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Abstract 

Existing neuroimaging studies in decision making 
predominantly employ the fMRI method. Despite its superior 
spatial resolution, fMRI is an expensive and impractical 
neuroimaging technology for purchasing behavior studies in 
the field. This study aims to explore the role of prefrontal 
cortex during purchasing behavior by utilizing functional near-
infrared (fNIR) spectroscopy; a low-cost, non-invasive and 
portable optical brain imaging methodology. The findings 
suggest that fNIRS can be effectively used for developing a 
neuro-physiologically informed, predictive model of 
purchasing behavior based on multivariate effects of 
activations in frontopolar, dorso-medial and dorso-lateral 
prefrontal cortex.   

Keywords: Neuroeconomics, neuromarketing, purchasing 
behavior, decision making, optical brain imaging, fNIR. 
 

Introduction 

Neuroeconomics has emerged as an interdisciplinary field to 

develop a better understanding of neurobiological factors that 

shape economic decisions (Politser, 2008). In particular, 

neuroeconomics research seeks to further our understanding 

with regards to what variables are computed by the brain 

while humans are making different kinds of decisions, and 

how those computations are implemented and constrained by 

underlying neurobiological processes, with the eventual goal 

of building biologically plausible models for human decision 

making (Rangel & Clithero, 2014). Existing work in the field 

include decision making scenarios ranging from simple 

decision tasks such as choosing pizza over salad for lunch to 

decision making under uncertain, dynamically unfolding 

circumstances such as gambling tasks (Glimcher & Fehr, 

2014). Although these studies include rather simplistic 

decision making scenarios due to the limitations imposed by 

brain imaging tools, they collectively identified important 

neural mechanisms for related cognitive and emotional 

processes such as reward evaluation, ambiguity/risk 

management and value comparison (Smith & Huettel, 2010). 

A number of brain imaging studies have focused on the role 

of the dopaminergic system in forming and updating 

expectations about rewards and value computation (Smith & 

Huettel, 2010). Monetary reward experience and evaluation 

processes have been found to activate several interconnected 

regions of this system, including the deep structures of the 

brain stem at ventral tegmental area (VTA) and the ventral 

striatum (vSTR), as well as the ventromedial prefrontal 

cortex (vmPFC) (Schultz, 2006; Knutson et al., 2000; 

Knutson et al., 2003). Especially the receipt of rewards were 

found to evoke activation in the vmPFC and the adjacent 

orbitofrontal cortex (OFC), which support the theory that 

these regions may be involved with computing the expected 

value of a reward (Knutson et al., 2005). Even activations 

observed at mPFC and straitum during passive viewing of 

products can be later used for predicting that consumer’s 

choices involving those products (Levy et al., 2011). In a 

recent study, Metereu & Dreher (2015) found that the 

OFC/vmPFC region encodes a general unsigned anticipatory 

subjective value signal for both rewards and punishments.  

Real world decision-making often involves uncertainty, 

which is another crucial factor that modulates the values 

attributed to choices. Imaging studies that involve 

uncertainties and risks in decision-making report activations 

in dorsolateral and lateral PFC, vmPFC, orbitofrontal cortex 

(OFC) and the anterior cingulate cortex (ACC) as well as 

subcortical regions including VTA, vSTR and amygdala 

(Holper et al., 2014; Smith & Huettel, 2010). This distributed 

neural network is claimed to encode two components of a 

subjective value signal, namely expected value and risk 

probability (Schonberg et al., 2012; Ogawa et al., 2014). The 

medial and lateral prefrontal cortex is claimed to play a role 

in integrating these two components (Tobler et al., 2009). The 

computations carried out in these regions are likely to be 

associated with subjective value signals, but not as robustly 

as the vmPFC/OFC regions. In particular, the dorso-lateral 

regions are argued to have a regulatory role on medial PFC 

during decision making scenarios (McClure et al., 2004). 

However, the precise computational roles played by the 

dorso-medial and dorso-lateral areas remain to be an 

important issue in simple choice and reward processing 

paradigms in neuroeconomics (Rangel & Clithero, 2014). 
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Existing studies in neuroeconomics predominantly employ 

the fMRI method. Despite its superior spatial resolution, 

fMRI is an expensive and impractical neuroimaging 

technology for purchasing behavior studies in the field. In 

this paper, the functional near-infrared spectroscopy (fNIRS) 

method was employed to study purchasing behavior, which 

offers a low-cost, non-invasive and portable optical brain 

imaging methodology. The aim of this study is to explore the 

plausibility of the fNIRS methodology for neuroeconomics 

applications, as well as to develop a neuro-physiologically 

informed predictive model of purchasing behavior based on 

fNIR measurements.  

There are only a few fNIR studies published in 

neuroeconomics context. Existing fNIR studies have 

identified activation patterns in the prefrontal cortex during 

product selection (Kumagai, 2012), risk assessment (Holper, 

2014), financial investment (Shimokawa et al., 2009) and 

price prediction (Mitsuda et al., 2012). Mitsuda et al. (2012) 

also proposed a support vector machine algorithm for 

classifying price/product pairings that were tagged as 

expensive or inexpensive by the participants with an accuracy 

of 70%. The present study aims to contribute this line of 

inquiry by investigating activation patterns in PFC of 

consumers during a more realistic, mundane purchasing 

scenario. In particular, we aimed to identify whether positive 

and negative purchasing decisions differ in terms of the 

neural activity they elicit in regions located at fronto-polar, 

dorso-medial and dorso-lateral prefrontal cortex.  

The rest of the paper is organized as follows. The 

experiment design and the fNIR optical brain imaging 

technology employed are described in the next section. Next, 

we present our main findings regarding activation patterns in 

fronto polar, dmPFC and dlPFC regions. This section also 

presents a discriminant analysis model that predict the 

purchasing decision offline in terms of changes detected in 

oxy and deoxy-hemoglobin concentrations in these brain 

regions. The paper concludes with an overall discussion of 

the results.   

Material and Methods 

33 participants (17 female) in the age range 18-46 have 

participated in this experiment. They were selected randomly 

from the consumer database of ThinkNeuro. All participants 

were right-handed as measured by the Edinburgh handedness 

survey (Oldfield, 1971). None of the participants had a 

history of psychiatric disorders. Participants were paid 10 TL 

for their participation and 40 TL as a bonus in compensation 

for the items they selected to purchase during the experiment. 

The data of one participant has been excluded due to the fact 

that he has not made any buy or pass responses during the 

experiment. The study was approved by the METU human 

subjects research ethics committee. Written informed consent 

was obtained prior to the experiment.  

The task was comprised of 78 trials where participants 

were asked to make purchasing decisions for the displayed 

products based on the suggested prices. In each block, the 

participants had 4 seconds for viewing a picture of the 

product, 4 seconds for viewing the price of the product and 4 

seconds to respond according to their preference to purchase 

or not to purchase, followed by a fixation for 8 seconds. Each 

block lasted for 20 seconds. The total duration of the 

experiment was 26 minutes. E-Prime software was used for 

the presentation of the experiment stimulus. The keys 

participants need to press to indicate buy or pass preference 

were randomly switched in each block to avoid lateralization 

biases. The products consisted of 3 main groups (food, 

cleaning and personal care products). There were 39 products 

in the food group (e.g. milk, cheese, Coke), 17 products in 

the cleaning group (e.g. detergents) and 22 products in the 

personal care group (e.g. deodorant, shampoo, toothpaste). 

The prices of the products were obtained from local 

groceries.  

The participants were told that they should press a button 

to indicate whether they would purchase the displayed item 

given its price. They were also informed that the 

experimenters would be able to provide them up to a total 

40TL (Turkish Lira) worth of the products that they selected. 

Subjects were also told that if they do not spend at least 40TL, 

they would receive only half of the unspent amount in an 

effort to reinforce buying behavior.  

 
Figure 1. fNIR sensor (top, left), projection of measurement 

locations (optodes) on brain surface image (top, right), 

optodes identified on fNIR sensor (bottom). 

 

During the experiment the prefrontal cortex of each 

participant was monitored with a continuous wave functional 

near-infrared spectroscopy (fNIR) system developed at 

Drexel University (Philadelphia, PA), manufactured and 

supplied by fNIR Devices LLC (Potomac, MD; 

www.fnirdevices.com). The system is composed of three 

modules: a flexible headpiece (sensor pad), which holds 4 

light sources and 10 detectors to obtain oxygenation 

measures at 16 optodes on the prefrontal cortex; a control box 

for hardware management; and a computer that runs the data 

COBI Studio software (Ayaz et al., 2011) for data acquisition 
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(Figure 1). The sensor has a source-detector separation of 

2.5cm, which allows for approximately 1.25cm penetration 

depth. This system can monitor changes in relative 

concentrations of oxy- and deoxy-hemoglobin at a temporal 

resolution of 2Hz. The locations of 16 regions on the cortical 

surface monitored by fNIR are displayed in Figure 1 above, 

which correspond to Broadmann areas 9, 10, 44 and 45.  

fNIR is a neuroimaging modality that enables continuous, 

noninvasive, and portable monitoring of changes in blood 

oxygenation and blood volume related to human brain 

function. Neuronal activity is determined with respect to the 

changes in oxygenation since variation in cerebral 

hemodynamics are related to functional brain activity 

through a mechanism known as neurovascular coupling 

(Obrig et al., 2000). Over the last decade, studies in the 

laboratory have established that fNIR spectroscopy provides 

a veridical measure of oxygenation and blood flow in the 

brain (Bunce et al., 2006). fNIR is not only non-invasive, 

safe, affordable and portable, it also provides a balance 

between temporal and spatial resolution which makes fNIR a 

viable option for in-the field neuroimaging.  

fNIR technology uses specific wavelengths of light, 

introduced at the scalp, to enable the non-invasive 

measurement of changes in the relative ratios of 

deoxygenated hemoglobin (deoxy-Hb or HbR) and 

oxygenated hemoglobin (oxy-Hb or HbO2) in the capillary 

beds during brain activity. Typically, an optical apparatus for 

fNIR Spectroscopy consists of at least one near infra-red light 

source and a detector that receives light after it has interacted 

with the tissue.  Near-infrared light is known to diffuse 

through the intact scalp and skull, which makes it suitable for 

tracing relative changes in the concentration of specific 

chromophores in the neural tissue with non-invasive, 

spectroscopic methods (Jobsis, 1977). Whereas most 

biological tissue (including water) are relatively transparent 

to light in the near infrared range between 700 to 900 nm, 

hemoglobin is a strong absorber of light waves in this range 

of the spectrum. Within 700 to 900 nm, oxy and deoxy-

hemoglobin are among the highest absorbers of infra-red 

light. This provides an optical window into neural tissue 

where one can approximate relative changes in the 

concentration of oxy and deoxy-hemoglobin based on how 

infra-red light is attenuated in neural tissue.  

 

 
Figure 2. The banana shaped path which includes the 

photons scattered back to the photo-detector (left). 

Representative paths (right), enumerated as 2 and 3 

correspond to photons absorbed by the tissue and scattered 

out of the scalp without reaching the detector, respectively. 

 

Photons that enter tissue undergo two different types of 

interaction: absorption and scattering (Obrig et al., 2000). 

Two chromophores, oxy- and deoxy-Hb, are strongly linked 

to tissue oxygenation and metabolism. The absorption spectra 

of oxy- and deoxy-Hb remain significantly different from 

each other allowing spectroscopic separation of these 

compounds to be possible by using only a few sample 

wavelengths. Once photons are introduced into the human 

head, they are either scattered by extra- and intracellular 

boundaries of different layers of the head (skin, skull, 

cerebrospinal fluid, brain, etc.) or absorbed mainly by oxy- 

and deoxy-Hb. A photo-detector placed on the skin surface at 

a certain distance from the light source can collect the 

photons that are scattered and thus have travelled along a 

“banana shaped path” from the source to the detector, which 

carry important information about the optical properties of 

the diffused neural tissue (Figure 2). This raw light 

attenuation information is then converted into tissue 

oxygenation measures that quantify the relative changes in 

the presence of oxy- and deoxy-hemoglobin within the 

banana shaped path by using a method called modified Beer 

Lambert law (Cope et al., 1988). 

Results 

For each participant, buy/pass decisions, response time, total 

money spent and raw fNIR measures were obtained for a total 

of 78 grocery items. Raw fNIR data (16 optodes×2 

wavelengths) were low-pass filtered with a finite impulse 

response, linear phase filter with order 20 and cut-off 

frequency of 0.1 Hz to attenuate the high frequency noise due 

to respiration and cardiac cycle effects (Ayaz et al., 2012). 

Saturated channels (if any), in which light intensity at the 

detector was higher than the analog-to-digital converter limit 

were excluded. Artifacts due to motion are detected and 

excluded by applying the sliding windows motion artifact 

filter (Ayaz, 2011). fNIR data epochs for the rest and task 

periods were extracted from the continuous data using time 

synchronization markers. Blood oxygenation changes within 

each 16 optodes for the product, price and decision blocks 

were calculated using the modified Beer-Lambert Law for 

task periods with respect to rest periods at the beginning of 

each trial with the fnirSoft software (Ayaz, 2010).  

The average oxygenation level of each block was 

calculated and the obtained oxygenation levels for three 

blocks (that consist of product-price-decision) were classified 

according to the buy or pass decisions of the participants. The 

12 sec long trials were then averaged to form evoked 

oxygenation (i.e. ΔHbO2 minus ΔHbR) signals displayed in 

Figure 3 as a measure of brain activation. Univariate 2x3 

repeated measures ANOVA conducted for each 16 voxel 

separately indicated that buy versus pass decisions elicit a 

significant difference in average oxygenation for only voxel 

10, F(1,186) = 7.65, p< .01, η2=.04. This area corresponds to 

the right fronto-polar cortex, which is associated with 

subjective value management. No significant difference was 

found between product-price-purchase block types. The 
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interaction effect was also not significant in any of the 16 

voxels. 

 

 
Figure 3. The temporal change in oxygenation levels 

(µmolar/liter) for 32 participants during the 3 blocks of 12 

seconds for each 16 voxels –shown in different boxes. The 

blue and orange lines represent the buy and pass decisions 

respectively. Shades indicate standard error. 

 

Figure 4 below shows the projection of pairwise t-statistics 

for each voxel with BSpline interpolation. The most 

significant differences in average oxygenation values are 

clustered around voxel 10, which is consistent with fMRI 

findings (e.g. Knutson et al., 2007).  

 

 
Figure 4. Projection of t-statistics map on brain surface 

image shows the increase in oxygenation around optode 10 

during purchase decisions. BSpline interpolation was used 

to generate surface representation from t values of 

comparisons of each buy vs pass conditions along with 

thresholding by significance limit p<0.001 with df=24. 

 

There was considerable variability among participants in 

terms of the total money they spent during the experiment 

(mean=95.24 TL, sd=52.38). Participants were not provided 

any feedback regarding the total money they spent during the 

experiment, and were encouraged to decide per item, even 

though they were informed that they could be given the 

products up to a total of 40TL. However, the distribution of 

total purchases suggest that some participants paid extra 

attention to their total spending. For that reason, we divided 

the sample into two subgroups in terms of their sensitivity to 

the budget limit. 11 participants who ended up spending 

within 20TL of the target range constitute the budget-

sensitive group (mean=42.91 TL, sd=12.92), whereas the 

remaining 21 subjects formed the budget-insensitive group 

(mean=122.65 TL, sd=43.68). The analysis was repeated on 

these subgroups in an effort to observe if budgetary 

considerations made any difference in oxygenation trends.   

In both of these groups, we observed that positive and 

negative purchasing decisions elicited higher activity in the 

frontopolar and dmPFC areas, albeit in different directions. 

Figure 5a below shows the temporal trend in average 

oxygenation changes observed during buy and pass decisions 

of the budget sensitive group. When the data of the budget-

sensitive group are analyzed separately, optode 10 has been 

observed to preserve its significant role in the direction of buy 

decisions against pass decisions (F(1,60)=18.05, p<.05, 

η2=.23). Moreover, there have been other optodes that appear 

to have significant difference including voxel 3 

(F(1,60)=11.44, p<.01, η2=.16), voxel 7 (F(1,60)=9.46, 

p<.01, η2=.14), voxel 8 (F(1,60)=10.95, p<.05, η2=.15), voxel 

9 (F(1,60)=24.37, p<.001, η2=.29), voxel 11 (F(1,60)=18.05, 

p<.001, η2=.23), voxel 12 (F(1,60)=20.42, p<.001, η2=.25), 

voxel 14 (F(1,42)=4.42, p<.05, η2=.20) and voxel 15 

(F(1,54)=4.16, p<.05, η2=.07). Block type and interaction 

effects were not significant.  
 

 
 

 
Figure 5a & 5b. The temporal change in oxygenation 

levels (µmolar/liter) for the budget-sensitive (top) and 

budget-insensitive (bottom) groups. The blue and orange 

lines represent the buy and pass decisions respectively. 

Shades indicate standard error. 

 

When the data of budget-insensitive group composed of 21 

participants are analyzed separately, significant level of 
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oxygenation increase has been observed for several optodes 

in the direction of pass decisions. These optodes include 

voxel 5 (F(1,120)=14.22, p<.001, η2=.11), voxel 6 

(F(1,120)=12.96, p<.001, η2=.10), voxel 8 (F(1,120)=8.84, 

p<.01, η2=.07) and voxel 12 (F(1,120)=9.72, p<.01, η2=.08). 

Figure 5b shows the temporal trend in average oxygenation 

changes observed during buy and pass decisions of the budget 

insensitive group.  Finally, block type and interaction effects 

were not significant in this group as well. To sum up, the 

temporal trend of average oxygenation values exhibit a 

different pattern across budget sensitive and insensitive 

groups.  

 

Table 1. The discriminant function coefficients and the 

predictive success of each model. 

 

 All 

Sample 

Within 

Budget 

Excess 

Budget 

(N=32) (N=11) (N=21) 

Voxel 3   ,408 -,344 -,462 

Voxel 5  -,944 ,081 1,816 

Voxel 6  -,291 ,007 ,819 

Voxel 7  ,492 ,025 -2,173 

Voxel 8  ,109 ,376 ,594 

Voxel 9  ,622 ,673 ,804 

Voxel 10  ,424 ,444 ,023 

Voxel 12  -,851 ,068 -,066 

Voxel 13  ,263 ,136 -,202 

Voxel 14  ,530 -,078 -,901 

Wilk’s 

Lambda 

0.82 0.58 0.48 

Chi-Square χ2(10)=

25.56 

p<.01 

χ2(10)= 

22.51 

p<.05 

χ2(10)= 

61.53 

p<.001 

Purchase 

Centroid 

0.461 -0.837 1.036 

No Purchase 

Centroid 

-0.461 0.837 -1,036 

% Classified 

Correctly 

62% 82% 74% 

 

Related fMRI work has reported on the prominent role of 

the functional connectivity between medial PFC and dlPFC 

on the modulation of economic decisions (Ogawa et al., 

2014). Since our findings from fNIR suggest differential 

temporal trends in oxygenation for our subgroups and the 

measurement locations include some of the functionally 

connected regions of interest in frontopolar, dorsomedial and 

dorsolateral sites, we also employed multivariate methods to 

observe if buy/pass decisions can be distinguished based on 

multivariate trends across multiple channels. For that 

purpose, a 2x3 MANOVA was performed on the oxygenation 

levels for the voxels 7,8,9,10 (left and right fronto-polar 

cortex), voxels 5-6 (left dmPFC), voxels 12-13 (right 

dmPFC) and voxels 3-14 (left and right dlPFC). The 

MANOVA results indicate significant difference for both the 

budget-sensitive (F(10,33)=2.49, p<.05, Pillai Trace=.43) 

and budget-insensitive groups (F(1,75)=8.56, p<.01, Pillai 

Trace=.53). The results have also been significant for the 

entire sample (F(10,123)=2.67, p<.01, Pillai Trace=.18). 

Block type and interaction effects were not significant. 

The MANOVA analysis was followed up with a 

discriminant analysis to observe how buy and pass decisions 

differ from each other. The discriminant analysis was 

performed on the whole group as well as on the budget 

subgroups. In each group, a single variate was found to 

significantly distinguish buy and pass decisions, whose 

coefficients are presented in Table 1. 

Table 1 suggests that when budget sensitivity is not taken 

into account, buy or pass decisions can be predicted with 62% 

accuracy, which is above chance level. When additional 

information about budgetary sensitivity is provided, the 

expected predictive accuracy can be estimated as  
11

32
∗ 0.82 +

21

32
∗ 0.74 = 0.77. Oxygenation trend across fronto-polar, 

dmPFC and dlPFC regions have a higher discriminating role 

for the participants who paid attention to the budget 

limitation.  

Discussion  

The obtained results bear similarities with findings of 

existing fMRI studies in frontopolar regions. Positive 

purchasing decisions significantly increase the neural activity 

through frontopolar regions, which are closely related to OFC 

and vmPFC that modulate the computation of subjective 

values. Frontopolar regions such as voxel 10 remain to be 

activated in a similar way across budget sensitive and 

insensitive subgroups, which support the general role 

attributed to the OFC and its projections in the frontopolar 

cortex for subjective value computation.  

Our results also suggest that the general purchasing 

tendency of the participants can significantly alter some of 

the activation patterns observed in other parts of the 

prefrontal cortex. Products ended up being purchased tend to 

elicit strong activation in voxel 10 as compared to other 

prefrontal regions. In the budget sensitive group, this 

activation trend had to remain strong as compared to dmPFC 

and dlPFC activations until the end of a trial to elicit a buy 

decision. In the budget insensitive group, voxel 10 activity 

remains high during buy decisions as well. No purchase cases 

also elicit comparable level of activity in voxel 10, which 

tend to drop towards the end of a trial together with an 

increase in activation in voxels 5,6 and 12 located in dmPFC. 

These dmPFC sites seem to inhibit the tendency to purchase 

in the budget insensitive group, as it was evidenced in the 

oxygenation trend observed during no purchase cases for the 

budget insensitive group. In the budget sensitive group 

increase in dmPFC activity has a reverse role, where it 

correlates with buy rather than pass decisions.   

These findings implicate that the neurophysiological 

modeling of purchasing decisions cannot be based solely on 

increased neural activity in frontopolar regions. When the 

participants were classified according to their budget 

sensitivity, the predictive accuracy of the model has increased 
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from 60% to 80%. The difference among these two groups 

might be related to differences in their working memory 

capacities for keeping the budget constraint as part of their 

goal state. dmPFC is particularly involved with goal 

maintenance and response selection processes, which seem to 

contribute to the differences observed between these groups.  

In conclusion, this study demonstrated that fNIR can be 

used to monitor activations in the prefrontal cortex during 

purchasing decisions. Moreover, multivariate analysis 

techniques can be effectively employed on oxygenation 

trends to build predictive computational models with 

reasonable accuracy.  In the future, we aim to better exploit 

the portability of fNIR to explore neural underpinnings of 

economic decisions in more ecologically valid contexts.    
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