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Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regu-
lation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous
clones. Over the last decade, many studies have revealed the relevance of genomic mutation in this process, be it by misreplication,
environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here, we discuss homologous recombina-
tion as another mechanism that can result in a loss of heterozygosity or genetic rearrangements. Some of these genetic alterations
may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogene-
sis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also
have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.

INTRODUCTION

Genetic alteration is the fundamental underlying process
that allows a normal cell to evolve into a cancerous one. Ge-
netic alterations can take a variety of forms with the essential
result being that a gene, or a combination of genes, is altered
to produce a cell that can bypass normal growth restrictions.
Here, we present a body of evidence indicating that one of
the important processes of genetic alteration in the gener-
ation of cancers is homologous recombination (HR). Evi-
dence from our laboratory, and many others, have demon-
strated that certain genetic deficiencies result in higher than
normal levels of genomic instability including a higher fre-
quency of HR. Patients with such genomic instability have a
higher probability of developing cancers as the instability al-
lows a higher rate of genetic alteration. These alterations may
result in either the direct mutation of an oncogenic gene or,
more likely, it reveals an already mutated copy. In addition,
we present evidence that proliferating cells demonstrate the
highest propensity for HR, in effect this predisposes prolif-
erating cancer cells to an increased frequency of this form of
genomic instability.

MODELS OF CARCINOGENESIS

Here, we mention three commonly accepted models of
carcinogenesis to highlight some of the processes that may
involve an HR event. The simplest model for carcinogenesis
is a one-step event. Most often, a mutation occurs in an onco-
gene that acts dominantly allowing oncogenesis. Examples of
oncogenes include c-ABL1, H-RAS, c-MYC, c-ERBB, v-FOS,

and c-JUN [1]. Alternatively, the one-step model involves an
inherited recessive defect that is exposed by the mutation of
its functional counterpart, though actually, this “mutation” is
most often a loss of heterozygosity (LOH) event. These reces-
sive mutations are usually in genes classically called tumour
suppressers (for a review see [2]).

A simple two-step model allows for the majority of
tumour suppresser genes being present as two functional
copies, where both copies have to be mutated to incapaci-
tate functionality [3]. In the published literature, LOH is the
most commonly reported event, as opposed to mutational
heterozygosity. Recombination, be it by deletion of the func-
tional allele or gene conversion of the functional allele into
the mutated one, is the most likely mechanism for LOH, this
is discussed further later in this review.

A multistep scenario has intriguing implications. Here,
the initial mutation is the result of a DNA repair or
metabolism defect. Such cells may accumulate somatic mu-
tations at a higher frequency or may have a higher level of
gross genomic instability. Those patients with a predisposi-
tion to genomic instability have a much higher incidence of
cancer than the general population, and they have a much
earlier onset of certain tumor types. Some of these diseases
are outlined later in the review.

As yet it has been difficult to determine which gene is ini-
tially mutated in most cancers. The reason is two-fold, firstly,
the majority of tumours display heterogeneity [4, 5, 6, 7],
often with an associated genetic instability [8, 9, 10, 11]. This
phenotype may be facilitated by the initial mutation being of
a DNA repair gene (see section Genetic instability syndromes
below, for reviews see [6, 7]). Secondly, not all the genes
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that are involved in carcinogenesis have been identified.
However, it does appear that several cellular pathways are
often altered to produce the necessary changes that produce
a cancerous cell.

HOMOLOGOUS RECOMBINATION IN MAMMALIAN
CELLS

Homologous recombination in mammalian cells is of-
ten considered to be less prevalent than an alternative re-
combination pathway, namely, nonhomologous end-joining
(NHEJ) [12]. Thus, as a process of DNA repair and car-
cinogenesis, HR has often been overlooked [13]. This idea
is widely accepted as it is well known that a large propor-
tion of the mammalian genome contains repetitive DNA
sequences [14]. Contrarily, recent studies have shown that
mammalian cells are in fact quite proficient in HR; Liang
et al [15] demonstrated that a site specific break between
two copies of a gene will result in homologous deletion at
a relatively high frequency (30% to 50%). Further, the au-
thor of [16] determined that sister chromatid exchange is
highly prevalent [16], followed by homologous interchro-
mosomal recombination and then by ectopic recombination
[17, 18]. In the last decade we, amongst several other re-
searchers, demonstrated that deletions can be mediated by
HR between repeated DNA fragments [19] and that the fre-
quency of these events are elevated following exposure to
cancer-causing agents [20, 21, 22, 23].

HOMOLOGOUS RECOMBINATION
IN CARCINOGENESIS

Homologous recombination may be playing a funda-
mental role in carcinogenesis. In the following sections we
outline six situations where HR may have a fundamental part
to play in the progression to cancer. Firstly, we believe that
the HR can be a major mechanism in the LOH, fulfilling the
second step of the two-step model or a later event in the mul-
tistep model. Secondly, there are some cancer prone diseases
that have genetic instability as a phenotype, some of these
diseases also display an elevated level of HR. An increased
frequency of HR makes it more likely that the LOH will oc-
cur at an accelerated rate, but also raises the possibility that
HR will cause aberrant genomic rearrangements that may act
as the primary step towards carcinogenesis. We also present
some recent evidence that HR is more prevalent in prolif-
erating cells. Together, these arguments provide compelling
evidence that HR may be an important factor in the multiple
steps required for carcinogenesis.

Mechanisms of loss of heterozygosity

There are various mechanisms that can result in LOH.
Basically, the LOH results from one allele being lost from
a cell that is then either homozygous or hemizygous for
the remaining allele. Homozygosity can be attained when
a gene conversion event occurs. Hemizygosity occurs when
one allele is lost, as its DNA is no longer present in the cell.

This latter event may occur by the deletion of the region con-
taining the gene or during the division by chromosome loss.

Gene conversion [14, 24, 25] is a unidirectional trans-
fer of information. In such an event, DNA is copied [26, 27]
from one chromosome or chromatid to another without nec-
essarily altering the arrangement of flanking markers. The
frequency by which this HR mechanism occurs is difficult to
determine as most gene conversions probably go undetected.
Much of our understanding of this and other recombination
mechanisms comes from analogous comparison to work per-
formed in the model organism Saccharomyces cerevisiae.

Chromosome loss is a major mechanism of LOH. This
type of event results in a deviation in the chromosome num-
ber to produce a cell that is aneuploid. It is interesting to note
that almost every type of histological cancer carries cells with
highly heterogeneous patterns of aneuploidy (for review see
[28]). Once aneuploid, cells are often genetically unstable, as
seen in cases of congenital aneuploidy. Patients with this con-
genital abnormality often display a high incidence of neopla-
sia (for reviews see [29, 30]).

A translocation is the transfer of a part of one chromo-
some to a nonhomologous chromosome. Translocations are
often reciprocal, exchanging two different DNA segments.
The break point of a translocation event may occur within
a gene, thus destroying its function or altering its expres-
sion pattern, for example, the Burkitt lymphoma. One such
translocation, the Philadelphia chromosome (chromosome
9/22 translocation), which produces a BCR-ABL1 compound
gene and results in chronic myelogenous leukemia. Two stud-
ies mapped the breakpoint of the Philadelphia chromosome
and found that the translocation was mediated by a region of
shared homology [31, 32] implicating HR as the mechanism.

There are three basic mechanisms that may produce a
DNA deletion event (see Figure 1), the replication slippage,
intrachromosomal and interchromosomal recombination.
The replication slippage during DNA synthesis may produce
a deletion, these deletions tend to be small [33, 34, 35, 36, 37]
and most often occurin special regions where short tandemly
reiterated sequences exist. The most common example of this
is microsatellite instability, a phenomenon most prominent
in hereditary nonpolyposis colon cancer. The causative mu-
tations of this disease are in the mismatch repair genes result-
ing in a lack of replication proofreading [38, 39, 40, 41] and,
therefore, an increased frequency of replication errors.

Intrachromosomal deletions are the result of aberrant re-
combination, many times mediated by regions of homology
and can remove very large regions of DNA. Such deletions
have been identified as the cause of several diseases, which in-
clude X-linked ichthyosis where 1.9 Mb, megabases, of DNA
are deleted mediated by flanking homologous S232 elements
[42, 43], hereditary neuropathy with liability to pressure
palsies where 1.5 Mb are deleted mediated by CMT1A-REP
[44, 45, 46] as well as Prader-Willi syndrome [47], DiGeorge
syndrome [48], and hypercholesterolemia [49], all these ex-
amples are due to deletions mediated by HR between flank-
ing regions of homology. There are several mechanisms that
may produce an HR mediated intrachromosomal deletion,
three of the most likely being an intrachromosomal crossover
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(a) Replication slippage

Polymerase slippage
along template strand

(b) Intrachromosomal deletion
Intrachromosomal crossover

Single strand annealing Double strand break
Single strand exonuclease

reveals regions of homology

(c) Sister chromatid exchange

Unequal crossing over

(d) Interchromosomal deletion
Unequal crossing over

Figure 1. Mechanisms of deletion. (a) Replication slippage, where DNA polymerase dissociates from its template and reanneals to homologous sequences
nearby resulting in either a deletion (shown) or insertion (not shown) of sequences. These tend to be relatively small deletions or insertions and are usually in
regions of repetitive DNA. (b) Intrachromosomal or intrachromatid deletion may be mediated by a number of different mechanisms, two of the most likely
being a crossover event and single strand annealing. A crossover event is mediated by aligning homologous sequences, strand invasion, possibly following
a single-stranded break, allows strand exchange and recombination between the two homologous sequences. The result is a deletion of the intervening
sequences. Single strand annealing is another likely mechanism that requires a double strand break between the homologous sequences. A single strand
exonuclease can degrade one strand at the DNA ends until homology is revealed allowing the broken ends to anneal and the intervening sequences to be
clipped off. (c) Interchormatid deletion is most likely to result from an unequal crossover event, only occuring in G2 after the chromatid has been replicated
but before they are segregated. Again, the event is mediated by a repeated region of homology, but in these events two products are formed, a deletion and a
triplication on the two resultant recombinant chromosomes. (d) Interchromosomal deletion is similar to interchromatid deletion except that the interaction
is between homologous chromosomes.

event, single strand annealing (reviewed in [50]), or unequal
sister chromatid exchange. Single strand annealing is initi-
ated by a double strand break (DSB) in a nonhomologous
region between repeats or within one repeat. DNA degrada-
tion of single strands from exposed 5′ ends of DSBs leads to
single-stranded regions, which anneal with each other once
the degradation has exposed the repeated sequences. The 3′

tails are processed and nicks are ligated, producing the dele-
tion. Unequal sister chromatid exchange may occur during
the DNA replication, probably initiated following the repli-
cation fork stalling [51]. A deletion results from an unequal
crossing over between misaligned homologous regions on
sister chromatids producing a deletion on one chromatid
and a duplication of the same region on the other, these
then segregate in the daughter cells that are produced. The
final class of deletion is an interchromosomal event, this is
very similar to an unequal sister chromatid exchange, ex-
cept that the interaction is between homologous chromo-
somes or ectopic homologous regions and is not necessar-
ily dependent upon replication. It should also be noted that
the LOH by deletion can also be mediated by NHEJ. In these

events, two ends of DNA are brought together by two or four
bases of microhomology. Many of these types of event have
been modelled in yeast [52] and human tissue culture cell
systems [53].

Inter and intrachromatid recombination events are only
distinguishable by the presence or absence of a reciprocal du-
plication product. In this respect, it is interesting to note that
the Charcot-Marie-Tooth disease type 1A occurs from a du-
plication of the same region as is deleted in hereditary neu-
ropathy with liability to pressure palsies [46, 54, 55]. Sim-
ilarly, a tandem duplication within the ALL-1 gene is me-
diated by Alu recombination and results in acute myeloid
leukemia [56]. These duplications suggest that an inter-
chromatid crossing over mechanism is responsible for these
events.

Gene conversion, deletion, and perhaps translocation
may be mediated by HR. In the past decade, we have used
homologous deletion to detect genomic instability in a yeast
model systems [57, 58], in human cells [22] as well as in vivo
in mice [21, 23, 59]. Some of the most interesting results
from these studies are presented later in this review.
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Genetic instability syndromes

Assuming that genome rearrangements and deletion
events cause a significant proportion of cancers, then there
should be a correlation between those mutations that result
in a higher recombination frequency and cancer predispo-
sition. In fact, there are several genetic diseases that have
a genetic instability phenotype and indeed have a high fre-
quency of carcinogenesis. These include the Ataxia telang-
iectasia (AT) [60], Li-Fraumeni syndrome [61], Bloom syn-
drome [62], Werner syndrome [63], Cockayne syndrome,
Fanconi anemia, Lynch syndromes I and II, Wiscott-Aldrich
syndrome, and xeroderma pigmentosum [64]. Some of these
diseases are presented in more detail below.

The Li-Fraumeni syndrome is a dominantly inherited
disorder characterized by an early onset of cancer. The most
prominent of these cancers are carcinoma of the breast fol-
lowed by sarcomas, brain tumors, leukemia, lymphoma, lung
carcinoma, and adrenocortical carcinoma, usually in chil-
dren and young adults. The overall risk of cancer in these
patients is nearly 100%, with over 50% of patients develop-
ing breast cancer by age 50 (reviewed in [65]). Li-Fraumeni
syndrome patients, who carry a recessive mutation in TP53,
have an exceptionally high risk of developing multiple pri-
mary cancers [66]. p53 has been proposed to be involved in
maintaining the stability of the genome [61, 67, 68, 69, 70,
71, 72, 73, 74] by either its function in cell cycle arrest or
apoptosis. At early passages, fibroblasts from Trp53-/- mice
develop several chromosomal abnormalities [75]. Tumours
from Trp53-/- mice are often aneuploid and there has been
some evidence of chromosomal instability [76, 77]. In addi-
tion, p53 may inhibit HR via a putative interaction with the
HR machinery protein RAD51 [71, 78]. How p53 is involved
with HR is still not clearly understood, though many studies
have undertaken to examine the relationship, most showing
that cells lacking p53 have a higher than normal frequency of
HR [71, 72, 73, 79, 80, 81].

Ataxia telangiectasia is an autosomal recessive syndrome.
Among the phenotypes that patients display are chromoso-
mal instability, radiosensitivity, and a predisposition to lym-
phoid cancer in childhood. Although AT is a relatively rare
disorder, it has been estimated that about 1% of the general
population is heterozygous for ATM mutations [82]. These
heterozygous carriers may have a predisposition to sporadic
breast cancer, though this correlation is still under discussion
(for a review see [83]).

Cells from AT patients display chromosomal instabil-
ity both spontaneously and following induction by ioniz-
ing radiation or radiomimetic agents (reviewed in [84, 85]).
Cytogenetic analysis revealed a higher spontaneous inci-
dence of chromosome breaks, chromosome gaps, acentric
fragments, dicentric chromosomes, and aneuploidy. In ad-
dition, the T lymphocytes have an elevated frequency of
translocations with break points mapping to the T-cell anti-
gen receptor genes and the Ig heavy chain genes (reviewed
in [85]). Following exposure to ionizing radiation or ra-
diomimetic agents, cells from AT patients have an increased
frequency of chromosomal aberrations compared to normal

cells [60, 84, 85, 86]. In vivo, we have reported that Atm-
deficient mice have an increased frequency of spontaneous
HR [87]. In comparison, Turker et al demonstrated that,
in the same mouse background, a deficiency in Atm did
not result in an increased frequency of mutations [88], thus
indicating that HR plays a more important role in the etiol-
ogy of the AT.

ATM is generally thought to be important in activating
p53 in response to the DNA damage [89, 90]. Recent re-
ports have highlighted the multifunctional aspect of ATM,
including that it phosphorylates BRCA1 [91, 92] and NBS
[93, 94, 95, 96] following irradiation. In addition, there have
been several reports linking ATM, through c-ABL1, to the
HR protein RAD51 [97, 98, 99, 100]. Again, as with p53, how
do these interactions relate to the HR is not fully understood,
but it is an area of intense research.

A mutation in the BRCA1 gene is estimated to confer
a 70% risk of breast cancer by age 70 (reviewed in [101]).
There have been numerous studies examining the frequency
of breast cancers. From these studies, it is evident that mu-
tations in the BRCA1 and BRCA2 genes result in an early
onset of cancer and are responsible for a high percentage of
premenopausal breast cancers (12% to 28%). The percent-
age depends on the prevalence of founder mutations within
the population examined [102, 103, 104, 105, 106, 107, 108,
109, 110], the incidence of nonfamilial breast cancers tend to
occur at a later age. Inactivation of BRCA1 or BRCA2 con-
fers genetic instability such as aneuploidy and chromosomal
rearrangements [111, 112, 113, 114, 115, 116]. In addition,
both BRCA1 and BRCA2 play a role in HR, in the absence
of either protein, HR repair of double-stranded breaks is de-
fective [117]. It has been reported that BRCA1, BRCA2, and
RAD51 form foci in the nucleus following the DNA damage
[118, 119, 120] in an ATM-dependent manner [92].

RAD51, RAD52, and RAD54 are components of the
RAD52 epistasis group [12, 121, 122], homologues of the
genes defined in yeast to be necessary for an HR reaction. In
vitro, it has been shown that RAD52 binds single-stranded
tails at the sites of resected DSBs [123] as well as capping the
exposed terminal nucleotide [124]. Both RAD51 and RAD54
form foci following the DNA damage [125]. In addition, the
loss of RAD54 leads to recombinational deficiencies and DSB
repair defects [126, 127]. The absence of RAD51 results in an
accumulation of chromosomal abnormalities and cell death
[128]. Both RAD51 and RAD54 have been shown to mediate
sister chromatid exchange [129] and both form foci follow-
ing exposure to ionising radiation, the kinetics of these foci
are altered in ATM-deficient cells [130, 131]. How do the ob-
served foci relate to the HR, is still unclear, but it does appear
that BRCA1 is a component of several DNA damage response
mechanisms [132] and may be responsible for activating HR
in certain circumstances.

The genes mutated in Bloom’s and Werner’s syndromes,
BLM and WRN, respectively, are highly homologous to RecQ
helicase [133, 134], and were postulated to be involved in re-
combination. Cells from Bloom’s syndrome patients show a
high frequency of sister chromatid exchanges, hyper recom-
bination, and chromosomal breakage. Patients with Bloom’s
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syndrome also show a greatly elevated predisposition to can-
cer of the sites and types that affect the general popula-
tion [135]. Similarly, cells from Werner’s syndrome patients
show a 50-fold elevation in mutation rate, with the predomi-
nant form of mutations being gross DNA deletions [63]. The
Werner syndrome patients age prematurely and show fea-
tures like early onset of cataracts, generalized hair loss, loss of
skin elasticity, osteoporosis, atherosclerosis, and short stature
[136], they also often develop nonepithelial tumours and,
to a lesser extent, leukemia, and carcinomata. These cancer
prone diseases have in common a defect in genomic stabil-
ity. Notably, both BLM and WRN have now been associated
with processing the structures associated with stalled replica-
tion forks [137, 138], which may explain the observed phe-
notypes.

Fanconi’s anemia (FA) is an autosomal recessive genetic
disorder characterised clinically by progressive bone marrow
failure, skeletal deformities, and a predisposition to neoplasia
[139, 140]. Patient cells manifest an extreme chromosomal
instability and hypersensitivity to polyfunctional alkylating
agents. Most interstingly, cells from FA patients as well as cell
extracts show a much elevated frequency of HR measured
with plasmid constructs [141].

Although the AT has been identified to be the result
of a mutation in the ATM gene, two other mutations re-
sult in syndromes that were originally mistaken to be AT.
These variants of AT are caused by mutations in NBS (the
syndrome is presently called Nijmegen breakage syndrome)
[142] and in MRE11A [143], and present similar phenotypes,
including genetic instability. NBS, MRE11, and RAD50 form
a complex that NBS modulates once it is phosphorylated
by the ATM in response to the DNA damage [93, 94, 95].
In yeast, it has been shown that RAD50 and MRE11 are
involved in NHEJ [144, 145, 146], a mechanism that can
repair double strand breaks and competes with HR. As-
suming that the mammalian homologues of these genes are
also involved in NHEJ, it seems plausible that a deficiency
in ATM also results in a slight deficiency in NHEJ. There-
fore, the damage would be channelled into HR as an alter-
native pathway, possibly explaining the hyper recombina-
tion phenotype that we found in Atm-deficient mice [87].
Most recently, it has been demonstrated that the WRN in-
teracts with the Ku heterodimer [147], the complex thought
to bind double strand break ends at the initiation of NHEJ
[12, 148, 149, 150]. Thus, in a fashion similar to AT, a WRN
deficiency may lead to an increased frequency of HR by
default.

Susceptibility of proliferating cells to homologous
recombination

Actively dividing cells are thought to be the most prone
to developing cancer. Mitogenesis has been proposed to be
an important contributor to carcinogenesis [151, 152] as ev-
idenced by a higher risk for cancer after tissue regeneration.
Furthermore, chemical carcinogenesis and transformation
are most efficient if the target cells are treated just prior to
or during the S phase [153, 154].

Using yeast to investigate the effect of the cell cycle ar-
rest on the induction of deletions mediated by HR by differ-
ent carcinogens, it was found that only DNA double strand
breaks induce homologous deletion recombination in ar-
rested cells, other forms of DNA damage such as DNA single
strand breaks, UV lesions, as well as exposure to alkylating
agents need DNA replication to induce homologous deletion
recombination [155, 156].

As mentioned earlier, HR events are mediated by the
RAD52 epistasis group. It is interesting to note that the pro-
tein and mRNA levels of this group tend to correlate with cell
proliferation. For example, it has been reported that RAD51
expression is the highest in intestinal and uterine epithelia
[157], which are highly proliferative. RAD51 has also proven
to be essential in early mouse development [158, 159], a time
of massive cellular proliferation. Consistent with the corre-
lation with cell proliferation, both RAD51 and RAD54 are
maximally transcribed in the S phase, during DNA synthesis
[157, 160, 161, 162]. These observations are suggestive of a
function for HR in proliferating cells, especially in combina-
tion with the damage inducibility of HR in proliferating cells.
Takata et al [163], using chicken DT40 cells, demonstrated
the involvement of NHEJ in G1 to early S phase, with HR
functioning more in late S phase to G2. The role of replica-
tion was further demonstrated by Saintigny et al [164], who
demonstrated that HR is increased in late S phase, only after
the RAD51 foci formation. These studies strongly support
the recent proposal that HR performs a special function dur-
ing replication, namely, in resolving stalled replication forks
[165, 166, 167, 168]. Altogether, it appears that HR is a com-
mon feature of the normal cell and may be especially har-
nessed by highly proliferative cancer cells.

CONCLUSIONS

In conclusion, we have presented a body of evidence that
HR can play a role in different stages of carcinogenesis. While
HR may contribute to the initial steps of carcinogenesis, we
believe that HR functions mostly as a secondary or subse-
quent step in tumor progression. If genomic rearrangements
and deletion events were the cause of a portion of the cancers,
it might also be expected that certain carcinogens would in-
crease the frequency of genome rearrangements. This has in
fact been elegantly demonstrated in yeast [58, 169, 170], in
human cells [22], as well as in vivo in mice [21, 23, 59]. With
a wide variety of carcinogenic agents able to induce HR, it
is easy to suggest that the normal day-to-day exposure to a
variety of environmental and endogenous damages will also
increase the frequency of HR. As can be observed in those
patients who have an up regulated level of HR, an increased
frequency of HR events can be highly deleterious. In addi-
tion, the sensitivity of proliferating cells to HR is highly cor-
relative with proliferating cells being more prone to cancer
and fits with current models of replication/recombination.
Finally, the HR is likely to play a major role in producing the
observed heterogeneity in many tumours. All in all, HR may
be much more prevalent during carcinogenesis than previ-
ously considered.
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