1 INTRODUCTION

At the time of writing, there are about 2,600,000 sequences

in the UniProtKB data set [12, 10]. Out of these, only about

200,000 sequences in Swiss-Prot [12] have an extensive bio-

logical annotation, and only about 35,000 sequences have an

associated 3D structure in the Protein Data Bank (PDB) [5].

In other words, we now know the exact amino acid (AA)

sequence of many proteins, but for most of these proteins we

know nothing about their structure or their function.

The Smith-Waterman (SW) score [30] is a well-known

sequence similarity measure. Despite the quadratic time com-

plexity for computing the SW alignment score, the SW score

has been central to many sequence-based homology search

methods. As the size of sequence data sets grow into the

millions, the time complexity of SW-based scoring methods

becomes a serious bottleneck. Subsequently, BLAST, PSI-

BLAST, and other BLAST-like methods [2, 3, 25, 33] are

developed to relieve the computational complexity of SW

computation essentially through approximations.

While BLAST is an efficient approximation algorithm to the

optimal SW alignment, it is extremely slow when compared

to search engines such as Google which indexes billions of

text documents. BLAST compares the query sequence to each

and every sequence in a selected data set. In computer science,

this is called exhaustive search. PSI-BLAST refines BLAST

by constructing a profile after each iteration to improve search

sensitivity, but the underlying mechanisms are equivalent and

the computational cost is higher.

For a database with 2.6 million sequences, a PSI-BLAST

search with 6 iterations (and all other default parameters)

takes approximately 11.5 minutes per sequence. Using our

method, an exhaustive index search takes approximately 5

seconds to retrieve an average of 70% of the sequences retur-

ned by PSI-BLAST (along with other sequences that are not

detected by PSI-BLAST). With the current efforts in whole

genome sequencing, the number of known protein sequences

is quickly reaching a level that would make exhaustive search

prohibitively slow. As far as we know, the most recent work

on improving the speed of BLAST is based on clustering

sequence databases into smaller sets, effectively reducing the

search space required for processing a query sequence [20].

We propose an index-based search using AA patterns as

indexes. These AA patterns are represented by position spe-

cific scoring matrices (PSSMs) [16]. Indexes are used in

database systems as a fast way for accessing all records with a

particular property. For example, so-called “inverted indexes”

are used to specify all of the documents in which a particular

word occurs. Using an inverted index, the user can quickly

find all documents that contain all words in a given set.

© Oxford University Press 2006. 1
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The BLAST-like alignment tool (BLAT) by Kent [21]

approached the problem with a similar solution by using an

index of non-overlapping k-length sequence patterns (k-mers)

over a species’ genome before matching k-mers found on a

query sequence. BLAT can perform protein homology sear-

ches 50 times faster than BLAST, but BLAT fails to compete

with BLAST in remote protein homologues searches. BLAT

indices are based on perfect matches of short fixed-length k-

mers (default length 5). Comparing the query sequence to a

remote homologue, it is quite likely to have a mutation in

each k-mer, making it impossible to find the match through

the index.

What we need is to replace the k-mers of BLAT with a diffe-

rent type of pattern, which would be less sensitive to common

mutations and thus able to find the commonalities between

remote homologues. We base our choice on what we learned

from researchers in phylogenomics. We learned that when

protein sequences are aligned, it is usually the case that there

are segments of 30-80 consecutive residues that can be aligned

well, interspersed with “filler” regions that do not align. Biolo-

gists commonly refer to these segments as “highly conserved

regions”, because the prevailing understanding is that they

correspond to parts of the protein sequence that are import-

ant for its structure or function and therefore are conserved

through evolution.

However, even highly conserved regions do not preserve

their residues exactly. According to the neutral theory of mole-

cular evolution [22], most mutations do not change fitness.

This is probably true also for highly conserved regions in

the following way: For most locations along the preserved

sequence, there are several alternative residues that provide

the required functionality. Thus even if most point mutations

degrade the fitness of the protein, there can still be exponenti-

ally many variants of the conserved region that have equivalent

fitness. Within this large set of variations we expect to see

variations due to neutral genetic drift.

In BLAST, such variations are taken into account in a simple

way. BLAST uses a single substitution matrix that captures

the basic relationships between different AAs. This matrix

was derived using set(s) of related sequences [7, 19]. By

assuming a single substitution matrix for sequence similarity

scoring, BLAST effectively ignores the effect of context. In

other words, while molecular selection theory predicts that the

set of equally fit substitutions for a particular location depends

on neighboring residues, BLAST ignores that dependence by

using a single substitution matrix for all sequence locations.

Following in line with this argument, PSI-BLAST’s major

improvement in terms of sequence search sensitivity is greatly

attributed to the profiles that are generated after each iteration

of the algorithm. These profiles provides the correct context

for future iterations.

There are two ways to represent highly conserved regions:

as a model (a PSSM), or as a list of sequence fragments. These

two representations are complementary and we use them both.

In fact, our process of pattern refinement is based on alterna-

ting between the two representations. This is very reminiscent

of the EM method [8], which is used extensively in statistics

and machine learning. In the scanning step we map each

PSSM to a set of sequence fragments and in the refinement

step we map the sets of sequence fragments to a new, and

hopefully better, set of PSSMs.

The scanning step is conceptually simple: for a given mul-

tiple sequence alignment, we construct a PSSM and calculate

the score it gives for each location in a protein database. We

then find an appropriate threshold for the PSSM so that all

scores above the threshold have high statistical significance.

A location in which the score is higher than the threshold is a

detection. We store on file the location of all detections. This

file forms the index which enables us to perform fast searches.

The refinement step is more involved. Here we take all the

detections and estimate a new, and hopefully better, set of

PSSMs. There are two parts to the refinement: estimation

and clustering. Estimation is a necessary step: here we take

a set of multiply aligned sequence fragments and generate

a PSSM which will be a good detector for these conserved

patterns. Clustering is a more elaborate step, which is not

always necessary, but can lead to great improvements. The

goal of clustering is to identify different patterns that are slight

variants of each other and combine them into a single PSSM,

thus increasing coverage.

The rest of the paper is organized as follows. We first pre-

sent some basic results comparing BioSpike and PSI-BLAST

protein searches. We then present our methodology for analy-

zing pattern significance and how it is used in the scanning and

detection phase. We then show our algorithms for pattern refi-

nement. Finally, we present the underlying components of our

BioSpike search engine, showing the methods for evaluating

protein queries and ranking protein homologues.

2 RELATED WORK

One of the main motivations of this work is the need to speed

up BLAST or PSI-BLAST searches while maintaining a simi-

lar level of accuracy. To this end, we choose to represent

conserved AA patterns using PSSMs as they are compact and

also sufficient in modeling statistically significant short gaps.

Our method is significantly different from BLAT as we

allow a more flexible pattern index in the form of varying

length PSSMs. Furthermore, we also lifted the restriction for

indexes to be non-overlapping. Currently with the limited set

of clustered and derived motif patterns from the BLOCKS

database, we are able to achieve 55% coverage of UniProtKB.

By including our other derived zone patterns, we can increase

our coverage to 80%. We are confident that coverage can be

further improved by incorporating more structural and func-

tional sequence motif libraries available today. This leads us to

another advantage of our method — the underlying statistical
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framework for analyzing any sequence alignments. Our fra-

mework allows biologists to incorporate any form of sequence

patterns they may find interesting and we will use our stati-

stical measures to determine the significance of the patterns

over a large sequence database. In this way, our index is very

extensible and statistically robust.

Much of the work on modeling the sequences correspon-

ding to protein families is based on Hidden Markov models

(HMMs) [28, 4, 6, 17, 23, 9]. HMMs provide the ability to

model AA insertion and deletion patterns. However, com-

puting the score of a sequence with respect to an HMM

requires much more computation than calculating the score

for a PSSM. We believe that, in fact, much of the flexi-

bility of HMMs is unnecessary. Typical protein sequences

consist of alternating highly conserved regions and uncon-

served or “filler” regions. Insertions and deletions in the

conserved regions are rare and short and can be effectively

ignored. On the other hand, filler regions have little statistical

consistency and therefore can be treated as a concatenation

of unconstrained or “wild-card” AAs. We did some explo-

ratory analysis of multiple sequence alignments from the

well-known Pfam database [11] and found the above descrip-

tion to be quite accurate even though the alignment was done

using HMMs. Our conclusion is that using a much simpler

statistical model which consists of free-floating PSSMs can

capture the same statistical information as HMMs at a fraction

of the computational cost.

In some respects, our work is very similar to the Conserved

Domain Database (CDD) [27], Conserved Domain Architec-

ture Retrieval Tool (CDART) [15], and Conserved Domain

Search (CD-Search) [26] programs. These programs process

query protein sequences with PSSMs using Reverse Position

Specific-BLAST (RPS-BLAST) and then do various search

related tasks based on the matched PSSMs.

We differ from these methods in several ways. Most import-

antly, perhaps, is that we use the statistics of uncurated protein

sequences to refine our motifs. The number of uncurated

sequences is much larger than the curated ones, and is likely

to continue to grow rapidly in coming years. By using these

much larger datasets we can generate PSSMs whose coverage

and significance are much higher than those of CDD.

As we are measuring the significance of our motifs using

uncurated sequences it seems possible that some of the PSSMs

that we find have high statistical significance but no biological

significance. While this is certainly possible, it seems to us

very unlikely. That is because the statistical significance and

the prevalence of the protein segments in the database (assu-

ming the database has been screened for replicates) has to

have an evolutionary explanation, i.e. an explanation in terms

of fitness. This fitness might not be the fitness of the host orga-

nism, it might correspond to some parasitic life form such as

a virus. Nevertheless, in order to be preserved as a protein

code it seems necessary that the sequence segment manifests

itself as part of an actual protein not too infrequently and

that this manifestation does, in some way, contribute to the

proliferation of the sequence segment.

In terms of a PSSM match’s statistical significance, CDD,

CDART and CD-Search rely on the local alignment E-value

score generated by RPS-BLAST and IMPALA [29]. While

IMPALA’s method for evaluating statistical significance is

based on estimating empirical parameters for the extreme

value distribution [1, 3], our method builds the statistical

model by a comparison between the null distribution of sco-

res (similar to eMATRIX [31]) and the empirical distribution

of the scores (similar to BLOCKS). In this way, our method

is more general and is not restricted to any single optimal SW

local alignment.

3 RESULTS

This Results Section contains two parts. In the first we demon-

strate that BioSpike can generate homology sets containing

most of the set created by PSI-BLAST at a fraction of the com-

putational cost. In the second we describe the results of two

specific searches demonstrating that BioSpike can identify

useful remote homologies that PSI-BLAST does not detect.

3.1 Comparison with PSI-BLAST

With a small set of patterns clustered and refined from the

BLOCKS database (18,134 derived BioSpike patterns), we

set the minimum significance of pattern detections to 100 (see

Section 4) in order to cover 55% of the UniProtKB dataset.

We extract 128 random sequences with at least 250 residues

from this subset. Our benchmark comparison method is PSI-

BLAST (version 2.2.13) with 6 iterations and all other default

parameters. Using a single CPU machine running at 2.8 GHz,

PSI-BLAST processes all 128 sequences in 17 hours. With

the same system configuration, BioSpike processes all 128

sequences in 10 minutes. This is approximately a 100 fold

improvement in speed.

To evaluate our search results, we compare the intersection

sizes between the PSI-BLAST returned sequences (P ) and

the sequences returned from BioSpike (B). The retrieval rate

id defined as r = |P∩B|
|B| and is measured at different levels

of cut off for B. We note that this measure assumes the PSI-

BLAST result set to be the gold standard, and does not account

for homologous sequences returned by BioSpike but not by

PSI-BLAST.

Figure 1 shows the retrieval rate at different levels of |B|
cut off. Table 1 shows the results of keywords-directed search.

Keywords-directed search is when only a subset of the patterns

found on the query sequence is used to search for homologous

proteins in the database. On average, we can retrieve 72% of

PSI-BLAST returned sequences with an approximately 100

fold improvement in speed.

3.2 Results from specific searches

In this section we give two examples of specific searches.
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Fig. 1. The intersection size between PSI-BLAST returned

sequences (P ) and BioSpike returned sequences (B). The inter-

section is calculated at different levels of cut offs for the result set

B.

Table 1. BioSpike keywords-directed

search statistics. Patterns are ranked by

lowest coverage first, and k is the number

of pattern “keywords” to incorporate in a

protein database search.

k search time (s) mean r stdev r

1 3.5 0.4745 0.3527

2 3.6 0.6229 0.3360

3 3.7 0.6707 0.3390

4 3.8 0.6931 0.3462

5 3.8 0.6980 0.3475

6 3.9 0.7027 0.3472

all 5.0 0.7165 0.3479

3.2.1 Identifying the Legume lectin domains in a putative

receptor-type protein kinase LRK1 We analyze the putative

receptor-type protein kinase LRK1 extracted from the rice

genome of Oryza sativa, accession number Q8H4I6. This

protein has 636 amino acids and contains Legume lectin

domains.

A PSI-BLAST search with 6 iterations and all other default

options took 10.5 minutes and did not find any sequences with

PDB annotations. With BioSpike, the sequence search took

8 seconds and found 9 PDB annotated sequences within the

top 400 result sequences. Legume lectin alpha and/or beta

domains are found in 8 of the 9 PDB annotated sequences.

The BioSpike template that was detected on these PDB

annotated sequences is a cluster of 3 BLOCK patterns:

Legume lectin alpha domain 1 (IPB000985F), Legume lec-

tin alpha domain 2 (IPB000985G), and Legume lectin

beta domain 1 (IPB001220G). BLOCK IPB000985F is the

anchor pattern on the template; BLOCKs IPB000985G and

IPB001220G are patterns in position 36 of the template. To

illustrate the versatility of the BioSpike template, we show a

multiple alignment of the PDB sequence regions indexed by

this template in Figure 2. Clearly, the BioSpike template cap-

tured the various gaps between the two distinctive Legume

lectin domains. Figure 3 also illustrates the 3-dimensional

structures for 4 of the PDB annotated regions generated by

QuickPDB.

Fig. 2. The multiple alignment of pattern regions for PDB anno-

tated sequences returned by BioSpike. The fragment labeled q is

from the query sequence.

Fig. 3. Legume lectin domains in several BioSpike result

sequences. The protein sequences are colored in blue, and the detec-

ted Legume lectin domains are highlighted in red. Other related PDB

chains are colored in green. The upper left image is the approxi-

mate structure of the BioSpike pattern used to detect Legume lectin

domains.

3.2.2 Identifying the Enoyl-CoA hydratase site of a puta-

tive enzyme We analyze the putative enzyme extracted from

the bacterial genome of Shigella flexneri, accession number
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Q83QQ0. This protein has 714 amino acids and contains a

domain with a Enoyl-CoA hydratase site.

A PSI-BLAST search with 6 iterations and all other default

settings took 11.5 minutes and did not find any sequences with

PDB annotations. With BioSpike, the sequence search took 5

seconds and found a PDB annotated sequence with the Enoyl-

CoA hydratase site. Using the PDB sequence returned, one

can easily infer the structure of the Enoyl-CoA hydratase site

in the putative enzyme.

4 STATISTICAL SIGNIFICANCE OF AMINO
ACID PATTERNS

PSSMs are generalized probabilistic models that have been

used in many successful applications as models to encode

rich representation of local AA environments [24, 32]. They

are derived from AA frequencies observed at specific locations

over a sequence set. We describe a methodology for analyzing

the statistical significance of any PSSMs.

When observing over a large sequence data set, we define a

PSSM to be interesting and useful when it assigns high scores

only to a small fraction of the possible AA positions (high

significance) and it covers a sufficiently large set of sequences

(high coverage). These two properties ensure that the PSSMs

we use are non-redundant and they can be used to create a

useful index to address most sequences in the data set.

We denote a PSSM as a 20 × k matrix P with rows

corresponding to the twenty possible AAs, and columns repre-

senting the k positions along the pattern. Given a protein

sequence x = x1x2...xn, we define the score for position

1 ≤ i ≤ n − k + 1 as si =
∑k−1

j=0 Pxi+j ,j . In this work we

restrict the PSSM entries to three values {−1, 0,+1}. Where

Pij = 1 corresponds to a preference for AA i in position

j, Pij = −1 corresponds to a preference against AA i and

Pij = 0 corresponds to no preference.

For a given PSSM P , we define two probability distributions

over scores: the null distribution and the empirical distribu-

tion. The null distribution, denoted p̃, is the distribution of

scores that results from drawing the AAs x1...xk indepen-

dently at random according to their background probabilities

(i.e. the frequency of AAs on the entire dataset). As the PSSM

has only three possible values {−1, 0,+1}, the null score dis-

tribution for a given PSSM can be computed in time O(k)
using convolutions. The empirical distribution p̂ is the distri-

bution of scores over the complete UniProtKB database. Exact

calculation of this distribution requires scanning all locations

in all proteins in the database. However, we can get sufficiently

accurate estimates of p̂ using a random sample containing 10%

of the sequences.

We define the significance of a PSSM as the ratio between

the number of locations that receive a high score to the number

of such locations predicted by the null distribution. We define

the significance for score s as θs = p̂(S≥s)
p̃(S≥s) . See Figure 4 for

a typical example of the relationship between p̂(S ≥ s) and

p̃(S ≥ s).

20 25 30 35 40 45
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−20
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−10
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(S
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 s
)

null

empirical

Fig. 4. The tails of the empirical and estimated theoretical score

distributions for the PSSM corresponding to the the RuvA BLOCK

motif in Bacterial DNA recombination protein (InterPro BLOCK

Id:IPB000085A) [14]

4.1 Mapping the Sequences

After establishing statistical significance models for all pat-

terns available, we detect occurrences of patterns by setting an

arbitrary universal threshold θ > 1. For pattern m, the critical

score for detection is,

Sm,θ = arg min
s

[

p̂(S ≥ s)

p̃(S ≥ s)
> θ

]

.

Regions in proteins that score above Sm,θ are statistically

significant locations for pattern m. We will analyze these

locations in Section 6 to form pattern families.

5 PATTERN REFINEMENT

Given a set of aligned segments, all corresponding to the same

pattern, we produce a PSSM for detecting these segments. Our

goal is to design a PSSM which assigns to the given segments

scores that are much higher than the scores that are expected

for the null score distribution for the same PSSM. Recall that

the null distribution assumes that the residues in the pattern

are independent of each other. Thus making the scores for the

given set of segments much higher than expected from the

null distribution implies that the PSSM has captured strong

dependencies between the residues.

We start by computing the a frequency matrix which defines

the empirical distributions of AA in each location of the ali-

gnment. We then translate the frequency matrix into a PSSM,
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independently for each position, using a process of iterative

model refinement.

Each column in the frequency matrix is modeled as a

mixture of the background AA distribution and several δ-

distributions. We define a δ-distribution as a probability

distribution concentrated on one of the twenty possible AAs.

Denote the background probability and δ-distribution of

amino acid i as qi and δi, respectively. We model the acid’s

empirical probability as,

h̃i = π0qi + πiδi,

where π0 and πi are mixture ratios. By modeling the frequency

column as a mixture, we deduce which AAs are essential to

a position in the pattern.

We build the mixture model iteratively, starting with a pure

background distribution and adding δ-distributions in a greedy

fashion until the model is sufficiently similar to the empiri-

cal distribution and that the remaining discrepancy can be

attributed to sampling error. As the number of sequence frag-

ments grows, the discrepancy that is attributable to sampling

error becomes smaller, which enables us to reliably infer the

essentiality of more AAs.

The KL divergence is a well known dis-similarity measure

between two probability distributions, and it is defined as

DKL(h||h̃) =
∑

i hi log(hi/h̃i). Our algorithm first appro-

ximates the distribution h using the background distribution

q. Then it proceeds by iteratively adding δ-distributions to

AAs that minimizes the KL divergence between our approxi-

mation and the true empirical distribution. The algorithm is

terminated by a threshold inversely proportional to the num-

ber of sequence fragment windows, n. In this way, we place

more confidence in refinements derived from more sequence

fragments. See Figure 5 for the details of our algorithm.

For each PSSM column, we use our algorithm to compute

the set of δ-distributions, ∆, and map the estimated empirical

model, h̃, into an integer column, z, using the following rules,

zi =











1 if hi > qi and i ∈ ∆,

−1 if hi < qi and i ∈ ∆,

0 otherwise.

(1)

Figure 6 illustrates a sample refinement for the Guanine-

specific ribonuclease N1 and T1 BLOCK (InterPro BLOCK

Id: IPB000026A). The original profile contains amino acid

probability distributions for each position of the BLOCK

alignment. We refine the information encoded in the ori-

ginal profile into a matrix with values representing amino

acid preferences (or non-preferences). One can argue that

our discretization may discard important information about

the “degree” of amino acid preferences (or non-preferences).

However, we believe that this simplification leads to score

distributions that are more easily interpretable.

1: Input c, n:

2: ∆ = {}
3: i← 0
4: h̃i ← q
5: while DKL(h||h̃i) > c/n do

6: for each amino acid j do

7: h̃i′ ← h̃i

8: h̃i′

j ← hj

9: ∆′ ← ∆ ∪ {j}
10: Re-normalize non-∆′ elements in h̃i′

11: dj ← DKL(h||h̃i′)−DKL(h||h̃i)
12: end for

13: k ← arg maxj dj

14: h̃i+1 ← h̃i

15: h̃i+1
k ← hk

16: ∆← ∆ ∪ {k}
17: i← i + 1
18: end while

19: Return ∆, h̃i

Fig. 5. Algorithm for computing the estimated empirical model

for a PSSM column and the list of AA with δ-distributions in

the model. The parameter c is tuned so that the average number of

δ-distributions per column is approximately 5.

6 GROUPING SEQUENCE PATTERNS

The Haemagluttinin motif (InterPro Id: IPR008635) and the

Hep_Hag motif (InterPro Id: IPR008640) are observed to co-

occur on bacterial haemagglutinins and invasins with high

probability. We now show a framework for finding groups

of biological patterns that co-occur and co-locate with high

probability.

Using the pattern detections over the UniProtKB data set,

we perform pattern co-occurrence and co-location analysis

to define rough templates that capture sets of highly specific

patterns. Our goal is to discover significant rough patterns with

high coverage. These rough patterns will allow us to partition

the search space, enabling fast and directed sequence searches.

6.1 Motifs and Zones

We analyze pattern similarity by looking at the locations of

pattern detection. Before computing the pattern similarity

matrices for clustering, we need to partition the set of patterns

into two classes, which we call zones and motifs.

Zones are patterns which are usually detected at several

consecutive positions along a sequence. For example, the

polyglutamine tracts found in proteins of Dictyostelium dis-

coideum are examples of zones [13]. On the other hand, motifs

are highly specific patterns which are usually detected at iso-

lated well defined locations. Motifs are the more interesting

patterns as they define a highly specific conserved region

which are likely to correspond to a specific 3D structure in

the protein. In contrast, zones define regions in which there
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Fig. 6. PSSM estimation for IPB000026A BLOCK. The original

profile (top) and the computed PSSM (bottom).

is an abundance of some types of amino acids. While zones

have clear statistical significance, their biological significance

is unclear.

We can partition the set of patterns into the two classes by

analyzing the set of detections for each pattern. A motif is

characterized by having a clear peak score location on the

protein sequences, whereas a zone will have multiple peak

score locations situated in close proximity.

6.2 Similarity Matrices for Sequence Motifs

The co-occurrence matrix O describes how likely a pattern

mi is detected with another pattern mj on a sequence x . The

elements of the co-occurrence matrix O are defined as

oi,j =
log (P (mi,mj)/(P (mi)P (mj)))

log (1/max{P (mi), P (mj)})
, (2)

where P (mi) is the fraction of sequences that contain an

occurrence of the pattern mi and P (mi,mj) is the fraction of

sequences that contain occurrences of both mi and mj . The

range of oi,j is (−∞, 1], where oi,j = 0 if mi and mj are

independent, and oi,j = 1 if one of the patterns dominates the

other, i.e. pattern mi always occur when pattern mj occurs,

or vice versa. Getting oi,j < 0 means that the mi and mj

are anti-correlated. In this work we ignore information about

anti-correlations.

Similarly to O, we compute the co-location matrix L using

the same formula but redefining P (mi) to be the fraction of

sequence locations in which mi is detected and P (mi,mj) to

be the fraction of detections of mi (mj) such that a detection

of mj (mi) occurs in a close proximity, i.e. the two patterns

either overlap or are within a distance of at most k from each

other. In our experiments, we set k = 10.

6.3 Clustering Motifs

We cluster the set of motifs in two steps. Clusters found

using O are re-clustered using matrix L. In this way, the

clustering algorithm at the second stage exclusively analyzes

co-occurring motifs. Any clustering algorithm can be applied

on matricesO andL. We use a simple clustering scheme which

first removes entries in the matrices O and L based on some

positive thresholds θO and θL. Then, we interpret each of these

matrices as a graph connectivity matrix with nodes represen-

ting sequence motifs and edges representing the strength of the

relation (co-occurrence or co-location score). By computing

the reachability of each node on either graphs, we can group

protein motifs into clusters. To prevent having weak links

form large clusters of loosely connected sequence motifs, we

also require that each motif cluster satisfy a certain tightness

threshold. This tightness threshold is simply the average value

over the cluster’s sub-matrix in O or L.

6.4 Motif Template Construction

We partition clusters into three types: singleton, fixed gapped,

and variably gapped. Singleton clusters are motifs that have

no observed relationships with any other motifs. As the name

suggests, fixed gapped clusters contain motifs that co-locate

at a specific gap from each other. For variably gapped clusters,

motifs are observed to co-locate at varying gaps, possibly as a

result of residue insertions/deletions or as a result of cyclical

patterns.

PSSMs in singleton clusters are refined using the new counts

but their length is maintained. PSSMs in gapped clusters are

combined into “templates” which are then used to estimate

new and longer PSSMs.

6.4.1 Analyzing Common Gaps Between Protein Motifs.

We define a template to be the minimal consensus window

that can be used to arrange motifs from a cluster in frequently

observed relative positions.

Denote a cluster of motifs as C. A template is the set of

(motif, location)-pairs T = {(mi, li,j)} where mi ∈ C, and

7
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li,j ≥ 0 is the jth location of pattern mi in the template. Note

that |T | ≥ |C| for variable gapped clusters because a motif

can occur several times in the template. If C is a fixed gapped

cluster, then |T | = |C|.
A histogram of gaps is computed for all pairs of motifs in

the cluster. Denote a gap as g, and its associated count as c.

For template construction, we aggregate the histograms into a

single set forming,H = {(ma,mb, g, c) | ma ∈ C,mb ∈ C}.
We use a greedy algorithm to construct the template. The

algorithm iteratively incorporates pairwise motif relationships

onto the template with the most frequently observed relation-

ships first. The algorithm stops when the fraction of unsatisfied

constraints drops below a specified threshold. Adding a single

relationship to the template can result in adding several new

(motif, location)-pairs if the template has variable gaps, as

one of the motifs in the relationship might already occur in

several locations in the template.

6.4.2 Constructing Generalized PSSMs for Pattern Families.

After constructing a template T , we fit sequence fragments

from motif detection sites onto the template consensus win-

dow. Since a sequence x can have several fragments that

fit onto the template window, a fractional weight is assi-

gned to each fragment to avoid over-representation of a single

sequence. The multiply aligned sequence fragments are then

used to generate a PSSM for the motif family using methods

described in Section 5.

Finally, we scan the template PSSMs over the entire

sequence data set for another round of pattern detection.

Figure 7 shows a comparison in significance of detections and

UniProtKB database coverage between the original BLOCKS

derived profiles and the refined template profiles. Coverage of

the UniProtKB data set is increased, the significance of detec-

tions is also increased, and we reduced the number of patterns

needed to index the data set. We can run additional refinement

steps. However, the current version of the BioSpike index is

based on a single refinement.

6.5 Zone Templates

As zones are detected at consecutive locations along a

sequence, it is not possible to analyze co-location or co-

occurrence of zoning patterns using the methods described for

motifs. Instead of marking each location of zone detections

individually, we define a center and radius for zone detections

on protein sequences.

After mapping the centers and radii for each zone’s detecti-

ons on sequences, we construct an AA probability distribution

h by observing the AA frequencies on zone windows. The AA

distribution for a zone will be very different from the back-

ground probability distribution of AAs over all sequences. For

example, the probability of glutamine in zones that capture

polyglutamine tracts will be much higher than the background

probability of glutamine.
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Fig. 7. A comparison of significance of detections and UniProtKB

protein coverage between BLOCKS derived profiles and refined

template profiles.

After constructing an AA distribution for each zone, we

use the same algorithm described in Figure 5 to translate it

into integer columns, z. We then cluster the set of z, grouping

them based on agreements on the zi elements. Zones that have

a disagreement in preference/non-preference of a particular

amino acid is separated. Finally, we construct a template for

each cluster of zones by computing another integer column,

z′, using the aggregated AA probability distribution for zones

in the cluster. Then by repeating columns z′ over the average

length of zone PSSMs in the cluster, we define a generalized

zone template PSSM.

7 PROTEIN SEARCH ENGINE

7.1 Building BioSpike

In general, the search engine development iterates over PSSM

refinement, sequence database scan, pattern detection, and

pattern clustering, in which the pattern detection stage builds

the database index. For our proof-of-concept prototype, we

use the 28,337 ungapped multiple alignments from BLOCKS

database (version 14.1) as seed patterns, and run two iterations

to generate 18,670 motif templates and 34 zone templates.

To organize an inverted index of motif and zone templates

to UniProtKB (release 6.5) sequences, we use the open source

MySQL relational database. The motif and zone templates are

kept in two separate lists, where they are sorted by protein

coverage. Each template has an associated critical detection

score as defined by the last sequence database scan.

7.2 Query Processing

Query processing operates in three phases: pattern matching,

database search and results ranking.

8
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In the pattern matching phase, we scan all patterns indexed

by BioSpike over the query sequence. This phase genera-

tes a list of detected patterns, which are sorted ascendingly

according to UniProtKB coverage sizes.

There are many variations of database search one can do

given a set of detected patterns. For example, the keywords-

directed search as described in the Results Section limits the

number of patterns in the database query. Since the patterns

are sorted by ascending database coverage, as more “key-

words” are included into the database query search, more

remote homologues will be included in the result set. For our

online search engine (http://biospike.ucsd.edu/), we include

all patterns in the search, allowing the user to select a result

set size cutoff and bringing all detections that are in PDB to

the top of the list.

For results ranking, we use a simple ranking function which

compares the query sequence and result sequence in two per-

spectives: pattern detection score differences and pattern order

differences.

Define the list of detected patterns in the query as an

ordered list A = [(p0, s0), . . . , (pn, sn)], and the list of

detected patterns on a result sequence as an ordered list

B = [(p̂0, ŝ0), . . . , (p̂m, ŝm)]. For each list, we retain a sin-

gle entry for each unique pattern pi (or p̂j) with the maximal

score. We denote these reduced lists as A′ and B′.
To capture pattern detection score differences, we define

I = (A′ ∩ B′)|p as the intersection between the lists induced

by pi = p̂j . Finally, we define σ and τ as ordered lists of

patterns inA′ and B′, respectively, padding the shorter of the

two with the missing patterns.

Using our notations, the ranking function is defined as,

rank(B′) =
1

|I|

∑

pi=p̂j

|si − ŝj |+ C ′
n(σ, τ),

where C ′
n(σ, τ) is the normalized Spearman footrule distance

between the permutations σ and τ . Intuitively, the first term

in the ranking function accounts for the difference in pattern

detection scores, whereas the second term accounts for the

difference in pattern arrangements in the primary sequences.

8 DISCUSSION

We have presented a novel method for searching protein

homologues using amino acid patterns as indexes. Our method

is approximately 100 times faster than PSI-BLAST whilst

maintaining a similar level of accuracy. Moreover, the ability

of BioSpike to identify remote homologues is superior to that

of PSI-BLAST. The main reason that BioSpike is so fast is

that we rely heavily on pre-computation. By pre-computing

and storing on disk the locations of pattern detections, we

remove the need to perform similar computations repeatedly.

Pre-computation also creates a dramatic reduction in the time

it takes the system to respond to a new query. This reduction

in query processing time can, we believe, make the system

much more attractive as an interactive exploration tool for the

research biologist.

We are considering many directions for continuing this

work. This list includes enlarging, refining, and curating the

set of motifs; creating data structures to speed up the search for

motifs in a new query sequence; using motifs as features for

classifying proteins; and identifying which motifs have con-

sistent 3D structure and can thus be seen as “building blocks”

of proteins.

However, on the short term, our most important goal is to

make the BioSpike search engine as user-friendly as possi-

ble so that, instead of trying to pursue all of these research

directions ourselves, we can let others, more knowledgea-

ble in protein structure than us, use the tool to advance their

research.
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