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the sixth line from the top on page 7, "u" and "kinematic' should be

~

and g'" and "displacement and temperature, respectively.

the eleventh line from the bottom on page 14, " 2m" should be QAéh,"

the eighth line from the bottom on page 14, "{Um}" should be "{um},"
the second line of equation (2.7) on page 17, "[C]" should be "[C]T,"
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the fourth line of equation (2.7) on page 17, "[C]™" should be "[C]."

1 2 1
the second line of equation (2.16a) on page 22, "6 (t)" should be

In

"e%(t). "

In the fourth line from the bottom on page 26, "of interest’ should be
"(ti’ ti+l) !

In equation (3.11) on page 29, "cosy t' should be ''cos yt."

In the fifth line from the bottom on page 31, 'thermo-mechanical’ should
be "thermomechanical."

In equation (4.15) on page 36, and in equation (4.19d) on page 37,
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equations (4.20a), (4.20b) and (4.20c) on page 37, "\/(1+6+s) -4s" should

VTG ES 6+s)2—4s."
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Summary

P A

A method for obtaining approximate solutions to initial-boundary-value
problems in the linear theory of coupled thermoelasticity is developed. This
procedure is a direct variational method representing an extension of the Ritz
method. As an illustration of the procedure, it is applied to a class of one-
dimensional, transient problems involving weak thermal shocks. The problems
considered are: (1) rapid heating of a half-space through a thermally con-
ducting boundary layer, and (2) gradual heating of the boundary surface of a
half-space. The solutions generated by the extended Ritz method are compared,
for accuracy, to solutions obtained from a numerical inversion scheme for the
Laplace transform based on Gaussian quadrature, These comparisons indicate

that the variational procedure developed here can yield accurate results.



Introduction
The analytical treatment of the classical field theories, due primarily
to their phenomenological foundation, customarily rests on the classification
of the field variables into sets of conjugates (e.g., force-displacement,
heat flow-temperature, current-electric potential, etc.) which influence only
the members of the same set while exerting no influence on variables of other
sets. Linearized classical field theories then employ such physically
motivated constitutive relations as Ohm's law of electrical conduction, Fourier's
law of heat conduction, Fick's law of mass diffusion, Darcy's law for fluid
seepage through a porous medium, and Faraday's law of electromagnetic in-
duction, among others, as field equations connecting the conjugate variables.
Physicists have long known that, while such simple divisions of phenom-
ena often suffice to describe a great range of physical experience, the
members of the different classes interact with each other, giving rise to
various special field theories of energetico-mechanical, energetico-electrical,
and electro-mechanical modes of behavior, for example. The work of Onsager [1],

[2] pointed a way toward more systematic treatment of linearized coupled

theories by demonstrating an argument for symmetry of the phenomenological

coefficients that mark the generalizations of the uncoupled constitutive
relations.

A more fundamental approach, which regards the Onsager relations and the
linear phenomenological equations as suiltable approximations to more general
behavior, lies in the introduction of the principle of equipresence, which

states that ''a variable present as an independent variable in one constitutive



equation should be present in all” [3]. Restrictions on the variables will
then be a consequence of the application of the symmetry properties of the
material in question, the principle of material objectivity, and the laws of
thermodynamics [4]. From the physical point of view, of course, restrictions
will be placed on the variables based on phenomenological intensities in
given physical situations. From such a starting point the linearized coupled
field theories emerge as special cases.

A point now appears to have been reached such that solution techniques
lag behind the ability to derive consistent coupled field theories. The class

of problems which admits closed form solutions is extremely small and does

not include the complex shapes and composite construction so prevalent in
engineering designs. This work represents an attempt to apply extensions

of the type of direct variational methods recently being used in the stress

|
|
|
{ analysis of solids (e.g. [5], [6]), transient heat conduction analysis [7],
J and flow through porous media [8]. This development will be restricted to
|
; the field of linear coupled thermoelasticity, although application to other
coupled field phenomena, such as thermoelectricity, flow of a compressible
fluid through a porous elastic medium, piezoelectric elasticity, etc., would
be analogous.

The first section will introduce a variationsl principle characterizing
the initial-boundary-value problem of linear coupled thermoelasticity. The

second section will treat the development of the extended Ritz method, in a

general form, for this theory. A check on the accuracy of the method will

be obtained by comparison of several examples solved with recourse to a



numerical inversion technique for the Laplace transform, as described in the
third section. The approximate solutions to the class of problems, previously
examined by Danilovskaya [9], [10], Mura [11], Sternberg and Chakravorty [12]
(uging dynamic, uncoupled theory), Muki and Breuer [13], and Boley and

Tolins [14] (using dynamic, coupled theory), will be. discussed in the fourth

section,



1. The Variational Principle

B et

The classical treatment of thermoelastic problems follows two different
physically motivated paths [15]. If the effect of the straining of the
solid on the temperature is assumed to be small, the temperature distribution

is calculated from the Fourier heat conduction equation

25 aF

n v T:at) (1.1)

where T is the temperature, t is the time, y is the thermal diffusivity of
the material, vz is the Laplacian operator, and /3t is the partial time
derivative. The stress in the body is written as a function of the strain
and temperature fields, through appropriate constitutive relations, and the
stresses and displacements are then calculated from the equations of elasticity,
with the temperature field serving as a forcing function.

On the other hand, certain problems may exist where the effect of the
temperature distribution on the displacement field is assumed negligible, and

the displacement may then be obtained from the Navier equations of motion [16]

2
2
A+ wW v w+pv E:Q"g'tf%: (1.2)

where E-is the vector displacement, p is the mass density, v is the gradient
operator, and ) and | are the Lamé coefficients for the material. The entropy
of the body, through an appropriate equation of state, is written as a
function of the temperature and strain fields, and the distribution of temp-

erature is determined from an amended heat conduction equation, the strain

term then serving as the forcing function.



Under certain conditions the use of neither of these uncoupled approaches
is justified. An adequate description of the interconversion of mechanical
and thermal energy near the fronts of waves generated by rapid heating or
loading may require the use of the fully coupled theory.

Analytical solutions of the linear coupled thermoelasticity equations
have been obtained for a very few special cases which have lent themselves to
attack by integral transform methods [13], [14], [17], [18]. The solutions
are essentially one-dimensional, representing simple geometries and boundary
conditions, and are valid over a limited range of either the time or a coupling
parameter. Perturbation methods in terms of this coupling parameter have
recently been introduced for more complex problems [19], but no comparisons
were made between such methods and other numerical approaches to indicate
greater utility for the perturbation techniques.

A powerful method for the generation of the governing differential
equations of the coupled theory and for theilr approximate solution lies in
the procedures of the variational calculus. The first variational develop~-
ment for linear coupled thermoelasticity appears to have been made by
Biot [20]. The primary field variables were taken to be the displacement of
a material point and a vector field variable called the entropy displacement.
Three scalar invariants were introduced, representing the thermoelastic
potential, the kinetic energy, and an energy dissipation functional, such
that the combined variation yielded, as Euler equations, the field equations
of equilibrium and transient heat conduction in terms of the primary variables.

A Rayleigh-Ritz solution scheme was used to solve, approximately, the problems



of pure heat conduction for a thin plate and thermoelastic damping of a
vibrating rod. Biot [21], [22] and others [23], [24], [25], [26] have done
considerable work in applying this variational technique to transient heat
conduction problems, and Schapery [27] has extended the method to more general
viscoelastic systems while neglecting the thermomechanical coupling.

Analogous to results obtained in isothermal elasticity, generalizations
of Biot's work have recently been developed. Herrmann [28] derived a
variational principle complementary to that of Biot and later [29] a mixed
variational principle which yields, as Euler equations, a set of constitutive
relations in addition to the equations of equilibrium and heat conduction.
The principle also yields prescribed conditions on the heat flux vector, the
temperature, the material displacement, and the traction vector as natural
boundary conditions. Fu [30] and Ben-Amoz [31] have extended the mixed
variational theorem by including, as Euler equations, the strain-displacement
relations of geometrically linear elasticity. All of the authors have
employed Biot's concept of an entropy displacement vector field and consider
it conjugate to the temperature gradient. This is contrary to the usual
notion, made firm by Coleman and Mizel [32], that the heat flux vector is
conjugate to the temperature gradient in the linear theory.

Impetus for further development in this area is due to recent work by
Gurtin [33], [34], who introduced new forms for the variational principles
characterizing linear elastodynamics and transient heat conduction which
incorporate the initial conditions explicitly into the variational statement,

These ideas have previously been extended to construct variational principles



of varying generality (explicitly incorporating initial conditions) appropriate
for the linear coupled theory of thermoelasticity [35]. Of these, a partic-
ularly convenient variational principle for the approximate solution of
initial-boundary-value problems takes the following form:

Let the vector displacement field u(x,t) and the scalar temperature
field e(f]t) be a kinematically and thermally admissible state (i.e., let
U satisfy kinematic boundary conditions and let both have suitable smoothness

~—

properties). Then, for the functional @t defined by

1 .
{u, =3 {1; [g * T eij] (x,t) av
- % I o (x [g* n* 0] (x,t) av
\
+ % o @ [u *ul b av
v
1
* 5 I T [g % g' * a; % 9] (x,8) dv
\
- 1 * ui] (x,t) dv
1
+ T [g % b % 0] (x,t) dv

g % g' = é * 6] (x,t) ds , (1.3)
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ér [g * "fi x W] (x,t) ds
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,

{4,81 = o (1.4)



if and only if Eﬁz,t) and QQE?t) represent the solution to the initial-boundary-
value problem of linear coupled thermoelasticity.

Here V denotes the volume of the region being considered and S its surface.
It is convenient in this development to employ the standard indicial system
in conjunction with a Cartesian reference frame. Repeated subscripts imply
summation, Kronecker's delta is denoted by 6ij’ and differentiation with
respect to space or time is indicated by subscripts preceded by commas or by
superposed dots, respectively. Also_ggﬁ,t) represents the vector displacement
field of a material point, GQE,t) is the scalar temperature field above a
constant reference temperature TO at which the system is assumed quiescent,
X is the spatial coordinate vector, and t is the time. The material density.
is p(§9° The convolution of two functions of space and time wy and W, is
defined by

t
[wl * w2] (x,t) = OI w; (x,t-7 W, (x,7) dr (1.5)

and the functions g(t) and g'(t) are defined by
g(t) = t, g'(t) = 1, (1.6)

The components of the stress tensor Tij and the heat flux vector qi are defined

through the constitutive equations
and

'qi(gggt) = - kij(gg_) ﬁj(gg,t), (1.7b)




where e , and kij are the components of the infinitesimal

kg 950 Cigkg Pig
strain tensor, the thermal gradient vector, the isothermal elasticity tensor,
the thermoelasticity tensor, and the thermal conductivity tensor, respectively.
The material is assumed, for the present, to be generally anisotropic and
nonhomogeneous. The entropy is defined by a linear relation with the current
values of the deformation and temperature [36] and thus reduces to the

calorié equation of state of thermostatics
0(x) T M (x,t) = p(x) Ce(f)e(f’t)+aij(§)'ro eij(g_,t), (1.8)

where T is the specific entropy and Ce the specific heat for zero deformation.

The strain and the thermal gradient are defined through the equations
1
e, . (x,t) =z (u, _+u_. ) (1.92)
i~ 2 i, J,i
and

9 (0 = 6,1 . (1.9Db)

The body forces, internal heat generation, and initial conditions are combined

in the functions
f,(x,0) = [g* F ] (x,8) + p(x) [t v, (x4 d () ] (1.10a)
and

B(x,t) = [g' % H] (x,0) + p(x) T no(gi),' (1.10b)
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where Figi,t)y H(fjt)? Vi(f)’ di(z), and ﬂo(f? are the components of the body
force vector, the internal heat generation, the prescribed initial velocities,
the prescribed initial displacements, and the prescribed initial entropy,
respectively. The natural boundary conditions are incorporated into the
surface integrals over SZ’ on which the traction vector %iﬁi,t) is prescribed,
and over éé, on which the normal heat flux é(i,t) is prescribed. Admissible
functions satisfy the kinematic boundary conditions over surface S1
(complementary to 82) and the temperature boundary conditions on Aa
(complementary t04#2), where S1 + S2 = Jl +§£2 = 8.

Taking the first variation of @t results in the following set of Euler

equations:

[g % (=155 5 = F) =0 &V, +d) + p wl (x,0) =o (1.11a)
and

[g' * (- a 5 W+ pT T, - 0T, M (x,0) =o, (1.11b)

with the natural boundary conditions
. n, =T, on S (1.12a)

and
g, n, = Q on JQ . (1.12b)

Equations (1.11la) and (1.11b) have been shown to be completely equivalent to

the equations of motion and transient heat conduction [35]:
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T.. .+ F, = p i (1.13a)
ij,J i i
and
T N =H. 1.13
qi,i e o I (1.13D)

Thus it is seen that the variational principle stated above is equivalent to

the conventional formulation of the linear theory of coupled thermoelasticity.
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2. The Extended Ritz Method

P i e

The classical Rayleigh~Ritz method for the approximate solution of boundary
value problems [37] rests on the equivalence between their differential
equation characterization and the functional characterization of the variational
calculus. In the latter, the differential equations are the Euler equations
cbtained by making the functional stationary. The Rayleigh method involves
the construction of an approximating sequence based on the use of characteristic
functions, valid for a given domain and for a given set of geometric boundary
conditions, with arbitrary multipliers. The Ritz adaptation extends this
notion to include approximating sequences based on any relatively complete
(see [37]) set of admissible functions (i.e. functions which satisfy the
appropriate smoothness requirements in the interior of the domain and satisfy
geometric boundary conditions on the surface).

Both of the methods described above attempt the construction of the
approximating sequence over the entire domain of interest by making each
of the terms in the sequence satisfy the geometric boundary conditions.
A more general procedure (called the finite element method in the literature)
involves the construction of approximating sequences over geometrically
simple subregions, insuring the continuity of the construction between
adjacent subregions, and explicitly satisfying the geometric boundary con-
ditions for the entire region. Since an easily manipulated set of complete [38]
functions is the algebraic polynomials, this set has attracted the most
application in the development of the extended Ritz method. The following

work will also feature the use of the algebraic polynomials, and the
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approximating sequences will be constructed on the Cartesian product of space
and time, The concept of geometrical boundary conditions will be extended to
include boundary conditions and initial conditions on the primary variables

of the variational functional. In this case (linear coupled thermoelasticity)
the construction will be such that the approximating sequences for the dis-
placement and temperature fields will be completely continuous in space and
time. In addition, the velocity field, obtained by differentiation of the
displacement approximating sequence with respect to time, will slso be
continuous.

The functional (1.3) can be placed in a form convenient for the appli-
cation of the extended Ritz method to the approximate solution of initial-
boundary~value problems in linear coupled thermoelasticity. By writing the
stress and strain tensors in standard reduced (or vector) form [39], and
utilizing a matrix representation, this functional, for a continuum divided

T

into "M" subregions, becomes

o= Y [ e {P) (e

m=1 A%
m

1 m m
2 J P 8 % T %0 dVﬁ

A
m

Joa{®} e "}y,

v
m

N
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2
=]

v oo

N
. m
S2m

1 . m m
—f'-f—g*g*e*QdSmja
o
49V'Zm

where V  denotes the volume of the "mth"” subregion, S, the part of the

2m
surface of Vm on which the traction vector is prescribed, and om the
portion on which the normal heat flux is prescribed. The transpose of a
matrix is denoted by the superscript T. The column vectors {Tm}, {eml,
{Um}, {qm}, {ﬁm}, {fm}, and {pm} respectively indicate, for the 'mth"
subregion, the matrix representation of the reduced stress tensor, the
reduced strain tensor, the displacement vector, the heat flux vector, the
thermal gradient vector, the vector representing body forces and initial
conditions on the displacement and velocity fields, and the traction vector

m .om m
, h, and @ are, for

acting across the surface SQmu The quantities ﬂmy ]
the "mth" subregion, the scalars entropy, temperature, internal heat

generation together with initial conditions on the temperature and displacement
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gradients, and the normal heat flux across the surface &&Zm

The constitutive relations, equations (1.7), for the '"mth" subregion are

-V} - )

@) @)

where the square matrices (Hm], ‘_Rm]y and the column vector {?m} represent the
L. L
reduced isothermal elasticity tensor, the thermal conductivity tensor, and the

reduced thermoelasticity tensor. The equastion of state (1.8) becomes

m pm Cem m m T m
R A
o
where pm, Cem are the mass density and the specific heat for zero deformation
of the "mth" subregion.
Over each subregion the scalar temperature field and the vector dis-

placement field are approximated by algebraic polynomials in the space

coordinates with time dependent coefficients of the form

) - B O] F)

and

amcf,w = <a2m<39> {oz;“(t) } , (2.4b)

The rectangular matrix [alm] and the transposed column vector <%2m;>
contain the algebraic polynomials and the column vectors {alm} and {aém3

are the generalized coordinates. These generalized coordinates are to be
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converted into physical coordinates (nodal point values) through the trans-

formation matrices [ ™ and [ m] by the equations
o2 Py

{o 0} - [o"] {uw} (2.52)
{onm(t)} = [gpém] {Q(t)} , (2.5b)

where the column vectors {u(t)} and {g(t) 7} represent the physical coordinates

and

for the entire domain. The choice of the physical coordinates (nodal point
values) must be such that the temperature and displacement field counstruction
is continuocus between subregions. (In practice, the subregions are chosen to
be simple geometric shapes, such as triangles or quadrilaterals in two space
dimensions and tetrahedrons or hexahedrons in three space dimensions; the
physical coordinates are usually chosen to be the values of the field variables
at the vertices of these simple shapes). The vectors {em} and {ﬁm? are
obtained by appropriate space differentiation of (2.4) in accordance with the
strain-displacement and temperature-thermal gradient relations (1.9). The

results are

ol

I

[’5{1 <f)] [‘le] {u(t)} (2.6a)

and

1

{19m(fi,t)} [ﬁvzm(‘gi):\ [jcp;n] {e(t)} ,‘ (2.6h)

-
where the rectangular matrices (%le ] and (4% ] are composed of algebraic
polynomials derived by the space differentiation of the matrices r alm] and

<§2m>>respectivelyn The variational functional, equation (2.1), can then be
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written in the form

o s sden o) e o)
- %,g s {e(t)}T [C] * {9(t>}
- % g * {e<t)}T [M2] * {e(t)}

e fao) o]+ oo

P po) ] o)
-2 gwg s —{e(t)}T [k, |« oo}

- g {u'(t)}T * {F(t)}

(2.7)

+ g% gl % {G(t)}T * {Q(t)}

. o) ] fo)

- faw) ] x o)
e oo} [ny]s foo)
+ g * {9<t)}T [Cif * {9(0)} )
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R T el Eel . o
-5 T | [l alwrelm ] o
[K2]=%—§[ T s ol 78 Mo Jon 7] aoo
DR SRR e L

-3 1T | e D Bl o]

The vectors. {F(t)}, {Q(t)?}, {u(o)}, {u(o)}, and {6(o)} represent, respectively,
the prescribed volumetric body forces and surface tractions, volumetric
internal heat generation and surface heat flux, initial displacement dis-
tribution, initial velocity distribution, and initial temperature distributiocn.
Taking the first variation of the functional (2.7) and utilizing the lemmas

developed in [35] yields the governing matrix equations of the system:

g [k [ {fao} - e [] {oco}« ] {uo)
f =g * {F(t)} + [Ml] {u(o)} Ft ‘iMlj\ {ﬁ(o)} (2.99)
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and

s+ [ ] {0}« o] o)+ [,] foo)
=g x {Q(t)} + [Mz] {e@)} + [c]T {u(o>} : (2.9b)

The results of the spatial approkimation in the extended Ritz method have
led to the system of equations (2.9). The remaining construction of the time
approximation can be carried out in at least two ways. A mode superposition
method could be employed, involving the calculation of approximate character-
istic values for the system. Since the number of degrees of freedom in the
extended Ritz solution technique may be in the hundreds, or even thousands,
and since the types of excitations anticipated to be of importance in the
linear coupled theory of thermoelasticity are likely to affect the higher
frequencies of the system, the mode superposition method is felt in this case
to be of limited value. Instead, a step forward integration method in time,

analogous to the construction of the space approximation previously described,

will be used.

For the step forward integration method, the time interval of con-

‘i sideration will be denoted (o,t). At the time T=o (or T:ti)y all information
1
, about the system is assumed to be known, and the solution is sought at time

7=t (or T:ti+1)° The values of the displacements, velocities, and temperatures

computed for time T=0 (or T:ti) will serve as initial conditions for the
solution procedure at time T=t (or T:ti+l), It is seen from this that the

degree of continuity in the construction of the approximating sequence in

| time must be such that the displacement field and its first time derivative
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are continuous, while the temperature field is continuous. To accomplish

this expand the nodal point displacement and temperature vectors as

fu(n}= Ay} + 7 A1+ 310 () (2.10a)

1f

and

t) (2.10b)

il

fe(m = {Byt + 1 {Bl}, (0 =T

{IA

where {AO}, {Al}, {Az}, {BO}, and {Bl} are constant vectors. Equations (2.10)
can easily be written in terms of the nodal point values of the displacement,
velocity, and temperature vectors at the end points of the time interval, so as
to insure proper continuity. Then

2

{u('r_)} = Q%:Ii)— Jiu(o)} + —i—z— {u(t)} + »—E (t-1) ﬁ(O)} (2.11a)

and

t). (2.11b)

HA

i

facn} = LoD oo} +I few}, ©=-

After the displacement and temperature fields have been calculated at time t,
the velocity field at time t is computed from (2.1la) by time differentiation,

giving

{ﬁ(t)} -2 u(t)} -2 {g(o)} - {ﬁ(o)} . (2.12)

The time dependence of the body forces, applied surface tractions,
internal heat generation, and applied surface heat flux can be integrated
explicitly and removed from the problem; however, since the motivation here
is to automate the procedure as much as possible, the system excitations are

assumed to vary linearly in the time interval, Then
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{F(T)} e F(O)} . {ch} (2.132)

nd
a {Q(T)} =£—t—j;i)— {Q(O)} +% {Q(t)}. (2.13b)

The necessary convolution evaluations then become

g * {u(t)} t u(t)} P2 42 {u(O)} PN {{1(0)} , (2.14a)
g * {e(t)} = —%— {e(t)} + %— {@(0)} , | (2.14b)

g {Fv} - ét-i {reo}s gi ro} (2.140)

g' {e(t)} = % {e(t)} + % {9(0)} ) (2.144d)

“: and ,
q g x {Q(t)} =1 {Q(t)} 2 {Q(O)} . (2.14e)
|
|

Using these results, together with equations (2.9), a system of governing
matrix equations for the temperature and displacement fields is obtained at

time t (or ti+1):

] £ ] Yoo} - £ ] fod - £ o)+ £ o)
| [0 bl (] w R Eo) o)

(2.15a)
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and

[ [MZ]’+ z [sz ] {e(t)} + [c]T fuw} = 3 {Q(t)} + —g {é(oﬁ}
([ ]~ £ (8] ] @) ] fo}

The remaining conditionbon the construction of approximate temperature
and displacement fields over the continuum is the requirement that the fields
satisfy the geometric boundary conditions of the variational principle - in
this case, prescribed boundary displacements and temperatures. In order to
achieve this, the matrix equations (2.15) are written in partitioned form,
where a superscript "@" denotes an unmodified nodal point and "B denotes a
nodal point to be used in satisfying the boundary conditions cited above.

Then, in a symbolic notation,

B oo ! oz.é— o (7o 2} oB o
e S T S TR S NS T S U Wl (O Al
K O[BTE K BB uB(t) t2 MlOlBTE MlBB uB(t)
oo 1 o8 ] 2 o o

_ 2 c___1.¢c7” 6l o, JEXON , JECO)
cBo | BB @B(t) FB(t) FB(O) (2.16a)
L. e
oo oz— o oo .. of o

T S T Nl T IR UG T e S D B B
g @BT! ¢ PB uPo) 2 m BT |y BB uBco)

1 (N 1 i1
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¥ | 0B 6%(0) ! Klﬂ/B 1%0)
+ 4 —-~—:,— ————————— -t 1:- ——————————
cBY ! (BB 5Pc0) E KlBB u80)
o4
12 v
t 3
aB(o)
and
T aa 1. 0B o oo |, OB o
M2 IMZ 6 (t) " ! K2 g-(t)
______ I'_._._._._ —— . + —2— _—..._._.—:—.—_._—. ——— - —
MZOZBT stﬁﬁ @B(t) K OZBTE KZBB QB(t)
ey ] e
:? = i —
| chi coPfT u®(t) . ) e . Q%(0)
1 + mm———tammm e ) e = (- + = f - (2.16Db)
oT! @l B 2 B 2 B
cPetl ¢ ube QP QB
4 ___ . )
‘ %) aB o o
| Mo My 67(0) . 6%0)
é T CTTTTT Y T B e e T
% MZO‘BTIM BB 58(0) 5B0)
| |2 —
| Id
| coe? ,3_ cOBT L 1 w0
e R Ty T
| CBO/T : CBB uB(O)

‘ In the usual manner employed in finite element methods, the modification is
accomplished by substituting the values of the prescribed boundary temperatures

and displacements in the upper block of equations and rewriting the lower

block of equations so that these prescribed values are computed trivially.
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Details of the actual computational procedure by which this is accomplished
may be found, for example, in [40]. 1It should be noted that this technique
does not yield the surface tractions (heat flux) at the boundary nodal points
where the displacements (temperature) are prescribed unless the information
destroyed when rewriting the lower block of equations in trivial form is
either saved in an auxiliary manner or reproduced. Substituting the pre-

scribed boundary values and expanding (2,16) yields
el B ) 6o} - [ o) -2 o) o o)
t
B2 el o) - o [ %] -5 ] | {0}
t

1

t

_I_

4 [co‘o‘i\ {ea’(o)} - [Klo‘ﬁ] { {uB(t)} + 5 {uB(O)} vt {{;B(O)}} (2.172)
-2 [MlaB] { {uB('t)} - {uB(O)} -t {ﬁB(o)} }

t

2 [c@®] { {eP0r} + 2 P} }
[ [ 5 [52] J{eo)
[ [Mzaoz] - [K2oza] ] {9“(0)}
[MzozB] { {ePcw - {@B(O)} b -
[cozB]T {{uB(t)} - ffo) }

\]

-

and

+

[cwi\T o} - 5 2w} + § o}
[cw] {ua(O)}
[KZO‘B] { {GB(‘C)} ¥ {95(0)} }

NIt

+

+
DN+

(2.17b)

D] et

1
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It is convenient, at this point, to define new quantities to represent the
unknowns to be calculated at time t (or ti+1)' These new quantities are

defined as follows:

- ) - 2 o) - £ o) (2189

and

{} =53 {1+ 3 {fo} (2.18b)
so that g

{g“(t)} = 6 {?a} -5 {?“(o)} -t {g“(o)} . (2.192)
and

{Qd(t)} =2 {@a} - {e“(O)} . (2.19b)

Putting these results into (2.17) gives

] S o] 1Y - 5[] {7} = 5 (oo} + 5 oo}
+ %% [Mlaa] {u“(o)} + % [c““] {e“(o)} + % [Mld@] {a“(o)} (2.20a)
6% B B0}« 2 P} e [08] £ {sPeo) + 2 (P} }
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and

e 2] 10 o] ) - o)+ )

Bl ol e o [ o} £ [ o)

-+ [ ] { {Fo}+ P} } - 2] { o) - fFo) )
-1 [cO’B] { {uB(t)} - {u%)} } ‘,

where it has been assumed that the velocity of a nodal point whose displacement
is prescribed is constant during the time interval of interest. Equations
(2.20) represent the coupled system of governing matrix equations for linear
thermoelasticity which result from the application of the extended Ritz method

previously described.
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3. Laplace Transform Inversion
P T I e At S
In an effort to obtain a check on the numerical accuracy of the solutions

generated by the extended Ritz method, some problems, amenable to solution

by integral transform methods, were considered. A numerical inversion procedure

for the Laplace transform (based on the work of Hurwitz and Zweifel [41], and

Schmittroth [42]) was used to obtain the solutions, and is described below.

The numerical integration procedure uses Gaussian quadrature formulae, which

minimize the error in the calculation for a given number of integration points.
The complex inversion integral is written in the form

Yt+ieo

P(x,t) = — f f£(x,s)e°F ds, (3.1)

2m1
y-ie

where s is the complex transform parameter and vy, the real part of the inte-

gration path, is chosen such that f is a regular analytic function of s in

the half-plane Re(s) > vy. Introducing the definition for the integration

variable

s = vy + iy (3.2a)
so that

ds = idy, (3.2b)

equation (3.1) may be written

eYt ® _ . iyt
F(x,t) = e f(f)y+1y) e dy, (3.3)

o]

where the spatial point of interest x and the real part of the integration

—

variable are treated as parameters. Equation (3.3) can be written in a form

convenient for numerical quadrature by using a procedure described in detail
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by Bradford [43]. Then

2eyt ©

F(x,t) = J Re {f(x,y+iy)} cosyt dy . (3.4)

i
(o]

The procedure is essentially as follows. The definition of the Laplace
transform can be used to show that f(x,§)=f(x,s),where a superposed bar

denotes the complex conjugate. If s is a complex variable defined by

s = g+ iy, then

e}
£(x,8) = f r(x, et at
o
=] _Gt
= J F(x,t)e [cosyt - i sin yt] dt (3.
o :
and
- @ ~gt
f(x,s) = y F(x,t)e [cosyt + i sin yt] dt, (3.
o
so that
f(x,s) = £(x,8) . (3.

Now the function f(x,s) can be written in terms of its real and imaginary

parts as

f(x,s) = u(x,qy) + iv(x,o0,y) (3.

and equation (3.7) implies that

u(x,o,~y) + iv(x,o,-y) = u(x,c,y) - iv(x,o0,y) (3.

so that

u(i,c,—y) = u(x,0,y) (3.

8)

10a)
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and

v(x,0,-y) = -v(x,0,y) . (3.10b)

Then the real part of the function f(x,s) is seen to be an even function of y

while the imaginary part is odd. With this in mind, (3.3) can be written

Yt e
F(x,t) = %ﬁ‘ J £(x,v+iy) [cosy t + i sin yt] dy (3.11)

o

and, with the aid of (3.8) and (3.10), this becomes

eyt ©
F(x,t) = = i u(x,v,y) cos yt dy
(3.12)
eyt ©
- J v(x,y,y) sin yt dy
o

Now, using the property of F(x,t) that F(x,t) = 0 for t <0, and putting "

t = -t in (3.12)

oo ' ©
j u(x,vy,y) cos yt dy = ~ i v(x,vy,y) sin yt dy {(3.13)
o

and therefore

zeyt ©
F(x,t) = = J u(x,v,y) cos yt dy
o
2eyt o
= J Re {f(x9y+iy)} cos yt dy. (3.14)
0

The integral (3.4) or (3.14) is now in a form convenient for the appli-
cation of Gaussian quadrature formulae. The procedure to be following
involves the mapping of the first quarter-cycle of cos yt (0 =y = T/2t) and

each succeeding half-cycle [T(2 n-1)/2t =y =7 (2 n+1)/2t] onto the basic
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integration interval for the Gaussian quadrature scheme (-1 § z =+ 1). The
abscissae Zi for Gaussian quadrature are related to the integration variable

y in (3.14) by

v, = /4t (1 + Zi) (3.15a)
for the first quarter-cycle and

v, = /2t (2n - 2 + zi) (3.,15b)

elsewhere. The arithmetic sum of two successive integrations is checked, in

absolute value, against a predetermined error in order to test convergence.

The complex arithmetic feature of the Fortran IV language is used to make the
integrand evaluations and to find the real part of the result.

The results of the application of this technique to such transforms as
the wave transform (e~sx/s) and the diffusion transform (engX/s) indicated
sufficient accuracy to warrant use of this method to calculate 'exact' or
“closed-form” solutions. Comparisons to solutions obtained through use of

the extended Ritz method are discussed in the next section.
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4. Numerical Results

The firsgt analytical solution to an initial-boundary-value problem in
dynamic uncoupled thermoelasticity appears to have been obtained by
Danilovskaya [9]. The problem concerned a linear elastic half-space subjected
to a uniform sudden temperature change on its bounding plane, the plane being
assumed traction free. The temperature distribution in the half-space was
calculated from the classical heat conduction equation, neglecting thermo-
mechanical coupling, and then used as a forcing function for the dynamic
equations of motion. The thermal stresses were determined from an essentially
one-dimensional kinematic theory, assuming lateral displacements completely
restrained. Danilovskaya later [10] extended her results to account for
boundary layer thermal conductance along the bounding plane. Sternberg and
Chakravorty [12] determined analytical expressions for the displacements in
the first Danilovskaya problem and developed the solution for the half-space
subjected to ramp-type heating of the bounding plane, including both dis-
placements and stresses. Recently Tsui [44] has superposed a mechanical
effect on the Danilovskaya solution by prescribing the surface velocity of
the boundary. All of the solutions mentioned above were obtained by means of
Laplace transform techniques.

Investigations into the effect of including thermo-mechanical coupling,
as well as inertia, have been made by many authors, such as Paria [17],
Hetnarski [45], [46], [47], [48], Boley and Weiner [15], Deresiewicz [49],
Chadwick [50], and others [51], [52]. Specific application of the fully

coupled theory to the first Danilovskaya problem has been made by Boley and
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Tolins [14] and Muki and Breuer [13]. Dunn [18] has investigated the long
time mechanical mode response for this problem using asymptotic methods.

To illustrate the construction of approximate solutions to coupled linear
thermoelastic initial-boundary-value problems, the original Danilovskaya
problem and its modification to include boundary layer thermal conductance
and ramp heating of the surface will be studied. Coupled solutions to these
modified problems, to our knowledge, have not heretofore been obtained.

Consider the elastic half-space (x > 0) with the surface plane x = 0
assumed free of tractions for all time. The solid is assumed to be mechanically

constrained and thermally insulated so that displacements of the form

u,o= U (x,t); uy =u = 0 (4.1a)

and temperatures of the form

T =T (x,t) (4.1D)

occur., The bounding plane x = 0 will be assumed to be exposed to two types of
temperature environments: (1) sudden exposure to a high ambient temperature
Too through a boundary layer of finite thermal conductance, and (2) exposure

to a linear temperature rise during a finite time interval, after which the
temperature is held constant. In both of these cases the traveling dis-
continuity in the normal stress, present in the original Danilovskaya solution
and also in the coupled solutions [13] and [14], are no longer effected,

except as the limiting solution for an infinite boundary layer conductance

or a zero boundary temperature rise time.



|

!
]
|
|
|
|

|

The coupled thermoelastic differential equations are

2
azux 3 u a(T—TO)
(%+2M) 5 = p B + o (3y+2p) ——7§;-—
ox ot
and
2
2 S5 u
2T _ of X
k ax2 = pc <t + o (3)+2y) Tb > 3t
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(4,2a)

(4.2b)

where ), y are the lsothermal Lamé constants, p the density, «@ the linear

coefficient of thermal expansion, TO the reference temperature, k the thermal

conductivity, and cv the specific heat at constant volume. The

are taken to be

Bux
uX(x,O) = _‘8¥ (x,0) =0

and
T X O = T o
( ’ ) O

The boundary condition on the normal stress is

o (0,t) =0
XX

and, on the temperature, either

o o -
k ol h (T - T), (tz0)

for the case of boundary layer conductance, or

IA
ot
A
o+

T(0, t)

1t

(Tl = T)) t/ty, 0 =

Tl ) t =t

initial conditions

(4.33)

(4.3Db)

(4.42a)

(4.4b)

(4.4c)
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for the case of ramp surface heating in the absence of a boundary layer.

In equations (4.4) h denotes the boundary layer conductance

temperature, tO the boundary temperature rise time, and T1

, T the ambient

®©

the final surface

temperature. These boundary conditions are to be supplemented by regularity

conditions at infinity.

Introducing the dimensionless variables

2
E=ax/n ; T=2a t/u; o= CTXX/B TO’ 6 = (T—TO)/TO,

fod
]

a(\+2y) uX/%BTO;

where

2
W= k/pe ; a = OF2p)/p; B = A(3)+2);

]

equations (4.2) can be written

2 2
Ju _3u, 28
2 .2 3
14 QT
and
2 2
26 _ 26 ou
2”3T+6aga"r
of

(4.

(4

(4.

(4.

The thermomechanical coupling parameter § is defined by the relationship

2
= T 24 -
8 B O/pcv(x+ )
The initial conditions become

u(g,0) = %‘; (£,0) = 6(€,00 =0

(4.

5)

.6)

7a)

7b)

8)

.9
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and the boundary conditions are

c(0,7) = 0, for all T (4.1023)

and either

_2_9%:1{(9—1), (1 20), (g=0) (4.10b)
or
T
Q(O,'T): '—70—<.:T§rr
T 0
0
(4,10c)
1, TO =T,
where
. a to
o~ un

For the problems to be considered here, the quantities (T1 - TO)/TO and
r - Tb)/TO have been set equal to unity, for convenience, in equations
(o]
(4.10b) and (4.10¢). In addition, a non-dimensional boundary layer thermal

conductance,

H=n1nh/ 2a k (4.11)
is introduced in (4.10b),
The governing equations (4.7) can formally be solved through use of the

Laplace transform. Applying the transform to (4.7) and using (4.9) gives

o
\o}
1
\e]
o8
D1

(4.12a)

o
WL\J
f
in
cl
i
3
SR
i
o
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and

o
@
I
Q.
el

- s 8 -8§5— =0, (4.12b)

- i
\S]

g

where a superposed bar denotes a transformed function and s the transform

parameter. Combining the two equations gives

4 2
- s (s+1+8) 9-2 + 53 5 =0, (4.13)

g dg

whose solution is, after taking the regularity conditions into account,

o, lQ
S Last|

- "klg 'ng
9(%,5) = Ae + Be (4.14)

y

where

1/2

A g = {§(8+1+6) + s wks+1+5)2—4s } /2. (4.15)

b

Throughout, that branch of the square root function must be chosen which
yields a positive real root.
The boundary condition (4.10a) can be cast in terms of the transformed

dimensionless temperature by using the stress-strain-temperature relation

- du -

T 5 (4.16)
and (4.12b). Then

dz" -

—g—S(l+6) 6=8§s 0 . (4.17)

dg

Solving for the constants A and B in (4.14) from the boundary conditions on

the normal traction

2_
—‘LZQ— s(1+§) 5 =0, (g=0) (4.18a)

dg



37

and on the surface heat flux

lQ.
D

- 1
qe - 1@ -9, (g0 (4.18D)

yields the following expressions for the temperature, normal stress, and

displacement in the half-space:

5(g,s) = H mle—ng - m, e—xlé} /’{pl(H+x2) - mz(H+x1)} (4.192)

o(g,s) = 2H {é—xlg—e—x2§} // {ml(H+x2) -mz(H+xl)} ) (4.19b)
and

See) - 2 {xze-ng ) Me"xl% }//Sz [m @) - mymap b 4190
where

m o, = sl-bk J (s+1+ )2 - a5 . (4.194)

A similar set of calculations can be made for the ramp heating problem to

yield
L “Ao & “\q §
0(g,s) = R(s) m, e 2 ~m,e 1 }-/// 252//(1+6+S)2—4S R (4.202)
A A

3(£,8) = R(s) { 1t zg} /// (1+ 5+5) 2 , (4.20b)
and -y

i "M E 1 /

u(g,s) = R(s) {Xze ? M® } (1+6+S) ’ (4.200)
where s a“t /n

R(s) = 51 { 1 -e } . (4.20d)

a
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The numerical inversions of the transforms shown in (4.19) and (4.20)
were carried out on the CDC 6400 computer, using the procedure described in
Section 3. The results of these calculations, and those obtained from the
extended Ritz method described in Section 2, are shown in Figures 1-12,

Three values of the coupling parameter § were used - § = O (corresponding to
the uncoupled theory), § = 0.36, and § = 1.00, Two values of H (0.5 and 5.0)
were used in the study of the second Danilovskaya problem and two values of

T (0.25 and 1.0) were used in the study of the Sternberg-Chakravorty problem,

0

To lend physical interpretation to these numbers, consider a fairly

typical structural plastic having a specific gravity of 1.2 and a specific heat

at constant volume of 0.25 cal/g OK. Let the reference temperature be 300 QKq
5 . 2 10 2
Choose a bulk modulus of 2x10 1b/in  or about 1.4x10 dynes/cm . Assume
that the shear modulus can be neglected with respect to the bulk modulus
at this temperature. Then the thermomechanical coupling constant becomes
solely a function of the linear coefficient of thermal expansion. For values
-5 -
of ¢ ranging from 7x10 to 4x10 4 cm/cm/OK? § takes on values ranging from
approximately 0.04 to over 1.0, Since Dillon [53] has reported an & of
-4

8x10 in/in/OC for a plastic material having properties similar to those
described above, values of the coupling parameter such as those investigated
here seem to be reasonable. Also, for such a material, the values of H and
TO used as parameters in this study are equivalent to boundary layer heat

o 8 9 2 o
transfer coefficients on the order of 2x10 - 2x10 Btu/ft hr F and surface

temperature rise times on the order of 10—13 seconds.
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Figures 1-3 depict the temperature, displacement, and stress at £ = 1.0,
as a function of time, for the second Danilovskaya problem with H = 0.5, while
Figures 4-6 portray these same quantities for H = 5.0. Similarly Figures 7-9
and 10-12 show the results of the Sternberg-Chakravorty problem for Ty = 0.25

and TO = 1.0, respectively. On these figures the solid lines represent the
“"exact” solution, here meaning the Laplace transform inversion technique
described in Section 3. Figures 13 and 14 indicate the spatial variation of
the coupling effect on the temperature distribution. It is seen, from Figures
1-12, that the approximate solution based on the extended Ritz method developed
here compares well to that obtained from the numerical inversion of the
Laplace transform. This indicates that the extended Ritz method can yield
accurate results.

An interesting feature of the extended Ritz solution is the effect, on
the solution, of discontinuities in the time derivatives of the displacement
and normal stress. This effect takes the form of a damped, oscillating
disturbance, extending away from the point of discontinuity. Such disturbances
are the result of the lack of smoothness in the temperature prescribed on the
surface x = 0, Smoother and more physically meaningful inputs would eliminate
the discontinuities and, therefore, the oscillations in the approximate
solutions.

Another point of interest is the spatial distributions of temperature
shown in Figures 13 and 14. The effect of strong coupliné, in both the
second Danilovskaya problem and the Sternberg-Chakravorty problem, is to

accelerate thermal diffusion ahead of the wave~front and decelerate it
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behind the wave-front. The cause is most likely the interconversion of
thermal and mechanical energy taking place predominantly at or near the
wave front. In fact, the numerical results obtained indicate that a reverse
temperature gradient is generated ashead of the wave for strong coupling.
Also, the figures show that the deviation from the uncoupled solution becomes
more pronounced as the wave progresses into the half-space. As has been
pointed out by Dunn [18], and as can be inferred from Figures 13 and 14, the
temperature distributions behind the wave-front asymptotically approach
the uncoupled solution with increasing time,

In summary, it should be pointed out that the real value of the extended
Ritz method lies in its ability to generate approximate solutions to more
complex problems, involving inhomogeneous, anisotropic materials in one, two,
or three space dimensions, under a wide range of loading conditions, and
comprising irregular geometries. In such cases, the application of integral

transformation methods would be impractical.
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Chakravorty problem with T = 0.25, indicating the spatial effect
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situation. Two such essentially one-dimensional developments will be treated

here.

First, consider the displacement and temperature fields to be restricted

to the case where

H

uy (x,1)

g (x, 1)

i

us(x,t)

and
a(x,t) = T(x,t) -

Then, assuming isotropic

is given by
n )
T
XX

m m
T = e
yy ?

m

T
sz

ul(xl,t) =u(x,t) ,

=0 ,

Tb = 9(x,t)

(A.1)

behavior, the stress tensor in the "mth" subregion

\
am(Sxm + 2um)
aﬁ(SXm + Zum)?, (A.2)

aﬁ(SXm + Zum)

J

1ty

where xm’ Mm are the two Lane constants for the material of subregion m ,

aﬁ is the linear coefficient of thermal expansion, Qm(x,t) is the temperature

. m .
increase above the reference temperature TO, and exx (x,t) is the non-zero

strain component in the rectangular cartesian coordinate system. The re-

- . m
maining components of the strain tensor, and the stress components Txy ,

T m’ and T m’ vanish due to (A,1).
NE Xz

Similarly,

the non-zero component of
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the heat flux vector is given by
q ==k 9 ) (A.3)

where km is the coefficient of thermal conduction for the material of

Tty

subregion m . The entropy is given by the equation of state

(A.4)

?

m m
pmn = — +ozm (3)\m+2p,m) €. x

where pm is the density and Cem the specific heat at constant volume for the
material of subregion 'm”.

Consider the displacement and temperature in the "mth" subregion to be

approximated by

m
n ‘ %1 ()
u (x,t) = <<}, x:> (A.5a)
™ ()
@, (t
and m
%, (B
em(X,t) = <:1,.;>> . (A.5b)
m
%, (t)

The transformation from the generalized coordinates « to the nodal point

~

coordinates is

m m 1
?1 =] %2 = X% ; (A.6)




where Xi and Xj denote the coordinates of the end points of subregion

From (A.5),

and

extended Ritz method,

and

[alm("):\

[blm(x)]

Carrying out

]

i

<azm(X)>
m
<:%2 (x;;>

]

G
<<9, 177 .

"

the matrix operations indicated in the development of

[Klm] =

=
'—I
E]
| S
1t

el

pm'e'm/3

pmzm/6

———

)

Enl o

—km/ZmTO

qmp—

pmcem’e'm/3 To

pmcemzm/6 To

Gl

o (3) +2y )/2

~a (3N +20, ) /2

(xm+2pm)/£m

"(xm+2um)/£m

it can be deduced that

—(xm+2Mm)/Em

O 210/ by

gy
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o4 /3

mom

- km/ ’e'mTo

k /4 T

m m o

i

pmc em

pmc em
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m m m

—am(Skm+2um)/2

where f = XXy for the "mth" subregion.
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1T

m .,

(A.73)

(A,7b)

the

(A.823)

"(A.8b)

(A.8¢)

(A.84)

(A.8e)
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Secondly, consider the problem of axisymmetric plane strain with radial

heat flow. Such a geometry is of considerable interest to the analyst

concerned with the structural and thermal response of spacecraft and missiles

exposed to extreme environments. Then

ulﬁi,t) = ur(r,t) ,

uzgf,t) = ua(i,t) =0 , (A,

and

6(x,t) = T(x,t) - T, = o(r,t)

The constitutive matrices for isotropic media are

_—>\Tn+ 2 plm by T

m
m A At 2 ’
[H = m m. "~ ™m (A
A M
T
{Bm} - <oz (3) 421 ), @ (3% +2u ), @ (3\ +2p ) (a
m " m Tm’? m T Y Pm? 0 Tm T Y M ’ )
and
_Rm:l = Kk ., (a.
B m
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(A.
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- 0 1
blm(r)] ) (A.
- 1/r 1
m
o, (r)] - <o, 1> : (.
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Carrying out the matrix operations once more yields

—
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where r, and ¥, are the end points of the "mth" subregion.
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Appendix B

Computer Program Description

IDENTIFICATION

COUPLED LINEAR ONE-DIMENSIONAL THERMOELASTICITY

Programmed - R.E. Nickell

University of California, October 1966
PURPOSE

The purpose of this computer program is to determine temperatures, dis-~
placements, velocities, and stresses in either axisymmetric solids subjected
to plane strain and radial heat flow or solids in double plane strain and
uniaxial heat flow. The effects of displacement, traction, temperature, or
heat flow boundary conditions are included, along with internal heat

generation and volumetric body forces.

INPUT DATA

The first step in the analysis is to select a finite element representation

of the solid. Elements and nodal points are then numbered in two sequences,
each starting with one. The following group of punched cards numerically
define the problem.
A. IDENTIFICATION CARD - (12A46)
Columns 1-72 of this card contain information to be printed
with the results.
B. CONTROL CARD - (415,3F10.0,315)
Columns 1-5 Number of nodal points (150 maximum)

6-~10 Number of elements (150 maximum)
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D.
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11-15 Number of different materials (12 maximum)
16~20 Number of time increments (no limit)

21-30 Initial time increment (must be non-zero)
31-40 Acceleration of solid

41-50 Reference temperature (must be non-zero)
51-55 Print interval for results

56-60 Free control parameter (leave = 0)

61-65 Control parameter (if = 1 plane solid,

if = 0 axisymmetric solid)

MATERIAL PROPERTY INFORMATION (7F10.0)

Columns

1-10 Lamé constant 3
11-20 Lam€ constant y,
21-30 Coefficient of thermal expansion
31-40 Coefficient of thermal conductivity
41-50 Specific heat at constant volume per unit volume
51-60 Material density

61-70 Internal heat generation per unit volume

NODAL POINT CARDS (2I5,4F10.0)

One card for each nodal point with the following information:

Columns

1-5 Nodal point number
6-10 Boundary condition code
11-20 X-ordinate or R-ordinate

21-30 Displacement/Traction
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31-40 Velocity
41-50 Temperature/Heat flux

If the number in column 10 is

0 the traction is specified and the heat flux is specified,

1 the displacement is specified and the heat flux is specified.

2 the traction is specified and the temperature is specified.

3 the displacement is specified and the temperature is specified.

Nodal point cards must be in numerical sequence. If cards are omitted,
the omitted nodal points are generated at equal intervals between the defined
nodal points. Tractions, heat fluxes, and velocities are set equal to zero

at generated nodal points.

E. ELEMENT CARDS (415)
One card for each element
Columns 1-5 Element number
6-10 Nodal point I
11-15 Nodal point J

16-20 Material identification number

Element cards must be in element number sequence. If element cards are
omitted, the omitted information is obtained by incrementing by one the
previous element number, I, and J. The material identification number for
the generated cards is set equal to the value on the previous card. The

last element card must always be supplied.
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F. LOGICAL SWITCH CARD (L5)

If all boundary conditions, tractions, and heat fluxes are constant in
time put F in column 1 (FIXED BOUNDARY CONDITIONS) ; if the boundary conditions
are time-dependent put T in column 1 (TIME-DEPENDENT BOUNDARY CONDITIONS).

If the logical card is false (F¥), this is the final input card. If the
logical card is true (T), cards are required for each time increment (after
the first) to define the time increment (F10.0), the nodal point number, the
traction (displacement), and heat flux (temperature) for each nodal point

that is time-dependent (I10,2F10,0), and a blank card.

OUTPUT INFORMATION
The following information is developed and printed by the computer
program:
1. Reprint of input data,
2. Nodal point displacements, temperatures, and velocities, and

3. Stresses at the center of each element.
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Appendix C

Computer Program Description

IDENTIFICATION

INVERSE LAPLACE TRANSFORM

Programmed - Robert E. Nickell

University of California, January 1967
PURPOSE

The purpose of these computer programs is to determine, by an approximate
numerical integration procedure, inverse Laplace transforms associated with
initial-boundary-value problems of linear coupled thermoelasticity. Eight-
point Gaussiah quadrature is used and the programs are flexible enough to

be easily converted to higher order quadrature formulae, if needed.

INPUT DATA
A. IDENTIFICATION CARD - (12A6)
Columns 1 to 72 of this card contain information to be printed
with the results.
B. CONTROL CARD - (215,4F10.0) or (215,5F10.0)
Columns 1-5 Number of integration cycles felt to be necessary
for convergence by the user
6-10 Number of time points to be evaluated for a
coordinate position

11-20 Real part of the integration variable
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21-30 Coordinate value (in this case, x)

31-40 Value of thermomechanical coupling parameter

41-50 Error bound (for the second program, columns
41-50 contain the dimensionless boundary layer

conductance and 51-60 the error bound)

C. TIME CARDS - (F10,0)
Column 1~10 Value of the time at which the inversion is to be

carried out

OUTPUT INFORMATION
These programs print the input data and the displacement, temperature,
and stress for each value of time and space specified, An error message,

indicating that the number of integration cycles was not sufficient to

achieve convergence, will be printed for cases in which this occurs.

¥
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ChREEE % FULLY COUPLED THERMOELASTICITY-EXTENDED RITZ SOLUTION~- |
CHERE * TEMPERATURE APPROXIMATED OVER SPACE AND TIME LINEARLY- %
CHe®H® % DISPLACEMENT APPROXIMATED LINEARLY IN SPACE AND QUADRATICALLY
CHEXX ¥ IN TIME-AXISYMMETRIC PLANE STRAIN, RADIAL HEAT FLOW-
CHER® * OR- SEMI INFINITE SOLIDs ONE DIMENSIONAL HEAT FLOW.
Crexx ¥ TIME DEPENDENT LOADS, FLUXESs AND BOUNDARY CONDITIONS
C |
COMMON/ELDATA/
1 EE(8512)5R(150) s TOsANGFQsKAT §
COMMON/ZYMARG/
1 NUMK,MBANDsA{300+4)sB(300)
COMMON /MODQ / !
1 NUMNPsK11(150+2)sK2(15052)sM1(15052)sM2(15052)15sC(150s3)5sF(150)5 |
2 Q(150) %
COMMON/STRESQ/
1 NUMELsIX(15093)sT(150)sUR(150) |
COMMON/FORMST / |
1 ST(262)sTC(292)YsDA(292)sHC(292)sXM(252)sPF(2)sPW(2) "~
DIMENS ION j‘~
I

REAL K1sK2,M1sM2 .
LOGICAL BCALTR L

LBAND=2
NBAND=3
MBAND=4
REWIND 8
REWIND 9
5 CONTINUE
C
CH¥®HH # READ AND PRINT OF CONTROL INFORMATION
C .
READ (55,1000} HEDsNUMNP sNUMEL o NUMMAT sNDTsDT sANGFQsTO, INTERsN1 s KAT
IF (KAT<EQeQ) GO TO 30
WRITE (6s 2050)
GO 10 35
30 WRITE (6s 2055)
35  CONTINUE f ?
WRITE (652000) HEDsNUMNP s NUMEL s NUMMAT s NDTsDT s ANGFQsTOs INTER §
DO 25 M=1s NUMMAT ;
READ (5351005) (EE(1sM)s 1=1sT7) |
25 WRITE (64+2005) My (EE(IsM)s I=1s7) ‘
C
¢

IF (KAT<EQe0O) WRITE (64+2010)
IF (KATeNE.O) WRITE (652011)
L=0
50 READ (551015) NsKODE(N)sR(N)sUR(N) sUDOT(N)sT(N)
NNL=L«+1
DIFF=N-L
DR=(R(N)~R(L)}/DIFF

.
C*%%¥% % READ OR GENERATE NODAL POINT INFORMATION
75 . b=b+l |

z

%

|




IF (N=L) 55560565

65 KODE(L})=0
IF (KODE(NNL-1)«EQ.KODE(N)) KODE(L)=KODE(N)
R(LY=R(L-1)+DR E
UR(L)I=0.0
T(L)1=0.0
UDOT(L)1=0.0
GO TO 75

60 WRITE (652015) (KsKODE(K)sR(K)sUR(K) sUDOT(K)sT(K)s K=NNLsN)
IF (NUMNP-N) 55,100+50

55 WRITE (652100) N

CALL EXIT
100  CONTINUE
C
CRE‘® * READ AND PRINT OF ELEMENT PROPERTIES ‘
C [
WRITE (652025) .
N=Q P
225  READ (551020) Ms (IX(MsI}s I=1,3)
205  N=N+1

|
IF (M=N) 210,215,220 ’
220 IX{Negli=IX{(N-141)+1
IX(Ns2)=IX(N~1s2)+1
IX(Ne3)=IX(N~153)
215 WRITE (632020) Ns (IX(NsI)y I=153) ‘
IF (M=N) 210+230,205 ‘
230 IF (NUMEL=N) 20052005225
210 WRITE (6+,2030) N
CALL EXIT
200 CONTINUE
NUMK=2 #NUMNP

C

CHrER®E % INITIALIZE

C
DO 240 N=1, NUMNP
FIN)=060
Q{N)Y=040
CiNs33=0.0

DO 240 M=1ls 2
K1{(NsM1=060
K2Z{NsM}=0e0
M1{NsM)=0e0
MZ{NsM)=0,0
240 CiNeM)I=060

CALL FORM ({I1I,JJ,KK)
FCIIy=F(II)+PF (1)
FOJD)=F{JU1+PF(2)
QIIY=Q(II}+PQ(1)

C

CHHEHEX # FORM TOTAL MATRIX QUANTITIES

C
DO 275 N=1sNUMEL f
IT=1X{Ns1) :
JJ=1XUINs2)
KK=1IX(Ns3)




250

275

C®% %%

C¥% %

605

CH%E%%
C#* % %%

335
330
320
325

345

350

QUIN=Q(JII)+PQ(2)

DO 250 I=152

KI(IIeI)=KI(IIsI)+ST(1,1)
K2(IToI)=K2(I1sIy+TC(1lsl)
MI{ITIoI)=MI(IIsIV+XM(1s])
M2(I1eI1)=M2(TI11)+HC(1s1)
ClIIeI+1)=C(III+1)+DALLs])
ClJIds I=ClJIJs 1) +DA(2, 1)
K1(JJdsl3=K1(JJs1)+ST(2s2)
K2(JJdse1)=K2(JJs1)+TC(2+2)
M1(JJdel)=M1(JJsl)+XM(2+2)
M2(JJsel)=M2(JJsl)+HC(252)
CONTINUE

WRITE TIME INDEPENDENT INFORMATION ON TAPE

WRITE (8) ((K1(IsJ)s K2(IsJ)s MLI(IsJ)s M2(I,J)s J=1s LBAND)S
{C{1sJ)s J=1» NBAND)s UR(I)s T(I}s F(I)s QtI)s I=1s NUMNP)
REWIND 8

"TIME=0.0

LL=0
READ (5,1010) BCALTR

BEGIN TRANSIENT CALCULATIONS

‘DO 600 LNDT=1, NDT

IF (TIME<EQe0s0) GO TO 605

IF {«NOT<BCALTR) GO TO 610

READ (551025} DT

READ (8) ((K1(IsJ)s K2(IsJ)s ML(IsJd)s M2(1sJ)s J=1s LBAND),
(C(IsJ)s J=1s NBAND)Ys UR(I)s T(I)s F{I)s Q(I)s I=1s NUMNP)
REWIND 8

DT2=0.5%DT

DT3=12.0/(DT*DT)

MODIFY FOR DISPLACEMENT AND TEMPERATURE BOUNDARY CONDITIONS-
ADD CONCENTRATED FORCES AND HEAT FLUXES

DO 300 N=1sNUMNP

IF («NOT.BCALTR) GO TO 325

IF (TIMEeEQsQs0) GO TO 345

IF (NeEQel) READ (5,1030) NNsDF,TQ
IF (N=NN) 35053205330

READ (5+1030) NNsDF,-TQ

GO TO 335

UR{N)=DF

TN =TQ

GO TO 350

URR{N)=UR(N)

TTIN)Y=T (N}

GO TO 350

URR(N}=0.0

TT(N)=0e0

IF (KODE(N)OEQ.Z.ORQKODE(N)0EQC3) TT(NY=T0O
FINI=F(N)+URIN)/3:0+2.0%¥URR{N) /3.0

I
i
i




285

1290

295

310

315

340

300

C
CH&ER® #

C

QINYI=QIN)+0S*(T(NI+TTI(N}))
IF (KODE(N)EQs0) GO TO 340
IF (KODE(N)sNEelsANDoKODE(N)eNEs3}) GO TO 295
U=UR(N)/360+2s0%¥URR(N) /340
V=0e5% {URIN)~URR(N})

K=N=-1

IF {(KeLEs0O) GO TO 285
FIKy=F(K)=-K1(Ks2)3*U
QIKI=QIK)=C(Ns1) ¥V
KI({Ks21=0+0

M1{Ks231=060

C{Nsl11=060

K=N+1

IF (KeGToNUMNP) GO TO 290
FIKYy=F(K)-K1{Ns2)*U

QUK =QIK)~C(Ns3) *V
K1{Ns23=0.0

MI{Ns2)=0,0

C(Ns31=0.0

FINy=UR(N)

QINY=QIN}~C(Ns2)#V
KL{Ns1)=1s0

ML(Ns13=0.0

CiNs21=0,0

IF (KODE(N)eNEs2sANDKODE(N)sNEs3) GO TO 340
U=05# (TINI+TT(N)=-2.0%TO}
V=0o5% (T I(NY-TT(N))

W= ({TIN)=TO+2.0%¥(TT(N)=TO)})/ 3.0
K=N=1

IF (KelLLEsO} GO TO 310
FIKy=F(K)+C(Ky3)¥W
QIK)=Q(K}=K2(Ks2 ) ¥U~-M2(Ko2) *V
K2(Ks21=000

M2(Ks21=0.0

C(Ks31=060

K=N+1

IF (KoGTNUMNP) GO TO 315
FIKy=F(K)Y+C{Ko1)#*W
QEK)=Q(K)=K2(Ns2)y*¥U-M2{(No2)*V
K2(Ns21=050

M2{Ns2)1=060

C{Ks11=060

Q{NY=T(N)~-TO
FINy=F(NY+C(No2) #W
K2{Ns1)=1s0

M2{Ns1)=0e0

C(Ns21=0e0
URR(N)=UR(N)
TT(N)Y=T(N)

IF (TIMEsEQe0e0) TI(N)Y=TO
IF (TIME«EQeOo0) UR(NI=0.0
CONTINUE

FORM EFFECTIVE LEFT HAND SIDE

i
i
|
i
i
|
)
i
i




400

CHE®® *

CH#H® *

610

CHEE® *

550

500

CR*E¥® *

DO 400 N=1s NUMNP

I[=2#N=-1

JJ=11+1

AlT1s1)=K1(Ns1)+DT3#M1(N,1)
A(I142)=-20%C{Ns2)/3.0
A{IT1s3)=K1(Ns2)+DT3*¥M1(N,2)
Alll1s4)==~260%C(Ns3)/3.0 :

AlJIs 1) =—(M2INs 1) +DT2%K2(Ns1))1%#260/9460
A(JJs2)==2.0%C(N+151)/360
AlJJs3)=—(M2(Ns2)+DT2%K2(Ns2))%¥2s0/940
A(JJe41=060

PUT A~-MATRIX IN TRIANGULAR FORM

CALL SYMSOL (1)

CALCULATE UNKNOWNS AT THE END OF EACH TIME STEP

TIME=TIMF+DT
LL=LL+1

CALCULATE EFFECTIVE LOAD MATRIX FOR THE TIME INCREMENT

IF (TIME.EQeDT) GO TO 550

IF («NOT.BCALTR) GO TO 550

READ (9) (UR(IVsT(I)s I=1s NUMNP)

REWIND 9

DO 500 N=1s NUMNP

I11=2%N-1

JU=11+1
BII)=F(N)+MI{(Ns1)*(DT3*¥UR(N)+40o0/DT*UDOT(N)I+CINs2)*(T(N)-TO)/3,0
BlJJy==DTHQ(N)/9e0~C(Ns2)¥{20¥URIN} /3 0+DT¥UDOTINT /901 ~M21 N, ) ¥
260/9-0¥(T(N)~TO)

IF (Ne.NEo.1)
B(IT)=B(IT)+ML(N=1s2)¥(DT3*%UR(N=-1)+4e0/DT#UDOT(N-1))+C(No1}*(T(N~-1
)=T0) /3.0

IF (NeNENUMNP)
BCIT)=B(II)+ML(No2) ¥ (DT3*%UR(N+1)+4o0/DT*UDOT(N+1))+C(Ns3)*(T{N+1)~
TO) /3.0

IF (NeNEs1)
B(JJY=B(JJS)~C(N=153)#(20%¥URIN=1)/300+DT/9,0*UDOT(N-1))~-M2(N~-1,2)%
{T{N=13~-TO)%¥2,0/9.0

IF (NeNEoNUMNP) ’
B(JJY=BlJI)=CUN+151)%(2e0%UR(N+1)/3.0+DT*UDOTIN+1)/90)~M2(Ns2)*¢
TIN+1)~TO)#260/900

CONTINUE

SOLVE FOR UNKNOWNS

CALL SYMSOL (2}

DO 650 N=1, NUMNP

11=2%N~1

JI=1T1+1
TEMP=6.0%¥B(11)-5-0%UR(N)~DT*UDOT(N)
IF (KODE(N)eEQeleORKODE(N)EQs3)




650

CH¥®¥H

675

725

600

1000
1005
1010
1015
1020
1025
1030
2000

2005

2010
2011

2015
2020
2025
2030
2035
2040

2041

2045

GO~ P WM

N =

p—

TEMP=BI(I11)
TIN)=2.0%B(JJI=TIN)+2.0%TO

IF (KODE(N)oeEQe2eORKODE(N)sEQe3)
T(N)=TO+B(JJ)

UDOTIN)=2e0/DT*{ TEMP-UR(N)})~UDOT(N)
UR(N)=TEMP

IF («NOT.BCALTR) GO TO 67%

WRITE (9) {(URtIVoT(I)s I=1¢ NUMNP)
REWIND 9

PRINT DISPLACEMENTS AND TEMPERATURES

IF (LLeLT-INTER) GO TO 600

IF (KAT.EQe0) WRITE (6,2040) TIME
IF (KATeNE«O) WRITE (6,2041) TIME
LL=0

DO 725 N=1s NUMNP

WRITE (652035) NsRIN})sUR(N) s T{N)UDOT(N}
CALL STRESS

CONTINUE

WRITE (6.2045)

GO 70 5

FORMAT (12A6/41543F10.0s315)
FORMAT (7F10.0)

FORMAT (L5)

FORMAT (215:4F10.0)

FORMAT (415)

FORMAT (F10.0)

FORMAT (110s2F1060)

FORMAT (1HO 12A6/

30H0 NUMBER OF NODAL POINTS—-—~—=m 13/
30H0 NUMBER OF ELEMENTS~-—===———w 13/
30H0 NUMBER OF DIFFe MATERIALS-=~ 13/
30H0 NUMBER OF TIME STEPS-—=———-=—- 137
30H0 TIME STEP INCREMENT————w=—ww—- El2.4/
30H0 ANGULAR VELOCITY-=——=r—=—————— El12e.4/
30H0 REFERENCE TEMPERATURE-=~—~—=—-— Fl2.2/
30H0 CYCLE PRINT INTERVAL-=-—==-w- 13/77)
FORMAT (16HOMATERIAL NUMBER15H LAMBDA 15H MU 15H
ALPHA 15H CONDUCTIVITY 15H SPECIFIC HEAT 15H DENSITY

15HHEAT GENERATION/(1116s7E1565))
FORMAT (102H1INODAL POINT BeCe TYPE R-ORDINATE R~-LOAD OR DISPLAC

EMENT VELOCITY TEMPERATURE OR HEAT FLUX//)
FORMAT (102HINODAL POINT B«C, TYPE X=ORDINATE X—-LOAD OR DISPLAC
EMENT VELOCITY TEMPERATURE OR HEAT FLUX//)

FORMAT (211251F120251E24e7s1E186751E2447)

FORMAT (1113s 2165 1113)

FORMAT (40H1 ELEMENT I J MATERIAL
FORMAT (22HOELEMENT CARD ERROR N=1I5)

FORMAT (1551F136293E1765)

FORMAT (16H1 TIME=E12.5//69H NP R-ORDINATE R-DISPLA
CEMENT TEMPERATURE VELOCITY/ /)
FORMAT (16H1 TIME=E1265//69H NP X—-ORDINATE X-DISPLA
CEMENT TEMPERATURE VELOCITY/ /)

FORMAT (15H1END OF PROBLEM)




2050 FORMAT (27H1ONE DIMENSIONAL PLANE BODY )

2055  FORMAT (24H1AXISYMMETRIC SOLID BODY )
2100 FORMAT (26HONODAL POINT CARD ERROR N=15)
END

|

i

|




‘$IBFT C ODEP DECKsLISTsREF
C
CHEXRE * ONE-DIMENSIONAL ELEMENT SUBR®UTINE
C
SUBROUTINE FORM (11,JJsKK} §
COMMON/ELDATA/ §
1 EE(8512)sR{150)sTOsANGFQKAT
COMMON/FORMST/ k
1 STU2:2)sTC{2s2)sDA(2s2) sHC(2s2)sXM(2s2)sPF(2)sPQ(2) |
RI=R(I1) |
RJ=R(JJ) |
R1J=RJ-RI
XLAM=EE(1,KK)
XMU=EE (2 +KK)
BETA=EE (3 sKK)¥ (3 0%XLAM+20¥*XMU)
CON=EE(4+sKK)/TO
DEN=EE (6 sKK)
SPHT=EE(5¢KK)/TO
QX=EE(7sKK)/TO
FANG=EE (6 s KK} *ANGFQ
IF (KAT.EQ.0) FANG=FANG*ANGFQ
DO 50 I=1+2
PF(1)=060
PQ(1)1=00
DO 50 J=1,2
ST(IsJ1=0e0
TC{IeJ)=060
DA(1+J1=060
HC(1sJ)=040
50 XM(IsJ)3=060
IF (KATsEQs0) GO TO 100
ST{1lel)=(XLAM+2.0%¥XMU)/RI1J
ST{1s2)==-ST(1s1)
ST{2:1)=5T(1s2)
ST(2+:2¥=5T(1ls1)
TCl1.13¥=CON/RTJ
TC(1:23=—TC(1s1)
TC(2:13=TC(1s2)
TC(2:2)=TC(1ls1l)
DA(1s1)=-0,5%#BETA
DA(1s2)1=DA(1s1)
DA({2+1)=0,5%BETA
DA(2+2)=DA(2+1)
HC(11)=SPHT*R[J/3e0
HC(192)=0e5%HC{1,1)
HC(2:13=HC(1s2)
HC(2s2)=HC(1s1)
XM{1,1)=DEN#¥RIJ/3.0
XM{162)=06e5#XM(1,1) |
XM(2:1)=XM(1s2) |
XM({2s2)=XM(1s1) |
PF(1)=0e5*FANG*RIJ g
I

PFL2)=PF (1)
‘PQ(1)=Oo5*QX*RIJ




PQ(2)=PQ(1)
GO TO 200
100 X1=0.0
IF (RIeNEeOs0) XI=ALOG(RJ/RI)
XJ=2e 0% { XLAM+XMU) |
XK=XLAM+2 o 0%XMU |
XK=XI%#XK/ (RIJ*RIJ) i
ST{1s1)=RI*RIEXK-XJ
ST(1,2)=-RI¥RJI*¥XK ;
ST(2:1)=5T(1s2) E
ST(2+2)=RI*¥RI#*#XK+XJ |
TC(1s1)=05%CON¥(RI+RJ)/RIJ
TC(1s2)=-TC(1ls1) ‘ ;
TC(2,11=TC(1s2) §
TC(2,2)=TC(1ls1)
DA(1,1)=BETA#(RJ~4e0%RI1) /6.0
DA(12)=—BETA*¥(RJ+2.0%#R1)/640
DA(2s1)=BETA*¥(2.0%RJ+RI1) /660
DA(2s2)=BETA%(4,0%RJ-RI) /640
HC(1s1)=SPHT*#RIJ¥(RJ+3,0%¥RI1)/12.0
HC(1s2)=SPHT*¥RIJ¥(RJI+RI1)I/12.0
HC{2:1)=HC(1s2)
HC(2+2)=SPHT#RIJ*¥(3.0%RJ+RI)/1240
XM(1s1)=DEN#RIJ#*(RJI+3.0%R1)/ 1260
XM(1s2)=DEN#RIJ*(RI+RJ)/12.0
CXM(251)=XM(12)
XM(2s2)=DEN¥RIJ*¥(30%¥RJI+RI1/1240
PF(1)1=FANG¥RIJ*¥{RI+2,0%¥R1)/60
PF(21=FANG#*RIJ*(2.0%RJ+RI) /6.0
PQ(1)=QX*RIJ*(RJ+20%R1) /640
PQ(2)=QX¥RIJ*¥(2,0%RI+RI) /640 |
200 RETURN L
END

|
?
L
i i
L
L
L
L
[
p
s
i

|

[

|

|




$IBFT C SYMS DECKsLISTsREF
SUBROUTINE SYMSOL (KKK)
COMMON/SYMARG/ NNsMMsA(300,4)5B(300)
GO TO (1000s2000), KKK

CH¥#¥ #* REDUCE MATRIX

1000 DO 280 N=1,NN
DO 260 L=2sMM |
C=A(NsL)Y/A(Ns1)
I=N+L-1
IF (NNeLTeI) GO TO 260"
J=0
DO 250 K=LsMM
J=J+1
250  A(I,J)=A(IsJ)=C*¥A(NsK)
260  A(N,sL)=C
280  CONTINUE

GO TO 500
C
CHERE # REDUCE VECTOR
C

2000 DO 290 N=1sNN

DO 285 L=2+MM

T=N+L-1

IF (NNeLTeI) GO TO 290
285 B(I)=B(I)=A(NsL)*BI(N)
290 B{N)y=BI(N)Y/A(Ns1)

CHERE * BACK SUBSTITUTION

N=NN
300 N=N-1
IF (NsEQe0O) GO TO 500
DO 400 K=2 MM
L=N+K=1
IF (NNeLTsL) GO TO 400
BIN)=BIN)=-A(NsK)*B{L)
400 CONTINUE

GO TO 300 ii
C
CH*E®¥® % RETURN
C I

500 RETURN
END




$IBFT C  STRS DECKsLIST sREF

¢ z
CHE® * SUBROUTINE TO CALCULATE THE STRESSES ; %
c
SUBROUTINE STRESS
COMMON/ELDATA/
1 EE(8512)sR(150)5TOsANGFQ,KAT
COMMON/STRESQ/ ‘

1 NUMELsIX{(1503)sT(150)sUR(150)
REAL LAMsMU ‘
IF {KAT.EQ.0) WRITE (652000) é
IF (KATeNE<O) WRITE (6452001)
DO 100 N=1s NUMEL

=IX{Nsl)
J=IX(Ns2)
MTYPE=IX{(Ns3) ;
LAM=EE (1 sMTYPE) g
MU=EE (2 sMTYPE) §
AL=EE(3sMTYPE) ,
AL=AL*¥{3.0%LAM+2,0%*MU)
DEL=R(J)-R(1) |
RM=0e5%(R(JI+R(1))
ERR=(UR(J)~UR(1))/DEL
ETT=0.0

IF (KAT+EQ.O)

1 ETT=ERR=(R(T)/RM®#UR(J)~R({J) /RM*¥UR(I))
TM=T(J)/DEL*(RM~R(I1))4+T(1)/DEL*(R(J)~RM) f
TRR=LAM* (ERR+ETT ) +2+ 0 *MUXERR~AL*{TM=TO) |
TTT=LAM% (ERR+ETT)+2e O*¥MUXETT—~AL¥ (TM=TO) |
T2Z=LAM* (ERR+ETT)—~AL* (TM~TO)

S1G=0.0 ;
ERG=0,0 ;
IF (ALeNE«0e0Q) %
1 SIG=TRR/(AL%TO)
IF (ALeNE<0«0) -
1 ERG=ERR#*(LAM+2,0%MU)/ (AL%TO)
100 WRITE (652005) NoRMsTRRsTTTsTZZsSIGSERG

RETURN

2000 FORMAT (58H1 ELEMENT R-ORDINATE R~-STRESS T-STRESS Z-STR
1 ESS//)

2001 FORMAT (58H1 ELEMENT X-ORDINATE X~-STRESS Y-STRESS Z-STR
1 ESS//)

2005 FORMAT (1105s0P1F14.2s1P3E12:3,0P2E15.4)
END




$IBFT C INLT DECK

5 READ (551000) HEDsNCONTsNT3GAMsXsDELTASERROR
WRITE (6s2000) HEDsNCONTsMCONT sNTsGAMsDELTA s ERROR
DO 500 I=1sNT
READ (5,1100) T
SUML=0.0
SUMM=00 ‘
SUMN=O e O
DO 100 N=14NCONT,2
XL=2%N-3
XM=2%N-1
XN=2%N+1
IF(NeEQel) XL=060
Al=XL*¥PI/(2.0%T)

A2=XM%*PI/(260%T)

AB=XN®#PI1/(2.0%T)

SUML1=0.0 '

SUML2=0.0

SUMM1=0.0

SUMM2=0.0

SUMN1=0,0 ]

SUMN2=0,0 ‘

J
i
|
|
i
I
]
|

C :
CHE®H® * TH1S CODE COMPUTES THE INVERSE LAPLACE TRANSFORM NUMERICALLY %
CHAEX® * THROUGH THE USE OF GAUSSIAN QUADRATURE FORMULAE. %
C : %
DIMENSION §
1 HED(12)sXI(8)sWI(B8)sA(3) E
DATA P1/361415926/ i
DATA XI/=0e96028986s~0e796666485~0652553241,-0s18343464+:+01834346 3
1 4540052553241 5+0.796666485+0696028986/ sWI/+0s101228545+0422238103, |
2 00313706655063626837850¢36268378,0631370665,0,2223810350.10122854/ |
MCONT=8
ISTOP=0 |
CCRERE % NCONT=NUMBER OF INTEGRATION CYCLES TO BE CONSIDERED
CHE®RE ¥ MCONT=0RDER OF THE GAUSSIAN QUADRATURE FOR EACH HALF WAVE E
CHERR GAM=REAL PART OF THE INTEGRATION VARIABLE |
CHitwst * DELTA=ELASTIC, THERMOMECHANICAL COUPLING CONSTANT }
CHE%® % X=SPACE POINT OF INTEREST {
CHERE # T=TIME POINT OF INTEREST |
C -
CH¥#%E % READ AND PRINT OF INPUT DATA
C
|

DO 200 M=1s MCONT
Y1=0e5%(A1+A2+XT (M) *(A2~A1))
Y2=0e5%(A2+A3+X1 (M) %(A3-A2))
CALL RFN (XsY1sGAMsDELTA,A) ,
SUML1=SUML1+WI(M)*A(1)*COS(Y1#T)*(A2-A1)/240
SUMM1=SUMM1+WI (M)*A(2)*¥COS{Y1#T)*(A2-A1)/240
SUMN1=SUMNL1+WI (M) *A(3)%COS(Y1*T)*(A2-A1)/240
CALL RFN (XsY2sGAMsDELTAA)
SUML2=SUML2+WI (M)%A(1)*COS(Y2%T)*(A3=A2)/2.0
SUMM2=SUMM2+WI (M) *A(2)¥COS(Y2*¥T)*(A3=A2) /240
200  SUMN2=SUMNZ+WI(M)*A(3)%COS(Y2%T)*(A3-A2)/240
ADDL=SUML1+SUML2 '




ADDM=SUMM1 +SUMM?2
ADDN=SUMN1+SUMN2 |
ADD1=ABS(ADDL) .
ADD2=ABS{ADDM) |
ADD3=ABS (ADDN)
ADD=ADD1+ADD2+ADD3
IF (ADDeLE.ERROR})Y GO TO 300
SUML=SUML+2 . O*EXP (GAM®T) /PI *ADDL
SUMM=SUMM+2 s O*EXP (GAM%T) /P 1 *ADDM
100 SUMN=SUMN+2 . O*¥EXP (GAM#*T) /PI1*ADDN f
1STOP=1
WRITE (6s2300) ISTOP
300 WRITE (642100) XoTsSUMLsSUMM,SUMN
500 CONTINUE
WRITE (6+2200)
GO TO 5
1000 FORMAT (12A6/21554F10.0)
1100 FORMAT (F1060)}
2000 FORMAT (1H1 12A6/

1 4OHONUMBER OF TNTEGRATION CYCLES——m=w—m==m=zTI0/ \
2 40HOORDER OF GAUSSIAN INTEGRATION===mmmmn= =110/ ‘
3 40HONUMBER OF TIMES TO BE EVALUATED-=-—=====110/

4 4OHOREAL PART OF INTEGRATION VARIABLE===-==F5,2/ ~
5

6  40HOINTEGRATION ERROR BOUND====—mmmmmemee=zE1244///)

2100 FORMAT (I0Xs2HX=F56255X92HT=F5.2755X s 1ZHTEMPERATURE=E15656 s5X s THSTRE
1 S55=E1566+5Xs13HDISPLACEMENT=E15.6)

2200 FORMAT (15HL1END OF PROBLEM)

2300 FORMAT (5Xs6HISTOP=15//)

|

1

]

|

|

E

i

40HOTHERMOMECHANICAL COUPLING CONSTANT=—===zE12.4/ ’
END
!

|

i

i

i
I
P
i
;
}
i




$IBFT C REFN  DECK

c
CHEX® % COMPUTES TEMPERATURE »STRESS,AND DISPLACEMENT INTEGRANDS FOR .
CxEXE * FIRST DANILOVSKAYA PROBLEM (COUPLED) ‘
C

SUBROUTINE RFN (XsY+sGAMSsDELTALA)
DIMENSION A(3)

COMPLEX PsP1sP2sP3sPM]14PM24sPPsPQsDENSPEL1SsPE2sPT1sPT2,PT3
CON=SQRT(2+0)

P=CMPLX{GAMsY)

P1=P+1.0+DELTA

P2=P1l¥P1-4,0%P

P3=CSQRT(P2) :
PM1=CSQRT(P*P1+P%P3)/CON
PM2=CSQRT(P*P1~P*%P3)/CON
PP=P-~1.0-DELTA+P3
PQ=P~1s0~DELTA-P3
PE1=CEXP(=PM1¥*X})
PE2=CEXP(-PM23¥X)

DEN=P3
PTl=(PP*PE2~-PQ*¥PE1)/(2s0¥P*DEN)
PT2=(PE1-PE2)/DEN
PT3=(PM2#PE2~-PM1*PELl )/ (P*P*DEN)
A(1)=REAL(PTL1}Y

AlZ)=REALTPTZ)

A(3)=REAL(PT3)

RETURN

END

1
!
|
1
i
i




$IBFT C REFN DECK

c |
CH®®N * COMPUTES TEMPERATURE sSTRESSsAND DISPLACEMENT INTEGRANDS FOR P
CHERE * THE RAMP TEMPERATURE INPUT (COUPLED)

C

SUBROUTINE RFN (XsYsGAMsDELTAsA)
DIMENSION A(3)
COMPLEX PsP1sP2sP3sPM1sPM2sPPsPQosDENSPEL1PE2sPT1sPT2sPT3 :
CON=SQRT(240). ' !
P=CMPLX(GAMsY) : |
P1=P+1.0+DELTA
P2=P1¥P1—4e0%P 5
P3=CSQRT{P2} |
PM1=CSQRT(P*P1+P%P3)/CON |
PM2=CSQRT (P*P1-P*P3)/CON |
PP=P—1.0-DELTA+P3 |
PQ=P-1,0-DELTA~P3 |
PE1=CEXP(—-PM1%X) |
" PEZ=CEXP(~-PM2%X) |

DEN=P%*P3 ;
PT1=(PP*PE2~PQ*PE1)/{2+0%P*¥DEN) ;
PT2=(PE1-PE2)/DEN |
PT3=(PM2%PE2-PM1*PELl) / (P*P*DEN) ;
A(1)=REAL(PT1) g
A(2)=REAL(PT2) ‘i
A(3)=REAL(PT3) ~
RETURN
END

[

|

|

|




$IBFT C INLT DECK

c |
CHEE® * THIS CODE COMPUTES THE INVERSE LAPLACE TRANSFORM NUMERICALLY |
CHREXE * THROUGH THE USE OF GAUSSIAN QUADRATURE FORMULAE.
C
DIMENSION
1 HED(12)sXI(B)sWI(B)sA(3)
DATA PI/361415926/
DATA XI/=00960289865~0¢79666648:-0:525532415-0218343464,+001834346
1 4540652553241 5+0.79666648,+0e96028986/sWI1/+0.101228545+0.22238103
2 0631370665500362683785003626837850031370665,0.2223810350.10122854/
MCONT=8 L
1STOP=0 : f
CHARE % NCONT=NUMBER OF INTEGRATION CYCLES TO BE CONSIDERED ;
CHER® % MCONT=ORDER OF THE GAUSSIAN QUADRATURE FOR EACH HALF WAVE |
CH®*% % GAM=REAL PART OF THE INTEGRATION VARIABLE ‘
CEEXH ¥ DELTA=ELASTIC, THERMOMECHANICAL COUPLING CONSTANT
CHEEE 3 X=SPACE POINT OF INTEREST
CHEXH® # T=TIME POINT OF INTEREST
CH¥kxsd % H=DIMENSIONLESS BOUNDARY LAYER CONDUCTANCE
C
CHRERX * READ AND PRINT OF INPUT DATA |
C

5 READ (5,1000) HEDsNCONTsNT sGAMsXsDELTAHsERROR l
WRITE (652000) HED sNCONT sMCONT sNT sGAMSDELTAHL,ERROR ™
DO 500 I=1sNT
READ (5,1100) T V
SUML=0,0 ’ E
SUMM=0,0 1
SUMN=0,0 : , |
DO 100 N=1sNCONT,2° L
XL=2%N=-3 L
XM= 2%N-1 |
XN=z2#N+1
IF(NeEQoel) XL=0,0
Al=XL*¥PI1/(2.0%T) : ~“
A2=XM¥P1/(2.0%T) |
A3=XNEPI/(2.0%T) - ‘
SUML1=0,0 -
SUML2=060 ‘-f
SUMM1=0.0 :
SUMM2=0.0
SUMN1=060
SUMNZ=0,0
DO 200 M=1s MCONT
Y1=0e5%(A1+A24XI (M)%(A2=-A1))
Y2=0e5%(A2+A3+XI (M) %¥(A3-A2))
CALL RFN (XsY1lsGAMSsDELTAAH)
SUML1=SUMLI+WI(M)#A(1)*COS(Y1*T)¥(AZ~A1)/2.0
SUMM1=SUMMI+WI (M)*A(2)*COS{Y1#T)*(A2-A1)/2.0
SUMN1=SUMNI+WI(M)*A(3)%COSIY1*T)I*(A2-A1)/2.0
CALL RFN (XsY2sGAMsDELTAsAH)
SUML2=SUML2+WI(M}*A(1)%COS(Y2%#T)1*(A3=-A2)/2.0
SUMM2=SUMM2+WI (M) ¥A(2)%COS{Y2*T)%*{A3~A2)/240




200 SUMN2=SUMN2+WI (M) *A (3)*COS(Y2%T)*(A3-A2)/2.0 3
ADDL=SUML1+5UML2 g
ADDM=SUMM]1 +SUMM?2
ADDN=SUMN1+SUMNZ2
ADD1=ABS(ADDL) ;
ADD2=ABS (ADDM)

ADD3=ABS (ADDN)

ADD=ADD1+ADD2+ADD3

IF (ADDsLE.ERROR) GO TO 300

SUML=SUML+2.0*EXP (GAM#*T) /PI#ADDL %

SUMM=SUMM+ 2, O¥EXP ({ GAM%T) /P ®#ADDM
100 SUMN=SUMN+2, 0*EXP (GAM*T ) /PI*ADDN

1STOP=1

WRITE (6+2300) 1STOP
300 WRITE (652100) XoT sSUMLsSUMMsSUMN
500 CONTINUE

WRITE (6+2200)

GO 7O 5

1000 FORMAT (12A6/21555F10.0)

1100 FORMAT (F10.0)

2000 FORMAT (1H1 12A6/

1 40HONUMBER OF INTEGRATION CYCLES—=—=—= wm——==110/
2 40HOORDER OF GAUSSIAN INTEGRATION#——mm———= =110/
3 4OHONUMBER OF TIMES TO BE EVALUATEDw=—==-=-=110/
4 40HOREAL PART OF INTEGRATION VARIJABLE-——w-= =F5¢2/
5 LZOHOTHERMOMECHANTCAL CTOUPLING TONSTANT-—--= =E12e47
6 40HOBOUNDARY LAYER CONDUCTANCE-—=w=——= irmmezE 1204/
7 40HOINTEGRATION ERROR BOUND~==—ww=—me—m——— 2£12e4///)

2100 FORMAT (10Xs2HX=F5+25:5Xs2HT=F5.2+5Xs 12HTEMPERATURE=E15.6+5Xs THSTRE
1 $5=F15.655Xs 13HDISPLACEMENT=E1546) '

2200 FORMAT (15H1END OF PROBLEM)

" 2300 FORMAT (5Xs6HISTOP=1577)

END




$IBFT C REFN DECK

C

CH¥x% * COMPUTES TEMPERATURE sSTRESSsAND DISPLACEMENT INTEGRANDS FOR
CHt¥H® * SECOND DANILOVSKAYA PROBLEM (COUPLED)

C

SUBROUTINE RFN (XsYsGAMsDELTAsAsH)

DIMENSION A(3) '

COMPLEX PsP1sP23sP3sPM]1 sPM2sPPsPQosH1sH2 ¢sDENSPE1SPE2sPT1,PT2+PT3
CON=SQRT(240) ;
P=CMPLX(GAMsY) E
Pl=P+1.0+DELTA

P2=P1%P1l=4 Q%P

P3=CSQRT(P2)

PM1=CSQRT (P*P1+P*P3) /CON
PM2=CSQRT (P*P1~-P%P3) /CON
PP=P-1¢0-DELTA+P3
PQ=P-1e0-DELTA-P3
PE1=CEXP(~PM1%X)

PE2=CEXP (~PM2%X)

Hl=H+PM1

HZ2=H+PM2

DEN=H2#PP-H1%PQ
PT1=H*(PE2%¥PP-PE1%PQ)/ (DEN*P)
PT2=2.0%H%(PE1-PE2)/DEN v
PT322,0%¥H% (PM2¥PEZ~PM1¥PET) 7 (P¥P¥DEN) ;
A(1)=REAL(PT1) i
A(2)=REAL(PT2) %
A(3)=REAL(PT3)
RETURN

END






