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Genetic Analysis of the Touch Response  
in Zebrafish (Danio rerio) 

 
Vanessa Carmean and Angeles B. Ribera 

University of Colorado Anschutz Medical Campus, U.S.A. 
 

Both mammals and zebrafish possess mechanosensory neurons that detect tactile sensation via free 
nerve endings. However, the basis for mechanotransduction and the unique cellular properties of 
these sensory neurons are poorly understood. We review the advantages of zebrafish for studies of 
the biological mechanisms involved in touch sensitivity. Importantly, Granato and colleagues (1996) 
demonstrated that a simple touch assay efficiently recovers mutations that affect sensory neurons. 

 
 Within the first five days of development, the zebrafish embryo acquires the 
ability to respond to a diverse set of sensory inputs. The availability of a wide 
range of genetic, molecular, cellular and physiological techniques enable analysis 
of the underlying molecular mechanisms. Moreover, the transparency of the 
zebrafish embryo combined with transgenic lines expressing fluorescent proteins 
in specific populations of neurons as well as advances in optical imaging and 
stimulation methods allow detailed measurement at the cellular level of behavioral 
mechanisms. Importantly, the findings from zebrafish studies have had 
implications for human disease. Several zebrafish mutants serve as models for 
human diseases that involve abnormal behaviors such as seizure conditions, 
autism, and Down syndrome (Baraban, 2009; Berghmans, Hunt, Roach, & 
Goldsmith, 2007; Yimlamai, Konnikova, Moss, & Jay, 2005).  
 Swimming and responses to sensory stimuli are behaviors that have been 
extensively studied in zebrafish embryos and larvae (e.g., Bang, Yelick, Malicki, 
& Sewell, 2002; Brockerhoff, Hurley, Janssen-Bienhold, Neuhauss, Driever, & 
Dowling, 1995; Budick & O'Malley, 2000; Emran, Rihel, & Dowling, 2008; 
Gahtan, Tanger, & Baier, 2005; Granato et al., 1996; Lindsay & Vogt, 2004; 
Neuhauss et al., 1999; Nicolson, Rusch, Friedrich, & Nüsslein-Volhard, 1998; 
O'Malley, Kao, & Fetcho, 1996; Ritter, Bhatt, & Fetcho, 2001; Saint-Amant & 
Drapeau, 1998). In this review, we use the touch response as the specific example 
to highlight the advantages of the zebrafish model for study of the biological 
underpinnings of behavior. Importantly, the methods considered are applicable to 
the study of other behaviors in zebrafish.  
 

Advantages of the Zebrafish Model for Study of Vertebrate Behavior 
 
 The well-characterized responses and simple nervous system of zebrafish 
provide key advantages for mechanistic studies of vertebrate behavior (for reviews, 
see Burgess & Granato, 2008; Gahtan & Baier, 2004; Lewis & Eisen, 2003; 
McLean & Fetcho, 2008). Single pair breedings produce large numbers of progeny 
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(typically > 100). Embryos develop quickly from a single cell to complex animals 
with a diverse behavioral repertoire. Moreover, embryonic development occurs 
externally allowing easy access to stages that are more difficult to study in 
mammals.  
 Many powerful methods have been used successfully to identify the 
molecular basis of behavioral mechanisms in zebrafish. Importantly, forward 
genetic methods are possible and genetic screens have identified genes with 
functions that are essential for specific behaviors (e.g., Granato et al., 1996). In 
addition, reverse genetic strategies allow targeted knock-down or overexpression 
and study of a specific gene’s role in a biological process (Nasevicius & Ekker, 
2000). 
 Transgenic lines exist that express a fluorescent protein, such as green 
fluorescence protein (GFP), under control of well-characterized promoter elements 
allow identification of specific cells in vivo in live embryos and larvae (e.g., 
Higashijima, Hotta, & Okamoto, 2000). The transparency of zebrafish embryos 
and larvae enables not only optical imaging of anatomy but also of neuronal 
activity as well as stimulation of individual neurons (e.g., Arrenberg, Del Bene, & 
Baier, 2009; Brustein, Marandi, Kovalchuk, Drapeau, & Konnerth, 2003; 
Douglass, Kraves, Deisseroth, Schier, & Engert, 2008; Higashijima, Masino, 
Mandel, & Fetcho, 2003; Szobota et al., 2007; Wyart et al., 2009).  

 
Touch Response 

 
The zebrafish embryo acquires the ability to respond to tactile stimuli at 

24-27 hours post fertilization (hpf) (Kimmel, Ballard, Kimmel, Ullmann, & 
Schilling, 1995; Pietri, Manalo, Ryan, Saint-Amant, & Washbourne, 2009; Saint-
Amant & Drapeau, 2000). The touch response is easily elicited by applying tactile 
stimulation to the tail or head. The response occurs rapidly and varies 
developmentally, ranging from a twitch in 1 day embryos to a rapid escape 
response in older larvae. These rapid and unambiguous responses make touch 
sensitivity an ideal behavior to score in genetic screens.  

By combining the touch assay with observation of swimming ability, one 
can identify mutations that affect the sensory but not motor side of the underlying 
circuit (Granato et al., 1996). Such screens have the potential to identify factors 
essential for function of mechanosensory primary neurons, as we discuss further 
below. 
 
 Touch response circuit   
 
 Several studies have identified conserved pathways of the circuits 
underlying response to tactile stimulation of the skin in zebrafish and Xenopus 
(Clarke, Hayes, Hunt, & Roberts, 1984; Clarke & Roberts, 1984; Eaton, Farley, 
Kimmel, & Schabtach, 1977; Li, Perrins, Soffe, Yoshida, Walford, & Roberts, 
2001; Li, Soffe, & Roberts, 2002, 2003; Pietri et al., 2009). In addition, in both 



 
 

 
- 93 - 

 

vertebrate models, development modulates circuitry as well as the cellular 
properties of relevant neurons. 
 Evidence for Mauthner cell involvement in older larvae exists (Eaton et al., 
1977; Liu & Fetcho, 1999; O'Malley et al., 1996). In contrast, for embryos, the 
touch response does not require supraspinal input (Downes & Granato, 2006; Pietri 
et al., 2009; but see, Saint-Amant & Drapeau, 1998). Pietri et al. (2009) presented 
a consensus view of the circuit underlying the touch response in the early embryo. 
 Application of tactile stimuli to the zebrafish trunk leads to contraction of 
contralaterally located muscle. For the early embryo, Pietri et al. (2009) 
emphasized the critical roles of the primary mechanosensory Rohon-Beard cell 
(RB) and the primary ascending commissural interneuron (CoPA) in the touch 
response circuit. They found that the touch response required the rostral spinal 
cord, corresponding to somites 1-10, but not the hindbrain. In sum, tactile 
stimulation activates RBs, that then synapse onto CoPAs, in turn contacting 
contralateral descending interneurons that activate motor neurons located 
contralaterally to the site of tactile stimulation (Pietri et al., 2009). 
 
 Touch assay 
 
 By performing a touch assay, Granato et al. (1996) identified several 
mutations that affected the touch response but not the ability to swim. The 
observation that swimming was not affected implicates defects in sensory 
neurons/processing.  
 Swimming occurs spontaneously. However, bath application of NMDA 
(e.g., 100 µM) to intact embryos also elicits swimming (Cui, Saint-Amant, & 
Kuwada, 2004; McDearmid & Drapeau, 2006). Incorporation of bath application 
of NMDA in behavioral screens might lead to more efficient observation of 
swimming ability.  
 
 Primary mechanosensory neurons 
 
 RBs function as mechanosensory neurons mediating the zebrafish touch 
response. RBs innervate the skin and sense touch via their free nerve endings 
(Clarke et al., 1984). In mammals, mechanosensory neurons with similar free 
nerve endings exist as well as ones with associated structures such as Merkel cells 
or Meisner corpuscles (Lewin & Moshourab, 2004).  
 RBs provide mechanosensory function to the zebrafish prior to 
differentiation of dorsal root ganglion neurons. The dorsal root ganglion neurons 
begin to contribute to sensory function at about 60 hpf. RBs undergo apoptotic cell 
death and are largely absent by 120 hpf (Reyes, Haendel, Grant, Melancon, & 
Eisen, 2004; Svoboda, Linares, & Ribera, 2001; Williams, Barrios, Gatchalian, 
Rubin, Wilson, & Holder, 2000). Thus, between ~24-60 hpf, RBs mediate tactile 
sensitivity. Later, between ~60-120 hpf, both RBs and dorsal root ganglion 
neurons provide this function. After 120 hpf, tactile sensitivity is essentially 
dependent upon dorsal root ganglion neurons.  
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 In contrast to dorsal root ganglion neurons, RB cell bodies reside within the 
central nervous system in the spinal cord. Similar to dorsal root ganglion 
mechanosensory neurons, RBs have peripheral processes that innervate the skin as 
well as central ascending and descending axons. The peripheral cutaneous 
processes extend over several segments resulting in a broad RB receptive field. 
The central ascending axon makes en passant connections with the CoPA 
interneuron (Pietri et al., 2009).  
 
Existing questions about mechanosensory neurons mediating vertebrate touch 
sensitivity 
 
 Mechanosensory neurons exist in both invertebrates (e.g., Drosophila, C. 
elegans) as well as vertebrates. Genetic screens in Drosophila and C. elegans have 
provided the majority of the available information about molecular determinants of 
mechanosensitivity (for reviews see Chalfie, 2009; Kernan, 2007). Such work has 
helped contributed to identifying mammalian orthologues with similar function 
(Welsh, Price, & Xie, 2002). A major focus of such work concerns members of the 
degenerin/epithelial sodium channel (DEG/ENaC) family. Beyond identifying 
these channels per se, many questions exist about how these channels interact with 
both the extracellular and intracellular environments to transduce tactile sensation.  

 
Genetic Screens 

 
 Forward genetic screens serve as a powerful, unbiased approach to identify 
genes that play essential, nonredundant roles in biological processes. In contrast to 
reverse genetic approaches, forward genetic strategies seek to mutate genes in an 
unbiased manner and thus have the potential to reveal previously undiscovered 
genes or novel functions of known genes. After introduction of mutations, the 
biological process of interest, for example behavior or morphology, focuses 
subsequent analyses (e.g., Driever et al., 1996; Haffter et al., 1996).  
 Although the majority of genetic screens performed so far in zebrafish 
have used chemicals to introduce mutations, retroviral-based insertional 
mutagenesis has also been possible (Amsterdam, Nissen, Sun, Swindell, 
Farrington, & Hopkins, 2004; Gaiano, Amsterdam, Kawakami, Allende, Becker, & 
Hopkins, 1996; Golling et al., 2002; Petzold et al., 2009). Behavioral genetic 
screens in zebrafish have identified mutants by looking at phenotypes such as 
vision (e.g., Brockerhoff et al., 1995; Neuhauss et al., 1999), swimming behavior 
(e.g., Granato et al., 1996) and touch response (e.g., Granato et al., 1996). 
 
 Mutant isolated – now what? 
 
 Identify gene. Once mutations have been identified that produce phenotypes 
of interest, the next step is to identify the gene harboring the mutation. For 
mutations introduced by chemicals such N-ethyl-N-nitrosourea, this typically 
entails positional cloning (for reviews see Talbot & Hopkins, 2000; Talbot & 
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Schier, 1999). Whereas positional cloning often involves considerable effort, the 
advances in zebrafish genomic resources greatly facilitate the process.  
 The identification of the responsible gene by positional cloning or retroviral 
insertional sequences, however, does not suffice. The possibility exists that an 
additional closely linked mutation or insertion has occurred. As a result, one 
usually performs several additional tests, as outlined below. 
 A common starting point is to ask if the gene is expressed at the right time 
and place in order to play a role in the biological process of interest. Whole mount 
in situ hybridization is extremely feasible in zebrafish allowing rapid examination 
of this question. If the gene acts cell autonomously, (i.e. the gene function is 
required in the cell in which it is expressed), it should be straight forward to 
determine what is an appropriate expression pattern. However, genes that act 
noncell autonomously (i.e. the gene function is required in cells that do not express 
it) may not have predictable expression patterns. 
 Another important point to consider is how the mutation affects the function 
of the gene. For example, does the mutation result in loss-of-function (null), gain-
of-function (new), diminished or altered function?  In this regard, having several 
noncomplementing alleles provides more information about the possible function 
of the gene, especially if one is considering a novel gene. If the mutation results in 
loss-of-function, then elimination or reduction of the protein by other means 
should replicate the mutant phenotype. Antisense morpholinos serve as efficient 
and effective tools for knock-down approaches (Nasevicius & Ekker, 2000).  
 Alternatively, if the mutation produces a gain-of-function phenotype, one 
might seek to knock-down the endogenous protein encoded by the lesioned gene 
and then overexpress either RNA for the wildtype or mutated version of the gene. 
The former should rescue while the latter should replicate the mutant phenotype. 
For the specific case of touch-insensitive mutants, one would score for recovery of 
touch sensitivity. However, rescue experiments require that one have a reliable 
assay for genotyping embryos so that one can be sure that both mutant and wild 
type embryos show touch sensitivity. 
 For mutations that result in reduced or loss of gene function, the gold 
standard is to achieve rescue of the phenotypes by overexpression of wildtype 
RNA into 1-cell stage embryos. Although RNA overexpression appears as a 
conceptually straight-forward method, it has several technical complications. It can 
be challenging or impossible to determine the correct concentration to inject 
because injected RNAs can be toxic to the developing embryo, especially at high 
concentration. Further, injected RNAs degrade, each with a characteristic half-life. 
In addition, many genes might be expressed too late or at high levels, making RNA 
injection often an ineffective approach. In addition, early misexpression of a gene 
expressed at late times might produce a complicating phenotype. The take-home 
message is that successful rescue by RNA injection is informative but lack of 
rescue is not.  
 Another potential problem with RNA injection is that the exogenous RNA 
will be distributed to many cells, some of which normally express the gene and 
others that do not. Ectopic expression of RNA may produce phenotypes that 
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preempt analysis of rescue. Transgenic approaches, greatly advanced by methods 
using Tol2 transposons and the GAL4/UAS system, provide alternative approaches 
and allow expression of desired gene in a controlled manner by selection of an 
appropriate promoter (Asakawa & Kawakami, 2008; Davison et al., 2007; 
Kawakami, Shima, & Kawakami, 2000; Kwan et al., 2007).  
  Identify gene’s essential function in biological process. Identification of 
the gene responsible for the mutant phenotype is often the “tip of the iceberg”. 
There will be instances in which the mutation occurs in a well-characterized gene 
that has a known function in the biological process of interest. On the surface, this 
may seem very satisfying. But, will one have learned anything new, beyond proof-
of-principle for mutagenesis methods?  The alternative scenario of identifying a 
gene with no known function, at least in the biological process under study, offers 
the possibility of discovering a new biological mechanism or previously 
unidentified player in a known process.  
 For the case of touch sensitivity, an interesting example is the touchtone 
mutants that show reduced touch sensitivity between ~35-72 hpf (Arduini & 
Henion, 2004; Cornell et al., 2004). Another allele of the gene harboring the 
touchtone mutation is nutria, isolated on the basis of the reduced size of the 
mutants (Elizondo et al., 2005). Subsequent positional cloning revealed that the 
gene encoding transient receptor potential melastatin-7 (TRPM7) carries the 
touchtone and nutria mutations (Elizondo et al., 2005). TRPM7 functions as a 
channel permeable to divalent cations such as magnesium and calcium. 
Interestingly, growth in media containing elevated magnesium or calcium, but not 
sodium chloride, produced a rescue of the touch insensitivity (Elizondo et al., 
2005). However, despite the identification of the touchtone/nutria gene, the cellular 
mechanism responsible for the touch insensitivity is still not known. Further study 
of TRPM7 function, therefore, has the potential to reveal a novel mechanism 
required for function of mechanosensory neurons. 
 
 Mutations isolated so far 
 
 The neurons involved in the touch response circuit differentiate appropriate 
excitable membrane properties. Moreover, the neurons need to form correct 
synaptic connections so that the circuit functions properly. Defects in 
neurogenesis, mechanosensory channels/complexes, excitable membrane 
properties, axonal outgrowth/pathfinding, synapse formation, or dendrite 
development could each suffice to produce touch insensitivity. 
 Tübingen touch-insensitive mutants. The 1996 Tübingen large-scale 
chemical mutagenesis zebrafish screen identified touch-insensitve mutants, 
comprising six different complementation groups (Granato et al., 1996; Haffter et 
al., 1996). These mutants have a reduced touch response but are able to swim. The 
observation that swimming was relatively normal indicated that neither muscle 
function nor circuits underlying patterned motor output were impaired, suggesting 
that the mutations affected the sensory side of the touch response circuit.  
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  Four of the touch-insensitive mutants have reduced voltage-gated sodium 
current (INa) amplitudes in RBs: alligator (ali), macho (mao), steifftier (ste), and 
crocodile (cro). We consider the mao mutant in detail below. In brief, among the 
touch insensitive mutants, mao homozygotes displayed the most severe reductions 
in touch sensitivity. Eectrophysiologcal analysis of RBs revealed a drastic 
reduction in INa amplitude, resulting in failure to fire an action potential. As a 
result, RBs do not communicate sensory information to the nervous system. 

ali and ste mutants share many characteristics. Both have a reduced touch 
response by 32-33 hpf, 5-6 hours later than mao (Ribera & Nüsslein-Volhard, 
1998). They also both have a subset of RB cells that are similar to mao RB cells, 
having severely reduced INa amplitudes and an inability to fire overshooting action 
potentials; other ali and ste RBs, however, had INa of normal amplitude and fired 
sodium-dependent impulses (Granato et al., 1996; Ribera & Nüsslein-Volhard, 
1998).  

In contrast, two other touch-insensitive mutants, cro and schlaffi (sla), 
have normal touch responses at 2 but not 3 dpf, when they show reduced 
sensitivity to tactile simuli. At 3 dpf, cro mutants had RB cells with reduced INa 
amplitudes. In contrast, RBs in sla mutants had normal INa amplitudes at 3 dpf. The 
cellular basis for touch insensitivity in sla mutant has not yet been identified.  
 Another touch-insensitive mutant reported by the 1996 Tübingen screen, 
touchdown (tdo), was initially isolated on the basis of a pigmentation defect due to 
a reduction in the number of melanophores (Kelsh et al., 1996). However, tdo RBs 
have normal sodium currents and action potentials. Similar to trpm7 and sla 
mutants, the cellular basis for the touch insensitivity tdo phenotype is not yet 
known. 
  Retroviral insertion mutants. Retroviral insertion mutagenesis has also 
isolated touch-insensitive mutants. In contrast to the majority of chemical 
mutagenesis lesions, genes perturbed by the retroviral insertion producing touch 
insensitivity have already been identified (Amsterdam et al., 2004; Gaiano et al., 
1996; Golling et al., 2002). The results have yielded expected as well as 
unexpected genes. For example, the hi1059 insertion occurs in neurogenin related 
protein-1 and thereby probably affects differentiation of sensory neurons. In 
contrast, hi577a lesions the vacuolar ATP synthase subunit E gene. Future studies 
will identify the biological basis for the touch insensitivity phenotype of hi577a. 
 Narrowminded. Artinger, Chitnis, Mercola, and Driever (1999) isolated a 
touch-insensitive mutant, narrowminded (nrd), in a genetic screen that assayed 
gene expression patterns by in situ hybridization. The nrd mutation resides in the 
prdm1 gene that encodes a SET/zinc finger transcription factor (Hernandez-
Lagunas et al., 2005). This mutation results in loss of RBs, and subsequent loss of 
the sensation that they mediate – touch. In addition, prdm1 mutants have an initial 
loss of neural crest cells. However, older larvae do have neural crest and their 
derivatives (e.g., dorsal root ganglion neurons). Consequently, the touch 
insensitivity phenotype recovers. Study of prdm1 function indicates that it plays an 
important role at the neural plate– neural crest border in mechanisms that specify 
RB and neural crest cells.  
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 Macho. In wildtype embryos, RB sodium currents increase in amplitude 
between 16 and 48 hpf (Pineda et al., 2006; Ribera & Nüsslein-Volhard, 1998). 
Interestingly, the developmental increase in INa coincides with appearance of touch 
sensitivity, supporting an essential role for this current in RB function (Kimmel et 
al., 1995; Saint-Amant & Drapeau, 2000; Ribera & Nüsslein-Volhard, 1998). The 
mao mutation maps to linkage group 2 but the identity of the lesioned gene is not 
yet known (Geisler, Rauch, Geiger-Rudolph, Albrecht, van Bebber, & Nüsslein-
Volhard, 2007). Nonetheless, the mao mutant has permitted studies of the role of 
activity in RB development. RB cells normally undergo programmed cell death 
and are largely gone by 5 days post fertilization (dpf) (Reyes et al., 2004; Svoboda 
et al., 2001; Williams et al., 2000). Dorsal root ganglion cells, that develop after 36 
hpf, are not required for RB programmed cell death (Reyes et al., 2004). However, 
RB death occurs more slowly in the absence of sodium current dependent activity 
(Svoboda et al., 2001). 

 Although mao mutant RB cells have a drastic reduction in sodium current 
amplitudes, INa is not completely suppressed (Ribera & Nüsslein-Volhard, 1998; 
Pineda et al., 2006. The mao mutation produces a similar potent but incomplete 
suppression of retinal ganglion cell sodium current (Gnuegge, Schmid, & 
Neuhauss, 2001).  

RBs express more than one type of sodium channel (Novak et al., 2006; 
Pineda et al., 2006). Thus, the mao gene may incompletely suppress the function of 
all sodium channel types. Alternatively, the mao gene may affect the function of a 
subset or just one sodium channel. Further study of this mutant will resolve this 
issue and potentially discover new biological mechanisms relevant to sensory 
neurons. 
 

Future Perspectives 
 

 The zebrafish has provided significant insights into biological mechanisms 
underlying an essential behavior for the early embryo, the touch response. Some 
mutations that result in touch insensitivity have a general effect on sensory neuron 
development such that the basis for touch insensitivity is understood (e.g., hi1059, 
nrd). In contrast, other mutations affect biological mechanisms that are either at 
present unknown or poorly understood (e.g., mao).  
 Analysis of the Tübingen touch-insensitive mutants revealed the unexpected 
finding that screening for touch insensitivity efficiently recovers mutations that 
affect sensory neuron sodium current. Electrophysiological analysis of RBs 
revealed defects in sodium currents in four of six touch insensitive mutants: ali, 
cro, ste and mao but not sla or tdo. 
 Many touch-insensitivity mutations lesion as yet unidentified genes. Future 
study of these mutants has the potential to provide new information about the 
poorly understood transduction mechanisms underlying vertebrate tactile 
sensation. 
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