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ABSTRACT OF THE DISSERTATION 

	
  
A multifaceted exploration of hydrologic drought using GRACE satellite observations 

and computer modeling 

By 

Alys Caitlyn Thomas 

Doctor of Philosophy in Earth System Science 

University of California, Irvine, 2014 

Professor James Famiglietti, Chair 

 

Prolonged hydrologic drought disturbs the natural state of ecosystems, stresses regional 

water supplies, and can adversely affect agricultural production. Determining the severity of 

hydrologic drought traditionally depended on evaluations of historical rainfall, stream flow, and 

soil moisture; yet, a comprehensive measure of the magnitude of a drought’s impact on all 

components of the terrestrial hydrologic system, including surface, soil, and groundwater 

storage, remains lacking in standard drought analyses. NASA’s Gravity Recovery and Climate 

Experiment (GRACE) satellite mission fills a gap by providing monthly measures of terrestrial 

water storage anomalies (TWSA) based on time-variable gravitational fields. This dissertation 

details an investigation of regional hydrological extremes (e.g., drought and flood) using both 

satellite remote sensing data and outputs from NASA’s Catchment Land Surface Model 

(CLSM). 

The first project presented in this thesis involves discussion of a novel quantitative, 

GRACE-based framework for measuring the severity of hydrologic drought. GRACE 

observations are used to quantify drought by calculating the deviation of monthly-average 
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terrestrial water storage anomalies from the regional climatological reference, where negative 

deviations represent storage deficits. Each deficit conveys the volume of water that would be 

required to recover from a drought. Moreover, this finite deficit observation allows for the 

calculation of a likely time for recovery based on statistical percentiles of storage change 

distributions, for every month through the end of the event. 

 The second portion of work evaluates and compares the characteristics of subsurface 

terrestrial water storage variables from the CLSM, assimilated with GRACE satellite 

observations (CLSM-DA), for the purposes of: acquiring near-real time analysis, downscaling 

GRACE’s spatial resolution, and vertically disaggregating GRACE column-integrated water 

storage anomalies. Several zones throughout the United States were selected to quantify 

differences between hydrologic extremes identified by CLSM-DA and those measured by 

GRACE. Results establish that CLSM-DA TWSA outputs improved those from CLSM Open-

loop runs in all regions with R2 increases from 5-14%. We also compared CLSM surface soil 

moisture content with independent surface moisture observations from the AMSR-E satellite to 

assess improvements after data assimilation. Results established that assimilation produced 

modest improvements in correlations between CLSM and AMSR-E in all regions. 

 CLSM-DA hydrologic extremes are comparable to GRACE, however the data-

assimilated model continues to struggle with matching the some of the amplitudes of extreme 

events, in part due to model structure and parameters that do not possess enough information 

about the hydrologic system to accurately depict changes in TWSA as observed by GRACE. 

Since CLSM continues to run through the near-present month (April 2014), beyond the current, 

publically available GRACE month (January 2014), an assessment of the CLSM’s performance 

between assimilation updates is also provided. 
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The final project details the development of a linear multivariate, multi-frequency 

regression model to estimate monthly water storage change and extremes before and beyond the 

currently available GRACE observation period (April 2002-April 2014). The regression model 

provides coefficients that can then be used with any precipitation and evapotranspiration dataset, 

to calculate the associated amount of water storage change for our study region, California’s 

Central Valley (e.g., Sacramento, San Joaquin, and Tulare river basins). Model results show that 

82% of GRACE’s TWSA signal can be explained with a combination of precipitation and 

evapotranspiration. The June 2014 storage estimate from the regression model revealed that 

water storage deficits persisted in the Central Valley with a monthly value of -28.8 km3 (±1.22 

km3). 

This work concludes that GRACE satellite data can successfully be utilized for regional 

scale drought analysis and has implications for improving drought early warning lead times 

together with drought preparation and management efforts. The storage deficit method 

demonstrates the added benefits of explicitly recognizing the beginning and end of storage 

deficit periods and of providing additional information about the effects of meteorological 

drought on regional water storage. Data assimilation increases the usability of GRACE for near-

present monitoring, while implementation of the linear multi-frequency regression model allows 

for the extension of water storage anomalies. 
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Chapter 1 

Introduction 

 

1.1 Defining Drought 

 The reality of drought is that it is a regularly occurring, physical phenomenon of the 

climate system in nearly every location on earth. Drought translates to ‘disaster’ when this 

natural event meets the demand placed on water and other natural resources by human-use 

systems [Wilhite et al., 2007]. Droughts have occurred many times in the past and will continue 

to occur in the future; yet, because of growing water needs around the world, the adverse 

consequences of droughts will likely worsen. The effects of drought are pervasive and can be 

devastating from both economical and ecological perspectives. In the 2003-2013 timespan, there 

were over 530 occurrences of meteorological and hydrological droughts throughout the world, 

which affected more than 3.7 million people and created a total of over $61 billion in damages 

[EM-DAT, 2014]. 

“One of the first steps in the investigation of any problem is the 

definition of the problem itself; herein lies one of the principal 

obstacles to the investigation of droughts, for there is a wide diversity 

in the ways in which different fields of study view droughts.” 

[Yevjevich, 1967] 

The definition of a drought is often subjective and only realized by authorities after being well 

established for a prolonged period of time. Wilhite et al. [2007] stated that hundreds of 

definitions exist, mainly because drought needs to be defined according to the characteristics of 
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individual climatic regimes and the specific impact sector to which the definition is being 

applied.  

 Numerous authors have published definitions of drought. For instance, in the 1950s, the 

National Weather Service defined drought as: “a lack of rainfall so great and long continued as to 

affect injuriously the plant and animal life of a place and to deplete water supplies both for 

domestic purposes and for the operation of power plants, especially in those regions where 

rainfall is normally sufficient for such purposes” [Havens, 1954]. Palmer [1965] generally 

defined drought as “a prolonged and abnormal moisture deficiency” - a definition that is still 

supported by the American Meteorological Society. Yevjevich [1967] stated that, while the 

explanation of droughts is primarily related to the physical interactions of cause and effect, the 

description of droughts encompasses statistical and deterministic characteristics. Kallis [2008] 

provided a “conceptual definition” of drought, which encompasses different operational 

perspectives but remains narrow enough to distinguish drought from the concepts of scarcity and 

aridity: “drought is a temporary lack of water, which is, at least partly, caused by abnormal 

climate conditions and is damaging to an activity, group, or the environment.” It is important to 

note that drought should not be confused with aridity, which is a permanent feature of a dry or 

desert climate. 

 Drought definition is exceedingly important in recognizing specific types of drought 

occurrences so that governing bodies can declare a drought disaster and provide targeted 

economic relief. Dracup et al. [1980] noted that the nature of the water deficit to be studied (e.g., 

meteorological, hydrological, or agricultural) would determine the general drought definition. 

The selected category has implications for the direction of research, methodologies employed, 

and assessment of impacts. To simplify communication of drought concepts and facilitate 
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management decision support, drought often is categorized into four general types: 1) 

meteorological or climatological, 2) agricultural, 3) hydrological, 4) socioeconomic [Dracup et 

al., 1980; Wilhite and Glantz, 1985]. Meteorological or climatological drought is simply defined 

in terms of the magnitude and duration of a precipitation deficiency. Agricultural drought 

associates precipitation shortages most immediately with higher evapotranspiration levels and 

soil moisture deficits. The onset of an agricultural drought may lag that of a meteorological 

drought, depending on the antecedent moisture in the surface soil layers. Socioeconomic drought 

focuses on the impacts of any of the previous drought types on society. 

 The concentration of this dissertation research is hydrological drought. Linsley et al. 

[1975] gives a textbook definition of hydrological drought: “a period during which streamflows 

are inadequate to supply established uses under a given water management system”. If flow for a 

specified period of time falls below that threshold, then hydrological drought is considered to be 

in progress. A conceptual definition describes hydrological drought as an extended period of 

time where a region’s water supply is in a deficit; often triggered by lack of precipitation and 

persisting long after a meteorological drought has ended. Water deficits manifest in surface 

waters (streamflow levels), soil moisture, and groundwater aquifers and can lead to losses in 

agricultural and industry production as well as drinking and recreational water reserves. 

 

1.2 Causes of Drought: A Broad Perspective 

 At its core, the primary cause of drought is the occurrence of below normal precipitation, 

which lies in meso-to-macro scale atmospheric processes resulting from intra-seasonal to multi-

decadal climate variability. Global atmospheric circulation produces average, regional 

climatology, though its characteristics can vary from one year to another. Hot temperatures, low 
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relative humidity, and drying winds often add to the impact of the lack of rainfall [Condra, 

1944]. Stronger variations in any given year cause anomalies in atmospheric and hydrological 

characteristics [Tallaksen and Van Lanen, 2004]. Another important causative factor of droughts 

is oceanic circulation and dynamics, which have average patterns of current and heat storage that 

affect the weather and climate [Panu and Sharma, 2002]. (e.g., significant climatic variations are 

known to occur when a warm pool, which is normally present in the western Pacific Ocean, 

moves eastward towards the coast of Peru, commonly referred to in the literature as El Nino 

Southern Oscillation (ENSO) [Zhang et al., 19996; Wallace et al., 1998; Sun and Yu, 2009]. 

 Regional hydrological drought has been linked to a combination of anomalous 

atmospheric circulation patterns (causing persistent dry weather), changes in the timing of 

precipitation, and low antecedent soil moisture, groundwater, or lake storage conditions 

[Tallaksen and Van Lanen, 2004]. Although climate is a primary contributor to hydrological 

drought, there are other factors (e.g., changes in land use, deforestation, land degradation, 

construction of dams), which can all affect the hydrological characteristics of a basin. Given the 

adverse effects of drought, there continues to be a pressing need for further in-depth research on 

drought characteristics and impacts throughout the world. 

 

1.3 Climate Change, Drought, and Water Resources 

Climate change is likely to globally increase the areas affected by droughts. The observed 

impact of climate-system changes on droughts varies regionally, depending on changes to the 

drivers of drought such as precipitation and temperature and on regional features of the hydro-

climatological system [American Meteorological Society, 2014]. “The combined impacts of 

increased temperature, precipitation, and evapotranspiration will affect snowmelt, runoff, and 
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soil moisture conditions”. Semiarid, coastal, and snow-fed basins are particularly exposed 

[IPCC, 2007; Kallis, 2008; IPCC, 2013].  Kallis (2008) states that droughts are not only about 

decreases in means, but also about increases in variability. According to the IPCC [2013]: 

“Changes in the global water cycle in response to the warming over the 21st century will not be 

uniform. The contrast in precipitation between wet and dry regions and between wet and dry 

seasons will increase, although there may be regional exceptions.” The hydrological cycle 

accelerates in response to the water-holding capacity of the atmosphere and evaporation 

increases [Kallis, 2008]. This change in hydrological variability leaves regions vulnerable to 

prolonged periods of wet/dry conditions, increased intervals from wet and dry seasons, or 

combinations of both. 

In addition to the physical changes in climate, human-induced stressors continue to tax 

regional water resources. Major stresses on water resources include: increased competition for 

available water, population growth, poor water quality, aging urban infrastructure, water 

allocations to environmental and recreational resources, and groundwater overdraft [Tallaksen 

and Van Lanen, 2004]. Georgakakos et al. [2014] expect summer droughts to intensify almost 

everywhere in the continental U.S. due to longer periods of dry weather and more extreme heat, 

which leads to increased moisture loss from plants and earlier soil moisture depletion in basins 

where snowmelt shifts to earlier in the year. Any additional stress from climate change or 

increased variability will only intensify the competition for water resources. 

 

1.4 Measuring Drought 

According to an information statement from American Meteorological Society [2013], 

characteristics of drought include magnitude, severity, duration, spatial extent, timing, and 
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impacts. Magnitude is often interchanged with intensity, which describes the amount of deviation 

from some “normal” condition for a specified point or range in time. McKee et al. [1993] state 

that the specification of a time scale in the definition of drought leads to two of the most 

important characteristics – frequency and duration. Severity accounts for the combination of a 

drought’s intensity and duration. Each drought is unique, but common features of the most 

severe droughts that have far-reaching human and ecological impacts include long duration, 

large moisture deficits, and large areal extent, particularly when these impacts occur during a 

climatological wet season. 

The flow of water through the hydrological system depends on both natural processes and 

human activities throughout the region or watershed. The key to hydrological analyses is 

determining relationships between these two regimes and drought events [Tallaksen et al., 1997]. 

Statistical techniques used in drought analysis range from probabilistic [Chung and Salas, 2000; 

AghaKouchak, 2014] and frequency analysis [Stedinger et al., 1993] of hydrologic extremes to 

complex multivariate probability density functions of drought characteristics (e.g., duration, 

magnitude, and severity) [Mishra et al., 2009; Katz et al., 2002]. These methods often utilize the 

concepts of run theory [Yevjevich, 1967], discrete autoregressive moving average (DARMA) 

models [Jacobs and Lewis, 1978; Chang et al., 1984], or grouping methods [Panu and Sharma, 

2002]. 

 Drought indices are also very important for monitoring droughts continuously in time and 

space; for reviews of common drought indices refer to Heim [2002], Keyantash and Dracup, 

[2002], and Hayes [2006]. Drought monitoring systems, such as the U.S. Drought Monitor 

[USDM; Svoboda et al., 2002], are based primarily on the information that drought indices 

provide [Dracup, 1991; Vicente-Serrano and López-Moreno, 2005]. Unveiled in August 1999 at 
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a White House press conference, the USDM bases drought intensity on several key indicators 

(e.g., the Palmer Drought Index (PDSI), Standardized Precipitation Index (SPI), Keetch-Byram 

Drought Index (KBDI), modeled soil moisture, 7-Day average streamflow, and precipitation 

anomalies), numerous supplementary indicators (e.g., drought impacts), and local reports from 

more than 350 expert observers around the country [U.S. Drought Monitor, 2014]. The drought 

severity classification tables show the ranges of each indicator and dryness level, based on 

statistical percentiles. The USDM corroborates data from local observations of drought 

conditions and impacts from around the country to produce weekly maps of short- and long-term 

drought severity and spatial extent. 

 Though drought monitors gather and process an immense amount of data, measures of 

the effects of drought conditions on our water storage reservoirs, especially in the subsurface, are 

still largely unknown, primarily due to sparse or non-existent observation networks. Satellite 

remote sensing has emerged as a fundamental tool for observing Earth systems, particularly, 

regional hydrologic dynamics where in situ observations are frequently absent. Advances in 

computer modeling techniques have enhanced drought monitoring through the process of data 

assimilation where outputs from computer models are adjusted and often times improved with 

data observed through satellite remote sensing [Houborg et al., 2012; Werth et al., 2009; 

Zaitchik et al., 2008]; yet, when considering hydrologic drought and water deficits, the question 

often remains: how much water is actually absent from the region during these dry periods? 

 

1.5 Drought Research and GRACE Satellites 

NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 

March 2002, make detailed, time-variant, global measurements of Earth's gravity field. Scientists 
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use time-variable gravity to study ground water fluctuations, sea ice, sea level rise, deep ocean 

currents, ocean bottom pressure, and ocean heat flux [Schmidt et al., 2008]. Since no global 

widespread network of surface or subsurface hydrological observations exists, Ramillien et al. 

[2008] assert that advances in satellite gravimetry for monitoring terrestrial water storage are 

significant and unique for determining changes in total water storage. For applications pertaining 

to terrestrial hydrology, fluctuations in earth’s gravity field are attributed to non-static features, 

chiefly the mass movement of water over and within the land surface. 

GRACE satellites observe total, column-integrated terrestrial water storage changes on 

monthly time scales, which help convey vital information about Earth's water reservoirs over 

land, ice, and oceans [Tapley et al., 2004]. GRACE data are expressed as terrestrial water storage 

anomalies (TWSA), or deviations of total water storage from their mean over the observation 

period. Though GRACE has a low spatial (~400-500 km) and temporal (ten days to a month) 

resolution, it is currently the only remote sensing satellite with the ability to measure changes in 

water storage above and below the land surface, within an accuracy of ~1.5 cm of equivalent 

water thickness. 

GRACE satellite data have been shown to be appropriate for use in drought 

quantification and offer information about surface and subsurface water resources that were 

previous not available, especially at regional scales. Several studies have examined drought 

using gravity-based measures of water storage variations from the GRACE mission. Yirdaw et 

al. [2008] used GRACE to develop a total storage deficit index for characterization of the 

2002/2003 Canadian Prairie droughts. Leblanc et al. [2009] used a combination of GRACE, in 

situ, and modeled hydrological data to identify water deficits and the rise of different types of 

drought within the Murray-Darling Basin in southeastern Australia. They also substantiated a 
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persistent reduction in groundwater storage six years after the onset of the drought. Hasegawa et 

al. [2008] also studied drought in Australia, focusing on the 2006 episode. Frappart et al. [2012] 

used GRACE time series of water volume variations to analyze surface water storage during the 

2005 Amazonian drought. Li et al. [2012] and Houborg et al. [2012] both utilized GRACE 

TWSA with land models to evaluate drought conditions for watersheds in the United States and 

Europe. 

 

1.6 Statement of Research 

The goal of this dissertation is to advance hydrologic extremes research, with a strong 

emphasis on drought identification and characterization. While there are many indicators that 

describe meteorological, hydrological, and agricultural types of drought, scientists are still 

challenged with quantifying severity and determining recovery from drought conditions, in 

addition to describing the spatial behavior of drought and flood events. The spatial coverage of 

drought and flood is of significant importance in planning measures towards the mitigation of 

impacts [Panu and Sharma, 2002]. Rodell and Famiglietti [1999, 2001] and Reager and 

Famiglietti [2009] indicate the presence of normal range of terrestrial water storage variability (a 

maximum and minimum anomaly value that changes over time). There are, however, periods 

where the anomaly exceeds this normal range, indicating periods of extremely low or high 

terrestrial water mass. Such behavior is identified and evaluated in the following chapters. 

There are three substantial results of this work, which fulfill the research goals: 1) a 

quantitative approach for the calculation of the amount of water missing from regional storage 

systems during dry periods; 2) regional-scale identification of the variations in timing of 

hydrological drought through the vertical structure of the terrestrial subsurface; and 3) the 
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development of a statistical model that determines a simplified relationship between precipitation 

amount and subsequent changes in terrestrial water storage. 

 

1.7 Dissertation Outline 

Work presented in the following chapters concentrates on the use of modern technologies 

(e.g., satellite remote sensing and computer modeling) for the improvement of hydrological 

drought characterization and monitoring efforts. This body of work consists of three projects, 

organized into three chapters: 

 

Chapter 2: Introduction of a novel approach to characterizing hydrological drought with 

terrestrial water storage anomalies observed by GRACE satellites, with a discussion of 

implications for water resources. 

Chapter 3: Utilization of climate and hydrologic outputs from NASA’s Catchment Land Surface 

Model assimilated with GRACE TWSA observations, to improve spatial resolution and 

disaggregate the GRACE signal for the purpose of exploring the timing and magnitude of 

extremes throughout the terrestrial hydrologic system. 

Chapter 4: Development of a multi-frequency, linear regression model to extend GRACE 

TWSA before and beyond the current-most available observation in an effort to estimate water 

storage changes back in time to the late 1940’s and determine future drought recovery, solely 

based on TWSA relationships with rainfall. 

Chapter 5: The final chapter summarizes the main results of each project, addresses potential 

shortcomings, and suggests future efforts towards contributing to drought research. 
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Chapter 2 

A GRACE-based water storage deficit approach for hydrological drought 

characterization 

 

As appears in: 

Thomas, A. C., J. T. Reager, J. S. Famiglietti, M. and Rodell (2014). A GRACE-based water 

storage deficit approach for hydrological drought characterization. Geophysical Research 

Letters, 41(5), 1537-1545. 

 

2.1 Abstract 

  We supplement present-day hydrological drought characterization with a new 

quantitative framework for measuring the severity of regional water storage deficits based on 

terrestrial water storage observations from NASA’s Gravity Recovery and Climate Experiment 

(GRACE) satellite mission. GRACE measurements are applied for hydrological drought 

characterization by calculating the deviation of monthly, terrestrial water storage anomalies 

(TWSA) from a 127-month climatology, where negative deviations represent storage deficits. 

Each monthly deficit explicitly quantifies the volume of water required to return to normal water 

storage conditions. We use the ‘storage-deficit’ method to quantify the severity of continuous 

periods of water storage deficits by combining average storage deficits with event duration. Two 

drought databases are referenced to identify specific meteorological drought events that occurred 

during the 2002-present GRACE mission lifetime in the Amazon and Zambezi River basins and 

in the southeastern United States and Texas regions. The storage deficit method quantifies the 

instantaneous and peak magnitude of water storage deficits, demonstrating the added benefits of 
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explicitly recognizing the beginning and end of storage deficit periods and of providing 

additional information about the effects of meteorological drought on regional water storage. 

 

2.2 Introduction 

  The elements of drought characterization typically include drought type, frequency, 

duration, magnitude (including peak magnitude), severity, and areal extent of drought 

occurrence. Prevailing methodologies include a variety of objective (e.g., meteorological and 

hydrological data) and subjective information (e.g., drought-related articles and impact reports) 

to assess drought severity. Still, many definitions of drought exist, and resolving one that can be 

considered canonical is difficult, due to this lack of a universal definition and characteristics that 

are unique to each climatic regime and impact sector [Wilhite et al., 2007]. More specifically, 

observing all of the relevant hydrological variables (i.e., snow, surface water, soil moisture, and 

groundwater) that are necessary for characterizing hydrological drought, across the appropriate 

temporal and spatial scales, remains challenging. 

  Satellite remote sensing has emerged as a valuable tool because it offers regional-to-

global coverage [Mu et al., 2013]; yet, because many characterization techniques do not 

incorporate observations of water storage variability in all hydrological components, they cannot 

provide an integrated measure of the amount of water “missing” from a region during a drought 

episode that would be required for a return to normal conditions. 

 NASA’s Gravity Recovery and Climate Experiment (GRACE) mission [Tapley et al., 

2004] provides monthly, integrated information about water storage variations throughout all 

components of the surface and subsurface water balance that was previously unavailable [Wahr 

et. al, 2004]. GRACE terrestrial water storage anomaly (TWSA) data have been used in a range 
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of hydrologic studies to estimate fluxes and water storage variations from large river basins to 

global scales [e.g. Seo et al., 2006]; groundwater storage changes [e.g. Rodell et al., 2009; Tiwari 

et al., 2009]; freshwater discharge [e.g. Syed et al., 2007]; ice mass loss [e.g. Velicogna, 2009]; 

and regional flood potential [Reager and Famiglietti, 2009]. Famiglietti and Rodell [2013] also 

report on the potential of the GRACE mission for further contributions to regional water 

management, including drought. 

  Currently, GRACE observations are being assimilated into land surface models [Zaitchik 

et al., 2008], including the U.S. Drought Monitor [Houborg et al., 2012]. While these models 

enable downscaling and decomposition of GRACE data into water storage components, 

simulation of the severity of drought events is limited by the model physics, model structure, and 

the accuracy of additional model parameters and meteorological forcing data [Long et al., 2013]. 

An independent, observation-based water storage deficit is desirable for drought characterization 

because it is not limited by model assumptions or access to auxiliary datasets. In addition to the 

potential for advancing drought characterization, it also creates the opportunity for improving 

models and for new applications including forecasting drought initiation and recovery. 

  Previous works from Yirdaw et al. [2008], Chen et al. [2009], Leblanc et al. [2009], 

Frappart et al. [2012], and Long et al. [2013] examined individual, regional scale droughts using 

gravity-based measures of water storage variations from the GRACE mission; however, these 

studies have not yet placed GRACE observations into a consistent drought characterization 

framework for quantifying drought severity in terms of the water absent from a region that can 

be applied to a variety of regions around the world. 

 We demonstrate that GRACE can contribute to regional drought characterization by 

measuring water storage deficits in a previously-identified, drought-stricken area, and that the 
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duration and magnitude of the deficit can serve as new metrics to help quantify hydrological 

drought severity. We present gravity-based measurements of water storage anomalies during 

recent, well-documented meteorological droughts (defined as extended periods of precipitation 

deficits), including those in the Amazon and Zambezi River basins, and the Texas and 

Southeastern regions of the United States. We use GRACE to further characterize the effects of 

meteorological drought within the hydrological system, to explore how hydrological drought 

(generally defined as extended periods of water storage deficits) may be better characterized, and 

to estimate the associated regional water storage deficit. We expect that these results can 

ultimately contribute to a comprehensive framework for drought monitoring [Famiglietti and 

Rodell, 2013]. 

 

2.3 Data 

 GRACE observes monthly changes in Earth’s gravity field caused by mass redistribution, 

which, over land and after removal of the atmospheric contributions, are attributed primarily to 

the movement of water in various surface and sub-surface hydrologic reservoirs [Wahr et al., 

2004]. Here we use the University of Texas Center for Space Research (CSR) Release 5.0 

(RL05) monthly, global, one-degree gridded and scaled GRACE land water storage data, which 

are expressed in centimeters of equivalent water thickness [Landerer and Swenson, 2012]. Data 

are available at http://grace.jpl.nasa.gov (refer to Swenson and Wahr [2006] for post-processing 

details). GRACE data require scaling to restore true signal amplitude attenuated by data 

processing [Velicogna and Wahr, 2006]; therefore, scaling factors, based on the Community 

Land Model (CLM) v4.0 [Oleson et al., 2008] are provided and multiplied by the un-scaled 

GRACE data following Landerer and Swenson [2012]. A three-month, low-pass filter is also 
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applied to reduce noise before converting storage anomalies from centimeters of water 

equivalent height to cubic kilometers of water volume. 

 Prior work by Long et al. [2013], showed GRACE to be a valuable tool to link 

meteorological drought to hydrological drought. Accordingly, we use two drought databases to 

identify the presence of meteorological drought in each region and to border our two U.S. study 

regions. First, maps of drought conditions from the United States Drought Monitor [U.S. 

Drought Monitor, 2013] were used to define the boundaries of regions subjected to major 

meteorological drought during the GRACE mission lifetime. The maximum areal extent of D2 

(Severe) to D4 (Exceptional) drought severity classes was used to delineate boundaries for the 

2007-2009 Southeastern United States and 2010-2013 Texas region droughts (see Figure 1). 

Second, we selected watersheds based on drought information from the Office of U.S. Foreign 

Disaster Assistance (OFDA)/Centre for Research on the Epidemiology of Disasters (CRED) 

International Emergency Events Database [EM-DAT, 2013]. This archive identified major 

meteorological droughts that occurred within the world’s large river basins during the GRACE 

period of record. The Amazon and Zambezi River basins were subsequently selected for analysis 

(Figure 1). 

 Study area masks were used to calculate monthly regional-average water storage volume 

anomalies (in km3) by multiplying GRACE storage anomalies with the regional mask area (see 

Table 1a for mask areas). Gridded, time-invariant measurement and leakage errors were provided 

with the GRACE data set, and applied for the calculation of the following total monthly regional 

average errors, based on methodology from Landerer and Swenson [2012]: ±11.25 mm/69.12 

km3 (Amazon), ±19.06 mm/25.55 km3 (Zambezi), ±14.55 mm/11.33 km3 (Texas), ±16.02 

mm/11.75 km3 (Southeastern United States). These errors offer a measure of the relative 
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GRACE sensitivity to water storage variations in different regions. Larger areas have smaller 

relative error (per signal), directly related to the effective spatial resolution of GRACE satellites.  

 

2.4 Water Storage Deficits and Hydrological Drought Characterization 

  We computed a 127-month climatology (January 2003-July 2013) for the GRACE 

TWSA time series in each study region by averaging the TWSA values of each month of the 

GRACE record (e.g., all Januaries in the ~10 year record are averaged). This climatology 

represents the characteristic variability of water storage and serves as a baseline for identifying 

the occurrence and severity of water storage deficits. We recognize that a climatology of at least 

30 years is preferable; nevertheless, a consistent measure of water storage with global coverage 

from the GRACE mission is currently the best available. While the GRACE record is relatively 

short, note that in this paper we are proposing a method for drought characterization that can be 

continuously updated as the GRACE record length grows. 

  Water storage deficits were calculated as negative residuals after subtracting the GRACE 

climatology from the GRACE TWSA time series. This is distinct from former work by Long et 

al. [2013] where they subtracted the mean (constant) gravity field from the long-term monthly, 

GRACE-derived TWSA. Our calculated residual time series depicts the substantial deviation 

from the normal annual or seasonal cycle that can then be considered a true deficit and are used 

to distinguish between relatively dry (negative residuals shown in Figure 1) and wet (positive 

residuals, not shown) conditions in the four study regions. For convention, deficits and severity 

are denoted here with a negative sign. 

  Monthly negative residuals represent regional water storage deficits, providing a direct 

measure of the magnitude, M (km3), of the volumetric departure from “normal” (climatological) 
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hydrological conditions, or accordingly, the volume of water required, at any point in time, to 

return to normal hydrological conditions. M also serves as a rolling, monthly measure of the 

instantaneous deficit magnitude. We calculate one standard deviation of the residual time series 

and plot it above and below the climatology for reference. 

  Any deficit period lasting three or more continuous months is designated as an event, 

which allows us to quantify the hydrological impacts of a meteorological drought occurrence on 

an event-by-event basis. We designate a hydrological drought as a deficit event that coincides 

with a widespread, regional meteorological drought [refer to Table 1 for all drought 

characterization variables]. 

  Figure 1 displays plots of monthly, regional-average GRACE TWSA’s (black line) with 

error bars, GRACE TWSA monthly climatology (blue dashed line) with confidence bounds 

(light purple shading), and water storage deficits (green-shaded area, scale on right axis) in the 

left panel. The right panel highlights months with the largest peak magnitude for each study 

region (refer to Table 1d) of the residual time series in the left panel. Deficits are presented on 

one-degree grids, masked for each study region, and are standardized by dividing each value by 

the standard deviation of the residual time series for each grid cell. These maps offer a spatial 

perspective on the magnitude of negative departures from normal, monthly climatological 

conditions. 

  To capture the combined impact of water storage deficits and duration, we define the 

severity,  (km3 months), of each deficit event as the product of the average deficit since the 

onset of the deficit,  (km3) and the duration  (months) since deficit onset, or: 

 (Figure 2.1) 

S(t)

M (t) D(t)

S(t) =M (t)×D(t)
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Additionally, at the termination of an event (i.e., once the monthly residual is no longer 

negative), the total event severity, calculated at the end of the event as S, is equal to x D for 

the total months of continuous storage deficits (Table 1g). Note that S, , P, and D can only be 

determined historically, and will be helpful for comparison with documented drought 

occurrences, while M serves as the instantaneous measure of the magnitude of the deficit event. 

 

2.5 Results 

  Table 1 provides a summary of results for each region. While Figure 1 shows all deficit 

periods, only those lasting for three or more consecutive months are listed in the table. Figure 2 

features the severity time series with each uninterrupted deficit period labeled with its 

corresponding total severity value (also listed in Table 1g). 

 

2.4.1 Amazon 

  There were seven occurrences of GRACE-identified water storage deficit events in the 

Amazon basin (Figures 1a, 2a; Table 1). The largest peak magnitude occurred in July 2005 with 

512 km3 of storage below climatological conditions. Deficits in 2004, 2005, and 2010 had 

similar total severities (-2547, -3627, and -3289 km3 months, respectively), with durations of 9 

and 13 months. These results are consistent with the OFDA/CRED EM-DAT database, which 

documented three major meteorological droughts affecting countries within the Amazon River 

basin (in 2004, 2005, and 2010) [EM-DAT, 2013]. 

 

M

M
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2.4.2 Zambezi 

  The Zambezi River basin experienced the longest deficit event of the areas studied (60 

months: from January 2003 to December 2007). It is also the one with the greatest total severity 

(-5280 km3 months) (Figures 1b, 2b; Table 1c). The region’s peak deficit of 222 km3 below 

climatology occurred in April 2005. The OFDA/CRED EM-DAT database documented 

meteorological droughts for territories sharing the Zambezi River basin in 2005 and 2007 [EM-

DAT, 2013], which is considerably shorter than the 5 years of nearly continuous water storage 

deficits identified using GRACE. 

 

2.4.3 Texas 

  There were four GRACE-identified deficit periods within the Texas region (Figures 1c, 

2c; Table 1c). One month of surplus storage interrupted events from November 2008 to 

September 2009. The largest peak magnitude occurred during the most recent event, which 

began in October 2010 (-68 km3 in January 2013). The U.S. Drought Monitor detailed two major, 

widespread meteorological drought periods in its South region in 2006 and from 2011-2013, 

which is consistent with storage deficits observed with GRACE. 

 

2.4.4 Southeastern United States 

  The Southeastern United States experienced three water storage deficit events (Figures 

1d, 2d; Table 1c). Two months of surplus storage punctuated the events from October 2010 to 

March 2013 (April and May 2011). The peak magnitude for this region was -66 km3 in 

November 2007. U.S. Drought Monitor time series show two major meteorological drought 

periods during the GRACE record from 2007-2009 and 2010-2013, which, as above, is 



 

	
   20 

consistent with storage deficits identified by GRACE from February 2008-November 2008 and 

July 2011-March 2013. 

 

2.4.5 Using deficits to estimate drought recovery  

        The monthly deficit (M) quantifies the volume of water required to recover from below 

normal water storage conditions. One of the benefits of the storage-based approach is that the 

time evolution of storage deficits, including their rates of increase or decrease, can be evaluated 

by estimating the time derivative of the deficit, dM/dt. This is done as a backwards difference 

calculation: 

, for I = 1:N  (Figure 2.2) 

where M is the monthly deficit, t is time, and N is the length of the GRACE record. Since the 

GRACE record is short and may contain few instances of drought (or drought recovery), we have 

assumed that the entire dM/dt time series (not only those points in previous drought recoveries) 

can be used to represent a range of typical dM/dt values. As an example, we calculate the dM/dt 

distribution and statistical percentiles of the empirical (Kaplan-Meier) cumulative distribution 

(eCDF) of dM/dt within the Texas region, which follows a standard normal distribution 

according to a one-sample Kolmogorov-Smirnov test. We select, for demonstration, the 95th 

percentile (2 standard deviations) of the eCDF to represent the maximum positive rate of change 

for deficits, and the 68th percentile (1 standard deviation) to represent the average positive rate of 

change for deficits, for any deficit month. 

       The quotient of a monthly deficit value and either the maximum or average rate of change 

yields the minimum or average time to recovery, allowing us to assign a likely time range for 

recovery for every month through the end of the event. Based on the 95th (11 km3/month) and 

dM
dt

ti( ) = M (ti )−M (ti−1)
ti − ti−1
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68th (3 km3/month) percentiles of the eCDF (Figure 3c, inset), the minimum and average times to 

recovery from the July 2013 deficit (-38 km3) are ~3 and ~13 months, respectively (Figure 3c). 

 

2.6 Discussion 

  The GRACE-based drought characterization framework presented here offers three key 

contributions to drought characterization efforts: a framework that provides additional 

information about the effects of meteorological drought; specifically, how much water is missing 

from a region during a drought, a clear identification of water storage deficits and quantification 

of their severity with an observation that integrates both surface and subsurface storage, and a 

consistent method for severity calculation that can be applied globally. 

  Instances where GRACE deficits occurred without a meteorological drought (see Table 

1) likely suggest that GRACE deficits must be greater than some regional threshold associated 

with typical variability. The delineation of that threshold could be deduced from Table 1, and 

with a longer GRACE time series these thresholds will become more established. There were no 

situations for which there is a wide-spread meteorological drought within a basin, and no 

significant water storage deficit occurs in GRACE data. 

  Differences in the timing of meteorological drought and GRACE deficits may be due to 

inherent lags within the hydrologic system (i.e., subsurface water storage can be slow to react to 

precipitation changes). Our analysis shows that it is the severity metric (S), and not the 

magnitude or duration alone, that is most associated with reports of widespread, catastrophic 

meteorological drought, and corresponds best with major, region-wide meteorological droughts 

[Table 1h].  
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  There is currently very little understanding of subsurface water supply (e.g., root zone 

moisture and groundwater, described as the saturated zone extending to the bedrock); hence, this 

is an important feature captured by our drought characterization framework. For example, the 

response of groundwater is slower compared to changes in rainfall and snowmelt [Eltahir and 

Yeh, 1999]; hence, GRACE-observed deficits within a region may appear later and persist longer 

in these subsurface reservoirs. Because many common drought metrics tend to be based on the 

accumulation of precipitation deficits or anecdotal accounts of events, they cannot see the extent 

of drought influence on subsurface hydrology. Though surface storage may be quickly 

(seasonally) replenished, deficits in the subsurface leave the region vulnerable to future droughts. 

When the surface supply is once again depleted and subsurface supply is still inadequate, then 

the consequences can be severe. As we did not separate the storage components, it is not evident 

how much water is explicitly missing from the subsurface; however, since the integrated signal 

observed deficits, groundwater in these regions is likely declining as well. 

  With this framework, it is possible to monitor the intra-seasonal persistence of total water 

storage deficits and surpluses. This presence, even during a wet season, indicates that an inter-

annual drought event is still occurring (though maybe not visible) and may not be resolved in the 

coming year. This offers potential for drought forecasting for the upcoming dry season, and for 

improving drought monitoring systems [Famiglietti and Rodell, 2013]. Understanding the time 

evolution of deficit severity is also important for drought monitoring efforts. An event with 

similar severity but, for example, a shorter time evolution than another means that the deficits 

accelerated (i.e., deficits worsened) more rapidly than another, more slowly developing, event.  

  In the GRACE-based framework described here, the selection of an averaging area and 

an understanding of relevant hydrological processes are important in characterizing the intensity 
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of one regional event relative to others. Regional land characteristics, regional land-surface and 

atmospheric coupling, and regional water management decisions influence drought severity. Our 

quantification of the timing and severity of water storage deficits is described in a manner that 

can be quickly applied as new GRACE data arrives. Ongoing work will explore using GRACE 

data to identify drought independently of meteorological drought indices and boundaries, in an 

effort to provide a truly independent characterization of drought occurrence and severity. 
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Table 2.1. Summary table of GRACE-identified hydrological drought events: A. region name 
with boundary area; B. number of events; C. time span of each event; D. peak magnitude (P, the 
largest value of the deficit, M, that occurs during a hydrological drought in km3); E. duration (D, 
the number of months of continuous storage deficits); F. average water storage deficit (km3); G. 
total severity (S, km3 months). A hydrological drought period that corresponds with a major, 
documented meteorological drought is indicated with a ‘Y’ (column H) and the row is shaded. 
Only events lasting three months or longer are listed. 
 
 
 
 
 
 

A. B. C. D. E. F. G. H.

No. of  
events

Peak Magnitude     
(P)

Duration 
(D)

Average water 
storage deficit

Total Severity    
(S)

≥ 3 months km3 (months) km3 (km3 months)

Jan-03 to 
Jun-03  -407 (Mar-03) 6 -277 -1662 N

Nov-03 to 
Jul-04  -442 (Apr-04) 9 -283 -2547 Y

Dec-04 to 
Dec-05  -512 (Jul-05) 13 -279 -3627 Y

Feb-07 to 
Oct-07  -235 Apr-07) 9 -129 -1161 N

Area:
Feb-10 to 

Feb-11  -370 (May-10) 13 -253 -3289 Y

6,140,600  km2 Aug-11 to 
Oct-11  -23 (Oct-11) 3 -19 -57 N

Aug-12 to 
Jan-13  -175 Nov-12) 6 -109 -654 N

Zambezi

1,340,600 km2

Texas

Nov-05 to 
Aug-06  -28 (Jan-06) 10 -17 -170 Y

Area:
Nov-08 to 

Apr-09  -25 (Feb-09) 6 -15 -90 N

778,770 km2 Jun-09 to 
Sep-09  -21 (Aug-09) 4 -11 -44 N

Oct-10 to Jul-
13  -68 (Jan-13) 34 -43 -1462 Y

Southeastern 
United States

Dec-05 to 
Mar-09  -66 (Nov-07) 14 -42 -588 Y

Area:
Oct-10 to 
Mar-11  -21 (Jan-11) 3 -24 -72 N

733,760 km2 Jun-11 to 
Mar-13  -60 (Jun-12) 6 -15 -90 N

3

Time span 
of each 
event

Jan-03 to 
Dec-07

Coincides with a 
meteorological 

drought?

60 -88 -5280 Y

Region

1

7

Amazon

 -222 (Apr-05)

4
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Figure 2.1. GRACE-observed deficits for all study regions. Left panel: GRACE-observed water 
storage anomalies and deficits for each study region. Black lines: regional, spatial average 
storage anomalies with error bars (km3); Blue dashed lines: monthly climatology and; Green-
shaded areas: water storage deficits (km3). Light purple shading around the climatology 
represents ± one standard deviation of the residual time series. Right panel: Regional maps of 
one-degree, gridded GRACE-identified water storage deficits on a regionally standardized scale, 
highlighting months with the largest peak magnitude for each study region. A. Amazon, July, 
2005; B. Zambezi, April, 2005; C. Texas, January, 2013; and D. Southeastern United States, 
November, 2007.  
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Figure 2.2. Instantaneous and total severity for GRACE-observed, regional average water storage 
deficits: A. Amazon, B. Zambezi, C. Texas, and D. Southeastern United States. Total severity (S) 
values for each event are given in bold (km3 months). 
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Figure 2.3. Estimated time to recovery for the Texas region: A) GRACE water storage deficits 
(km3); B) monthly rate of change of deficits (dM/dt) in km3/month; and C) the minimum and 
average times to recovery. Inset: empirical cumulative distribution of dM/dt; the 68th and 95th 
percentiles (red lines) are used to determine the average and minimum time to recovery; all for 
January 2003 through July 2013. 
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Chapter 3 

Using model-assimilated GRACE water storage anomalies to explore 

terrestrial hydrologic extremes plus an assessment of model degradation in 

successive months following the last assimilated observation 

 

3.1 Introduction 

 Traditionally, the analysis of hydrologic extremes has involved statistical assessments of 

long-term (30+ years) climatic and hydrological datasets to determine drought and flood 

occurrences, severity, and recurrence intervals. Contemporary extremes analysis and monitoring 

has not deviated much from its roots, though it has obtained a wealth of new tools for measuring 

land and atmospheric variables, namely satellite remote sensing products and advanced computer 

modeling abilities. The previous chapter explored ways that GRACE can be utilized to quantify 

water storage deficit and surplus on a global scale, features that are currently only attainable with 

GRACE satellite observations. 

 While GRACE terrestrial water storage anomaly (TWSA) data contribute to an improved 

understanding of how terrestrial water storage responds to climate change and variability [Syed 

et al., 2008], the application of GRACE data for hydrologic extreme analyses is not without its 

limits. Three prevailing limitations to the direct application of GRACE satellite observations for 

quantification of extremes are coarse spatial resolution (one degree), the aggregation of multiple 

water storage components into one, integrated value for each grid cell, and latency in data 

acquisition (2-5 months lag), which may not always prove useful for certain applications, such as 

water resource management. For preliminary quantification of regional-average total water 

storage, GRACE observations are imperative, yet we can undoubtedly benefit from higher 
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resolution data sources, temporal and spatial, observed and modeled [Wood et al., 2011; Forman 

et al., 2012]. 

 Computer modeling of land-atmospheric processes and interactions offers the potential 

for a level of temporal and spatial resolution beyond the capacities of most in situ observation 

networks. A general land surface model (LSM) is constructed to describe, propagate, and output 

the dynamic relationships between hydrological, atmospheric, and land surface properties 

throughout the terrestrial system generally by modeled physics derived from empirical 

relationships. Overgaard et al. [2006] states that even though many LSMs include detailed 

descriptions of vegetation and soil moisture parameters, the interactions between deeper, 

subsurface (i.e., groundwater), root zone and surface water, and lateral surface and subsurface 

flows, are typically disregarded. This causes these models to fail to produce accurate results in 

areas where subsurface interactions are important. 

 The Catchment Land Surface Model (CLSM) was developed at the NASA Goddard 

Space Flight Center with a goal of improving the handling of the sub-grid horizontal structure of 

land surface hydrological processes, by explicitly accounting for sub-grid soil moisture 

variability and its effects. Unevenly shaped hydrologic catchments, with boundaries defined by 

topography, serve as the primary elements of the land surface instead of quasi-rectangular 

atmospheric grid elements, though, as in our application, regular grids can be applied [Koster et 

al., 2000]. The land surface of the CLSM is divided into topographically-defined catchments 

with an average area of approximately 4000 km2, where water is redistributed spatially and 

vertically based on the topography of each basin or watershed [Li et al., 2012]. The model’s 

hydrologic processes are based on each catchment’s topographical statistics. Refer to Ducharne 



 

	
   30 

et al. [2000] and Koster et al. [2000] for more detailed discussion on the philosophy, 

configuration and implementation of the CLSM. 

 Data assimilation, the process of merging measurements with model predictions, to 

maximize spatial and temporal coverage, consistency, resolution, and accuracy, addresses a 

necessity for the improvement of land-surface model outputs that assume uniform topographic 

and hydrologic characteristics at the grid scale level, a feature that often leads to unrealistic fields 

of hydrological components like runoff, river flow, and groundwater [Reichle et al., 2002b]. It 

involves the spatial pairing of satellite data with model-defined boundaries with either 

global/regional grid cells (i.e., Global Land Data Assimilation System; Rodell et al., 2004) or 

watershed-defined domains (i.e., the CLSM). 

 Assimilation has been shown to improve model outputs, in several cases, decreasing 

RMS errors and significantly increasing the correlation between simulated and observed 

variables [Reichle et al., 2002a]. Zaitchik et al. [2008] discusses several advantages of CLSM-

GRACE data assimilation. For example, the pairing of GRACE estimates with a watershed-

defined CLSM domain allows for area-accurate assimilation within hydrologically defined 

basins. Additionally, the saturated, unsaturated, and wilting segments of the model provide a 

physically-based mechanism for weighting the hydrologic effects of an assimilated GRACE 

observation across the modeling element, which provides rationale for spatially distributing the 

properties of assimilation at scales less than one degree. 

 Houborg et al. [2012] established that data assimilation is the key to realizing the full 

potential of GRACE TWSAs for hydrological applications, because it enables spatial and 

temporal downscaling, extrapolation to near real time, and vertical disaggregation into 

groundwater, root zone and surface soil moisture components. The authors state that their 
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outcomes pointed towards moderate, but statistically significant, improvements to the 

hydrological modeling skill of the CLSM across major parts of the United States. Additionally, 

Li et al. [2012] recognized the potential for GRACE data to improve the simulation of land 

surface processes for drought monitoring applications. 

 The work discussed in this chapter combines modern satellite- and computer model-

derived datasets with conventional statistical methods to describe how water storage varies 

through several levels of the terrestrial hydrologic system (e.g., snow, surface and root zone soil 

moisture, and groundwater). This analysis uses disaggregated water storage outputs from the 

CLSM, assimilated with GRACE data, to explore the potential usages of data assimilation for 

characterization and monitoring of hydrologic extremes (i.e., flood and drought). We explore the 

benefits of data assimilation by exploring similarities and disparities between CLSM assimilation 

outputs (CLSM-DA), GRACE observations (GRACE), and CLSM Open-loop runs (CLSM-OL; 

obtained by running the CLSM without any data assimilation), focusing on four areas in the 

United States. Further, we provide an evaluation of CLSM’s performance between assimilation 

updates. 

 

3.2 Data 

3.2.1 GRACE Satellite Data 

 The Gravity Recovery and Climate Experiment (GRACE) comprises of a pair of satellites 

flying, in tandem, at over 400 km altitude, spaced about 220 kilometers apart. Distance variations 

between the two satellites, as they approach a mass anomaly, are measured using a K-band 

Ranging System (KBR), which provides precise (within 10 µm) measurements of the distance 

change between the two satellites needed to measure fluctuations in gravity [Tapley et al., 2004]. 
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The corresponding time variations in the gravity field are used to determine changes in the 

Earth’s mass distribution at horizontal resolutions greater than 150,000 km2, with higher 

measurement accuracy at larger spatial scales [Wahr et al., 2004]. We attribute the monthly to 

decadal temporal changes in the gravity field to mass redistributions in the atmosphere, ocean 

and continents. These measurements of changes in total terrestrial water storage (TWSA) 

represent the mass movement of regional water storage over time. 

 The GRACE dataset used for this project is the same as in the work detailed in Chapter 2 

(i.e., monthly, global, one-degree gridded, scaled GRACE land data product), processed by the 

Texas Center for Space Research [CSR; version CSR-RL05]). The time period for this project is 

from April 2002 to January 2014. Refer to Swenson and Wahr [2006] and Wahr et al. [1998] for 

post-processing details and to Landerer and Swenson [2012] for particulars on signal restoration, 

scaling, and regional error calculation. Corrections for postglacial rebound have also been 

applied to the data following Chambers et al. [2010]. 

For temporal analyses, GRACE data were spatially averaged for four United States 

National Climate Assessment (NCA) regions: the Southeast (Region 2), Northern and Southern 

Plains (Regions 4 and 5), and Southwest (Region 7), with total, regional TWSA errors of 1.44, 

0.85, 1.21, and 0.77 cm, respectively. These zones represent dominant climate regions 

throughout the country (refer to Figure 1 for an NCA zone map). Area masks were used to 

spatially average monthly storage components. Time series and maps of “residual” water storage 

were calculated following methodology in Thomas et al. [2014], where surplus and deficit 

storage is determined by removing the monthly climatology from the original storage time series. 
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3.2.2 AMSR-E Soil Moisture Dataset 

The Advanced Microwave Scanning Radiometer for the Earth Observing System 

(AMSR-E) dataset contains global monthly-mean surface soil moisture average values (1x1 

degree grid cells). AMSR-E/Aqua Level-3, global, monthly, surface soil moisture averages 

(Product: AMSR_E_L3_DailyLand; Njoku et al., 2004) were used as independent measures to 

evaluate the effectiveness of the CLSM-GRACE assimilation. AMSR-E soil moisture retrievals 

represent vertical sampling depth in the top ~1 cm of the soil column, averaged over the 

horizontal retrieval footprint area. The actual sampling depth will vary with the amount of 

moisture in the soil. Soil moisture deeper than ~1 cm below the surface may not be sensed by 

AMSR-E [Njoku et al., 2004]. Soil moisture values are in g/cm3 with an accuracy of 0.06 g/cm3 

[Njoku et al., 2003].  

Data were downloaded from the Goddard Earth Sciences (GES) Data and Information 

Services Center (DISC) for the time range from October 2002-September 2011. NCA region 

masks were used to calculate monthly, regional-average AMSR-E soil moisture time series. 

Values for missing months (October-November 2003 and February 2010) were interpolated by 

way of a 2-D, spline interpolation. I divided monthly soil moisture values by the time series’ 

standard deviation to standardize AMSR-E data so they can be directly compare with soil 

moisture outputs from the CLSM. I also applied a 4-month, low pass filer to smooth the time 

series. 

 

3.2.3 CLSM Dataset 

 Original CLSM outputs were converted from millimeters of water storage per day to 

storage anomalies in centimeters per month. CLSM output variables used in this analysis are: 
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total grid cell water storage (TWS), snow water equivalent (SWE), surface moisture (SFMC, 0-

0.2 m), and root zone moisture (RZMC, 0.2-10 m). We also calculate storage below the root 

zone (Below RZMC) by subtracting SWE, SFMC, and RZMC from the TWS time series. The 

term ‘Groundwater’ will be used interchangeably with ‘Below RZMC’. TWS is the only variable 

used from the CLSM-OL run. 

 

3.3 CLSM Methodology 

3.3.1 CLSM Physical Processes 

  CLSM is a physically based, apportioned land surface model whose strength lies in its 

ability to simulate unconfined groundwater storage variations, typically 2-3 meters below the 

terrestrial surface [Houborg et al., 2012]. This groundwater layer is an essential variable to be 

included in a land model if we are to generate terrestrial water storage variations that are 

analogous to those measured by GRACE satellites. The TOPMODEL framework of Beven and 

Kirkby [1979] is utilized to establish root zone soil moisture distributions from the morphology 

of the catchment and from bulk soil moisture prognostic variables. TOPMODEL formulations 

allow for the calculation of both the saturated fraction and the baseflow of a watershed in 

addition to translating the mean watershed water table depth and a probability density function of 

combined topographic and soil properties [Koster et al., 2000; Gascoin et al., 2009]. At the core 

of TOPMODEL are three essential assumptions:  

1) The water table is nearly parallel to the soil surface so that the local hydraulic 

gradient is close to the tangent of the local slope angle, 

2) The saturated hydraulic conductivity declines exponentially with depth, 

3) The water table is recharged at a spatially uniform and steady rate with 
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respect to the response timescale of the watershed. As such, recharge and 

baseflow are balanced in a series of steady states [Koster et al., 2000]. 

 CLSM follows the founding work of Famiglietti and Wood [1994], who were the first to 

include the TOPMODEL framework in a land surface model, to relate water table distribution to 

basin topography. Sub-catchment heterogeneity of soil moisture is modeled by dividing the 

catchment into dynamic fractions of saturated, unsaturated, and wilting areas, each ruled by 

equations appropriate for its soil moisture status [Zaitchik et al., 2008]. The distribution of soil 

moisture in the root zone allows the catchment to be portioned into these distinct regimes [Koster 

et al., 2000; Ducharne et al., 2000]. These surface fractions exchange heat separately with the 

underlying ground layer, which also exchange heat with lower ground layers. A three-layer snow 

model, detailed in Lynch-Stieglitz [1994], is also coupled to the catchment model to determine 

snow melting, refreezing, changes in snow density, snow insulating properties, and physics 

related to the growth and ablation of snow [Stieglitz et al., 1997]. 

  CLSM’s primary prognostic variable is the catchment deficit, defined as the average 

depth of water that would need to be added to bring the catchment to saturation [Ducharne et al., 

2000]. The equilibrium vertical distribution of soil moisture is then diagnosed on the basis of the 

catchment deficit and soil parameters. This distribution includes an implicit water table, located 

at the depth of equilibrium saturation. Additional prognostics include reservoirs of surface excess 

moisture and root zone excess moisture that yield an approximate representation of non-

equilibrium vertical conditions such as infiltration fronts [Koster et al., 2000]. The surface excess 

moisture reservoir, comprised of the first two centimeters of the soil layer, is small relative to 

both root zone excess (the soil layer from 2-100 cm) and the catchment deficit. 
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3.3.2 CLSM-GRACE Data Assimilation 

 For this study, we focused on the assimilation of GRACE satellite observations with 

NASA’s CLSM. The CLSM-DA time series is from January 2003 to April 2014. Outputs are 

posted onto 0.25-degree grid cells for the intercontinental United States (domain: -126.875 

23.875, -66.125 51.625), including portions of Canada and Northern Mexico. This gridded 

analysis is an interpolation of catchment tiles to a model grid. For the assimilation, the model-

generated terrestrial water storage moisture components are corrected toward the GRACE 

observational estimate with the degree of correction determined by the levels of error associated 

with each using and Ensemble Kalman Smoothing Filter method (EnKS). Zaitchik et al. [2008] 

developed the EnKS scheme to specifically assimilate GRACE-O into the NASA Catchment 

Land Surface Model in the Mississippi basin. Monthly GRACE anomaly fields are converted to 

absolute values by adding the time-mean total water storage field from the CLSM-OL output. 

Assimilation increments are calculated based on the relative uncertainty in the model and the 

observations where an iterative smoother is applied to handle GRACE's monthly temporal 

resolution. These increments are applied directly to the column-integrated prognostic variable 

(the catchment deficit) and the primary non-equilibrium prognostic (the root zone excess 

moisture), without need for arbitrary vertical disaggregation. 

 

3.4 Results 

 In section 3.4.1 I showcase how assimilation improves the spatial resolution of the 

CLSM-OL for several extreme events across the United States. Section 3.4.2 explores the 

vertical disaggregation of CLM-DA variables for the four NCA regions, with emphasis on 

occurrences of hydrologic extreme events. Section 3.4.3 compares SFMC from the CLSM with 
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surface moisture from the AMSR-E satellite and provides an evaluation of CLSM degradation in 

months following assimilation for our study regions. All results are presented in units of 

centimeters of equivalent water storage. 

 

3.4.1 Spatial Resolution Improvement 

 Four major hydrologic extreme events, that occurred within the GRACE period of record, 

are displayed in Figure 2: Northern California floods (January 2006, Figure 2a), Northern Plains 

floods (June 2011, Figure 2b), Southeastern drought (December 2007, Figure 2c), and Central 

U.S. drought (October 2012, Figure 2d). GRACE (left panels) captures these major events yet 

lacks the spatial resolution to pinpoint the severest areas. CLSM-OL (middle panels) also 

captures events though it over estimates the severity and spatial extent of droughts and 

underestimates flood events, compared to GRACE. CLSM-DA (right panels) is a suitable middle 

ground between GRACE observations and CLSM-OL because it captures events with greater 

resolution than GRACE and values that more closely match the satellite observations. 

 

3.4.2 Vertical Disaggregation 

 Figure 3 shows the vertically disaggregated components of the residual CLSM-DA time 

series (TWS, Below RZMC, RZMC, SFMC, and SWE) and GRACE residual TWSA (gold 

squares), for the four study zones. Regional R2 values, between GRACE and CLSM-DA TWSA, 

ranged from 0.83-0.88, with the best match in the Southern Plains and worst in the Southeast. 

Overall, CLSM-DA TWSA deficits are comparable to those from GRACE though several events 

are underestimated in the Southwest and Northern Plains. The 2007 event in the Southeast was 

overestimated by 3-4 cm. Further, TWSA surplus months closely matched GRACE with the 
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exception of underestimation in the beginning of the record in the Southwest and slight 

overestimation in 2005 in the Southern Plains. Additionally, the major surplus event in the 

Northern Plains started in 2009 with GRACE but CLSM-DA did not begin to show substantial 

surplus until 2010. 

 The plots reveal timing differences between changes in water stores. For example, in the 

Southern Plains, SFMC declines lead RZMC and Groundwater by two to three months. In all 

regions, there are numerous occasions where RZMC residuals lead Groundwater changes by one 

to three months. Southwest SFMC and RZMC showed a slight surplus in late 2013 while 

Groundwater remained deficient. RZMC also shows the most monthly variation between positive 

and negative values out of the storage components. In the Northern and Southern Plains, RZMC 

recovers for one to two months on several occasions during extended deficit periods while the 

other stores remained negative. In the Southwest, Southeast, and Northern Plains, peak SWE 

residuals were often matched or immediately followed by an instance of surplus or deficit. 

 

3.4.3 CLSM-DA Performance Assessment 

I compared SFMC (0-2 cm layer) from CLSM-OL and CLSM-DA with an independent 

measure of surface soil moisture content observed by AMSR-E/Aqua to assess whether 

assimilation truly improved modeled moisture outputs. Time series of results for the AMSR-E 

period of record (October 2002-September 2011) are displayed in Figure 4. Figure 5 shows 

spatial maps of AMSR-E, CLSM-OL, and CLSM-DA hydrologic extremes (surplus/deficit) for 

the May 2011 Midwest flood and December 2007 Southeastern drought. Table 1 provides 

goodness-of-fit statistics between AMSR-E and CLSM, including: adjusted-R2, mean absolute 

error, Nash-Sutcliffe efficiency, and the index of agreement [Willmott, 1981].  
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All regions, except for the Southwest, were statistically significant at the 95% 

significance level. Even though the correlation between CLSM and AMSR-E is small in some 

areas, every statistic did show improvement in every region after model data assimilation. R2 

coefficients between AMSR-E/CLSM-OL ranged from 0.10 to 0.53 while AMSR-E/CLSM-DA 

coefficients ranged from 0.15 to 0.54. The highest correlations were found in the Northern Plains 

and Southwest. The CLSM performed the worst in the Southern Plains though assimilation 

improved the correlation by 10%. The smallest improvement was in the Southeast, where R2 

improved by a modest 1%. 

Monthly, regional average TWSA from GRACE observations (black), CLSM-OL 

(purple), and CLSM-DA (green) are compared in Figure 6, starting in January 2013 and ending 

in April 2014. The last assimilation month is December 2013. During this period, CLSM-OL 

follows a similar pattern with GRACE, though TWSA values are too low, with the exception of 

months after September 2013 in the Northern and Southern Plains and Southwest, where TWSA 

is too high. When the green line is either in between the black and purple lines or close to the 

black line, the assimilation has improved the modeled TWSA value towards the observation. 

This can make a substantial difference when evaluating the occurrence and severity of flood and 

drought. 

CLSM-DA is nearly an identical match with GRACE in June and December 2013 for the 

Southeast, February and June 2013 for the Northern Plains, July and December 2013 for the 

Southern Plains, and February 2013 for the Southwest. In these months, the CLSM-OL value 

was also closer to matching the GRACE observation compared to other months in the time 

series, so there was less for the assimilation to adjust. In the Southwest and Southern Plains, 

GRACE TWSA showed a large decrease in the summer yet both the CLSM-DA and CLSM-OL 
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failed to capture the fall. In all regions, the December assimilation improved the CLSM storage. 

Following the December assimilation, CLSM-DA matches the shape of the CLSM-OL time 

series except for the Northern Plains where CLSM-OL continues to increase while CLSM-DA 

levels off after February 2014. 

 

3.5 Discussion 

A comparison of hydrologic variables from direct observation, CLSM data-assimilated 

outputs, and CLSM Open-loop runs was conducted to evaluate the accuracy and utilization of 

CLSM-DA for hydrologic extremes analysis. Data assimilation provides temporal and spatial 

resolutions currently unattainable with GRACE alone. Correlation results show that data 

assimilation improved CLSM TWSA in all study regions. We conclude that CLSM-DA is a 

viable dataset for the monitoring of terrestrial hydrology and hydrologic analyses based on 

several benefits assimilation warrants. What have we gained from this analysis is another tool for 

flood and drought monitoring – one that identifies and quantifies terrestrial water storage 

extremes with higher resolution (compared with GRACE satellites), separation of terrestrial 

storage components, and near-real time data access. 

 Maps of individual extreme events reveal GRACE’s ability to capture extreme events but 

the lack of resolution makes it inapplicable for more localized water resource management, who 

may need to determine the propagation of extremes as they cross countries and state lines. There 

was no distinctive succession of extremes with GRACE. CLSM-DA maps not only allow us to 

identify key areas being affected by flood or drought conditions, but maps of preceding months 

or seasons can help identify antecedent conditions that can lead to devastating circumstances in 

subsequent periods. 
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 Multiple instances of over- or underestimation of surplus and deficits by CLSM-DA 

speaks to the model’s inability to simulate accurate amplitudes of the annual (seasonal) cycle. 

This inconsistency translated through to the identification hydrologic extremes, producing 

multiple discrepancies between the timing and severity of surplus and deficit periods. The 

addition of in situ observations from groundwater wells, snowpack, and streamflow gauges can 

help improve the timing and amplitude of CLSM climatology, ultimately leading to more true to 

life simulations of present-day and impending terrestrial hydrologic extremes. 

 With vertical disaggregation from the CLSM, we were able to assess relationships 

between SWE, SFMC, RZMC and groundwater. Throughout the time series, GRACE-identified 

extremes persist several months after those identified by the CLSM-DA, indicating that there 

may be some system memory the model is not able to replicate, even with assimilation. There is 

also evidence of one-to-two month lags between deficit appearance in SFMC and RZMC and the 

groundwater layer, as water takes time to percolate down through the subsurface. This timing 

could be further influenced by human alterations to surface water and groundwater extraction for 

agricultural applications. 

Data assimilation improved CLSM SFMC correlations with AMSR-E surface moisture 

observations in all four NCA zones to varying degrees. The Northern Plains and Southeast 

showed the smallest improvement after assimilation while the Southern Plains showed the 

greatest improvement. Discrepancies can be attributed to a mismatch of spatial and temporal 

characteristics of the CLSM and AMSR-E satellite observations [Figure 5] as well as 

shortcomings in AMSR-E retrieval algorithms. Specifically, vegetation and soil parameters are 

poorly known but greatly affect absolute moisture values. In a comparison of AMSR-E, the 

Scanning Multichannel Microwave Radiometer (SMMR), and modeled soil moisture from 
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CLSM, Reichle et al. (2007) state that AMSR-E retrievals tend to be considerably drier (low 

levels of absolute soil moisture) and show far less temporal variability (small dynamic range) 

compared with SMMR. Additionally, the skill of AMSR-E is modest to begin with and is lower 

than that of the CLSM; hence, correlation will be modest at best. 

Measures of RMSE indicate that CLSM-OL does not possess enough information about 

the hydrologic system to produce an accurate estimate or depiction of TWSA compared with the 

CLSM-DA. Storage observed by GRACE versus the CLSM includes more terrestrial features, 

such as surface reservoirs, stream flow, human impacts on the hydrologic system (e.g., dams, 

river divergences), and subsurface variations below the model’s maximum depth (i.e., below 2 

meters). Assimilation corrects the CLSM towards GRACE but still does not address the inherent 

lack of physical properties in the terrestrial system. This is apparent in months following the last 

GRACE assimilation, where the CLSM-DA merely continues to follow the original CLSM-OL 

pattern. 

Though improvements were often modest, I have shown the CLSM-DA to be superior to 

those from the CLSM-OL. Data assimilation in step in the right direction towards developing 

techniques that take full advantage of GRACE satellite observations and negate some of 

GRACE’s shortcomings. Further model parameterization and integration of both in situ and 

remotely sensed observations (e.g., groundwater wells, the Soil Moisture and Ocean Salinity 

(SMOS), Soil Moisture Active-Passive (SMAP) and GRACE-II missions) will continue to 

amend and improve the CLSM simulations, which will ultimately strengthen contributions to 

drought characterization and monitoring. 
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Table 3.1. Table of “Goodness-of-Fit” statistics for surface soil moisture content from AMSR-E, 
CLSM-OL, and CLSM-DA for NCA regions: Southwest, Northern Plains, Southern Plains, and 
Southeast. All statistics are significant at the 95% confidence level with the exception of the 
Southwest region. Though modest, all statistics improve with data assimilation. 
 

 

 

 

 

 

 

 

 

 

 

Southeast
Northern 

Plains
Southern 

Plains Southwest
AMSR-E / CLSM-OL

Adjusted R-Squared 0.22 0.53 0.10 0.49
MAE 0.7617 0.4585 0.849 0.5872
SDR 0.9181 0.5788 1.0387 0.676
Nash-Sutcliffe -0.4125 0.4168 -0.4591 0.3691
Index of Agreement 0.684 0.8506 0.5855 0.827

AMSR-E / CLSM-DA

Adjusted R-Squared 0.23 0.56 0.20 0.56
MAE 0.6854 0.4541 0.8282 0.5701
SDR 0.8149 0.5784 0.9918 0.6609
Nash-Sutcliffe -0.1104 0.4264 -0.3429 0.4095
Index of Agreement 0.7455 0.857 0.6189 0.8458
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Figure 3.1. Map of National Climate Assessment (NCA) designated climate zones: (A) 
Southwest, (B) Northern Plains, (C) Southern Plains, and (D) Southeast. Region masks are used 
to produce monthly average time series of CLSM-DA outputs. 
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Figure 3.2. Spatial maps comparing two flood and two drought events in the United States during 
the GRACE period of record: (A) Northern California floods, (B) Northern Plains floods, (C) 
Southeastern drought, and (D) Central U.S. drought. Left panels, GRACE TWSA on one-degree 
grid. Middle panels, CLSM-OPENLOOP TWSA on quarter degree grid. Right panels, CLSM-
DA TWSA on quarter degree grid. Data shown are residual TWSA, which represent surplus 
(blue) and deficit (red) water storage. 
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Figure 3.3. CLSM-DA disaggregated, residual terrestrial water storage time series for the four 
NCA regions: (A) Southwest, (B) Northern Plains, (C) Southern Plains, and (D) Southeast. Time 
period is from January 2003-April 2014. Negative values designate deficits and positive surplus. 
Variables on the left axis are: CLSM-DA total water storage (green shading), Below RZMC 
(black), RZMC (green), and monthly GRACE TWSA (gold squares). Variables on the right axis 
are: CLSM-DA SFMC (red dashed) and SWE (blue dashed). Units are centimeters of equivalent 
water storage. 
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Figure 3.4. Comparison of CLSM-DA SFMC (red solid), CLSM-OPENLOOP SFMC (blue 
solid) and AMSR-E surface soil moisture (black dashed) for the four NCA regions: (A) 
Southwest, (B) Northern Plains, (C) Southern Plains, and (D) Southeast. Data are presented in 
standard units and a 4-month low pass filter was applied to smooth the time series. Time period 
is from October 2002-September 2011. 
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Figure 3.5. Spatial maps comparing AMSR-E surface soil moisture content and SFMC (0-2 cm 
layer) from CLSM-OL and CLSM-DA: (A) Northwestern U.S. and (B) Southeastern U.S. Left 
panels, AMSR-E soil moisture on one-degree grid. Middle panels, CLSM-OPENLOOP SFMC 
on quarter degree grid. Right panels, CLSM-DA SFMC on quarter degree grid. Data are shown 
in standard units. 
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Figure 3.6. CLSM-DA degradation assessment: January 2013 to April 2014 time series of 
GRACE, CLSM-DA, and CLSM-OPENLOOP TWSA (cm) for the four NCA zones. Focus is on 
the last three months, after the last assimilation (December 2013). The CLSM time series (green) 
continued to run for February, March and April 2014 without assimilation with GRACE data 
(black double line). CLSM-OPENLOOP TWSA (purple) is also shown. NCA regions: (A) 
Southwest, (B) Northern Plains, (C) Southern Plains, and (D) Southeast. 
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Chapter 4 

Evaluating the current (2014) hydrologic drought in California’s Central 

Valley by extending GRACE storage anomalies via a multivariate, multi-

frequency regression model 

 

4.1 Introduction 

California’s Central Valley comprises the Sacramento, San Joaquin, and Tulare river 

basins and has been overwhelmed by drought conditions for more than three years, with no signs 

of recovering in the immediate future. Rain- and snowfall deficiencies combined with population 

growth, growing water demands in urban, agricultural and industrial sectors, in addition to 

unsustainable water use practices in agricultural and urban sectors have placed tremendous strain 

on the hydrologic system [Gleick et al., 2014]. 100% of California has been in Moderate to 

Exceptional drought conditions since March 2014. Between April and June 2014, Exceptional 

drought conditions increased from 25% of the state to 34% [U.S. Drought Monitor, 2014].  With 

drier conditions expected to continue through the summer months, there is pressing need for 

hydrologic analysis concentrated on the Central Valley’s terrestrial water storage (TWS) supply 

for the improved management of dwindling water resources. 

The objective of this body of work is to extend GRACE TWS anomalies into the past, to 

compare the current drought with historic events, and into the future, to measure water 

deficiencies in California’s Central Valley past the currently-available GRACE observation. This 

is accomplished by way of a multivariate, multi-frequency, linear regression model, which 

relates the annual and inter-annual frequencies of precipitation, evapotranspiration, and water 

storage data. With this synthetic storage record, we provide specific information about 
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hydrologic extremes (surplus and deficits) in California’s Central Valley by utilizing the 

GRACE-based drought severity metric detailed in Thomas et al. [2014]. 

 

4.2 Data & Methods 

4.2.1 Precipitation Data 

Rainfall data used as input for the multi-frequency regression model was obtained from 

the PRISM Climate Group [http://prism.oregonstate.edu]. The PRISM dataset contains spatially 

gridded, monthly-average precipitation at 4 km grid cell resolution and covers the conterminous 

United States, starting in January 2002 and ending in June 2014. PRISM is an analytical model 

that uses point data and an underlying grid, such as a digital elevation model, to generate gridded 

estimates of monthly precipitation and temperature [refer to Daly et al., 2008 for further details 

about methodology]. The PRISM dataset was chosen as the superior precipitation product for our 

regression model because it incorporates a conceptual framework that addresses the spatial scale 

and pattern of orographic processes, making it well suited to areas with mountainous terrain 

[Daly et al., 2008]. The Sierra Nevada Range flanks the eastern boundary of the Central Valley 

region in this study; thus, the use of PRISM is considered optimal for capturing the spatial 

distribution of precipitation in the region. The most accurate precipitation available is essential 

for model development. We calculate the spatial average precipitation for each month within the 

Central Valley region and convert from mm to km3 per month by multiplying by the basin area 

(182,600 km2). 

The first step in preparing PRISM data for the regression model is to integrate through 

the time period by computing the cumulative sum throughout the time series. Integrating 

transforms the data to the cumulative sum of precipitation so that monthly water storage does not 
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have a time lag with rainfall. The mean is then removed to produce cumulative precipitation 

anomalies centered on zero. Lastly, we calculate a monthly climatology time series, which 

represents the annual (seasonal) precipitation frequency. This climatology is subtracted from the 

cumulative precipitation anomalies to represent the inter-annual (residual) precipitation cycles. 

The National Oceanic and Atmospheric Administration (NOAA) Precipitation Over Land 

(PREC/L) dataset was used for two purposes: to utilize an alternative precipitation dataset other 

than the one used for model development and to estimate TWSA back in time through 1948. The 

use of this model need not be constrained to one specific precipitation dataset. 

NOAA/OAR/ESRL PSD houses the PREC/L dataset [http://www.esrl.noaa.gov/psd/]. The 

record contains monthly averaged, surface-level precipitation totals in units of millimeters per 

day. The mean distribution and annual cycle of precipitation observed in PREC/L showed good 

agreement with those in several published gauge-based datasets, and the anomaly patterns 

associated with ENSO resemble those found in previous studies [Chen et al., 2002]. Data are 

posted on one-degree global grids for a time period from January 1948 to June 2014. We convert 

the data from mm to km3 per month and spatially average for the Central Valley region. 

 

4.2.2 Evapotranspiration Data 

Total, monthly-average evapotranspiration (ET) data were obtained from the National 

Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research 

Lab (Noah) land surface model for Version 2 of the Global Land Data Assimilation System 

(GLDAS-2; Rodell et al., 2004). The Noah model [Ek et al., 2003] is a stand-alone, 1-D column 

model designed to mathematically and numerically represent land surface characteristics (land 

cover), states (temperature, snow, and soil moisture), and fluxes (total evapotranspiration, 
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photosynthesis, and radiation) as a function of both space and time. The model applies finite-

difference spatial discretization methods and a Crank-Nicholson time-integration scheme to 

numerically integrate the governing equations of the physical processes of the soil-vegetation-

snowpack medium [Ek et al., 2003]. 

Noah has 33 parameters: 10 related to vegetation and 23 that describe soil properties with 

a four soil layer structure: 10-cm top layer, root zone layer of 20 cm, deep root zone of 60 cm, 

and a sub-root zone of 110 cm. Simulations are forced by the global meteorological forcing 

dataset from Princeton University [Sheffield et al., 2006]. The model was initialized on January 

1, 1948 using soil moisture and other state fields. The total evapotranspiration dataset is posted 

on a global, quarter-degree grid with temporal coverage from January 1948 to June 2014. 

Modeled total evapotranspiration data were chosen for their temporal and spatial 

coverage. Simulations of water store change also compare well with GRACE observations [Yang 

et al., 2011]. Data were downloaded from the Goddard Earth Sciences Data and Information 

Services Center (GES DISC). Total ET values were converted from kg/m2/s to km3 per month 

and spatially averaged for the Central Valley region. ET data are prepared for the regression 

model by removing the long-term mean to produce monthly anomalies. Similar to the 

precipitation dataset, we calculate both monthly climatology and residual ET anomaly time 

series, to represent annual (seasonal) and inter-annual (residual) ET cycles. 

 

4.2.3 GRACE Data 

The GRACE dataset is a monthly, global, one-degree gridded, scaled GRACE land data 

product, processed by the Texas Center for Space Research [CSR; version CSR-RL05]). The 

time period is from April 2002 to April 2014. A basin mask for the Central Valley [Figure 1] was 
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used to calculate monthly, spatially averaged terrestrial water storage anomalies (TWSA). 

Central Valley regional-average anomalies were then multiplied by the region’s area to produce 

regional-average water storage volume anomalies in units of km3. Total regional average error, 

which accounts for measurement and leakage errors, is 33.2 mm (6.06 km3). Refer to Swenson 

and Wahr [2006] and Wahr et al. [1998] for post-processing details and to Landerer and 

Swenson [2012] for particulars on signal restoration, scaling, and regional error calculation. 

 

4.2.4 PHDI and SPI Drought Indices 

Two of the more widely used drought indices, the Palmer Hydrological Drought Index 

(PHDI) and one-month Standardized Precipitation Index (SPI), were chosen to compare with 

model estimates of historic water storage extremes. Water resource managers commonly use 

these indices for assessments of drought severity and	
   planning strategies. The PHDI is an 

adjustment to Palmer’s Drought Severity Index (PDSI) [Palmer, 1965], which characterizes the 

severity of dry and wet periods over the United States based on monthly temperature and 

precipitation data in addition to the soil-water holding capacity at a specified location. In near-

real time, PDSI is no longer a meteorological index but becomes a hydrological index (PHDI) 

because it is based on moisture inflow (precipitation), outflow, and storage, and does not take 

into account the long-term trend [Karl and Knight, 1985]. PDSI and PHDI are identical during 

an established spell but differ during the onset and ending of a spell. The PHDI uses the Penman-

Monteith method for estimating potential evaporation with a record covering January 1948-

December 2012. 

The SPI was developed by McKee et al. [1993] and represents the number of standard 

deviations that observed cumulative precipitation deviates from the climatological average. The 
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index is based entirely on monthly precipitation accumulations using the PREC/L precipitation 

dataset. The methodology is based on a Pearson Type III (i.e., 3-parameter gamma) distribution 

as suggested by Guttman [1999] and describes standard deviations from the long-term average 

(30+ years). PHSI and SPI values are interpolated to one-degree grids (using a 2-D, nearest 

neighbor interpolation scheme), spatially averaged for the Central Valley region, and presented 

in standardized units of relative wet and dry conditions. The SPI record extends from January 

1948-May 2014 

 

4.2.5 Multivariate, Multi-Frequency Regression Model 

A conceptual schematic of the multivariate, multi-frequency regression model is provided 

in Figure 2. The basis of this model builds on the concept of a water balance throughout the three 

watersheds in the Central Valley region, where changes in storage result from inputs of 

precipitation and outputs of runoff and ET over time (see Equation 4.1). The proposed model 

provides a measure of the expected amount of change in monthly water storage the Central 

Valley can expect to receive from a certain amount of precipitation and ET, which can be 

updated as additional monthly data becomes available. 

dS
dt
= P −ET−R  →  dS= (P −ET−R)dt  

(Equation 4.1); 

where changes in water storage (dS) are equal to variations in precipitation (P), 

evapotranspiration (ET), and runoff (R) over time (dt). 

For my regression model, I concentrated on the two atmospheric fluxes in the water 

balance equation (e.g., P and ET). Precipitation is the natural input into the system while ET is 
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additionally influenced by anthropogenic activities (i.e., reservoir management, irrigation, and 

water diversion). Rearranging Eq. 4.1 and representing error terms as εdt  = R + e  (e includes 

model error in addition to errors associated with the omission of runoff) results in the following 

equation: 

dS−Pdt +ETdt = εdt  

(Equation 4.2); 

I then parameterize the runoff term as a linear function of P and ET (e.g., R = β1P+β2ET ) to 

create a linear, multivariate regression model, which takes the following form: 

dS= β1P+β2ET± e  

(Equation 4.3); 

where the response variable is water storage change (dS), predictor variables are integrated 

precipitation (P) and evapotranspiration anomalies (ET), regression coefficients are represented 

by β, and e is the error term. All parameters are time-variant. 

The model utilizes a dynamic regression approach, identifying relationships between 

precipitation, evapotranspiration, and water storage anomalies based on their annual and inter- 

annual frequencies (cycles). I split the time series into these components because I wanted to 

account for response differences between variables at different timescale. For example, on 

annual and inter-annual scales, P varies mainly in response to climatic variations, while ET and 

R respond differently depending on climate as well as water management activities within the 

region. This is particularly important for the heavily managed Central Valley. 
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By independently inputting these frequencies into the regression model, I can represent 

the characteristics of each, which have varied impacts on hydrologic extremes [Billah and 

Goodall, 2011; Jongen et al., 2011]. The annual cycle is driven by seasonal variations in climate, 

recognized by its sinusoidal waveform. The inter-annual cycle is a residual of the annual where 

variations are often associated with inter-annual oscillations such as ENSO and NAO [Meehl, 

1987]. Figure 3 shows time series of this separation of annual (Figure 3b) and inter-annual 

(Figure 3c) frequencies for integrated PRISM precipitation anomalies (blue), Noah 

evapotranspiration anomalies (green), and GRACE TWSA (black), in addition to the original 

datasets (Figure 3a). 

The annual and inter-annual modes for TWSA, precipitation, and evapotranspiration time 

series are individually entered into a regression equation (Eq. 4.3) to estimate the contribution of 

each frequency to its associated storage signal. The model produces regression coefficients for 

the annual (β1) and inter-annual (β2) modes, which represent a parameterization for the omitted 

runoff variable. Coefficients are subsequently multiplied with frequency-specific precipitation 

and evapotranspiration data to estimate TWSA. New precipitation and ET datasets must be 

prepared as was detailed in Sections 4.2.1 and 4.2.2, before multiplying with their respective 

regression coefficients. The final step is to sum the annual and inter-annual TWSA estimates to 

construct final, synthetic total water storage anomalies. 

Model residuals were tested to assure that they fit the assumptions of an ordinary least 

squares regression analysis (i.e., normally distributed, heteroscedastic, and uncorrelated). Annual 

and inter-annual residuals displayed normal distributions. A Breusch-Pagan test for conditional 

heteroscedasticity [Breusch and Pagan, 1979] revealed that heteroscedasticity was not a 

multiplicative function of the predicted values. Durbin-Watson (dw) tests for autocorrelation 
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[Durbin and Watson, 1950] indicated that inter-annual residuals were positively correlated (dw: 

0.609) and annual residuals were uncorrelated (dw: 1.819). To address correlation and quantify 

the reliability of the model, I ran a 14200-sample bootstrapping procedure to assess how model 

predictions of β1 and β2 changed as the data sample changed. Bootstrapping attained comparable 

regression coefficients even with different samples (β1 values had a spread of 0.070 and β2 

values had a spread of 0.158), which leads me to conclude that I have developed a reliable model 

structure that is not undesirably affected by correlation of residuals in the inter-annual mode. 

Coefficients of determination (adjusted-R2), adjusted for the number of predictors in the 

model, are used to evaluate the correlation between modeled and observed TWSA. Standard 

error (in km3) on each regression coefficient (β1,2) is propagated through the analyses, multiplied 

by two, and is then shown as 95% confidence error bounds about the model estimated TWSA 

time series (e.g., 1.22 km3). Root Mean Squared Error (RMSE) and the Index of Agreement 

[Willmott, 1981] are computed as a means to compare the accuracy of the regression-based 

storage estimates. RMSE represents the sample standard deviation of the differences between 

modeled and observed value. The Nash-Sutcliffe efficiency, F- and t-statistics are also provided 

in the evaluation of model accuracy. 

 

4.3 Results 

Table 1 lists results from the multivariate, multi-frequency regression model: the 

regression coefficient (Estimate), standard error of the estimate (SE), p-value for the t-statistic 

(pValue), the t-statistic (t-Statistic), and the F-statistic (F-Statistic) for the annual (Table 1a) and 

inter-annual (Table 1b) frequencies. Additional model statistics are: error degrees of freedom, 

RMSE, R2, and adjusted R2. Precipitation regression coefficients are 1.1749 for the annual mode 
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(β1) and 0.2768 for the inter-annual mode (β2). ET regression coefficients are -0.129 for the 

annual mode (β1) and 3.06 for the inter-annual mode (β2). 

Standard errors on β1 are 0.0195 and 0.0655 km3 and β2 are 0.0245 and 0.5016 km3 for 

precipitation and ET, respectively. Combined error on the regression coefficient estimates is 1.22 

km3 (at the 95% confidence level). Annual and inter-annual model RMSE’s are 2.11 and 8.43, 

respectively. Results from one-sample student’s t-tests specify that inter-annual precipitation and 

evapotranspiration as well as annual precipitation results are significant at the 0.01 level, while 

annual evapotranspiration results are significant at the 0.05 level. 

Figure 4a shows time series of GRACE with ± regional average error shading (6.06 km3; 

blue) and modeled storage with ± error on the model coefficients (1.22 km3; orange). A 3-month 

smoothing filter was applied to both time series. In Figure 4b, I ran the model with PRISM 

precipitation from April 2002-June 2014, a two-month extension of the current-most available 

GRACE observation. Model TWSA estimates are shown in orange, alongside GRACE TWSA 

(blue bars). Model TWSA gradually decreased in the months following GRACE observations 

through June 2014, which has a storage anomaly of -23.5 km3. Figure 4c shows a scatter plot of 

GRACE and model storage to illustrate the spread of values between the time series. The 

adjusted-R2 between GRACE TWSA and model estimates is 0.8237, the Nash-Sutcliffe 

efficiency is 0.8248, the index of agreement is 0.95, and the RMSE is 7.13. 

Modeled storage overestimated the amplitude of peak negative anomalies at the end of 

2005 by 13 km3. Additionally, in 2007 and 2012, positive anomalies were overestimated by 11-

12 km3. The largest underestimation of positive storage (21 km3) occurred in 2005. The model 

also underestimated negative storage at the end of 2007 by 10 km3. The timing of anomalies is 
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comparable throughout the records though, in mid-2013, model anomalies begin to decline 

quicker than GRACE. Model discrepancies are further examined in the Discussion Section. 

Figure 5a showcases hydrologic extremes (surplus and deficit) identified by the 

regression model (orange shading) and GRACE observations (blue bars). Figure 5b displays only 

present months from April 2013-June 2014. June 2014 displays an estimated water storage 

deficit of -28.8 km3. Figure 5c and 5d show a scatter plot and annual TWSA monthly 

climatology for the two datasets. The regression model matched 60% of the hydrologic 

surplus/deficit occurrences identified by GRACE. The largest discrepancies were in 2005 and 

late 2008 through early 2009 where the model estimated surplus storage and GRACE observed 

deficits. This was the opposite case in late 2003 where the model continued to identify five 

months of storage deficits and GRACE observed recovery. The onset of extreme conditions from 

the model lag GRACE by 2-3 months in 2004 and 2014. 

A time series of reconstructed, historic (i.e., January 1948 to June 2014) water storage 

residuals (black) along with PHDI values (beige) and SPI values (light red) are show in Figure 6. 

I standardized the storage estimates by dividing each monthly value by the time series’ standard 

deviation. Negative PHDI and SPI values represent dry months while positive values represent 

wet months. Similarly, negative storage represents a deficit and positive represents surplus. R2 

between estimated storage residuals and PHDI is 28% and 3% with 1-month SPI. 

 

4.4 Discussion 

A model has been proposed to relate precipitation and evapotranspiration to water storage 

anomalies in California’s Central Valley based on a linear, multivariate, multi-frequency 

regression analysis. This work delivers a practical extension of research specifically related to 
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the use of GRACE TWSA observations for hydrologic extreme analyses. The main advantage is 

in the model’s ability to estimate water storage changes beyond the last available GRACE 

observation (April 2014) and back in time to 1948 without the need for climate or land models. 

The model will continue to improve as more GRACE data become available. 

The regression model explained 82% of GRACE’s TWSA signal, under an assumption of 

linear relationships with rainfall and ET. The size of the coefficients for precipitation and ET 

tells us the magnitude of the effect each variable has on changes in water storage. For the annual 

mode, the model states that storage is predicted to increase 1.17 km3 when precipitation increases 

one km3 and to decrease by 0.13 km3 when ET increases one unit. In the inter-annual mode, 

storage is predicted to increase by 0.28 and 3 km3 when precipitation and ET increase one km3, 

respectively. 

The positive, inter-annual ET coefficient was unexpected because the water balance (Eq. 

4.1) indicates that storage should decrease with increasing ET. One explanation for this could be 

groundwater extraction and irrigation throughout the Central Valley, which can interfere with 

linearity and conservation of mass within the system and affect the model’s ability to represent 

relationships between the variables. The inter-annual ET coefficient had the largest deviation 

from one, which implies that the model has attempted to compensate for an underestimation of 

ET or it has attempted to account for errors resulting from the omission of runoff; a key 

component in the water balance equation. 

Regression coefficients may also be compensating for correlation between P and ET, 

since all predictors in the model have influence on each coefficient. Multicollinearity may 

explain why coefficients deviate from one in the linear model. A Belsley test for 

multicollinearity [Besley et al., 2004] produced variance inflation factors (VIF) of 2.2 for the 
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annual mode and 1.0 for the inter-annual mode. The VIF’s specify that precipitation and ET are 

not correlated in the inter-annual mode, but multicollinearity is present in the annual mode. 

However, multicollinearity is not very high and should not adversely affect model significance. 

Since the model only considers precipitation and evapotranspiration it is not able to 

explicitly account for deeper subsurface storage, which is a substantial component of the 

GRACE terrestrial water storage signal. This helps with explaining why the model 

underestimated several peak positive anomalies and overestimated a few months with higher 

negative anomalies. The capacity of the system to hold water lies in the variability of subsurface 

storage and snowpack, not just with rainfall and ET.  

Further, anthropogenic impacts, which may weaken the correlation between groundwater 

level and rainfall, are not explicitly considered in this analysis. The response of each individual 

river basin in the Central Valley domain can be dominated by any combination of additional 

mechanisms including antecedent moisture conditions, varying magnitude of rain- and snowfall 

events, generation of runoff in different parts of the catchment, and heterogeneity in soil 

hydraulic properties [Sophocleous, 2002]. Moreover, GRACE observes changes in TWS 

resulting from both natural and anthropogenic factors. Surface reservoirs are heavily managed, 

so the addition of this variable to the model estimates would help account for seasonal-to-annual 

water storage changes that are not a direct result of precipitation variation. 

 With model estimates of water storage for the current-most month (June 2014) I 

determined that the Central Valley continued to face a deficit of approx. -29 km3 of water, which 

was a key deliverable in the execution of this project. In the early part of the record as well as 

2005, 2006, and 2014, modeled extremes lag GRACE observations by about 2 months (at the 

time of writing). The model also tends to stay wet for a longer period of time compared with 
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observations. These instances can be attributed to the model’s TWSA climatology (Figure 5d), 

which are similar to GRACE except in April, May, and June where peak anomalies are 

overestimated. The climatology can be constrained by introducing subsurface well data into the 

model to help account for terms that exhibit variations on longer frequencies (e.g., longer 

timescales for changes in groundwater to occur compared with surface moisture). 

Comparisons of estimated hydrologic extremes with PHDI and SPI drought indices 

highlight what I expect to see from a GRACE-based drought measure, which is a metric that 

highlights terrestrial moisture states. Since SPI focuses on the meteorological form of drought it 

is not expected to match our water storage-based measure month-for-month, though it allows us 

to identify how meteorological drought affects changes in terrestrial storage. Moreover, in an 

assessment of long-term variations in PDSI (PHDI), Sheffield et al. [2012] state that this metric 

is oversensitive to changes in temperature, and other simplifications, which compromise its 

accuracy. Further inconsistencies suggest that precipitation and ET data are not sufficient 

enough, on their own, to assess all of the historic variations in extremes. This issue can be 

addressed with the addition of historic surface reservoir storage and groundwater well data that 

will provide more storage reservoir memory to the analysis, expectantly adjusting the timing and 

severity of hydrologic extremes. 

Nevertheless, two major California droughts in 1976-77 and 1988-92 were clearly 

identified in the storage reconstruction, illustrating that more severe (larger magnitude) deficits 

may only manifest during the most severe meteorological drought episodes, as there is a larger 

system-wide impact from precipitation deficiencies. The current California drought so far has an 

average deficit of approx. -10 km3 over 15 months. The 1990’s and 1970’s droughts average 

water storage deficits were 5-6 km3 for episodes lasting 2-5 years, revealing that present 
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hydrologic conditions are undeniably more severe than California has faced in the past. With 

California entering into the dry season, there is little chance for recovery from natural sources; 

hence, activities such as improved efficiency, water use and reallocation, supply augmentation, 

funding adaptation, and stormwater capture will become progressively indispensable in the 

coming years [Hanak and Lund, 2012; Gleick et al., 2014]. 

This work has merely scratched the surface of realizing the potential that exists in 

translating precipitation to terrestrial water storage and ultimately to available water resources, 

not only for California but worldwide. Further work is obligatory to test this regression model 

structure in river basins with different climatologic conditions (e.g., regions with more diverse 

seasonality may have more complex relationships between rainfall, snow, and water storage in 

surface and subsurface layers). The statistical relationship between rainfall and water storage 

determined by our model can also be utilized in climate change studies to evaluate future water 

storage change under varying emissions scenarios. For example, using 50-to-100-year 

precipitation projections and modeled total ET as inputs into this type of regression-based model 

to estimate the associated water storage changes. 
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Table 4.1. Results of the P/ET/GRACE multivariate, multi-frequency regression model for (A) 
Annual and (B) Inter-Annual modes: the estimated coefficient value (Estimate) with error bars, 
standard error of the estimate (SE), t statistic (tStat), p-value for the t statistic (pValue), and the f-
statistic (f-stat) for the annual (Table 1a) and inter-annual (Table 1b) modes. Additional model 
statistics are also provided: RMSE and error degrees of freedom. Inter-annual precipitation and 
evapotranspiration as well as annual precipitation results are significant at the 1% significance 
level. Annual evapotranspiration results are significant at the 5% significance level. 
	
  
	
  
	
  
	
  
	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A. Annual Regression Results:  B. Inter-Annual Regression Results:

Estimate SE t-stat pValue Estimate SE t-stat pValue

 Model f-stat: 3779.6  Model f-stat: 101.4

 Model Root Mean Squared Error: 2.11  Model Root Mean Squared Error: 8.43

 Precipitation 1.1749  (± 0.0093) 0.019541 60.12

Number of observations: 145,  Error degrees of freedom: 143

0.2768  (± 0.0029) 0.024455 1.30E-21

 Evapotranspiration  -0.129  (± 0.0311) 0.065455 -1.97 3.06  (± 0.0595) 0.50164 9.40E-09

11.32

6.1

2.13E-103

0.05
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Figure 4.1. Map of the Central Valley study region. The region includes the Sacramento, San 
Joaquin, and Tulare watersheds and has an area of 182,598 km2. 
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Figure 4.2. Conceptual schematic of the Multivariate, Multi-Frequency Regression Analysis: 
Precipitation data are de-trended, integrated, and then split into two frequencies, annual and 
inter-annual (residual). Evapotranspiration and GRACE data are also de-trended and split into 
annual and inter-annual time series. The time period used for regression analysis is April 2002-
April 2014. The inter-annual frequency is calculated by removing the monthly climatology 
(annual frequency). The regression equation (shown in the middle) is used to calculate annual 
and inter-annual regression coefficients (β); where S is modeled, monthly TWSA, P is monthly 
PRISM precipitation, ET is monthly evapotranspiration from the GLDAS/Noah model, and ε are 
the errors (residuals). Units are cubic kilometers. 
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Figure 4.3. Time series of original (Figure 2a), annual (Figure 2b), and inter-annual (Figure 2c) 
precipitation (blue), evapotranspiration (green), and GRACE water storage (black) anomalies: 
April 2002 to April 2014. Inter-annual frequencies are calculated by subtracting the annual 
frequency from the precipitation anomalies. Units are cubic kilometers. 
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Figure 4.4. (A) Modeled storage (orange line ± error on regression coefficients {1.22 km3}) and 
GRACE TWSA (blue line ± regional average error {6.06 km3}) from April 2002-April 2014. (B) 
Two-month extension of estimated TWSA for the time period April 2002-June 2014. PRISM 
monthly, precipitation was used for this reconstruction. (C) Scatter plot of modeled and GRACE-
observed TWSA with RMSE, Nash-Sutcliffe, and R2. All time series have been smoothed with a 
3-month low pass filter. Units are cubic kilometers. 
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Figure 4.5. Comparison of water storage surplus and deficit from modeled storage and GRACE 
observations. (A) Full time series (April 2002–June 2014) GRACE (blue bars) and modeled 
storage (orange shading), in cubic kilometers. (B) Period from April 2013–June 2014. (C) Scatter 
plot of anomaly values. (D) Annual climatology of modeled (red) and observed (blue) storage. 
All time series have been smoothed with a 3-month low pass filter. 
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Figure 4.6. Comparison of historic PHDI, SPI (1-month), and modeled water storage extremes in 
the Central Valley: Model-estimated TWSA surplus and deficit (black) estimated back to 
January 1948 using the multi-frequency regression model with NOAA PREC/L precipitation 
data. Top panel, PHDI drought index is shown in light beige. Bottom panel, SPI is shown in light 
red. All time series are plotted in standardized units. Negative values represent storage 
deficits/dry months and positive represents surplus/wet months. The PHDI record extends from 
January 1948-December 2012. SPI extends from January 1948-May 2014. 
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Chapter 5 

Conclusions and Future Directions 

The three bodies of work presented in this dissertation illustrate that GRACE satellite 

data can successfully be utilized for regional scale drought analysis. The ways that I have used 

GRACE data in this research not only have implications for improving drought early warning 

lead times and drought preparation and management efforts, but they have shown the 

significance of the GRACE satellite mission and advocate for the development of future 

operations. The challenge of charactering hydrologic extremes predominantly lies in how we 

initially define what constitutes an “extreme”, in addition to the accessibility and precision of 

data. When in situ observations are not available, we turn to remote sensing to fill in the gaps. 

The GRACE-based hydrologic drought metric defined drought from the viewpoint of water 

storage deficits. This definition of drought was utilized throughout the dissertation as a means to 

evaluate model-based hydrologic extremes as well as synthetic estimates of water storage deficits 

from a multivariate, multi-frequency regression model.  

 While I did successfully develop a new metric to use GRACE TWSA data to quantify the 

severity of hydrologic drought, GRACE’s spatial and vertical resolution proved to be limiting, 

particularly for use in monitoring water resources in more localized capacities. We addressed 

these shortcomings by employing CLSM-DA TWSA outputs for extremes analysis. With 

CLSM-DA data, the spatial resolution TWSA improves to a quarter degree, the GRACE signal is 

vertically disaggregated into surface and subsurface storage components, and data latency 

improves to the near present month instead of a 2-5 month lag with GRACE observations. 

CLSM-DA was successful in identifying several flood and drought events within the United 
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States during the GRACE period of record with higher spatial capacity than GRACE and more 

accurate magnitudes than CLSM-OL. 

CLSM-DA is still limited by model physics and parameters that were not able to fully 

achieve the amplitude of many events. Improving CLSM would require a combination of more 

accurate input data and improved parameterization of the model itself, to enhance simulations. 

With a satellite mission, like the Soil Moisture Active Passive (SMAP) [Entekhabi et al., 2010], 

hydrologists will gain more accurate, higher resolution, and larger spatial coverage of soil 

moisture states across the global. These improved maps of soil moisture variations, including 

freeze and thaw states, will provide superior information for models to simulate subsurface 

storage timing and magnitude; the direct benefit being enhanced flood and drought capabilities. 

During periods of prolonged drought, one of the foremost questions is: “when will the 

drought end?” Relating precipitation to water storage changes was a logical step towards 

addressing this matter; hence, the development of a multivariate, multi-frequency, linear 

regression model. With this model, I estimated water storage change with the current-most 

available precipitation data. In the Central Valley, precipitation and evapotranspiration accounted 

for 82% of total water storage changes. 

Improvements would include augmenting the model with additional components, (e.g., 

groundwater well and temperature data). Groundwater, which does not have a strict linear 

relationship with rainfall inputs [Changnon et al., 1988], would add valuable information about 

subsurface storage changes to model. Several different 21st century climate model simulations 

have suggested that dry years will experience anomalously warm summer temperatures, even 

above and beyond the warming trend in the Southwest [Cayan et al., 2010], which can 

exacerbate summer drought conditions. Future models may introduce lagged climate and storage 
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terms based on the persistence in the data. The relationships that temperature has with 

evaporation and transpiration [Fitzpatrick, 1963; Linacre, 1977] directly influence water storage 

changes, making temperature a logical variable to include in a follow-on regression model. An 

alternative model approach could be to build a stochastic model with distribution functions for 

each component of the water budget for a region and estimate the joint storage distribution. 

 The potential for GRACE and GRACE-associated datasets in future drought and flood 

research is immense. Integrated approaches, such as the regression model described in this 

dissertation, are important for determining future responses of water resources due to climate 

change [Georgakakos et al., 2014]. An extension of this work would involve the use of climate 

model projections to estimate precipitation [Walsh et al., 2014] and resulting water storage 10-50 

years into the future. This information would greatly influence the planning of water 

infrastructure, policy, mitigation strategies, and risk assessment by providing a range of the 

severity hydrologic extremes with associated uncertainties. 

There is not only a need to better describe the natural system response to changes in 

climate, there is a need to better assess the social system response when conducting water 

resources planning studies [Brekke, et al., 2009]. Vörösmarty et al. [2000] emphasize the 

necessity of incorporating land surface and groundwater hydrology, water engineering, human 

system, and societal adaptations to water scarcity in climate change and variability research, 

though studies involving natural hydrological cycles and data about the social aspects of water 

use are underprovided [Oki and Kanae, 2006]. The uniqueness of GRACE TWSA is that it 

integrates changes due to human influences on the system in addition to natural changes. Further 

work should exploit this and push the envelope of GRACE’s capabilities. 
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