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Truncation effects in a semi-infinite periodic

array of thin strips: A discrete Wiener-Hopf

formulation

F. Capolino1 and M. Albani2

Received 28 December 2007; revised 18 April 2008; accepted 29 January 2009; published 10 April 2009.

[1] A rigorous solution for the current induced on a semi-infinite array of narrow metallic
strips is obtained using the Wiener-Hopf factorization method in the Z-transformed
domain. The method can be applied to arrays with fixed current shape on each element
(e.g, single mode elements), and shows rigorously the physics of waves associated to
truncated periodic structures. The solution is obtained via a rigorous factorization, that is
improved by using a closed form result based on an approximated factorization. The
current on the truncated array is rigorously represented as the sum of the current pertaining
to the infinite array plus a contribution induced by the truncation of the array. Asymptotics
shows that the truncation-induced current contribution has a diffractive behavior decaying
algebraically with the element number, away from the truncation. Uniform asymptotics
shows that this diffractive current is effectively represented in terms of Fresnel functions,
permitting also a closed form representation in proximity of and at transverse inward
resonance, i.e., when a grazing grating lobe points toward the array. Illustrative examples
and comparisons with a method of moment solution show the accuracy of our results.

Citation: Capolino, F., and M. Albani (2009), Truncation effects in a semi-infinite periodic array of thin strips: A discrete

Wiener-Hopf formulation, Radio Sci., 44, RS2S91, doi:10.1029/2007RS003821.

1. Introduction

[2] Wave characterization and modeling for arrays
with a large number of elements have been subject of
various studies in the recent years. Assuming the struc-
ture as infinite when using a full-wave model, though
simple and efficient it may not be satisfactory when
array-truncation effects are relevant. Owing to the local-
ization of the truncation-induced diffracted waves for
large arrays, many physical insights of the wave pro-
cesses can be extracted from a canonical problem such as
a semi-infinite array of impressed electric line sources or
dipoles [Kildal, 1984; Carin and Felsen, 1993; Felsen
and Carin, 1994; Capolino et al., 1998, 2000a, 2000b].
In the present paper, we deal with the exact analysis of a
semi-infinite array of narrow perfectly conducting strips
illuminated by a plane wave. The same structure was

analyzed by Carin and Felsen [1993] with a hybrid (ray)
(Floquet) (MoM) efficient formulation; however, trunca-
tion field effects were accounted for by using a Kirchhoff
approximation; i.e., the current on the strips were as-
sumed as those of the array assumed as infinite. Succes-
sively, truncation effects were numerically refined by
Neto et al. [2000a, 2000b], Çivi et al. [2000], and Craeye
et al. [2004] using a MoM with basis functions shaped as
truncation-induced diffracted fields.
[3] Here, the problem of a semi-infinite array of

narrow perfectly conducting strips is solved rigorously
by using a discrete Wiener-Hopf technique which has the
advantage of being both exact and analytically explicit.
This electromagnetic problem reduces to the scalar case
where the Dirichlet boundary condition is imposed on
the strips. The Wiener-Hopf method is a well established
technique. Electromagnetic or acoustic problems usually
involve branch point singularities, and the general for-
malism is given by Noble [1958], Kobayashi [1990], and
Jones [1964] where the method was applied in the
classical spectral wave number along a cartesian axis.
In other fields, like digital signal processing or control
theory, the Wiener-Hopf method is combined with the Z
transform of successions of samples but they do not deal
with branch point singularities because the spectral
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kernels to be factorized are usually rational. There are a
few papers where the Wiener-Hopf method was applied
in the Z-transformed domain to solve diffraction prob-
lems with a discrete set of scatterers, thus involving
branch points singularities [Fel’d, 1958; Hills and Karp,
1965; Koughnett, 1970; Wasylkiwskyj, 1973; Linton and
Martin, 2004].
[4] In the work of Fel’d [1958] the problem was

formulated for a semi-infinite array of cylinders (as in
the work of Hills and Karp [1965]) by using the Z
transform and the factorization method [Fel’d, 1958,
equation (17)], but, as the authors themselves admit,
their formulation leads to complicated integrals and the
problem is instead solved by a variational principle.
[5] The discrete Wiener-Hopf technique was applied in

the remarkable paper by Hills and Karp [1965] to treat a
semi-infinite grating of small cylinders under the
hypothesis of electrically large interelement spacing
(d � l, with d the array period and l the free space
wavelength).
[6] In the work of Koughnett [1970] a beautiful

analysis in terms of Z-transformed quantities was given
for an array of dipole antennas, and a formal solution
was provided as the sum of factorized terms that,
however, were not explicitly evaluated. Only the case
with mutual couplings set to zero after a certain distance
was numerically solved. In this way the difficulty arising
from treating branch point singularities was avoided. In
general, truncation effects vanish after a certain number
of array elements but there are important cases where
truncation effects may extend over a large portion of the
array; e.g., when the period is much smaller than the
wavelength or when near ‘‘resonance’’ conditions occur.
[7] In the work of Wasylkiwskyj [1973] the Z domain

Wiener-Hopf method was extensively explained but the
factorization was not performed in the way shown in
this paper, though various formulas and simplifications
were there provided. Furthermore, the aim of that paper
was about showing truncation effects in input parame-
ters for arrays of minimum-scattering dipole antennas
[Wasylkiwskyj and Kahn, 1970], and not about diffrac-
tive effects arising form the array truncation. No high-
frequency concepts were discussed by Wasylkiwskyj
[1973].
[8] In the work of Nishimoto and Ikuno [1999] a strip

grating as in this paper was analyzed, in contrast to
gratings of small cylinders as in the works of Fel’d
[1958] and Hills and Karp [1965]. There, the problem
was not solved with the Wiener-Hopf method but some
interesting properties of the diffracted current were
shown.
[9] In the work of Linton and Martin [2004] the Z

domain Wiener-Hopf method was shown to solve semi-
infinite arrays made of strips and of cylindrical scatterers,
with Dirichlet boundary condition (soft case). There,

diffraction effects were extensively discussed, but the
analysis is different than that in our paper though there
are similarities.
[10] In summary in the works of Fel’d [1958],

Koughnett [1970], and Wasylkiwskyj [1973], no diffrac-
tion effects and high-frequency concepts are emphasized
as in the works of Hills and Karp [1965], Nishimoto and
Ikuno [1999], Linton and Martin [2004], as well as in the
present paper.
[11] In our formulation many new aspects are intro-

duced compared to Hills and Karp [1965] and the other
cited papers: (1) Arbitrary basis functions can be chosen
to shape the current on the strip elements also permitting
to treat both TE and TM polarizations, with respect to the
direction of the strips, though in this paper we limit our
analysis to the TM case; (2) The discrete Wiener-Hopf is
implemented using a Z transform of the sampled distri-
bution of currents. Here, the topology (critical points) of
the z spectral plane is shown explicitly and discussed in
details for a general semi-infinite structure. A complete
correspondence between the discrete z spectral represen-
tation and the standard continuous plane wave kx spectral
wave number representation (the semi-infinite array is
periodic along x) is established; (3) Solutions for any
interelement spacing d as well as for the two limit cases
of large (d � l) and small (d � l) d, compared to the
wavelength l, are automatically obtained from our
formulation; (4) We provide an approximate factorization
that is useful to approximate the currents on the strips
and to numerically perform the exact factorization;
(5) Asymptotics is performed via path deformation and
SDP (steepest descent path) evaluation directly in the z
plane (showing the correspondence to the kx plane);
(6) Asymptotic results are performed in a totally uniform
fashion for the current on the strips. The diffracted
current is found asymptotically as a sum of Floquet
waves (solution for the infinite array) plus a diffracted
current arising from the truncation of the array; (7) The
general spreading factor n�3/2 of the diffracted terms
versus strip number n is obtained and discussed also
showing its range of validity.
[12] Our solution is simple to use and offers a net

physical insight into the behavior of the current in
truncated periodic structures. We emphasize that our
closed form solution can be directly applied to finite
array of strips as long as the current diffracted at one
edge of the array does not significantly couple with the
other edge of the array.

2. Statement of the Problem

[13] The geometry of the semi-infinite array of con-
ducting strips is shown in Figure 1, with definition of
both cartesian and cylindrical coordinate systems cen-
tered at the array truncation. The period of the array is d
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and the strips have width w. For space limitation we
analyze only the TM, with respect to z, case. The same
treatment can be straightforwardly applied to the TE
case. Also, the same method can be applied to semi-
infinite arrays on media stratified along y and homoge-
neous along the x and z directions, so that the Green’s
function depends only on x � x0 and not separately on x
and x0.
[14] The TMz plane wave travels with phase speed c and

arrives from a direction f0, as in Figure 1. The incident
electric field on the array Einc(x0) = exp(�jkx0x

0) is polar-
ized along the z direction, has phasing kx0 = �k cos f0

along the x direction, and k = w/c is the free space wave
number.
[15] The total current, along z, on each z-directed strip

is represented using a single shape basis function that on
the n = 0 strip is denoted by h(x0). Therefore, the current
on a generic nth strip is represented as

Jn xð Þ ¼ inh x� ndð Þ; ð1Þ

where in is its weight and h(x) differs from zero for 0 <
x < w. The weights in, n = 0, 1, 2,. . . represent the currents
on the strips and are determined in the rest of this paper by
solving the electric field integral equation with the
Wiener-Hopf method.

3. Formulation

[16] The unknown current weights in are determined
by imposing the vanishing of the total z-directed electric
field component tangent to the conducting strips: Esca(x) +
Einc(x) = 0 on the strips, i.e., for x such that nd < x < nd +w,
with n = 0, 1, 2,. . .The termEsca is the field scattered by all
the currents Jn(x). This condition is weighted on a generic
mth strip by the test function e(x � md). Thus the integral
equation is equivalently expressed by the convolution

X1
n¼0

km�nin ¼ vm: ð2Þ

Here, the impedance km�n represents the mutual coupling
reaction integral between the current basis function h(x �
nd) on the nth strip and the the electric field test function
e(x � md) on the mth strip, whereas vm is the voltage
induced by the incident electric field on the mth strip.
The impedance km � n is of Toeplitz type and given by

km�n ¼
Z w

0

dx

Z w

0

dx0h x0ð Þg x0 þ nd; xþ mdð Þe* xð Þ

ð3Þ

where g(x, x0) = g(x � x0) = (kz/4) H0
(2)(kjx � x0j) is the

free space Green’s function, H0
(2) is the 0th order Hankel

function of second kind, and * denotes complex
conjugate, though often e(x) is chosen to be real. The
voltage vm is given by

vm ¼
Z
strip�m

Einc xð Þ e* x� mdð Þdx ¼ Ve�jkx0md; ð4Þ

with V =
R
0
w e�jkx0x e*(x)dx. The weight in of the current

basis function on each nth strip is found by solving (2).
Owing to the discrete nature of the problem, we solve it
in a Z-transformed domain. The convolution in (2) is
expressed as the inverse Z transform (see Appendix A for
definitions) of a product of Z-transformed quantities as

1

2pj

Z
C

K zð ÞI zð Þzm�1dz ¼ Ve�jmkx0d ð5Þ

where K(z) and I(z) are the Z transforms of the coupling
impedance and current. Note that in = 0 for n < 0, and thus
the Z transform I(z) does not have singularities outside the
unit circle in the complex z plane. In the following, I(z) is
found by using a factorization procedure, and the weight in
of the current on the nth array element is found by the
inverse Z transform. We can assume that the medium
surrounding the grating has small vanishing losses, i.e.,
the wave number k has an arbitrary small negative
imaginary part that is eventually removed.
[17] The Z transform K(z) of the impedance km�n,

defined in Appendix A, is found by using a kx spectral
(Fourier transform with respect to x) representation for
the reaction integral (3) between basis and weight
functions. This is achieved in the following steps. First,
the impedance in (3) is rearranged by using the spectral
plane wave representation of the free space Green’s
function

g x� x0ð Þ ¼ kz
4p

Z 1

�1
dkx

e�jkx x�x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p ; ð6Þ

Figure 1. Semi-infinite array of conducting strips
illuminated by a TMz plane wave from a direction �0.
d is the array periodicity; w is the width of each strip.
The plane wave illumination induce an array phasing
exp(�jkx0x) with kx0 = �k cos �0.
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with =m{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p
} � 0 on the top Riemann sheet of

the kx complex plane. Equation (6) is inserted into (3),
leading to

km�n ¼
kz
4p

Z 1

�1
dkx

H kxð ÞE* k*x

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p e�jkxd m�nð Þ ð7Þ

with

H kxð Þ ¼
Z w

0

dx h xð Þ ejkxx
ð8Þ

E kxð Þ ¼
Z w

0

dx e xð Þ ejkxx

denoting the Fourier transforms of basis and test
functions. The Z transform K(z) of the mutual impedance
is thus found as

K zð Þ ¼ kz
4p

X1
n¼�1

z�n

Z 1

�1
dkx

H kxð ÞE* k*x

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p e�jkxnd:

ð9Þ

The conformal mapping

z ¼ e�jk 0xd; k 0x ¼
j

d
ln z ð10Þ

is used to establish a correspondence between the z and k0x
planes. The top (bottom) complex half k0x plane is projected
onto the region outside (inside) the unit circle of the
complex z plane (see Figures 2 and 3). Once interchanged
the order of integration and summation in (9), the Poisson

fo rmu l a
P1

n¼�1
e�j kx�k0xð Þnd ¼ 2p

d

P1
p¼�1

d kx � k 0x �
2pp
d

	 

allows a closed form evaluation of the kx integral,
eventually yielding

K zð Þ ¼ kz
2d

X1
p¼�1

H k 0x þ
2pp
d

	 

E* k

0*
x þ 2pp

d

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k 0x þ

2pp
d

	 
2q
�������
k 0x¼

j

d
ln z

ð11Þ

The conformal mapping introduced in (10) introduces a
branch point at z = 0 and a branch cut from z = 0 to
�1 (see Figure 3). So the strip �p/d < <e k0x < p/d
in the k0x plane (see Figure 2) is mapped onto the top
Riemann sheet of the complex z plane, and all the
other strips bounded by dashed lines in Figure 2 are
mapped onto top and bottom Riemann sheets of the z
plane defined by (10). However, it is of crucial
importance to note that the impedance expression (11)
is periodic in k0x with period 2p/d. Therefore when it
is transformed in the z domain via the mapping (10),
all the Riemann sheets are equal and the branch cuts
(between the infinite number of Riemann Sheets) from
z = 0 to �1 are fictitious, i.e., there is no
discontinuity on the z top Riemann sheet when
crossing the branch cut. In the z plane K(z) has two
other branches that correspond to the branches in the
strip �p/d < <e k0x < p/d in the complex k0x plane.
Using the mapping (10), the two branch points k and

Figure 2. Complex kx plane. Branches in the top half
plane are located at kx = �k + 2pp/d, whereas branches in
the bottom half plane are in kx = k + 2pp/d. The function
K(kx) is periodic with period 2p/d.

Figure 3. Complex Z plane. Unit circle; pole at zg =
exp(�jkx0d); branch points at zb = e�jkd and 1/zb. The cut
from z = 0 to �1 on the real axis, introduced by the
mapping (10), is not present because of the periodicity of
the function K[exp(�jk0xd)].
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�k in the kx plane (see Figure 2) correspond to zb and
1/zb in the z plane (see Figure 3), with

zb ¼ e�jkd: ð12Þ

[18] Owing to the assumed vanishing small losses, the
branch points zb and 1/zb are located slightly inside and
outside the unit circle, respectively. The branch cuts
connecting k to �j1 and �k to j1 in the kx plane
(Figure 2) are mapped onto the branch cuts connecting zb
to 0 and 1/zb to 1 in the z plane (Figure 3). The
particular shape of the branch cuts is induced by that
in the kx plane given by =mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p
g ¼ 0. Since the

basis and test functions e(x) and h(x) are defined onto
limited domains [0, w], their transforms E(k0x) and H(k0x)
do not have singularities.

4. Wiener-Hopf Method

[19] The current in on a generic nth strip is found by
solving (2). This is done by solving (5) by I(z) and then
calculating the currents in through the inverse Z trans-
form defined in (40). Before proceeding further we note
that I(z) is analytic outside and on the unit circle (jzj �
1), to remark this property I will be also denoted by I+(z).
Since (5) has to be verified for every m > 0, i.e., on every
strip, the integrand in (5) must have the form

K zð ÞIþ zð Þ ¼ V
O� zð Þ
O� zg
	 
 z

z� zg
ð13Þ

in which

zg ¼ e�jkx0d ð14Þ

and O�(z) is an unknown function analytic inside and on
the unit circle (jzj � 1). The pole at z = zg is located
slightly inside the unit circle due to the small losses
introduced (kx0 = �k cos f0, with =mk < 0), see Figure 3.
There are a number of excellent publications given in the
Introduction dealing with the solution of an integral
equation via the Wiener-Hopf factorization method. Here
we follow the formalism in the work of Born and Wolf
[1965] where the solution method is summarized in
simple terms. The method requires a factorization

K zð Þ ¼ Kþ zð ÞK� zð Þ; ð15Þ

where K+(z) is free of zeros and singularities outside and
on the unit circle, and K�(z) is free of zeros and
singularities inside and on the unit circle. Such
factorization is explicitly derived in Appendix B and in
the next section. The only requirement we impose on
such factorization is that K+(1) is finite and thus by
definition K+(1) = k+0. After insertion of such factoriza-
tion (15) into (13), the latter is rewritten as

z� zg

z
Kþ zð Þ Iþ zð Þ ¼ O� zð Þ

O� zg
	 
 V

K� zð Þ : ð16Þ

The right hand side is now free of singularities inside and
on the unite circle, and the left hand side is free of
singularities outside and on the unit circle. Therefore,
(16) is analytic in the whole complex z plane, thus it is a
polynomial whose order is evaluated analyzing the
behavior of the left hand side of (16) at z = 1. Invoking
the initial value theorem (see Appendix A) it can be seen
that I+(1) = i0, whereas, by definition, K+(1) = k0

+.
Therefore the left hand side of (16) is limited at z = 1,
and the polynomial is of zero order, i.e., it is simply a
constant (for this reason a z was explicitly introduced at
the numerator in the right hand side of (13)). The value
of such a constant is determined evaluating the right
hand side at z = zg which leads to the solution I(z) as

I zð Þ ¼ Iþ zð Þ ¼ V

Kþ zð ÞK� zg
	 
 z

z� zg
: ð17Þ

[20] The currents in are obtained by using the inverse Z
transform (40) of the result (17),

in ¼
V

2pj
1

K� zg
	 
 Z

C

1

Kþ zð Þ
zn

z� zg
dz: ð18Þ

Figure 4. Contours of integration in the complex Z
plane. C � unit circle; Cg contour around the pole at zg;
Cb contour around the branch cut connecting zb to the
origin. We have changed the branch cut definition with
respect to Figure 3.
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[21] It may be convenient to use the equivalence 1/
K�(zg) = K+(zg)/K(zg) in (18) and to keep inside the
integral the ratio of factorized functions K+(zg)/K

+(z)
which is independent of constant error factors introduced
by using approximate factorizations (both K+(z) and
K+(zg) would be affected by the same constant factor,
and their ratio would be independent of it). Though for
brevity we do not explicit it in the equations, this is
indeed what we have used in the numerical evaluations
of in.
[22] Note that for zg � 1/zb, that occurs when kx,p = �k

for some p, the solution vanishes as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zbzg

p
� 0. This

is denoted as the outward resonance case that corre-
sponds to the pth Floquet harmonic propagating at
grazing angle f = 180�, as discussed in section 8.3.
The integral is evaluated deforming the integration path
around the singularities inside the unit circle. These
consist of a pole at z = zg, and a branch at z = zb, as
shown in Figure 3. In Figure 4 the branch cuts definition
has been changed for convenience. We stress here that
any particular definition does not affect the final result.
In the path deformation from C to Cb shown in Figure 4,
the residue of the intercepted pole must be accounted for,
leading to the current representation

in ¼ i1n þ idn; n � 0; ð19Þ

where, recalling (14),

i1n ¼ V
zng

K zg
	 
 ¼ V

e�jkx0nd

K zg
	 
 ; ð20Þ

arises from the residue and the remaining contribution

idn ¼
V

2pj
1

K� zg
	 
 Z

Cb

1

Kþ zð Þ
zn

z� zg
dz ð21Þ

arises from the integration path Cb. (An analogous
treatment could be carried out in the kx domain, Figure 5.)
The current representation (19) has a clear physical
interpretation. The current contribution in

1 represents the
current that would exist on the infinite periodic array,
while in

d is a correction contribution accounting for array-
truncation effects. Indeed, as it will be clear in the
following, in

d decreases away from the array truncation,
and can be neglected sufficiently far from the truncation.
It will be clear from its asymptotic evaluation that in

d

behaves similarly to the field diffracted at the edge of a
conducting semi-infinite half plane, and can therefore be
interpreted as current diffracted at the truncation of the
array.
[23] The diffracted current integral in (21) around the

branch cut (see Figure 4) can be evaluated by direct
integration on the z plane, or by using the change of
variable ffiffi

j
p

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd � j ln z

p
; z ¼ zbe

�s2 ; ð22Þ

with differential dz = �2zb s e
�s2 ds. When z ranges from

0 to zb and then again to 0 on the other side of the branch
cut, as in Figure 4, the s variable ranges from �1 to 0
and then from 0 to 1; thus (21) becomes

idn ¼
V

pj
znþ1
b

K� zg
	 
 Z 1

�1

1

Kþ zbe�s2ð Þ
s e� nþ1ð Þs2

zbe�s2 � zg
ds: ð23Þ

This integral representation is particularly suitable for
numerical integration because it is on the steepest
descent path and therefore it decays rapidly as exp(�s2)
away from the saddle point value at s = 0. The integrand
also possesses poles at s = ±sp, with sp

2 � j(k � kxp), that
may occur close to or at the saddle point s = 0; i.e., when zg
occurs close to or at zb. This happens when a Floquet wave
number kxp along x matches the ambient wave number
(kxp = k), i.e., when one FW propagates grazing toward
the positive x axis. In the work of Hills and Karp [1965]
this condition was called inward resonance and certain
aspects are treated by Hills [1965]. The outward
resonance condition [Hills and Karp, 1965] occurs when
a Floquet with wave number kxp travels along �x and
matches �k; i.e., when kxp = �k for some p. Note that
only the inward resonance condition implies that the pole
is close to the saddle point and thus a different behavior
(sometimes denoted as ‘‘transitional’’) of the diffracted
current. The outward resonance condition only implies
that the diffracted current in

d, as well as the infinite array
term in

1, grows in amplitude, because of the term 1/
K�(zg) in front of the integral in (21) or (31). To avoid
numerical difficulties associated to the presence of a
singularity near the integration path in (23), one can sum
and subtract the regularizing function Q(s) as for the Van
der Waerden procedure discussed in section 6.2. The

Figure 5. Mapping of the contour of integration Cb in
Figure 4 onto the complex kx plane.
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regularized part is evaluated numerically with a few
sampling points, while the remaining one is evaluated
analytically providing the second term in brackets in
(34).

5. Factorization of the Impedance K(z)

[24] In the previous section the impedance function
K(z) is factorized in (15) as the product of two functions,
one regular outside and on the unit circle, K+(z), and the
other regular inside and on the unit circle, K�(z). The
factorization procedure plays a crucial role, especially
when one desires an efficient numerical evaluation. In
Appendix B we show a general method to factorize K(z).
When using the same basis and test functions e(x) = h(x),
one has that K(z) = K(1/z) as for the rest of this paper.
The factorization is rendered unique by imposing that
K�(z) = K+(1/z) and thus K�(0) = K+(1) = k0

+. Here, we
focus on an effective approximate closed form factoriza-
tion, and how this is useful to simplify the numerical
calculation of an exact factorization.
[25] For many engineering applications it may be

convenient to approximate K(z) by the simple expression

K zð Þ � Kapr zð Þ ¼ Kþ
apr zð ÞK�

apr zð Þ ð24Þ

with

Kþ
apr zð Þ ¼ A

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zb=z

p þ C

 !
; ð25Þ

K�
apr zð Þ ¼ Kþ

apr

1

z

� �
¼ A

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zbz

p þ C

� �
: ð26Þ

and

A ¼ Bffiffiffiffiffiffiffiffiffiffiffiffi
1� z2b

q þ C

0
B@

1
CA

�1=2

;

B ¼ z
2

ffiffiffiffiffi
jk

2d

r
H kð ÞE* k*

	 

;

C ¼ jkz
4

X1
p¼�1
p6¼0

H k þ 2pp=dð ÞE* k* þ 2pp=d
	 


ffiffiffiffiffiffiffiffiffiffiffi
�jpp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j kd þ ppð Þ

p :

ð27Þ

The original K(z) is well approximated by Kapr(z) in the
neighborhood of the two branches. Indeed, when z ! zb,
one has K(z) � Kapr(z) = O(

ffiffiffiffiffiffiffiffiffiffiffiffi
z� zb

p
) and K(z)/Kapr(z) !

1 because of the proper choice of the constants A, B, and
C. Analogous properties are valid when z ! 1/zb.
Expression Kapr(z) in (24) is readily factorized by
inspection. The approximate Kapr(z) and its factorization

can be used in place of its exact expression in the current
solution (18) or to efficiently evaluate the exact
factorization (15). Indeed, we extract from K+(z) and
K�(z) the approximate forms as

Kþ zð Þ ¼ Kþ
apr zð ÞKþ

res zð Þ ð28Þ

K� zð Þ ¼ K�
apr zð ÞK�

res zð Þ ð29Þ

where Kres
+ (z) and Kres

� (z) are unknown residual kernel
functions smoother than K+(z) and K�(z) since we have
extracted the dominant singularities at z = zb and z = zb

�1.
However, Kres(z) � K(z)/Kapr(z) = Kres

+ (z)Kres
� (z) still has

branches of higher order inside and outside the unit circle
and its factorization is evaluated analogously to (B2)
using

Kþ
res zð Þ ¼ exp

1

2pj

I
C

1
2
1þ z

s

	 

lnKres sð Þ � lnKres zð Þ

s� z
ds

� �
:

ð30Þ

The numerical integration in (30) is easier to perform
than that in (B2). Indeed, along the integration path, the
integrand in (30) is limited also at the branch points of
K(s), s = zb and s = zb

�1, where conversely the integrand
in (B2) is singular. Moreover, in many practical cases the
correction terms Kres

+ (z) and Kres
� (z) may be approximated

with a constant which does not affect the solution when
(21) is rearranged in the way described after (18), i.e., by
exploiting the fact that K+(zg)/K

+(z) ’ Kapr
+ (zg)/Kapr

+ (z).
[26] The following numerical example shall explain

and show the effectiveness of our approximate factor-
ization. An array with period d = 0.6l and strip width w =
0.1l is considered. The basis h(x) and test e(x) functions
are chosen as h(x) = e(x) = 1/ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x w� xð Þ

p� �
for 0 < x <

w and 0 otherwise, such that they have built in the
physical square root singularity at the strips edges. Their
spectral counterparts are H(kx) = E(kx) = J0(kxw/2), were
J0 is the Bessel function of zeroth order, that evaluated
for kx = 0 provides H(0) = E(0) = 1. The factor term K+(z)
numerically evaluated via (B2), and the closed form
approximate result Kapr

+ (z) in (25) are shown in
Figures 6a and 6b, respectively. The thick (blue) and
thin (red) lines are contour plots of the real and imagi-
nary parts, respectively. Note in Figures 6a and 6b the
branch point singularity at zb and the relevant cut. It is
clearly seen that K+(z) � Kapr

+ (z) everywhere in the
complex z plane. The ratio Kres

+ (z) between the K+(z)
and Kapr

+ (z) is plotted in Figure 6c and is found to be
almost unitary all over the complex z plane, especially
onto the unit circle. Also note that all K+(z), Kapr

+ (z) and
Kres
+ (z) exhibit a branch cut inside the unit circle from zb

to 0; however, K+(z) and Kapr
+ (z) are singular at the

branch point zb, whereas Kres
+ (z) is not. In Figure 7a the
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two factors K+(z) (continuous line) and Kapr
+ (z) (dashed

line) are plotted along the unit circle, represented by the
polar coordinate 8 ranging from 0 to 2p. Both K+(z) and
Kapr
+ (z) have the same singularity and phase jump at the

branch point zb. Clearly, Kapr
+ (z) well approximates K+(z)

on the unit circle C. Note the singularity and the p/2
phase discontinuity. To emphasize that accuracy of the
proposed approximate factorization is not limited to this
particular example, the residual factor Kres

+ (z) is plotted in
Figure 7b along the unit circle for various ratios of strip
width and wavelength w/l. In all cases it is not singular,
its amplitude is almost equal to unity, and its phase is
almost constant.

6. Asymptotic Approximation for Currents

Far From the Truncation

[27] The diffracted currents in
d, n = 0, 1, 2,.. are here

asymptotically evaluated for large n. It will be shown in
the numerical examples in section 8 that this approxi-
mation is rather accurate also for small n. The integral in
(21) around the branch cut (see Figure 4) is evaluated as
in (23). That integral has a saddle point at s = 0 (z = zb),
and a double zero at s = 0, as can be seen by expanding
sKapr

+ (e�s2zb) � �jAB for s � 0, which leads to

idn �
V

p
znþ1
b

K� zg
	 
 1

AB

Z 1

�1

s2 e� nþ1ð Þs2

zbe�s2 � zg
ds: ð31Þ

Expression (31) will be evaluated in a nonuniform and a
uniform fashions in the sequel. The steps are pretty
similar to those in the work of Capolino et al. [2000a]
and are here only summarized for space limitation.

6.1. Nonuniform Evaluation of the Diffracted
Currents

[28] The nonuniform asymptotic evaluation of (31) is
carried out evaluating at s = 0 the slowly varying part of
the integrand, leading to

idn �
e�jk nþ1ð Þd

nþ 1ð Þ3=2
Dd kx0ð Þ
zb � zg

; ð32Þ

where

Dd kx0ð Þ ¼ �V

2
ffiffiffi
p

p
ABK� zg

	 
 : ð33Þ

Figure 6. Comparison between (a) K+(z) and (b) the
closed form approximate result Kapr

+(z), for a semi-
infinite array with d = 0.6l and w = 0.1l. Thick (blue, on
line) and thin (red, on line) lines are contour plots of real
and imaginary parts, respectively. Note that K+(z) �
Kapr

+(z) everywhere. (c) Kres
+(z) � 1.
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Note that the current asymptotically decays as 1/(n + 1)3/2

away from the array truncation. The nonuniform
evaluation diverges as a pole singularity when zg �
zb, that occurs when kx,p = k for some p. This is
denoted as the inward resonance case that corresponds
to the pth Floquet harmonic propagating at grazing
angle f = 0� causing a phase matching between the
harmonic and the free space wave number. This
mathematical nonphysical singularity is avoided when
the asymptotic evaluation is performed in a uniform
fashion as follows. Despite the current is not singular,
the outward resonance is a peculiar condition that will
be discussed also in section 8.3.

6.2. Uniform Evaluation of the Diffracted Currents

[29] The uniform evaluation is carried out performing
the asymptotic evaluation uniformly with respect to the
poles at s = ±sp, p = 0, ±1,. . ., where sp

2� ln(zb/zg) + 2pjp =
j(kxp � k)d. Therefore, when zb � zg, two of the ±sp poles
approach the saddle point at s = 0. This peculiar condition
happens when kxp = k for some p (inward resonance
condition). The asymptotic evaluation is performed using
a Van der Waerden regularization of the nearest 2P + 1
poles to the saddle point, summing and subtracting the
regularizing functionQ(s) =

P
p = �P
P Rps

2/(s2� sp
2), where

Rp is the residue of the integrand at the sp pole, similarly to
what was done by Capolino et al. [2000a]. In general
one may want to extract more than the pair of nearest
poles to s = 0 to render the integrand smoother and the
asymptotics more accurate even for strip currents near
the array truncation (small n). This leads to

idn �
e�jk nþ1ð Þd

nþ 1ð Þ3=2
Dd kx0ð Þ 1

zb � zg
þ
XP
p¼�P

1� Fs d2p
� �

j k � kxp
	 


d

2
4

3
5:
ð34Þ

where

Fs xð Þ ¼ 2jx 1� F xð Þ½ � ð35Þ

denotes the UTD ‘‘slope’’ Fresnel function, expressed in
terms of the UTD Fresnel function of [Kouyoumjian and
Pathak, 1974]

F xð Þ ¼ 2j
ffiffiffi
x

p
ejx
Z 1ffiffi

x
p e�t2dt; ð36Þ

whose argument is dp
2 = j(n + 1)sp

2 = (n + 1)(k � kxp)d. If
one approximates K�(zg) � K(zg)/Kapr

+ (zg), then (31) and
(34) becomes closed form expressions that do not require
any integration in the z domain.
[30] Note that when the argument x � dp

2 is large one
has F(x) � 1 � 1/(2jx) � 3/(4x2) � 1, and thus 1 � Fs(x)
� 3/(2jx). Under this condition the leading term of the
uniform evaluation (34) recovers the nonuniform one in
(32). In other words, for the cases such that dp

2 � 1 one
has that in

d is predicted by (32) and decays as 1/(n + 1)3/2.
This condition does not happen when kxp � k which
renders x � dp

2 � 0. In this case F(x) �
ffiffiffiffiffiffiffi
jpx

p
and thus

Fs(x) � 2jx which regularizes the zero j(k � kxp)d at the
denominator of (34). After noticing that the singular terms
in the brackets (zb� zg)

�1 + (j(k� kxp)d)
�1 cancel out, one

Figure 7. (a) Comparison between K+(z) (continuous
line), and the closed form approximate result Kapr

+(z)
(dashed line), for z running on the unit circle C. Kapr

+(z)
well approximates K+(z). (b) Their ratio Kres

+(z) is also
plotted for various ratios of strip width and wavelength
w/l; in all cases it exhibits a small deviation from unity
on the unit circle.
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has that the leading term in brackets is [�2(n + 1)], and

thus in
d decays as in

d/ (n + 1)�1/2, for all n such that dp
2� 1.

7. Evaluation of Currents Near the

Truncation

[31] Near the truncation of the array, for small nkd, the
asymptotic formula (34) is not accurate. One may use the
standard numerical evaluation (21) with factorization
(25), (26), to evaluate the currents on the first strips n =
0, 1, 2. . . near the truncation. Here we develop a simple
and accurate method to evaluate i0 and i1 in closed form.
We start from the expression of the total current in in
(18). Note that the integrand has a branch point singu-
larity at z = zb, a simple pole at z = zg, both inside the unit
circle (we recall that K+(z) is free of zeros and singular-
ities outside the unit circle), and a pole singularity of
order n at z = 1. Here, (18) is evaluated for n = 0 by its
residue at z = 1. This is obtained using the change of
variable v = 1/z, and evaluating the residue at v = 0, that
leads to

i0 ¼ V
1

K� zg
	 


Kþ 1ð Þ
: ð37Þ

Analogously, after a few algebraic steps we can write
that

i1 ¼ zg þ zd
	 


i0: ð38Þ

with zd � K+(1)g(1)(0), where g(1) is the first derivative
of g(v) = [K+(1/v)]�1. Therefore we can write zd =
limv!0[1 � K+(1/v)/K+(1)]/v, which is performed
numerically in the next numerical examples. We recall
that for the chosen factorization we have K+(1) = K�(0).
From a comparison between the total current i0 on the first
strip at the of a semi-infinite array (37) and the infinite
array current i0

1 in (20), one obtains the interesting
relation i0/i0

1 = K+(zg)/K
+(1).

[32] The diffracted current on the first two strips n = 0,
1 is obtained by in

d � in � in
1, where in

1 is the current on
the infinite array (20). Formulas similar to (37) and (38)
are easily derived for any in involving nth derivatives
that, however, are complicated for n > 1.

8. Illustrative Examples: Current on the

Truncated Array

[33] In the next illustrative examples we compare the
Wiener-Hopf solution with a method of moments
(MOM) constructed with a single basis function h(x)
on 1000 conducting strips. In this way the two methods
have the same basis h(x) and test e(x) functions, and the
comparison is only for analyzing the Wiener-Hopf
behavior of the solution. The factorization is performed

numerically via (30) with (28) and (25) by summing
several integrand samples uniformly distributed on the
unit circle C. As discussed in the text, this is numerically
advantageous compared to (B1) or (B2) because the
integrand in (30) is regular. The current in on the strips
is evaluated numerically using (19) with (20) and (23).
The diffracted current in

d in (23) is evaluated numerically
by summing integrand samples distributed from s = �6
to s = 6. In the following examples we also test the
uniform asymptotic evaluation (34). Away from the
truncation, the diffracted current decays asymptotically
as in

d / (n + 1)�3/2 in almost all cases, except for the
transverse inward resonant case (kxp � k) and except for
the low-frequency case. For comparison we also report
the current in

1, (20), on the infinite array.

8.1. Comparisons: Exact, Asymptotics, MoM

[34] In Figure 8 the current in on the conducting strips
is shown for the three different incidence angles f0 = 60�,
90�, 120�. The strips period is d = 0.6l, and the strips
width is w = 0.1l. The agreement between the Wiener-
Hopf (WH, pluses) and the MoM (crosses) solutions is
excellent, and the current away from the truncation tends
to the current on the infinite array in

1 (dashed line). The
asymptotic solution (continuous line with dots) accurate-
ly predicts the current for n � 3, but the exact value of
this n for which we have accuracy depends on the
incidence angle f0 and on the normalized period d/l.

8.2. Low- and High-Frequency Behavior

[35] We show here that the Wiener-Hopf solution is
accurate also for the low-frequency (d � l) and high-
frequency (d � l) cases. For example, in Figure 9 the
period is d = 0.04l, and w = 0.01l. In Figure 10 the
period is d = 9.7l and strip width w = 0.1l, thus w is still
much smaller than the wavelength so as the single basis
function approximation is still justifiable. The Wiener-
Hopf solution is in good agreement with the MoM
solution in both cases. The asymptotic solution also
accurately predicts the current. Note that for the low-
frequency case the truncation effects extend on a large
portion of the array, because the asymptoticity of the
solution is achieved only for large n. Note that the
‘‘slope’’ Fresnel function Fs(dp

2) approaches unit for large
argument dp

2, which is large for large n. The diffracted
current in

d extends on a large portion when it is in
‘‘transition,’’ which is defined by a nonlarge argument
dp
2. This behavior is discussed with more details by
Capolino et al. [2000a, 2000b]. For the high-frequency
case (large period) the total current in in (18) tends
immediately to the current of the infinite array in1
because while the truncation-induced diffracted current
propagates toward large ns it radiates (some of its
Floquet harmonics is in the visible region -k < kxp < k)
and so it rapidly attenuates.
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8.3. Inward and Outward Resonant Cases

[36] Here we analyze the particular cases of inward or
outward resonances, that occur when kxp = k or kxp = �k,
respectively. In other words when zg = zb or zg = 1/zb,
respectively. For instance, suppose that the strip grating
is illuminated by a plane wave coming from a direction
f0 (Figure 1) and that the grating period d > l/2,
therefore the the inward and outward cases may corre-
spond to kx,1 = k and kx,�1 = �k, respectively. These
conditions are verified when cos f0 = l/d � 1 (inward
resonance) and when cos f0 = �(l/d � 1) (outward
resonance). In our particular case with period d = 0.6l
(an width w = 0.1l) the conditions are met when f0 =
48.2� (inward resonance) and for f0 = 131.8� (outward
resonance). In Figure 11 we show the current for f0 =
131�, very close to the outward resonance condition. The
main effect of this condition is to have in

1 and in, and so
as in

d, to be smaller than the other cases because of the
growing of the K�(zg) function at the denominators of
(18) and (20).

Figure 8. Current in versus strip element number n.
Comparison between the Wiener-Hopf result (18) with
(28) and (30) (pluses), and the MoM (crosses). Also
shown is the asymptotics in (34) (continuous line with
dots), and the simplified formula for i0 and i1 in (37)
(open circles). The strip width is w = 0.1l, and the array
period is d = 0.6l. Currents are evaluated for three
incidence angles: �0 = 60�, 90�, 120�.

Figure 9. Current versus strip element number for the
low-frequency case. The period is d = 0.04l.

Figure 10. Current versus strip element number for the
high-frequency case. The period is d = 9.7l.
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[37] In Figure 12 we show the current in for f
0 = 48�,

very close to the inward resonance condition. Note that
the diffracted current has a different effect compared to
the previous nonresonant cases or to the outward reso-
nant case. The current variation with respect to the
infinite array solution is stronger and extends on a large
portion of the array. As already anticipated in section 6,
for the inward resonance case one has a small dp because
kx,1 � k, unless n is very large, and this causes the
Fresnel function in (34) to vanish. Under this condition
the current decay changes from (n + 1)�3/2. It decays
slower than this until a large value of n renders dp large
anyway. More details about asymptotic transitions are
given by Capolino et al. [2000b].

8.4. Array-Current Trends: Nontransitional and
Transitional Diffraction

[38] In Figure 13 we show the trend of the diffracted
current in

d = in � in
1 for various incidence angles f0, for

an array with period d/l = 0.6. We have included

incidence angles close to the inward f0 = 48.2� and
outward f0 = 131.8� resonance cases.
[39] For all cases, except for the inward resonance

case, the trend in
d � (n + 1)�3/2 occurs starting from small

n. From the asymptotic solution, valid for large n, we
note that the decay eventually is in

d � (n + 1)�3/2, as
predicted from the nonuniform evaluation in (32). As
said in section 6 the uniform and nonuniform evaluations
in (34) and (32) coincide for large dp, which is achieved
for moderate and large n when kxp 6¼ k. For the inward
resonance case in Figure 13, this in

d � (n + 1)�3/2 decay
occurs only when n > 60. This is explained by noticing
that for the inward resonance case kxp � k and thus large
dp is obtained only at larger values of n compared to the
other nonresonant cases.

9. Conclusion

[40] We have presented a novel formulation to analyze
the behavior of the current induced on truncated arrays of
narrow strips. For the first time we have shown a clear
relation between the standard kx complex spectral plane
and the less standard z domain spectral plane. The
solution is easy to evaluate, also thanks to special
techniques to regularize the factorization and current
integrals shown in this paper for the first time. Uniform
and nonuniform asymptotic evaluations have been car-
ried out, establishing clearly the in

d � (n + 1)�3/2 general
trend of the diffracted current away form the truncation,
valid in most cases, and always in the case of very large
n. The special cases of inward and outward resonances
have also been treated and discussed. We believe that this
paper is useful to clarify several issues related to trun-

Figure 11. Current versus strip element number for �0 =
131� close to the outward resonant case kx,�1 � �k.

Figure 12. Current versus strip element number for �0 =
48� close to the inward resonant case kx,1 � k.

Figure 13. Asymptotic trend of current in
d versus strip

number n for various incidence angles. Note that
asymptotically, far from the truncation, the current
decays as in

d / (n + 1)�3/2 for all cases, though this
happens for large n when approaching the inward
resonance case �0 = 48.2�.
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cated arrays since most of the properties shown can be
generalized to more complicated elements (not shown
here) that, however, cannot be treated via this simple
discrete Wiener-Hopf method. Currents on the simple
truncated array in this paper are treated and modeled
rigorously.

Appendix A: Z Transform

[41] The bilateral Z transform of the samples kn is
defined as

K zð Þ ¼
X1
n¼�1

knz
�n ðA1Þ

and its inverse by

kn ¼
1

2pj

Z
C

K zð Þzn�1dz: ðA2Þ

For a monolateral succession of samples kn
+, such that

kn
+ = 0 for n < 0, the initial value theorem states that
K(z ! 1) ! k0

+.

Appendix B: Factorization

[42] The product factorization K(z) = K+(z)K�(z) in the
z domain can be obtained using the representation K(z) =
exp[ln K(z)] and then applying the sum splitting ln K(z) =
ln K+(z)+ ln K�(z) (see Noble [1958] and Kobayashi
[1990] for the same procedure in the kx spectral plane),
that leads to

Kþ zð Þ ¼ exp
1

2pj

I
C1

lnK zð Þ
z� s

ds

� �
: ðB1Þ

The integrand has a pole singularity at s = z, and C1 is the
unit circle properly deformed to leave outside the pole at
s = z, if jzj � 1. An equivalent representation is obtained
using the procedure shown in Appendix C (equation
(C2)), leading to

Kþ zð Þ ¼ exp
1

2pj

I
C

1
2
1þ z

s

	 

lnK sð Þ � lnK zð Þ
z� s

ds

� �
:

ðB2Þ

The last expression furnishes the same function K+(z) but
its integrand is smoother then that in (B1). It posses only
the branch point singularities at z = zb and z = 1/zb of the
function K(s) because the pole singularity at s = z is
regularized. Furthermore the integration path is the unit
circle with no need of deformation, thus simplifying its
numerical evaluation. In this paper we choose that e(x) =
h(x) and thus K(z) = K(1/z), as a consequence it is easy to
verify that the sum splitting shown in Appendix C leads

to the property K(z) = K+(z)K+(1/z), i.e., K�(z) = K+(1/z),
and

Kþ 1ð Þ ¼ K� 0ð Þ ¼ kþ0 ¼ e
1
2pj

H
C

lnK sð Þ
2s

ds
: ðB3Þ

Moreover, since either zeroes or poles of K+(z) are
connected to singularities of the argument of the
exponential function in (B2), K+(z) (K�(z)) is found to
be free of zeroes and singularities inside (outside) and on
the unit circle.
[43] The factorization (B2) can now be evaluated

performing a numerical integration along the unit circle.
However, it is shown in the following that this numerical
integration can be made more efficiently or completely
avoided by resorting to an effective approximate closed
form factorization.

Appendix C: Sum Splitting

[44] The splitting of a Z transform F(z) = F+(z) + F�(z)
(of a sequence fn) as the sum of two functions F+ and F�

is trivial. It is sufficient to split the infinite bilateral
sequence fn as the sum of two infinite monolateral
sequences fn = fn

+ + fn
�, with fn

+ = 0 for n < n+ and
fn
� = 0 for n > n�, where n+ and n� are two arbitrary
finite integers such that n+ � n�. Obviously this splitting
is not unique. If the original sequence, as in our case, is
symmetric (fn = f�n), and in turn its Z transform is such
that F(z) = F(1/z), one can impose the constraint F�(z) =
F+(1/z), i.e., that fn

� = f�n
+ (that also implies that n+ =

�n�). Furthermore, imposing also that n� = n+ = 0, i.e.,
that fn

+ (fn
�) vanishes for negative (positive) n, or

equivalently, through the initial value theorem, that
F +(1) (F�(0)) is a constant, one renders the splitting
unique obtaining fn

+ = fnun, being un the unit step
sequence defined by un = 0, 1

2
, 1 for n<, =, >0. As a

consequence, the desired splitting of the function F(z) is
calculated via a convolution with the Z transform of un,
as

Fþ zð Þ ¼ 1

2pj

I
C1

F sð Þ sþ z

s� z

ds

2s
ðC1Þ

where C1 is defined in Appendix B. It is easy to verify
that, with the definition (C1), F(z) = F+(z) + F+(1/z) and
F+(1) = 1

2
f0 as required. In order to avoid the pole

singularity in the integrand and the cumbersome
definition of the integration path, (C1) is rearranged as

Fþ zð Þ ¼ 1

2pj

I
C

1
2
1þ z

s

	 

F sð Þ � F zð Þ
s� z

ds ðC2Þ

where the integration path is chosen onto the unit circle
and the integrand is analytically continued to its limit
value d

dz
F(z) � 1

2z
F(z) at s = z. The representation (C2) is
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more suitable for numerical evaluation running on a
fixed path (whose definition does not depend on the
value of z, as for C1) that is free of singularities (except
for those belonging to F(s), if any).
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Çivi, Ö. A., P. H. Pathak, H.-T. Chou, and P. Nepa (2000), A

hybrid UTD-MoM for efficient analysis for radiation/scatter-

ing from large finite planar arrays, Radio Sci., 35(2), 607–

620.

Craeye, C., A. G. Tijhuis, and D. H. Schaubert (2004), An

efficient mom formulation for finite-by-infinite arrays of

two-dimensional antennas arranged in a three-dimensional

structure, IEEE Trans. Antennas Propag., 52, 271–282.

Fel’d, I. N. (1958), Diffraction of electromagnetic waves on a

semi-infinite grating, Radiotekh. Electron., 3, 882–889.

Felsen, L., and L. Carin (1994), Frequency and time domain

Bragg-modulated acoustics for truncated periodic arrays,

J. Acoust. Soc. Am., 95(2), 638–649.

Hills, N. L. (1965), Semi-infinite diffraction gratings. II. Inward

resonance, Commun. Pure Appl. Math., 18, 389–395.

Hills, N. L., and S. N. Karp (1965), Semi-infinite diffraction

gratings - I, Commun. Pure Appl. Math., 18, 203–233.

Jones, D. S. (1964), The Theory of Electromagnetism, Perga-

mon, Oxford, U. K.

Kildal, P.-S. (1984), Diffraction corrections to the cylindrical

wave radiated by a linear array feed of a cylindrical reflector

antenna, IEEE Trans. Antennas Propag., 32, 1111–1116.

Kobayashi, K. (1990), Wiener-Hopf and modified residue cal-

culus techniques, in Analysis Methods for Electromagnetic

Wave Problems, edited by E. Yamashita, chap. 8, Artech

House, Boston, Mass.

Koughnett, A. L. V. (1970), Mutual coupling effects in linear

antenna arrays, Can. J. Phys., 48, 659–674.

Kouyoumjian, R. G., and P. H. Pathak (1974), A uniform geo-

metrical theory of diffraction for an edge in a perfectly con-

ducting surface, Proc. IEEE, 62(11), 1448–1461.

Linton, C. M., and P. A. Martin (2004), Semi-infinite arrays of

isotropic point-scatterers. a unified approach, SIAM J. Appl.

Math., 64, 1035–1056.

Neto, A., S. Maci, G. Vecchi, and M. Sabbadini (2000a), Trun-

cated Floquet wave diffraction method for the full wave

analysis of large phased arrays. Part I: Basic principles and

2D case, IEEE Trans. Antennas Propag., 48(3), 594–600.

Neto, A., S. Maci, G. Vecchi, and M. Sabbadini (2000b), Trun-

cated Floquet wave diffraction method for the full wave

analysis of large phased arrays. Part II: Generalization to

the 3D case, IEEE Trans. Antennas Propag., 48(3), 600–

611.

Nishimoto, N., and H. Ikuno (1999), Analysis of electromag-

netic wave diffraction by a semi-infinite strip grating and

evaluation of end-effects, Prog. Electromagn. Res., 23,

39–58.

Noble, B. (1958), Methods Based on the Wiener-Hopf Techni-

que, Pergamon, London.

Wasylkiwskyj, W. (1973), Mutual coupling effects in semi-in-

finite arrays, IEEE Trans. Antennas Propag., 21(3), 277–

285.

Wasylkiwskyj, W., and W. Kahn (1970), Theory of mutual

coupling among minimum-scattering antennas, IEEE Trans.

Antennas Propag., 18(2), 204–216.

������������
M. Albani, Department of Information Engineering, Uni-

versity of Siena, I-53100 Siena, Italy.

F. Capolino, Department of Electrical Engineering and

Computer Science, University of California, Irvine, CA 92697,

USA. (f.capolino@uci.edu)

RS2S91 CAPOLINO AND ALBANI: TRUNCATION EFFECTS

14 of 14

RS2S91




