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Abstract 

We describe an interactive mathematics technology 
intervention From Here to There! (FH2T) that was developed 
by our research team. This dynamic program allows users to 
manipulate and transform mathematical expressions. In this 
paper, we present initial findings from a classroom study that  
investigates whether using FH2T improves learning. We 
compare learning gains from two different instantiations of 
FH2T (retrieval practice and fluid visualizations), as well as a 
control group, and investigate the role of prior knowledge and 
content exposure in FH2T as possible moderators of learning. 
Findings, as well as implications for research and practice are 
discussed.  

Keywords: mathematical cognition; concepts and percepts; 
mathematics education; learning sciences 

Introduction 
Mastering basic algebraic concepts is extremely 
challenging, and many students never accomplish it (NCES, 
2011). Often, math instruction emphasizes memorization of 
abstract rules (Koedinger & Alibali, 2008). However, 
algebraic literacy—the fluent construction, interpretation, 
and manipulation of algebraic notations—involves not just 
memorizing, but learning appropriate perceptual processes 
(Kirshner, 1989; Kellman, Massey, & Son, 2010; Landy & 
Goldstone, 2007; Goldstone, Landy, & Son, 2010). 

Algebra learning involves seeing expressions and 
equations as structured objects, and using these patterns to 
perform mathematics (Landy & Goldstone, 2007, 2010). 
Although in some cases the visual and perceptual patterns 
are fairly easy to see, some object-centered transformations 
are not immediately obvious in traditional instruction, and 
must be acquired over practice (Braithewaite, Goldstone, 
van der Maas, & Landy, under review; Landy, 2010). While 
this perceptual-motor understanding of algebraic forms is a 
potentially rich source of student understanding, it also 
stands as a barrier to learning if visual patterning is not 
taught in a controlled manner (Marquis, 1988).  

Learning technologies offer a promising new approach to 
teaching math that is not possible with traditional instruction 
(Clements, 1999; Gee, 2003) and can provide an 
environment that contributes to improved student 
performance (Samur & Evans, 2012). The National 
Mathematics Advisory Panel (2008) highlights algebra as an 
area of special concern, and notes that while “technology-

based drill and practice and tutorials can improve student 
performance…the available research is insufficient for 
identifying the factors that influence the effectiveness of 
instructional software” (p. 23-24). Further, approaches that 
focus on perceptual-motor training have shown substantial 
promise (Ottmar, Landy, & Goldstone, 2012; Kellman, 
Massey, & Son, 2010), but are underexplored relative to 
other technology-based mathematics interventions. It is 
anticipated that training students to see correct algebraic 
structures through dynamic transformations may be a 
promising approach to teaching algebraic ideas. Rigid 
motion is a powerful perceptual grouping mechanism 
(Palmer, 1999), and transformations are naturally 
memorable and easy to acquire, making these natural tools 
for helping students grapple with algebra.  

In this paper, we describe a learning technology intended 
to help students acquire appropriate perceptual strategies. 
We present preliminary findings from two classroom studies 
using a dynamic computer-based visualization method 
(From Here to There!) designed to enhance middle school 
students’ understanding of algebraic concepts and notations. 
In our approach, we present symbols as tactile objects 
whose structure can be appreciated through exploration and 
manipulation. This approach contrasts with interventions 
designed to wean students away from perceptual patterns 
(Kirshner & Awtry, 2004), which can be seen as detrimental 
to understanding (Noguiera de Lima & Tall, 2008).  

From Here to There! 
From Here to There! (FH2T) is a self-paced interactive 

application that introduces students to mathematical content 
through discovery-based puzzles. Rather than simply 
applying procedures by rewriting different expressions, this 
technology allows students to physically and dynamically 
interact with algebraic expression elements, providing a 
potentially powerful source of perceptual-motor 
experiences. Below we describe the design theory, features, 
and goals of the program.  
 

Design Theory and Practice 
We approached the construction of FH2T from an iterative 
design stance. We built many different versions of the 
application instantiating several variations of the basic 
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Figure 1: Circular calculator to replace expressions. 

 
equation manipulation interface, the tasks or ‘goals’ of the 
user, and the broader application context1. For each 
iteration, we initially evaluated the system with small 
groups of students. Only the most promising programs were 
evaluated in classrooms. The experiments reported here 
reflect a current state, rather than a conclusion, in this 
process.   

Notation manipulation was designed to be as much like a 
physical environment as possible (Landy, 2010). 
Transformations are as visually fluid as feasible: elements 
move smoothly, are picked up by the finger, and dropped.   
When terms ‘split, as in the transformation a*(b+c) => 
ab+ac, the elements dynamically split.  
   In order to add or subtract from both sides of an equation, 
a user taps the equals sign, then is prompted to enter the 
amount and operation they wish to perform. In certain 
situations, it is necessary for users to enter numbers that are 
not in the problem previously (i.e. adding to an equation, or 
breaking a term into factors). In this case, a calculator with a 
circular menu is used—numbers, variables, and operations 
appear in a circle near their targets, and move continuously 
from the menu location into the equation (Figure 1). In the 
case of commuting, a+b is turned into b+a by picking up 
the a, and moving it rightward (or picking up the b, and 
dragging it leftward).  

   We use a hierarchical structure, with particular worlds 
inside a universe (see Figure 2). Each of the 14 worlds cover 
a particular focal topic, such as ‘subtracting multiple terms’ 
and contains a set of about 15-20 problems. Locked worlds 
are presented in black and white on the universe screen, 
while unlocked worlds are marked in color. Each problem is 
intended to take between 10 seconds and 1 minute to solve, 
though the difficulty of particular problems varies 
considerably. Within each world, problems require users to 
learn and use new operations alongside previously acquired 
rules.  

Points are used to help a user maintain extrinsic 
motivation and track their progress (von Ahn, 2013). 
Participants receive up to 3 points per problem for  

                                                             
1 We began the current effort from an earlier project, 

AlgebraTouch (AT), which was designed by the second author and 
Sean Berry in 2007, and has been iteratively improved since then. 
AT has an installation base of approximately 50,000 devices, and a 
very similar (but not identical) interaction set to that of FH2T. 
FH2T branches from a code base of AT. We will discuss the 
equation manipulation interface of FH2T, with the understanding 
that it mirrors in many ways the AT system. 

 
Figure 2: Content Tree Map for From Here to There! 

 
,completing it without making calculation or other structural 
errors, and for completing it in the fewest possible number 
of steps. Progress is gated by the number of problems 
completed: at least 14 of 18 problems have to be solved for 
the user to progress to a new world. This allows a user to 
avoid extreme frustration by skipping particularly 
challenging problems, but still requires a fair bit of success 
at each stage. We also balanced scaffolding user assistance 
with challenge (Aleven & Koedinger, 2002) by including 
delayed ‘hints’ to avoid frustration.  

The intelligibility of the goal is also balanced with the 
richness of flexible and creative mathematical thinking. 
(Polya, 1954). In many math applications, the user activity 
seems rote (as in DragonBox), or so thoroughly prescribed 
as to preclude creative thought (as in Algebra Touch). FH2T 
uses transformation goals: each problem starts with an 
equation or expression in a particular form, and states an 
end state: the user’s goal is to transform the equation from 
the starting form (here) to the ending form (there). This is 
intended to help students achieve flexibility in manipulating 
equations and expressions, compared to having a fixed goal 
such as “solve for x” (Figure 3). In order to achieve their 
goal, students perform a series of dynamic interactions, 
including decomposing numbers (8=5+3 or 11-3), 
combining terms, applying operations to both sides of an 
equation, and rearranging terms through commutative, 
associative, and distributive properties. 

   The original vision for FH2T emphasized visual 
fluidity. All calculations and transformations were 
completed automatically: the user initiated the 
transformation, but the resulting expression simply 
appeared. However, contrasting approaches suggest that 
students benefit from being scaffolded through the specific 
steps required to complete a task in a real-world 
environment (Tuovinen & Sweller, 1999). Furthermore,  

Figure 3: Sample Problem and Goal State in FH2T 
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teachers frequently expressed concern that students 
wouldn’t learn as well if they did not do the calculations 
themselves—a perspective compatible with retrieval-based 
learning (McDaniel & Masson, 1985) and desirable 
difficulties (Bjork & Bjork, 2011). We take this 
consideration up explicitly in our study.  
 

Past Research on From Here to There! 
An initial pilot study was conducted to determine whether 

FH2T contributed to learning gains. 110 6th-8th grade 
students (41% male, 59% female) from six classes in a large 
suburban middle school participated in a 4-hour study 
during six of their regular math periods. All students worked 
through a series of worlds in FH2T at their own pace that 
covered mathematical topics ranging from addition and 
multiplication to solving linear equations. In this pilot, a 
‘reward’ system was built into the program. Students first 
encountered interactions in a retrieval practice mode, which 
required students to recall and enter correct algebraic and 
arithmetic transformations. After they completed the basic 
level, they were able to unlock a ‘monster level’, with 
especially challenging problems.  Once this was completed, 
students were awarded the fluid version of the same 
interaction, in which correct calculations and 
transformations were dynamically performed by the system.  
This was intended to balance the possible benefits of 
retrieval practice with the minimizing of memory load due 
to repeated retrievals, and the emphasis on the intended 
pedagogical domain of algebraic transformations. 
   Overall, students’ mathematical understanding improved 
8.5% during the 4 class periods. There was no indication of 
a floor or ceiling effect: the average accuracy for the 
posttest problems was 54% (range: 37%-70%). The gains 
were quite large (effect size=0.40, amounting to one full 
letter grade) and provide promising results that educational 
apps, such as FH2T, may benefit students when used in 
combination with classroom instruction. However, due to 
the non-experimental design of the pilot, we cannot strongly 
conclude that the learning gains observed were caused from 
using FH2T, per se.  
   Since students had regular instruction contemporaneously 
with FH2T, it may be that classroom practice led to these 
gains rather than dynamic interactions. Secondly, FH2T ran 
in two ‘modes’, which may be differentially responsible for 
learning gains. When problems were fluidly presented, 
participants engaged in fast, fluent practice in visual-
algebraic patterns. On the other hand, during the initial, 
retrieval practice phase, participants were forced to engage 
more explicitly in the specific steps required to solve 
problems. Observationally, students responded very 
differently to these two modes. Either of these explanations 
might plausibly be driving learning gains.  

Testing From Here to There! 
The present study teases these factors apart by dividing 
participants into three conditions: a business-as-usual 
control, a retrieval practice group, and a fluid visualizations 

group. Using a pre-post design, we aim to differentiate 
between potential mechanisms behind how FH2T produces 
gains in notation fluency. We also examine the role of 
content exposure within the FH2T program and pretest 
scores as potential moderators on achievement.  
 
Study Participants and Procedures 

Eighty-five sixth and seventh grade students from five 
classes in a suburban public middle school in the mid-east 
United States participated in this study during their regular 
math instruction. All five classes had the same mathematics 
teacher and students had never had experience using the 
FH2T system. 
   This study took approximately three hours and occurred 
over six 30-minute class periods. First, classes were 
randomly assigned into two groups: intervention (3) and 
control (2) to ensure that there was not FH2T contamination 
within classes. Next, intervention students were then 
randomly assigned within classroom to the two intervention 
conditions (retrieval practice and fluid visualizations). 
Students in the control classrooms did not use FH2T, but 
received business as usual instruction.  

On day 1, all students completed a 30-item pretest that 
assessed students on procedural facility with various 
mathematical content. Problems ranged in difficulty from 
solving basic arithmetic (ex. 3-5+2-3), distributing terms 
(ex. 3*(5+y+3)), to solving linear equations (ex. 5+y=6+3). 
Students were presented with a problem and asked to enter 
their answers using a keyboard. An additional 5 problems 
asked students to determine whether two expressions were 
equivalent (ex. does a+b*z+y equal z+y*a+b?).  

On days 2-5, students in the intervention classes used 
FH2T to solve problems. The version used in this study was 
adapted from the pilot in several ways. First, all of the 
bonus levels were removed. Next, the ordering of the worlds 
was fixed so that all students had to progress through the 
content in the same order. Third, the retrieval practice and 
fluid transformations modes were separated into conditions, 
so that participants used exclusively one or the other 
versions of the interaction, embedded within identical 
problem sets and task space. 

 
Table 1: Pretest and Adjusted Posttest Mean Scores and 

Standard Deviations as a Function of Condition. 
 

  Pretest   Posttest-Adjusted 

Condition M SD   M SE 

Fluid Visualizations 9.92 4.1  10.88 0.55 
Retrieval Practice 11.00 5.32  10.46 0.62 

Control 10.91 3.49   10.46 0.62 
 
   In the retrieval practice mode, the user first moved the 
symbols to the appropriate locations to trigger the actions. 
Next, the user was prompted to write the appropriate 
resulting subexpression. For instance, if the initial 
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expression was 8-3-2, and the user tapped the right-hand 
subtraction, the user would enter “-5”, the result of 
combining -3 and -2. In the fluid visualizations mode, the 
user only had to tap the subtraction sign to initiate the next 
transformation. The result was a more fluid and dynamic 
experience since the interface rarely paused.  

Students progressed though the worlds at their own pace 
and completed as much as they could within the time limit. 
On day 6, all students completed a 30-item post-test 
assessment, similar in difficulty and form to the pre-test. 
Pretest and posttests were coded for accuracy and mean 
scores were calculated for each assessment. It is important 
to note that the assessment items were designed to measure 
transfer to problems that are commonly seen in traditional 
textbooks and worksheets and did not match the 
transformation goal structure that was presented in the app.  

Results 
Analysis 1: Do students using FH2T improve more than 
students in a control group? 

An analysis of covariance (ANCOVA) was conducted to 
predict Posttest Scores as a function of Condition, with 
gender and pre-test scores as covariates. Descriptive 
statistics for pre-test and adjusted post-test scores are 
presented in Table 1 and a summary of the ANCOVA 
results are presented in Table 2. Results show significant 
differences in post-test scores between conditions, after 
controlling for gender and pretest F(2, 84) =3.61, p<0.05. 
Next, gain scores were calculated by taking the difference 
between the pre-test and post-test scores. Significant 
differences in learning were also found between conditions, 
F(2,81)=.4.04, p<0.05 (Figure 3). Post-hoc analyses reveal 
that students in the fluid visualizations condition (M=2.10) 
gained more than students in both the retrieval practice 
(M=-0.22) and control (M=0.22) conditions. No significant 
differences were found between the control and retrieval 
practice conditions.  
Analysis 2: Does more exposure to content within the 
FH2T app predict improved mathematics performance 
and learning? 

 

Table 2: ANCOVA of Posttest Scores as a Function of 
Instructional Condition, With Gender and Pretest Scores as 

Covariates. 
  df SS MS F η2 

Gender 1 31.53 31.53 3.22** 0.04 
Pretest  1 1176.47 1176.47 120.01** 0.6 
Condition 2 35.37 70.73 3.61** 0.08 
Error 80 784.23 90.8   
    Total 85 12872    
Corrected 84 2029.65    
 
One important element to consider is exposure, or how 

much of the intervention the students actually completed. In 
this study, we use exposure as a measure of fidelity, to 
check that greater progress through the program is related to 
greater performance. We relied on in-app data to create a 
measure of exposure, calculated as the number of worlds 
students completed during the duration of the study. On 
average, students in the fluid condition completed 6 worlds 
(M=6.04, SD=2.36; addition, multiplication, order of 
operations + and x, subtraction, division, and order of 
operations), while students in the retrieval condition only 
completed the first four worlds (M=4.27, SD=1.97). 
Students in the control condition, naturally, did not have any 
exposure to the program (M=0.00).  

A hierarchical linear regression was conducted to 
examine whether increased context exposure within the 
FH2T app predicted posttest performance, above and 
beyond gender, pre-test, and condition. Dummy codes for 
the retrieval and control conditions were created to examine 
whether learning differences remained after adding this 
additional variable. A significant main effect was found for 
exposure: for every additional world that the students 
completed, their posttest accuracy scores increased by 0.76 
problems (effect size=0.48) (Table 3). However, after 
considering exposure in the app, differences between groups 
were no longer significant.  

 

Table 3: Regression Examining the Contribution of Context Exposure in FH2T on posttest scores 
 

	
  	
   ANCOVA   Main Effect Exposure   Pretest x Exposure 
 B SE Beta  B SE Beta 	
   B SE Beta 

Constant 3.83 1.08   0.71 1.38   0.71 1.38  
Pretest 0.88 ** 0.08 0.77**  0.72**  0.09 0.63  0.49** 0.13 0.42** 
Gender -1.23 t 0.69 -0.13 t  -1.02 0.65 -0.10  -1.13 0.63 -0.12 
Control -1.77** 0.83 -0.18**  2.97 t  1.62 0.30  2.21 1.60 0.22 

Retrieval -2.20** 0.87 -0.21**  -0.67 0.94 -0.06  -1.20 0.94 -0.11 
Exposure     0.76** 0.23 0.48  -0.16 0.43 -0.10 

Exposure x 
Pretest         	
  	
   	
  	
   	
  	
   	
  	
   0.07** 0.03 0.63** 

R2  0.61    0.64    0.66 	
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Analysis 3: Does prior knowledge moderate the 
relations between exposure to content and improved 
mathematics scores? 
   We examined whether prior knowledge (pre-test scores) 
moderated the relation between exposure and posttest 
scores. We tested this by adding the interaction term 
(exposure x pretest) to the regression. A significant 
interaction was found (B=0.07, p<0.01) (Figure 4).  

 
Figure 4: Posttest Scores as a Function of Pre-test  

Scores and Exposure 
 

Discussion 
Overall, we found strong learning gains on the order of one 
third of a standard deviation from practice with FH2T.  
These gains seem to be primarily due to practice in the 
more fluid and dynamic version of the application; 
however, the current approach cannot tease apart whether 
this is due to a qualitative difference between retrieving 
explicit rules and perceptual training afforded by the fluid 
instantiation, or increased topic coverage that the fluid 
group received. In line with the first possibility, it is 
notable that participants who practiced retrieval in the 
application did not show any gains at all, while strong 
learning gains were found in the fluid visualizations group. 
These results are fully in line with the theory that algebra 
literacy comprises strong visual-motor routines (Goldstone, 
Landy, & Son, 2010; Landy & Goldstone, 2007). With 

regards to the second possibility, it could be that the 
additional gains were a result of the fluid condition 
covering more content that the retrieval practice condition 
did not get to, but was assessed on the posttest. Future 
work should manipulate dosage and content exposure that 
students receive to better understand these effects.  

Interventions involving the movement of symbolic 
forms for algebra learning have been receiving widespread 
attention in recent years, both in scientific contexts and by 
the public. Qualitatively, these results—and the strong 
interest shown by students in solving and discussing 
problems—suggest promise for tablet-based technologies 
for teaching abstract algebraic content. This work 
represents some of the first published outcomes from such 
perceptual interventions, and may shed light on functional 
mechanisms. In addition, FH2T uniquely focuses on 
algebraic transformations with a wide variety of initial 
structures and goal states, attempting to help students think 
more flexibly about numbers and operations. 
Transformations of formal algebraic notation is typically 
demotivating and disengaging for many students; however, 
students in our studies happily completed several hours of 
practice, only occasionally becoming bored. One possible 
explanatory framework for this phenomenon comes from 
theories of embodiment that suggest that people are 
intrinsically more engaged when working with their hands 
(Clark, 2008). Another is that algebra is intrinsically 
engaging, but that the high cognitive load caused by paper-
and-pencil calculations interfere with engaged states. 
Clearly, much remains to be done.  

Although touch-based algebra systems have proved 
powerful enough to substantially improve algebra skills, 
notation manipulation is only a small fraction of the 
important content of algebra. Without connecting to real-
world situations, problems, and questions, formal proofs 
and derivations are largely inert. Further work is currently 
underway to implement an algebra manipulation system in 
JavaScript capable of interacting with rich graphics, 
figures, charts, and text in an html5/canvashwebpage. 

 

 

 
Figure 3: Pre-Test and Posttest Scores and Gains by Condition  
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