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Genome Sequences of Actinobacteria from Extreme
Environments in Colombia

Angela Cantillo,a Nicole Shapiro,b Tanja Woyke,b Nikos C. Kyrpides,b Sandra Baena,c María Mercedes Zambranoa

aMolecular Genetics, Corporación Corpogen–Research Center, Bogotá, Colombia
bDepartment of Energy, Joint Genome Institute, Walnut Creek, California, USA
cUnidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad
Javeriana, Bogotá, Colombia

ABSTRACT We sequenced six actinobacterial genomes isolated from a salt mine
and from soil in a high-mountain Páramo ecosystem. The strains belonged to the
genera Streptomyces, Nesterenkonia, and Isoptericola and were sequenced due to
their antimicrobial and cytotoxic activities.

Actinobacteria produce a broad range of natural products, most of which have been
obtained from actinomycetes belonging to the genus Streptomyces (1). Given the

limitation of phenotypic screening and the rediscovery of previously isolated com-
pounds, genome mining of microorganisms isolated from unique environments is
attractive for the identification of novel biosynthetic gene clusters (BGCs) (2). Genomic
analysis has shown that actinobacteria can harbor multiple BGCs that are not expressed
in laboratory assays but may still have biological activities and industrial potential (3).
The strains sequenced here were isolated from two locations of extreme environmental
conditions in Colombia to expand the actinobacterial collection for biological activity
assays (3). Samples were collected from a salt mine (Zipaquirá, 5°01=06.18�N,
74°0=13.63�W) (4), located at 2,656 m above sea level (masl), pH 6.6, and temperature
of 17.3°C, and from an Andean Páramo ecosystem (5) soil in the Nevados Natural
National Park (04°50=55.7�N, 75°21=51.3�W), located at 4,141 masl, with pH 5.6 and
temperature of 7.2°C. We isolated three soil Streptomyces strains on Difco Actinomycete
medium and three Nesterenkonia and Isoptericola halotolerant strains from the salt
mine by growth on tryptic soy agar (Merck) supplemented with 8% NaCl, as described
previously (4). The strains were genome sequenced to characterize and compare their
metabolic potential, based on their previously characterized capacity to inhibit growth
of Gram-positive and Gram-negative bacteria, eukaryotic microbes, and their cytotoxic
activity against cell lines 4T1 (mouse mammary tumor) and MCF-7 (human mammary
adenocarcinoma) (4) (Table 1).

DNAs were extracted as reported previously (6) by centrifuging an overnight culture,
lysing cells with 200-�m glass beads in the presence of cetyltrimethylammonium
bromide (CTAB)-NaCl in a FastPrep (2 � 30 s) (MP Biomedical, Santa Ana, CA), followed
by phenol-chloroform extraction and DNA precipitation with isopropanol. Draft ge-
nomes were obtained at the DOE Joint Genome Institute by constructing 300-bp-insert
shotgun libraries that were barcoded and sequenced as pools of three libraries on the
Illumina MiSeq platform (2 � 150-bp paired ends). All raw sequence data were filtered
using BBDuk version 35.83 (7), which eliminates known Illumina artifacts and PhiX.
Reads with more than one “N” or with quality scores averaging less than 8 (before
trimming) or reads shorter than 51 bp (after trimming) were discarded. The remaining
reads were mapped using BBMap version 35.83 (7) to human, cat, and dog references
masked using BBMask version 35.83 (7). Assembly was carried out as follows: (i)
artifact-filtered Illumina reads were assembled using Velvet (version 1.2.07) (8), (ii) 1 to
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3-kbp simulated paired-end reads were created from the Velvet contigs using Wgsim
(version 0.3.0) (9), and (iii) Illumina reads were assembled with simulated read pairs
using AllPaths-LG (version r46652) (10). Parameters for the assembly steps were (i)
Velvet (velveth, 63 –shortPaired; velvetg, –very clean yes – exportFiltered yes –min
contig lgth 500 –scaffolding no – cov cutoff 10), (ii) wgsim (– e 0 –1 100 –2 100 –r 0 –R
0 –X 0), and (iii) AllPaths-LG (PrepareAllpathsInputs, PHRED 64 � 0 PLOIDY � 1 FRAG
COVERAGE � 125 JUMP COVERAGE � 25 LONG JUMP COV � 50; RunAllpathsLG,
THREADS � 8 RUN�std shredpairs TARGETS�standard VAPI WARN ONLY�True
OVERWRITE�True). Annotation was performed using the DOE-JGI annotation pipeline
version 4.10.5 (11), BGCs were identified using antiSMASH version 2.0.2 (12) and the
IMG-ABC database (13), using default settings in both cases, and taxonomic identities
were assigned based on 16S rRNA gene analysis.

The number of reads per genome ranged between 9,842,212 and 12,394,618. The
N50 values ranged from 180,192 to 623,933 bp (Table 1). All genomes had a high GC
content (67 to 71%) but differed in size, with the soil Streptomyces strains having
genomes more than twice the size of those of the three halotolerant strains. The
number of genes varied from 3,045 in Nesterenkonia sandarakina to 7,660 for Strepto-
myces sp. strain CG 926. The three Streptomyces genomes also had more BGCs (Table 1)
predicted to encode various specialized metabolites. The differences in genome length
and coding features for the two Isoptericola strains and three Streptomyces strains also
indicate distinct metabolic potential in isolates of the same genus.

Data availability. These draft genome sequences have been deposited in GenBank
under the accession numbers QLTM00000000, OAOR00000000, QGGZ00000000,
PVTW00000000, PVTX00000000, and PVTY00000000. The data are available in the
NCBI Sequence Read Archive under accession numbers SRX2947591, SRX3047884,
SRX3047887, SRX2947595, SRX2947597, and SRX2947593.
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