
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Characteristics of charge carriers in nanostructures

Permalink
https://escholarship.org/uc/item/4wj087pj

Author
Meyertholen, Andrew

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wj087pj
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Characteristics of Charge Carriers in Nanostructures

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics

by

Andrew Meyertholen

Committee in charge:

Professor Michael Fogler, Chair
Professor Daniel Arovas
Professor Leonid Butov
Professor Michael Holst
Professor Andrew Kummel

2009



Copyright

Andrew Meyertholen, 2009

All rights reserved.



The dissertation of Andrew Meyertholen is ap-

proved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Chair

University of California, San Diego

2009

iii



DEDICATION

To my wife, Emily.

iv



EPIGRAPH

Ninety percent of life is just showing up.

—Woody Allen

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Nanoscience . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 This work . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Excitons in coupled quantum wells . . . . . . . . . . . . . . . 5
2.1 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Coupled quantum wells . . . . . . . . . . . . . . . . . . . 7
2.3 Basic properties of cold excitonic gases in semiconductor

quantum wells . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Stochastic variational method . . . . . . . . . . . . . . . 19

Chapter 3 Biexcitons in two-dimensional systems with spatially separated
electrons and holes . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 The problem and main results . . . . . . . . . . . . . . . 25
3.2 Analytical results . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Exciton interaction at large d . . . . . . . . . . . 32
3.2.2 Binding energy near dc . . . . . . . . . . . . . . . 34
3.2.3 Binding energy for small mass ratios . . . . . . . 37

3.3 Numerical simulations . . . . . . . . . . . . . . . . . . . 40
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Excitons in artificial traps . . . . . . . . . . . . . . . . . . . . 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



4.2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Drift-diffusion model . . . . . . . . . . . . . . . . 60

4.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Equivalence of diffusion equation . . . . . . . . . 62
4.3.2 Interexcitonic interaction . . . . . . . . . . . . . . 63
4.3.3 Diamond-shaped trap . . . . . . . . . . . . . . . . 64
4.3.4 Useful relationships . . . . . . . . . . . . . . . . . 64

Chapter 5 Concentration-dependent mobility in organic field-effect tran-
sistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Experiment description . . . . . . . . . . . . . . . . . . . 69
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Appendix A Rigorous bounds for the biexciton binding energy . . . . . . . 80
A.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix B Radial wavefunction for small mass ratios . . . . . . . . . . . . 83

Appendix C Gaussian integrals and the Hamiltonian matrix elements . . . 86

Appendix D Fermi gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix E Heitler-London . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vii



LIST OF FIGURES

Figure 2.1: Energy band diagram for quantum well heterojunction. (a)
Two semiconducting materials with different band gaps are brought
together. EC is the conduction band, EV is the valence band,
and EF is Fermi energy. (b) When combined, an equilibrium
band state is reached with a potential well in the z-direction. . 8

Figure 2.2: Energy band diagram for a coupled quantum well. (a) No
external electric field; direct exciton is energetically favorable.
(b) With external electric field, indirect exciton is favorable.
Electron and hole can be in neighboring wells. . . . . . . . . . 10

Figure 2.3: Indirect excitons and biexcitons. (a) Indirect exciton. (b) At
large separation distances, indirect excitons are dipoles and thus
repel each other. (c) At some distance r2, indirect excitons bind
together forming a biexciton. This is studied in Chapter 3. . . . 15

Figure 2.4: Example of two-dimensional photoluminescence pattern for ex-
periment by Butov group. Temperature is 1.7 K, gate voltage
is Vg = 12 V , and excitation power is Pex = 690 µW [16]. . . . 17

Figure 2.5: Dispersion relationship for photons (linear dashed curve) and
excitons (quadratic solid curve). Due to conservation of energy
and momentum, only excitons in the dark highlighted region
are optically active. . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1: Critical interlayer separation vs . the electron-hole mass ratio.
Above the curves no biexciton formation is possible. The circles
are our results. The squares are from Ref. [40]. The triangles
correspond to d above which EB(d) drops below 10−3 Rye, mak-
ing biexcitons irrelevant in experimental practice. . . . . . . . 27

Figure 3.2: Binding energy of biexciton vs. the distance between the quan-
tum wells for the mass ratios σ = 1 and 0.5. Our results using
the stochastic variational method (SVM) are shown by the solid
lines. The dots using diffusion Monte-Carlo (DMC) are from the
Ref. [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.3: Main panel: ground-state energy Umin vs . the separation R
of holes for a pair of classical excitons. In this state all four
charges are on the same straight line. Inset: in-plane distance
between nearest electrons and holes vs . R. . . . . . . . . . . . 33

Figure 3.4: Sketch of the interaction potential V (R) and the exciton wave-
function χ(R) for the Born-Oppenheimer limit σ ¿ 1. . . . . . 39

viii



Figure 3.5: Logarithmic plot of the biexciton binding energy as a function
of d for σ = 1. Our results are shown by the filled symbols;
the open circles are from Ref. [33]. The thicker line is the fit to
Eq. (3.47), which yields dc = 0.87± 0.01 with a 95% confidence
level. The other line is Eq. (3.9) with α and β from Ref. [33]. . 42

Figure 3.6: (a) Electron and hole density vs . the distance to the center of
mass in a biexciton with σ = 0.5 and d = 0.3. (b) Same for
σ = 0.5 and d = 0.0. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.7: Root mean square of the pairwise distances between the biex-
citon constituents vs. d for σ = 0.5 and σ = 1. Here e− e is the
electron to electron distance, h− h is the hole to hole distance,
and e− h is the electron to hole distance. . . . . . . . . . . . . 44

Figure 4.1: Diagram of the electrostatic gates used in the one-dimensional
lattice experiments. . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.2: One-dimensional lattice with shape as in Eq. (4.2). . . . . . . 52
Figure 4.3: Cartoon demonstration of trap dynamics. (a) Excitons are

trapped in lattice. As density increases due to laser power in-
crease (b) eventually the excitons reach the percolation point.
Finally as the excitons (c) “spill over” into neighboring traps
they are again localized. . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.4: Example of two-dimensional photoluminescence pattern from
experiment by Butov group. Top: Lattices with ∆V = 1.2 V.
Bottom: Lattices with ∆V = 0 V. Temperature is T = 1.6 K
and excitation power is Pex = 12 µW [4]. . . . . . . . . . . . . 55

Figure 4.5: The calculated modulation δω = ωmax−ωmin of the photolumi-
nescence frequency as a function of the interaction strength g
assuming kBT = 0.16, Ulat = 3.7, and ζ = 3.7 (all in meV). The
experimental point, shown by the cross, corresponds to g ≈ 3.0.
The value of g predicted by the “capacitor” formula is indicated
by the arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.6: Top: Equilibrium density profile in the Hartree-Fock approxi-
mation. Bottom: Lattice potential U (divided by 20) and the
PL frequency ω (with the average subtracted) vs . x. . . . . . . 58

Figure 4.7: Diagram of excitons in “capacitor” formula. . . . . . . . . . . 65
Figure 4.8: Plot of potential U(x, y). Here Vtrap = 1 and a = 0.5. . . . . . 65
Figure 4.9: Plot of Eq. (4.47). The sharpness of the sides of the box are

determined by the constant a. In this figure a = 1 and w = 5. 66

Figure 5.1: FET schematics. . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 5.2: A sketch of the V-shaped electrodes between which the IR scans

were taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



Figure 5.3: Charge density profiles measured by the IR spectromicroscopy
in three nominally similar devices. The solid lines are theoretical
fits (see text). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.4: Fit of Eq. 5.20 with data from Reference [70]. . . . . . . . . . 79

x



LIST OF TABLES

Table 2.1: An example input file for the SVM program. . . . . . . . . . . . 24

Table 3.1: Biexciton binding energies in units of Rye from the previous
(“DMC”, Ref. [33]) and present (“SVM”) work. . . . . . . . . . 31

xi



ACKNOWLEDGEMENTS

I would like to begin by thanking my advisor, Professor Michael Fogler. I truly

appreciate his expert guidance and insights through every step of my research

career. I will use skills I developed under his tutelage in the years to come. I

would also like to thank all the current and former members of the Fogler research

group for their help and camaraderie.

I am very grateful to all my collaborators for their critical contributions to

my work and this dissertation. Working with them has been a great pleasure. In

particular, I would like to thank Professor Leonid Butov and his research group.

My research has developed, in part, thanks to many illuminating conversations

I’ve had with Professor Butov and his team. I would also like to thank Professor

Dimitri Basov and his student Zhiqiang Li for their contributions to the work in

Chapter 5.

I’ve had the opportunity to work with many UCSD professors as a teaching

assistant. These experiences were an essential component in the formation of my

teaching philosophy and offered great opportunities to teach upper-level physics

courses. I’ve picked up many tips and tricks of the trade through my relationships

with these professors. I am indebted to them for their unselfish advice and con-

tributions to my growth as both a teacher and a potential research professor. In

particular, I would like to thank Professor Daniel Arovas, Professor Max DiVentra

and Professor James Branson.

I consider myself lucky to have gained many friendships at UCSD, most notably

with my incoming class of 2004. Thanks for being there through the good and bad

times. It would not have been the same without you. I would specifically like to

thank the “couples”: Evan and Hollie Bierman, Aleks Simic and Blazenka Palescak,

Sean and Eva Simon, and Matthew and Elizabeth Sudano.

My family has been very supportive through this whole process. Special thanks

to my parents Joe and Kathy and to my sister and brother, Amy and Dan. My

in-laws could have never planned for their little girl’s husband to go back to school

at age 31. I’d like to thank them for their love and support - thanks Uncle Bob

and Carol Bally. Also thanks to my new brothers and sister Ian, Laura, and Ben

xii



Bally, and my soon-to-be sister Joy Peralta.

Chapter 3 contains materials from the paper: A. D. Meyertholen and M. M.

Fogler, “Biexcitons in two-dimensional systems with spatially separated electrons

and holes” in Phys. Rev. B. volume 78 page 235307 published in 2008. The

dissertation author was the primary investigator and author of this paper.

I would also like to acknowledge NSF grant DMR- 0706654 for supporting this

work.

Finally thanks to my wife Emily for putting up with all that the graduate

student life entails. I’m so glad you are my life partner.

xiii



VITA

1997 B. S. in Physics, University of Illinois, Urbana-Champaign

1999 M. S. in Physics, University of Illinois, Urbana-Champaign

2000-2004 Physics Faculty, Bay de Noc Community College

2009 Ph.D. in Physics, University of California, San Diego

Fall 2009 Assistant Professor, University of Redlands

1997-1999 Named in “Teachers Rated as Excellent by their Stu-
dents” list, University of Illinois

2004 and 2006 Two-time recipient of UC San Diego Physics Depart-
ment Teaching Assistant Excellence Award

2005 Received UC San Diego Physics Departmental GAANN
Fellowship

2009 Awarded UC San Diego Graduate Teaching Fellowship
for summer 2009

PUBLICATIONS

A. D. Meyertholen, Z. Q. Li, D. N. Basov, M. M. Fogler, M. C. Martin, G. M. Wang,
A. S. Dhoot, D. Moses, and A. J. Heeger, “Concentration-dependent mobility in
organic field-effect transistors probed by infrared spectromicroscopy of the charge
density profile”, Appl. Phys. Lett., 90, 222108, 2007.

A. D. Meyertholen and M. M. Fogler, “Biexcitons in two-dimensional systems with
spatially separated electrons and holes”, Phys. Rev. B., 78, 235307, 2008

M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertholen, M.M. Fogler, L.V.
Butov, M. Hanson and A.C. Gossard, “Localization-delocalization transition of
indirect excitons in lateral electrostatic”, Phys. Rev. Lett., 102, 186803, 2009.

xiv



ABSTRACT OF THE DISSERTATION

Characteristics of Charge Carriers in Nanostructures

by

Andrew Meyertholen

Doctor of Philosophy in Physics

University of California San Diego, 2009

Professor Michael Fogler, Chair

This dissertation investigates charge carriers in nanoscale devices through theoret-

ical and numerical means. First we study indirect excitons in coupled quantum

wells (CQW), which exhibit evidence of a quantum mechanical state of matter. We

examine whether these excitons form bound state biexcitons in CQW. It is proven

that stable biexcitons exist only when the distance between electron and hole lay-

ers is smaller than a certain critical threshold. Numerical results for the biexciton

binding energies are obtained using the stochastic variational method and com-

pared with the analytical asymptotics. The threshold interlayer separation and

its uncertainty are estimated. Furthermore, models are proposed to explain recent

exciton experiments involving electrostatic traps. These models prove qualita-

tively correct and allow for estimation of the diffusion coefficient and interaction

strength in CQW systems. In addition, we study organic field-effect transistors

(FETs). Recent infrared imaging studies of the charge density profile in poly(3-

hexylthiophene) (P3HT) FETs show evidence of a density-dependent mobility. A

model is presented that concludes the mobility of P3HT has a power-law density

dependence, which is consistent with the activated transport in disorder-induced

tails of the density of states.

xv



Chapter 1

Introduction

1.1 Nanoscience

Toward the end of 1959, Professor Richard Feynman presented a lecture at

the American Physical Society meeting entitled “There’s plenty of room at the

bottom.” He outlined what he believed to be an exciting unexplored field in science

— what we now call nanoscience. Feynman envisioned one day being able to

fashion materials one atom at a time, and proposed that the nanoscale world held

great potential for important advances. Feynman’s belief has since been vindicated.

Nanoscience has exploded into a thriving interdisciplinary pursuit.

Today nanoscience is defined as the study of materials with at least one di-

mension being of the atomic scale, typically 100 nm or less [1]. At this scale,

quantum mechanical effects become important. These materials may be treated

as quasi-lower-dimensional systems. As a sheet of paper may appear to be a two-

dimensional plane in many respects, a material with one nano-sized dimension may

be treated as a two-dimensional system. When studying novel lower-dimensional

systems new physics often arises, as these systems behave very differently than

their three-dimensional counterparts. This new physics is exciting in its own right,

but it can also lead to technological innovations. The study and implementation

of these new applications comprises the field of nanotechnology.

Nanoscience has proven to be a robust field and shows little signs of slowing

down. For instance, advances in giant magneto-resistance have led to the develop-

1
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ment of devices such as iPods and flash drives. The coupling of nanoparticles and

cancer-seeking enzymes offers the potential for a novel cancer treatment whereby

nanoparticles attach to cancer cells to allow for targeted irradiation. Extensive

studies of nanosized tubes called carbon nanotubes show promise for improving

hydrogen storage capabilities in automobile fuel cells, and for decreasing transistor

size. Recently two-dimensional sheets of carbon, called graphene, have been real-

ized in the lab. These sheets have many exciting characteristics, including very

large electron mobility that could revolutionize electronics. One thing is clear:

nanoscience is one of the driving forces in the development of new technologies in

fields such as biotechnology, alternative energy and electronics.

1.2 This work

This dissertation focuses on the study of charge carriers in nanosized devices,

of which a better understanding is critical to further nanoscience developments.

There are two main courses of study in this work; (1) the study of indirect excitons

in quasi-two-dimensional coupled quantum wells, and (2) the study of electrons

in quasi-two-dimensional organic field-effect transistors. Both of these systems

exhibit new physics which could lead to physical and technological advances.

The exciton is a bound state of an electron and a hole, and is the primary exci-

tation in solids. Excitons are essential to many applications, from basic electronics

to solar cell technology. At low temperatures, indirect excitons in coupled quan-

tum wells are theoretically predicted to form a number of novel states of matter

ranging from Bose-Einstein condensates to superfluids and ordered crystals. These

are briefly discussed in Section 2.3. The experimental search for such states has

been reviewed in Reference [2].

A brief introduction to the quantum well nanostruture is in order. A quantum

well is a slab of material with one of its three dimensions reduced down to a few

nanometers or, more typically, a few tens of nanometers. The surrounding material

makes the quantum well act as a potential well, essentially confining the charge

carriers to two dimensions [3]. Coupled quantum wells will be explained in greater
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depth in Section 2.2.

The research addressed here on indirect excitons focuses on the formation of

biexcitons, a bound state of two excitons. A state-of-the-art numerical program,

the stochastic variational method, explained in depth in Section 2.4, was used to

calculate the most accurate values to date of the biexciton binding energy. With

these calculations, it is possible to predict under which experimental conditions

these indirect biexcitons will form. This proves helpful in explaining recent exper-

imental results theoretically. Furthermore, this is also a good first step in under-

standing the interaction of two indirect excitons, the comprehension of which is

crucial to interpreting experimental results and finding novel uses for these systems.

Further work explores recent excitonic experiments involving electrostatic traps.

These traps allow for a broader, more comprehensive study of the excitons. Pho-

toexcited excitons fill the traps as a result of the complicated interplay of relax-

ation, exciton transport, and recombination. Our goal was to calculate the density

distribution of excitons theoretically and use this to analyze and interpret recent

experimental findings [4]. These calculations resulted in an estimate of the strength

of the aforementioned indirect exciton interaction.

The problem of charge injection and dynamics is central to the conclusion of

this thesis (Chapter 5), which is devoted to organic field-effect transistors. Organic

electronic devices are much cheaper than their silicon counterparts, and can be

made mechanically flexible. The development of effective organic electronics is an

exciting prospect with diverse applications.

Organic semiconductors have complicated transport mechanisms, which must

be better understood in order to develop useful organic technologies. Through

the modeling of infrared spectrometry results from the Basov group at UCSD,

a successful model for the density-dependent mobility in poly(3-hexylthiophene)

P3HT was found. This density dependence itself has proven to be a surprise.

This thesis is organized as follows. Chapter 2 introduces excitons and biexcitons

in coupled quantum wells and reviews the low-temperature physics of excitonic

gases. A brief review of the experiments by Butov et al . will also be included.

Chapter 3 presents results of numerical calculations involving indirect biexcitons
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and studies the experimental conditions an indirect biexciton may be expected to

form in a coupled quantum well system. Chapter 4 is a theoretical exploration of

the recent experiments by the Butov group at UCSD in which indirect excitons are

placed in various electrostatic traps, giving the experimenter more ways in which

to probe them. Finally, Chapter 5 consists of a study of the mobility in organic

field-effect transistors probed by infrared spectromicroscopy of the charge density

profile. This is based on experiments performed by the Basov group at UCSD.



Chapter 2

Excitons in coupled quantum

wells

2.1 Excitons

Recent experiments performed by the Butov group at UCSD have produced

evidence for quantum liquid behavior in an excitonic gas in Gallium Arsenide semi-

conducting quantum wells — a goal of experimentalists for years [2]. This chapter

introduces indirect excitons and provides some background on these experiments.

The exciton is the fundamental excitation in a semiconductor solid. It is an

excited state consisting of an electron and a hole bound together by the Coulomb

interaction. The hole, a so-called quasi-particle, is the lack of an electron in the

otherwise full electron sea or valence band. Generally, an exciton is created by

the absorbtion of a photon of light exciting an electron from the electron sea into

the conduction band [5]. This missing electron is called a hole. Since there is

a missing negative charge in an otherwise neutral material, the hole will have a

positive charge.

Excitons are generally broken down into two main types. The main distinction

is the separation distance between the electron and the hole. A Frenkel exciton

is generally separated by a single lattice site, and is usually associated with a

certain lattice site. By contrast, a Wannier exciton has a separation of many

5
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lattice sites [6]. Our focus is on Wannier excitons.

A Wannier exciton can be thought of as a free particle under the effect of the

background lattice. Interaction between the exciton and the background lattice

is extremely complicated. However, a good approximation of this interaction is

achieved by treating the exciton as a free bound particle propagating with a renor-

malized mass in a medium with a dielectric constant of the lattice material [6]. To

this end, the exciton can be thought of as a hydrogen-like atom, whereby the hole

is analogous to the proton. The energy of such a hydrogen-like atom is

Eex = − e2

2aexε0d2
, (2.1)

where aex is the excitonic Bohr radius

aex =
~2ε0

e2mr

, (2.2)

and where mr is the reduced mass

aex =
mhme

mh + me

. (2.3)

Here mh is the mass of the hole and me is the mass of the electron [6].

Since it is a particle-antiparticle pair, the exciton has a finite lifetime, typically

between picoseconds and milliseconds. As we will see, this fact limits the nature

and variety of experimental tests one can achieve with excitons. Much effort has

gone into devising methods to extend the excitonic lifetime. One method is to ex-

cite excitons into neighboring quantum wells in a system called a coupled quantum

well, which will be discussed in Section 2.2.

Excitons merit study as the primary excitation in solids, but they are interesting

for many other reasons as well. Excitons can couple with photons one-to-one,

essentially converting a photon into a particle with a much shorter wavelength,

and having the ability to convert back at some future time. This could prove

useful in applications such as excitonic optical transistors, the first step toward the

development of optical computers [7]. Because it is a bound state of two fermions,

the exciton is a boson and is theorized to become a Bose-Einstein condensate

(BEC) in the dilute limit naD
ex << 1, where n is the particle density, aex the
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excitonic Bohr radius, and D the dimensionality of the system [8]. Achieving this

BEC state has been a major experimental goal. The temperature at which a BEC

should occur decreases with the mass of the constituent particles, see Eq. (2.20).

Since the mass of the exciton is much smaller than the electron, the temperature

at which BEC should occur is relatively high, on the order of a few degrees Kelvin.

Further discussion on this topic will follow in Section 2.3. Next is a discussion of

quantum wells, the systems in which the indirect excitons are studied.

2.2 Coupled quantum wells

The most basic model of charge carriers in a solid is the free-electron approx-

imation, the so-called Fermi gas model. In this model each electron in a solid

is treated as free with no interaction potential, either from the lattice ions or

the other electrons. This gas of non-interacting electrons is called a Fermi gas,

see Appendix D, and is the condensed matter equivalent of an ideal gas. The

free-electron approximation is limited, but can prove useful in explaining aspects

of electron behavior in solids, especially in a qualitative sense. Furthermore, it

serves as a starting-off point for more advanced theories that involve interactions

including perturbation theory and the Fermi-liquid theory [9].

With no potential energy term V , the Schrodinger equation for these electrons

becomes
−~2

2m
∇2Ψ(r) = EΨ(r). (2.4)

The boundary conditions on the electrons are periodic with the lattice. If the

lattice is assumed to be isotropic, Born-von Karmon periodic boundary conditions

apply where L is the lattice vector. The solution to Eq. (2.4) is

Ψ(r) =
1√
V

eik·r, (2.5)

and the energy for one of these electronic states is

E =
~2k2

2m2
. (2.6)

Important to determining various properties of the system is how the macro-

scopic number of electrons fill these momentum states. Being fermions, the elec-



8

Figure 2.1: Energy band diagram for quantum well heterojunction. (a) Two semi-
conducting materials with different band gaps are brought together. EC is the
conduction band, EV is the valence band, and EF is Fermi energy. (b) When com-
bined, an equilibrium band state is reached with a potential well in the z-direction.
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trons fill these levels according to Fermi-Dirac statistics, with two spins for each

state. A quantity known as the density of states can be found to better quantify this

process. The density of states provides the number of momentum states that exist

in a certain energy range. This quantity proves useful in calculating macroscopic

characteristics for the solids in question. To do this, we work in the momentum

space, or k-space: the space that spans the system’s possible momentum [9]. The

density of states in three dimensions is

D(E) =
V

2π2

(
2m

~2

)3/2

E1/2. (2.7)

The quantity kF is defined as the Fermi momentum. It is the maximum occupied

momentum state of a Fermi gas.

A quantum well structure consists of a semiconducting material, like gallium

arsenide (GaAs), joined with a doped semiconducting material with a larger band

gap such as aluminum gallium arsenide (AlGaAs). The interface between these

two materials is known as a heterojunction [3]. As in Fig. 2.1 (a) the materials have

different Fermi energies and band gaps. Electrons are attracted from the higher

Fermi energy to the lower. When the two materials come together, an equilibrium

is reached, as in Fig. 2.1 (b). This results in the formation of a potential well in

one of the spatial directions, which we will call the z-direction. Electrons in this

potential well feel a potential similar to

U(z) =

{
∞ : |z| > a

0 : |z| < a.
(2.8)

Here, the electrons are free in two dimensions and confined in one dimension,

leading to a wave function

Ψ(r) =
1√
V

φ(z) exp (ikx) exp (iky), (2.9)

where φ(z) is the solution to a one-dimensional potential well. Since this is a

potential well, the energy is quantized. Essentially these electrons are confined in

the z-direction and are free, a Fermi gas, in the x-y plane. Altogether the energy

of an individual electron is

E = ES +
~2

2m
(k2

x + k2
y). (2.10)
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Figure 2.2: Energy band diagram for a coupled quantum well. (a) No external
electric field; direct exciton is energetically favorable. (b) With external electric
field, indirect exciton is favorable. Electron and hole can be in neighboring wells.
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Here ES is the energy of the electron in this potential well. The system now

consists of a quasi-two-dimensional gas of electrons. We must now determine

how this differs from a three-dimensional gas of electrons. We find that it is

considerably different, and to investigate one must look at the density of states in

two dimensions:

D(E) =
L2m

π~2
. (2.11)

To fully express the density of states for a quantum well, one must remember that

there are different subband states for each two-dimensional Fermi gas energy spec-

trum. The number of occupied subbands will alter the density of states. Including

the different subbands, the density of states for a quantum well is

D(E) =

NS∑
S

L2m

π~2
θ (E − ES) . (2.12)

The density of states in two dimensions is independent of energy and hence vastly

different from its three-dimensional counterpart. Many macroscopic properties of

the solid depend on the density of states. Therefore this gas will have very different

characteristics when compared to a three-dimensional gas.

The quantum well then acts as a one-dimensional potential well confining elec-

trons in one dimension, resulting in a quasi-two-dimensional gas of electrons. A

coupled quantum well is essentially two neighboring quantum wells separated by

the doped semiconduction material [2]. This will allow for the creation of an indi-

rect exciton, an exciton in which the hole and electron are in two neighboring wells.

These indirect excitons will be discussed in the next section, as well as the exper-

iments done by the Butov group. The work in Chapter 3 derived its motivation

from these experiments.

2.3 Basic properties of cold excitonic gases in

semiconductor quantum wells

As mentioned in Section 2.1, excitons at low densities are Bose particles obey-

ing Bose-Einstein statistics. At low temperatures they are theorized to become a
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quantum liquid, a statistically degenerate Bose gas or Bose-Einstein condensate.

Producing a quantum state of excitons in the lab has proven difficult. A discus-

sion will follow with a summarization of this theory and a description of recent

experiments by the Butov group at UCSD by which the results in Chapter 3 were

prompted.

A gas of Bosons will, in general, obey the Bose-Einstein distribution function

N =
1

eβ(k2/2m−µ) − 1
, (2.13)

where k is the momentum vector, µ is the chemical potential, and

β =
1

kBT
. (2.14)

Here, kB is the Boltzmann constant, and T is the temperature. In turn, the density

of this gas is found via

n =
G

(2π)D

∫ ∞

−∞
N(k)dDk =

G
(2π)D

∫ ∞

−∞

dDk

eβ(k2/2m−µ) − 1
, (2.15)

where G is the spin degeneracy of excitons, and D is the dimensionality of the

system.

In the low density limit naD
ex << 1, the chemical potential µ must have an

upper bound of zero. Therefore for a three-dimensional gas, Eq. (2.15) becomes

n = 2.612G
(

mexkBT

2π

)(3/2)

. (2.16)

Since this is constant, a problem arises. How does the system accommodate the

addition of more particles? In other words, how can this density be constant for

any system with any number of particles? The answer Einstein gave is that the

density in Eq. (2.16) does not account for the ground state, so any particle in

addition to this must “condense” into the ground state, leading to a deviation

from the Bose-Einstein distribution function. This will occur around temperatures

approaching

TC =

(
n

2.612G
)(2/3)

2π

mexkB

. (2.17)

This condensate is known as a Bose-Einstein condensate and is an inherently quan-

tum mechanical manifestation.
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Bose-Einstein condensation in various systems may lead to a state called the

superfluid. A superfluid is a quantum mechanical state of matter with very peculiar

macroscopic properties, including zero viscosity and persistent current states or

quantized vortices. The microscopic mechanism behind the superfluid phase can

be varied. He4, a bosonic atom, becomes a superfluid associated with the onset of

Bose-Einstein condensation; while He3, a fermionic atom, will become a superfluid

as a consequence of the BCS theory of superconductivity.

For infinite two-dimensional systems, a Bose-Einstein condensate does not oc-

cur. This is a consequence of the constant density of states for the two-dimensional

system (see Section 2.2). Since the density of states is constant, the lower energy

states of the system can accommodate any number of particles. There is no need

for a condensate in this case.

However, the statistics of a quasi two-dimensional boson gas strongly depart

from classical when the de Broglie wavelength

λdB =

√
2π~2

mkBT
(2.18)

approaches the interparticle separation distance for the gas, or

nλ2
dB ≈ 1. (2.19)

For three dimensions, this is a similar requirement as in Eq. (2.17):

nλ3
dB = 2.612 .

A two-dimensional gas of weakly interacting particles develops a local coherence

(quasi-condensate) at a temperature

TdB =
2π~2n

mG . (2.20)

This quasi-condensate has a large coherence length — much larger than the dis-

tance between the particles. If excitons are confined to a region smaller than this

coherence length (e.g., by means of an artificial trap), the system will resemble a

Bose-Einstein condensate. However, in the thermodynamic limit it will not be a

true condensate and will not exhibit superfluidity.
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As temperature is reduced further, the a two-dimensional system will undergo

a superfluid transition. This transition is of the Kosterlitz-Thouless type [11]. It

is theorized to happen at a temperature of [12]

TKT =
4π~2n

2m ln ln (1/na2)
. (2.21)

Below TdB and above TKT the quantum liquid will be a microscopic superfluid with

free (unpaired) vortices. Below TKT the liquid will be a macroscopic superfluid with

vortices bound in vortex-antivortex pairs.

Recent estimates of the TKT from Monte-Carlo calculations [13] agree with

Eq. (2.21); however, they suggest that the argument of the inner logarithm contains

an additional numerical factor of approximately 380.

The creation of an excitonic quantum liquid is difficult for many reasons. The

finite lifetime of excitons makes it difficult to cool them to a temperature at which

quantum effects become important. This lifetime has been extended through the

creation of so-called indirect excitons created in a coupled quantum well struc-

ture [2]. As previously discussed, a quantum well is a quasi-two-dimensional struc-

ture with one dimension on the order of 100 nm. A coupled quantum well is a

structure with two parallel quantum wells separated by a small potential barrier.

This allows for the creation of an indirect exciton, an exciton whose hole and elec-

tron are in separate quantum well planes separated by a distance d, as in Fig. 2.3.

Because of the small wave function overlap from neighboring quantum wells, the

recombination of the exciton is suppressed and the lifetime is extended by three

orders of magnitude or more [2]. In a symmetric coupled well (no electric field

applied) the lowest energy exciton is the direct exciton: both e and h reside in the

same well. This changes in the presence of a field. The electron moves because it

becomes energetically favorable, see Fig. 2.2.

Due to the spatial separation between e and h, an indirect exciton possesses

an electric dipole. This results in a dipolar repulsion between indirect excitons.

This works to minimize the creation of electron-hole droplets [14, 15] and speed

the drift of excitons away from the excitation zone, allowing them to cool to the

lattice temperature and approach the range of temperatures required for forming

an excitonic quantum liquid.
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Figure 2.3: Indirect excitons and biexcitons. (a) Indirect exciton. (b) At large
separation distances, indirect excitons are dipoles and thus repel each other. (c)
At some distance r2, indirect excitons bind together forming a biexciton. This is
studied in Chapter 3.
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This repulsion also allows for estimation of the excitonic density. Due to this

dipolar repulsion, the energy of each exciton is density-dependent. One may cal-

culate an energy shift of

δω(n) =
4πne2d

ε
. (2.22)

Eq. (2.22) is a crude approximation (this “capacitor” formula is derived in Sec-

tion 4.3.2). This energy shift does not take exchange or correlation effects into

account. In fact, it’s possible the excitons can feel attraction as opposed to re-

pulsion, similar to a bound H2 molecule. This scenario is investigated in Chapter

3. In Chapter 4 estimates of this interaction show that for UCSD experiments [4]

there is indeed repulsion, however at a value 2-3 times less than Eq. (2.22) would

indicate.

The experiments that motivated this work were performed by the Butov group

at UCSD. The group carried out photoluminescence studies of exciton gases in

coupled quantum wells. These structures are made from GaAs and have an 8 nm

well and a 4 nm barrier of Al0.33Ga0.67As [2]. The excitons are excited by a HeNe

laser (λ= 632.8 nm) or a Ti:Sapphire laser (λ = 786 nm). The excitation region

has a 10 µm diameter region in a square lattice of size 150 µm by 150 µm [2].

The lattice in turn may be cooled to a fraction of one degree Kelvin. The excitons

are photoexcited into existence, and when they eventually recombine a photon

is released. These photons are captured with a CCD camera. The de Broglie

temperature, Eq. (2.20), is approximately TdB ≈ 3 K for this experiment [2].

The experimental results are highly dependent on the excitation power of the

laser. At low excitation power, the excitonic gas essentially takes on the shape of

the excitation region. It is believed the excitons are localized by in-plane disorder.

However at larger excitation power, as the density of excitons is increased, the

dipolar repulsion washes out the disorder and the excitons become delocalized.

When this occurs, interesting patterns emerge. An example of these patterns

can be seen in a photoluminescence intensity image in Fig. 2.4. The main features

include the internal and external ring, localized bright spots, and a macroscopically

ordered exciton state [2]. The internal ring and localized bright spots have been

explained through classical mechanisms. Since the excitons have a drift velocity
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Figure 2.4: Example of two-dimensional photoluminescence pattern for experiment
by Butov group. Temperature is 1.7 K, gate voltage is Vg = 12 V , and excitation
power is Pex = 690 µW [16].
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Figure 2.5: Dispersion relationship for photons (linear dashed curve) and exci-
tons (quadratic solid curve). Due to conservation of energy and momentum, only
excitons in the dark highlighted region are optically active.
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due to diffusion and the dipolar repulsion, they are not typically optically active

until they have traveled from the excitation spot. As seen in Fig. 2.5, only excitons

in the radiative zone will be optically active. Thus, the delocalization of the

excitons works to extend their lifetime even further. As the excitons transport

over distances of as much as 100 µm, they lose energy and eventually come to an

energy in the radiative zone. If excitons at the internal ring are still not optically

active, they will pick up a larger kinetic energy as they traverse out of the potential

hill caused by the excitation zone. This accounts for the inactive region before the

start of the external ring. The localized bright spots are in this inactive region,

and are believed to be associated with the local disorder of the system [2].

The radius of the external ring increases with excitation power. At extremely

low temperatures the ring creates a beaded pattern, an example of macroscopic

spatial ordering. This can again be seen in Fig. 2.4. These beads can appear in

circular lengths up to 1 mm. The temperature at which this pattern emerges is close

to the critical temperature at which quantum liquid effects should set in, TdB <

3K. It is believed this pattern is a quantum mechanical effect, and is a sign the

excitons have become a quantum liquid or are in a quasi-Bose-Einstein condensate

state [17]. This is further borne out by data that shows that the coherence length

of the excitons exceeds the classical limit at this transition [18]. Further progress

in this field requires a better understanding of exciton-exciton interaction. This

motivated us to study the simplest interacting system — a pair of indirect excitons,

see Fig. 2.3. The results of this investigation will be discussed in detail in Chapter

3. However, by way of extended introduction, the computational method used in

Chapter 3 is reviewed.

2.4 Stochastic variational method

In Chapter 3, the stochastic variational method (SVM) is employed. This

computational technique solves the few-body Schrodinger equation

H = −
N∑

i=1

~2∇2
i

2mi

+
∑

i 6=j

eiej

rij

(2.23)
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using the variational principle [19]. The basis states used for the trial wave function

are correlated Gaussians

ψ(x,Bn) = A [Gn({rν})] , (2.24)

with the form

Gn = exp

(
−1

2
x†Bnx

)
, (2.25)

where x are the Jacobi coordinates, a generalized center of mass coordinate system,

given by

xi =
N∑

j=1

Uijrj, (2.26)

where r are the spatial coordinates and

U =




−1 1 0 0

− m1

m12
− m2

m12
1 0

− m1

m13
− m2

m13
− m3

m13
1

m1

m14

m2

m14

m3

m14

m4

m14




(2.27)

is the transformation matrix for a four-particle system. Here m1i = m1+m2...+mi.

The Gaussian basis functions are advantageous due to their ease of integration.

The program uses a random process to determine the exact values of Bn, which

determine the form of the Gaussian function itself. The algorithm for the program

is as such: (1) an initial randomly generated guess is made for the coefficients B1,

(2) the ground state energy of the system is found by diagonalizing the Hamil-

tonian, (3) each B1 is varied and a new energy found, (4) if this new coefficient

lowers the energy it is kept, then the program goes back to step three and repeats

a specified number of times. Next, (5) after varying each B1 a set number of times,

these coefficients are the best B1 coefficients. Now a new basis state represented

by the B2 coefficients is created and steps two through four are repeated a speci-

fied number of times. The result is a numerically exact value for the ground state

energy. If needed, the program may be easily modified to find density functions

etc., see Fig. 3.6.

This state-of-the-art program works much faster than alternatives such as dif-

fusion Monte Carlo. Typically for four-body problems done in Chapter 3, the basis
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size was on the order of 400 - 700, with a run time of approximately ten minutes

to a couple of hours on a laptop computer. The program was designed by Varga

and Suzuki and has been used with much success [19]. The limiting feature here is

diagonalization of the Hamiltonian. To speed things up, a Gram-Schmidt process

is employed so a full diagonalization for each step is not necessary. Still, a basis

size of over 700 for a system of four or more particles becomes time-intensive.

In its present form, the code works only for states with zero orbital angular

momentum. Furthermore, the program has difficulty finding the ground state for

loosely bound states and excited continuum states. Special techniques can be

employed to handle these cases [20]. For the work in Chapter 3 the program has

been altered to work for two dimensions and for the various potentials used.

In Chapter 3 we solved the four-body biexciton equation

H = − ~2

2me

[∇2
e1

+∇2
e2

]− ~2

2mh

[∇2
h1

+∇2
h2

]
+

∑

i6=j

eiej

rij

. (2.28)

The basis states make up the trial wave function

Ψ =
K∑

i=1

ciψ(x,Bn) , (2.29)

where K is the basis size. Then, an upper bound for the ground state energy is

found by solving the generalized eigenvalue problem

HC = EkOC. (2.30)

Here H and O are the Hamiltonian and overlap matrix elements.

What follows is a summarization of the matrix element calculations in two

dimensions. For a more detailed discussion please see Appendix C.

The overlap matrix element is

〈G1|G2〉 =

[
(2π)N−1

det(B1 + B2)

]
, (2.31)

where N is the number of particles. The Hamiltonian matrix element is broken

into two parts, the kinetic and the potential term. The kinetic matrix element

works out to be

〈
G1|Λ∇2|G2

〉
= 〈G1|G2〉

[
2Tr (ΛB1)− 2Tr(B2 + B1)

−1(B2ΛB2)
]
. (2.32)



22

Calculation of the potential term is the most difficult. To ease in this the potential

is set in the form

V (ri − rj) =

∫
drV (r) δ(ri − rj − r). (2.33)

Therefore, the potential matrix element will be

〈G1|Vij|G2〉 =

∫
drV (r) 〈G1|δ(ri − rj − r)|G2〉 , (2.34)

leading to the expression

〈G1|Vij|G2〉 =
〈G1|G2〉
2πpij

∫
drV (r)e−r2/2pij , (2.35)

where

pij =
N−1∑

k=1

N−1∑

k=1

Cijk(B1 + B2)
−1
kl Cijl , (2.36)

and

Cijk = U−1
ik −U−1

jk . (2.37)

Eq. (2.35) may be solved for two potentials, a potential between like charges in

the same quantum well plane:

V (r)like =
1

r
, (2.38)

and a potential for unlike charges in neighboring quantum wells separated by a

distance d:

V (r)unlike =
1√

r2 + d2
, (2.39)

leading to solutions

〈G1|Vij|G2〉like = 〈G1|G2〉
√

π

2pij

, (2.40)

and

〈G1|Vij|G2〉unlike = 〈G1|G2〉
√

π

2pij

erfc(d/
√

2pij) e−d2/2pij . (2.41)

A key element of the computation is the symmetrization process. The system

employed in Chapter 3 solved a four-body fermionic problem where there are two

sets of indistinguishable particles. The basis function is a function of the spatial
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coordinates r or ψ(r1, r2, r3, r4). Therefore, the symmetrized basis function will

have a form similar to

ψ(r1, r2, r3, r4) = ψ(r1, r2, r3, r4)− ψ(r3, r2, r1, r4)

− ψ(r1, r4, r3, r2) + ψ(r3, r4, r1, r2). (2.42)

An example of the input parameters for the SVM is given in Table 2.4. The first

rows establish the particular system to be solved supplying the number of particles,

charges and masses of the particles, and the spin and isospin states. Next come

the variational parameters. iran is an input parameter used in the initial random

generator. ica is a parameter that selects the method of basis generation, which

can be altered to fit the individual system. The next variable determines the type

of particle. Here ibf = 1 for fermions and ibf = 1 for bosons. Next M0 and K0 are

to specify the number of times a random number is to be generated for a particular

basis element and the basis as a whole, respectively; and K is the number of basis

sets to be used. Finally bmin and bmax are the upper and lower bounds for the basis

elements, where the basis takes the form

exp

[
−

∑
i<j

(ri − rj)
2

2bij

]
. (2.43)

For further explanation see the reference by Varga and Suzuki [20].
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Table 2.1: An example input file for the SVM program.

input variable name

4 number of particles

1, 1, 1, 1 masses of particles

-1, 1, -1, 1 charges of particles

1 number of isospins

1, 1, 2 , 1, 2 projections of the isospins

4 number of spins states

1, 1, 1, 2, 2 projections of the spins

-1, 1, 2, 2, 1 projections of the spins

-1, 2, 1, 1, 2 projections of the spins

1, 2, 2, 1, 1 projections of the spins

1, -11046, 2, 1 ~2/2m, iran, ica, ibf

5, 25, 500 M0, K0, K

0.1, 100, 0.5 bmin, bmax, d



Chapter 3

Biexcitons in two-dimensional

systems with spatially separated

electrons and holes

3.1 The problem and main results

As reviewed in Chapter 3 the physics of cold excitons — bound states of elec-

trons and holes in semiconductors — has attracted much attention recently. Sev-

eral intriguing phenomena have been demonstrated for such “indirect” excitons,

including long-range transport, [21, 22, 23, 16, 24, 7] macroscopic spatial order-

ing, [16] and spontaneous coherence [18]. Further progress in this field requires an

improved understanding of exciton interactions.

Despite being charge neutral, indirect excitons possess a dipole moment ed,

where d is the separation of the electron and hole quantum wells. As a result,

interaction of two excitons at large distances r is dominated by their dipolar re-

pulsion,

V (r) =
e2

κ

d2

r3
, (3.1)

where κ is the dielectric constant of the semiconductor. At short distances ex-

change and correlation effects are also important. The interaction may even be-

come attractive over a range of r. In this case two excitons can form a bound state

25
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— a biexciton. The corresponding binding energy is defined by

EB = 2EX − EXX , (3.2)

where EX and EXX are the ground-state energies of the exciton and biexciton,

respectively.

While observations of biexcitons in single quantum well structures (d = 0)

have been described multiple times, [25, 26, 27, 28, 29, 30, 31, 32] no such reports

exist for the d > 0 case. A recent theoretical work [33] has attributed the lack of

experimental signatures of indirect biexcitons to extreme smallness of their binding

energies. In this chapter we verify and improve all previously known estimates of

EB. In particular, we show that EB(d) is positive, i.e., the biexciton is stable,

only for d smaller than some critical value dc, see Fig. 3.1. Typical experimental

parameters [2, 34] fall on the d > dc part of the diagram.

In our calculations we adopt the simplifying assumption that the effective

masses me and mh ≥ me of electrons and holes are constant and isotropic. We

also treat the quantum wells as two-dimensional layers of zero thickness. We find

it convenient to measure distances in units of the effective electron Bohr radius

and energies in units of the effective Rydberg,

ae =
~2κ

mee2
, Rye =

1

2

e2

κae

, (3.3)

respectively. With these conventions, the four-particle system of two electrons and

two holes is described by the Hamiltonian HXX = T + U , where

T = T1 + T2 , Tj = −∇2
j − σ

(
d

dRj

)2

, (3.4)

U =
2

|r1 − r2| +
2

|R1 −R2| −
∑
ij

v(ri −Rj, d) , (3.5)

v(r, d) =
2√

|r|2 + d2
. (3.6)

Here ri and Ri are two-dimensional coordinates of the electrons and the holes,

respectively, ∇j = d/drj, and

σ = me/mh (3.7)
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Figure 3.1: Critical interlayer separation vs . the electron-hole mass ratio. Above
the curves no biexciton formation is possible. The circles are our results. The
squares are from Ref. [40]. The triangles correspond to d above which EB(d) drops
below 10−3 Rye, making biexcitons irrelevant in experimental practice.
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is the mass ratio. Similarly, the single-exciton Hamiltonian is

HX = T1 + v(r1 −R1, d) . (3.8)

The problem is characterized by two dimensionless parameters: d and σ. The case

of d = 0 (direct excitons) has been studied extensively. [35, 36, 37] In contrast,

high accuracy calculations of EB for d > 0 have been carried out only in the

aforementioned Ref. [33]. The authors of that work have employed the diffusion

quantum Monte-Carlo method (DMC). Away from d = 0, they were able to fit

their results for σ = 1 and σ = 1/2 to the exponential:

EB(d) ≈ αe−βd. (3.9)

This result is surprising. Equation (3.9) seems to imply that the biexcitons are

stable at any d, i.e., dc = ∞. On the other hand, physical intuition and previous

approximate calculations [38, 39] suggest that dc should be finite. A more recent

work [40] has reached the same conclusion. We present rigorous analytical argu-

ments and essentially exact numerical results proving that dc ≤ 1 at all σ, see

Fig. 3.1. (Due to electron-hole symmetry, it is sufficient to consider 0 ≤ σ ≤ 1.)

Since dc is finite, the interpolation formula (3.9) must overestimate the binding

energy at large d. We show that near the biexciton dissociation threshold,

dc − d ¿ D , (3.10)

where D ∼ 1 for σ ∼ 1 and D ∼ exp(−σ−1/2) for σ ¿ 1, function EB(d) behaves

as

EB ' E0e
−D/(dc−d). (3.11)

This equation resembles the well-known expression for the energy ε of a bound

state in a weak two-dimensional potential V (r). Such a state exists if

W ≡ M

2π~2

∫
d2rV (r) < 0 , (3.12)

where M is the mass of the particle. Near the threshold W → 0 one finds [41]

|ε| ∝ e−1/|W |, |W | ¿ 1 . (3.13)
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The exciton-exciton interaction potential V (r) in general does not satisfy the con-

dition of the perturbation theory V (r)r2 ¿ ~2/M , with M = me +mh. Therefore,

Eq. (3.13) does not literally apply here. Nevertheless, the physical origins of the

exponential dependence in Eqs. (3.11) and (3.13) are the same, see Sec. 3.2B.

We verify and complement the above analytical results numerically using the

stochastic variational method (SVM). [19] The SVM has proven to be a powerful

technique for computing the energies of few-particle systems. [42] For example,

it has given the best estimates of EB for direct biexcitons, [35, 36] d = 0. Our

calculations are largely in excellent agreement with those of Ref. [33], see Fig. 3.2

and Table 3.1. Thus, Eq. (3.9) is certainly useful as an interpolation formula for

not too large d. However, near the estimated dc, our results favor Eq. (3.11) over

Eq. (3.9). Since the SVM is variational, we can be sure that it is more reliable

when it gives a larger EB than other methods.

The remainder of this chapter is organized as follows. In Sec. 3.2 we derive

a few analytical bounds on EB and the asymptotic formula (3.11). Numerical

calculations are presented in Sec. 3.3. Section 3.4 is devoted to discussion and

comparison with results in previous literature. Some details of the derivation are

given in Appendices A and B.

3.2 Analytical results

In this section we approach the biexciton problem by analytical methods. Since

the exact solution seems out of reach, the best one can do is to consider certain

limits where suitable control parameters exist. Below we examine three of them.

First, we study large-d excitons. We prove that they cannot bind into a stable

biexciton. Second, we consider the immediate vicinity dc−d ¿ 1 of the dissociation

threshold dc. We derive the asymptotical formula for the binding energy, Eq. (3.11),

which is valid for arbitrary σ. Finally, we analyze the case σ ¿ 1.
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wells for the mass ratios σ = 1 and 0.5. Our results using the stochastic variational
method (SVM) are shown by the solid lines. The dots using diffusion Monte-Carlo
(DMC) are from the Ref. [33].
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Table 3.1: Biexciton binding energies in units of Rye from the previous (“DMC”,
Ref. [33]) and present (“SVM”) work.

σ = 1 σ = 0.5

d(ae) DMC SVM d(ae) DMC SVM

0.000 0.3789 0.3858 0.000 0.5381 0.5526

0.020 0.3084 0.3089 0.015 0.4443 0.4450

0.040 0.2538 0.2546 0.030 0.3695 0.3689

0.060 0.2118 0.2133 0.045 0.3104 0.3109

0.080 0.1794 0.1807 0.060 0.2639 0.2649

0.100 0.1532 0.1542 0.075 0.2265 0.2275

0.120 0.1315 0.1324 0.090 0.1956 0.1966

0.140 0.1135 0.1141 0.105 0.1696 0.1707

0.160 0.0982 0.0986 0.120 0.1477 0.1487

0.180 0.0851 0.0855 0.135 0.1291 0.1299

0.200 0.0738 0.0742 0.150 0.1130 0.1136

0.220 0.0640 0.0644 0.165 0.0989 0.0995

0.240 0.0556 0.0559 0.180 0.0865 0.0872

0.260 0.0483 0.0485 0.195 0.0757 0.0764

0.280 0.0418 0.0420 0.210 0.0663 0.0670

0.300 0.0361 0.0363 0.225 0.0580 0.0586

0.320 0.0311 0.0313 0.240 0.0507 0.0512

0.340 0.0267 0.0270 0.255 0.0443 0.0447

0.360 0.0229 0.0231 0.270 0.0385 0.0389

0.380 0.0195 0.0197 0.285 0.0333 0.0337

0.400 0.0165 0.0167 0.300 0.0286 0.0291

0.420 0.0140 0.0141 0.315 0.0241 0.0250

0.440 0.0117 0.0118 0.330 0.0200 0.0214

0.460 0.0096 0.0097 0.345 0.0165 0.0182

0.480 0.0078 0.0079 0.360 0.0135 0.0154

0.500 0.0063 0.0065 0.375 0.0112 0.0129

0.520 0.0051 0.0052 0.390 0.0096 0.0107

0.540 0.0040 0.0040 0.405 0.0087 0.0087

0.560 0.0030 0.0031 0.420 0.0076 0.0071

0.580 0.0021 0.0023 0.435 0.0064 0.0056

0.600 0.0013 0.0017 0.450 0.0051 0.0044

0.620 0.0007 0.0012 0.465 0.0039 0.0033

0.640 0.0002 0.0007 0.480 0.0027 0.0024
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3.2.1 Exciton interaction at large d

The absence of stable biexcitons at large d is due to the lack of binding in

the classical limit, which is realized at such d. Indeed, if we temporarily change

the length units to d and energy units to e2/κd, then the potential energy U in

Eq. (3.5) becomes d-independent while the kinetic energy T acquires the extra

factor ae/d ¿ 1 compared to Eq. (3.4). Hence, the potential energy dominates. A

rigorous proof that dc < ∞ can be constructed by dealing with the quantum and

many-body aspects of the problem separately. The many-body part is handled at

the classical level. Thereafter the quantum corrections are included. With further

analysis, both parts of the argument can be reduced to simpler problems for which

controlled approximations exist.

Since the Earnshaw theorem does not apply in two dimensions, the absence

of a stable classical biexciton is not immediately obvious. However, we verified

it following these steps. The classical ground-state is the global minimum of the

potential energy. We can perform the minimization over the electron positions r1

and r2 first. Let R be the distance between the holes,

R = R1 −R2 , (3.14)

then the energy function to minimize is (in the original units convention)

UR =
2

|r1 − r2| +
2

R
−

∑
j=1,2

t=±R/2

v(rj − t, d) . (3.15)

It can be shown that for all R the lowest energy is achieved when the in-plane

coordinates of the four charges fall on a straight line, see Fig. 3.3. Forming a cross

is the only other viable alternative, but it always has a higher energy. For the linear

geometry of the system, numerically exact results for Umin(R, d) ≡ minr1,r2 UR are

obtained trivially. The plot of Vcl(R) ≡ Umin(R, d) + (4/d) is shown in Fig. 3.3.

This combination can be thought of as the classical limit of the exciton interaction

potential V (R). Function Vcl monotonously decreases with R and achieves its

global minimum at R = ∞. This means that classical excitons do not form a

bound state.
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At large R, function Vcl(R) follows the dipolar interaction law (3.1) with the

quadrupolar, etc., corrections:

Vcl(R, d) =
2d2

R3
− 3

2

d4

R5
+O

(
d6

R7

)
, R À d . (3.16)

Quantum corrections due to the zero-point motion about the classical ground state

are not able to compete with the dipolar repulsion when d is large, see Appendix A.

Therefore, there is a critical dc = dc(σ) above which a stable biexciton does not

exist.

3.2.2 Binding energy near dc

In this subsection we examine the biexciton state near the dissociation threshold

dc for arbitrary σ. It is easy to understand that in this regime the biexciton orbital

wavefunction Ψ should have a long tail extending to large distances away from the

center of mass of the the system. Inside of this tail the configurations of electrons

and holes resemble a pair of well-separated individual excitons. Therefore, at

r À 1, where r is the distance between the centers of mass of two such excitons,

Ψ takes the asymptotic form

Ψ = [1 + (−1)sP12] Φ(r)
∏

j=1,2

φσ(rj −Rj) , (3.17)

r =
1

1 + σ
R +

σ

1 + σ
(r1 − r2) . (3.18)

Here s is the total electron spin, φσ is the ground-state wavefunction of a single

exciton with mass ratio σ, and operator P12 exchanges r1 and r2. Let us assume,

for simplicity, that holes are spin-1/2 particles. Then the wavefunction Φ of the

relative motion must have the parity Φ(−r) = (−1)s+SΦ(r), where S is the total

spin of the holes. Our goal in this subsection is to determine the behavior of Φ at

large r and use it to derive Eq. (3.11).

We proceed, as usual, by expanding Φ into partial waves of angular momenta

m (m and s+S must be simultaneously odd or even). The equation for the radial

wavefunction χm(r) reads

−1

r

d

dr
r
dχm

dr
+

[
κ2 + µV (r) +

m2

r2

]
χm = 0 , (3.19)
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where κ and µ are defined by

κ =
√

µEB , µ =
1 + σ

2σ
. (3.20)

At small distances, potential V (r) is either ill-defined or complicated, but for r À d

it obeys the dipolar law V (r) = 2d2/r3 [Eq. (3.1)]. From this, it is easy to see that

µV (r)r2 ¿ 1 at r À b with b given by

b = 8µd2 . (3.21)

At such r the potential energy V acts as a small perturbation. [41] Therefore,

χm(r) coincides with the wavefunction of a free particle,

χm(r) = c1Km(κr) , r À b . (3.22)

Note that b is either of the order or much larger than d because µ ≥ 2 and

d ' dc ∼ 1.

Sufficiently close to the critical d, we have κ ¿ 1/b. In this case there exists

an interval of distances b ¿ r ¿ b1/3κ−2/3 where we can drop the term κ2 in

Eq. (3.19) compared to µV (r). After this, Eq. (3.19) admits the solution

χm(r) = I2m

(√
b

r

)
− 4c2K2m

(√
b

r

)
, (3.23)

where I2m(z) and K2m(z) are the modified Bessel function of the first and the

second kind, respectively. [43] The unit coefficient for I2m(z) and the factor of (−4)

in front of c2 are chosen for the sake of convenience. The ground-state solution

is obtained for m = 0. Using the asymptotic expansion [43] of I0 and K0 in

Eqs. (3.22) and (3.23), and demanding them to be consistent with one another, we

find for m = 0 and b ¿ r ¿ κ−1:

χ0 = 1− 2c2

[
ln

(
4r

b

)
− 2γ

]
+O

(
b

r

)
, (3.24)

c2 = − 1

6γ + 2 ln(bκ/8)
=

1

ln(E0/EB)
, (3.25)

where

E0 =
8

e6γ

(
σ

1 + σ

)3
1

d4
. (3.26)
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Here γ = 0.577 . . . is the Euler-Mascheroni constant. [43] Equation (3.24) specifies

the boundary condition to which the solution for χ0 in the near field, r . b, must

be matched.

At d = dc, both κ and c2 vanish. Wavefunction χ0(r) at small κ can be viewed

as the wavefunction for d = dc perturbed by the small change in the boundary

condition in the far field, r & b, and by another perturbation,

κ2 + µV (r)|ddc
,

in the near field, r . b. To the first order in these perturbations we have

EB = −Ac2 + B(d,κ2) , (3.27)

where A is a constant and B is a smooth function subject to the condition B(dc, 0) =

0. Expanding B to the first order in dc−d and κ2, we arrive at the transcendental

equation for EB:
(

1− µ
∂B

∂κ2

)
EB +

A

ln(E0/EB)
= −∂B

∂d
(dc − d) . (3.28)

The solution cannot be written in terms of elementary functions. However, the

logarithmic term gives the sharpest dependence on EB. Hence, at small EB the

first term on the left-hand side of Eq. (3.28) can be dropped. Now this equation

can be easily solved to recover Eq. (3.11) with

D =
A

C
, C = −∂B

∂d
. (3.29)

The coefficients A and C must be determined from the solution of the inner prob-

lem. For σ ¿ 1 part of this task can be accomplished analytically, as explained

later in this section. For σ ∼ 1 a numerical solution, such as the one discussed in

Sec. 3.3, seems to be the only alternative.

Our results comply with a general theorem, [44] which states that in the asymp-

totic limit k = iκ → 0 the scattering phase shift δ(k) satisfies the equation

(π/2) cot δ(k) = ln(k/2) + f(k2) , (3.30)

where f(z) is some analytic function. This theorem is valid for a general short-

range potential in two dimensions. For a bound state cot δ(k) should be replaced
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by i, leading to

ln
(√

µEB/2
)

+ f(−µEB) = 0 , (3.31)

which is in agreement with our Eq. (3.28). Our derivation has the advantage

of showing that the proper dimensionless combination in the argument of the

logarithm is
√

EB/E0 and that the asymptotic behavior (3.11) is realized at EB ¿
E0.

3.2.3 Binding energy for small mass ratios

Although the electron-hole mass ratio is not truly small in typical semiconduc-

tors, it is interesting to examine the case σ ¿ 1 from the theoretical point of view.

At such σ the exciton interaction potential V can be meaningfully defined at all

distances using the Born-Oppenheimer approximation (BOA). [45, 46] In addition,

the radial wavefunction can be computed everywhere with accuracy O(σ).

The distance r between excitons is no longer a physically reasonable variable

when the four particles approach each other closely and their partitioning into

excitons becomes ambiguous. In the BOA this problem is mitigated by selecting R

— the distance between the heavy charges — to be the radial coordinate of choice.

The ground-state biexciton wavefunction is taken to be

Ψ = χ(R)ϕ(R, r1, r2) , (3.32)

where ϕ is the ground-state of two interacting electrons subject to the potential of

two holes fixed at positions R1,2 = ±R/2:

HBOAϕ =
[−∇2

1 −∇2
2 + UR(r1, r2)

]
ϕ = UBOAϕ . (3.33)

Here UBOA(R) is the corresponding energy. In turn, χ(R) is found from

−1 + σ

R

d

dR
R

dχ

dR
+ µ [UBOA(R)− EBOA] χ = 0 . (3.34)

The BOA is known to have O(σ) accuracy. In principle, it can be systematically

improved. [47] However, since below we will be solving Eq. (3.34) by means of the

quasiclassical approximation, which itself is known to be accurate only up to O(σ),

this is unwarranted.
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Dropping all inessential O(σ) terms, we can simplify Eq. (3.34) as follows:

− 1

R

d

dR
R

dχ

dR
+

[
κ2 + µV (R)

]
χ = 0 , (3.35)

V (R) ≡ UBOA(R)− UBOA(∞) . (3.36)

Our task is to solve this equation with boundary conditions |χ(0)| < ∞ at the

origin and

χ(R) ' I0

(√
b

R

)
− 4c2K0

(√
b

R

)
(3.37)

at b ¿ R ¿ b1/3κ−2/3, with c2 given by Eq. (3.25).

We reason as follows: in order to have a bound state, potential V (R) must

be negative over some range of R. It can be shown that this occurs in a single

contiguous interval, see Fig. 3.4 and Sec. 3.3. Inside of this interval there is a

classically allowed region, µV (R) < −κ2, where function χ(R) reaches a maximum.

As we approach the dissociation threshold, this region shrinks. Near the threshold

it becomes very narrow, so that the quadratic approximation

µV (R) ' −κ2 +
1

2
µV ′′ (R−R−)(R−R+) (3.38)

becomes legitimate. Here R− and R+ are the turning points. To construct the

desired solution we simply need to match χ(R) in the classical region, R− < R <

R+, inside the tunneling region, R+ ¿ R ¿ b, and in the far field, R À b. Details

of this calculation are outlined in Appendix B. The result is

A = 4
(π

e
σV ′′

)1/2

exp(−2S0) , (3.39)

S0 =
1√
2σ

∞∫

R+

dR
√

V (R) , (3.40)

B = |V (R0)| −
√

σV ′′ , (3.41)

where R0 = (R+ + R−)/2 is the point where V (R) has the minimum.

Equations (3.29) and (3.39) imply that the coefficient D in Eq. (3.11) and the

range of d [Eq. (3.10)], where Eq. (3.11) applies, is proportional to the exponentially

small factor e−2S0 at σ ¿ 1. We expect that D grows with σ and by extrapolation,

reaches a number of the order of unity at σ ∼ 1.
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Figure 3.4: Sketch of the interaction potential V (R) and the exciton wavefunction
χ(R) for the Born-Oppenheimer limit σ ¿ 1.
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A few other properties of function dc(σ) can also be deduced analytically. For

example, Eq. (3.41) implies that

dc(0)− dc(σ) ∝ √
σ , σ ¿ 1 . (3.42)

Hence, dc(σ) has an infinite derivative at σ = 0 and so initially decreases with σ.

At some σ, however, dc(σ) must start to increase. Indeed, due to the electron-hole

symmetry, the combination dc(σ)/(1 + σ) must have a vanishing derivative [48] at

σ = 1. Therefore,

d′c(1) = dc(1)/2 > 0 . (3.43)

Finally, we have a strict upper bound [48]

dc(σ) ≤ (1 + σ)dc(0) . (3.44)

All of these properties are borne out by our Fig. 3.1. Still, a purely analytical

solution of the biexciton problem does not appear to be possible at any σ. In the

next section, we approach it by numerical calculations.

3.3 Numerical simulations

In order to verify our analytical predictions and other results in the litera-

ture [33, 40], we have carried out a series of numerical calculations using the SVM.

To implement this method we customized the published SVM computer code [20]

for the problem at hand. In the SVM one adopts a nonorthogonal basis of corre-

lated Gaussians in the form [42]

Gn = exp

(
−1

2
x†Bnx

)
, (3.45)

from which a variational wavefunction of given electron and hole spins (S and s,

respectively) is constructed:

ψ = A [Gn({rν})ΥS,s] . (3.46)

Here x is a 3×1 vector of Jacobi coordinates (linear combinations of differences in

particle coordinates in which the kinetic energy separates), Bn is a positive-definite
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3× 3 matrix, A is the antisymmetrizer, and ΥS,s is the spin wavefunction. All our

SVM calculations are done for the spin-singlet state S = s = 0. Note that Gn

corresponds to the zero total momentum of the system.

The number of basis states is grown incrementally until the energy is converged

or the prescribed basis dimension (typically 700) is reached. At each step a new

quadratic form Bn is generated randomly. If adding the corresponding function Gn

to the basis improves the variational energy significantly, this Gn is kept; otherwise,

a new Bn is generated by varying some of its matrix elements. Details can be found

in Refs. [42] and [20].

Our numerical results for σ = 0.5 and σ = 1 are given in Table 3.1 and plotted

in Fig. 3.2. In Fig. 3.5 we replot the binding energy EB for σ = 1 in a form suitable

for testing Eq. (3.11):

1

ln(E0/EB)
=

dc − d

D
+

(dc − d)2

D1

. (3.47)

Here we take into account one more term in the Taylor expansion of the right-hand

side of Eq. (3.27) compared to Eq. (3.28). Extrapolation of the data to EB = 0

gives us dc. The uncertainties in this parameter are estimated by imposing a 95%

confidence level on the fit coefficients dc, D, and D1. The same procedure has been

applied to several other mass ratios in the interval 0.1 < σ ≤ 1. The results for

dc are shown in Fig. 3.1. Their comparison with other results in the literature will

be addressed in Sec. 3.4.

At σ ≤ 0.1 the range (3.10) of d where Eq. (3.11) applies is exponentially

small. Even with our highly accurate numerical method we were not able to

probe this range. Thus, we assumed that the nonanalytical correction Ac2(EB) is

undetectable on the background of EB in Eq. (3.27), so that our numerical results

for EB(d) at such σ are dominated by the regular contribution

EB = C(dc − d) + C1(dc − d)2 + . . . (3.48)

Accordingly, at σ ≤ 0.1 we deduced dc from the fit of EB(d) to a quadratic poly-

nomial. Additionally, we confirmed that at σ = 0.2 the two fitting procedures give

similar results: dc = 0.59± 0.01 per Eq. (3.47) vs . dc = 0.58± 0.01 per Eq. (3.48).
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Ref. [33]. The thicker line is the fit to Eq. (3.47), which yields dc = 0.87±0.01 with
a 95% confidence level. The other line is Eq. (3.9) with α and β from Ref. [33].
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Finally, we have computed the electron and hole densities in the biexciton as

a function of their distance from the center of mass. Examples are presented

in Fig. 3.6 for d = 0.0 and d = 0.3. In the latter case the particles are on

average further away from the center of mass. The same trend is also seen in the

average root-mean square separations between various particles, which are plotted

in Fig. 3.7. Their accelerated growth with d occurs because the biexciton becomes

less bound and eventually dissociates.

3.4 Discussion

Let us compare our results with previous theoretical work. Early studies of

the biexcitons based on Hartree-Fock [39] or Heitler-London [49] approximations

provided initial evidence for the existence of a finite threshold dc for the biexciton

dissociation. However, they gave a considerably lower dc that we find here because

these approximations did not account for all correlation effects essential to the

biexciton stability.

Comparing with more recent calculations [33] of the biexciton binding energies

by the DMC technique, we find an overall excellent agreement. Still, our SVM

occasionally slightly outperforms the DMC, see Table 3.1. Furthermore, in the

SVM the estimate of the ground-state energy decreases at each step, so that the

statistical noise is never an issue, unlike in the Monte-Carlo methods. Neither the

SVM nor the DMC is able to compute arbitrarily small binding energies; therefore,

in order to determine dc, an extrapolation to EB = 0 is necessary. The clarification

of what extrapolation formula should be used for this purpose is an important

finding of this work. Equation (3.47) represents the true asymptotic behavior in

the limit of small EB and indeed describes our numerical results at such EB better

than the interpolation formula (3.9) plotted alongside for reference.

Another recent theoretical work on biexcitons used a Born-Oppenheimer-like

approximation. It differs from the usual adiabatic BOA described in Sec. 3.2 by

using the exciton mass M = me + mh instead of the heavy particle mass me,

i.e., by replacing 1 + σ by unity in Eq. (3.34). The adiabatic BOA is known to
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give a strict lower bound on the ground state energy. [50] The approximation of

Ref. [40] decreases the kinetic energy and thus lowers the ground state energy EXX

even further. On the other hand, our SVM, being a variational method, gives a

strict upper bound for EXX . Since the energy of a single exciton EX is usually

computed extremely accurately, our binding energies EB = 2EX −EXX should be

smaller than those of Ref. [40]. By digitizing Fig. 5 of Ref. [40] we found that this

is indeed true for d > 0.015ae and σ = 0.5. Accordingly, their estimates of the

threshold interlayer separation dc should exceed ours. Surprisingly, for all σ shown

in Fig. 3.1, our dc are higher than those reported in Ref. [40]. The discrepancy

is much larger than the uncertainty of dc from our extrapolation procedure. We

suspect that the problem is again related to the manner in which the EB → 0

extrapolation was performed in Ref. [40]. In any case, a significant discrepancy in

dc is seen only at σ ∼ 1. At small mass ratios, where the approximation of Ref. [40]

becomes accurate to the order O(σ), our results are in better agreement.

Turning to the experimental implications of our theory, observations of biex-

citons in single quantum well systems have been reported by many experimental

groups. [25, 26, 27, 28, 29, 30, 31, 32] In contrast, no biexciton signatures have ever

been detected in electron-hole bilayers. Let us discuss how this can be understood

based on our results.

The first point to keep in mind is that the biexciton dissociation threshold

dc plotted in Fig. 3.1 is a zero-temperature quantity. For the biexcitons to be

observable at finite temperatures, EB must exceed kT by some numerical factor.

(As usual in dissociation reactions, [51] this factor is larger the smaller the exciton

density is.) The coldest temperature demonstrated for the excitons in quantum

wells is T ∼ 0.1 K [Ref. [52]]. The maximum separation d∗ between the two-

dimensional electron and hole layers at which biexcitons are still physically relevant

in such structures can be roughly estimated from

EB(d∗) = 10−3 Rye . (3.49)

Function d∗(σ) is plotted by triangles in Fig. 3.1. In GaAs quantum wells we

have [53] σ ≈ 0.5, ae = 10 nm, and so d∗ ≈ 4.5 nm. In comparison, the small-

est center-to-center separation that has been achieved in GaAs/AlGaAs and In-
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GaAs/GaAs quantum wells without compromising the sample quality is at least

twice as large. [2] Cold gases of indirect excitons have also been demonstrated in

AlAs/GaAs structures, [34] in which d is smaller, d = 3.5 nm. But the electron

Bohr radius is also smaller, ae ≈ 3 nm, so, unfortunately, the dimensionless d is

about the same.

A more serious obstacle to the creation and observation of biexcitons is disorder.

A rough measure of disorder strength is given by the linewidth of the exciton optical

emissions, which is currently ∼ 1 meV, i.e., of the order of 0.1 Rye in GaAs. EB

becomes smaller than this energy scale as soon as d exceeds the thickness of a

few atomic monolayers, see Fig. 3.2. Actually, if the disorder were due to a long-

range random potential, it might still be possible to circumvent its influence on the

measured optical linewidth by interferometric methods such as quantum beats. [27,

29] In reality, a short-range random potential is probably quite significant.

One potentially promising system for the study of the biexciton stability di-

agram is a single wide quantum well subject to an external transverse electric

field. [54] If the well is symmetric and the applied field is zero, we have d = 0. A

finite field can pull electrons and holes apart, leading to d > 0. Of course, for such

a structure one should recalculate the stability diagram of Fig. 3.1 by taking into

account the motion of particles in all three dimensions.

Although it is challenging to observe the binding of free indirect excitons, in

experiments they can be loaded and held together in artificial traps. [55] We an-

ticipate that the SVM can be a powerful tool to study systems of a few trapped

excitons theoretically, complementing recent Monte-Carlo work. [56]

To summarize, we have obtained the most accurate estimates to date of the

binding energies of two-dimensional biexcitons. Future work may include a refined

study of exciton-exciton scattering [40] and interacting excitons in traps.

Recently Lee et al. [63] reported a new calculation of the biexciton binding

energy EB as a function of σ by the DMC. This time in order to determine dc they

adopted our interpolation procedure, i.e.,

[ln(E0/EB)]−1 = −dc − d

D
+ . . .

These calculations are in excellent agreement with the results of our work at σ >
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0.2. At lower σ, where our method is less accurate, Lee et al. were able to find

biexciton trial states of slightly higher values of EB (and therefore slightly higher

dc). According to the variational principle, these values should be considered more

accurate than ours.



Chapter 4

Excitons in artificial traps

4.1 Introduction

In order to obtain a more thorough understanding of a physical system, it is

advantageous to have as many tunable experimental parameters as possible. These

experimental parameters permit a more comprehensive probing of the system in

question. In the study of indirect excitons, this may be accomplished by the use

of electrostatic traps. These electrostatic traps allow for the creation of variable

one-dimensional and two-dimensional potential wells in which the excitons can be

trapped and their density controlled. In this chapter, recent experiments using

these traps are investigated. These experiments allow for the study of various as-

pects of the indirect exciton, namely the interexcitonic interaction and the diffusive

characteristics of the excitonic gas.

The first set of experiments to be considered investigates indirect excitons

in electrostatic lattices, see Figure 4.1. These lattices create a series of one-

dimensional potential traps, see Fig. 4.2. As explained in Section 2.3, in ex-

periments without these electrostatic traps, the excitonic gas is localized in the

excitation region until a certain density of excitons is reached. It is observed that

the electrostatic traps prolong this localization in the spatial direction perpendic-

ular to the traps, since a “potential hill” must be overcome in order to move in the

perpendicular direction. Each time a potential hill is traversed, the gas is trapped

until the energy reaches the percolation point and “climbs” over the neighboring

49
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Figure 4.1: Diagram of the electrostatic gates used in the one-dimensional lattice
experiments.
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“potential hill,” see the cartoon in Fig. 4.3. This model is verified in experimental

results. In Fig. 4.4 (a) the progress of the gas in the y-direction is greater than

in the x-direction where the traps impede the movement, causing the shape of the

gas to be oval as opposed to a more circular shape when no traps are present, as

seen in Fig. 4.4 (b).

In this chapter, a theoretical model is proposed in which the electrochemical

potential

ζ = µ(x) + U(x) = const , (4.1)

is expected to be constant. This is because the diffusion length LD =
√

D/R is

typically longer than the period of the potential U(x). Hence, the excitons should

be able to adjust to the external potential in a quasi-equilibrium fashion, despite

their lifetime 1/R being finite. With this approximation, one can compute the

density as a function of the chemical potential µ. This can in turn be compared

with experimental results and an estimate of the excitonic interaction strength, g,

is obtained. This estimate is important since the value of the interaction strength

remains an open question (see Section 2.3). The exciton-exciton interaction is

discussed further in Section 4.3.2.

The experimental setup is similar to that in Section 2.3, with electrostatic gates

added as in Fig. 4.1. These gates lead to an electrostatic lattice with an additional

electric potential in the x-direction of

U(x) = U0 cos2 (qx/2) , (4.2)

as in Fig. 4.2. For this specific experiment, U0 is set at 1.85 meV and the lattice

period is 2π/q = 2 µm.

In the second experiment, a diamond-shaped trap is employed. This leads to a

two-dimensional flat-bottomed potential of the form similar to that in Fig. 4.8. The

sharpness and depth of this potential well can be closely controlled. In addition, the

excitons can be confined in both the x and y directions. This permits a fine-tuning

of the density of excitons. As with lattices, this diamond-shaped trap confines the

excitons and prolongs their localization.

In this case, the traps are much larger and a static case is no longer valid (the

length of the trap exceeds the diffusion length LD). Therefore, a semi-classical
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Figure 4.2: One-dimensional lattice with shape as in Eq. (4.2).
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drift-diffusion model is employed with equation (similar to Ivanov [24])

∂n

∂t
+∇ · Jn + Rn = G, (4.3)

where n is the indirect exciton density, R is the recombination rate of indirect

excitons, G is the generation rate of indirect excitons, and Jn is the indirect exciton

particle current, given in Eq. (4.16).

Comparing this model with experimental results, one can obtain estimates of

the diffusion coefficient D and the interaction strength g. A fundamental theoreti-

cal understanding of these excitons is important to the planning and implementa-

tion of future experiments with electrostatic traps. What follows is a description

of the two theoretical models employed in these experiments and a discussion of

theoretical results.

4.2 Discussion

4.2.1 Lattices

Let us make three simplifying assumptions: 1) the lattice potential U(x) =

(Ulat/2) cos qx acting on the excitons can be considered smooth, 2) the excitons

are in a state of thermodynamic equilibrium at temperature T , and 3) the pho-

toluminescence signal is collected over a restricted range of transverse momenta

|k| < Q, where Q is small enough that it can be treated as zero for calculating

exciton energies yet is large enough that the spatial resolution is smaller than the

lattice period 2π/q. Under these assumptions, the condition for the equilibrium is

that the electrochemical potential is constant:

ζ = µ(x) + U(x) = const , (4.4)

where µ(x) is the local chemical potential. In turn, the local photoluminescence

frequency is determined by

ω(x) = ζ + Ek=0 − µ(x) , (4.5)
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Figure 4.3: Cartoon demonstration of trap dynamics. (a) Excitons are trapped in
lattice. As density increases due to laser power increase (b) eventually the excitons
reach the percolation point. Finally as the excitons (c) “spill over” into neighboring
traps they are again localized.
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Figure 4.4: Example of two-dimensional photoluminescence pattern from experi-
ment by Butov group. Top: Lattices with ∆V = 1.2 V. Bottom: Lattices with
∆V = 0 V. Temperature is T = 1.6 K and excitation power is Pex = 12 µW [4].
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Figure 4.5: The calculated modulation δω = ωmax − ωmin of the photolumines-
cence frequency as a function of the interaction strength g assuming kBT = 0.16,
Ulat = 3.7, and ζ = 3.7 (all in meV). The experimental point, shown by the cross,
corresponds to g ≈ 3.0. The value of g predicted by the “capacitor” formula is
indicated by the arrow.
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where Ek is the single-particle excitation energy in the system, the real part of the

pole of the exciton Green’s function. Spatially varying ω(r) is possible only in the

normal phase, where

Ek = εk + Σk (4.6)

remains nonzero (positive). Here εk = ~2k2/(2m) is the single-particle energy and

Σk is the self-energy. In this case,

ω(x) = ζ + Σ0 − µ(x) . (4.7)

In contrast, in the superfluid phase E0 = µ(x) and ω(x) = ζ = const, which is

apparently not the case experimentally.

Let us find the relation between µ(r), the local exciton concentration n(r), and

Σ0 in the normal phase. We have:

n = G
∫

d2k

(2π)2
f(εk + Σk − µ) , (4.8)

where G = 4 is the spin degeneracy and f(ε) is the Bose-Einstein distribution

function. The interaction has the form

Σk =

∫
d2r′V (r − r′)n(r′) ,

where V (r− r′) is the interexcitonic potential and n(r′) is the density of excitons.

Within the Hartree-Fock approximation,

Σk = V0n +
1

G
∫

d2k

(2π)2
Vk−qf(Eq − µ) , (4.9)

where Vk is the exciton interaction potential. For elementary bosons with short-

range interactions, Vk ' V0, and therefore

Σk =

(
1 +

1

G
)

V0n ≡ g

ν1

n . (4.10)

The two terms in parenthesis represent the Hartree and the Fock (exchange) con-

tributions, respectively. Excitons, which are composite bosons, can exchange their

constituents, so the Fock term can be somewhat larger.
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Figure 4.6: Top: Equilibrium density profile in the Hartree-Fock approximation.
Bottom: Lattice potential U (divided by 20) and the PL frequency ω (with the
average subtracted) vs . x.
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To characterize the strength of the interaction, we define the dimensionless

quantity g = V0ν1(G+ 1)/G, where ν1 = m/(2π~2) is the density of states per spin

species. Note that the “capacitor” formula predicts

gcap =
G + 1

G
2D

ae

(
1 +

mh

me

)
≈ 9 , (4.11)

see Fig. 4.5.

With the above definition, Eq. (4.10) becomes

Σk =
g

ν1

n . (4.12)

Substituting this into Eq. (4.8) we have

n = G
∫

d2k

(2π)2

1

exp[β(εk + g
ν1

n− µ)]− 1
.

Converting this to an integral over epsilon produces

n = G
∫ ∞

0

dε
ν(ε)

exp[β(εk + g
ν1

n− µ)]− 1

and with a little adjusting,

n = Gν

∫ ∞

0

dε
exp[−β(εk + g

ν1
n− µ)]

1− exp[−β(εk + g
ν1

n− µ)]
.

Finally we arrive at the transcendental equation for n:

n =
Gν1

β
ln

[
1− exp

(
µν1 − gn

Tν1

)]
. (4.13)

Given ζ, T , and g, the system of Eqs. (4.4) and (4.13) can be easily solved numer-

ically for each U(x):

exp

(
µν1 − gn

Tν1

)
+ exp

(
− βn

Gν1

)
= 1. (4.14)

The results for n(x) and ω(x) are shown in Fig. 4.6. From this calculation we

can also determine δω ≡ ωmax − ωmin. Treating g as an adjustable parameter,

we obtained the dependence δω(g) plotted in Fig. 4.5. In the experiment δω =

0.065 meV and 〈ω〉 = 3.7 meV, which can be reproduced assuming ζ = 3.7 meV

and g = 3.0, see Fig. 4.5.
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4.2.2 Drift-diffusion model

We start with the two-dimensional quantum diffusion equation

∂n

∂t
+∇ · Jn + Rn = G, (4.15)

where n is the indirect exciton density, R is the recombination rate of indirect

excitons, G is the generation rate of indirect excitons, and Jn is the indirect exciton

particle current

Jn = −D
dn

dµ0

∇ [U + cn + µ0(n)] , (4.16)

where c is a constant representing the exciton-exciton interaction and µ0 is the

“bare” chemical potential (due to kinetic energy only) given by

µ0(n) = T ln
(
1− e−n/Gν1T

)
= T ln

(
1− e−T0/T

)
. (4.17)

Here, T0 is the degeneracy temperature

T0 =
n

Gν1

, (4.18)

where G is the spin degeneracy and ν1 is the density of states. Note that c is

related to the interaction constant g from Section 4.2.1 by the formula

c =
g

ν1

. (4.19)

It is illuminating to investigate two limiting cases for Eq. (4.15). First, when the

diffusion coefficient D is very large compared to R and G we have

∇ [U + cn + µ0(n)] = 0 (4.20)

or

U + cn + µ0(n) = const , (4.21)

where this is simply the chemical potential and a restatement of the static case,

Eq. (4.4), from Section 4.2.1 where

µ(x) = cn + µ0(n) . (4.22)
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In the opposite limit where the diffusion coefficient D is very small compared to

R and G, we have

Rn = G (4.23)

or

n =
G

R
(4.24)

in the steady state.

By differentiating Eq. (4.19) we have

dn

dµ0

= Gν1

(
eT0/T − 1

)
. (4.25)

If we make the substitutions τ = T0/T and γ = Gcν1, the diffusion equation takes

the form
∂τ

∂t
+∇ · Jτ + Rτ =

G

Gν1T
, (4.26)

with a particle current given by

Jτ = −D (eτ − 1)∇
[
U

T
+ γτ + ln

(
1− e−τ

)]
. (4.27)

This can be rewritten as

Jτ = −D (eτ − 1)

(
∇U

T

)
−Deff∇τ , (4.28)

with Deff given by

Deff = D [γ( eτ − 1 )+1] . (4.29)

In the steady state, Eq. (4.26) may be expressed as

∇ · Jτ + Rτ =
G

Gν1T
, (4.30)

where Jτ is

Jτ = −Deff∇τ + Jcon (4.31)

and Jcon is

Jcon = −D (eτ − 1)

(
∇U

T

)
. (4.32)

This set of equations is equivalent to equation 1 from Reference [24]. In the

appendix we quickly show this equivalence.
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Comparisons of the drift-diffusion model and with experimental results show

a qualitative agreement [62]. The experimental results are consistent with an

interaction constant of g = 3, as in Section 4.2.1. Furthermore, the model leads

to a diffusion coefficient on the order of D ≈ 20 µm [62], which is consistent with

previous work [24].

4.3 Appendix

4.3.1 Equivalence of diffusion equation

If we begin with Eq. (4.16) and input our expressions for the chemical potential

and for the derivatives of the chemical potential, we have two terms:

−DGν1

(
eT0/T − 1

)∇ [U + cn] (4.33)

and

−DGν1

(
eT0/T − 1

)∇ [
T ln

(
1− e−T0/T

)]
. (4.34)

From Ivanov’s definition of the mobility,

µx = D
(
eT0/T − 1

)
/T0 , (4.35)

we can rewrite Eq. (4.33) as

−µxn∇ [U + cn] . (4.36)

With the gradient in Eq. (4.34), we can rewrite it as

−D∇n. (4.37)

Finally, Eqs. (4.36) and (4.37) give us

− (D∇n + µxn∇ [U + cn]) , (4.38)

which is the indirect exciton particle current term in Reference [24].
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4.3.2 Interexcitonic interaction

There is much interest in determining the interaction strength between two

indirect excitons. To compute the interaction, we add the interaction of all other

indirect excitons:

U =
N∑
j

V (r− rj). (4.39)

Here V (r− rj) is the potential felt between two excitons with a separation of d:

V (r− rj) = 2

(
e2

r
− e2

√
r2 + d2

)
. (4.40)

First, one can turn Eq. (4.39) into an integral as such:

U =
N∑
j

V (r− rj) =

∫
d2r′V (r− r′)n (r′) . (4.41)

This depends on the density of the excitons. The simplest approximation assumes

the density is constant, as in Fig. 4.7. In this case, we have a situation very similar

to that of a parallel plate capacitor. One can calculate the energy at the top plate

as

ψtop =

∫
d2nr′

(
e2

r
− e2

√
r2 + d2

)
, (4.42)

and the bottom plate as

ψbot = −
∫

d2nr′
(

e2

r
− e2

√
r2 + d2

)
. (4.43)

Altogether, we have

ψtop − ψbot =

∫
d2nr′

(
e2

r
− e2

√
r2 + d2

)
= U . (4.44)

However, this is also the potential due to a parallel plate capacitor, which we will

call UC . Therefore one can find

U = UC =
4πne2d

ε
. (4.45)

This approximation is referred to as the “capacitor” formula.
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4.3.3 Diamond-shaped trap

To analytically model the diamond trap potential, we have

w(x) =





Ly(1− |x|
Lx

) if |x| < Lx

0 if otherwise
, (4.46)

an arbitrary diamond-shaped pattern in the x − y plane with a length Lx and

height Ly. Next, a box shape is created with the function

B(x,w, a) =
1

2

[
tanh

(
x + w

a

)
− tanh

(
x− w

a

)]
. (4.47)

An example of this box shape is plotted in Fig. 4.9. It has a height of unity, and

the sharpness of the box is determined by a. The smaller the value of a the more

box-shaped (square) the function will be. The diamond-shaped potential can then

be expressed as

U(x, y) = −VtrapB(y, w(x), a). (4.48)

A plot of an example diamond trap potential can be found in Fig. 4.8.

4.3.4 Useful relationships

The center of the diamond-shaped potential is very flat, and one may approx-

imate it as zero (U = 0), which leads to Eq. (4.32):

Jcon = −D (eτ − 1)

(
∇U

T

)
= 0. (4.49)

This leads to

Jτ = −Deff∇τ, (4.50)

which makes the diffusion equation

−Deff∇2τ + Rτ = G′. (4.51)

Converting τ back to density we have

−Deff∇2n = −G (n− n̄) , (4.52)
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Figure 4.7: Diagram of excitons in “capacitor” formula.
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Figure 4.8: Plot of potential U(x, y). Here Vtrap = 1 and a = 0.5.
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Figure 4.9: Plot of Eq. (4.47). The sharpness of the sides of the box are determined
by the constant a. In this figure a = 1 and w = 5.
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remembering that n̄ = G/R and

Deff = D [Γ (eτ − 1) + 1] . (4.53)

This is analogous to the Laplace equation, where n → φ and

ρ → 1

4π

R

Deff

(n− n̄) . (4.54)



Chapter 5

Concentration-dependent

mobility in organic field-effect

transistors

5.1 Introduction

The study of the semiconducting characteristics of organic materials has at-

tracted much research interest. The organic field-effect transistor (FET) is one of

the most important applications of organic materials. Studies aim to optimize the

performance of organic FETs due to the relative inexpensiveness of these mate-

rials. Significant disorder, polaronic, and interaction effects complicate transport

mechanisms in organic materials. Therefore, standard model assumptions which

are adequate in inorganic devices may be unfeasible. For instance, the canonical

model of the FET [64] assumes that the mobility µ is independent of the areal

carrier density N in the accumulation layer, while theoretical and experimental

studies of organic conductors conclude the opposite [65, 66, 67]. Unfortunately,

the nonlinearity of the contact resistance complicates the extraction of mobility

from traditional transport measurements. Additional assumptions are usually nec-

essary [68]. Recently, a powerful alternative to transport measurements has ap-

peared: the direct imaging of the charge distribution in the device. Thus, scanning

68
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potentiometry studies [69, 70] of an organic FET based on poly-3-hexylthiophene

(P3HT) give detailed information about carrier injection and transport, includ-

ing the interesting regime of current saturation [64] where the charge density in

the FET is strongly inhomogeneous. Furthermore, recent experiments show [71]

that it is possible to image the accumulation layer of organic FETs using scan-

ning infrared spectroscopy (SIRS). Both methods are able to measure the local

carrier density avoiding artifacts due to the contacts, but SIRS also provides the

spatially-resolved excitation spectrum.

In this chapter we show that an idealized FET model [64] fails to account for

charge density profiles seen in new SIRS data not previously reported. We recount

physical arguments that the mobility is density-dependent,

µ = const ×Nβ, β = (E∗/kBT )− 1 ≥ 0, (5.1)

and show that this imaging experiment is consistent with this law. Here E∗ is the

characteristic energy scale of the disorder, which may vary from one device to the

next. As a result, the exponent β is not known beforehand and must be determined

by its fit to the data. In our case, β ranges between 1 and 4 at T = 300 K, where all

the measurements are taken. This implies E∗ ∼ 0.1 eV, which agrees by the order

of magnitude with other known experimental measurements of this quantity in

P3HT [72]. The power-law behavior (5.1) has also been observed in other organic

conductors [65].

5.2 Experiment description

Let us proceed to the description of the SIRS experiment, carried out by the

Basov group at UCSD. SIRS was employed to image the injected charges in organic

FETs. The structure of the FETs is shown in Fig. 5.1. In these bottom-contacted

devices, source and drain Au electrodes were deposited on TiO2/n-Si substrates

followed by the coating of a 4-6 nm thick P3HT film, which served as the electron-

ically active material. The spectroscopic signatures of injected charges in P3HT

are the polaron band and the infrared-active vibrational modes, which can be de-

tected by measuring the voltage-induced absorption of the FET [71]. To examine
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the length scales associated with charge injection, devices were fabricated where

source and drain electrodes are tilted with respect to each other. This gives a

Λ-shaped pattern [Fig. 5.2] with the separation between electrodes ranging from

10 µm to 4 mm. By scanning a focused infrared beam 50-100 µm in diameter across

the Λ-shaped region and spatially monitoring spectroscopic fingerprints of the in-

jected charges, the charge density profile in the conducting channel of the FET

was obtained. In Fig. 5.3, one finds a plot of the deduced change in charge density

(compared to ungated FET) as a function of separation x from the source elec-

trode normalized by data at x = 0, N(x)/N(0), for three representative devices.

The most interesting result of this experiment is that the injected charge density

decays with the distance x from the source and drops to zero at x ∼ 800 µm.

In comparison, the potentiometry experiments of Bürgi et al. [70] used FETs

of a similar design, but with a channel of only ∼ 5 µm wide and a dielectric of

only SiO2. It was found (Fig. 5.4) that the surface potential Φ in the channel can

vary in a manner reminiscent of Fig. 5.3. To a good approximation, this potential

is linearly related to the local charge density N , and so in both experiments N

exhibits a gradual decay of a characteristic concave shape and nearly vanishes at

the rightmost point.

However, the reasons for the density inhomogeneity in the two experiments are

different. In the larger area FETs it is caused by the current leakage through the

dielectric. The charges injected by the source never reach the drain. In Ref. [70],

the decay of N is dictated mainly by the large bias voltage (pinch-off effect [64]),

and the width of the charge profile is simply the channel width. Nevertheless, we

show that both types of experiments can be used to extract the N -dependence of

mobility. Here we ignore a possible field-dependence of µ because P3HT is of a

rather high mobility, 0.05 < µ < 0.12 (in units of cm2/Vs) where non-Ohmic effects

are not as important as in other, less-conducting organics [66, 67], and also because

T was relatively high. (No significant field-dependence was found experimentally

at such T [70, 74].)
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5.3 Discussion

We start with the analysis of our experiment where a relatively large current

leakage jl through the dielectric [74] was detected. The tunneling resistance per

unit area of the dielectric ρl = V/jl was a strong function of V , the voltage differ-

ence between the polymer and the gate, at V < 5 V. At higher V , parameter ρl was

observed to be approximately constant [74], and we assume this is the case below.

In the gradual-channel approximation appropriate for our FETs, the balance of

the surface current is

js = −σ∇V (5.2)

and leakage current reads

∇ (σ∇V ) = V/ρl. (5.3)

For the sheet conductivity σ we adopt the model form σ = σa + σr, where σa and

σr is the sheet conductivities of the accumulation layer and the residual mobile

charges, respectively. Initially, let us make the conventional assumptions that (i)

µ ≡ σa/eN = const, (ii) σr is negligible, and (iii) V = eN/C, where C = const is

the capacitance per unit area (C ≈ 0.14 µF/cm2 in these FETs). Using Eq. (5.3),

we get

∇ (N∇N) = N/(eµρl). (5.4)

An analogy may be drawn here between Eqs. (5.4) and (4.30). Both equations

involve the diffusion of particles, excitons in Chapter 4 and electrons here in Chap-

ter 5. The terms N/(eµρl) and Rn are analogous and represent particle loss in

the system due to leakage of electrons and recombination of excitons, respectively.

Furthermore the interaction terms, the so-called capacitor formulas V = eN/C for

electrons and Σ0 = gn/ν1 [Eq. (4.12)] for excitons, are strikingly similar as well.

Note that here g is not too far from the “plate capacitor” estimate, Eqs. (4.11)

and (4.45).

Since the characteristic length of charge inhomogeneity is smaller than the

lateral extension of the source and drain electrodes in the Λ-shaped region [Fig. 5.2],

it is permissible to treat them as infinite metallic half-planes, x < 0 and x > L,

respectively. In this case, all variables depend only on coordinate x ∈ (0, L).
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Suppose first that L is very large (the source and drain are far apart). Then the

physically relevant solution of Eq. (5.4) is

N(x) = N(0)[1− (x/x∗)]2, x < x∗ ≡
√

6σ(0)ρl. (5.5)

Interestingly, it predicts that there is a well-defined cutoff length x∗ for the charge

injection. Treating x∗ as an adjustable parameter, we plot Eq. (5.5) in Fig. 5.3 (the

curves labeled β = 0). On the other hand, we can estimate x∗ from typical values

of σ and ρl (deduced from the the transport and leakage current measurements [74,

71]), σ ∼ 10−7Ω−1, and ρl ∼ 105 Ω cm2. Equation (5.5) then entails x∗ ∼ 2500 µm.

Comparing with Fig. 5.3, we see that the curves do not agree particularly well

with this model, neither in their shape nor in the value of x∗. We conclude that a

modification of the model is needed.

We reason as follows: At low N , it is natural to assume that the chemical po-

tential ζ presumably resides in the density-of-states tail of disorder-induced traps,

but at temperatures of interest such traps are shallow (a few kBT deep). At tem-

peratures of interest (room temperature and somewhat below), the transport is

dominated by activation of carriers to the mobility edge; therefore,

σa ∝ exp(ζ/kBT ) (5.6)

(the mobility edge is taken to be the energy reference point). Because of this

exponential relation between the conductivity and ζ, the dependence of ζ on N is

amplified in σa, producing the sought nonlinear effect.

Next, the chemical potential ζ and the local carrier density N are related by

N =

∫
dEg(E)f(E) , (5.7)

where g(E) is the density of states and f(E) is the Fermi-Dirac distribution func-

tion. Although g(E) is not precisely known, in conducting polymers it is often

modeled by Gaussian or exponential forms [66], which are observed experimen-

tally [72]. In either case we obtain

N(ζ) ' Nt exp(ζ/E∗), (5.8)
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up to logarithmic factors. Here

E∗ > kBT (5.9)

is the characteristic energy width of the band tail and Nt is the total number of

states per unit area in this tail; hence,

ζ ' E∗ ln(N/Nt). (5.10)

Substituting this into the formula for σ, we obtain

σa ' σ∗(N/Nt)
β+1, (5.11)

where

β + 1 = E∗/kBT. (5.12)

Consequently, the mobility is

µ(N) ≡ σ/eN ∝ Nβ, (5.13)

in agreement with Eq. (5.1). We note that a nearly identical µ(N) dependence

also follows from the hopping transport model [66, 67]. Equation (5.1) was also

postulated in Ref. [68]. Substituting σ ∝ Nβ+1 into Eq. (5.4), we obtain

N = N(0)

(
1− x

x∗

) 2
β+1

, x∗ =

√
2 (β + 3) σ(0)ρl

β + 1
(5.14)

with Eq. (5.5) being recovered for β = 0. Three representative curves computed

according to Eq. (5.14) are plotted in each panel of Fig. 5.3. We see that for all of

the three FETs studied, one can find βs somewhere in the range 1 < β < 4 which

give a significantly better fit to experiment than β = 0, both in the functional

form and in the value of x∗. Apparently, Eq. (5.1) is more suitable for modeling

the charge injection profile in a “leaky” FET.

For future reference we mention that a refinement of the model including the

residual conductivity,

σ = σ∗(N/Nt)
β+1 + σr , (5.15)

predicts the injected charge density profile of the form

x

x∗
= −√u + a +

2
√

a

β + 3
ln

√
u + a +

√
a√

u + a−√a
+ const, (5.16)

u ≡ [N(x)/N(0)]β+1, a ≡ (β + 3)σr/[2σa(0)]. (5.17)
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Accordingly,

N(x) ∝ exp(−x/
√

σrρl) (5.18)

at x > x∗, i.e., it has exponential decay instead of the abrupt threshold predicted

by Eq. (5.14). However, since σr/σ(0) ∼ 10−4–10−3 (the on-off ratio) [74], the

pre-exponential factor of this tail is very small, producing apparently no signature

in this experiment, see Fig. 5.3.

We move on to the L < x∗ case where the charge is injected throughout the

channel (as in [70] and in SiO2 devices studied previously by Li et al. [71]). If a

finite bias VSD ≡ V (0)−V (L) is applied, Eq. (5.3) still holds but two adjustments

are in order. First, the right-hand side of Eq. (5.3) can be set to zero because we

can normally neglect the leakage current jl compared to the source-drain current

js. Second, when the pinch-off is approached, σr may no longer be negligible

compared to σa, and so a better approximation is [78]

σ = σ∗(N/Nt)
β+1 + σr. (5.19)

The current balance equation (5.3) remains solvable and its integral yields the

algebraic equation for N(x):

σ∗Nt

β + 2

(
N

Nt

)β+2

+ σrN =
Cjs

e
(xp − x), (5.20)

where xp is the integration constant. At the pinch-off, xp ≈ L. Also, at x not

too close to L the first term on the left-hand side dominates, so the charge profile

becomes very similar to that of the injection case, Eq. (5.14), except x∗ is replaced

by L and the power-law exponent (2/(β + 2)) is changed to a smaller number

(1/(β + 2)). This explains the visual similarity of the experimental results shown

in Figs. 5.3 and 5.4.

Equation (5.20) contains two adjustable parameters. We found that σr = 6.2

and β = 3.0 give a good fit to the Vg = −8 V trace in Fig. 7 of Ref. [70]. Bürgi

et al. themselves employed another fit, which is equivalent to σr and β = 1 in our

notations. They observed, however, that a good fit is achieved only if the data is

additionally shifted by 2 V in order to account for the residual charges. We found

this shift ad hoc. We think a more reasonable way to model this effect is using

parameter σr. However, this implies that β has some degree of uncertainty.
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5.4 Conclusion

In conclusion, whenever the charge profile in the organic semiconductor is

strongly inhomogeneous, as in the charge injection or the pinch-off regimes, the

proper modeling should include the density dependence of the carrier mobility.

The two experiments discussed are consistent with the power law (5.1), which has

a natural physical motivation.
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Figure 5.1: FET schematics.
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Figure 5.2: A sketch of the V-shaped electrodes between which the IR scans were
taken.
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Figure 5.3: Charge density profiles measured by the IR spectromicroscopy in three
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Appendix A

Rigorous bounds for the biexciton

binding energy

A.1 Proof

In this appendix we give a few strict upper bounds on EB, which enable us to

prove the nonexistence of stable biexcitons at sufficiently large d. The basic logic

of the proof was outlined in Sec. 3.2A. Here we provide the technical details.

Our starting bound is

EB ≤ max
R

ER , (A.1)

where

ER = inf spec H∞ − inf spec HR (A.2)

is the binding energy of the two-electron Hamiltonian HR = TR +UR whose kinetic

term is

TR = −(1 + σ)(∇2
1 +∇2

2) , (A.3)

and the potential term UR is given by Eq. (3.15). The Hamiltonian HR is similar

to that of the original problem [Eqs. (3.4)–(3.17)] except the holes are replaced by

static charges separated by a given distance R and the electron mass is made equal

to the reduced electron-hole mass.

To derive the inequality (A.1) we take advantage of the well-known theorem

that the ground-state energy as a concave function in the strength of an arbitrary
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linear perturbation. (This theorem follows from the variational principle.) For our

purposes we choose the perturbation in the form

∆Tj = ∇2
j −

(
d

dRj

)2

. (A.4)

We add it to the kinetic energy terms with the coefficient −σ ≤ τ ≤ 1, yielding

Tj → Tj + τ∆Tj. Hamiltonians H and HR are obtained by setting τ = 0 and

τ = −σ, respectively.

The perturbation leaves the reduced electron-hole mass invariant. Therefore, it

does not effect the ground-state energy EX of a single exciton. The energy EXX(τ)

does vary with τ and the aforementioned concavity property dictates

EXX(τ) ≥ 1− τ

1 + σ
EXX(−σ) +

τ + σ

1 + σ
EXX(1) . (A.5)

Since EXX(−σ) = EXX(1) by electron-hole symmetry, the right-hand side is equal

to EXX(−σ) for all τ . Consequently, τ = −σ gives the largest binding energy and

we arrive at the inequality (A.1).

If the kinetic energy TR is discarded, ER becomes equal to −Vcl(R, d) < 0. We

want to ascertain that quantum corrections do not change the sign of ER.

The quantum corrections appear in both EX and EXX. The former are well

understood. [38] The internal dynamics of the exciton in the large-d case is anal-

ogous to that of a two-dimensional harmonic oscillator with the amplitude of the

zero-point motion given by

〈|r1 −R1|2〉 = l2 , l = d3/4(1 + σ)1/4 ¿ d . (A.6)

The corresponding energy correction is

EX +
2

d
=

2
√

1 + σ

d3/2
−O

(
1

d2

)
. (A.7)

This result immediately restricts the range of R where the stable biexciton may in

principle exist. By positivity of the kinetic energy, ER < 2EX −Umin(R, d), where

Umin is defined in Sec. 3.2A. Therefore, ER > 0 may occur only at R that satisfy

Vcl(R) > 2EX +
4

d
. (A.8)
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In view of Eqs. (3.16) and (A.7), R must necessarily be much larger than d.

Choose an arbitrary d1 such that d ¿ d1 ¿ R. By definition of Umin,

UR ≥ Umin(R, d1) + VY (r1) + VY (r2) , (A.9)

VY (r) =
∑

t=±R/2

[v(r− t, d1)− v(r− t, d)] . (A.10)

Accordingly, ER < 2EX−Umin(R, d1)− 2EY , where EY is the ground-state energy

of a single electron subject to the potential VY (r) of four out-of-plane charges.

This potential has the shape of two symmetric wells separated by the distance R.

The amplitude of the zero-point motion in each well is again l ¿ R. Therefore, the

energy shift due to tunneling between the wells is exponentially small. (A rigorous

upper bound can be given. [57]) Furthermore, potential VY near the bottom of

each well coincides with that of a single exciton up to a constant

∆VY = VY

(
R

2

)
− 2

d
=

2

d1

+
d2

1 − d2

R3
. (A.11)

Hence, EY = EX + ∆VY and

ER ≤ −2d2

R3
−

[
Vcl(R, d1)− 2d2

1

R3

]
. (A.12)

In these formulas we have dropped subleading terms o(l2/d2
1), o(d4

1/R
5), etc. With

the same accuracy the bracket in Eq. (A.12) vanishes [cf. Eq. (3.16)], so that we

arrive at the result ER ' −Vcl(R, d). This simply means that at large d all quantum

corrections to ER are parametrically smaller than the direct dipolar repulsion of

the two excitons. Therefore, ER ≤ 0 at all R, so that EB ≤ 0, and the proof is

complete.



Appendix B

Radial wavefunction for small

mass ratios

In this appendix we show how the suitable solution of Eq. (3.35) can be con-

structed within the quasiclassical approximation. The necessary connection for-

mulas are derived by asymptotic matching with two exact solutions at small and

large R.

It is convenient to define the rescaled wavefunction ψ(R) = χ(R)
√

R. From

Eq. (3.35) we find that ψ satisfies the equation

ψ′′ −
(
κ2 + µV (R)− 1

4R2

)
ψ = 0 . (B.1)

This equation has two linearly independent quasiclassical solutions

ψ±(R) =
1√

Q(R)
exp

(± [S(R)− S(b)]
)
, (B.2)

where Q and S are given by

Q(R) =
√
κ2 + µV (R) , S(R) =

R∫

R+

dρQ(ρ) . (B.3)

The subtraction of the R-independent term S(b) in the exponentials amounts to

multiplying ψ± by unimportant constants. This is done purely for the sake of

convenience. The reason for omitting the 1/4R2 term in the formula for Q is more

subtle. It is explained in detail in Ref. [58].
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In the following we assume that κ ¿ 1/b, in which case there exists a broad

interval d ¿ R ¿ b where potential V (R) is dominated by the dipolar repul-

sion (3.1). In this interval, µV (R) ' b/4R3 À κ2; therefore,

ψ±(R) '
(

4

b
R3

)1/4

exp

[
±

(
1−

√
b

R

)]
. (B.4)

Using the asymptotic expansion formulas [43] for I0 and K0, it is easy to see that

the following linear combination

ψ(R) ' e

2
√

π
ψ−(R)− 2

√
π

e
c2ψ+(R) (B.5)

of the quasiclassical wavefunctions (B.4) smoothly matches with the exact solu-

tion (3.37) at d ¿ R ¿ b. This is our first connection formula. It is crucial for

this derivation because in the intermediate range of distances b ¿ R ¿ κ the qua-

siclassical approximation breaks down. (It is invalidated by the sharp decrease of

V with R.) In that region χ(R) = ψ/
√

R exhibits a slow logarithmic falloff (3.24)

instead of the algebraic decay suggested by Eq. (B.4). As explained in Sec. 3.2,

the nonanalytical behavior (3.11) of the binding energy is precisely due to this

logarithmic falloff.

To finish the calculation we need a second connection formula between χ given

by Eq. (B.5) and the same function near the classical turning point R+. To find it

we take advantage of the exact solution for the harmonic oscillator potential (3.38)

in terms of the parabolic cylinder function, [43]

ψ ∝ Dε−1/2(−
√

2 x) , x =
R−R0

l
. (B.6)

Here R0 = (R+ + R−)/2 is the point where the potential V (R) has the minimum,

l = (2 / µV ′′)1/4 is the amplitude of zero-point motion about this minimum, and ε,

given by

ε =
1

2
l2

(
µ|V (R0)| − κ2

)
, (B.7)

is the corresponding energy in units of the oscillator frequency ω = 2 / µl2. For

the ground state we expect

δ ≡ ε− 1

2
¿ 1 . (B.8)



85

The negative sign in the argument of Dε−1/2 in Eq. (B.6) is chosen to obtain an

exponentially decaying wave at large negative x, i.e., from the left turning point

R− and towards the origin. At large positive x, that is, at R − R+ À l, both

decaying and growing exponentials are present. At such x the wavefunction can

be cast into the quasiclassical form

ψ '
∑
ν=±

cν√
x

exp


ν

x∫

√
2ε

dξ
√

ξ2 − 2ε


 , (B.9)

which is equivalent to

√
l ψ(R) ' c−e−S(b)ψ−(R) + c+eS(b)ψ+(R) , (B.10)

see Eqs. (3.38), (B.2), and (B.6). This is our second connection formula except we

still have to specify the preexponential factors c+ and c−. In fact, only their ratio

is important. With the help of the asymptotical expansion [43] for Dδ, one finds

it to be [59]
c+

c−
' −2

√
πe δ . (B.11)

Comparing Eqs. (B.5) and (B.10), we obtain

δ ' − 1

2
√

πe

c+

c−
' 2

√
π

e
c2e

−2S(b)−2. (B.12)

For κ at which the above calculation is valid we have S(b) ' S0 − 1, where

S0 = S(R = ∞,κ = 0). Thus, we arrive at

κ2 ' µ|V (R0)| − 1

l2
− 4

√
π

e

c2

l2
e−2S0 , (B.13)

which leads to Eqs. (3.39)–(3.41) of Sec. 3.2.

Finally, a minor technical comment is in order. Since we have used the qua-

siclassical approximation, all coefficients in Eq. (B.13) have a relative accuracy

O (
e−S(b)

)
. In particular, we expect that in place of V (R0) we have a slightly more

negative value, so that the ground-state energy EB never exceeds the oscillator

ground-state energy V (R0) + 1/(2µl2), as required by physical considerations.



Appendix C

Gaussian integrals and the

Hamiltonian matrix elements

Since correlated Gaussian functions are the basis functions for the stochastic

variational method, the integration of a Gaussian comes up often. What follows is

the analytic solution for the matrix elements using these basis states.

Assume the matrix elements are being computed for two basis sets of the form

Gn = exp

(
−1

2
x†Bnx

)
. (C.1)

Start with the overlap integral

〈G1|G2〉 =

∫
Dx exp [−x†B+x

2
+ b+

†x] =

[
(2π)N

det(B+)

]D/2

exp [
1

2
b+

†B+
−1b+].

(C.2)

Here B+ = B1 + B2 and b+ = b1 + b2 are the sums of two successive basis

coefficients.

Next, one moves to the kinetic energy matrix integral

T =
〈
G1| − Λ∇2|G2

〉
, (C.3)

where Λ = ~2/2m is the usual kinetic energy coefficient.

This can be rewritten

〈∇G1|Λ|∇G2〉 , (C.4)
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which can be expressed as

〈∇G1|Λ|∇G2〉 =

∫
Dx(B1 + b1)Λ(B2 + b2) exp [−x†B+x

2
+ b+

†x]. (C.5)

Realizing that

−x†B+x

2
+ b+

†x = −1

2

[
x−B−1

+ b+

]
B+

[
x−B−1

+ b+

]
, (C.6)

leads to a change of variables as such

y = (x−B−1
+ b+) , (C.7)

leaving a final form

∫
Dx

[−B1(y + B−1
+ b+) + b1

]†
Λ

[−B2(y + B−1
+ b+) + b2

]
exp [−y†B+y

2
] ,

(C.8)

and leaving the terms

∫
Dx[

(−B1B
−1
+ b+ + b1

)†
Λ

(−B2B
−1
+ b+ + b2

)
+ [B1y]† ΛB2y

− [B1y]†
(−B2B

−1
+ b+ + b2

)− (−B1B
−1
+ b+ + b1

)†
B2y]× exp [−y†B+y

2
] ,

(C.9)

with a solution

〈G1|G2〉
[[−B1(B

−1
+ b+) + b1

]†
Λ

[−B2(B
−1
+ b+) + b2

]]

+ DTr
[
(B2 + B1)

−1(B1ΛB2)
]

, (C.10)

again where D is the spatial dimension for the system.

Finally, one calculates the potential term. Here to make the integration easier

the potential is expressed

V (ri − rj) =

∫
drV (r) δ(ri − rj − r). (C.11)

Therefore, the potential matrix element will look like

〈G1|Vij|G2〉 =

∫
drV (r) 〈G1|δ(ri − rj − r)|G2〉 . (C.12)
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One then sets to solve the matrix element 〈G1|δ(ri − rj − r)|G2〉, as follows.

Start with

〈G1|δ (ri − rj − r) |G2〉 =

∫
Dx δ(ri − rj − r) exp [−x†B+x

2
+ b+

†x]. (C.13)

Using the relationship between spatial and Jacobi coordinates

xi =
N∑

j=1

Uijrj , (C.14)

we have

〈G1|δ(ri − rj − r)|G2〉 =

∫
Dx δ(r−C†x) exp [−x†B+x

2
+ b+

†x]. (C.15)

where

ri − rj =
N−1∑
i=1

Cijkxk , (C.16)

implying

Cijk = Uik
−1 −Ujk

−1 , (C.17)

The Dirac delta function may be expressed

δ(r−C†x) =

∫
d2λ

(2π)D
exp

[
iλ(r−C†x)

]
. (C.18)

With this Eq. (C.15) becomes

∫
d2λ

(2π)D
exp [iλr]

∫
Dx exp [−x†B+x

2
+ Q†x] , (C.19)

where Q = b+ − iλC. So now with Eq. (C.2) Dx can be computed, leading to

∫
d2λ

(2π)D
exp [iλr]

[
(2π)N

det(B+)

]D/2

exp [
1

2
Q†B+

−1Q] , (C.20)

expanding the argument of the exponential

1

2
Q†B+

−1Q =
1

2
b†+B−1

+ b+ − λ2

2
C†B−1

+ C− iλb†+B−1
+ C. (C.21)

We can rewrite our expression as

〈G1|G2〉
∫

d2λ

(2π)D
exp

[
−λ2

2
β + iλ (r− γ)

]
, (C.22)
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where β = C†B−1
+ C and γ = b†+B−1

+ C. Again, this leads to a Gaussian integral

which gives

〈G1|δ (ri − rj − r) |G2〉 =
〈G1|G2〉

2πβ
exp

[
−(r− γ)2

2β

]
. (C.23)

With Eq. (C.12), we have

〈G1|Vij|G2〉 =
〈G1|G2〉

2πβ

∫
drV (r) exp

[
−(r− γ)2

2β

]
, (C.24)

which then depends on the type of potential.



Appendix D

Fermi gas

Section 2.2 references the Fermi gas, the most basic model of charge carriers in

a solid. In this model the electrons are considered to be free with no interaction

potential, including any interactions from lattice ions or other electrons. To better

understand the system dealt with in Chapter 3 and 4, it is useful to work through

some of the conclusions from Section 2.2. In this appendix, a brief explanation

of the Fermi gas is presented, including a discussion of the density of states, for

both a two-dimensional and a three-dimensional system. An excellent account of

this topic can be found in the textbook ”Solid State Physics” by Ashcroft and

Mermin [9].

With no potential energy term V , the Schrodinger equation for these electrons

becomes
−~2

2m
∇2Ψ(r) = EΨ(r). (D.1)

The boundary conditions on the electrons are periodic with the lattice. If the

lattice is assumed to be isotropic, Born-von Karmon periodic boundary conditions

apply, like so:

Ψ(r + L) = Ψ(r), (D.2)

where L is the lattice vector. Therefore the solution to Eq. (D.1) is

Ψ(r) =
1√
V

eik·r, (D.3)
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where V is the volume L3, k2 = k2
x + k2

y + k2
z is the momentum vector for the

electrons, and

kx =
2πnx

L
ky =

2πny

L
kz =

2πnz

L
. (D.4)

As such, the momentum is quantized and this leads to an infinite number of quan-

tized states with quantum numbers nx, ny, and nz [5]. The energy for one of these

electronic states is

E =
~2k2

2m2
. (D.5)

To determine the macroscopic properties of a system, we must determine how

the total number of electrons fill these particular momentum states. As fermions,

the electrons fill these levels according to Fermi-Dirac statistics, each state can

account for two spins. A good way to visualize this is through a quantity called

the density of states. The density of states represents the number of momentum

states that exist in a certain energy range. This quantity proves useful in calcu-

lating macroscopic characteristics for the solids in question. To do this, we work

in the momentum space, or k-space: the space that spans the system’s possible

momentum [9].

From Eq. (D.4), the volume of one state in k-space can be seen as

Vstate =
2π

L
× 2π

L
× 2π

L
=

8π3

L3
, (D.6)

while the volume of all the filled states in k-space can be thought of as approxi-

mately a sphere with radius kF :

Vtotal =
4πk3

F

3
. (D.7)

We call kF the Fermi momentum. It is defined as the maximum occupied momen-

tum state of a Fermi gas. Dividing these two volumes gives the total number of

occupied states:

N =
V k3

F

3π2
. (D.8)

Note that we multiply by two due to the Pauli spin exclusion principle. Now, the

definition of the density of states is

D(E) =
dN

dE
, (D.9)
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which gives the energy dependence of the number of states. It is then easiest to

express N in terms of energy using Eq. (D.5):

N =
V

3π2

(
2mE

~2

)3/2

, (D.10)

leading to a density of states of

D(E) =
V

2π2

(
2m

~2

)3/2

E1/2, (D.11)

which gives the energy dependence of the number of states. It is then easiest to

express N in terms of energy using Eq. (D.5):

N =
V

3π2

(
2mE

~2

)3/2

, (D.12)

leading to a density of states of

D(E) =
V

2π2

(
2m

~2

)3/2

E1/2. (D.13)

Our work deals primarily with a two-dimensional excitonic system. We will

find the density of states in two dimensions is very different. The density of

states is a crucial component in calculating macroscopic physical properties of

the system. This leads to very different physics for a two-dimensional versus a

three-dimensional system.

Here, the method to find the density of states is similar. In two dimensions,

the “volume” of a state in k-space is

Vstate =

(
2π

L

)2

, (D.14)

and the “volume” of a filled k-space is

Vtotal = πk2
F , (D.15)

leading to a total number of occupied states in two dimensions of

N =
L2k2

F

2π2
. (D.16)
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Again, we multiply by two to account for spin. Converting to a function of energy

E, we have

N =
L2mE

π~2
, (D.17)

leading to a density of states of

D(E) =
L2m

π~2
. (D.18)



Appendix E

Heitler-London

The original version of the stochastic variational method uses axially symmet-

ric trial states which unfortunately are not suitable for large σ or loosely bound

systems as we have for d ∼ dc. The Heitler-London approximation is one simple

albeit less precise alternative method which can be used in this case. With the

Heitler-London approximation, one works with the solutions to the single exciton

Hamiltonian:

HE = − ~2

2me

∇2 − ~2

2mh

∇2 +
e2

√
(r2

e − r2
h) + d2

= E. (E.1)

The above stochastic variational method was used to find approximate wave

functions for the single exciton Hamiltonian which we will call Φ(r). These wave

functions are then used to form the Heitler-London approximate bi-exciton two-

body wave function:

Ψ(r1, r2)
T,S = C [Φ(r1)Φ(r2 −R)± Φ(r1 −R)Φ(r2)] , (E.2)

where R is the separation vector between excitons. r1 and r2 are the separation

vectors between the first electron and hole and the second electron and hole, re-

spectively. Here the + sign refers to the triplet and the − sign to the singlet, and

the normalization constant is

C = 2(1− S2) , (E.3)

where S is defined as

S =

∫
drΦ(r)Φ(r−R). (E.4)
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The ground state energy is then found from the expectation value of the energy:

EGS =
〈
Ψ(r1, r2)

T,S|HBE|Ψ(r1, r2)
T,S

〉
. (E.5)

The ground state energy can then be calculated as a function of R for various

values of σ and d.
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