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Abstract           
 

Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric 
utilities to determine least-cost/risk supply and demand-side resources that meet government 
policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts 
of energy and peak demand are a critical component of the IRP process. There have been few, if 
any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast 
performance and its relationship to resource planning and actual procurement decisions. In this 
paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. 
utilities by examining and comparing plans filed in the early 2000s against recent plans, up to 
year 2014. We find a convergence in the methods and data sources used. We also find that 
forecasts in more recent IRPs generally took account of new information, but that there 
continued to be a systematic over-estimation of load growth rates during the period studied. We 
compare planned and procured resource expansion against customer load and year-to-year load 
growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans 
do not appear to be related to later procurement strategies even in the presence of large forecast 
errors. These findings suggest that resource procurement decisions may be driven by other 
factors than customer load growth. Our results have important implications for the integrated 
resource planning process, namely that load forecast accuracy may not be as important for 
resource procurement as is generally believed, that load forecast sensitivities could be used to 
improve the procurement process, and that greater emphasis should be placed on strategies to 
manage uncertainties in load forecasts. 
 
Keywords: resource planning, forecast error, load, retrospective analysis, resource expansion, 
electric utility. 
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Executive Summary 
 

Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric 
utilities to determine least-cost and risk-managed portfolios of supply and demand-side resources 
that meet future electricity needs of customers, comply with regulatory requirements and 
government policy objectives and, in many cases, fulfill obligations to shareholders. Integrated 
Resource Planning evolved in the late 1980s and 1990s from least-cost planning (LCP), which 
was developed to  ensure that demand-side measures to reduce electricity consumption—
especially end-use energy efficiency—were  considered by utilities in addition to supply-side 
(generation) resources. Forecasts of energy and peak demand are a critical component of the IRP 
process. There have been few, if any, quantitative studies of IRP load forecast performance and 
its relationship to resource planning and actual procurement decisions. 

In this study, we conduct a retrospective analysis of energy and peak demand forecasts for a set 
of integrated resource plans published by electric utilities operating in the Western United States. 
We analyze energy and peak demand forecasts from utility IRP plans filed in the early- and mid- 
2000s and compare these forecasts to subsequent actual observed loads. We also examine load 
forecasting techniques and sensitivity analyses; performance over time; the relationships among 
load forecasting, resource planning, and procurement; and strategies that utilities used to manage 
uncertainties in future load forecasts.  

 

Figure ES-1 Load forecasts from seven subsequent IRPs and actual load for a Western 
U.S. utility. 
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A comparison of load forecasts to actual energy use and peak demand reveals that energy 
consumption growth was overestimated by all but one utility over planning periods beginning in 
the mid-2000s and ending in 2014. Moreover, peak demand growth was also overestimated in 
eight of the eleven cases we examined (those utilities that reported their peak forecasts). Utilities 
that projected the highest growth rates in energy and peak demand also experienced the lowest 
actual growth, especially for observed energy consumption.  

Furthermore, examination of forecasts from more recent IRPs indicates a persistent 
overestimation of demand growth over planning periods up to year 2014, even in the presence of 
much slower-than-anticipated actual growth (see Figure ES-1 for an example from one utility). A 
number of the utilities highlighted the effects of the national recession that began in 2008-2009 
to explain this phenomenon. Over time, the utilities did adjust their forecasts of projected load 
growth downward in response to lower-than-expected demand, but continued to overestimate 
future loads. Most of the utilities indicated that they expected national and regional economies 
would follow a historical pattern of relatively quick recovery from the recession, which 
influenced their load forecasts in more recent plans. Accordingly, the slower-than-expected 
economic recovery contributed to over-estimates of future load in more recent IRPs.  

We find some correlation between forecasting methods—and their relative complexity—and 
forecast accuracy. In addition, utilities that had the most accurate peak demand forecasts were 
also among the most conservative in terms of their expected peak demand growth. Utilities with 
relatively more complex models had less forecast error than those that employed simpler models. 
There are structural reasons that may also explain the relative accuracy of load forecasts. For 
example, we find that utilities with a larger share of industrial load in their mix generally had 
larger forecast error. We believe that this may be caused by the highly elastic and “lumpy” 
nature of industrial customer load as well as the difficulty in predicting entry and exit of 
industrial customers from a utility service territory. These results suggest that, among the utilities 
we studied, there may be small marginal benefits to the planning process of greater model 
complexity. 

Load forecast sensitivity analysis is an important component of risk assessment and management 
within IRP process. In the context of our study, sensitivity analyses are especially important 
because strategies derived from load forecast sensitivity analysis may allow the resource plans to 
adjust as new information comes in. Over time, we find that utilities have improved the breadth 
and sophistication of their load forecast sensitivity analyses. However, we find that both older 
and more recent IRPs generally lack an adaptive component that details how utilities would 
respond in practice were subsequent actual values of critical input variables—like load — to 
correspond to those studied in these sensitivity analyses rather than to those assumed in "base 
cases." We also find that load variation from the base case produces differences in projected 
revenue requirements for utilities that are much larger than the differences in revenue 
requirements from the resource portfolios that are designed and compared to select the 
“preferred” one.
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Figure ES-2 Planned and actual (procured) at-peak capacity with forecasted and 
observed peak demand. 

For this sample of utilities, we find that aggregate planned and actual capacity expansion levels 
were generally consistent over the time period of our study. However, in aggregate, actual 
resource procurement decisions were not closely aligned with observed changes in load (see 
Figure ES-2). Actual incremental capacity additions were partially attributable to retirements of 
existing plants, which accounted for about 2.5 GW among our sample of utilities. 

We find that load forecast methodologies have not changed significantly in the past 15 years, 
although there is evidence in more recent plans of the inclusion of potential structural change 
drivers such as distributed energy resources and electric vehicles. We did find that utilities which 
fundamentally changed their forecasting techniques had relatively larger forecast errors in earlier 
periods. This suggests an active effort to by the utilities to react to forecast error, although we do 
not have evidence that these changes led to reduced forecast error in subsequent periods. In 
general, we believe that our findings of load forecast performance and their relationship to 
procurement are applicable to current resource planning and procurement processes.

Our findings suggest that (1) load forecast accuracy may not be as important for resource 
procurement as previously believed, (2) load forecast sensitivities could be used to improve the 
procurement process, and (3) comprehensively addressing load uncertainty should be prioritized 
over developing more complex forecasting techniques. To the best of our knowledge, this is the 
first comparative and retrospective study of long-range energy and peak demand forecasts for 
electric utilities. We identify several key topics for further research to better understand the 
results and inform industry stakeholders about the role that load forecasts play in electricity 
sector infrastructure investments.   
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1. Introduction 
From the origins of the U. S. electricity industry in the 19th century with Thomas Edison’s first 
power-generation plant in New York City, electric utility planning and operations have become 
highly complex, multi-faceted processes. Electric utility integrated resource planning (IRP) is the 
key mechanism through which many vertically integrated U. S. utilities or load-serving entities 
(LSEs) 1 operating in states with a regulated electricity sector determine how to provide 
electricity services to customers while complying with applicable energy and environmental 
regulations and policies, and respecting the economic objectives of both the utility and 
customers. IRP entails the use of a range of quantitative analytical methods, including 
computational modeling and statistical analysis. The IRP applications of these methods include 
forecasting variables including load - electricity consumption and peak demand, analyzing 
possible “portfolios” - combinations of types and amounts of generation, assessing energy 
efficiency and other means of influencing demand and ensuring that supply and demand are 
balanced over a specified planning horizon. By design, the IRP process involves multiple 
stakeholders beyond utilities themselves, including regulators, ratepayer advocacy groups, other 
entities within the power industry, and non-profit organizations.   

Electric utility integrated resource planning has its origins in “least-cost planning,” a 
methodology developed in the 1970s to incorporate “demand-side resources” – measures to 
promote energy efficiency and conservation – along with the supply-side resources, i.e., 
generated electric power, that had traditionally been the sole focus of utility planning. Over the 
past several decades, the technical tools and methods used in IRP have become more complex 
and the requirements placed upon IRP – with regard to goals and objectives as well as process 
guidelines – have increased. Concurrently, there has been increasing interest among researchers, 
regulators, and other stakeholders in understanding the details of how IRP is conducted and how 
its outcomes relate to its goals, and in ways to enhance and improve IRP both technically and 
from a process perspective.    

Among their other provisions, state regulatory requirements for IRP generally stipulate openness 
with respect to information, involvement of non-utility and other stakeholders besides regulators, 
and similar process elements. They do not in general, however, require actual evaluation or 
validation of models or methods.2  While not an evaluation or validation analysis as such, the 
work described in this paper builds upon previous reviews and assessments of IRP, including 
                                                 
1 “Load-serving entity” is a more precise term than “utility” to refer to firms that sell electric power to end-use 
customers. However, in this paper these terms will be used interchangeably. 
2 Although for reasons discussed later in the paper we do not include IRPs by large California investor-owned 
utilities in our analysis, California is an exception in that its state public utilities code explicitly stipulates that 
models used in electricity planning and operations be validated. It is also interesting to note that the U. S. Energy 
Policy Act of 1992, which requires utilities to conduct integrated resource planning, also stipulates that approval of 
utility-submitted IRPs by regulators of the Western Area Power Administration is contingent upon the fulfillment of 
several criteria including that the utility “[provide] methods of validating predicted performance in order to 
determine whether objectives in the plan are being met.” 
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load forecasting and dating back to the 1980s, by outside researchers, with recent examples being 
Aspen and E3 (2008) and Wilkerson et al. (2014). It is aimed at contributing to the understanding 
of IRP and focuses on the methods, results, and planning applications of utility load forecasting.  

Estimates of load over time horizons up to two decades are a cornerstone of the integrated 
planning process: notwithstanding the multiple purposes and aspects of IRP, the LSEs’ core 
objective and obligation is to ensure reliable and affordable electricity supplies for their 
customers. Load forecasting is thus of prima facie interest in analyzing and assessing IRP.  

In addition, as noted above the treatment of demand-side resources has been a central motivation  
for IRP dating back to the 1970s, and utilities’ incorporation of energy efficiency and related 
measures is fundamentally based upon their analyses and forecasts of load and the factors 
affecting it. This element of IRP has only increased in importance in recent years, as increasing 
energy efficiency and demand response has become a goal of a growing number of U. S. states 
and utilities. From both analytical and regulatory-policy perspectives, understanding how 
efficiency is analyzed within and implemented through IRP requires first understanding LSEs’ 
basic load forecasting techniques, methods, and results.3 

Despite these considerations, there has been little analysis of load forecast performance – i.e., 
accuracy - in the context of IRP, nor of how it is related to utilities’ procurement decisions. 
These decisions include building or acquiring of power generation plants, purchasing power 
from other sources, implementing demand-side management programs, and other means of 
securing electricity supplies and services for their customers. This paper aims to help fill this 
gap, and reports the results of an analysis of load forecasting conducted in the mid-2000s by 
twelve utilities in the western United States. We complement our analysis by examining, in 
addition, recent plans for each of these utilities. It is the first of a two-part study of the 
relationship between planning and procurement in utility IRP. It explores the role of load 
forecasting in planning and how its accuracy relates to potential differences between planning 
and procurement. The second paper will analyze in greater depth and detail the regulatory 
process that connects the planning process with procurement decisions. 

The paper is organized as follows. We begin with an overview of previous research on various 
elements and aspects of IRP in Section 2 to situate our work. We then describe the sources of 
data used for our analysis, followed by a discussion of the LSEs’ forecasting methods and inputs 
in Section 3. Next, the metrics used to compare forecasts to actual energy and peak demand are 
defined in Section 4, followed by our quantitative findings on forecast performance in Section 5. 
We then turn to a discussion of the economic-demographic projections used in the forecasts and 
their relationship to forecast accuracy, and present a quantitative review of the LSEs' projected 
growth rates and retrospectively-revealed forecast errors in successive IRPs in Section 6. Next, 
in Section 7 an analysis of load sensitivity methodologies and performance is conducted along 
                                                 
3 Experience in California has demonstrated that understanding the role of efficiency and efficiency policies and 
programs in load and demand forecasting can be very challenging (REF DAWG). 
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with a discussion of changes to LSEs’ load forecasting methods and inputs over time in Section 
8. We present a summary of results comparing the load forecasts to planned and actual 
procurement in Section 9. The study concludes with a summary and suggestions for further 
research.  

2. Background 
Descriptive as well as critical reviews of least-cost planning and IRP began to appear in the 
1980s, as these processes were adopted across the U. S. In keeping with the origins of this type 
of planning, some of this literature included discussions of IRP’s treatment of energy efficiency 
and conservation, and the potential for “demand-side management (DSM)” programs to reduce 
load growth. More generally, it included analyses of factors within (i.e., endogenous)—and 
beyond (i.e., exogenous)— the control of LSEs that impact the performance of forecasts 
including (1) forecasting methods employed by planning departments; (2) company and 
technological characteristics; and (3) the broader economic and regulatory environment 
(Goldman et al., 1993). 

Hirst (1989) reported findings from a case study of, and drew lessons from, a specific planning 
exercise by a utility in the Pacific Northwest.  Hirst (1990) and Hirst et al. (1991b) reviewed 
more than 30 resource plans from electric utilities, focusing on “technical competence” - 
including load forecasting — and made recommendations for improvements; in the case of load 
forecasting, however, these recommendations were not based on a quantitative analysis but 
rather emphasized methodological issues, especially the treatment of DSM. Hirst (1994) also 
critically reviewed key elements of IRP as practiced by utilities at the time, including load 
forecasting, and identified best practice. Schweitzer et al. (1991) reviewed plans from more than 
20 load-serving entities with an emphasis on demand-side management activities. Hirst et al. 
(1991a) surveyed the regulatory, institutional and technical status of IRP at that time – including 
the treatment of DSM in load forecasting – and made recommendations for improvement in each 
category. Sioshansi (1992) explored the effect of incorporating technologies—including demand-
side management and energy efficiency—on electric utility resource processes, plans, and 
outcomes. Mitchell (1992) surveyed the status of IRP with respects to its adoption and 
implementation across U. S. states. Aspen and E3 (2008) reviewed IRP planning processes and 
methods across U. S. states, and compared critical assumptions, timeframes, models, and 
procurement processes used by nearly 20 LSEs across the Western U.S., including inputs to and 
methods for load forecasting. Wilson and Biewald (2013) identified  IRP “best practices,” 
including examples of load forecasting by specific utilities and recommendations for load 
forecasting improvements, while a study conducted for U. S. state energy policy-makers 
examined how utilities’ load forecasting is taking account of the emergence of electric vehicles 
(NASEO 2013).  Wilkerson et al. (2014) reviewed nearly 40 long-term electric utility plans 
representing ~90% of generation within the Western United States and Canadian provinces, and 
identified assumptions about future growth of electricity demand and supply, the types of risk 
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utilities consider in their long-term resource planning, and the consistency in which utilities 
report resource planning-related data.  

In addition to these studies dealing at least in part with technical matters, a number of studies 
have addressed institutional and contextual aspects of IRP. For example, English et al. (1995) 
analyzed the role and impacts of energy efficiency advocacy groups in planning processes, while 
Hirst (1988) discussed state public utility commissions’ roles in and responsibilities for IRP, and 
Hadley and Hirst (1995) discussed utility IRP from the electric utility shareholder perspective. 
More recently, Wilson and Peterson (2011) surveyed the rules and regulations governing IRP 
across U. S. states. 

Complementing this work on IRP per se has been research on computational modeling in 
electricity planning. Eto (1990) and Foley et al. (2010) discussed models and software used in 
electricity planning. Kahn (1995) analyzed the advent of “production cost (optimization) 
modeling” by utilities in regulatory processes, including those involving IRP. Rosekrans et al. 
(1999) reviewed and compared several electricity planning models, many of which are used in 
IRP. 

Despite reviews and discussions of load forecasting among other technical aspects of IRP, the 
work summarized above has not quantitatively studied load forecast nor analyzed its accuracy. 
By contrast, several papers from the 1980s did so. Willis and Northcote-Green (1984) compared 
methods and accuracy of 14 distribution system load forecasts. Nelson and Peck (1985) analyzed 
“summary” load forecasts from the 1970s prepared by the National Electricity Reliability 
Corporation (NERC), which combine individual utility service territory- and regional-level 
forecasts into a national-level forecast. They found systematic over-projection of demand. 
Mitchell et al. (1986) retrospectively evaluated the accuracy of long-term load – both energy and 
peak – forecasts by utilities, government agencies, and academic researchers. However, none of 
these studies analyze the impacts of forecast error and the feedback between forecast 
performance, planning and procurement. 

While short-term electric load forecasting has been and continues to be the focus of considerable 
research, these older studies of long-term forecast performance have not been followed up by 
more recent work nor have they been expanded to understand the implications of forecast 
performance in the planning and procurement process. In the following sections we present the 
results of our analysis, which addresses this topic. 
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3. Data sources and methods 
Our quantitative analysis of forecast performance relies largely on two types of data: forecasts 
and actual4 values. In this section, we describe the methodology to obtain this information, the 
original sources of the data, and how this information is used throughout the analysis. The same 
sources are used for the qualitative descriptions of load forecast and load growth sensitivity 
methodologies. 

We collect forecasts from integrated resource plans that were made roughly a decade ago – from 
2003 to 2007 – by twelve load-serving entities (LSEs) across the Western Electricity 
Coordinating Council (WECC). The analysis focuses on WECC because this territory includes 
the largest U. S. LSEs that were required to file resource plans during this period  (Wilkerson et 
al., 2014)5. However, we exclude three large California investor-owned utilities (IOUs), because 
the California planning framework – the so-called “Long Term Procurement Planning” process – 
is qualitatively different from the other resource planning mandates in WECC (Aspen and E3, 
2008).  Outside of the California IOUs, the LSEs selected for this study are the twelve largest in 
WECC representing 34% and 32% of customers and retail sales in 2014, respectively.  

The years for the IRPs are selected in order to enable comparison with realized observations – 
i.e., observed values of energy and peak demand — through 2014, the most recent year for which 
these values are currently available (see Table 1). Depending on the LSE, between seven and 
eleven years of observed energy and peak demand can be compared to the original forecast. 

The choice of years also satisfies several other criteria. First, we need plans that were created 
sufficiently long ago that their forecasts can be compared to observed values over periods 
lengthy enough to allow substantive analysis6. Second, plans that are older than those selected 
tended to have several shortcomings: the information included in them was scarce, both in terms 
of data and descriptions; the techniques for forecasting may have changed significantly; and the 
electricity deregulation movement in the late 1990s may have had an important effect on their 
assumptions. Because the earliest plan (2003) followed the California electricity crisis of 2000-
2001, we presume that the effects of deregulation would have already been absorbed in the 
planning processes. We believe that using plans from 2003 and later enables reasonable 
conclusions about trends and the implications of policies. Finally, we also reviewed one recent 
plan (produced between 2011 and 2015) for each LSE to understand if and how the 
methodologies and techniques used to produce forecasts had changed in time. 

 

                                                 
4 We refer to these also as “realized” or “observed” through the paper. 
5 ERCOT and the Eastern Interconnection utilities filed no or very few resource plans in the early 2000s, largely due 
to the deregulation process. 
6 In the case of PNM and PGE we selected the oldest plans we were able to find that included the required data. 
PNM filed its first resource plan in 2005 but it did not include most of the quantitative data required for the analysis. 
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Table 1  Load serving entities (LSEs) and integrated resource plans analyzed in this 
study. 

LSE short 
name LSE name First Plan 

Year 
Recent Plan 
Year 

Reference 

Avista Avista Corporation 2005 2013 (Avista, 2013, 
2005) 

COPSC* Public Service Company of 
Colorado (Xcel Energy) 2003 2011 (COPSC, 2011, 

2004) 

Idaho Idaho Power Company 2006 2013 (Idaho, 2013, 
2006) 

LADWP Los Angeles Department of 
Water and Power 2006 2012 (LADWP, 2012, 

2006) 

NVPower Nevada Power Company 2006 2012 (NVPower, 2012, 
2006) 

NW NorthWestern Corp. dba 
NorthWestern Energy 2004 2013 (NW, 2013, 2004) 

PacifiCorp PacifiCorp 2004 2015 (PacifiCorp, 2015, 
2005) 

PGE Portland General Electric 
Company 2007 2013 (PGE, 2014, 2007) 

PNM Public Service Company of 
New Mexico 2007 2011 (PNM, 2011, 

2007) 

PugetSound* Puget Sound Energy, Inc. 2005 2013 (PugetSound, 
2013, 2005) 

Seattle* Seattle City Light 2006 2012 (Seattle, 2012, 
2006) 

SierraPacific* Sierra Pacific Power 
Company 2004 2013 (SierraPacific, 

2013, 2004) 
* These LSEs are also known as PSCo (COPSC), PSE (PugetSound), SCL (Seattle), and SPP (SierraPacific). We 
use our own short names through this paper. 

The analysis period includes the 2008 economic recession, which prima facie could be expected 
to have a substantial effect on the accuracy of load forecasts made prior to its onset.  For several 
reasons, however, we see this as increasing the interest and usefulness of our analysis. First, it is 
a truism that all forecasts - including those of electricity use - are subject to error due to 
unforeseen circumstances. The documentation indicates that the LSEs view economic and 
demographic variables as the primary drivers of demand, and the inevitability but always 
uncertain timing of events such as recessions means that such events are essentially guaranteed 
to affect long-term load forecasts in not-fully-predictable ways, regardless of the forecast 
interval. Thus, an analysis period including the downturn that began in 2008 - which was 
unusually severe - can if anything allow greater insight into the nature of load forecast accuracy 
and how forecast errors are addressed in the IRP process than might be available from studying a 
period without such an event. Put differently, the 2008 recession provides an interesting "stress 
test" of LSE load forecasting procedures in the context of IRP. Second, because the recession 
affected all regions of the U. S. to some extent, including the service territories of the LSEs in 
our sample, it does not undermine our comparative analysis and indeed, to the extent that the 
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effects of the recession varied across these territories, adds useful variation to our sample. 
Finally, the procurement activities following the IRP load forecasts necessarily also reflected the 
recessions' effects, and thus the latter do not interfere with our goal of studying the relationships 
between load forecasting and procurement. 

3.1 Forecast information from plans 

Our analysis considers specific information from resource plans including utility forecasting 
techniques, company characteristics, and the regulatory environment. Three basic types of 
forecast data are collected from each IRP: 

1. Peak load  

2. Energy demand 

3. Demand side resources (energy efficiency and demand response) 

We record the base- or reference- case load forecast in each resource plan (all the LSEs produced 
these cases for energy, and all but one for peak). We also record high and low load forecasts 
when available. Utilities that file resource plans do not always have the same definition of their 
“position,” i.e., the difference between existing resources and forecasted demand. For example, 
LSEs deal differently with energy efficiency and demand response measures. Some subtract 
projected savings from these resources into their load forecasts, and some report them separately. 
For the forecasts that had not already done so, we subtract these savings from the raw energy and 
peak demand forecasts in order to calculate net load7.  The use of net forecasts is appropriate for 
comparison with actual energy and peak demand, since the latter have embedded within them the 
effects of demand-side programs and other acquired energy efficiency over the periods 
considered in the analysis. 

3.2 Information on actual energy use and peak demand 

Data on actual energy consumption and peak demand were  obtained primarily from the Velocity 
Suite system supplied by ABB-Ventyx—an online database system that compiles publicly-
available data and also contains proprietary values for variables that are not always publicly-
available, including retail fuel prices and marginal costs (ABB-Ventyx, 2016). 

The Velocity Suite system contains load data (retail sales), which are typically reported through 
the Energy Information Administration (EIA) Form 861. As defined by the EIA, “The Form 
EIA-861 and Form EIA-861S (Short Form) data files include information such as peak load, 
generation, electric purchases, sales, revenues, customer counts and demand-side management 
programs, green pricing and net metering programs, and distributed generation capacity.” (EIA, 

                                                 
7 By doing this, we implicitly include in our assessment the performance of energy efficiency and demand response 
forecasts. We recognize that the actual demand side resources may differ from these forecasts, but we lack the data 
to test this. 
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2016)  In order to conduct forecast-to-actual comparisons, it is necessary to identify the types of 
sales that utilities themselves considered as part of the “position” for the resource planning 
process. We determine that all IRPs account for retail sales to ultimate consumers when creating 
their forecasts, and that all except LADWP and COPSC include transmission and distribution 
losses to reflect demand at the generation level. Therefore, we incorporate losses into the retail 
sales information reported via form EIA-861. 

In addition, we inspect the IRP narratives and quantitative information to determine which LSEs 
account explicitly for selected wholesale sales for which they had firm contracts at the time of 
the forecasts. For example, short-term transactions that are used as hedging or as a market 
opportunity would typically not be included in the resource plan. However, sales to smaller 
municipalities and electric cooperatives under certain contracting arrangements would be 
included. We find that all LSEs, with the exception of NW, counted “requirements service8” 
wholesale sales in their resource plans. We use data from EIA Form 412 and FERC Form 1 to 
identify and include appropriate wholesale sales as part of actual outcomes for each LSE. 
Finally, we use historical information presented in the most recent plans of the several LSEs that 
reported it to check our estimates for actual values. 

4. Description of forecasting methodologies  
We characterize the methods employed by LSEs to forecast energy, peak demand, and hourly 
profiles using the following categories:  

1. General forecasting framework—e.g., the mix of customer classes evaluated, makeup of 
forecast scenarios.    
 

2. Key variables and analytical methods—e.g., time-series regression, statistically-adjusted 
end-use models, cooling degree-days, number of customers. 
 

3. Sources of forecast assumptions—e.g., IHS Global Insight, Inc., EPRI, Moody’s 
Analytics, Inc. 

We provide an overview of the LSEs’ load forecasting; further details are given in Appendix B.  
In addition to the base case or “expected” forecasts, most of the LSEs also produce low and high 
load forecasts using differing assumptions. We summarize and analyze these alternative forecasts 
in section 7 and Appendix D.  

LSEs typically split their residential and commercial forecasts into numbers of customers and 
use-per-customer, using different methods to forecast both separately. Industrial consumption 
forecasts are usually based on direct feedback from the largest customers, complemented with 
                                                 
8 According to EIA-861, “Requirements service is service which the supplier plans to provide on an ongoing basis. 
The reliability of requirement service must be the same as, or second only to, the supplier's service to its own 
consumers.” 
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regional or sectoral market research reports. Only a few of the LSEs evaluated in this paper 
reported load forecast results by customer class. 

We find that roughly three quarters of the LSEs in our sample relied on externally-developed 
demographic and economic forecasts. These external forecasts came from a mix of public and 
private sources, including universities, state/federal agencies, and consulting firms. We also find 
that most of these sources are proprietary, which prevents scrutiny from stakeholders and further 
analysis from regulators. 

Another key component of a number of the load forecasting frameworks is the potential for 
customers to respond to changes in electricity prices (i.e., price elasticities) through a 
combination of electric consumption reduction and fuel switching. For example, as the price of 
electricity increases or the price of natural gas decreases, it is expected that electric load will 
decrease and natural gas consumption increase as a rational response to these price signals. 
About half of the LSEs in our sample reported specific information about price elasticities—with 
all falling within the -0.10 to -0.20 range (NVPower, PugetSound, Avista, and PacifiCorp)9. 
Avista is the only LSE that reports cross-price elasticities with natural gas, although Idaho also 
points that “changes in relative fuel prices can have significant impacts on the future demand for 
electricity” (Idaho, 2006, p. 4 Appendix B). In contrast, NW and SierraPacific report that they 
find no empirical evidence for statistically significant price elasticities for electricity or for 
natural gas. 

We evaluate these and other variables in order to understand the similarities and differences 
among the LSEs’ forecasting procedures (see Figure 1). We find economic-demographic 
projections, historical sales data, and weather variables to be the most commonly-used variables 
to produce load forecasts. For each LSE, we also qualitatively assess the complexity of the load 
forecast by comparing the number of variables used to forecast residential and 
commercial/industrial demand and the analytical methods employed (see Table 2). For example, 
utilities including PNM, NW and SierraPacific use simpler models compared to the models 
employed by COPSC, LADWP, and PugetSound. This complexity is a function of the number of 
variables, the types of variables, and the modeling technique and its implementation. 

Four types of modeling approaches, of varying degrees of complexity, were used by the various 
LSEs to create energy, peak demand, and hourly load forecasts: Time-series regression, cross-
sectional regression, engineering or “bottom-up”, and statistically adjusted end-use (SAE). Time 
series and cross-sectional regressions consistently use historical sales and weather variables as 
determinants of electricity demand. SAE models have a hybrid structure combining engineering 
end-use technology models with econometric equations. This type of data intensive model 
represents demand in terms of a saturation component (for appliance ownership), an engineering 
component (for appliance energy intensity), and a behavioral component (Hirst et al., 1977; Hirst 

                                                 
9 Unfortunately, no LSEs indicate whether they report short or long term price elasticity values. 
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and Carney, 1978; Sanstad et al., 2014). SAE models were employed by three of the twelve 
LSEs in our sample, while the two “pure” regression models are used by the majority of the 
LSEs. We identify what method is used for both residential and commercial customer classes. In 
a few cases, however, methods are not customer class-specific. For example, PacifiCorp uses a 
moving average method for short-term forecasting and an SAE for long term projections. 
Similarly, SierraPacific uses an ARIMA (auto-regression, integrative, moving average) method 
for the number of customers and a regression method for the use per customer. 

 

Figure 1 Variables used for residential and commercial/industrial load forecasts, and 
model complexity10.     

Finally, the breadth and depth of technical documentation on load forecasting varied quite widely 
among the LSEs in the older IRPs. In some cases, detailed information – including input types 
and values, mathematical formulae, and parameter estimates - were provided; in others, there 
was only narrative description. In no case, however, was there sufficient information to actually 

                                                 
10 There is no information available for PGE in their 2007 plan. Blank spaces means that the variable is not 
documented or formally employed in the forecast. 
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replicate the individual LSE forecasts or to test their sensitivity to the error in the input 
parameters. This general inability to replicate individual LSE forecasts prevents stakeholders 
from critically examining the assumptions, techniques, and results of the load forecast. 

Table 2  Modeling approaches for residential and commercial load forecasting11. 

 

5. Quantitative analysis of forecast error 
We are interested in assessing the impacts of forecast errors in the electric planning and 
procurement process. In this section we numerically compare the energy and peak demand 
forecasts reported by LSEs in their IRPs to actual outcomes over the corresponding period. 

5.1 Comparison methods 

We employ two different metrics to compare forecasts to actual results - i.e., to estimate forecast 
errors (Hyndman, 2006): 

• Sum of errors: Annual forecast errors for each LSE were calculated as the differences 
between that LSE’s forecasted value and the actual value for each year of the forecast. 
We divide the sum of these errors by the corresponding sum of total load that was 
actually realized by the LSE during the forecast period. This serves to normalize the 
metric in order to compare forecast performance across LSEs of varying sizes. This 
technique averages out positive and negative deviations, which is useful for identifying 
systematic error that is expected given the variability of loads. 

                                                 
11 There is no information available for PGE in their 2007 plan. 
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• Annual average growth rate (AAGR): We compare the first and last year forecast and 
actual values to estimate an average annual growth rate for each. The AAGR represents 
the rate at which the first year forecast or actual value would need to grow to match the 
final year assuming a compound growth rate.  This relationship is captured in equation 
(1) and (2) below:  

𝑌𝑌𝑡𝑡+𝑛𝑛 = 𝑌𝑌𝑡𝑡 × (1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑛𝑛 

where Yt is a forecast variable of interest (in our case energy and peak demand). 
Rearranging terms we have:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑌𝑌𝑡𝑡+𝑛𝑛
𝑌𝑌𝑡𝑡
�
1
𝑛𝑛 − 1 

The sum of errors is a relative metric, so a larger % difference implies larger forecast error  over 
the time period of analysis. The AAGR captures, on average, the implied growth rate for a given 
variable. The difference between a forecast and an observed growth rate is, in this case, a 
measure of forecast error. We characterize the error in load forecasting (i) to understand how it 
may be correlated with specific methods, variables, or sources and (ii) to compare how these 
load forecast results relate to resource acquisition (see section 9). 

5.2 Energy 

Figure 2 shows normalized energy consumption forecasts and observed and equivalent for each 
LSE. This normalization yields growth rates for both forecasted and observed values. The 
analysis time frame corresponds to the range of years between the first year in the forecast and 
2014 (the most recent year for which we have observed values). In some cases, sales seem 
relatively inelastic to the 2008 economic crisis and actual energy sales are close to the base 
forecast. However, sales for most LSEs stalled during and after the recession. 

We compare the sum of errors in each LSE’s analysis period with the sum of actual energy 
consumed in that period (Table 3). The immediate conclusion from this table is that proportional 
forecast error varies importantly across the LSEs in our sample, ranging from close to zero to 
almost 20%. The usual affirmation that “all forecasts are wrong” may be valid, but our empirical 
analysis suggests that, whether by chance or for other reasons such as methodological 
differences, forecast error in the analysis period is significantly smaller for some utilities than 
others12. 

 

 

                                                 
12 With this metric, forecasts from earlier plans have greater chance of having larger proportional error. However, 
we do not find a correlation between age of plans and error in our analysis, probably because the plans are at most 3 
years apart. 

(1) 

(2) 
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Table 3  Sum of errors as a proportion of total load for forecast horizon of 2014. 

LSE 

Sum of 
errors (1) 

[TWh] 

Sum of actual 
load (2) 
[TWh] 

Proportional Error 
(1)/(2) 

PGE 29.12 151.31 19% 
Avista 14.73 85.36 17% 
NVPower 26 199.01 13% 
SierraPacific 10.57 89.37 12% 
Idaho 13.47 138.43 10% 
PNM 5.64 85.17 7% 
COPSC 21.41 365.05 6% 
LADWP 13.04 236.45 6% 
PacifiCorp 33.43 580.63 6% 
Seattle 5.15 100.48 5% 
PugetSound 2.09 206.15 1% 
NW -1.29 68.5 -2% 

 

In the analysis from Figure 2, the growth rate reflects the ratio between a given year’s forecasted 
value and the first year forecast (and similarly for observed values). Growth rates are relevant 
because they convey expectations for potential resource needs that are independent of 
consumption levels and of existing resources. We see more clearly that some LSEs were more 
resilient or insensitive than others to the recession and that several have not shown signs of 
recovery in energy sales growth rates by 2014. In some cases (e.g. LADWP, COPSC, and 
PacifiCorp) we see that energy forecasts before the economic crisis seemed underestimated 
compared to actual load growth in that period. This may have been due to higher than anticipated 
economic activity during the “bubble” that preceded the economic downturn. 

We calculate the Average Annual Growth Rate (AAGR) to facilitate comparison of growth 
estimates (Table 4). The AAGR condenses the medium-term accuracy of the forecast when 
compared to observed values as it is calculated by taking 2014 as the end year for all samples. 

Utilities in our sample expected between 0.6% and 2.6% average growth rates for energy net of 
demand side resources. Observed growth rates for energy were much smaller, averaging close to 
zero across our sample of LSEs. About half of our sample shows negative observed AAGR and 
the ones that show positive AAGR are just above zero. The two exceptions are PacifiCorp, 
which grew at roughly two thirds of its expected rate, and NW, whose observed growth doubled 
its forecast growth for energy consumption. By comparing results in tables 3 and 4 we find that 
generally LSEs with smaller proportional errors will also show more accurate forecast AAGR. 



14 
 

 

 

Figure 2 Forecasted and actual energy consumption growth.
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Table 4  Average annual growth rate for actual and forecast load 

 
Energy AAGR 

LSE Base Forecast Actual Difference 
PNM 2.2% -1.4% 3.6% 
PGE 2.6% 0.2% 2.4% 
SierraPacific 1.4% -0.9% 2.3% 
COPSC 1.8% -0.4% 2.2% 
NVPower 2.3% 0.1% 2.2% 
PugetSound 1.7% -0.2% 1.9% 
Avista 1.7% -0.1% 1.8% 
Idaho 1.4% -0.1% 1.5% 
Seattle 1.1% 0.2% 0.9% 
LADWP 0.6% 0.0% 0.6% 
PacifiCorp 1.9% 1.3% 0.6% 
NW 0.6% 1.2% -0.6% 

 

5.3 Peak demand 

Peak demand forecasts are qualitatively different from energy consumption forecasts, 
particularly due to their greater sensitivity to weather variation. We find that the accuracy of 
energy consumption forecasting for a given utility did not necessarily correlate with the accuracy 
of its peak demand forecasts. In addition, several utilities reported that they were witnessing 
reduced load factors in their residential load. This means that historical hourly profiles and load 
factor assumptions may be less informative for peak demand forecast and make the latter more 
difficult to assess.  

We find that several LSEs (COPSC, PGE, and NVPower) see mixed forecasting results — for 
some years underestimating and for others over-estimating. Other LSEs (Avista, Idaho, 
SierraPacific, NVPower, and Seattle) consistently over-estimate in the period after the financial 
crisis, which is symptomatic of a slower-than-expected recovery.   Finally, some LSEs 
(PacifiCorp, LADWP, and PNM) seem to have small systematic under or over-estimation of 
energy and peak load, but reasonably accurate average growth rate forecasts. This situation 
occurs with forecasts that underestimate and overestimate actual values in different periods. The 
average over longer periods of time yields reasonably accurate growth rates, but still shows 
errors in energy and/or peak load forecast. 

As with energy consumption, we extract the implicit growth rates in both forecasted and 
observed peak demand values and compare them (see Figure 3). We also calculate the Average 
Annual Growth Rate (AAGR) to facilitate comparison (Table 5). Peak demand growth rates 
generally show a slowdown after the economic crisis, but not for all LSEs. Seattle, Avista, PGE, 
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and PugetSound – all in the Pacific Northwest – show a lagged halt in growth compared to other 
utilities (e.g. COPSC, NVPower, and PNM) whose growth rates reflect an immediate impact. 
PacifiCorp, LADWP and NW were relatively less affected by the crisis. Peak demand growth 
rates are more resilient when compared to energy consumption growth rates, which is consistent 
with the LSEs reporting reduced load factors after the economic crisis. 

Table 5  Peak demand average annual growth rates for forecasted and actual values. 

 
Demand AAGR 

LSE Base Forecast Actual Difference 

PNM 1.9% -0.8% 2.7% 
COPSC 2.1% -0.5% 2.6% 
NVPower 2.4% -0.1% 2.5% 
Avista 1.8% 0.4% 1.4% 
PGE 1.9% 0.8% 1.1% 
Idaho 1.4% 0.4% 1.0% 
Seattle 1.7% 1.2% 0.5% 
PugetSound 1.1% 0.8% 0.3% 
PacifiCorp 1.3% 1.3% 0.0% 
LADWP 0.3% 1.8% -1.5% 
SierraPacific 1.7% 3.4% -1.7% 
NW NA 4.1% NA 

 

Utilities in our sample expected growth rates between 0.3% and 2.4% for peak demand net of 
demand side resources. Growth rates for peak demand are much higher than for energy. In 
addition, several utilities reported higher peak demand growth than forecasted, even in the 
presence of the 2008/2009 crisis. This is consistent with statements in recent IRPs that report 
worsening13 (i.e., a reduction) of load factors in residential and commercial customers. We also 
compare energy and peak demand observed values and find that peak demand forecast error 
shows much larger variance across utilities. This supports the notion that it is more difficult to 
forecast long term peak demand than energy consumption. 

A comprehensive and exhaustive assessment of load forecast error would require weather 
normalization of actual values. Unfortunately, we neither have access to the data nor the 
resources to perform this level of analysis. It is important to note, however, that weather 
normalization typically has more of an effect on short-term forecast performance. Normalizing 

                                                 
13 Utilities typically use a negative connotation to refer to load factor reductions, because it means they sell less 
energy using the same infrastructure putting upward pressure on rates and/or reducing their profits. 
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weather has less of an impact on long-term forecasts like those analyzed in this paper14. Having 
said that, we examine the historical record for cooling and heating degree-days (CDD and HDD) 
for the Pacific U.S. region to characterize the weather in the period analyzed. We find that there 
were warmer-than-average years in 2014 and 2015, but all other years in our period of analysis 
were considered “normal”. For this reason, we believe that our findings would be largely 
unchanged if we included weather normalization for each observed value and for every LSE. 
Interestingly, LSEs do not report weather as a primary source of long-term forecast error, which 
also supports the aforementioned point. 

 

                                                 
14 Climate change will impact CDD and HDD in the very long term. However, changes in CDD and HDD will not 
be large enough in the 10 to 20 year periods used for resource planning to be a relevant source of forecast error. 
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Figure 3 Forecasted and actual peak demand growth. 
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Notwithstanding the general pattern of forecast inaccuracy, we find that forecasts for some LSEs 
performed significantly better than others, even in the presence of the economic recession. Our 
preliminary analysis suggests that best performance is not correlated to the size of the utility or to 
its geographical location. However, given the relative ranking in Table 3, we find that larger 
utilities have intermediate forecast error. This is perhaps a consequence of having a diverse and 
large pool of customers that smooths economic impacts on forecast. We also find that LSEs with 
lower forecast error tend to have fewer sales to industrial customers in proportion to their total 
sales. This makes intuitive sense: industrial customers are probably the most elastic customer 
class in relation to economic growth. Their load is hard to forecast and its lumpy nature has a 
significant impact on forecast results. As some LSEs report in their plans, industrial customers 
commonly communicate their intention to move in to their service area or to increase load, but 
they rarely report an impending termination of operations or downsize. This very preliminary 
assessment suggests that load composition may have an impact on the planning strategy and load 
sensitivity analyses. 

With a few exceptions, we find consistent over-estimation of future energy consumption and 
peak demand by the LSEs in the resource plans from the mid-2000s. In the following section, we 
discuss the companies’ changes to their forecasts in subsequent IRPs, including the extent to 
which forecast errors were reduced over the planning periods ending in 2014. In Section 7 we 
assess into what extent load forecast sensitivities were able to reflect an extreme event like the 
2008 recession. 

6. Economic forecasts and revisions to load growth forecasts 

6.1 Economic forecasts 

Long-term energy modeling is unavoidably subject to considerable uncertainty. The forecast 
errors discussed in this paper might reasonably be considered an example of this fact. At the 
same time, it would be expected that the continual revision and updating within the IRP process 
serves to progressively lower these errors, reducing or minimizing their potential consequences 
for capacity expansion.  

Perhaps the most important issue for the present analysis is the U. S. national recession that 
began in 2008. Although the macroeconomic business cycle is an established phenomenon, 
predicting the timing and magnitudes of economic downturns remains an inexact process, and 
moreover the magnitude and duration of the recession that began in 2008-2009 are widely 
(though perhaps not universally) recognized to have been unusually severe. Thus, despite the ex-
ante unpredictability of the exact macroeconomic details, ongoing IRP  processes would be 
expected to have, in subsequent years, accounted for dramatically reduced economic activity and 
its effects on electricity use (along with other influences on load growth subsequent to the year 
the original forecasts were created). 
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We examine IRPs and load forecasts for certain years following those in which the above-
discussed forecasts were made for a number of the LSEs. We call these IRPs “intermediate” in 
the context of this analysis since they were produced between the “older” and “recent” ones 
employed throughout this study (see Table 1). These intermediate IRPs reveal that, while 
forecasts are of course revised and updated, the LSEs themselves devote varying levels of 
attention to retrospective examination, evaluation, and correction of their own load forecasts and 
forecast errors. In some cases, there is not only considerable analysis of this type, but also 
improvements in forecasting methods in order to obtain greater accuracy. In others, while 
forecasts are updated, there is little or no retrospective discussion in the documents we examined.  

In those cases in which forecast errors are discussed ex post, the LSEs as expected highlight 
reduced economic activity as the key factor for previous overestimation of load growth over the 
time period in question. In some cases, the effects of demand-side management programs to 
promote energy efficiency are also cited – that is, as reducing growth more than had been 
anticipated.  As we noted previously, the available documentation is not sufficient to replicate 
the load forecasts and fully determine the quantitative importance of different inputs. However,   
in the plans that cite these demand-side effects, they appear to be clearly secondary to 
(considerably smaller than) those of reduced economic growth. 

For example, Avista’s planning process demonstrates sustained attention to evaluating and 
improving load forecasts, and reveals the company’s emphasis on the importance of economic 
growth projections for forecasting electricity use, and on the effects of the recession during the 
planning period we are examining. In its 2005 IRP, the company states that “employment and 
population forecasts provide the basis for electric customer projections,” which are in turn the 
basis for its load forecasts. At that time, Avista projected 1.8% average annual customer growth, 
and 2.1% average annual electricity sales growth, over the twenty –year (2005-2025) forecast 
period. Similarly, in its 2007 IRP, Avista continued to project average customer growth of 1.8%, 
and sales growth of 2.0%, over twenty years. 

Avista’s 2009 IRP noted the slowdown in national and regional economic growth that had begun 
by that time, but stated that “…the current recession is expected to end by 2011,” and projected 
twenty-year 1.7% average annual growth in both customers and sales. The company’s 2011 IRP 
discusses the continuing effect of slower economic growth on sales, while continuing to assume 
that the recession would end in 2011. It was not until the 2015 IRP that the company reported 
that population and employment growth in its service territory had begun to recover. 

Similarly, in its 2011 IRP, COPSC  discusses the effects of the slowdown that had begun in 
2008, including employment declines in Colorado, by way of explaining the slower-than-
predicted load growth over the previous several years, while predicting strong economic, 
population, and employment growth, and hence “recovery” in load growth, going forward 
through 2018. 
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Idaho’s 2006 IRP contains extensive documentation of the company’s methods and models for 
demographic and economic analysis, including detailed forecast tables of population, 
employment, etc. in Idaho. By contrast, the 2009 and subsequent Idaho IRPs contain 
significantly less documentation of this type. They do, however, address the effects of the 
recession – both the 2009 and 2011 plans state that load growth had been slower than predicted 
in the previous plan because of the national and service area economic slowdown. The LSE 
highlights the growth rate in the number of households in its service territory as a key basis for 
load forecasting. In its 2006 IRP, it projected that the average annual growth rate in this quantity 
would be 1.7% over twenty years; in 2009, the forecast was 1.3%, and in 2011 1.2%. 

In these examples and several others, the pattern appears to be that economic factors contributed 
significantly to the lower-than-forecast load growth we have discussed above, but that the LSEs 
continued, over successive IRPs, to predict economy recovery to at least some degree, and 
therefore a recovery in load growth rates from those in the aftermath of the recession. For most if 
not all of the LSEs, however, significant economic recovery, and therefore return to higher load 
growth rates, were not forthcoming for a number of years. Given the LSE’s reliance on 
macroeconomic forecasting services such as Global Insight, this may reflect the fact that 
economists in general, including forecasters, did not anticipate the very slow and partial 
recovery, by historical standards, from the recession that began in 2008-2009. Given the 
considerable apparent impact of economic factors on load growth over the period we are 
studying, these facts highlight the importance of economic and demographic forecasting in the 
IRP process, including the relative impact of these factors compared to others that influence load 
growth and are analyzed in the IRP processes. 

6.2 Revisions of load growth rates in subsequent forecasts 

We can also draw upon the successive IRP updates to examine changes to the load forecasts 
themselves. For the ultimate purpose of  the present analysis – relating load forecasts to capacity 
expansion – what is of particular interest is the extent to which forecast errors are reduced during 
the planning periods in which capacity expansion decisions are made. As discussed above, we 
are focusing on the years up to and including 2014 since that is the most recent year for which 
estimates of actual load are available from the EIA. Thus, consider a load forecast made in 2005 
that extends to 2014 or beyond. Although the forecast may, in retrospect, embody non-negligible 
errors over the 2005-2014 horizon, updated forecasts made after 2005, but before 2014, might 
have reduced these errors and thus mitigated their potential impact on capacity expansion.  

Examining successive forecasts in this manner shows that, although in some cases errors do 
decline, for most LSEs they remain non-negligible. Indeed, in most cases we see a sustained 
over-estimation of load growth-to-2014 even as the year in which the forecast was conducted 
approaches 2014. Specifically, actual load growth to-year-2014 was in most cases small or even 
negative as the years-of-forecast approached 2014, but the forecasts themselves continue to 



22 
 

project positive growth at rates that have turned out to be higher than actual rates and in some 
cases of the opposite sign (negative rather than positive). 

This pattern is shown for several LSEs in the following tables. The first is for Avista, and 
illustrates the format of the information (Table 6). The earlier Avista IRP discussed in this paper 
is from 2005 (with 2006 being the first forecast year). Avista also produced IRPs in 2007, 2009, 
and 2011 (with first forecast years corresponding to the IRP years), with its 2011 IRP including a 
comparative table of these load forecasts.  The second column of the table gives the 
corresponding average annual growth rates of load (energy) from each, calculated from the 
forecasts’ base years through 2014. The third column gives the actual growth rates for each 
period. Thus, for example, the original (2005) IRP projected an average energy load growth rate 
of 2.35% through 2014; the actual rate turned out to be -0.07%. The most recent (2011) forecast 
projected a three-year growth rate of 1.62 %, with the actual being -1.11%. This information is 
displayed graphically in Figure 6. 

Table 6  Avista – Forecasted and actual energy consumption growth rates to 2014 

Period LSE-Projected AAGR Actual AAGR 
2006-2014 2.35% -0.07% 
2007-2014 2.60% -0.38% 
2009-2014 1.78% -0.41% 
2011-2014 1.62% -1.11% 

 

Figure 6 shows the systematic decline in forecasted growth rates in successive revisions as well 
as actual energy use by the LSE’s customers. There is a very consistent relationship between the 
growth rate two years before the forecast and the average forecast growth rate. 

Table 7 gives similar information for COPSC. In this case, the only LSE forecasts available to us 
were from 2003 (with 2004 being the forecast base year) and 2011 (with 2012 the base year). 
Both the projected load growth rate and the forecast error decline from 2003 to the 2011 IRP, but 
there is again an over-estimate of future loads. 

Table 7  COPSC – Forecasted and actual energy consumption growth rates to 2014. 

Period LSE-Projected AAGR Actual AAGR 
2004-2014 1.78% -0.43% 
2012-2014 0.81% 0.18% 

 

For Idaho Power (Table 8), forecasts were available from IRPs or plan updates in 2006, 2008, 
2009, and 2011. While the error is lower for the 2008 forecast than for the others, there is again a 
consistent over-projection of load growth.  
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Figure 4 Intermediate energy consumption forecasts for Avista 2005-2011. 

Table 8  Idaho – Forecasted and actual energy consumption growth rates to 2014 

Period LSE-Projected AAGR Actual AAGR 
2006-2014 1.79% -0.06% 
2008-2014 1.57% -0.77% 
2010-2014 2.00% 0.86% 
2012-2014 2.12% -0.35% 

 

In the case of LADWP (Table 9), in addition to its 2006 IRP, short-term growth rates were 
projected in a 2010 IRP.  The table shows the same pattern  of reduced but not eliminated over-
estimation of growth, which is also present in the case of Nevada Power (Table 10), comparing 
2006 and 2009 forecasts (with first forecast years 2007 and 2010).   

Table 9  LADWP – Forecasted and actual energy consumption growth rates to 2014. 

Period LSE-Projected AAGR Actual AAGR 
2006-2014 1.22% -0.45% 
2010-2014  0.84%  0.56% 
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Table 10  Nevada Power – Forecasted and actual energy consumption growth rates to 
2014. 

Period LSE-Projected AAGR Actual AAGR 
2007-2014 2.29% -0.51% 
2010-2014 1.23% 0.28% 

 

 

Figure 5 Intermediate energy consumption forecasts for Idaho 2006-2011. 

Only the previously-discussed 2004 IRP forecast was available for Northwestern Energy (Table 
11). In retrospect, the Northwestern Energy forecast under-estimated load growth to 2014. 
Similarly, as shown in Table 12, PacifiCorp's 2004 IRP forecast (with first forecast year 2006) 
turned out to be an underestimate. However, the company's forecasts in subsequent IRPs over-
estimated growth to 2014. 

Table 11  Northwestern Energy 

Period LSE-Projected AAGR Actual AAGR 
2005-2014 0.47% 0.74% 
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Table 12  PacifiCorp 

Period LSE-Projected AAGR Actual AAGR 
2006-2014 1.12% 1.47% 
2007-2014 2.56% 1.01% 
2009-2014 2.40% 0.47% 
2011-2014 2.52% 1.63% 

 

Tables 13 through 17 present analogous comparisons for the remaining LSEs in our sample, and 
show a similar over-estimation of load growth in IRPs over time. With the exception of Sierra 
Pacific, the forecast errors are increasing from older to newer forecasts. 

Table 13  PGE 

Period LSE-Projected AAGR Actual AAGR 
2007-2014 1.78% 0.23% 
2009-2014 2.10% 0.09% 
2012-2014 2.30% -0.18% 

 

Table 14  PNM 

Period LSE-Projected AAGR Actual AAGR 
2007-2014 2.22% -1.39% 
2012-2014 1.72% -4.62% 

 

Table 15  Puget Sound 

Period LSE-Projected AAGR Actual AAGR 
2006-2014 1.75% -0.19% 
2012-2014 1.90% -1.19% 

 

Table 16  Seattle 

Period LSE-Projected AAGR Actual AAGR 
2006-2014 1.52% -0.19% 
2012-2014 1.93% -0.84% 

 

Table 17  Sierra Pacific 

Period LSE-Projected AAGR Actual AAGR 
2005-2014 1.40% -0.53% 
2008-2014 1.44% 0.33% 
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Overall, while the LSEs continually “course correct” (i.e., update and revise) their load forecasts, 
there appears to be a general pattern of persistent over-estimation of load growth. 

Ongoing forecast adjustment is important and worthwhile, but our analysis reveals there is still 
systematic error patterns due to the methods employed in load forecasting. In the following 
section, we explore load growth sensitivities reported in older plans to understand the methods 
and strategies they developed and planned for to deal with this inevitable uncertainty. 

7. Load forecast sensitivities in resource planning 
We have shown that LSEs that developed IRPs in the early to mid-2000s observed economic 
conditions that generally contributed to optimistic load forecasts. While a few utilities have 
relatively smaller forecast errors—in both energy and peak demand—the majority of utilities 
evaluated in this study tended to over-estimate these values within their IRPs. The IRP process 
has evolved to consider the risks due to uncertainty of certain key variables, including future 
customer load. Accordingly, many LSEs use analytical techniques to measure how robust 
resource portfolios are to exogenous changes to these key variables. These analysis techniques 
are classified as scenario-based (i.e., sensitivity) and probabilistic (i.e., stochastic) risk 
assessments (see e.g. Wilkerson et al. (2014)). 

In earlier sections, it was shown that actual load was generally lower than expected load.  It 
follows that there is a risk of excessive capacity being built if expansion plans were not revised 
after the initial IRP was filed. This risk of acquiring more resources than needed – either by 
overbuilding capacity or through power purchase agreements – may translate to higher costs to 
consumers than necessary depending on whether these investments or contracts were actually 
made and included in the rate base.  For this reason, we analyze the low and high load 
sensitivities from older IRPs to understand whether utilities were required to respond to potential 
deviations from their base case load forecast and how. 

7.1 Review of load forecast sensitivity methods 

In this section, we evaluate (i) the method used to create alternative load forecasts; (ii) the results 
of the load sensitivity analysis, (iii) the strategies developed by LSEs to respond to these 
alternative forecasts; and (iv) how LSE’s methods have evolved from older to more recent plans. 
Detailed descriptions of load sensitivity methodology and results for each LSE are included in 
Appendix D and a summary in Table 18 below. 

Evaluating the methods used to produce alternative load forecasts is an important step, because 
these methods reflect utility (and/or regulatory) motivation for considering a wider range of 
future conditions including alternative population growth, regional economic, and customer 
consumption scenarios. In the earlier plans, we find that most LSEs use percentiles or deviations 
from the base forecast as their alternative. In contrast, in more recent IRPs most LSEs are 
developing comprehensive future settings that reflect the interactions of several different 
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fundamental variables such as economic and population growth and alternative technology 
adoption, among others. These scenarios usually analyze joint variation in quantitative variables 
such as natural gas and electricity market prices as an improved alternative to one-on-one 
variable sensitivity analysis. While the design of future scenarios remains a challenge, these new 
approaches should provide a better basis for robust planning processes. 

We find three possible methodological approaches for sensitivity analysis of load forecast in 
older plans15. The first is LSEs that simply did not perform any sensitivity analysis, even when 
estimating alternative load forecasts. The second is LSEs that perform the analysis, but that do 
not produce an alternative portfolio. The last is LSEs that adjust their preferred portfolio to the 
new load conditions. The difference between the last two approaches is that the second holds 
investments as fixed and therefore test the impact of load deviation on operational costs/savings 
in their portfolios to verify that their preferred portfolio remained as the least-cost solution. In 
contrast, the third outcome produces an adapted portfolio that can be the basis of an adjustment 
strategy to alternative load conditions. We find that about half of the LSEs in our sample of older 
plans either were not required to perform sensitivities or were not required changing their 
preferred portfolios in light of new load conditions. In more recent IRPs, we find that most of the 
LSEs that perform sensitivity or stochastic risk assessments also develop new portfolios that are 
different than their original and preferred base case. 

In most cases, reassessment of preferred resource portfolios in response to load forecast 
sensitivity analysis resulted in drastically different timing and size of resources. We inspect the 
sensitivity results in older and recent IRP to confirm that inter-scenario utility revenue 
requirement differences were usually much larger than inter-portfolio revenue requirement 
differences16. In some cases, the inter-portfolio valuation difference was small enough that it 
could be statistically insignificant. In contrast, several LSEs reported adjustments up to ±20%-
40% of capacity under low or high load conditions. Load growth is generally the most important 
assumption in sensitivity analyses conducted by the utilities in terms of its quantitative effect. It 
follows that the development of methods to deal with variation in high-impact, uncertain 
variables—especially load growth—may be more relevant for utilities than the choice of a 
“preferred” portfolio under a given base case scenario. 

 

                                                 
15 It is important to consider that LSEs develop their resource plans subject to the conditions, restrictions, and 
obligations imposed by the frameworks that regulate them. The reader should not interpret that the presence or 
absence of certain analyses or method is necessarily a choice of the LSE, but a requirement of the planning rules. 
16 In this context, inter-portfolio refers to the creation and evaluation of several different resource portfolios to find 
the least cost and lowest risk (i.e., “preferred”) portfolio. Inter-scenario refers to the corresponding revenue 
requirement effects from varying assumptions of key variables including load growth, natural gas prices, capital 
costs, etc., usually performed as part of the sensitivity analysis. 
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Table 18  Summary of load sensitivity methods in older IRPs.

LSE 
Source of 
alternative forecast 

Assessment 
method Horizon Results Strategy 

Change from older to 
recent IRP 

Avista 

Economic model; 
Statistical 
(Distribution) 

Scenarios; 
Stochastic 

Long term for energy, short 
term for peak demand 

Capacity 
adjustment; timing 
and resource mix 
not changed. 

React to new 
information 

Quantitative instead of 
qualitative scenario 
analysis; improved load 
model. 

COPSC 
Statistical 
(Percentile) No information 

Long term for energy, short 
term for peak demand No information No information None 

Idaho 
Statistical 
(Percentile) Scenarios Short term for peak demand 

Capacity and 
timing adjustment 

Procure small, 
flexible resources 

Stochastic instead of  
scenario analysis 

LADWP 
Statistical 
(Percentile) No information Short term for peak demand No information No information None 

NV Power No information No information No information No information No information No information 

NW 
Market prices 
elasticity Scenarios Short term for peak demand 

Operational cost 
reassessment No information 

Stochastic instead of 
qualitative scenario 
analysis 

Pacificorp 
Statistical 
(Distribution) Stochastic 

Long term for energy, short 
term for peak demand 

Operational cost 
reassessment No information Add scenario analysis. 

PGE 
Statistical 
(Percentile) 

Scenarios; 
Stochastic 

Long term for energy, short 
term for peak demand 

Capacity and 
timing adjustment 

Use market 
purchases/sales 
as buffer None 

PNM 
Statistical 
(Percentile) Scenarios Short term for peak demand No information No information Improved load model 

PugetSound Economic model Scenarios Long term for energy. 

Capacity 
adjustment; timing 
and resource mix 
not changed. No information 

Only additional 
scenarios 

Seattle Economic model 
Scenarios; 
Stochastic Long term for energy No information No information Improved load model 

SierraPacific Economic model Scenarios Long term for peak demand 
Capacity and 
timing adjustment No information None 
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The adoption and intensive use of stochastic risk analysis in several recent IRPs is a good step in 
aligning inter-scenario and inter-portfolio decisions. However, there is still a general absence of 
methods to produce and follow-up with clear strategies that respond to higher or lower realized 
load. In one of the few examples of regulatory implementation of adjustment strategies, the Utah 
Commission requires Pacificorp to produce “resource acquisition paths.” These paths 
transparently lay out responses to specific potential outcomes of relevant variables in the 
planning process and act as an “extension” of the typical action plan included in most IRPs. 

In older or more recent IRPs, most LSEs did not report any type of analysis on the effects that 
alternative load growth scenarios would have on their planning outcomes. For those plans that 
did report these analyses, we identify two approaches to deal with this uncertainty: (1) resource 
flexibility and (2) market transactions. Flexibility refers to the procurement of smaller and quick 
deployment supply or demand-side technologies to adjust rapidly to new conditions (e.g. Idaho 
and Avista). LSEs report that they would expedite or defer deployment of these smaller and 
modular resources in response to higher and lower load conditions than expected, respectively 
Market transactions pertain to purchases/sales using non-firm transactions as a “buffer” for long-
term, structural adjustment due to higher or lower than expected customer load (e.g. PGE)17. 
LSEs report that they would sell their output to the market if load conditions were lower than 
anticipated and purchase if load was higher. 

Both of these strategies have limitations. The focus on flexible resources restricts the types of 
technologies that would be deployed and reduces opportunities for larger capital intensive 
projects. The use of market transactions, as suggested by some LSEs, assumes that market 
purchases are always on the margin, which is not necessarily accurate in all cases. Also, national 
or global economic performance will jointly affect electricity market conditions as well as load 
growth. Economic downturn may create surplus on electricity markets due to load contraction 
and therefore make market purchases more attractive. The use of market purchases or sales as 
buffers may not recognize this strategy. Finally, relying on market purchases as a strategy for 
long term adjustment implies coupling electricity price uncertainty with load growth uncertainty. 
This makes the entire strategy formulation much more complex. 

 

 

                                                 
17 Other LSEs did mention in their IRPs market purchases as a hedging tool for short term supply-demand 
mismatches, but these market purchases are not discussed within the context of a load sensitivity analysis. 
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7.2 Quantitative analysis of load sensitivities 

In this section, we study the base forecast, the range covered by the high and low load growth 
forecast estimates, and the actual load18. 

We observe that two LSEs, Northwestern and Sierra Pacific, developed very large “envelopes” 
around their base forecast that encompassed their actual retail energy sales and obligations 
(Figures 6 and 7). All other LSEs, including those LSEs with a relatively smaller forecast error, 
did not produce alternative forecasts that encompassed actual outcomes for energy sales. Most of 
the LSEs developed symmetrical and narrow forecast envelopes with a low average annual 
growth rate (AAGR) forecast boundary that was significantly higher than the observed average 
annual growth rate for energy (see Tables 19 and 20). The preceding is an example of the 
challenges of producing alternative forecasts that can span a wider range of possible future 
outcomes. It also reflects the tradeoff between the span of alternative forecasts and the 
complexity of the strategies to address them: a larger span requires a more sophisticated 
sensitivity analysis and strategy development. 

Table 19  Average annual growth rate for actual and forecast load, with sensitivities. 

 
Energy AAGR 

LSE 
Low 

Forecast 
Base 

Forecast 
High 

Forecast Observed 
Avista 0.3% 1.7% 2.9% -0.1% 
COPSC 1.6% 1.8% 2.0% -0.4% 
Idaho 1.5% 1.7% 2.3% -0.1% 
LADWP - 0.6% - 0.0% 
NV Power - 2.3% - 0.1% 
NW -1.7% 0.6% 1.9% 1.2% 
PGE 1.2% 2.6% 3.1% 0.2% 
PNM - 2.2% - -1.4% 
PacifiCorp 1.1% 1.9% 2.1% 1.3% 
Puget Sound 1.2% 1.7% 2.3% -0.2% 
Seattle 0.3% 1.1% 1.9% 0.2% 
Sierra Pacific -0.2% 1.4% 2.5% -0.9% 

 

We also evaluate the performance of alternative peak demand forecasts.  The results for the peak 
demand forecasts are different than the results for the energy forecasts. Observed energy 
consumption growth was generally less than anticipated, but peak demand growth exhibits mixed 

                                                 
18 In the case of Pacificorp, which does not provide point estimates for its alternative load growth forecast but a 
distribution of values, we use the 10th and 90th percentiles as the low and high values, respectively. No alternative 
energy forecast information was reported for LADWP, NVPower, and PNM, and no alternative peak demand 
forecast were available for NVPower, NW, PacifiCorp, and Seattle. 
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results with both over and underestimation of actual peak demand. In addition, in most cases the 
spread of the forecast envelope is wider for peak demand than for energy (e.g., COPSC, PGE, 
Puget Sound, and Seattle). This wider spread may reflect the simultaneous consideration of short 
term (e.g. weather) and long term (e.g. growth) uncertainty in the sensitivity analysis (energy 
sensitivity only considers long term). Sierra Pacific was the only utility whose forecast envelope 
consistently encompassed the observed load over time, but it was also the sensitivity with the 
largest spread (see Figure 6). While a larger spread can effectively encompass many different 
future scenarios, it also requires a more flexible procurement strategy to alternate between these 
scenarios. 

Table 20  Peak demand average annual growth rates for forecasted and observed values, 
including sensitivities. 

 
Peak Demand AAGR 

LSE 
Low 

Forecast 
Base 

Forecast 
High 

Forecast Observed 
Avista 0.3% 1.8% 2.9% 0.4% 
COPSC 1.9% 2.1% 2.5% -0.5% 
Idaho 1.5% 1.7% 2.3% 0.4% 
LADWP - 0.3% 1.1% 1.8% 
NVPower - 2.4% - -0.1% 
NW - NA - 4.1% 
PGE 1.3% 1.9% 2.9% 0.8% 
PNM - 1.9% 2.4% -0.8% 
PacifiCorp - 1.3% - 1.3% 
PugetSound 0.9% 1.1% 1.8% 0.8% 
Seattle - 1.7% - 1.2% 
SierraPacific -0.8% 1.7% 2.8% 3.4% 
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Figure 6 Forecasted and actual energy consumption growth, with alternative load growth forecasts. 
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Figure 7 Forecasted and actual peak demand growth, with alternative load growth forecasts.
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8. Comparison between older and recent plan load forecast methodologies 
We compare load forecast methodologies from older and recent plans for two reasons. First, we 
want to understand whether there is a qualitative relationship between forecast error and 
adjustments to forecast methodology as a response. Second, analyzing any changes in forecast 
methodologies helps to ascertain the applicability of our findings to present day planning 
processes. 

Between IRP filing dates, electric LSEs often make adjustments to their load forecasting analysis 
framework (e.g., mix of customer classes evaluated, makeup of forecast scenarios); choice of 
variables and analytical techniques (e.g., time-series regression, statistically-adjusted end-use 
models); and sources of key economic and demographic assumptions (e.g., IHS Global Insight, 
Inc., EPRI, Moody’s Analytics, Inc.). These changes are made in an effort to ultimately improve 
forecast accuracy in light of (1) evolving market and regulatory conditions; (2) perceived 
improvements to analytical techniques; and (3) access to more accurate forecast assumptions.  

LSEs that implemented procurement decisions based on load forecasts that had larger errors may 
have had the most incentive to make changes to their forecasting inputs, methods, or both 
between filing dates. If so, then older and newer IRP forecasting methods can be compared to 
determine the degree of change between filing dates as a possible response to forecast errors.  
Figure 8 summarizes the extent of changes made for each of the LSEs considered in this study 
and the three categories related to forecast methodology described in section 4. 

 

Figure 8 Load forecasting methodological changes since earlier IRP filing. 

Overall, nearly all of the LSEs considered in this study found new data sources for key modeling 
assumptions (e.g., population, regional economic activity). Half of the LSEs made changes to all 
three components of their load forecasting methodology (analysis framework, technique, and 
source of data). Some LSEs made significant changes to load forecasting-related variables and 
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analytical techniques, but a larger share of LSEs made very small or no changes within this 
specific category. Most LSEs did not make significant changes to the analysis framework 
between filings. NV Power, Sierra Pacific, and Avista made the most significant methodological 
changes between plan filings. Colorado Public Service Corporation, PacifiCorp, and Idaho 
Power made the least number of changes.     

8.1 Changes to analysis framework 

Changes to load forecasting frameworks typically involved incorporating additional sets of load 
forecasts based on a wider range of growth scenarios (NV Power, PGE, LADWP, PacifiCorp, 
Seattle City Light) or changing the mix (or number) of customer classes considered in the 
analysis (Seattle City Light, LADWP, Avista, Puget Sound, NV Power). In some cases, LSEs 
assumed that future load growth was lower than the low growth rate reported in the earlier plan. 
Sierra Pacific and Puget Sound Energy are two examples of LSEs which made changes to 
customer classes to reflect the importance of new types of customers including transportation 
(i.e., electric vehicles). 

8.2 Changes to variables and analytical techniques 

Many changes to load forecast variables and analytical techniques involved migrating from one 
modeling technique to another. For example, Sierra Pacific switched from an econometric/time-
series based modeling approach to a statistically adjusted end-use (SAE) modeling approach. 
Conversely, Avista indicated that their load forecasting methodology is “undergoing significant 
restructuring [and] involves using an Auto Regressive Integrated Moving Average (ARIMA) 
technique” (i.e., time-series based econometric modeling). Other LSEs simply incorporated new 
variables including those used to capture adoption of electric vehicles (Idaho Power, LADWP, 
PNM, Seattle City Light, Avista, NV Power) or saturation of energy efficiency initiatives (PGE, 
NV Power, Idaho). 

8.3 Changes to sources of key externally-produced assumptions 

Perhaps most interestingly, there was a significant consolidation in the source of external data 
used in the production of LSE load forecasts. A number of LSEs began using IHS Global Insight, 
Inc. in their earlier plans, specifically, for demographic and regional economic growth estimates, 
and the majority of the LSEs now do so (COPSC, Sierra Pacific, PGE, NV Power, Avista, 
PacifiCorp, and Seattle). A smaller number of LSEs rely on Moody’s Analytics, Inc., 
local/state/federal government agencies, or post-secondary educational institutions for regional 
demographic and economic assumptions. It is not immediately evident why this consolidation 
took place. The Electric Power Research Institute (EPRI) and Itron, Inc. were consistent sources 
of assumptions about customer responses to prices and end-use saturation and efficiency 
projections. 

One utility planner, who wished to remain anonymous, indicated the following about third-party 
forecast performance and how commissions may view these vendors:  
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“[Third-party forecast provider redacted] county-level forecasts consistently over-stated 
the speed and strength of the economic recovery in our service area. I believe this was a 
significant factor in the observed over-forecasting. The heavy reliance on [redacted third-
party forecast provider] by [redacted] and other utilities may be connected [with] the 
increasing usage of [redacted third-party forecast provider] by state governments for the 
purpose of forecasting state revenues. That is, the adoption of [redacted third-party 
forecast provider] by state governments may have been viewed as a “seal of approval” by 
the utilities regulated by the same states. From the utilities’ perspective, if [redacted 
third-party forecast provider] was good enough for the states’ revenue models, then it 
may have been easier to argue that [redacted third-party forecast provider] was also good 
enough for their load models. In addition, I have noticed that many commission staff 
members often “signal” that they trust third party forecasts more than the utilities’ in-
house forecasts. If this preference is strongly signaled, then utilities may be inclined to 
adopt third party forecasts to deflect any future criticism.” 

The overall reliance on a few number of third-party forecast providers may be one reason that 
forecasts were consistently over-estimated by other LSEs as well.  This finding implies that 
planners should consider supplementing third-party forecasts or conducting alternative economic 
forecasting to minimize forecasting error that can be attributed to outside parties. 

8.4 Evolution of forecasting methodologies and variables 

This comparison established that there have been few if any changes in forecasting 
methodologies over the past decade or so that would limit the applicability of our analysis of 
older plans to understanding present-day practices by the LSEs. The types of variables used in 
the load forecasting process have essentially not changed and, while some LSEs have changed 
their analysis techniques, they have switched to techniques that were already in use in earlier 
plans and have not, apparently, adopted or developed new techniques. We are confident that our 
findings and suggestions are very much applicable to current and future resource planning 
processes. 

There is a general convergence across utilities in the forecast modeling technique and the sources 
of economic data. In relation to the former, we find that both time series and cross sectional 
regressions have become the typical analytical framework to produce base case forecasts for 
energy and peak demand. LSEs incorporate many variables in their models, but they also 
acknowledge that population and economic growth are the main drivers in their load forecasts. 
These regression methods inevitably rely on historic information that may tend to reproduce past 
economic, social, and regulatory trends.  

Regarding the sources of data, we observe a convergence of sources for the basic economic and 
social-demographic forecasts, which can have an important implication. Regulators have 
increasingly been using benchmarking approaches to compare regulated utilities for purposes 
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that range from rate setting to informational (Jamasb and Pollitt, 2000; Lowry and Getachew, 
2009). Similarly, regional planning entities typically compile forecasts from utilities under their 
purview to determine aggregate load growth and expansion scenarios. Utilities report that 
forecasts are very sensitive to a small set of variables, namely economic and population growth. 
When LSEs use the same source for economic variables, their forecast errors become jointly 
determined and correlated. The benefit of benchmarking and aggregation that may average out 
errors in forecast is diluted with this convergence of sources. In addition, the use of proprietary 
forecasts adds an undesirable layer of obscurity to a process that was designed to encourage 
transparency and involvement from the public. When utilities use proprietary data, they are 
typically not allowed to make public the underlying values used in their load forecasting models, 
which may preclude scrutiny and evaluation of their results. 

In the following section we assess the potential performance of load sensitivity methodologies 
and strategies by comparing forecast and actual load against planned and procured resources. 

9. Comparing load forecasts and resource planning & procurement 
We have established a general trend of load over-estimation and varied methods to analyze and 
formulate strategies to deal with load growth uncertainty. In this section we verify whether 
resource procurement was adjusted to actual lower load growth levels and how load sensitivity 
analysis described before may have informed this adjustment. It would be expected that supply-
side capacity expansion would be greater than peak demand growth, particularly because supply-
side resources that are not dispatchable (e.g., wind and solar) may not contribute to meet peak 
demand or may contribute a limited amount to resource adequacy. Hence, we perform two 
analyses: one comparing load to nameplate resource capacity and the other comparing load to 
available-at-peak resource capacity. We report the available-at-peak analysis in this section and 
the nameplate capacity in Appendix E. 

We de-rate the nameplate capacities for both planned and actual supply-side resources based on 
average “capacity available at peak” ratios from the resource plans we study. In this case, de-
rating means we estimate capacity available at peak as a fraction of nominal nameplate 
capacities, which are usually larger. We assume that coal and combined cycle natural gas plants 
have a firm equivalent capacity of 85%; geothermal, peaking natural gas units, and nuclear have 
100% equivalent capacity; PV, generic renewables, and wind resources have a 10%19 equivalent 
capacity and unknown resources20 a 40% equivalent capacity. We check that these assumptions 

                                                 
19 A recent paper estimates that utilities in the West assign a larger capacity credit for solar of 30%-50% (Mills et al., 
2016). We use a 10% because it was a common reported value for most utilities in the early 2000s. In any case, there 
was little solar PV planned and procured for our sample of utilities, so its capacity credit has a minor effect in the 
results. 
20 In many cases LSEs that rely on market purchases in their resource plans do not know a priori what type of 
technology will produce the capacity they expect to purchase. These are labeled “unknown resources” for our 
purposes and apply only to planned resources. The 40% figure is roughly the ratio of firm to non-firm products 
purchased by utilities. 
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are reasonable by comparing the planned expansion to the forecast peak demand. Aggregate peak 
demand forecast of ~9 GW by 2014 was quite consistent with a planned expansion of roughly 
~12 GW in the same period (Figure 9, right panel). This is a result we expect: meeting peak 
demand growth is a fundamental constraint of IRP. With these assumptions we then estimate that 
“at-peak” procurement was ~11 GW, a fifth of those in PPAs and the remainder in self-builds 
(Figure 9, left panel). Over the narrower 2007-2014 period, the at-peak capacity acquired was 
over 8 GW. This value should be compared against less than 1 GW aggregate growth in peak 
demand in the same period. 

 

Figure 9 Planned and actual (procured) at-peak capacity with forecasted and 
observed peak demand. 

Retirement of plants may explain in part the excess procured capacity. For our sample of 
utilities, we find that generation units totaling approximately 2.5 GW of at-peak capacity were 
retired in the 2005-2014 period. We also find that over 80% of the retirements accrue to three 
specific LSEs (LADWP, Nevada Power, and COPSC). An analysis of individual LSE load-
procurement balance is out of the scope of this study, but is included in our follow-up paper. 
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Then, retirements can account for about a third of the excess procured capacity compared to 
actual load21. 

The actual response of LSEs to lower-than-expected load conditions stands in contrast to their 
reported results and strategies from the load sensitivity exercises described in section 7. Many 
LSEs found important changes in resource acquisition timing and capacity when applying 
alternative load forecasts in their IRP modeling exercise. We do not see this reflected in practice, 
as most procurement capacity and timing decisions are consistent with base case expansion even 
under actual low load outcomes. The fact that procurement is persistently aligned with load 
forecasts is in line with the findings in section 6, with LSEs systematically forecasting positive 
and higher growth rates than informed by very recent observed values. Our cursory review does 
not support that load sensitivities had an important role to inform procurement decisions because 
we do not see adjustment strategies reflected in quantities procured. Acquired resources seem to 
generally follow the original planning, regardless of the short and medium term performance of 
load forecasts and of actual energy sales and peak demand. 

10. Summary and conclusion 
We have quantitatively and qualitatively analyzed the methods for and performance of load 
forecasts for a set of electric integrated resource plans created by utilities in the Western U.S., 
and examined load sensitivities and the relationships among load forecasting, planning, and 
resource procurement. A comparison of forecasts to actual energy use and peak demand reveals 
that all but one of the LSEs overestimated energy consumption growth over planning periods 
beginning in the mid-2000s and ending in 2014, and that eight of the eleven LSEs that forecast 
peak demand also over-estimated this quantity. In addition, we find that most of the LSEs that 
had the highest expected growth rates also experienced the lowest actual – in some cases 
negative - demand growth.  

Furthermore, examination of forecasts from more recent IRPs indicates a persistent 
overestimation of demand growth over planning periods up to year 2014, even in the presence of 
much slowed actual growth, for most of the LSEs in our sample. A number of the utilities 
highlighted the effects of the national recession that began in 2008-2009 to explain this 
phenomenon. Over time, the utilities did adjust their forecasts of projected load growth 
downward in response to lower-than-expected demand, but continued to overestimate. The IRP 
documentation suggests that for most of the LSEs, to a significant extent this apparently reflected 
an expectation that the national and regional economies would follow a historical pattern of 
relatively quick recovery from the recession. Thus, most utilities expected that load growth 

                                                 
21 We recognize there are other concomitant factors that could influence resource procurement that we do not 
analyze here. For example, changes in renewable portfolio standards (RPS) targets may force larger adoption of 
renewable resources, or unanticipated earlier retirement of plants or termination of contracts may require larger 
capacity additions. 
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would recover as well. The actual, slower-than-expected economic recovery thus contributed to 
over-estimates of future load in more recent IRPs.  

We find some correlation between forecast methods and complexity, and the accuracy of 
forecasts. In addition, the LSEs that had the most accurate peak demand forecasts were also 
among the most conservative in terms of their expected peak demand growth. LSEs with 
relatively more complex models had less forecast error than those that employed simpler models. 
Among the more complex techniques, Statistically-Adjusted End-use (SAE) models did not 
perform much better than other load forecasting methods and models. These results suggest that, 
among the LSEs we studied, there may be small marginal benefits to greater model complexity. 
There are structural reasons that may also explain the relative accuracy of load forecasts. For 
example, we find that utilities with a larger share of industrial load in their mix generally had 
larger forecast error. We believe that this may be caused by the highly elastic and lumpy nature 
of industrial customer load as well as the difficulty in predicting entry and exit of industrial 
customers from a LSE service area. This suggests that industrial loads should be modeled and 
risk assessed separately from the remaining loads to understand utility-level impacts of large 
adjustments. 

Load sensitivity analysis is an important component of risk assessment and management in IRP. 
In the context of our study, it is especially important because strategies derived from load 
sensitivity analysis may adjust and impact resource plans as new information comes in. Over 
time, we find that LSEs have improved the breadth and sophistication of their sensitivity analysis 
of load forecasts. However, we find that both older and more recent IRPs generally lack an 
adaptive component that details how utilities would respond in practice were subsequent actual 
values of critical input variables—like load — to correspond to those studied in these sensitivity 
analyses rather than to those assumed in "base cases." More importantly, we find that load 
variation from the base case produces differences on revenue requirement for an LSE that are 
much larger than the differences in revenue requirement from the resource portfolios that are 
designed and compared to select the “preferred” one. 

For our overall sample of utilities, we find that aggregate (pooled across utilities) planned and 
actual capacity expansion levels were generally consistent over the time period of our study. 
However, in aggregate, actual resource procurement were not closely aligned with observed 
changes in load. Actual capacity additions were partially attributable to retirements of existing 
plants, which accounted for about 2.5 GW for several utilities. It is possible that this apparent 
over-procurement reflects LSEs seeking to avoid resource adequacy problems by hedging 
against rapid rebounds in load that may exceed their ability to procure unforeseen required firm 
capacity. The volatility in observed peak demand growth rates and the quick recovery of some 
LSEs’ peak demand provide evidence in favor of this. 

We find that load forecast methodologies have not changed significantly in the past fifteen years, 
although there is evidence in recent plans of inclusion of potential structural change drivers such 
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as distributed energy resources and electric vehicles. We did find that LSEs with more changes 
in their forecasting methodologies had previously had relatively greater forecast errors. This 
suggests an active effort to at least react to forecast error, although we do not have evidence that 
these changes lead to improvements in accuracy. In general, we believe that our findings of load 
forecast performance and relationship to procurement over our analysis period are applicable to 
current planning and procurement processes even if we studied decade-old plans. 

To our knowledge, this is the first quantitative and comparative retrospective study of energy and 
peak demand forecasts by LSEs. This paper has been primarily descriptive and exploratory and 
as such our findings indicate several key topics for further research to better understand and to 
explain our results.  

First, was over-optimism regarding resumption of economic growth following the severe 
recession of 2008-2009 the fundamental reason for the persistent over-estimation of load growth 
during the study period? If so, what does this imply about the role of economic growth 
assumptions in overall IRP processes and the strategies that may be derived from load sensitivity 
analyses? In addition, how much of this over-estimation may be due to under estimation of 
energy efficiency gains? 

Second, what were the reasons for the divergence between load forecasts, on the one hand, and 
procurement, on the other? What were the differences in resource mix, timing, and market 
transactions between planning and procurement, and what the potential impact of these 
differences is? 

Third, what is the balance between a better forecast to select the right portfolio and a better 
strategy to switch between portfolios and adjust to changing environments under a budget 
constrained planning process? What shape should these strategies take and what improvements 
would they have on the planning and procurement processes? 

These questions, particularly the second, will be the topic of our second paper, in which we will 
investigate the connections between IRP and procurement processes in depth. We hope that both 
this paper and its sequel will contribute to the goal stated in the Introduction, of furthering the 
understanding of IRP among a diverse group of stakeholders, and contributing to the further 
evolution and improvement of planning methods and outcomes. 
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12. Appendix A – Adjustments to data 
We adjust the monetary values from both plans and actual data to express them in real 2014 
dollars and allow meaningful comparisons. We use the Gross Domestic Product implicit price 
deflator based on data from the Bureau of Economic Analysis (Table 21) 

Year 
GDP Deflator 
Index 

% Change 
from 2014 

2000 81.89 27% 
2001 83.75 25% 
2002 85.04 24% 
2003 86.74 22% 
2004 89.12 20% 
2005 91.99 17% 
2006 94.81 14% 
2007 97.34 11% 
2008 99.25 9% 
2009 100.00 9% 
2010 101.22 7% 
2011 103.31 5% 
2012 105.21 3% 
2013 106.93 2% 
2014 108.69 0% 

Table 21  GDP deflator used to adjust monetary costs to real 2014 dollars. 
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13. Appendix B – Demand forecast methodologies 
The following table provides details on demand forecast methodologies for the older resource plans. We identify the framework or 
general rules required for forecasting, the variables and methods used, and the sources for the data. 

LSE Year Framework Variables and methods Sources for data 
COPSC 2004 • They project native load and firm 

wholesale requirements. They are 
required by law (LCP rule 
3060(b)) to estimate high, base, 
and low forecasts. 

• Classes include residential, 
commercial, industrial, large 
industrial, public authority, street 
lights, interdepartamental, and 
wholesale/resale customers. 

• Energy and demand are 
forecasted similarly, with an 
added variable in demand to 
capture specific weather-driven 
peak events. 

• High and low estimates are 
created by modifying economic 
growth and weather variables. 
They essentially use the third 
quartile instead of the median for 
high and the first quartile for low. 

 

• Statistically-Adjusted End-Use (SAE) 
model. 

• Residential Customer number (CN) comes 
from housing stock forecasts. Use-per-
customer (UPC) composed from saturation 
(unknown source) and utilization for 
cooling, heating, and base use. The latter 
are simulated from electricity price, 
household income/size, and 
CDD/HDD/LightHours respectively using 
exogenous elasticities. UPC is regressed 
based on these estimates and monthly 
company data, using monthly fixed-effects. 
Implementation is methodologically 
unclear. 

• Commercial/Industrial CN methodology is 
not provided. UPC similar to residential. 
Saturation based on annual energy intensity 
(kWh/sqf) trends. Utilization simulated 
from electricity price, GSP, and 
CDD/HDD/LightHours. 

• Large industrial customer sales are forecast 
based on historical data, market trends, and 
customer input. 

• Demographic and economic: 
Center for Business and 
Economic Forecasting, Inc. 

• Cooling, heating, and base use: 
internal using data from 1991. 

• Elasticities for residential 
utilization: EPRI’s REEPS 
model. 

• Saturation trends: EPRI’s 
COMMEND model. 

NW 2004 • Not clear what load they project, 
but they do create high, base, and 
low forecasts. 

• Classes include small (<50 kW) 
and large (two tiers, <5MW and 
>5MW) customers. 

• Their approach is econometric, but does 
not show an end-use approach. They rely 
on weather and customer number as main 
explanatory and forecasting variables. 

• Small customer: they regress consumption 
to average annual customer count, HDD, 

• MT population forecast provided 
by NPA Data Services, Inc. and 
made available through MT 
Census and Economic 
Information Center. 

• U.S. economic growth, income 
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LSE Year Framework Variables and methods Sources for data 
• Their forecast methodology 

seems to point to energy 
forecasting rather than load. They 
actually do not provide the latter. 

• They use recent (<5 year old) 
data to model monthly and 
hourly consumption patterns. 

• Low load estimate created by 
assuming large customers switch 
to other provider. High load 
assumes that users with choice 
(under deregulation) return to 
NW because default supply price 
is lower than retail. 

CDD, and tariff rates for the past 23 years 
(1980-2002) to establish historic 
coefficients. Weather variables and average 
customer count are independent variables 
that exhibit a consistent relationship to 
usage. 

• Large customer: <5MW is estimated based 
on rolling five year average of usage plus 
adjustments for any expected changes 
based on customer communication; >5MW 
receives more detailed analysis and 
communication to determine future levels. 

• “There is little evidence in the 23 years of 
data gathered which shows that electricity 
price changes have an impact on total 
electric consumption”….”implies that price 
elasticity of demand for electricity is zero.” 
(p.57). They provide several explanations 
for this. 

• They adjust results by DSM. 
 

projections, etc. came from U.S. 
Economic Projections (U.S. Dept 
of Commerce). GDP, population, 
and income projections assumed 
are included on pages 15-25 of 
the “Book 2 document” 

 

Sierra 
Pacific 

2004 • Sierra Pacific forecasted peak 
load and energy out to 2024. 
They are required by law (NAC 
Chapter 704) to estimate high, 
base, and low forecasts. 

• They predict sales for each of 
their customer classes and state 
combinations (CA and NV). 
Larger customers (GS-3, GS-4 
classes) are forecast individually. 

• Low load case anticipates a 
“slight downturn in the 
economy”, less population 
growth (95% base case 

• Customer number forecasting by tariff type 
using an ARIMA model with 1st/12th 
order autoregressive terms and dummy 
variables for certain years. 

• Rates: future rates are forecasted to assess 
price-elasticity effects. 

• Cross-price elasticity: they estimate non-
statistically significant or negative natural 
gas/electricity cross-price elasticity. 

• Use per customer: for non-individual 
analysis they regress UPC in terms of 
twenty-year average monthly HDD/CDD, 
wind speed (if significant), population 
growth, and historical sales. For large 

• CPI from Global Insight’s US 
Economic Outlook. 

• Population forecast was internal, 
but a 2001 regulatory decision 
forced Sierra to use the Nevada 
State Demographer’s. (p.8-9). 
Sierra thinks this forecast is too 
low and it seems they created a 
hybrid. 

• Hourly loads from EPRI’s HELM 
model. 
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LSE Year Framework Variables and methods Sources for data 
confidence interval), and fewer 
customers. 0.07%/0.24% growth 
for the summer/winter peak.   

• High load case assumes more 
customers, greater population 
growth (95% base case 
confidence interval), and a 
stronger economy. Summer and 
winter peak growth of 
2.85%/2.88%, respectively. 

• They expect “no major 
technological changes, such as 
electric automobiles” (p.9) to 
affect end-uses of electricity. 

• They acknowledge recent 
changes in their seasonal peak 
due to larger NV growth 
compared to CA. 

• Very similar to process used in 
2001 IRP. 

customers they perform one-on-one 
estimations for 5-year growth and replicate 
this result for the next 15 years. 

• They find population growth is the primary 
driver of load growth.   

• Base summer and winter peak loads are 
expected grow ~1.81-1.83%.  Base case 
energy is expected to grow 1.55%.  
Manufacturing (3.27%) and residential 
(2.69%) are expected to grow the most and 
mining (-1.38%) and industrial the least (-
0.19%) (Volume 1, p. 5). 

• Hourly peak load forecasts were estimated 
using HELM model (designed by EPRI), 
which allows utilities to estimate hourly 
load projections given individual load 
shapes for each sector. HELM produces 
loads without losses so losses are 
incorporated later. 

• They do not adjust results by DSM, 
arguing its effect were “of minimal impact 
upon the system” (33) 

PGE 2007 • Forecast reference, high, and low 
scenarios with normal weather 
conditions. High and low are 
based on base case growth 
plus/minus 1 standard deviation. 
This translates into 1% 
increase/decrease in growth from 
the base case. 

• They report median peak load 
values. 

• PGE expects to turn from winter 
to summer peaking in the next 
15-20 years. 

• Fundamental factors: economy, 
immigration, life expectancy, and business 
environment, particularly high tech sector. 

• Expect higher commercial load, lower 
residential load, and uncertainty in 
industrial customers. 

• They face opt-in/opt-out customers under 
retail competition. Their strategy is to 
acquire resources for 1/3 of existing 
eligible opt-out customers and find the rest 
on the short- term market. There is no 
formal forecast for returning/leaving 
customers. 

• No information on sources of 
data. 
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LSE Year Framework Variables and methods Sources for data 
• “Overall demand has always 

rebounded to grow over time 
based on macroeconomic and 
fundamental drivers.” (p.40) 

• No information on their forecasting 
models. 

NV Power 2006 • Produce only an expected or base 
case forecast. 

• They apply weather 
normalization their winter and 
summer historical peak data. 

• Econometric models (not SAE) separate 
for each customer class. Forecast sales, 
customers, and residential retail rates. 

• Explanatory variables include CDD/HDD, 
real retail rates (residential only), 
monthly/seasonal fixed effects, total 
residential customers (non-residential 
only). 

• Residential: Sales per customer from 1979-
2005. -10% elasticity for retail rates as 
result. Use dummies for year > 2001 
(reduction in usage), and 1st/12th order 
autoregressive terms.  

• Number of customers: Regress number of 
residential customers by population from 
Clark County and a 1st order 
autoregressive term. CN for other classes 
are regressed from this residential customer 
number estimate. 

• Large general service: Only use 
CDD/HDD to explain ~90% variation. 

• Retail rates: They expect 24% increase in 
real retail rates from 2004 to 2006 and then 
remain flat. Their forecast is internal and 
no details are provided. 

• Weather data for CDD/HDD for 
Las Vegas from NOAA. 

• Population forecasting is very 
important for them. They retained 
Univ. Las Vegas, who used a 
general equilibrium economic 
and demographic model 
developed by Regional Economic 
Models, Inc (REMI) specifically 
for Clark County for 2005-2035. 
See p.34 of App2-1 for 
population predictions. A quick 
review shows they were off by 
~20% on a total population basis 
or they expected 3 times more 
growth than actually happened by 
2013. 

Puget 
Sound 

2005 • Forecast an expected, high, and 
low scenario. Main difference is 
GDP growth at 3%, 3.6%, and 
2.6% respectively, in addition to 
lower inflation/higher 
productivity for high scenario 

• They forecast billed energy sales, customer 
number, system peak load for electricity 
and gas, and hourly load profiles. 

• Sales = UPC * CN; the later are estimated 
through regressions based on historical 
data from 1990 to 2003. They manually 

• They do not mention most 
sources of data besides their 
internal sales and load 
information. 

• Economic and retail rates forecast 
from “May 2003 US Forecasts” 
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LSE Year Framework Variables and methods Sources for data 
(inverse for lower). 

• Customer classes include 
residential, commercial, 
industrial, street lights, and 
resale. 

• Minor methodological changes 
from 2003 LCP, including higher 
weather resolution data and 
spatial load growth estimates. 

• They create very complex 
functional forms that rely heavily 
on lagged operators. I believe 
there is an important risk of 
inaccuracies from propagating 
errors through the functional 
form. 

• They generally expect lower 
growth than historical results. 

adjust these estimates (see below). They 
mention several end-uses, but they don’t 
use them as explanatory variables. 

• UPC: Regression by class and month in 
terms of retail rates (includes lags), 
HDD/CDD, demographic variables 
(income, household size, population, 
employment, growth, building permits), 
monthly dummies. 

• CN: Regression by class and month based 
on same demographic variables and 
monthly dummies. Population and 
employment are primarily used. 

• Residential: semi-log functional form, with 
long lags in rates and demographic 
variables. They estimate -0.19 price 
elasticity. Manual adjustments include 
expected conservation, fuel switching, and 
tariff switching. 

• Other sectors: Double log form, also use 
lags in explanatory variables. Estimate -
0.16/-0.19 price elasticity for Comm/Ind 
respectively. Manual adjustments include 
expected conservation, fuel switching, and 
tariff switching. 

• Peak load is estimated based on regressing 
hourly peak MW on monthly sales for 
residential and commercial, and also 
interacting weather sensitive portions of 
load with temperature measurements and 
monthly dummies. Very complex 
regression. 

• Hourly demand profile was based on 
HELM for 2002, but replaced now with a 
regression of hourly load (1994-2004) on 

prepared by Global Insight. 
Expect growth between 2.9% and 
3.6%. 

• Hourly temperature comes from 
NOAA observed data at Seattle 
airport. 

• They also use a set of account-
specific assumptions about 
certain customers starting or 
closing their service. 
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LSE Year Framework Variables and methods Sources for data 
hourly temperature (1950-2003). They use 
lags on loads and linear/squared 
temperature variables, plus an 
autoregressive term and holiday dummies. 

Avista 2005 • Prepared medium, high, and low 
forecasts, under the suggestion of 
the Technical Advising 
Committee. Main determinant is 
population growth changes, 
roughly double growth for “high” 
and no growth for “low”. 

• They generally refer to 
residential and commercial 
classes, although they 
sporadically mention specific 
customers (Boeing, Fairchild 
Airforce Base). 

• “Key driver of the electricity customer 
market is population growth” (p.1-4). 

• 1998-2004 retail sales grew 1.2%, but they 
forecast 2.1% for 2005-2025. 

• Price elasticity estimates: residential -0.15, 
commercial -0.10. Cross price (NG) 
elasticity at 0.10 for all classes, and income 
elasticity at 0.75. These come from own 
estimates. They don’t expect an impact on 
forecast. 

• Their language suggests they use 
regression analysis, but there is no 
evidence of the functional form or method 
in the plan itself or the formal appendices. 

• Slides from stakeholder meetings reveal 
they do include also weather through 
CDD/HDD using “96% of Normal” in base 
forecast (2 s.d.). Electric price forecasts are 
simply assumed to grow at certain %, 
although these may be results of the Aurora 
model runs. 

• National/County employment and 
population forecasts from Global 
Insight, from March and June 
2004 respectively. 

Idaho 2006 • Create six load forecasts. The 
low has 90% probability of being 
exceeded, while the high 10%. 
The medium case is the median. 
All these are estimated under 
normal weather. They further 
develop their median forecast by 
considering normal, 70th, and 
90th percentile weather impacts. 
The growth forecasts bound the 

• They use regressions for UPC, with 
different variables. It seems they use a SAE 
for peak load only, but they do not use the 
term and their explanation is very 
qualitative. They extensively use different 
percentiles throughout their analysis. 

• “Weather conditions are the primary factor 
affecting the load forecast on the hourly, 
daily, weekly, monthly, and seasonal time 
horizon. Economic and demographic 

• Economic 2006 forecast 
developed by Idaho Economics, 
based on a national and regional 
economic activity forecast by 
Global Insight. 

• Electricity price increases (they 
explicitly say that) are modeled 
internally, while gas prices are 
from Global Insight. 
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LSE Year Framework Variables and methods Sources for data 
others. Base forecast grows 
1.9%/yr, low at 1.5% and high 
2.4%. 

• Base forecast is median growth 
with 70th percentile weather 
impact. Their monthly hourly 
forecast for peak load uses 95th 
percentile weather. 

• They analyze residential, 
commercial, irrigation, and 
industrial classes. They 
individually analyze three large 
customers and their firm sales 
contracts, making assumptions 
about their continuity. 

• They include losses in their 
estimates. 

conditions affect the load forecast over the 
long-term horizon.” (p.29) 

• Peak loads are regressed from temperature 
(HDD/CDD/GrowingDD), space heating 
saturation, A/C saturation, historical 
average load and precipitation, For large 
customers, peak load is based only on 
historical load. 

• Mention that “changes in relative fuel 
prices can have significant impacts on the 
future demand for electricity” (App.A-p.4). 
However, they don’t estimate or show 
elasticities. 

• Residential:CN directly forecast from 
expected household growth. UPC expected 
to decline, regressed from HDD (winter), 
CDD (summer), “trends”, and rates. Sales 
= UPC * CN. No information on functional 
forms or what “trends” are. 

• Commercial: CN estimated from 
residential CN. UPC identical to 
residential, as well as sales. 

• Irrigation: Expect increase in CN, but 
reduction in UPC, for zero growth. Only 
qualitative arguments given. 

• Industry: Develop 16 regression models, 
one for each economic activity group. They 
regress historical sales from historical 
employment for each group, and forecast 
using the employment projections. For 
larger customers the procedure is similar, 
with additional one-by-one adjustments. 

• Adjust sale forecasts by expected DSM 
levels from prior year plans. 

LADWP 2006 • Forecasts for six classes: • They use employment and personal income • LADWP purchases a 
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LSE Year Framework Variables and methods Sources for data 
residential, commercial, 
industrial, intradepartmental, 
streetlight and Owens Valley. 

• They sensitivize their forecast for 
different temperatures. They use 
different temperature percentiles 
to model alternative peak load 
forecasts. 

• Include historical losses. 

data as proxies for local GDP. 
• Res, comm, and ind sales are forecasted 

using GLS.  They regress historical sales 
against demographic, economic, weather 
and electric price variables, with additional 
dummies for specific events. 

• Net energy load is projected from sales 
regression using historical monthly 
allocations and historical losses. 

• Peak demand is based on a regression of 
historical hourly demand against 
temperature bins and apply this elasticity to 
a forty-year mean peak day temperature. 
They project peak demand using the same 
growth rate as sales. 

• Monthly allocations are based on historical 
monthly load factors applied over the sales 
forecast. “To forecast load for each hour of 
the year, we use the Loadfarm algorithm 
developed by Global Energy.” (p.B-3) 

• They do not discount DSM because they 
treat it as a resource, but acknowledge that 
some of this growth will not be realized. 

demographic and economic 
forecast of Los Angeles County 
from the Los Angeles Modeling 
Group of the UCLA Anderson 
Forecast Project.  

• The Los Angeles County 
Forecast provides time series data 
for various demographic and 
economic statistics beginning 
with year 1991 and continuing 
through the forecast horizon. 

• LADWP also reviews the State of 
California Department of Finance 
demographic forecast for 
population data.  

• LADWP purchases a 
construction forecast from 
McGraw-Hill Construction 
service. 

• Weather data is collected from 
three NOAA stations. 

• Internal information includes 
historical sales, billing cycles, 
budget, and rates. 

PacifiCorp 2004 • “The load forecast that is used in 
the IRP is updated every two 
years and is a 20-year hourly 
forecast of expected loads.” (43). 
Prepared in March 2004. They 
include historical/future DSM in 
their projections. 

• They project a single forecast for 
their four classes. 

• They also add losses, separately 
by each retail class. 

• “Near term forecasts rely on statistical time 
series and regression methodologies while 
longer term forecasts are dependent on 
end-use and econometric modeling 
techniques.” (App I p.127) 

• Near term (at most 3 years): They forecast 
UPC and CN per state and class: res, com, 
street lights, and irrigation. CN “relies on 
weighted exponential smoothing statistical 
techniques formulated on a twelve-month 
moving average of the historical number of 

• County and state-level economic 
and demographic forecasts 
provided by Global Insight, in 
addition to state office of 
planning and budgeting sources. 

• No reported sources for their 
engineering estimates on 
appliance usage or for the 
weather data. 
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LSE Year Framework Variables and methods Sources for data 
customers.” (I-127). More weight is given 
to recent observations.  

• They use a very simple “time-trend” 
analysis for short term UPC, regressing 
consumption in time. Industrial customers 
are forecasted on a case-by-case basis; they 
don’t provide the methods. 

• Long term: statistical model with several 
explanatory variables: price elasticity (elec 
and fuels), economy, conservation, 
appliance/building replacement. They also 
forecast employment, population, and 
income for Pacificorp’s states. 
“Employment serves as the major 
determinant of future trends among the 
economic and demographic variables used 
to “drive” the long-term sales forecasting 
equations” (I-129). These variables are 
obtained from Global Insights consultants. 

• They find electricity price elasticity of 0.10 
(absolute value) in internal econometric 
study.  

• Residential demand forecast models 
several structural variables (inhabitants, 
fuel price, income, structure type) and 
includes 14 energy end-uses (appliances 
and space/water heating) with their 
saturation expectation. They use a CDA or 
engineering estimates for the use per 
appliance, and multiply by estimates of 
saturation and housing stock to estimate 
consumption. They run separate analysis 
for new/old homes and single/multi/mobile 
families. 

• Commercial is similar to residential, with 7 
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LSE Year Framework Variables and methods Sources for data 
end-uses and 12 commercial activities, but 
use sqf instead of housing stock.  

• Industrial they regress “industrial 
production indexes for the specific industry 
[on] the relative prices of electricity and 
natural gas.” They break this class in 9 
industry categories. 

• Hourly forecast are created from 
regressions of historical behavior against 
weather variables, temporal variables 
(day/week/season) 

PNM 2007 • Forecast retail loads, existing 
firm wholesale customers, and 
transmission/distribution losses 
(~11%). Special stipulation (Case 
3137) requires that only 
wholesale contracts before 2002 
to be included. 

• There are high/low forecasts in 
the Appendix that are mentioned 
in the Sensitivity analysis. They 
adjust energy and peak load by 
±1.5% to create alternative 
scenarios. 

• There is almost no information about the 
methods they use, what variables they 
incorporate, and how they derive their 
estimates. 

• Key drivers in peak load forecast are CN, 
higher AC use on homes, and 
construction/house size (due to low interest 
rates). They also forecast energy and CN. 

• Residential: CN * UPC. Expect 2.3% 
growth on CN and 1.2% on UPC. 

• Commercial: CN * UPC. Expect 1.7% 
growth on CN and 2.2% on UPC. 

• Firm wholesale: City of Gallup use a 
“statistical” method and City of Navopache 
a historical projection. Other firm 
customers use specific methods. 

• No source information. 

Seattle 2006 • Forecasts do not include any 
programmatic conservation, a 
statement of their consideration 
of DSR as supply resources. 
They actually make an effort to 
remove underlying conservation 
from their load forecast. 

• Forecast for 9 customer sectors: 

• The only variable information is that “The 
load forecast is based on forecasts of 
several key economic and demographic 
variables, primarily employment and the 
number of households in the service area” 
(p.13).  

• Create correlations between historical load 
for each customer sector and “selected 

• “Dick Conway and Associates 
produces the economic and 
demographic series for SCL’s 
service area” (App p.48) 

• Besides internal sales and 
consumption data, there are no 
other external information 
requirements. 
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LSE Year Framework Variables and methods Sources for data 
residential, commercial, 
government, food, metal, stone, 
aerospace, ship building, and 
other manufacturing 

• Develop low, base, and high 
forecasts with 0.3%, 1.2%, and 
1.9% growth, respectively. 

• As other hydro-based LSEs, they 
compute joint load-hydro 
probabilities to understand the 
chances of drought with high 
demand concurrently occurring. 

economic and demographic variables” 
(App p.48). Main drivers are number of 
households and of employees for several 
customer categories. Mention that 
“equations are estimated for each sector” 
without further detail of technique/method. 

• As many others, qualitatively describe their 
service territory and trends. 

• For peak load they analyze distributions of 
historical peak load, not clear what for. 

• Do not expect increase in UPC for 
residential sector (App p.50). They do 
expect commercial load to drive growth. 
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14. Appendix C – Changes in load forecast methodologies from resource plans. 
The following table includes details on changes in demand forecast methodologies from the older to the recent resource plans (see 
Table 1). We identify the framework or general rules required for forecasting, the variables and methods used, and the sources for the 
data. 

   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

COPSC 2004 2011 • Framework has not 
significantly changed 
since earlier plan (see 
table above for details 
about framework) 

• Variables and methods have 
not significantly changed 
since earlier plan (see table 
above for details about 
variables and methods). 

• Elasticities for sales forecasts 
continue to be inferred from 
ERPI’s residential end-use 
model (REEP) and EPRI’s 
COMMEND model: -0.2 
price and income for 
residential; 0.6 GSP and -0.2 
price for 
commercial/industrial. 

• Demographic and economic 
growth estimates now come 
from IHS Global Insight, Inc. 
(earlier source was Center for 
Business and Economic 
Forecasting, Inc.) 

NW 2004 2013 • Newer plan provides 
both energy and load 
forecasts (earlier plan 
did not provide peak 
load forecasts) 

• Framework does not 
appear to have 
significantly changed 
since earlier plan (see 
table above for details 
about framework). 

• Variables and methods have 
not significantly changed 
since earlier plan (see table 
above for details about 
variables and methods). 

• Both plans note that the price 
elasticity of demand is 
assumed to be zero. 
However, the newer plan 
notes that a Smart Grid 
Demonstration Project will 
help the company monitor 

• County-level population 
forecasts are a product of 
Regional Economic Models, 
Inc. (REMI) via the Montana 
Census & Economic 
Information Center (CEIC) 
(earlier source for population 
projections came from NDA 
Data Services, Inc. via the MT 
CEIC) 

• Future economic conditions 
are not included in newer IRP 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

• Base peak load forecast 
is median probability of 
occurrence; assumed 
that low and high loads 
are determined using 
similar process as noted 
in earlier plan. 

price elasticities in the 
future. 

forecast (earlier source noted 
that economic growth, income, 
etc. came from U.S. 
Department of Commerce) 

Sierra 
Pacific 

2004 2013 • Adjusted load to 
account for impact of 
EV/PV adoption, DR, 
DSM, and system 
losses (earlier plan 
indicated “no major 
technological changes, 
such as electric 
automobiles” to affect 
end-uses of electricity; 
results were also not 
adjusted for DSM 
because these effects 
were—“of minimal 
impact upon the 
system”) 

• Began using Statistically 
Adjusted End-Use Model in 
2009 (earlier plan used in 
ARIMA model to forecast 
number of customers with 
1st/12th order autoregressive 
terms and dummy variables 
for certain years). 

• Not clear how different new 
SAE method is from old 
method, because older 
method did involve 
predicting end-use per 
customer based on weather, 
population growth, sales, etc.  

• Newer plan forecast database 
includes: “historical billed 
sales, number of customers, 
population and economic 
data, prices, weather 
conditions and historical 
end-use saturation and 
efficiency trends” 

• Implicit reference to use of 
elasticities in both plans: 

• Regional demographic and 
economic growth estimates 
now come from IHS Global 
Insight, Inc., but the State of 
Nevada’s State Demographer 
high population forecast was 
also used in some way (earlier 
source used a hybrid of an 
internal population forecast 
and the State Demographer). 

• Itron, Inc. data was used to 
determine end-use saturation 
and efficiency projections. 
Sierra Pacific also conducted 
residential appliance saturation 
surveys to supplement 
information provided by Itron, 
Inc.  
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

newer plan indicates that 
“Real household income 
impacts residential 
average usage per 
customer; older plan 
indicates that there are 
non-statistically 
significant or negative 
natural gas/electricity 
cross-price elasticities 

• Weather forecasts in both 
plans based on average 
over last 20 years 
 

PGE 2007 2013 • Added another set of 
high and low demand 
forecasts based on much 
higher (lower) growth 
scenarios—plus and 
minus two standard 
deviations (earlier plan 
had base and +/- 1 
standard deviation 
high/low growth 
scenarios) 

• In addition to high/low 
scenarios, weather-
driven load changes are 
stochastically-modeled 
per 2007 requirement 
from OPUC Order 07-

• Weather forecasts in both 
plans based on average 
over last 15 years 

• Both plans have little or 
no information about the 
regression model used to 
forecast demand. 

• Fundamental assumptions 
impacting load forecasts: 
weather (temperature); 
economic outlook; 
population forecast; 
industrial customer trends 
(earlier plan fundamental 
factors include: economy, 

• Little or no information was 
included about data sources in 
2007.  In 2013, PGE uses local 
economic/demographic data 
from Oregon Office of 
Economic Analysis, national 
data from IHS Global Insight, 
Inc. and California 
employment forecasts from the 
California Employment 
Development Department 

• Weather is the most important 
driver of load forecasts, but no 
information about where 
weather data came from. 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

002 (IRP guidelines). immigration, life 
expectancy, and business 
environment, particularly 
high tech sector) 

• Continue to expect higher 
commercial load, lower 
residential load, and 
uncertainty in industrial 
customers, but also 
indicated that there would 
no load growth in street 
lighting due to conversion 
to LED-based lamps. 

• Ran 100 iterations to 
capture the random 
variations in hourly 
weather-driven load 

• No mention of elasticities 
except that customer price 
elasticities were used in 
determining DR potential 

 
NV Power 2006 2012 • Newer plan includes 

low, base, and high case 
energy and peak 
demand forecasts 
(earlier plan only 
contained a base case 
forecast) 

• Newer plan contains 

• Newer plan explicitly 
accounts for end-use 
saturation and efficiency 
projections in the 
residential and commercial 
sales forecast models 
(earlier plan does not 
appear to incorporate end-

• Demographic growth estimates 
now come from combination 
of IHS Global Insight, Inc., 
Center for Business and 
Economic Research (CBER-
UNLV), and Las Vegas 
Convention and Visitors 
Authority. Other economic 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

reorganization/consolid
ation of the types of 
customer classes 
modeled: residential, 
small C&I; large C&I; 
public street and 
highway lighting; and 
public authority (earlier 
plan modeled 
residential; general 
service; large general 
service, which includes 
six subclasses; large 
general service-1; 
public authority; and 
street lighting). 

use or efficiency 
projections in the load 
forecast methodology) 

• Newer plan accounts for 
“residual DSM savings (not 
embedded in the sales 
models), small net metering 
(solar PV and wind), DR 
reductions, and plug-in 
electric vehicle, plus any 
other significant changes in 
expected demand not 
captured by the estimate 
forecast models” (earlier 
plan did not explicitly 
indicate that any of these 
factors were accounted for 
in the forecast). 

• Newer plan forecasts using 
statistically-adjusted end-
use models (SAE) (earlier 
plan was based on time-
series econometric 
modeling); weather-
normalization technique 
also appears to have 
changed due to switchover 
to SAE 

• Elasticities used in 
modeling are -0.15 (price), 
0.2 (income), 0.2 
(households) (earlier plan 

information—historical and 
future—comes from IHS 
Global Insight, Inc. (earlier 
source of all data was CBER-
UNLV and Regional 
Economic Models, Inc.) 

• Elasticities came from EPRI’s 
Residential End-Use Energy 
Planning System model 
(REEPS) 

• NV Power now utilizes Itron, 
Inc. by incorporating their end-
use saturation and efficiency 
projections in their load 
forecasts.  
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

used -0.10 for price 
elasticity) 

Puget 
Sound 

2005 2013 • Modeling framework 
and number of load 
forecast scenarios does 
not appear to have 
significantly changed 
since earlier plan (see 
table above for details 
about framework). 

• One change is the 
inclusion of a new 
class of customers: 
transportation (earlier 
plan customer classes 
include residential, 
commercial, 
industrial, street 
lights, and resale). 

• Continue to use very 
(most) complex 
functional forms that 
rely heavily on lagged 
operators, quadratic 
terms, and a mix of 
data transformations 
(log-log, semi-log, 
etc.). 

 

• Variables and methods have 
not significantly changed 
since earlier plan (see table 
above for details about 
variables and methods). 

• Not surprisingly, time-series 
data used to develop load 
profile and other components 
includes data up through 
2011 (earlier plan, for 
example, was based on 
temperature and load data 
through 2003 and 2004, 
respectively) 

• Puget Sound acknowledges 
that customers are adopt 
electric vehicles, but that the 
“initial adoption of EVs and 
plug-in hybrids would not 
have significant effects on 
PSE’s energy needs or 
distribution system” 

• Not clear how transportation 
class of customers is 
modeled differently from 
other customer classes 
described in the earlier plan. 

• No specific mention of 
elasticities (earlier plan had 
extensive information about 

• Use wider variety of 
national/state/local sources to 
develop demographic and 
economic growth estimates 
including: (1) Moody’s (for 
U.S. econ./demographic 
forecast); (2) Washington State 
Employment Security 
Department, Bureau of 
Economic Analysis, Bureau of 
Labor Statistics, Office of 
Financial Management (state 
of Washington); (3) Puget 
Sound Economic Forecaster; 
and (4) Washington State 
Economic and Revenue 
Forecast Council (earlier 
source for U.S. data was IHS 
Global Insights, Inc. and little 
information provided about 
other data sources) 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

elasticities assumed in load 
forecasting) 

Avista 2005 2013 • Avista prepares low 
(0.5% employment 
growth average), 
medium, and high 
(2.5% employment 
growth average) load 
forecasts (earlier plan 
assumed 0% growth for 
low and double medium 
growth for high) 

• Customer classes 
specifically include: 
residential, commercial, 
industrial, and street 
lights (earlier plan 
referred to residential 
and commercial) 

• “Avista’s load forecasting 
methodology is undergoing 
significant restructuring. The 
restructuring involves using 
an Auto Regressive 
Integrated Moving Average 
(ARIMA) technique. 
ARIMA improves the 
modeling of economic 
drivers involving population, 
industrial production, income 
levels and energy prices to 
predict long-term energy 
demand. This new 
methodology will improve 
forecasts in 2015 IRP” 
(earlier plan did not provide 
detailed information on 
method, but regression 
analysis was suggested) 

• New plan contains 
significant detail on 
equations used to project 
population, HDD/CDD, etc. 

• Avista notes that estimating 
elasticity is “problematic and 
that they “lack sufficient data 
to estimate elasticity values 
for its service area” (earlier 
plan had detailed price 

• Wider variety of sources used 
to project demographic and 
economic growth including: 
(1) IHS Global Insight, Inc.; 
(2) U.S. Federal Reserve; (3) 
Bloomberg; (4) U.S. DOE-
EIA; and (5) internal forecasts 
(earlier source listed was IHS 
Global Insight, Inc.) 

• “The load forecast uses 30-
year monthly temperature 
averages recorded at the 
Spokane International Airport 
weather station through 2012.” 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

elasticity estimates). 
• Considered use per customer 

with and without EV 
adoption (earlier plan did not 
explicitly indicate how EV 
adoption would impact load 
forecasts). 

Idaho 2006 2013 • Similar framework to 
earlier plan where load 
forecast scenarios are 
based on alternative 
probabilities of 
occurrence weather and 
economic activity will 
be different than the 
median assumptions 

• Newer plan average 
load growth rate is 
assumed to be 1.1% 
annually with peak load 
growing 1.4% under all 
three scenarios (earlier 
plan had higher growth 
rates) 

• Newer plan considers impact 
of increased adoption of EV 

• All other variables and 
methods appear to be similar 
or the same as what was 
reported in the earlier plan 

• Newer plan appears to 
contain even less information 
(when compared to older 
plan) describing forecasting 
methods, models, and 
techniques 

• Newer plan contains implicit 
reference to price elasticity, 
but no explicit information 
on what that elasticity value 
is (“Longer term, the effect 
of economic recovery is 
tempered in the forecast by 
higher retail electricity price 
assumptions that incorporate 
estimates of assumed carbon 
legislation, which decreases 
the average load forecast”) 

• EE impact is included in 

• The economic forecast is now 
based on a forecast of national 
and regional economic activity 
developed by Moody’s 
Analytics, Inc. The national, 
state, metropolitan statistical 
area (MSA) and county 
economic projections are 
tailored to Idaho Power’s 
service area using an in-house 
economic database (earlier 
source of economic data came 
from Idaho Economics based 
on national/regional economic 
activity forecasted by IHS 
Global Insight, Inc.). 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

sales forecast, but DR is 
excluded and treated as an 
resource option 

LADWP 2006 2012 • Newer plan presents 
alternative 1-in-10 peak 
load and energy 
forecasts by the date the 
forecast was made 
(earlier plan has base 
case peak demand; hot 
weather peak demand 
forecasts; and single 
energy forecast) 

• Newer plan contains a 
seventh customer class: 
plug-in electric vehicles 
(earlier plan includes 
forecasts for six 
customer classes: 
residential, commercial, 
industrial, street 
lighting, Owens Valley, 
and Intra-departmental) 

• Variables and methods 
(e.g., generalized/ordinary 
least squares regressions)—
with exception of plug-in 
electric vehicle forecasts 
from third-party—appear to 
be similar or the same as 
what was reported in the 
earlier plan 

• Similar sources for 
population/economic forecasts 
(e.g., California Department of 
Finance, McGraw-Hill 
Construction forecast, State of 
California Economic 
Development Division L.A. 
County Forecast), but 
expanded use of (1) electric 
vehicle penetration forecasts 
from California EV coalition; 
(2) Los Angeles Port Authority 
electrification forecasts; and 
(3) housing forecasts from the 
city of Los Angeles. Weather 
information continues to be 
provided by NWS/NOAA, but 
another weather data source 
was added in the new IRP (Los 
Angeles Pierce College) 

Pacificorp 2004 2015 • Newer plan includes 
three different load 
forecast sensitivities: 
low (low economic 
growth from IHS 
Global Insight and low 
industrial growth in 
Utah/Wyoming); base; 
and high (high 

• Newer plan specifically 
refers to using statistically-
adjusted end-use model for 
residential class customers—
ITRON provided a 
spreadsheet model to predict 
future changes in energy 
efficiency; industrial 
forecasts are provided 

• Company now uses both 
ITRON load forecasting 
software systems and state-by-
state population and economic 
information provided by IHS 
Global Insight, Inc. (earlier 
source listed was state-level 
information from IHS Global 
Insight, Inc.) 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

economic growth from 
IHS Global Insight and 
high industrial growth 
in Utah/Wyoming) 
(earlier plan includes 
single load forecast) 

directly by customers; 
commercial forecasts are 
made by using regression 
analysis techniques 
forecasting sales using 
historical sales, non-
manufacturing employment, 
and weather (earlier plan 
refers to process similar to 
SAE for residential, 
commercial, and other 
customers but technique is 
not explicitly called SAE; 
industrial customers are 
forecasted in close 
consultation with actual 
customers) 

• Newer plan does not directly 
mention price elasticities 
(earlier plan indicates that 
price elasticities of demand 
are 0.10)  

PNM 2007 2011 • Newer plan projects 
load under three 
scenarios: (1) low; (2) 
base/mid; and (3) high. 
Difference between 
older and newer plan is 
that newer plan uses 
low and high 
trajectories based on 
information provided by 

• Newer plan considers impact 
of increased adoption of 
EV—including conducting 
sensitivities around the 
assumed uptake 

• Both plans have little or 
no information about the 
regression models and 
techniques used to forecast 
demand (newer plan: 

• Little or no information was 
included about data sources in 
2007.  In 2011, PNM 
identified the University of 
New Mexico Bureau of 
Business and Economic 
Research as the source of 
population forecasts.  
Information about electric 
vehicle penetration was 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

the University of New 
Mexico and IRP 
Working Group (earlier 
plan simply assumed 
that low was 1.5% 
lower than mid and high 
was 1.5% higher than 
mid forecast)  

“PNM uses a statistical-
based time series 
modeling to prepare its 
load forecasts…includes 
three parts: a forecast of 
retail loads, a forecast of 
existing firm wholesale 
customers, and a forecast 
of distribution and 
transmission losses”. 

•   Newer plan contains 
implicit reference to price 
elasticity, but no explicit 
information on what that 
elasticity value is was 
included in the plan (“the 
usage equation captures 
season differences within a 
year, responses to weather, 
and changes in usage 
patterns over time that 
result from life-style 
changes, price, and other 
factors”) 

• Newer plan acknowledges 
that weather impacts load 
forecasts (earlier plan does 
not mention the word 
“weather”—or anything 
related to weather) 

collected from KEMA, EPRI, 
and NRDC studies—and New 
Mexico population estimates 
for future came from the U.S. 
Census Bureau. No known 
source for weather 
information. 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

 
Seattle 2006 2012 • Load forecast is only 

reported by mix of three 
types of customers: 
commercial, residential, 
and industrial (earlier 
plan reported loads for 
nine sectors: residential, 
commercial, 
government, food, 
metal, stone, aerospace, 
ship building, and other 
manufacturing) 

• Load is expected to 
grow about 1.4% 
annually over planning 
period without new 
programmatic 
conservation efforts; 
programmatic 
conservation efforts will 
decrease annual load 
growth to 0.8% average 
(earlier plan reported 
low of 0.3%, medium of 
1.2%, and high of 1.9%) 

• Newer plan does not 
report low, medium, or 
high scenarios—only 
with and without 
programmatic 
conservation impact 

• The newer plan contains no 
information on how load 
forecasts were produced, but 
it did indicate that system 
load is forecasted annually 
(earlier plan indicated that 
correlations were made 
between historical load for 
each customer sector and 
“selected economic and 
demographic variables”) 

• Noted that each IRP cycle 
since 2008 has led Seattle to 
increase and then decrease 
the assumed adoption of EV 
in the load forecast (2008 
IRP=67aMW; 2010 
IRP=107-170aMW; 2012 
IRP=8-36 aMW)  

• Use Monte Carlo simulation 
based on normal distribution 
of yearly data from 1981-
2011—within Aurora XMP 
platform—to evaluate range 
of possible loads (earlier plan 
noted that SCL analyzed 
distributions of peak load, 
but it was not clear how these 
were used at the time). 

 

• Seattle City Light now uses 
IHS Global Insight, Inc. for 
national 
economic/demographic 
forecast data and the Puget 
Sound Regional Forecaster for 
regional forecasts (earlier data 
source for economic and 
demographic forecasts was 
Dick Conway and Associates) 
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   Methodological changes since older IRP 
LSE Older IRP 

year 
Recent IRP 
year 

Framework Variables and analytical 
techniques 

Data sources (population, 
economic activity, weather, 
other) 

• “Extreme weather 
conditions, very high or 
low temperatures, 
significantly affect the 
expected pattern of the 
usage of the electricity 
of City Light’s 
customers when 
monthly studies are 
done, but it is not as 
significant as economic 
upturns or downturns 
when a yearly study is 
performed.” 
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15. Appendix D – Description of load sensitivity analysis in older and recent 
IRPs. 

 

Colorado Public Service Company/Xcel Energy (COPSC) 

COPSC’s older plan includes both low and high forecasts due to a regulatory requirement 
imposed on the utility. These alternative forecasts are created by using first and third quartiles, 
instead of medians, for the underlying economic and weather variables that govern load growth. 
We could not find information indicating that the low (high) forecasts were used in the selection 
of the preferred portfolio.  

However, in the more recent IRP, COPSC documented a more refined approach to include 
alternative load forecasts in the selection of the preferred portfolio. High and low sales estimates 
correspond to the 15% and 85% percentiles of an historic sales distribution. COPSC conducted 
sensitivity analyses by producing new portfolios for each high/low load forecasts, 
acknowledging that different load conditions require estimating alternative capacities—and 
combinations of technologies—necessary to meet load and policy mandates. In this example, the 
lower load forecast caused the capacity expansion model to suggest a portfolio that avoided 
building 0.7-1 GW of new NGCTs and NGCCs. Conversely, the higher forecast required an 
additional 0.9 -1 GW of the preceding technology types.  It is important to note that these load-
driven swings in capacity represent a significant portion of the total expected capacity 
(approximately 50%-75%) for this utility over the planning horizon. However, we found no 
evidence of an acquisition strategy that explicitly takes into account the potential for unplanned 
deviations in customer load. 

Northwestern Energy (NW) 

Regulations put forth by the Montana Public Service Commission require risk evaluation, 
management, and mitigation for both price and load (quantity) uncertainty (Mont. Admin. R. 
38.5.8213 (1)(f)). According to these regulations, load uncertainty comes from variation in 
several underlying variables including fuel prices, environmental regulations, and weather—
among other factors. Consequently, NW’s older plan includes both high and low load forecasts. 
The utility expects lower load if market prices are lower than default supply prices. This leads 
larger customers to switch from the default rate to a retail rate and therefore reduces the load that 
the LSE has to procure for. Higher load forecast comes from the opposite effect. NW performs a 
qualitative sensitivity analysis by discussing the management and mitigation strategies under 
different risks. NW’s qualitative sensitivity analysis is focused on short-term, operational cost 
risk rather than the potential for over or under-investment in infrastructure (capital risk). We find 
no direct connection between the alternative load forecasts and the qualitative discussion of 
management and mitigation strategies. 
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In a more recent IRP, however, NW develops and applies a stochastic risk assessment framework 
that employs statistical likelihoods (probability distributions) of future: fuel and electricity 
prices; CO2 abatement costs; temperature; and monthly/seasonal/hourly loads. The NW 
stochastic-based model repeatedly draws from each probability distribution to evaluate the 
expected value and variance of short-term, operational costs under three portfolios. However, 
there appears to be no direct connection between longer-term load variation and investment 
levels in resource capacity, as capital investment levels for each portfolio are treated as a sunk 
cost. One justification for this approach may be that NW intends to rely on market transactions to 
balance its hourly and monthly positions. A large volume of market purchases would have to 
take place under higher-than-expected load, while a lower-than-expected load outcome could 
lead to the company selling their surplus capacity into the open market (NW, 2013, fig. 6-39). 

Sierra Pacific Power (Sierra Pacific) 

Sierra Pacific produced low and high load forecasts in their older IRP as required by Nevada 
regulation (Nev. Admin. Code § 704.9475). The low load forecast assumes a weaker-than-
expected economy and exit of two large customers. Alternatively, the high forecast assumes a 
stronger economy and no loss of customers. The alternative load forecasts imply a ± 500 MW 
capacity position difference—or a ~40-50% of the 1GW of capacity planned by the final year of 
the planning horizon under the base forecast.  Sierra Pacific identified 12 candidate portfolios 
with different installation years and plant capacity values to meet their base case load need. Low 
and high load forecast sensitivities resulted in contracted and expanded portfolios, respectively. 
The capacity contracted (expanded) in these alternative portfolios is consistent with the ± 500 
MW position difference from the alternative load scenarios. 

Sierra followed a very similar approach in a more recent IRP. Low and high load forecasts are 
built by modifying economic, mining activity, and DSM/DR/Net Metering penetration 
assumptions. As was the case earlier, sensitivity results for low and high load forecast conditions 
result in contracting or expanding the capacity of each portfolio and/or delaying or advancing 
potential procurement decisions, respectively. 

Portland General Electric (PGE) 

PGE produces high and low load forecasts that correspond to the base forecast growth plus and 
minus one standard deviation from the base, respectively. PGE explicitly acknowledges that 
these alternative forecasts do not reflect modeling of underlying economic and demographic 
variables, but simply intend to produce “demand boundaries, or jaws, that are sufficiently large 
to incorporate a mid-term departure from the reference forecast caused by business cycle and/or 
macroeconomic fluctuations.” (PGE, 2007, p. 41). Load growth sensitivity analysis is required as 
part of Oregon IRP regulations (Guideline 4b of Order No. 07-002) and includes high/low 
growth scenarios and stochastic load risk analysis. Weather is the only stochastically-determined 
variable affecting load in the PGE planning documentation. 
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PGE creates twelve portfolios designed to meet peak demand five years ahead of the IRP base 
year (in this case, 2012). PGE uses this approach to minimize the negative effect of long-term 
uncertainty in the selection of the preferred portfolio. In all portfolios, a third of the capacity 
required is met through short- and medium-term market purchases. The deterministic impact of 
alternative load growth forecasts in PGE’s portfolios is then reflected in reduced or increased 
market purchases. This methodology assumes that market purchases are always on the margin 
and, as with other cases, ties the load growth forecast error to the electricity market price forecast 
error. PGE’s more recent IRP follows the same load growth sensitivity approach used in the 
2007 IRP. 

Puget Sound Energy (PSE)  

In the 2005 IRP, Puget Sound Energy adopted a scenario-based approach for the uncertainty 
analysis. PSE created internally consistent low and high economic performance scenarios with 
corresponding impacts to load growth and natural gas prices. For example, the average annual 
load growth in the base case was 1.8% with low and high scenarios of 1.2% and 2.3%, 
respectively. PSE analyzed four supply-side portfolios as part of their resource planning process. 
These four supply-side portfolios are quite similar and include coal, CCCT, and renewable 
energy options. 

Puget Sound load growth sensitivity results show changes in the quantity of planned resources, 
but not significant changes in the type of supply-side resource or timing. It should be note that, 
while capacity differences are on the order of 5% of overall capacity, the corresponding 
monetary value of these portfolios under the base case, low, and high load forecasts differs by 
15%-20%. 

In a more recent IRP, Puget Sound follows the same methodology to define load forecast 
scenarios. In this case, however, PSE considers a broader set of variables that define a given 
scenario, including emission regulations for four pollutants, alternative fuel prices, various 
regional transmission constraints as well as both local and regional demand scenarios. We find 
that the difference between the low and high load forecasts scenarios is significant and ranges 
from 30%-50%. Interestingly, PSE implemented a stochastic modeling approach to develop 
candidate portfolios finding that these portfolios generally do not differ much across the load 
forecast scenarios.  

Avista 

Avista uses a dual-risk assessment approach that involves stochastic and scenario-based 
simulations, which are referred to as “futures” and “scenarios” in their IRP language. Avista 
prepared high and low forecast scenarios with the guidance of a Technical Advisory Committee. 
They use population growth in their service area as the sole driver for higher and lower load 
growth. They emphasize that these scenarios do not represent boundary conditions for load 
growth. In addition, they employ a distribution of hourly loads by month and week in each one 
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of 15 load zones in order to run a Monte Carlo analysis for Western Interconnect electricity 
prices. These distributions of load are mainly intended to represent short-term variation in load 
due to weather variation. Avista also develops and applies a stochastic analysis for natural gas 
prices, hydropower generation, and wind generation. 

As is the case for other LSEs, Avista’s stochastic analysis results do not isolate the specific effect 
of load growth uncertainty, because the simulation compounds all four sources of risk mentioned 
above. In addition, the load growth scenario analysis is limited to a qualitative assessment. 
Avista concludes that the frequency of the IRP process is short enough that load forecasts can be 
adjusted accordingly. Avista believes that “a shift in load growth will not substantially change 
the mix of resource types, but potentially could change the quantity.” (Avista, 2005, p. 6.30) 

In a more recent IRP, Avista develops its high/low forecast scenarios based on relating changes 
in load growth to changes in both customer number as well as electricity use per customer 
(UPC). Avista uses regional employment growth forecasts as drivers of the number of customers, 
while keeping UPC growth rates constant.  In contrast to the earlier IRP, Avista conducted a 
quantitative-based scenario analysis. This technique involves identifying specific portfolios that 
meet low and high load conditions, adjusting for energy efficiency potential, and verifying that 
the risk profile of these new portfolios is similar to their original preferred portfolio. Through 
this analysis, Avista shows that timing of investments and the resource types are generally stable, 
but the planned capacities may increase (decrease) depending on load growth. 

Idaho 

The 2006 Idaho Power IRP introduces three long-term load forecasts (10th, 50th, and 90th 
percentiles) and two additional short-term weather sensitivities (70th and 90th percentiles) based 
on the median value of the long-term forecast. Idaho Power then compares the performance of 
the preferred portfolio under two possible alternative load growth scenarios. They find that the 
preferred portfolio capacity would differ by ±400 MW (peak demand) under alternative 
scenarios, or roughly 25% of the total expansion over the 20-year analysis timeframe. Their 
planning strategy involves “utilizing a diverse mix of smaller, short lead-time resources… 
…[incorporating] the flexibility to adjust resource timing in the shorter term by either 
accelerating or deferring actual in-service dates to more closely match actual load growth.” 
(Idaho, 2006, p. 85). They plan to adjust the timing and size of resource RFP for the preferred 
portfolio as a hedging strategy. 

Idaho has continued to maintain its methodology to create short and long-term load growth 
scenarios, but has made recent innovations in their evaluation of the impact of these scenarios.  
For example, the 2013 IRP employs a stochastic approach (similar to Avista) and assesses the 
risk profile of their preferred portfolio against load growth and other variables with uncertainty. 
In addition, Idaho Power evaluates capacity margins given higher-than-expected load together 
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with lower-than-expected hydropower concluding that hydropower offers enough hedging 
against a wide range of peak demand forecasts. 

LADWP 

LADWP’s older and newer IRPs employed the same methodology to develop alternative load 
forecasts.  LADWP estimated two alternative peak demand forecasts: a one-in-ten chance of 
higher temperature (and higher demand) and a one-in-forty chance of lower temperature (and 
lower demand). These alternative forecasts are based on short-term weather stochasticity. 
LADWP does not consider long-term variability in load growth. LADWP indicated that weather 
variability does not affect annual energy consumption. For this reason, they did not develop an 
alternative energy sales forecast. LADWP indicated that a load sensitivity simulation was 
performed, but little or no information was provided on the method used or the results from this 
sensitivity analysis. 

Seattle City Light 

Seattle City Light’s older IRP developed and applied alternative forecasts for energy sales, but 
not peak demand. These forecasts are based on four future scenarios that include fuel price, 
market structure, and environmental trends. Seattle City Light employs a stochastic analysis (i.e., 
Monte Carlo simulation) to repeatedly draw from probability distributions for each relevant 
variable and then input these values into a production cost model to quantify the range of costs 
for several different portfolios.  It is not possible for external reviewers to assess the stand-alone 
impact of changes in load growth, but this method does consider costs under various load 
scenarios. 

In a more recent IRP, Seattle City Light does not estimate high and low forecasts. Instead, they 
create a probability distribution from a sample of ~30 years of actual peak demand and 
repeatedly draw from this distribution to produce alternative load values for the production cost 
model described earlier. 

PNM 

In the earlier plan, PNM produced alternative load forecasts by increasing and decreasing their 
base forecast growth by ±1.5%. PNM found that there were only minor impacts to their preferred 
portfolio under these alternative forecast conditions. In addition, PNM conducted a probabilistic 
analysis to test the performance of their preferred portfolio by assuming a range of alternative 
values for three important inputs that are statistically correlated with one other (fuel prices, 
electricity prices and load growth). PNM reported that the preferred portfolio continued to be 
least-cost, low-risk but did not release additional information about how the details of the 
portfolio (e.g., timing of resource acquisition) might change under these different conditions. 
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In a more recent IRP, PNM uses a bottom-up approach to develop alternate load growth forecasts 
underpinned by economic growth, building code changes, and own and cross price elasticities. 
PNM then performed a detailed load sensitivity analysis that identifies the timing and capacity 
changes of portfolios for alternative low and high forecasts. However, PNM did not develop or 
implement a resource acquisition strategy to specifically address these changes. 

Pacificorp 

In their earlier IRP, Pacificorp did not produce alternate high and low load growth forecasts. 
Instead, Pacificorp employed a risk assessment methodology that estimated the impact of 
varying loads both in the short-term (due to weather) and long-term (due to economic conditions 
and technological change). Pacificorp used historical sales data to determine a distribution of 
probable future energy sales growth. For this reason, it is impossible to isolate the effect of load 
on the choice of portfolio. Pacificorp did not reformulate the timing or capacities in each of its 
portfolios, but determines a risk and cost profile for each fixed portfolio. This finding suggests 
that there was no specific strategy developed by Pacificorp to respond to the potential for higher 
or lower levels of load growth than expected. 

In a more recent IRP, Pacificorp did develop and apply three load growth forecast scenarios for 
coincident system peak demand and energy sales. In this plan, Pacificorp identified alternative 
portfolios whose timing and size reflect the two alternate load scenarios and also assesses the 
monetary impact of several variables—including alternative load growth. Pacificorp indicated 
that load growth is the most important variable affecting the future revenue requirement. 
Pacificorp developed strategies to address these potential outcomes through a process called the 
“resource acquisition path”. 

NV Power 

NV Power does not report information describing any type of load growth sensitivity analysis in 
either the 2006 or 2012 IRPs. 
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16. Appendix E – Nameplate capacity expansion and load growth comparison 
 

We compile incremental capacity expansion planning data from the older IRPs for the LSEs in 
our sample. Information about capacity expansion is usually reflected in the loads and resources 
tables corresponding to a utility IRP “preferred portfolio.” The source for this and other 
information on long-term planning assumptions is the LBNL Resource Planning Portal (RPP22), 
an online system documenting nearly one hundred IRPs and supplemental surveys dating back to 
2003. 

We estimate total procured capacity additions by type of resource for each LSE starting from the 
same first year as indicated in the corresponding resource plan (see Table 1) through 2014—the 
last year for which procurement data are available. We include both owned capacity and 
contracts, which are the main supply side resources LSEs consider when developing their plans. 
We were able to attribute actual power purchase agreements (PPAs) by identifying the buyer—
each one of the 12 utilities considered in this analysis—in a database of PPAs signed over the 
past 15 years (ABB-Ventyx, 2016). 

In aggregate, the LSEs planned for ~ 20 GW of new nameplate capacity by 2015 in the IRPs 
reviewed in this study; roughly the same new capacity was actually realized (Figure 10). We find 
that actual self-builds new capacity levels were very consistent with planned self-builds capacity 
levels, with both reaching ~12 GW at the end of the analysis period. Realized PPAs were slightly 
higher than planned and grew faster than self-builds following the 2008/2009 crisis.  

We compare the actual capacity growth rate to the actual peak demand growth rate and find that 
the actual capacity expansion of ~20 GW was almost five times higher than peak demand growth 
of ~4.5 GW during the same period (Figure 10, blue line). If we narrow the analysis period to 
2007-2014, we find that the peak demand increased by less than 1 GW, but that there was nearly 
8 GW of self-built capacity and about 7 GW of power purchase agreements signed over that 
period. As a benchmark, the planned incremental expansion of ~ 20 GW is only twice as high 
compared to the incremental forecast peak demand for the same period23 of ~10 GW. The actual 
procurement to peak demand ratio was 15:1, whereas the planned resources to peak demand ratio 
was 2:1. 

                                                 
22 See http://resourceplanning.lbl.gov 
23 In order to make a comparison over the entire time horizon, it was necessary to estimate some of the 2004-2007 
values for certain plans depending on assumptions from the first year of analysis. We extrapolated using a linear 
regression to recreate those values – essentially using the same expected growth rates –  to add the missing value for 
2004-2007 for the LSEs whose plan year is 2005 or after (see Table 1 for the list of years for the older plans) 
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Figure 10 Planned and actual nameplate capacity with forecasted and observed peak 
demand. 
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