
Lawrence Berkeley National Laboratory
LBL Publications

Title

A Quantitative Approach to Architecting All-Flash Lustre File Systems

Permalink

https://escholarship.org/uc/item/4wn1341d

ISBN

978-3-030-34355-2

Authors

Lockwood, Glenn K
Lozinskiy, Kirill
Gerhardt, Lisa
et al.

Publication Date

2019

DOI

10.1007/978-3-030-34356-9_16
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wn1341d
https://escholarship.org/uc/item/4wn1341d#author
https://escholarship.org
http://www.cdlib.org/


A quantitative approach to architecting all-flash
Lustre file systems

Glenn K. Lockwood, Kirill Lozinskiy, Lisa Gerhardt, Ravi Cheema, Damian
Hazen, and Nicholas J. Wright

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{glock,klozinskiy,lgerhardt,rcheema,dhazen,njwright}@lbl.gov

Abstract. New experimental and AI-driven workloads are moving into
the realm of extreme-scale HPC systems at the same time that high-
performance flash is becoming cost-effective to deploy at scale. This
confluence poses a number of new technical and economic challenges
and opportunities in designing the next generation of HPC storage and
I/O subsystems to achieve the right balance of bandwidth, latency, en-
durance, and cost. In this work, we present quantitative models that use
workload data from existing, disk-based file systems to project the ar-
chitectural requirements of all-flash Lustre file systems. Using data from
NERSC’s Cori I/O subsystem, we then demonstrate the minimum re-
quired capacity for data, capacity for metadata and data-on-MDT, and
SSD endurance for a future all-flash Lustre file system.

Keywords: architecture · Lustre · flash

1 Introduction

The conventional wisdom of I/O subsystem design in high-performance com-
puting (HPC) are rapidly changing as a result of the broadening scope of HPC
beyond traditional modeling and simulation. The emergence of applying artifi-
cial intelligence (AI) at scale is showing promise as a completely new means to
extract new insights from huge bodies of scientific data [13, 14]. Concurrently,
there has been an explosion of high resolution detectors available to experimen-
tal and observational scientific communities [5, 18] which can produce scientific
data at unprecedented rates [3,20]. These workloads do not simply perform I/O
to save and load the state of their calculation synchronously; rather, they are
often marked by having to process volumes of data that far exceed the amount
of memory available on their processing elements. Furthermore, the amount of
computations they perform are often dictated by the contents of the data they
are processing and cannot be determined a priori. As a result, the I/O patterns
of these emerging workloads differ from those of traditional checkpoint-restart
and do not perform optimally on today’s production, disk-based parallel file
systems.

Fortunately, the cost of flash-based solid-state disks (SSDs) has reached a
point where it is now cost-effective to integrate flash into large-scale HPC systems



2 G.K. Lockwood et al.

to work around many of the limitations intrinsic to disk-based high-performance
storage systems [6, 11, 19]. The current state of the art is to integrate flash
as a burst buffer which logically resides between user applications and lower-
performing disk-based parallel file systems. Burst buffers have already been
shown to benefit experimental and observational data analysis in a multitude of
science domains including high-energy physics, astronomy, bioinformatics, and
climate [5, 7, 14,17,24].

However such burst buffers often enable high performance by exposing ad-
ditional complexity to users. For example, DataWarp burst buffers offer a sep-
arate ephemeral namespace into which data must be staged in or out using
non-standard APIs, while Infinite Memory Engine offers only eventual consis-
tency between data written to flash and data on the backing file system. It is
ultimately the responsibility of users to track the tier (flash or disk) in which
their most up-to-date data resides. This incentivizes a return to a single high-
performance storage tier, and the dropping cost of SSDs [9] are expected to once
again give rise to a single, high-performance storage tier that has the perfor-
mance of a burst buffer but the capacity of a traditional disk-based parallel file
system [12,15].

In practice, balancing performance, capacity, resilience, and cost requires a
system architecture driven by several goals:

– The capacity of the file system must be “just enough” for the aggregate
workload to ensure that flash, which is still expensive on a cost-capacity
basis, is not over- or underprovisioned for capacity

– The SSD media must be of sufficient endurance to meet the service require-
ments of the workload without being overprovisioned for unrealistically high
endurance levels, as this adds to overall cost

– All available performance features for low latency I/O with Lustre must be
effectively provisioned for and usable by the workload

Meeting these goals requires a quantitative understanding of the I/O workload
that will run on the target storage system to ensure that the most critical por-
tions of the system architecture receive the most investment.

In this work, we present a series of analytical methods by which the require-
ments of a future all-flash file system can be quantitatively defined. We then
use telemetric data collected from a reference production storage system to in-
form the minimum and maximum values required to achieve an optimal balance
of capacity and value on a future all-flash parallel file system. However, we do
not address I/O performance in this work because we expect that the absolute
throughput of first-generation all-flash parallel file systems will be limited by
software, not flash media, when they are initially deployed. It follows that the
absolute performance of these systems will steadily increase with successive soft-
ware improvements over the service lives of these all-flash file systems, making
performance prediction difficult and highly dependent on software architecture,
not system architecture.



A quantitative approach to architecting all-flash Lustre file systems 3

2 Methods

The goal of this work is to define models through which the design space sur-
rounding several key dimensions of parallel file system architecture can be quan-
tified. These models project the requirements of a notional future parallel file
system by combining data from an existing reference parallel file system with
parameters that describe the future system. For simplicity, we refer to the model
inputs as coming from the reference system, and the model outputs as describing
the requirements for a new system. To illustrate the efficacy of these models, we
then apply data collected from the I/O subsystem of Cori, a Cray XC-40 system
deployed at NERSC, to derive the requirements for a notional all-flash Lustre file
system that will be deployed with Perlmutter, NERSC’s next-generation system.

The reference system is Cori, a Cray XC-40 system comprised of 9,688 com-
pute nodes with Intel Xeon Phi 7250 processors and 2,388 compute nodes with
Intel Xeon E5-2698 v3 processors. Cori’s I/O subsystem has two tiers: a disk-
based Lustre file system and an all-flash DataWarp burst buffer. The precise
configurations of these two storage tiers are described in Table 1.

Table 1. Description of reference system

Tier (File System) Capacity Peak Bandwidth # Data Servers # Drives

Burst Buffer (DataWarp) 1.84 PB 1,740 GB/s 288 1,152
Scratch (Lustre) 30.5 PB 717 GB/s 248 10,168

We rely on the Lustre Monitoring Tool (LMT) [21] to quantify the I/O re-
quirements imposed on the reference file system by NERSC’s production work-
load. LMT reports the total number of bytes read and written to each Lustre
object storage target (OST) since the time each object storage server (OSS) was
last rebooted on a five-second interval. To understand how the file system’s full-
ness increases, we run the standard Lustre lfs df command every five minutes
to archive a consistent view each OST’s fullness.

To characterize the utilization of the burst buffer tier on Cori, we use the
Intel Data Center SSD Tool [2] to collect device-level data including the to-
tal bytes read and written to each SSD by the host DataWarp server and
the total bytes read and written to the underlying NAND. The device-level
read and write activity from the host is a close approximation of the aggregate
user workload because user I/O is simply striped across devices without addi-
tional parity in DataWarp. Comparing the host- and NAND-level I/O volumes
also allows us to explicitly calculate the aggregate write amplification factor
(WAF = NAND bytes written/host bytes written) of each SSD over its service
life.

We obtain the distribution of file and inode sizes from a MySQL database
populated using the Robinhood policy engine [8] version 3.1.4. This database
contains the results of scanning the Lustre namespace from a Lustre client and
inserting records that catalog the POSIX metadata fields intrinsic to each inode.



4 G.K. Lockwood et al.

For each type of inode, we build histograms of inode size with exponentially
increasing bins such that bin i contains the number of inodes with size S such
that 2i−1 < S ≤ 2i.

3 File System Capacity

To determine the minimum required capacity, Cnew, for the storage subsystem
of a new HPC system, we use a simple growth model that uses empirical mea-
surements from the reference HPC system’s compute and storage subsystems.
This model is expressed as

Cnew = SSI ·
(
λpurge

PF

)
·
(
∂Cref

∂t

)
(1)

where

1. SSI is the Sustained System Improvement [4], a metric incorporating both
performance and throughput improvement of the new system relative to the
reference system

2. (λpurge/PF) encapsulates the numerical description of the anticipated data
retention policy of the new file system

3.
(
∂Cref

/∂t
)
is daily growth rate observed on the reference file system

We use SSI to account for the fact that a system with a higher capability or
throughput will be able to consume and generate data at a proportionally higher
rate. For example, a workflow that can execute 3× faster on the new system will
be able to produce three times as much useful output in a fixed amount of time
relative to the reference system assuming no other changes.

The (λpurge/PF) term represents a data management policy whose terms can
be interpreted in several different ways. λpurge is a measure of time that reflects
either the periodicity of purge cycles or the time after which files are eligible to
be purged. PF is the fraction of total file system capacity to be reclaimed after
each purge or the fraction fullness of the file system above which files become
eligible for purging. These two terms provide enough flexibility to capture the
most common approaches to purging. For example, files not touched in more than
λpurge days will be purged if doing so will aid in driving down file system fullness
below (100× PF)%. As with any numerical expression of a data retention policy
though, it cannot capture the effects of ill-intentioned users who touch files to
make them ineligible for purge, the effects of excluding certain projects from
purge, or other purge exceptions that manifest in real production systems. As
such, this may be a liberal estimate what the true production data retention
policy may be and should be specified with these uncertainties in mind.

The rate at which the reference file system grows,
(
∂Cref

/∂t
)
, is the most chal-

lenging term to calculate rigorously. In practice, the growth rate of file systems
is a function of many variables including user diversity (some scientific work-
flows must retain more data than others [1]), time of year (conference deadlines



A quantitative approach to architecting all-flash Lustre file systems 5

and allocation expiration dates are often preceded by high utilization), and sys-
tem age (improvements to system stability and usability encourage longer-term
data retention). As such, correctly parameterizing

(
∂Cref

/∂t
)
requires institu-

tional knowledge of both the technological and sociological factors intrinsic to
the reference system.

To determine
(
∂Cref

/∂t
)
for our reference system, we first define the daily

growth for day d as the difference between the capacity used on day d and d− 1.
We further constrain this daily growth metric by stating that it is undefined
for days when there was a net reduction in file system fullness. In doing so, we
minimize the effects of center-wide policies on daily growth by disregarding days
during which significant amounts of user data were being purged.

To avoid biasing our analysis with the low growth rates often experienced
during the earlier months of a system’s service life, we also define an arbitrary
cutoff date before which all daily growth measurements are discarded. For this
study, we chose the cutoff to be exactly two years before the day on which
the daily growth data were collected for this study to ensure that we captured
the growth contributions of a broad range of projects that run at NERSC. In
addition, our choice to align the sample period with a calendar year ensures that
we capture the full range of sociological effects (such as conference deadlines)
that may cause users to behave differently over the course of their year-long
allocations.

0 100 200 300 400 500 600 700 800 900
Daily growth (TiB/day)

0

50

100

150

Nu
m

be
r o

f d
ay

s

Cori scratch (30.5 PB)
Apr 1, 2017 - Mar 31, 2019

Fig. 1. Distribution of daily growth of Cori’s scratch file system.

Figure 1 shows the resulting distribution of this daily growth metric and
reflects a median growth of 104 TB/day and a mean daily growth of 133 TB/day.
The long tail of this distribution indicates that there are periods throughout the
year when significant amounts of data are either generated within or imported to
NERSC, and these outlying days should not be ignored when projecting future
requirements. As a result, we choose to use the mean daily growth rather than
the median as the basis for

(
∂Cref

/∂t
)
.

We define the new system’s data retention policy such that data older than
28 days is subject to purge, and each purge interval aims to remove or migrate



6 G.K. Lockwood et al.

50% of the total file system capacity. Furthermore, the SSI for our new system
is anticipated be between 3× and 4× that of the reference system. Given this
range of anticipated SSI, Equation 1 gives the minimum required usable capacity
Cnew as being between 22 PB and 30 PB.

Although this is a wide range, Equation 1 provides a means to understand
how tradeoffs can be made between user convenience (via a more generous data
retention policy) and usable capacity. Similarly, the flexibility of the SSI metric
also defines how changes to system capability, throughput, and application op-
timizations will affect storage system capacity requirements. Thus, it is possible
to decide where in this range the target storage system capacity should be based
on how a facility weighs each of these factors given a fixed budget.

4 Drive Endurance

The flash cells within SSDs can be rewritten a finite number of times before
they are no longer able to reliably store data, and as a result, SSDs are only
warranted for a finite number of drive writes per day (DWPD) over their service
life. Since HPC file systems have historically been subject to write-intensive
workloads [10, 22], the endurance requirements of SSDs in HPC environments
have been a cause of concern. To date, most large-scale flash deployments in
HPC have resorted to using extreme-endurance SSDs (5-10 DWPD for a five-
year period) to ensure that the SSDs do not fail before the end of the overall
system’s service life [11,19].

This comes at a steep cost, though; for example, the Trinity supercomputer
at Los Alamos National Laboratory employs a burst buffer comprised of drives
configured to endure 10 DWPD instead of the factory default of 3 DWPD [11].
This is achieved by reserving 20% of each SSD’s usable capacity for wear leveling.
If this extreme level of endurance is not truly required though, reducing the
drives’ endurance from 10 DWPD to 3 DWPD would provide an additional 25%
usable capacity at no added cost. To determine the optimal balance of cost and
endurance for HPC workloads, we use an analytical model (Equation 2) that
uses file system-level load data and sources of write amplification to define the
minimum required DWPD for an all-flash file system.

DWPDnew = SSI · FSWPDref ·WAF ·
(
1

χ

)(
N ref

Nnew

)(
cref

cnew

)(
Rref

Rnew

)
(2)

where

1. SSI is the sustained system improvement as defined in Section 3
2. FSWPDref is the reference file system’s total write volume expressed in units

of file system writes per day
3. WAF is the write amplification factor that results from factors intrinsic to

the application workload and file system implementation



A quantitative approach to architecting all-flash Lustre file systems 7

4. χ is the fraction of Lustre capacity available after formatting, typically rang-
ing from 0.95 to 0.97

5. N ref and Nnew are the number of drives in the reference and new systems
6. cref and cnew are the per-drive capacities in the reference and new systems
7. Rref and Rnew are the code rates of the reference and new systems

Figure 2 shows the distribution of daily write workloads on the reference file
system over a period of two years measured using LMT. As with the growth rates
presented in Section 3, there is a long tail of days that experience abnormally
high write volumes which reflect the use of the file system as a data processing
capability and should not be discarded. We therefore choose to use the mean,
not median, FSWPD value of 0.024 FSWPD.

0.00 0.05 0.10 0.15 0.20 0.25
File System Writes per Day

0.0
0.1
0.2
0.3
0.4
0.5

Fr
ac

tio
n 

of
 d

ay
s

Cori scratch (30.5 PB)
Apr 1, 2017 - Mar 31, 2019

3 
da

ys
3 

da
ys

3 
da

ys
1 

da
y

1 
da

y

1 
da

y

1 
da

y

Fig. 2. Distribution of file system writes per day to the Cori scratch file system. 1
FSWPD = 30.5 PB of writes per day. Nonzero fractions in the tail are annotated in
absolute days.

The WAF term accounts for the fact that writes smaller than a full RAID
stripe require the RAID subsystem to (1) read the stripe blocks that will be
modified, (2) make the modification to those blocks, (3) recalculate parity on P
blocks, and (4) write a minimum of P +1 blocks back to the underlying media.1

This read-modify-write penalty is a function of the anticipated workload; if all
applications buffer their writes such that only full-stripe writes are issued to the
SSDs, this term is effectively 1.0.

We do not directly monitor I/O transfer sizes on the Cori file system which
prevents us from quantifying WAF. However, we can estimate WAF from the
SSDs in the reference system’s burst buffer, shown in Figure 3 The NERSC burst
buffer workload results in WAFs ranging from 1.35 to 10.15, and the median and
95th percentile are WAF50 = 2.68 and WAF95 = 3.17, respectively. Although
the drives showing extremely high WAFs (> 5) appear to be cause for concern,
these outliers are actually a result of drives that see extremely low use. Because

1 We do not consider write amplification caused by garbage collection internal to the
SSDs since drive endurance is warranted on the basis of host-initiated write load,
not total write load to NAND.



8 G.K. Lockwood et al.

0 2 4 6 8 10
Write Amplification Factor

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fr
ac

tio
n 

of
 S

SD
s

2 
dr

iv
es

16
 d

riv
es

6 
dr

iv
es

4 
dr

iv
es

4 
dr

iv
es

12
 d

riv
es

8 
dr

iv
es

Fig. 3. Distribution of SSD WAFs on the Cori Burst buffer after approximately 3.4
years in service

SSDs must periodically rewrite pages internally regardless of weather data is
written to them from the host, there is a constant internal write load on SSDs
which becomes dominant in the presence of very light host usage. In the case
of Figure 3, all SSDs with WAF > 5 belong to a development partition of the
burst buffer that is not in production.

The χ and R terms in Equation 2 are required to account for the fact that the
formatted capacity of a reliable Lustre file system is smaller than the aggregate
storage device capacity. The coding rates Rref and Rnew capture differences in
write amplification caused by different ratios of parity overheads in the systems’
RAID schemes. χ accounts for additional minor capacity overheads such as the
root file system of each Lustre OSS. The N and c terms are required to account
for differences in the actual file system capacity of the reference file system and
new file system, as a single file system write to a small reference file system
represents only a fraction of a file system write to a larger new file system.

We choose values that are optimistic (SSI = 3.0, Rnew = 10/12, and WAF =
2.68) and pessimistic (SSI = 4.0, Rnew = 8/10, and WAF = 3.17) to determine
the minimum and maximum required DWPD, respectively. Because the specific
hardware geometry for a new file system (Nnew and cnew) may not be defined at
the time of requirements definition, we note that χ ·Nnew · cnew · Rnew ≈ Cnew

and reduce Equation 2 to

DWPDnew ≈ SSI · FSWPDref ·WAF · N
ref · cref ·Rref

Cnew
(3)

Given that Rref = 8/10, N ref = 10168, and cref ≈ 4 TB, we find that DWPDnew
min =

0.28 and DWPDnew
max = 0.33. From this, it becomes very clear that extreme-

endurance SSDs are unnecessary for HPC workloads that resemble those of the
reference system, and even 1 DWPD leaves significant headroom for increased
wear from unanticipated new workloads.



A quantitative approach to architecting all-flash Lustre file systems 9

5 Metadata Configuration

Lustre’s Data-on-MDT (DOM) feature allows the first S0 bytes of every file to
be stored on the same storage devices as their file metadata. This introduces
several major benefits for small-file access:

1. Lock traffic is reduced since data and metadata are colocated
2. File size can be determined without sending RPCs to OSSes
3. Small file I/O interferes much less with large-file I/O on OSTs

However, DOM adds additional complexity to system design because MDT ca-
pacity must now account for both the capacity required to store inodes and the
capacity required to store small files’ contents. The precise definition of what
constitutes a “small” file is also site-configurable, meaning that system archi-
tects must define both the required MDT capacity, CMDT, and the threshold for
storing small files exclusively on the MDT, S0.

Thus, we define a model for the required MDT capacity as the sum of the
capacity required by DOM to store the first S0 bytes of every file (CDOM) and
the capacity required to store inodes2 (C inode) in Equation 4.

CMDT = CDOM + C inode (4)

The required MDT capacity for a new system is invariably a function of the
expected file size distribution on that new system. It is not sufficient to parame-
terize such a model on the average file size alone because file size distributions on
HPC systems are almost always skewed towards small files [16,22,23], and small
changes to the mean file size could represent a significant change to where the
optimal DOM size threshold should be. As shown in Figure 4, this is true of the
reference system where 95% of the files comprise only 5% of the capacity used.
As a result, both CDOM and C inode are a function of the probability distribution
of file size, P file

i , shown in Figure 4.

5.1 MDT capacity required by DOM

To calculate CDOM, we first convert the probability distribution of file sizes P file
i

into a mass distribution of data Mdata
i for the new file system using Equation 5.

Mdata
i = P file

i · Cnew (5)

Because P file
i is expressed as a discrete histogram rather than a density func-

tion, Equation 5 requires that we assume all files in each bin i have an average
mass that lies between the minimum and maximum size of the bin, Si,min and
Si,max. For example, if the bin bounded by (1024 bytes, 2048 bytes] contains 512
files, we can only say that the total mass lies between 512.5 KiB (if all 512 files

2 Strictly speaking, we define C inode to include the MDT block allocated for inodes
and additional data blocks that may be required to store, for example, large numbers
of directory entries.



10 G.K. Lockwood et al.

0 bytes
4 bytes

64 bytes
1 KiB

16 KiB
256 KiB

4 MiB
64 MiB

1 GiB
16 GiB

256 GiB4 TiB
64 TiB1 PiB

File size

0.00

0.04

0.08

0.12

Fr
ac

tio
n

to
ta

l c
ap

ac
ity

Fig. 4. Probability distribution of file size on the reference system in January 2019.

are of size Si,min = 1025 bytes) and 1 MiB (if all 512 files are of size Si,max =
2048 bytes). Thus, Mdata

i is actually a set of mass distributions that result from
assuming different average file sizes for each bin when applying Equation 5.
Hereafter, we acknowledge this by referring to the set of mass distributions as
Mdata

i . We use this set of distributions to attribute uncertainty to all subsequent
calculations derived from Mdata

i and explicitly calculate

– Mdata,min
i which assumes all files in i have size Si,min

– Mdata,max
i which assumes all files in i have size Si,max

– Mdata,avg
i = 1/2 · (Mdata,min

i +Mdata,max
i )

From Mdata
i , we can then estimate file count distributions of the new file

system, Nfile
i , using Equation 6.

Nfile
i = Mdata

i /Si (6)

Nfile
i is a set of distributions due to the dependence of Equation 6 on Mdata

i

and Si, both of which are themselves sets of distributions. Thus, as with Mdata
i ,

we carry forward the minimum, maximum, and average file count distribution
using Equation 7.

Nfile,min
i =Mdata,min

i /Smax
i

Nfile,max
i =Mdata,max

i /Smin
i

Nfile,avg
i =Mdata,avg

i /Savg
i

(7)

With an estimate of the number of files and their sizes for the new file system,
we can now calculate the range of capacities required for DOM, CDOM, with
Equation 8.

CDOM =

Si≤S0∑
i

(
Nfile

i · Si

)
+

Si>S0∑
i

(
Nfile

i · S0

)
(8)

Thus, this gives us a way to determine the capacity required for DOM as a
function of the DOM threshold S0 that carries forward ranges of uncertainty
intrinsic to our dependence on sets of discrete distributions.



A quantitative approach to architecting all-flash Lustre file systems 11

5.2 MDT capacity required for inodes

The MDT capacity required to store inodes, C inode, follows a similar approach.
By default, Lustre reserves 4 KiB of MDT capacity for every inode, but there are
cases where an inode can consume significantly more capacity. Figure 5 shows
the probability distribution of non-file inodes’ masses on the reference system
and demonstrates this phenomenon. In the most extreme case, a single directory
requires nearly 1 GiB of MDT capacity as a result of it containing over eight
million child inodes.

0.20
0.40
0.60
0.80
1.00

Directories
Symlinks
FIFOs
Sockets

0 bytes
4 bytes

64 bytes
1 KiB

16 KiB
256 KiB

4 MiB
64 MiB

1 GiB

File size

10 9

10 6

10 3

Fr
ac

tio
n 

of
 n

on
-fi

le
 in

od
es

Fig. 5. Probability distribution of inode sizes on NERSC’s Cori file system in January
2019. This diagram does not show block or character device inode types because none
were present at the time of data collection. Break in y scale intended to contrast small
numbers of large directory inodes with the predominant 4 KiB inode size.

To ensure that such extreme requirements are not lost when calculating the
MDT inode capacity requirements, we explicitly calculate the inode size dis-
tribution for every inode type (directories, symbolic links, etc.) based on the
file size distributions Nfile

i derived from Equation 6. Equation 9 demonstrates
this derivation for the directory size distribution; the process is the same for all
non-file inode types.

Ndir
i = Nfile

i · N
ref,dir
i

N ref,file
i

(9)

The inode size distribution reported by Robinhood can be misleading as a
result of the difference between an inode’s apparent size (as returned by stat(2))
and its block consumption. To ensure that inodes of small apparent size do not
underrepresent the true inode capacity requirements, we assume that each inode
whose apparent size is less than 4 KiB actually requires a full 4 KiB block. Thus,
we calculate the total mass of these inodes using Equation 10.



12 G.K. Lockwood et al.

C inode =
∑
i

max (Si, 4096) ·
∑
j

N j
i

 (10)

This equation gives the total mass of all bins i for all inodes of type j with the
constraint that all inodes must consume at least one block and therefore be at
least 4 KiB in size.

5.3 Overall MDT capacity

1 KiB4 KiB
16 KiB

64 KiB
256 KiB

1 MiB
4 MiB

16 MiB
64 MiB

256 MiB
1 GiB

4 GiB
16 GiB

64 GiB

Size of first stripe

4 TiB
8 TiB

16 TiB
32 TiB
64 TiB

128 TiB
256 TiB
512 TiB

1 PiB
2 PiB
4 PiB
8 PiB

16 PiB
32 PiB
64 PiB

M
DT

 c
ap

ac
ity

DOM uncertainty
inode uncertainty

Fig. 6. Required MDT capacity as a function of S0. Shaded area bounded by the
minimum and maximum estimated requirements dictated by the DOM component
and the inode capacity component of MDT capacity. Note that, in practice, the DOM
component size cannot be smaller than the minimum Lustre stripe size. At the time of
writing, the minimum DOM component size is 64 KiB.

We now evaluate CMDT
min , CMDT

max , and CMDT
avg as a function of the DOM thresh-

old size S0 using Equation 4. Figure 6 shows the result of this model for a target
capacity Cnew = 30 PB from Section 3. The shaded regions bound CMDT,min

and CMDT,max, and the black line is CMDT,avg. Furthermore, the components of
this uncertainty attributed to CDOM and C inode are separated.

The sigmoidal shape of CMDT’s dependence on the DOM threshold S0 is a
result of two competing factors. For very small S0, the large number of small
files simply does not consume a large amount of DOM capacity so there are only
modest increases in CDOM in this region. For very large S0, the great majority of
files are stored entirely within the MDT and only a small number of very large
files are increasing the CDOM requirements.

The region between the two extremes of small and large DOM thresholds
leaves considerable room for optimization though. For example, doubling the



A quantitative approach to architecting all-flash Lustre file systems 13

MDT capacity from 512 TiB to 1 PiB allows a fourfold increase in S0. The cost-
per-bit for an MDT is typically higher than that for an OST due to different
parity configuration (e.g., 5+5 parity on an MDT vs. 8+2 on an OST), but this
increased cost comes with better IOPS performance.

If one assumes that CDOM is proportional to cost and S0 is proportional
to IOPS performance, Figure 6 becomes a price-performance curve as well. In
this context, the behavior for S0 → Cnew suggests that the benefit of increasing
S0 above several GiB is not an optimal configuration for price/performance.
Thus, while a Lustre file system entirely comprised of MDTs with DOM could
be possible in principle, its performance improvements would likely not justify
its cost when compared to a Lustre file system with a judiciously chosen S0.

6 Conclusion

We have presented methods by which workload data from a reference file system
can be used to determine the best balance of cost, performance, and usability
along several dimensions. We then quantified the relationship between factors
including purge policy, growth rate, and file size distribution and design space
parameters surrounding an all-flash file system such as data capacity, SSD en-
durance, and metadata configuration. As the economics of flash continue to
displace hard disk drives from high-performance storage tiers, such analytical
methods will become increasingly important for future system deployments.

Acknowledgments

The authors would like to thank John Bent, Andreas Dilger, and the anonymous
reviewers for their valuable feedback on this work. This material is based upon
work supported by the U.S. Department of Energy, Office of Science, under
contract DE-AC02-05CH11231. This research used resources and data generated
from resources of the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. APEX Workflows Whitepaper. Tech. rep., Los Alamos National Laboratory,
Lawrence Berkeley National Laboratory, and Sandia National Laboratories (2016),
https://www.nersc.gov/assets/apex-workflows-v2.pdf

2. Intel SSD Data Center Tool (2017), https://www.intel.com/content/www/us/en/support/articles/000006289

3. Alewijnse, B., Ashton, A.W., Chambers, M.G., Chen, S., Cheng, A.,
Ebrahim, M., Eng, E.T., Hagen, W.J., Koster, A.J., López, C.S., Lukoy-
anova, N., Ortega, J., Renault, L., Reyntjens, S., Rice, W.J., Scapin, G.,
Schrijver, R., Siebert, A., Stagg, S.M., Grum-Tokars, V., Wright, E.R.,



14 G.K. Lockwood et al.

Wu, S., Yu, Z., Zhou, Z.H., Carragher, B., Potter, C.S.: Best prac-
tices for managing large CryoEM facilities. Journal of Structural Biol-
ogy 199(3), 225–236 (sep 2017). https://doi.org/10.1016/j.jsb.2017.07.011,
https://linkinghub.elsevier.com/retrieve/pii/S1047847717301314

4. Austin, B., Daley, C., Doerfler, D., Deslippe, J., Cook, B., Friesen, B., Kurth, T.,
Yang, C., Wright, N.J.: A Metric for Evaluating Supercomputer Performance in
the Era of Extreme Heterogeneity. In: 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS).
pp. 63–71. IEEE (nov 2018). https://doi.org/10.1109/PMBS.2018.8641549,
https://ieeexplore.ieee.org/document/8641549/

5. Bhimji, W., Bard, D., Burleigh, K., Daley, C.S., Farrell, S., Fasel, M., Friesen, B.,
Gerhardt, L., Liu, J., Nugent, P., Paul, D., Porter, J., Tsulaia, V.: Extreme I/O on
HPC for HEP using the Burst Buffer at NERSC. Journal of Physics: Conference
Series 898, 082015 (oct 2017). https://doi.org/10.1088/1742-6596/898/8/082015,
https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082015

6. Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen,
B., Bryson, M., Correa, J., Lockwood, G.K., Tsulaia, V., Byna, S.,
Farrell, S., Gursoy, D., Daley, C.S., Beckner, V., Straalen, B.V., Tre-
botich, D., Tull, C., Weber, G., Wright, N.J., Antypas, K., Prabhat:
Accelerating Science with the NERSC Burst Buffer Early User Pro-
gram. In: Proceedings of the 2016 Cray User Group. London (2016),
https://cug.org/proceedings/cug2016 proceedings/includes/files/pap162.pdf

7. Daley, C.S., Ghoshal, D., Lockwood, G.K., Dosanjh, S., Ramakrish-
nan, L., Wright, N.J.: Performance characterization of scientific work-
flows for the optimal use of Burst Buffers. Future Generation Com-
puter Systems (dec 2017). https://doi.org/10.1016/j.future.2017.12.022,
http://linkinghub.elsevier.com/retrieve/pii/S0167739X16308287

8. Declerck, T.M.: Using Robinhood to Purge Data from Lustre File Sys-
tems. In: Proceedings of the 2014 Cray User Group. Lugano, CH (2014),
https://cug.org/proceedings/cug2014 proceedings/includes/files/pap157.pdf

9. Fontana, R.E., Decad, G.M.: Moore’s law realities for recording sys-
tems and memory storage components: HDD, tape, NAND, and optical.
AIP Advances 8(5), 056506 (may 2018). https://doi.org/10.1063/1.5007621,
http://aip.scitation.org/doi/10.1063/1.5007621

10. Gunasekaran, R., Oral, S., Hill, J., Miller, R., Wang, F., Lever-
man, D.: Comparative I/O workload characterization of two lead-
ership class storage clusters. In: Proceedings of the 10th Parallel
Data Storage Workshop (PDSW’15). pp. 31–36. ACM Press, New
York, New York, USA (2015). https://doi.org/10.1145/2834976.2834985,
http://dl.acm.org/citation.cfm?doid=2834976.2834985

11. Hemmert, K.S., Glass, M.W., Hammond, S.D., Hoekstra, R., Rajan, M., Vigil, M.,
Grunau, D., Lujan, J., Morton, D., Nam, H.A., Peltz, P., Torrez, A., Wright, C.,
Dawson, S.: Trinity: Architecture and Early Experience. In: Proceedings of the
2017 Cray User Group (2017)

12. John Bent, Brad Settlemyer, Gary Grider: Serving Data to the Lu-
natic Fringe: The Evolution of HPC Storage. ;login: 41(2), 34–39 (2016),
https://www.usenix.org/publications/login/summer2016/bent

13. Joubert, W., Weighill, D., Kainer, D., Climer, S., Justice, A., Fagnan, K., Jacob-
son, D.: Attacking the opioid epidemic: Determining the epistatic and pleiotropic
genetic architectures for chronic pain and opioid addiction. In: Proceedings of the



A quantitative approach to architecting all-flash Lustre file systems 15

International Conference for High Performance Computing, Networking, Storage,
and Analysis. pp. 57:1–57:14. SC ’18, IEEE Press, Piscataway, NJ, USA (2018),
http://dl.acm.org/citation.cfm?id=3291656.3291732

14. Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E.,
Mahesh, A., Matheson, M., Deslippe, J., Fatica, M., Prabhat, Houston, M.:
Exascale deep learning for climate analytics. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage, and
Analysis. pp. 51:1–51:12. SC ’18, IEEE Press, Piscataway, NJ, USA (2018),
http://dl.acm.org/citation.cfm?id=3291656.3291724, arXiv:1810.01993

15. Lockwood, G.K., Hazen, D., Koziol, Q., Canon, S., Antypas, K., Balewski, J.,
Bathaser, N., Bhimji, W., Botts, J., Broughton, J., Butler, T.L., Butler, G.F.,
Cheema, R., Daley, C.S., Declerck, T., Gerhardt, L., Hurlbert, W.E., Kallback-
Rose, K.A., Leak, S., Lee, J., Lee, R., Liu, J., Lozinskiy, K., Paul, D., Prabhat,
Snavely, C., Srinivasan, J., Stone Gibbins, T., Wright, N.J.: Storage 2020: A Vision
for the Future of HPC Storage. Tech. rep., Lawrence Berkeley National Laboratory,
Berkeley, CA (2017), https://escholarship.org/uc/item/744479dp

16. Lockwood, G.K., Wagner, R., Tatineni, M.: Storage utilization
in the long tail of science. In: Proceedings of the 2015 XSEDE
Conference: Scientific Advancements Enabled by Enhanced Cy-
berinfrastructure (2015). https://doi.org/10.1145/2792745.2792777,
http://dl.acm.org/citation.cfm?id=2792777

17. Regier, J., Pamnany, K., Fischer, K., Noack, A., Lam, M., Revels, J., Howard, S.,
Giordano, R., Schlegel, D., McAuliffe, J., Thomas, R., Prabhat, .: Cataloging the
visible universe through bayesian inference at petascale. In: 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). pp. 44–53 (May
2018). https://doi.org/10.1109/IPDPS.2018.00015

18. Standish, K.A., Carland, T.M., Lockwood, G.K., Pfeiffer, W., Tatineni,
M., Huang, C.C., Lamberth, S., Cherkas, Y., Brodmerkel, C., Jaeger, E.,
Smith, L., Rajagopal, G., Curran, M.E., Schork, N.J.: Group-based variant
calling leveraging next-generation supercomputing for large-scale whole-
genome sequencing studies. BMC Bioinformatics 16(1), 304 (dec 2015).
https://doi.org/10.1186/s12859-015-0736-4, http://dx.doi.org/10.1186/s12859-
015-0736-4 http://www.biomedcentral.com/1471-2105/16/304

19. Strande, S.M., Cicotti, P., Sinkovits, R.S., Young, W.S., Wagner, R., Tatineni, M.,
Hocks, E., Snavely, A., Norman, M.: Gordon: Design, performance, and experi-
ences deploying and supporting a data intensive supercomputer. In: Proceedings
of the 1st Conference of the Extreme Science and Engineering Discovery Environ-
ment: Bridging from the eXtreme to the Campus and Beyond. pp. 3:1–3:8. XSEDE
’12, ACM, New York, NY, USA (2012). https://doi.org/10.1145/2335755.2335789,
http://doi.acm.org/10.1145/2335755.2335789

20. Thayer, J., Damiani, D., Ford, C., Gaponenko, I., Kroeger, W., O’Grady, C.,
Pines, J., Tookey, T., Weaver, M., Perazzo, A.: Data systems for the Linac Co-
herent Light Source. Journal of Applied Crystallography 49(4), 1363–1369 (aug
2016). https://doi.org/10.1107/S1600576716011055, http://scripts.iucr.org/cgi-
bin/paper?S1600576716011055

21. Uselton, A.: Deploying Server-side File System Monitoring at NERSC. In: Pro-
ceedings of the 2009 Cray User Group (2009)

22. Vazhkudai, S.S., Miller, R., Tiwari, D., Zimmer, C., Wang, F., Oral, S.,
Gunasekaran, R., Steinert, D.: GUIDE: A Scalable Information Directory
Service to Collect, Federate, and Analyze Logs for Operational Insights



16 G.K. Lockwood et al.

into a Leadership HPC Facility. Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analy-
sis on - SC ’17 pp. 1–12 (2017). https://doi.org/10.1145/3126908.3126946,
http://dl.acm.org/citation.cfm?doid=3126908.3126946

23. Wang, F., Sim, H., Harr, C., Oral, S.: Diving into petascale production file
systems through large scale profiling and analysis. In: Proceedings of the
2nd Joint International Workshop on Parallel Data Storage & Data Inten-
sive Scalable Computing Systems - PDSW-DISCS ’17. pp. 37–42. ACM Press,
New York, New York, USA (2017). https://doi.org/10.1145/3149393.3149399,
http://dl.acm.org/citation.cfm?doid=3149393.3149399

24. Weeks, N.T., Luecke, G.R.: Optimization of SAMtools sorting us-
ing OpenMP tasks. Cluster Computing 20(3), 1869–1880 (2017).
https://doi.org/10.1007/s10586-017-0874-8




