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ABSTRACT OF THE THESIS

Object Segmentation and Tracking in Videos

by

Vijay Viswanath

Master of Science in Computer Science and Engineering

University of California San Diego, 2020

Professor Garrison Cottrell, Chair

Object detection and segmentation are some of the key components of Computer Vision,

which have wide ranging real world applications. The current state of the art techniques in

computer vision are based on Deep Neural Networks and one of the key challenges is using the

state of the art techniques in these fields on novel images, and videos in different environments,

and classes. These methods require expensive manual annotations and transfer learning to make

them work on domains different from their training data sets. In this thesis, we explore both

domain adaptation, and deep learning techniques that don’t necessarily rely on the idea of a

class, to help with the annotation of private videos. We implemented the initial idea of domain

adaptation for directly annotating objects and followed with using video object segmentation

x



(VOS) tracking methods for propagating annotations. Their application to a novel video acquired

in the GURU lab is explored as well as ways to improve their performance.
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Chapter 1

Introduction

This work was motivated by the need to identify the objects that individuals focused on

during human visual experience videos. These videos were recordings from a head mounted

camera with eye tracking. It recorded what the person was viewing and the position in the image

where the person was fixating at, for each frame. In order to make meaningful interpretations

from these videos, it was important to identify the object being fixated at in each frame. For this

purpose, we initially explored object detectors like YOLO[43], RCNN [12][44]. One challenge

with these object detectors were in identifying objects like trees, roads, etc for which pixel

level segmentation made more sense than a bounding box. The segmentation task involves

labelling each pixel based on which object they belong to. One key difference between object

segmentation and object detection is that, each pixel has a unique label in the segmentation

task, while the bounding boxes can overlap in object detection. Both these tasks can serve in

identifying objects fixated by humans, by recording the scene using a head mounted camera and

identifying the location the person was fixating at, within the images taken.

Generally, producing annotations for object segmentation tasks is harder than object

detection tasks, and this can be seen in public datasets that are currently available. MS COCO

[26] is the most used dataset for object detection and has 2,500,000 labeled instances in 328,000

images and 82 object categories. The SUN dataset[26], [52] is another example with 908 scene

categories and 3819 object categories. While a typical dataset for object segmentation like
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Cityscapes [7] contain 25000 annotated images and 30 categories. The number of classes of

objects in training data heavily favours object detection tasks.

However, we had the following reasons to the explore object segmentation networks

and use domain adaptation to improve them. The videos we wanted to annotate were collected

as part of the ’Day in the life’ project, whose goal is to record the visual experience in the

daily life of a person. The videos were collected by students on campus, with the chosen video

being a student driving around the campus. Thus the video mostly features a city landscape

with frequent outdoor settings. This heavily correlates with the Cityscapes dataset and also the

need to identify roads, trees and shrubs in the videos. During manual annotations, we observed

that trees were frequently fixated at along with pavements and when attention was focused on

people, the gaze tended to frequently shift between different people. This prompted an interest

in exploring the object segmentation tasks, which can cover trees and roads well. For this, we

explored one of the state of the art segmentation network. To improve the performance in custom

videos, a discriminator based domain adaptation technique was performed. Chapter 2 details

this work. The chapter covers the working of an object segmentation network and a domain

adaptation method used to improve the performance of the network in our novel videos. We

chose HRNet[46], one of the SOTA methods in Cityscapes dataset, whose code is public and in

Pytorch. HRNet uses multiple Fully Convolutional Blocks and features at multiple resolutions

to build a segmentation map.To adapt to new videos, Domain Adversarial Neural Network

(DANN)[11] was used. The advantage of DANN is, it can be jointly trained with an already

trained classifier, is fully unsupervised and works on using the same classifier network trained

on initial domain.

1.1 Video Object Segmentation Tracking

The interest in identifying whether attention is changing between two objects of same

category led towards exploring video object segmentation (VOS) tracking techniques. The
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existing public datasets cover a lot of day-to-day objects and it could be useful to use domain

adaptation with different object segmentation/detection networks to produce initial annotations

on private videos. But the challenge gets quickly complicated by the need to use an ensemble of

models on the same video and picking one label for the gaze location. The objects in the video

may not be covered by a single dataset/network or may even have new object classes needing

tracking. In this case, its useful to have a network which can track any generic object across the

video from one training example.

Video Object Segmentation (VOS) directl tracks an object across frames using pixel

level annotation. This semi-supervised task involves using an annotation from the first frame

annotation and then tracking the object across the video frames. This is different from object

detection/object segmentation in that the class of the tracked object is no longer important and

only the object of interest should be tracked even if there are other objects of the same class

present in the video. For example, if the annotated object in the first frame is a car, the same car

needs to be tracked in subsequent frames and the network should not mark other cars present

in the video. The other challenging aspect is occlusion and imperfect information in the first

annotated frame. This is very useful in reducing the annotation efforts as a good tracking network

should be able to adapt to new object classes. Also, an ensemble of models would no longer

be needed if the same network can be adapted to different videos and objects, either through

domain adaptation or one shot learning methods.

The work in this chapter involves using RANet[51], a state of the art VOS network

on DAVIS 2016 (Densly Annotated VIdeo Segmentation)[6, 40, 38] dataset which uses single

object tracking. Even though its an end-to-end network and relatively fast, it had the highest

performance in DAVIS 2016 dataset. But its performance is much less than the best models in

DAVIS 2017 dataset. The DAVIS 2017 dataset has single as well multi object tracking videos,

which is an area where RANet could use some improvement. To build upon previous work, we

explored the network and based on the initial analysis, we implemented 3 ideas to improve the
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network’s performance on DAVIS2017 dataset : using better loss function in terms of IOU loss,

using a discriminant score and non maximal suppression to select pixels in Ranking Attention

module of RANet. The loss function improved the performance by 4% while the other ideas

didn’t improve the performance much and led to over fitting. Further analysis on RANet revealed

certain features of the network which might make the updates to RAM module less useful. The

details and results are mentioned in Chapter 3.

1.2 Unsupervised methods in Video Object Segmentation
Tracking

The VOS task does not require the models to learn class identities. A good distinguisher

for objects should work well with the task without any need to learn what each object corresponds

to. This makes unsupervised learning attractive for the task. An unsupervised method using only

raw videos can not only make use of large video datasets, but can also be fine tuned further on

specific videos.

The unsupervised methods typically have much lower performance than supervised

methods. But a recent paper proposed Memory Augmented Self Supervised Tracker(MAST)[54],

which can train on raw un-annotated videos and claims performance on-par with some of the

supervised methods. This prompted an interest in exploring this method and trying to reproduce

the results. The code for the model was not available in public and so we attempted to implement

it from scratch. References were made from publicly available code for Corrflow[23], the

predecessor to MAST. The performance comparable to the original paper could not be achieved,

which may have been related to certain compromises we made during training. The results

achieved and further details are mentioned in Chapter 4.
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1.3 Related Work

1.3.1 Object segmentation and domain adaptation

Object segmentation and detection has been some of the hottest topics in computer vision.

Various methods have been devised to do object detection tasks. RCNN [13][12][44] is one

of the most famous methods, using region proposals and classification of objects. Starting

from a mix of neural networks and other machine learning techniques in RCNN, the faster

RCNN is an end to end neural network. A fully convolutional network outputs anchor boxes

at different scales for region proposal, with a box-regression layer outputting box coordinates

and box-classification layer outputting the object label, or a ”no-confidence” vote. The detector

network outputs the class for these boxes, and various techniques like non maximal suppression

are used to select good boxes. YOLO[42] and YOLOv2 9000[43] use fully convolutional neural

networks, with YOLOv2 using anchor boxes similar to Faster RCNN. Instead of two separate

networks, YOLOv2 outputs a prediction for each pixel in the final convolutional layer output.

The network down samples the input by 32 when the final layer is reached and each pixel in the

final feature map makes predictions for 5 anchor boxes. And each anchor box makes prediction

for the bounding box (bbox), the objectness score and Logistic output for 80 classes. Using pass

through layers and up sampling, predictions are also made as higher resolutions. Single Shot

Detector (SSD) [29] is another network which is fully convolutional and makes predictions per

pixel in the final output feature map. SSD performed better and faster than YOLO, but in turn

was overcome by YOLOv2.

In object segmentation, the network is expected to label each pixel based on which

object they belong to. Thus the output needs to have accurate object boundaries in addition

to size and location. This is especially useful for identifying the object being fixated at, as

there will be no overlap between object predictions. Mask RCNN[16] is an improvement over

faster RCNN for the instance segmentation task in MS-COCO. It decouples mask and class

predictions, making class agnostic binary pixel masks in regions of interest. In contrast, several
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networks use an encoder followed by up-sample decoder to generate high resolution segmentation

masks. UNet[45] uses skip connections from encoder to decoder and up convolutions. Hourglass

networks[37] proposes using stacks of modules with a down-sample and up-sample pathways to

process information at low and high resolution. Segnet[1] passes on pooling indexes instead of

skip connections to improve memory utilization. GridNet[9] uses both high resolution and low

resolution pathways, with the network pathways similar to UNet and Full Resolution Residual

Network[39] inside it.This idea is refined by HRNet.

Domain adaptation involves using a trained model in one domain to do classification in

another(domain 2). This is in contrast to transfer learning, where the labelled data in domain

2 is used to fine tune the network trained in domain 1. The aim of domain adaptation is to

achieve performance close to transfer learning while using fewer or no labelled data in domain

2. Generally there are 3 approaches to domain adaptation: Reducing divergence between

feature vectors in different domain through statistics, reducing divergence between feature

vectors using adversarial learning and generating new training samples using reconstruction.

In Statistical divergence reduction, Maximum Mean Discrepancy is a good example which is

used in[30][50], to bring the mean feature vector of different domains at different layers to be

close to each other. In [50][19], the authors use different forms of entropy losses to make the

prediction probabilities peaky over one class.Domain Adaptive Neural Network (DANN) [11]

and its improvement Adversarial Discriminative Domain Adaptation(ADDA)[47] are examples

of adversarial learning, where a discriminator network tries to identify the domain from feature

vectors and the classification network is forced to learn domain invariant features. In [3], a

generator network is used to adapt images from one domain to another and learn grasping policies

in the new domain. For our particular task, the videos are unlabelled and the labels closely align

with the labels used in Cityscapes dataset. Hence we decided to go with ADDA.
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1.3.2 Video Object Segmentation tracking

The VOS challenge has been approached with end-to-end predictors as well as ensemble

of models, with each model doing a particular defined task. Among the end-to-end predictors,

[22] proposed a single Deep Network which will take current frame, previous object mask

and predict the current frame’s object mask. [5] uses a single network on DAVIS2016 dataset

and then fine tunes the network for each of the test videos using one shot learning on the first

annotated frame. CINM [2] also takes in a 4 channel input (RGB image + mask) and uses

spatio-temporal Markov Random Field Model to output a refined mask. Lucid [21] proposes

a single network which uses a warped previous mask using flow estimation as well the flow

estimation itself as inputs along with the target frame to predict the new mask. Their main

contribution was introducing new data augmentation methods to produce synthetic data from

annotated first frame of target videos. Additionally, they used pixel level semantic labelling as

an extra input. For temporal consistency, they propose refining the current mask by removing all

connected components which do not overlap with connected components in previous frame.

Some of the multi-network models include PreMVOS [31] and [24]. [24] uses a Re-

identification module which proposes a rough bounding box for target object and refines it into a

mask using attention mechanism. These masks are temporally refined using a module which

does bi-directional mask propagation. This is done by using flow guided warping of a ”memory”

from the nearest key frame. [25] also proposes similar mask propagation and re-identification

modules. PreMVos [31] is currently the best performing model for DAVIS2017 test dataset

with mean J&F score of 71.6. Similar to RCNN, it uses a Proposal generator for bounding box

proposal, a proposal refinement network, mask propagation using optical flow computed by

Flownet2.0[17], re-identification network and finally a proposal merger to estimate the masks.

PreMVOS also uses online learning, where it updates its networks on 2500 augmented images

generated for each of the first annotated frames of val/test videos. OSVOS-S [33] builds on top
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of OSVOS, using semantic segmentation networks such as Masked RCNN to improve the result

of OSVOS.

1.3.3 Loss functions for segmentation

All the networks mentioned above use cross entropy loss for losses associated with

predicted mask. Some papers mention using weight balanced Binary Cross Entropy (BCE) loss

like[5],[33] while others don’t explicitly specify. Tsung et al. [27] proposed focal loss, modifying

the regular Cross Entropy (CE) loss to focus more on hard to classify examples. When reg-

ular CE uses the term ∑t yt log(pt), focal loss proposes adding the term (1− pt)
γ ,γ ∈ [0,5]

to CE loss. This is to weight the highly miss-classified examples more. The final loss

becomes∑t yt(1− pt)
γ log(pt). In UNet [45], authors proposed a weight term along with CE loss

which adds weight based on class imbalance as well as to force the network to learn the small

separation borders. Various papers in the literature have also suggested using alternative loss

functions to directly optimize for IOU score.

There have been various attempts to directly maximize IOU. The challenge is, the direct

IOU computation is non-differentiable. This has been worked around by directly approximates

the IOU loss to a differentiable form, called soft IOU[41] and [35] . Consider X to denote the

final output of the network just before sigmoid layer and M to denote the true mask for image I.

Let xi ∈ X be the output for pixel i in the final layer, then the soft IOU loss in [41] is defined as:

L = 1− I(X ,M)/U(X ,M),where (1.1)

I(X ,M) = ∑
i∈I

sig(xi)∗Mi (1.2)

U(X ,M) = ∑
i∈I

sig(xi)+∑
i∈I

Mi−∑
i∈I

sig(xi)∗Mi (1.3)

where sig(xi) is sigmoid function on xi.

Similar IOU loss has also been proposed for bounding box regression[53]. Instead of per pixel
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summation, the differentiable IOU is computed as a function of predicted and true bounding

box dimensions. Nagendar et al.[36] proposes using a Neural Network to approximate the non

differentiable IOU loss function. The neural network takes as input the sums of probabilities

of pixels in TP, FP & FN and predicts the IOU loss value. Fausto et al. [34] used differentiable

version of Dice coefficient as loss, similar to differentiable IOU loss in eqn (1). Similarly another

author proposed using negative log of soft IOU as loss as in eqn (4):

L =−log(
I(X ,M)

U(X ,M)
) (1.4)

where I(X,M) and U(X,M) are defined as in eqn (2) and (3).

1.3.4 Unsupervised Learning for Object Segmentation

Vondrick et al. [49] was one of the first authors to propose using a pixel-to-pixel matching

learning. The authors proposed using grey scale images and psuedo label for each pixel during

training. The network was trained to match pixels with same pseudo label. The label for

each pixel was generated from K-means clustering on LAB color space of original images.

Corrflow[23] improved upon this, using RGB input with channel dropout. UnOVOST [32]

proposed a different approach of using Mask RCNN to get region proposals and then tracked the

object through frames using optical flow, temporal information, and feature vector associated

with each region proposal. Tengda et al.[15] took a generative approach, using self supervision

through input video blocks to predict future video blocks.

1.4 Summary

In this thesis, we aim to use existing models to generate annotations for novel videos.

First we explore using a pretrained object segmentation network for generating annotation. A

state of the art network, HRNet was picked because of the similarity between the dataset on

which it was trained and the novel videos on which it needs to be applied. Due to lack of
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annotations in the novel videos, unsupervised domain adaptation is explored to improve its

performance on these videos.

The lack of object class variety in pretrained models led to an interest in techniques which

can track new object classes from one or few annotations. For this, Video Object Segmentation

(VOS) tracking networks were explored. The networks in this domain use a single annotation of

an object to track that specific object for the rest of the video and does not rely on being trained

on object classes. We picked RANet for its state of the art performance in single object tracking

and then improved its performance in multi object tracking. Also we explore using the network

to track objects on our novel video of a car driving around the University campus.

Finally, we explored unsupervised learning methods for VOS tracking. Unsupervised

learning methods have the added advantage of being trainable directly on our novel videos

while not requiring any annotations, but usually have much lower performance than supervised

methods. A recent paper proposed an unsupervised model whose performance is on par with

several supervised models. The code for the model is not available online. So we attempted to

replicate the results and discuss our results in chapter 4.
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Chapter 2

Object Segmentation and domain adapta-
tion

Semantic segmentation involves identifying the objects in the scene at a pixel level detail,

with each pixel belonging to one of the object classes. Unlike object detection with bounding

boxes, there is no overlap between objects as a pixel can only belong to one class. This makes

it possible for having object segmentation masks for vegetation and roads. These classes can

be thin, long, and curvy in the image, so a bounding box encompassing them may end up also

covering a lot of objects of other categories. In addition, a pixel level annotation would reduce

ambiguity of identifying which object the wearer of eye tracker was fixated at. The gaze location

identified by the eye tracker is a pixel coordinate in the image and by having a measure of the

error in gaze location, we can have an accurate idea of possible objects being looked at. As a

example, a person might be looking at a toy under a table. In pixel level annotation, the pixels

near toy might that of background, with table quite far away. But a bounding box for the table

would end up encompassing the bounding box of the toy and create ambiguity.

HRNet is one of the state of the art network architecture in semantic segmentation

network, with the model also being used for other tasks such as pose estimation, object detection

and facial landmark detection. We specifically selected the pretrained model for Cityscapes

dataset, because of the similarity of the dataset with our videos. The videos were taken around

the university and thus features an urban settings, with building, roads, vegetation and cars
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being prominent. We picked a video of a person driving the car and generated annotations using

the pretrained model. Seeing that the generated annotations were not good, we used Domain

Adversarial Neural Network (DANN), an unsupervised domain adaptation technique. The use of

domain adaptation was found to be quite helpful and the new annotations generated appear to

have more consistent object boundaries and generally better identification of objects. Since we

did not have ground truth annotation for the videos, visual inspection was used for comparing

the results.

2.1 Method

HRNet[46] relies on using both high resolution and low resolution channels to construct

a feature map, which is used by the classification layer. The model comprises of 4 stages, with

each stage having various number of layers working at different resolutions. This can be seen in

Figure2.1, where the 4 stages have 1, 2, 3, and 4 layers. The top layers in each stage works at

input image resolution while each subsequent layer has half the resolution of the layer above it.

Each layer consists of a fully convolutional block with residual connections.

Figure 2.1. [46] An example of a high-resolution network with four stages. Please note that in
the connections between stage, a branch in next stage receives input from all branches in the
previous stage.

To make full use of processing at different resolutions, the input to one layer of a stage

uses all the outputs from the previous stage. For example, in Figure2.1, the output of 3 layers in

stage 3 are fed into the 4 layers of stage 4. For input to layer 2 in stage 4, the outputs of layer

1,2 and 3 in stage 3 are summed and fed. The output of layers can have different resolution and

also different number of channels which cannot be directly summed. This is resolved by having
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Figure 2.2. [46] Connections from one stage to the next stage.

bi-linear up-sampling with convolutions and strided convolutions for down sampling. This is

shown in Figure 2.2. The CNN block doing the up-sampling or down sampling also takes care of

adjusting the channel numbers.

2.1.1 Domain adaptation through Adversarial Training

We adapted the HRNet trained on cityscapes to our videos using a simple convolutional

network classifier as discriminator. The Domain Adversarial Neural Network (DANN) method

involves the discriminator trained to binary classify images based on whether they are from

source domain or target domain. The input to the discriminator is the feature vector from HRNet

and the target label is 1 (source domain) or 0 (target domain). Thus the simplified loss for the

discriminant is LD [11]:

LD =− 1
|Xs| ∑

xs∈Xs

[log(Gd(G f (xs)))]−
1
|Xt | ∑

xt∈Xt

[log(1−Gd(G f (xt)))] (2.1)

where Xs and Xt are source and target domains respectively, Gd is the discriminator network

and G f is the feature extractor network. Since we want the feature extractor G f to increase

the LD, one way is to train the feature extractor and discriminator alternately. But both can be

trained together by using a gradient reversal layer[11] in between the feature extractor and the

discriminator. The gradient reversal layer has no learn-able parameter. During forward pass,
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it simply passes on the input as its output (identity transformation). During backward pass, it

reverses the sign of the gradient before passing it back. With this, the whole network can be

jointly trained using back prop using a single loss L:

L = Lcls(Xs,ys)+λLD (2.2)

where Lcls(Xs,ys) is the regular supervised classification loss in source domain. λ is a hyper

parameter which controls the relative importance of each loss.

2.2 Experimentation and Results

We took the HRNet training code and the pretrained model in the Cityscapes from the

author’s site. The training procedure involved various data augmentations of which scaling was

one. The input and therefore feature vector output of the network could vary between mini

batches. Thus, the discriminator network consisted of 3 layers of CNN followed by an adaptive

max pool layer and a fully connected classification layer. The adaptive max pool layer is a max

pool layer with dynamic kernel size such that the output feature map size would be constant

irrespective of the input feature map size. The adaptive max pool layer was configured to always

provide output of dimension 1x1x64. This relatively simple network was enough to adapt the

network. The lambda was chosen to be 0.01.

Since there was no true annotation available in the target domain, we checked the

performance by comparing the outputs of the base network(pretrained model) and the adjusted

network. The results can be seen in Figure 2.3. Overall, the predictions are more consistent and

accurate compared to the initial network. For example, the adapted network frequently classifies

the dashboard of the car as a road. The rear view mirror is classified as either a road or a car,

depending on the frame. Both the rear view mirror and the dashboard are not present in the

classification list of cityscapes and thus the network does not know of their existence. One thing

to note is that, the trained HRnet model uses only 19 of the 30 classes in the Cityscapes dataset
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Figure 2.3. Comparison of base model and adapted model on the private video. The video is
from the head mounted camera recording the scene seen by a person driving. As can be seen, the
adapted network generates smoother and consistent predictions even if it miss classifies a lot of
pixels.

and the label numbers associated with class names differ from the list provided by cityscapes.

Even though the domain adaptation is improving the results, its still far from a good detector.

In many instances, the network is miss-classifying vegetation as buildings or completely not

detecting some cars in the road. This can be seen in Figure 2.4, where the network misses a lot

of vegetation area in the time frame at 85 sec and a car in the time frame at 63 sec.
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Figure 2.4. Instances where adapted network could be performing worse than base network.

2.3 Conclusion

The domain adaptation can be used with a pretrained model to generate initial annotations

which can then be refined manually. The Figures 2.3 and 2.4 show that the prediction results from

domain adaptation are smoother and usually more accurate than the unrefined network. We did

not have true annotations to give out a measure in IOU or accuracy improvement. Nevertheless,

domain adaptation reduces erratic annotations which should reduce the effort for manual refining.

One thing which can be seen is that when the network is forced to classify new classes into some

existing classes, it does not always classify it to the nearest trained class. For example, in Figures

2.3 2.4, the flower hanging inside the car is a new class of object not present in the annotated data

trained by HRnet. It could be considered as vegetation. But the network is either classifying it as

road or another car, because of how contrasting it is with existing vegetation. The network could

be trained to identify it as separate class using some manually annotated data, using transfer

learning or domain adaptation. But this could be expensive for short videos and for objects with

sparse occurrence. A technique which can track the marked object from one example would be

immensely helpful for this task. This is explored in the next chapter.
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Chapter 3

Object Segmentation and Tracking

The experiments with domain adaptation and image segmentation made us realize that

manual annotation might be necessary to accurately identify the fixated object as well as to train

future object detection and segmentation networks to identify new object classes. The output

from adapted HRNet could be used as an initial annotation which can then be manually refined.

But these do not make use of the annotations after manual refinement. The frames in a video are

correlated with each other and thus we should be able to use the refined annotation in frame 1 to

improve the initial annotation in subsequent frames. This prompted us to explore the literature

and select a semi-supervised Video Object Segmentation tracking task. The methods for this

task rely on first frame annotation to propagate those annotations across the whole video. They

usually have very good performance on frames close to annotated frame and the performance

decays as the temporal gap increases. We selected RANet[51] for its state of the art performance

in single object tracking in DAVIS 2016 dataset and its good performance as a single end-to-end

network in DAVIS 2017 multi-object tracking dataset. We analyzed the network, tried improving

its performance and then evaluated its use in the task of propagating annotation on a video.

3.1 Method

RANet uses the first (template) frame I0, its mask M0 and the current (target) frame It to

compute the correlation map. The correlation map consists of 512 maps, 256 of which belongs to
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foreground and rest 256 for background. All 512 maps are constructed by finding the correlation

of feature map of It with feature vectors of selected pixels from I0. Thus, 256 FG pixels and

256 BG pixels needs to be selected from I0 and this is done by using Ranking Attention Module

(RAM). The correlation map is used to refine the previous mask Mt−1 to create current mask Mt .

To create feature vectors for pixels, ResNet 101 is used with batch norm layers replaced by

Figure 3.1. [51] Illustration of the RANet. The correlation of the features extracted by Siamese
networks is used as a similarity map. The output similarity map and template mask are fed into
the RAM module to rank and select the foreground/background similarity maps.

instance norm based on idea from [48]. The authors also used Fully Convolution Block to

convert the 2048 sized feature vectors into 512 size for each pixel. Each feature vector is then

normalized.

The overall architecture of RANet is shown in Figure 3.1. Using the ResNet 101 encoder

layer, a WxHx512 sized feature map is generated for both I0 and It , called F0 and Ft respectively.

For each pixel in F0, the highest correlation it has with any of the pixel in Ft is found. This is

used to create WxH correlation score matrix Ct . Then the feature map (WxHx512) is given
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to a Fully Convolution Block called Ranking module which again generates a scalar score for

each pixel and gives score matrix Rt . Initial mask M0 is used to get the pixels corresponding

to foreground(FG) and background(BG) in F0. Among the FG pixels, the top 256 pixels are

selected based on the total score. If there are less than 256 pixels, dummy pixels with 0 valued

feature vectors are used as fillers. The same is done for BG pixels as well. Then these maps and

the previous frame’s mask are fed into the decoder, which generates the final segmentation mask.

3.2 Experimentation and Results

3.2.1 Analysis of RAM module

As can be seen from Figure 3.2, the output after RAM module has values very close to

one. The image used was taken from ’India’ validation set, where we have to track 3 people in

a crowded street. The normalized correlation maps show a rough silhouette of objects and the

RANet uses a decoder layer which is a Fully Convolution Block with Instance normalization and

residual connections to refine these correlation maps. This is demonstrated in Figure 3.3. The

object to be tracked is much more prominent and the values are no longer close to each other.

Still, it can be seen that the correlation maps have a lot of activation for areas with no object

(trees) and with similar objects (other people). These parts are refined by later layers which also

uses the previous mask as temporal information.

3.2.2 Use of Temporal Information in RANet

RANet uses two methods for temporal information transfer, of which only one is men-

tioned in the original paper. The first method (and the one mentioned in the paper) is to use

the previous mask as an input along with the correlation maps for the current frame. When the

template mask was used instead, the mean IOU score reduced by 4% in the validation set. Thus,

this step provides a significant boost to performance.
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Figure 3.2. Correlation Map from RAM Module. By normalization, the values are scaled from
(min, max) to (0,1). By unnormalized values, it means the values are kept as it is and clipped
with min=0 and max=1 for displaying.

The second method is bounding box cropping. A tight bounding box is computed on the previous

frame mask Mt−1 and loose bounding box of 1.5 times the size of this tight bounding box is used

to crop the current frame It . The object segmentation is done only within the cropped image. For

multi object scenario, the tight bounding box is built to encompass all the objects in the previous

frame. Removing this step reduced the performance by a further 4% in IOU score. The results

are shown in Table:3.1. The J here is Jaccard distance, measuring the IOU for region similarity.

F score is a measure of contour accuracy, that is how aligned the boundaries of true and predicted

masks are. For both J and F mean, the higher values indicate better prediction. The decay term
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Figure 3.3. Correlation Map after decoder layer. By normalization, the values are scaled from
(min, max) to (0,1). By unnormalized values, it means the values are kept as it is and clipped
with min=0 and max=1 for displaying.

is a measure of how fast the J or F value degrades as we predict for later frames of the video,

with lower the better. Using Bounding Box (BBox) for prediction in training dataset reduced the

performance by 1%. This might indicate a slight over-fit, since the BBox method is not used

during training.

Table 3.1. Ablation study on modifications using temporal information. Mt−1 denote using the
predicted mask for previous frame as initial estimate for current frame t.

Model J&F Mean J Mean J Decay F Mean F Decay
RANet 0.677 0.65 0.22 0.70 0.23

RANet without Mt−1 0.632 0.60 0.29 0.66 0.28
RANet without Mt−1 and Bbox crop 0.591 0.55 0.31 0.629 0.309
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3.2.3 RANet Modifications

Compared to training of RANet by the authors, the common data augmentations we

used were cropping with scaling and random rotations of +-300. The thin spline transform was

dropped and instead random horizontal/vertical flips were used. Whatever transform was applied

on an image, the exact transform was applied on its mask. The flip transforms were applied

uniformly on the template image/mask and target image/mask while rest of the transforms

applied could differ between the template and the target. That is, if template image was decided

to be vertically flipped, then the template mask, target image and target mask would also be

vertically flipped. But if the template image was chosen to be rotated by +15o, then the template

mask is also rotated by +15o degree but the target image and target mask could be rotated by a

different angle. The vertical flip was integrated in the hope of making the network less reliant on

class information and make the network learn similarity between images. The limits for rotation

were based on the limits used in original RANet paper.

First modification was using soft IOU loss based on [41] instead of BCE loss. Let X be the final

output of the network just before sigmoid layer and M be the true mask for image I. Let xi ∈ X

be the output for pixel i in the final layer, then the soft IOU loss is defined as:

L = 1− I(X ,M)/U(X ,M),where (3.1)

I(X ,M) = ∑
i∈I

sig(xi)∗Mi (3.2)

U(X ,M) = ∑
i∈I

sig(xi)+∑
i∈I

Mi−∑
i∈I

sig(xi)∗Mi (3.3)

where sig(xi) is sigmoid function on xi. Thus, there is no thresholding involved and the predicted

probabilities are directly used to compute the loss, making it differentiable. This loss has to be

applied on per object basis in an image pair.

The second and third modifications were based on improving the pixel selection in RAM
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module. The foreground(fg) correlation maps needs to be matched with the true foreground

in target map and vice versa for background (bg) correlation maps. For this, a discriminant

score was added along with the scoring mechanism of RANet. This discriminant score was

computed as follows: For each fg pixel in template frame, its correlation with other pixels in the

template image was computed. The sum of top 8 pixel correlation values with other fg pixels

were take and top 8 correlation values with bg pixels were subtracted. Thus fg pixels which

match well with other fg pixels and less with bg pixels in template frame will get highlighted.

Similar discriminant scoring was done for bg pixels as well. This discriminant score was added

to the original score computed by RANet, with a relative weight of 0.5 (a hyper parameter which

was not explored for tuning).

The other modification was using non maximal suppression. If we picked one pixel in the neigh-

bourhood, selecting another pixel in the same neighbourhood might give less extra information.

But since the number of pixels might be limited (esp for fg) and we are using a ranking method,

the score of maximal pixel in the neighbourhood was increased instead of suppressing the score

of other pixels. This way, if the number of maximal pixels are less than 256, other pixels with

high scores would be picked who may not be maximal in the neighbourhood. But maximal pixels

in the neighbourhood would be preferred first.

For all modifications, we initialized the RANet with the trained model from author’s site.

All networks were trained with the same data augmentation methods, same learning rate of 10−6

and early stopping on validation dataset. The results are shown in table: 3.2 and 3.3. The RANet

corresponds to the original model trained further with BCE loss. It was over-fitting immediately

and so the original weights were used for comparison. RANet + IOU corresponds to using

original RANet with IOU loss. The network started over-fitting in one epoch. RANet + IOU +

disc corresponds to using RANET with IOU loss and discriminant scoring in RAM module. It

over-fit after 1 epoch. Finally, RANet + IOU + disc + nms corresponds to using RANEt with

IOU loss, discriminant scoring and non maximal suppression. It also started over-fitting after 1
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Table 3.2. Results of modification techniques in Val dataset

Model J&F Mean J Mean J Decay F Mean F Decay
RANet 0.694 0.66 0.22 0.719 0.22

RANet + IOU 2 epoch Mt−1 0.718 0.692 0.20 0.74 0.21
RANet IOU + disc 1 epoch 0.719 0.69 0.20 0.74 0.21

RANet IOU + disc + nms 1 epoch 0.719 0.695 0.19 0.74 0.21

Table 3.3. Results of modification techniques in DAVIS 2017 test dev

Model J&F Mean score
RANet 0.553

RANet + IOU 2 epoch Mt−1 0.596
RANet IOU + disc 1 epoch 0.591

RANet IOU + disc + nms 1 epoch 0.584

epoch. Separate applications of these modifications were not run.

As can be seen from the table, IOU loss improved the performance by 4.3% in test dataset.

But other modifications didn’t bring much change in val dataset performance and decreased

performance in test dataset. Two possible reasons are that the modification is causing the model

to learn quickly and overfit and that the modifications are not compatible with the RANet network

architecture. As shown in section 3.2.1, the network is not reliant on sharp correlation maps and

is instead using the maps to modify the previous frame mask. The learnt decoder on correlation

maps also sharpens the correlation maps using some idea of object shapes.

3.3 RANet on private video annotation and tracking

One of the motivations for exploring RANet was to assist in generating annotations and

track objects of new categories. To test the effectiveness of RANet, we picked the driving video,

whose images are shown in Figure2.3. Unlike prediction models, tracking algorithm requires an

initial annotation so that the network knows which objects to track. For this, we used the output

annotations of HRNet on the the first frame. The images were extracted every 30 frames on a
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30 FPS video. Thus there is a gap of 1 second between each frame and fast moving objects as

well. The results are shown in figures 3.4 and 3.4. The domain adapted HRNet was used for

the first frame annotation. The categories identified were road (darkest), vegetation, sky and car

(brightest). This was provided as masks for RANet to track, with all pixels belonging to one

category forming mask for that ”object”. Since there was no background, a softmax over all

present classes were used to label the pixel. Thus RANet was able to identify new cars coming

and going in the images. This can be seen in the figures where different cars pass by each second.

The ability to identify new cars from the car in initial frame can be attributed to the feature

extraction ability of RANet encoder. Since every pixel had a label in HRNet annotation and no

”background”, a softmax was used over all classes present in the first frame, to decide the label

of a pixel when tracking with RANet. Occasionally the RANet encoder is able to better identify

cars than HRNet as seen in Frame at sec 2 and frame at sec 6 in figure 3.4. But at the same

time HRNet identifies the new car better in Frame at sec 3 in the same figure. As a limitation,

the RANet cannot identify traffic signals and poles which were not annotated by HRNet in

frame 1. A classification network is not constrained by the introduction of new object classes in

subsequent frames, as long as the network was trained in some dataset containing these object

classes.

To compare the effectiveness of tracking a new object class, the hanging flower in Frame

1 was picked up as test subject. The flower was occasionally labelled as road or car by the HRNet.

We generated the annotation with a simple bounding box converted to dense binary mask as

shown in Figure 3.6. Despite starting with a bounding box mask, the RANet is able to track the

rough boundaries of the flower, identify when it disappears and reappears in the video.

3.4 Conclusion

We made a significant improvement in RANet performance by fine tuning with better

loss functions. RANet also showed itself to be good at using propagating an initial annotation
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Figure 3.4. First frame annotated by domain adapted HRNet. Subsequent annotations are results
of tracking using modified RANet.
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Figure 3.5. Continuation from figure 3.4.

across a video. From the initial annotation of cars by HRNet in the first frame, the RANet could

identify different cars in the subsequent frames, with performance on par with domain adapted
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Figure 3.6. Tracking of a new class of object. A crude mask was generated on Frame 1 and
given to RANet to track. This object was identified as car or road by HRNet (both non-adapted
and adapted).

HRNet. It also proved itself useful in the niche case of tracking a new object class, from a single

annotation instance. A good strategy for annotating novel videos would be to use HRNet or

similar detectors to extract an initial annotation, identify the new object classes needing tracking

and using RANet to propagate those annotations further.

There were also certain limitations observed, with the network not recognizing some cars
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or vegetation and instead identifying them as road. Also the tracking of a new object class has

only been tried on a single video and the possibility of using an annotated frame in one video to

track the same object in a separate video (with different background) has yet to be implemented.

This needs to be further explored along with making the feature extractor more domain invariant.
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Chapter 4

Unsupervised Learning for Object Seg-
mentation

The supervised VOS method worked well for tracking new object classes as shown in

previous chapter. This made us interested in networks which learn good feature extractors. The

recent papers, CorrFlow[23] and Memory Augmented Self supervised Tracker (MAST)[54]

proposed unsupervised training methods on raw videos and worked based on extracting good

distinguishing feature vectors for pixels. Moreover the MAST claims a high performance

comparable to supervised methods like RANet. A working MAST method might generalize

better on new objects and can be fine-tuned on new videos directly using unsupervised training

method. This made us interested in exploring the unsupervised method and try reproducing

it. Since the code for MAST was not publicly available, we referred the code of Corrflow and

implemented MAST from scratch.

4.1 Method

The MAST works on the idea of non-local means filters, by identifying similar pixels

and reconstruction using them. The input to the model are a set of past frames (called reference

frames), the current frame(called query frame) and the annotations associated with the past

frames. The frames are in LAB color space and the annotations associated with them are one of

the A or B channel in LAB space. The channel selected as annotation is dropped out in input
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frames. The aim of the model is to reconstruct the annotation associated with the query frame

using the reference frames and their annotations. This query annotation is constructed pixel by

pixel. For a query pixel in query frame, similar pixels are found in reference frames. Theses

pixels and their corresponding annotations form the key pixels and key values associated with

that particular query pixel. The MAST module takes in the first frame, 5th frame, t-5, t-3 and t-1

frames as reference frames when the query is frame t in the video.

For a particular query pixel, the search for key pixels in the past 5 frames is conducted

in two stages: Region of Interest (ROI) identification in each reference frame and selection of

pixels from the ROI with their importance. These processes can be described independently for

each reference frame.

Figure 4.1. Using dilation for sparse region of interest searching. The Red box is the coor-
dinate for the query pixel, while the blue boxes are the only pixels considered for correlation
computation. The window size is 3x3 with (a) having dilation of 1 and (b) having dilation of 3.

Step 1: For each pixel in the query frame,the nearby pixels are sampled in the reference

frame. For a query pixel at coordinates (i,j), the nearby pixels are the pixels in a window of size

(w × w) around coordinate (i,j) in the reference frame. As the temporal gap between query and

reference frame increases, the window is enlarged by use of dilation. The dilation factor used

was: ceil( t
15) where t is the difference in frame number. The amount of computation remains

same while a larger field of view is searched, due to dilation. As an example consider a window

size of 13×13. For a frame with temporal gap of 1, the dilation factor is 1 and all pixels in a

13×13 window would be sampled, giving 169 points for computing correlation. For a frame with

temporal gap of 35, the dilation factor is 3. Thus a 39×39 window centered around the query
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pixel would be considered, but not every pixel in that window would be used for computing

correlation with feature vector of query pixel. Instead, only 13*13 points would be considered

from this 39×39 window, with a gap of 3 between the pixels. This is similar to the points picked

by dilated convolution. Figure 4.1 gives an example for a 3x3 window with dilation 1 and 3.

Even-though the window considered for ROI increased in Figure 4.1 (b), the points picked for

correlation computation are still only 9 pixels. Based on the correlation score of candidate pixels

w.r.t feature vector of query pixel, the center coordinate of region of interest for query pixel is

computed in the reference frame using the below equation. For reference frame r, query frame q,

for a pixel in q with coordinate (xp,yp):

Cq,r
xp,yp

=
∑h∈{−w,w}∑l∈{−w,w} exp(< vq

(xp,yp)
,vr

(xp+h∗d ,yp+l∗d)
>)(xp+h∗d,yp+l∗d)

∑h∈{−w,w}∑l∈{−w,w} exp(< vq
(xp,yp)

,vr
(xp+h∗d ,yp+l∗d)

>)
(4.1)

Where <> denotes correlation and vs
(i, j) denotes feature vector for pixel (i,j) in frame s. d here is

the dilation factor. In other words, softmax is used to predict the center coordinates of region

of interest(ROI) for each pixel. From each frame, all the pixels in a w’xw’ window around the

ROI center as key pixels for that query pixel. Thus each reference frame provides w’2 number

of key pixels for a particular query pixel. The values associated with the key pixels are called

key values and they are taken from the value of pixel at same coordinate as key pixel, but in the

annotation frame.

Step 2: Once the key pixels and their corresponding annotation values (key values) are

found in all reference frames, they are all pooled together, giving 5 * w’2 number of key pixels

and key values associated with the key pixels. The reconstruction is done similar to constructing

the ROI location, but now using all key pixels from all frames. Let i be the query pixel and J

corresponds to set of key pixels associated with it. Let f eatk represents feature vector associated

with pixel k and yk represents the value associated with pixel k which might be in the query
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frame or one of the reference frame. The equations for reconstructing the value of pixel i is[54]:

ŷi = ∑
j∈J

Ai, jv j (4.2)

Ai, j =
exp(< f eati, f eat j >)

∑ | j′ ∈ Jexp(< f eati, f eat j′ >)
(4.3)

Where ŷi is the predicted value for pixel i while yi is the true value. The window size

used by us for predicting center coordinates was 13x13 and the window size for selecting key

pixels from ROI was 5x5. The window size value was chosen based on window size used for

ROI prediction in Corrflow[23] for a similar operation while the window size used for selecting

key pixel was based on computation and memory constrains.

In case of regression loss, a Huber loss is used with yi being the target value. The yi is

either the A or B channel in the LAB channel space. Thus for regression loss, the input is image

from LAB space and target is one of the channels in A-B. The channel picked as target is zeroed

out in the input. Even though the original MAST paper proposes using regression loss, the model

can also be trained with classification loss similar to Corrflow. For classification loss, each pixel

must be associated with a particular class. yi in this case becomes a binary value 0 or 1 depending

on whether the pixel i belongs to the current reconstructed class (or object being tracked). The

class for a pixel can be generated from supervision data or in an unsupervised way[23, 49]. In

Corrflow[23], the authors proposed generating 16 cluster centers using K means on the whole

dataset and then assigning each pixel to one of the clusters. RGB pixel values of images in

the dataset were considered as x-y-z 3D coordinates and the clusters were generated using L2

distance. For classification training, the input would be RGB image and the annotations would

be generated using clustering in LAB space. This method was followed during implementation.

To avoid learning pixel values as feature vectors, both Corrflow and MAST proposes channel

dropouts.
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4.1.1 Loss functions for training

Common definitions: xi refers to feature vector for pixel i. yi refers to true annotation

for pixel i, which could be one of the A/B channels in LAB space (for regression) or the cluster

label/true annotation for classification.

Classification Loss

Consider query pixel i in frame t with class yi. Using cross entropy loss for pixel i

L(i) = ∑yilog(pyi
i ),where (4.4)

pyi
i =

∑ j∈Key(xi),y j==yi eci j

∑ j∈key(xi) eci j
(4.5)

Here ci j is the correlation between feature vectors of pixel i and pixel j. Note we are not

considering frames of i and j here as that is not important once the key pixels are selected.

Also lets define ypred
i as:

ypred
i = ∑

j∈Key(i)
pi jy j (4.6)

ci j =< xi,x j > (4.7)

To simplify, we can consider the class y to be 0 or 1. With this, we can write the cross entropy

loss as:

L(i) =−∑yilog(ypred
i )− (1− yi)log(1− ypred

i ),where (4.8)

ypred
i =

∑ j∈Key(xi) eci jy j

∑ j∈key(xi) eci j
(4.9)

ypred
i i = ∑

j
pi jy jwhere (4.10)

pi j =
eci j

∑ j∈key(xi) eci j
(4.11)
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Regression Loss

Consider pixel i in frame t with true value yi. Even though the loss used is Huber loss, L2

loss can be considered for understanding the gradients and how back propagation helps. Using

L2 loss for pixel i

L(i) = (yi− ∑
j∈Key(i)

pi jy j)
2,where (4.12)

pi j =
eci j

∑ j′∈key(xi) eci j′
(4.13)

4.1.2 Gradient

Thus the loss for both can be written in terms of pi j where i is the query pixel we want to

reconstruct and j is one of the Key pixels for i. Before proceeding to gradient in case of both

loss functions, lets compute gradient of pi j w.r.t input xk.

if j=k:

∂ pi j

∂xk
= pik(1− pik)xi (4.14)

if j 6= k:

∂ pi j

∂xk
=−pi j pikxi (4.15)

This will be useful for deriving equations of gradients for both loss functions and

comparing how the gradients differ for both loss functions.

Gradient for L2 loss

The x denote the feature vector associated with pixels while y denote the annotation

associated with the pixel. For key pixel feature vector xk, the gradient to reduce loss on pixel i
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will be :

−∂L(i)
∂xk

=−
∂ (yi−∑ j∈Key(i) pi jy j)

2

∂xk
(4.16)

=−(ypred
i − yi)

∂ ∑ j∈Key(i) pi jy j

∂xk
(4.17)

=−(ypred
i − yi)xi[pik(1− pik)yk− ∑

j∈Key(i), j 6=k
pi j piky j] (4.18)

=−(ypred
i − yi)xi pik[yk− pikyk− ∑

j∈Key(i), j 6=k
pi jy j] (4.19)

=−(ypred
i − yi)xi pik(yk− ∑

j∈Key(i)
pi jy j) (4.20)

= (yi− ypred
i )(yk− ypred

i )pikxi (4.21)

When training with L2 loss, the annotations(values) y are scalar pixel value themselves from the

A or B channel in the LAB color space. If true query value yi and key value yk are on the same

side of the predicted query value ypred
i , the gradient shifts the key pixel feature vector xk towards

query pixel feature vector xi. If they are opposite, the gradient moves xk away from xi.

Gradient for Classification loss

For key pixel xk, the gradient to reduce loss on pixel i will be :

−∂L(i)
∂xk

=
∂ ∑yilog(ypred

i )+(1− yi)log(1− ypred
i )

∂xk
(4.22)

If yi = 1:

−∂L(i)
∂xk

=
∂ log(ypred

i )

∂xk
(4.23)

=
yi

ypred
i

∂ ∑ j∈Key(i) pi jy j

∂xk
(4.24)

=
yi

ypred
i

(yk− ypred
i )pikxi (4.25)
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=
(yk− ypred

i )pikxi

ypred
i

(4.26)

If yi = 0:

−∂L(i)
∂xk

=
∂ ∑ log(1− ypred

i )

∂xk
(4.27)

=
1

1− ypred
i

∂ − ypred
i )

∂xk
(4.28)

=
(ypred

i − yk)pikxi

1− ypred
i

(4.29)

Thus, the gradient pushes xk towards xi if their labels match and pushes away if labels don’t

match.

4.2 Experimentation and Results

To compare between the the 3 ways of training the feature extractor, we trained three

networks, starting from same initial model and using same data augmentation and learning rates.

Since the 3 MAST models and Corrflow use the same feature extractor, the MAST models were

initialized with Corrflow pretrained model on OxuVa dataset. This was done to reduce amount

of training required and whether it was a good idea will be discussed later in this section. The

learning rate used was 1e-04 and data augmentations only included random vertical/horizontal

flips and 90 degree rotations. All models were trained for 30 epochs. Table 4.1 shows the results

of training. As expected, the model with true supervision performs best. One interesting result

was that Unsupervised Cls (clustering in LAB space and using that as annotations) performed

better than L2 loss. This is in contradiction to the original MAST paper. One reason why this

happened might be because the Corrflow pretrained model ran on RGB space and thus fine

tuning was not enough to adjust to LAB space. This is supported by the results of Unsupervised

L2RGB, where giving the input in RGB space produced better results with an L2 loss trained
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network. Here, the same model as Unsupervised L2 was used (with training in LAB space), but

during testing, RGB input images were given, instead of LAB color space.

Table 4.1. Comparison of different training losses. For normalized models, a temperature of 0.1
was used in the softmax to scale up the cosine distances

Model J mean unnorm F mean unnorm J mean norm F mean norm
Supervised 50.2 51.9 49.8 52.3

Unsupervised Cls 43.4 46.4 41.2 42.3
Unsupervised L2 35.7 38.4 30.5 26.9

Unsupervised L2RGB 37.5 40.0 - -

Another dimension we explored was whether to use correlation or cosine distances in

equations 3.1 and 3.3 . In table 4.1, the results are shown by columns with ”norm”. Overall, the

values are close but lesser than using direct correlation values. Using cosine distances required

two additional hyper parameters: temperature on softmax operations for ROI location prediction

and for key score computation in equations 4.1 and 4.3 repectively. This is because, cosine

distances are in the range of [-1,1] and thus a highly correlated pixel can get suppressed by the

presence of large number of uncorrelated pixels. This can be seen in figure 4.2. The temperature

factor in softmax sharpens the weighted sum and lets the computation focus on regions with

higher correlation. The query frame was 20th frame of video and the model is trying to estimate

the ROI in frame 1. The cosine distance value for the selected query pixel, blue box in (a), is an

ideal example: high activation near the place where the true head of the person is present and

little to no activation everywhere else. Still, the ROI estimated with regular softmax is far from

the region of activations. We needed a scaling up of activations to correctly compute the ROI

location. This is not needed if we use correlation values as its not constrained to a range. As

seen from the table 4.1, having correlation instead of cosine distances is giving better results. It

might be due to the model having flexibility to scale up or down the feature vectors. Using cosine

distances is equivalent to having normalized feature vectors as output from the feature extractor.

Overall, the results of the original MAST paper were not achieved by either supervised

or unsupervised training. The results are shown in Table: 4.2. Although a variety of factors in
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Figure 4.2. ROI prediction using cosine distances and softmax. a) The Query frame with blue
box as query. b) The 13x13 window cosine distance values corresponding to the query pixel in
first frame. c) The estimated ROI using softmax. d) The estimated ROI using softmax with 0.1
temperature.

the trained models differ from the original MAST model, using a Corrflow pretrained model

might be the biggest factor. Although 30 epochs is a bit low and training losses were still sharply

reducing, DAVIS 2017 train set is small and the validation dataset performance was saturating

by 30 epochs.

Table 4.2. Comparison of reproduced model with original models

Model J mean F mean
Corrflow Best Results 48.4 52.2

Mast paper Results 63.9 64.9
Corrflow pretrain on Mast 16.8 11.8

Superv Mast best result 50.2 51.9
Unsuperv Mast best result 45.7 47.8

Another point of difference is in how the feature vectors are extracted for the pixels

sampled in dilated ROI search window. With high dilation, important features can be missed

in the gap between dilated samples. This can be seen in figure 4.3. The white part of the beak

is present in between some sampled windows. In the current implementation, only the feature

vectors of sampled pixels are picked, which can hamper training and performance. The original

paper proposes using bi-linear sampling similar to Spatial transformer networks[18], although

its not clear what they meant by that. Having the feature vector of green sampled points as the

average feature vector within red boxes in figure4.3(c) might give better results.

The prediction capability of trained MAST model (unsupervised classification) was

visualized by replacing the pseudo label of first frame with true annotation. The results can be
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Figure 4.3. Area scanned by dilated window. a) The Query frame with query pixel marked in
blue box. b) The 7x7 window dilated by a rate of 20. The sampled pixels are showing in green
boxes c) The area represented by each dilated window sample (red box)

seen in Figure 4.4. The predictions for initial frame are good, with performance decaying as

we progress through the frames. Sometimes the prediction improves in later frames like the

predicted annotation of human in frame 51 vs 61, where the network is able to detect the change

in pose, and the predicted outline of the person is much smoother in the later frame. At the same

time, the network missed tracking movement of small objects with high similarity to background

like the cycle tyre. This shows that the network feature extractor is still not perfect and might

still be correlated with the color information of the pixel.

Figure 4.4. Sample annotation prediction by a trained unsupervised MAST model on a video in
validation dataset. Only the first frame annotation was provided.

4.2.1 List of differences in Corrflow/MAST and training done:

• The size of ROI search window. The size in Corrflow was used and might differ from the

one used in MAST.
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• ROI size. A size of 5x5 was used and might differ from the original MAST.

• Using bi-linear sampling with dilation in ROI search window.

• The reference frame selection: MAST used 0, 5, t-5, t-3 and t-1 frames as reference frames

for frame t while the current implementation used 0, 5, t-5 and t-1 frames. Even though

one extra frame may not look that impactful, the short term memory outweighs the long

term memory by 3:2 in original MAST because of this. This might have an impact as the

authors mention using long term memory brings an improvement in the order of 4%, with

the short term memory having the most impact.

• The Corrflow model predicts at 1/4 the image size and this prediction is bi-linear up-

sampled to image resolution before applying loss. This might provide a better loss than

down sampling the target prediction to lower resolution.

As an experiment, the MAST model was trained again with same hyper-parameters, but with

changing ROI window size from 5x5 to 7x7 and then including some of the differences listed

above. The results are shown in table 4.3. The training method was only unsupervised classifica-

tion loss. In Up sampling with short term memory model, the same changes as the Unsuperv

Classification initial model was made, but during training, only the short term memory frames

were included (t-5 and t-1). The Up-sampling model result shows that the bi-linear sampling

plays a key role in training and improved the performance by a significant amount. While

the second experiment with using only short term memory showed that the current training is

not able to make the network rely much on long term memory. Initializing feature extractor

with a Corrflow pretrained model might be the most significant factor in limiting the training

performance.
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Table 4.3. Comparison of initial trained model with fixing some of the stated differences. Up
sampling model indicates using bi-linear sampling with dilation in ROI search window and up
sampling prediction to original image size before applying loss.

Model J mean F mean
Unsuperv Classification initial 45.7 47.8

Up sampling 48.9 51.0
Up sampling with short term memory 48.2 51.3

4.3 Conclusion

We attempted to reproduce the results of MAST[54]. To reduce training time, the

pretrained OxuVa model of Corrflow was used as initialization for feature extractor of MAST

model and the model was trained only on DAVIS training dataset. The initial results are not

good, with performance peaking before even reaching the performance of Corrflow. Improving

the code for memory usage and fixing some of the identified differences with the original paper

improved the performance of the model, with performance of unsupervised classification training

now reaching the performance of Corrflow model. Still it is not close to the performance stated

in the original paper. Training from scratch in a bigger video dataset like OxuVa might be the

key in reaching the benchmark performance.
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Chapter 5

Conclusion

Annotation of novel videos motivated the exploration of object segmentation and domain

adaptation networks. We picked a state of the art object segmentation network and domain

adapted it to the novel video for identifying objects. The domain adaptation improved the quality

of predicted annotation. For assisting with the annotation of new object classes, we explored

video object segmentation (VOS) tracking. RANet, a state of the art network in single object

tracking was picked. Out of academic curiosity, we attempted several modifications to improve

its performance in multi object tracking . One modification, using soft IOU loss, improved

the performance on DAVIS 2017 test dataset by 4%. The network was also used as a tracker

for new object class in the private video and it showed promising results. The effectiveness of

feature extractor of the network was shown, when it could track new cars from the annotation

of old cars despite the network never having been trained to identify car as a class of objects.

The importance of feature extracted and usefulness of object tracking led us to explore the

unsupervised video object segmentation tracking. We selected the state of the art unsupervised

network, MAST, and a partially successful model was implemented. Currently, the model hasn’t

achieved the performance shown in the paper. We identified actual and possible differences with

the implementation in paper which could bridge the gap in performance.

There are currently better domain adaptation methods than DANN used for HRNet like

ADDA[47] and UNIT[28]. Also new works exploring adaptation for new object categories are
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coming up. These methods have good potential to make object detectors and segmentation

networks work for object identification in new videos without going through time consuming

manual annotations. With the potential of VOS tracking for assisting in annotation shown, getting

a working unsupervised method could go a long way in automatic annotation. The existing

implementation of MAST needs to be improved to reach the original paper’s results. Exploring

new ways to improve the unsupervised training method is another avenue. Currently the method

relies on per pixel reconstruction, which may not help the network learn the structure of objects

in the video. A way of area by area reconstruction (box reconstruction) could help network

learn this. This also introduces new problems such as the problem of orientation adjustment

between matched areas, optimal size of the areas etc. Having a working unsupervised VOS

tracker network can simplify the annotation generation as well as provide a very good feature

extractor which could be used in other computer vision areas as well.
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