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Molecular and cellular mechanisms 
underlying the evolution of form and function 
in the amniote jaw
Katherine C. Woronowicz1,2 and Richard A. Schneider1* 

Abstract 

The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During 
development, the cells in these lineages experience concerted movements, migrations, and signaling interactions 
that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form 
including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects 
and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and 
cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional inte-
gration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific 
patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical 
forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and 
evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can 
promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the 
range of jaw defects and disease that affect the human condition.

Keywords:  Amniote jaw development and evolution, Form and function, Neural crest, Secondary cartilage, 
Mechanical environment
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Introduction
The jaws of amniotes display a marvelous array of sizes 
and shapes, and there are countless examples of how the 
form of the jaws has evolved to function in every con-
ceivable ecological niche [1–7]. One obvious purpose for 
the jaw apparatus is to obtain, manipulate, process, and 
ingest dietary items. For instance, among reptiles, many 
snakes often consume prey larger than their own skulls 
and can accommodate extreme expansion with highly 
flexible upper and lower jaws. Large prey is incremen-
tally forced down the esophagus by “snout shifting” or 
“pterygoid walking” in which tooth-bearing elements 
of the upper jaw alternately ratchet over the prey [8]. 

Additionally, while most amniote jaws are bilaterally 
symmetrical, snail-eating snakes (i.e., Pareas) have bro-
ken the symmetry of the dentition on their mandibles 
and develop more teeth on the right side as a means to 
prey upon clockwise-coiled (dextral) snails [9, 10]. Simi-
larly, among birds, crossbills (i.e., Loxia) have bilaterally 
and dorsoventrally asymmetrical beaks such that the 
distal tips traverse one another. The lower jaw crosses to 
the left or right side with equal frequencies in crossbill 
populations [11] and this unusual adaptive co-evolution 
permits these birds to pry open conifer cone scales and 
extract seeds [12, 13]. Within mammals, giant anteaters 
(i.e., Myrmecophaga), which retrieve insects from tightly 
confined spaces like insect burrows, have evolved a spe-
cialized ability to “open” their jaws by rotating their man-
dibles along the long axis rather than by depressing the 
mandibles [14]. These are but a few extreme examples of 
what amniotes have accomplished with their jaws.
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Yet while myriad jaw morphologies exist today and in 
the fossil record, all amniote jaws share common devel-
opmental and evolutionary origins, and their form and 
function are typically achieved by integrating many of 
the same adjoining skeletal, muscular, nervous, vascu-
lar, and connective tissue components [15, 16]. How 
then does the species-specific form of the jaws emerge 
in development and change during evolution in relation 
to function? In particular, what molecular and cellular 
mechanisms pattern the jaws of embryos in a manner 
that anticipates later adult use and promotes adaptation? 
These are fundamental questions in biology and there is a 
long history of efforts to answer them using the jaw com-
plex as a subject of study.

Early attempts to link form and function in the jaws 
as well as the skull more broadly began at the gross ana-
tomical level. Meticulous descriptions conducted in a 
transcendental and pre-evolutionary framework such as 
those from Goethe, Oken, Dumeril, Geoffroy, Owen, and 
many others laid the foundation for comparative methods 
to study morphological variation and adaptation [17–19]. 
Describing form and function among animals required 
special language, and Owen coined, “homology” and 
“analogy” with this goal in mind. Such concepts facili-
tated discussions about the structural plan for vertebrates 
and whether cranial elements being compared across 
taxa were indeed “the same organ in different animals 
under every variety of form and function” [20, p. 379]. In 
line with the transcendentalists before him, Owen pos-
tulated that the vertebrate skull and its constituent parts 
like the jaws extended as a serial homolog of the trunk 
skeleton [21, 22]. Owen’s ideas impacted the way the con-
cept of homology and the anatomy of the cranial com-
plex were viewed and debated for years thereafter [3, 19, 
23–33]. During the nineteenth century, questions of form 
and function became rooted in comparative embryology, 
especially around the anatomical discoveries of workers 
like Rathke, Reichert, and Huxley, and the proposed laws 
of Haeckel [16, 18, 34, 35]. For example, Haeckel used 
his observations on the pharyngeal arches of various 
embryos to help explain how ontogeny could connect the 
forms of animals in a phylogenetic progression. Although 
Haeckel and his followers concluded rather erroneously 
that “ontogeny recapitulates phylogeny” [36], such early 
work built a vocabulary and an intellectual framework 
through which the mechanisms of structural and func-
tional integration in the head could be probed for almost 
200 years and up to the present.

Yet while the evolutionary history and comparative 
anatomy of the jaws have been well characterized, many 
questions remain as to how individual components arise 
during development and achieve their requisite form 
and function. Derivatives of all three germ layers (i.e., 

ectoderm, mesoderm, endoderm), but especially the cra-
nial neural crest mesenchyme (NCM), which is a major 
contributor to the jaws, must communicate seamlessly 
to produce a musculoskeletal system that is structur-
ally integrated in support of its normal and often highly 
specialized use. Achieving such species-specific form 
and function in the jaws is a dynamic multidimensional 
problem that embryos have to solve [37]. In particular, 
there need to be mechanisms in place facilitating the spe-
cies-specific modulation of parameters such as cell cycle 
length, cell size, cell number, cell specification, cell fate, 
cell differentiation, and more [7, 38–43]. Teasing apart 
such mechanisms as well as those underlying the migra-
tion, distribution, and interactions among jaw precur-
sor populations (Fig. 1a), and also identifying the critical 
signals through which these cells acquire and implement 
their axial orientation, anatomical identity, and tissue 
type, is essential for understanding how the jaws become 
patterned and structurally integrated. By applying mod-
ern experimental strategies, the molecular and cellular 
events that underlie jaw form and function during devel-
opment, disease, and evolution are being elucidated. 
Some of these studies and their key insights are reviewed 
in the sections below.

Anatomical organization and integration of the jaw 
apparatus
The head skeleton has classically been organized into 
three compartments each with distinct embryological 
and evolutionary histories, anatomical locations, and 
various degrees of structural and functional integration: 
the neurocranium, viscerocranium, and dermatocranium 
(Fig. 1b) [3, 15, 19, 44–47]. The neurocranium has been 
defined as the skeleton that primarily forms first as car-
tilage and surrounds the brain and sense organs. The vis-
cerocranium (or “splanchnocranium”) has been viewed 
as the cartilaginous skeleton of the jaws and of the seri-
ally repeated arches in the pharyngeal region of the gut 
tube. The neurocranium and viscerocranium are thought 
to have evolved as part of a vertebrate endoskeleton [3, 
22, 48–50]. In contrast, the dermatocranium has been 
described as a component of the vertebrate exoskeleton, 
which in the skull consists of the palatal, cranial vault, 
and tooth-bearing elements around the oral cavity [46, 
51–54]. Moreover, these skeletal systems have divergent 
embryonic origins in terms of cell lineages and process of 
differentiation [19, 37, 47, 50, 55, 56].

In jawed vertebrates, the neurocranium and derma-
tocranium develop from dual mesenchymal lineages 
(i.e.,  mesodermal mesenchyme and  NCM), whereas 
the viscerocranium forms predominantly  from NCM 
[54, 57–70]. Some aspects of the more posterior  vis-
cerocranial cartilages, such as in the laryngeal skeleton 
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also  appear to have contributions from mesoderm in 
amniotes  [63, 71–73]  and anamniotes  [74, 75].  For 
the most part, the primary cartilages of the neurocra-
nium and viscerocranium typically get replaced by 
bone through endochondral and perichondral ossi-
fication. Such bones are termed “cartilage bones” [3, 

35, 51]. In contrast, most skeletal elements associated 
with the dermatocranium are not pre-formed in car-
tilage but arise principally as condensations of NCM 
and/or mesodermal mesenchyme that differentiate 
directly into “dermal bone” through intramembranous 
ossification [15, 19, 46, 51, 54, 62, 76–80]. However, 

b Head and jaw skeleton of a generalized vertebrate embryo
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Fig. 1  The embryonic origins of the jaw are highly conserved across amniotes despite species-specific differences in form and function. a 
Schematic transverse section through the midbrain-hindbrain boundary of a generalized amniote after neurulation showing the major lineages 
of cells and their cell types, cell–cell interactions (vertical arrows), and tissue derivatives that contribute to the jaw apparatus. b Head and jaw 
skeleton of a generalized vertebrate embryo showing the spatial arrangements of the neurocranium, viscerocranium, and dermatocranium. The 
neurocranium forms first as cartilage and surrounds the brain and sense organs such as in the nasal, optic, and otic capsules. The viscerocranium is 
the cartilaginous skeleton of the jaws and of the serially repeated arches (numbers 1 to 7) along the pharynx. The first arch is the mandibular arch, 
which consists of the palatoquadrate cartilage above and Meckel’s cartilage below. The second arch is the hyoid arch. The dermatocranium consists 
of the palatal, cranial vault, and tooth-bearing elements around the oral cavity. The viscerocranium is derived almost exclusively from NCM whereas 
the neurocranium and dermatocranium arise from both NCM and mesoderm (Modified and adapted from [22, 33, 38, 44, 75, 326, 395])
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these definitions are not exclusive as there are some 
endoskeletal bones that ossify intramembranously (e.g., 
“membrane bones”) and some exoskeletal bones that 
develop in conjunction with cartilage (e.g., “secondary” 
or “adventitious cartilage” of birds and mammals) [50, 
51, 80].

During intramembranous ossification, mesenchymal 
cells condense and secrete a dense extracellular matrix, 
called osteoid, which is rich in collagen I and other fibers 
[81, 82]. Shortly afterward, osteoid mineralizes by incor-
porating calcium phosphate crystals that are absorbed 
from the vasculature and which provide rigidity to the 
fibrous network. During cartilage formation, mesenchy-
mal cells condense and secrete an extracellular matrix 
rich in collagen II and other fibers to produce an avas-
cular tissue [51, 80, 83, 84]. This process causes a tissue 
expansion such that chondrocytes become separated by 
vast amounts of extracellular matrix. Typically, as chon-
drocytes mature, they undergo apoptosis, vasculature 
invades the cartilage and brings in mineral, and the carti-
lage template is replaced by bone through endochondral 
ossification [79, 80, 85]. Despite these differences in how 
they differentiate, elements that transform from cartilage 
to bone via endochondral and perichondral ossification, 
and bones that arise directly through intramembranous 
ossification, become seamlessly integrated both structur-
ally and functionally among the neurocranium, viscero-
cranium, and dermatocranium.

The amniote jaw skeleton contains elements from the 
viscerocranium and dermatocranium. The viscerocranial 
elements are derived from the pharyngeal arches, which 
are transient embryonic structures that produce upper 
and lower skeletal portions, as well as associated mus-
cular, nervous, and circulatory elements [15, 19, 86, 87]. 
The jaws proper arise within the first pharyngeal arch, 
which is the mandibular arch. There has been consider-
able debate as to the boundaries between the mandibular 
arch and the region more anterior (i.e., “premandibu-
lar”), and also the extent to which the mandibular arch 
is in fact serially homologous with the other pharyngeal 
arches based on differences in the embryology and early 
patterning events of the oral cavity versus the pharynx 
[88–94]. Thus, some have suggested using terms like 
“oropharyngeal” to reflect these differences [19, 95].

In an influential but rather speculative hypothesis, the 
evolutionary origin and diversification of the vertebrate 
jaws were claimed to be tied to the emergence and elabo-
ration of NCM, and a shift from passive, sessile feeding 
to active modes of predation [96–98]. While clearly the 
NCM (along with epidermal thickenings called placo-
des) have been essential to the success of vertebrates, 
vertebrates were likely active feeders long before they 
evolved jaws [99]. Nonetheless, after the jaws emerged 

in basal vertebrates, many of the same anatomical units 
and constituent parts have remained conserved across 
the various lineages including amniotes, albeit with some 
modifications and exceptions [3, 15]. In a generalized 
common ancestor for amniotes, the upper skeletal por-
tion of the jaw (i.e., viscerocranial) contained the palato-
quadrate cartilage while the lower portion consisted of 
Meckel’s cartilage (Fig. 2a). During the evolution of mod-
ern amniotes (Fig. 2b), however, these two cartilages no 
longer become the main contributors to the functional 
adult jaws. In reptiles and birds, the palatoquadrate is 
divided into two distinct cartilages, the epipterygoid and 
the quadrate (Fig.  2c) [100]. Generally, the epipterygoid 
contributes to the side of the braincase while the quad-
rate suspends the jaw skeleton from the temporal region 
of the skull [101–103]. In place of the palatoquadrate, 
the functional upper jaw of amniotes is made up of der-
mal bones from the dermatocranium, including the pre-
maxilla, maxilla, quadratojugal, palatine, and pterygoid 
(Fig. 2d) [3, 45, 104].

In the lower jaw, Meckel’s cartilage typically persists 
as a cylindrical rod that rarely goes on to ossify [3, 105–
107]. The lower jaw of reptiles and birds is also made up 
of several separate dermal bones from the dermatocra-
nium that surround Meckel’s cartilage including the 
dentary, surangular, angular, and splenial (Fig.  2d) [100, 
108–110]. Distinct from these dermal bones, the articular 
cartilage ossifies within the proximal portion of Meckel’s 
cartilage and contacts the quadrate cartilage to form the 
jaw joint. Thus, the actual connection between the upper 
and lower jaws of reptiles and birds comes from two ossi-
fied remnants (i.e., quadrate and articular) of the ances-
tral viscerocranial upper and lower portions of the first 
oropharyngeal arch [102]. This also typifies the jaw joint 
for all non-mammalian jawed vertebrates.

In contrast, the mammalian jaw skeleton is highly 
derived from the ancestral amniote condition. First, 
the homolog of the epipterygoid helped close off the 
expanded mammalian braincase by giving rise to a 
portion of the mammalian alisphenoid bone (Fig.  2e) 
[111–114]. Second, the functional lower jaw went from 
having up to six different bones to a single bone, the 
dentary (i.e., mandible) (Fig.  2f ) [45, 115]. Third, the 
quadrate became reduced in size, no longer partici-
pated in the jaw joint, and evolved into the incus, which 
is one of the mammalian middle ear ossicles [116–118]. 
During this evolutionary transformation, the articular, 
like the quadrate, became modified into another middle 
ear ossicle, the malleus [117]. In association with the 
viscerocranial jaw joint becoming middle ear ossicles, 
a new jaw joint formed in the dermatocranium between 
the dentary and squamosal bones (i.e., the dentary-
squamosal or temporal-mandibular joint) of mammals 
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[119, 120]. Such a transformation demonstrates how 
jaw bones can be repurposed to have new functions 
[121–123]. In this case, bones that once supported 
feeding become bones for hearing [117, 118, 120, 124]. 
So, while in reptiles and birds, the bones that conduct 
sound to the inner ear remain closely associated with 

the jaw, in mammals, the sound-conducting middle ear 
ossicles become isolated from the jaw joint and encap-
sulated within the skull [125]. Such an arrangement 
apparently confers mammals with an efficient auditory 
system capable of detecting high frequencies and pro-
tected from the masticatory apparatus [126].
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Fig. 2  The amniote jaw skeleton has undergone evolutionary diversification in form and function. a Development of upper and lower cartilaginous 
elements of the mandibular arch in a generalized ancestral amniote. The cartilaginous upper jaw of an ancestral amniote consists of the 
palatoquadrate cartilage, which is a single element. The lower jaw contains Meckel’s cartilage with the articular cartilage at the most proximal 
end. b During the radiation of amniotes into the major clades of reptiles (including snakes, lizards, turtles, crocodiles, and birds) and mammals, 
the ancestral amniote condition became modified. c In reptiles and birds, all that persists of the palatoquadrate is the epipterygoid and quadrate 
cartilages that develop along condensations of NCM (dashed lines). The quadrate is the upper portion of the jaw joint and the articular cartilage 
is the lower portion. d In place of the palatoquadrate, the functional upper jaw of reptiles and birds is composed of dermal bones including the 
premaxilla (pm), maxilla (mx), and palatine (pa). The lower jaw is also made up of several dermal bones that surround Meckel’s cartilage including 
the dentary, surangular (su), angular, and splenial (sp). The amniote jaw skeleton is derived entirely from neural crest mesenchyme (NCM; light 
blue) whereas some elements in the skull roof are derived from mesoderm (orange). e In mammals, the epipterygoid contributes to part of the 
alisphenoid bone and the quadrate becomes the incus (in), which is an ossicle in the middle ear. In mammals, the articular cartilage becomes 
the malleus (ma) in the middle ear. f Mammals evolve an entirely new jaw joint between the dentary and squamosal (sq) bones, as the incus (in) 
and malleus (ma) become incorporated into the middle ear. The lower jaw is reduced to a single bone, the dentary (i.e., mandible) (Modified and 
adapted from [19, 37, 73, 102, 138, 140, 396])
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In general, jaw movement is enabled by pairs of adduc-
tor, abductor, and levator muscles that insert onto various 
aspects of the mandible [127–129]. The main jaw adduc-
tor muscles are innervated by the trigeminal nerve (n. V) 
whereas the abductors are innervated by the facial nerve 
(n. VII) [130]. For most amniotes, lateral movement is 
fairly restricted and jaw adduction and abduction occurs 
at the parasagittal plane. The mammalian jaw adductor 
complex underwent significant rearrangement and modi-
fication in association with the evolution of mastication 
and presumably the need to increase bite force [123, 131]. 
Mammals also evolved a novel series of pharyngeal eleva-
tors and constrictors to support their unique swallowing 
and suckling behaviors [95, 132].

As in the rest of the musculoskeletal system, the mus-
cles and bones of the jaw are joined by tendons, which 
are continuations of the connective tissue fascia that 
ensheath skeletal muscles. In contrast to muscle and 
bone, which are well vascularized, tendons are avascular. 
Tendons primarily distribute tensile forces from mus-
cle to bone and the junction between tendon and bone, 
called an enthesis, is marked by a transition zone between 
the fibrous matrix of tendon and the mineralized matrix 
of bone [133–135]. Bundles of densely packed and axi-
ally aligned fibers (i.e., Sharpey’s) that comprise tendons 
must smoothly transform into cortical bone for effective 
transmission of mechanical loads. Moreover, fibrocarti-
lage may develop within compressed regions when ten-
don is wrapped against the surface of bone, which can 
help create a gradient in material properties along the 
transition from soft to hard tissues (i.e., tendon to bone) 
and dissipate the stress concentration at the bony inter-
face [136]. The hallmarks of fibrocartilaginous tendons 
include sparsely distributed chondrocytes and a carti-
laginous matrix enriched with molecules associated with 
resisting compression [137].

In order for each of the cartilages, bones, muscles, and 
tendons of the amniote jaw complex to attain proper 
form, achieve structural integration, and become func-
tionally enabled, their precursor populations must 
acquire and/or act upon multiple dimensions of pat-
terning. These dimensions include developing with the 
appropriate cell and tissue type (e.g., chondrocyte, osteo-
blast, myocyte, tenocyte), axial orientation (e.g., dorsal–
ventral, rostral–caudal, proximal–distal, medial–lateral), 
anatomical identity (e.g., upper jaw versus lower jaw), 
and species-specific size and shape (e.g., mouse-like 
versus human-like, or quail-like versus duck-like) [37, 
42, 138]. Clearly, each component within the jaw com-
plex can be transformed rapidly and dramatically during 
the course of amniote evolution (and also in the case of 
birth defects), and undoubtedly this occurs via changes 
in the molecular and cellular programs that underlie 

the multiple dimensions of patterning. However, such 
changes must be constrained on one level or another 
because over the long run, the essential internal relation-
ships among the various musculoskeletal elements have 
to be maintained with high fidelity and in a manner that 
meets any necessary functional demands. How this hap-
pens could be considered an emergent property of all the 
signaling pathways and gene regulatory networks that 
are deployed over time across three-dimensional space, 
as well as the embryonic histories and iterative interac-
tions of every contributing cell and tissue. In this regard, 
the developmental biology of the jaw apparatus seems 
almost infinitely complicated to sort out. Nonetheless, 
good progress can be made in characterizing the multidi-
mensional and dynamic system that generates the amni-
ote jaw complex by  focusing on the hierarchical levels 
of anatomic and embryonic  organization, by identifying 
common principles, and by  emphasizing  fundamental 
molecular and cellular mechanisms.

Cellular origins of musculoskeletal tissues 
in the jaw
The cartilages and bones in the upper and lower portions 
of the amniote jaws arise within embryonic prominences 
flanking the stomodeum, or presumptive oral cavity 
(Fig.  3a). The first oropharyngeal arch (i.e., mandibular 
arch) contains two pairs of prominences: the maxillary 
processes, which lie lateral to the stomodeum and give 
rise to the secondary palate and portions of the upper 
jaws; and the mandibular processes, which lie inferior to 
the stomodeum and produce the lower jaws [139, 140]. 
Additional prominences, specifically the frontonasal 
process in reptiles and birds, and the lateral and medial 
nasal processes in mammals, give rise to the mid and 
upper face and the primary palate [141–144]. Modulat-
ing growth and other parameters in these prominences 
enables diverse and complex morphologies to develop 
and evolve, but abnormal variation often causes facial 
and palatal clefting, which are some of the most common 
human birth defects [144–152].

The oropharyngeal arches are populated by NCM 
(Fig.  3b, c), which arises at the boundary between the 
neural plate and the non-neural ectoderm following an 
epithelial to mesenchymal transition [153–159]. NCM 
migrates extensively and produces numerous cell types 
in the jaw apparatus including all the chondrocytes that 
make cartilage, osteoblasts that make bone, tenocytes 
that make tendon, and ligamentous fibroblasts that make 
other muscle connective tissues (Fig.  1a) [19, 54, 62, 
66–69, 77, 160–164]. NCM appears to be drawn from 
the neural tube to the oropharyngeal arches via chem-
oattractant gradients. Many molecules like fibroblast 
growth factors (FGF), vascular endothelial growth factors 



Page 7 of 21Woronowicz and Schneider ﻿EvoDevo           (2019) 10:17 

i duck

quadrate

retroarticular
surangular

Meckel’s

mandibular depressor

postorbital
mandibular

adductor

stage 38

h quailpostorbital
mandibular

adductor

Meckel’s
surangular

mandibular depressor

quadrate

retroarticular

muscle
cartilage & bone

stage 38

squamosal squamosal

fn

mx

hy

V

VII

IX

m
fb

se

np
se

stage 25

3rdpe

ma

stage 25

quaila

fn

mx
ma

1 mm

r6

fb
mb
r1
r2
r3

r7

r4
r5

m

stage 9.5

mesoderm
neural crest
endoderm

ectoderm

f g

d e

surangularsurangular

jaw adductor jaw adductor

quail duck

quail duck

1 cm

b c

1 cm

Fig. 3  The development of the amniote jaw complex involves critical contributions from multiple embryonic populations. a Frontal view of stage 
25 quail embryo. The frontonasal (fn), maxillary (mx), and mandibular (ma) primordial are visible (dotted line indicates the sagittal section plane 
for b). b By stage 25, the frontonasal (fn), maxillary (mx), mandibular (ma), and hyoid (hy) primordia (sagittal view) are populated by NCM (light 
blue) surrounded by surface ectoderm (se; tan), pharyngeal endoderm (pe; yellow), and forebrain neuroepithelium (fb; dark blue) and contain 
contributions from neural crest, nasal placode (np), and cranial ganglia (V, VII, IX). Mesoderm (m) that produces skeletal tissues is distributed 
caudally. c Prior to migration, at stage 9.5 (dorsal view) cranial NCM (light blue) delaminates from the forebrain (fb), midbrain (mb), and hindbrain 
rhombomeres (r; dark blue). Cranial NCM migrates alongside paraxial mesoderm (m; orange). d, e Head skeleton of adult quail and duck. The 
duck surangular bone, which lies dorsal to the dentary bone along the lower jaw (inset), contains a robust coronoid process (black arrow) along 
its lateral margin that is absent in quail. f, g The mandibular adductor muscles (white dashed outline), which close the jaw, are relatively larger in 
ducks than in quails. The caudal external mandibular adductor muscle originates posterior to the orbit and inserts laterally on the duck coronoid 
process (black arrow). This muscle is relatively smaller in quails and inserts along the dorsal margin of the surangular. h By stage 38 in quails, the 
narrow mandibular adductor muscle (orange) inserts dorsally onto the coronoid process of the surangular bone (light blue). i By stage 38 in ducks, 
the broad mandibular adductor inserts laterally onto the coronoid process and contains a secondary cartilage (arrow) within the tendon enthesis 
(Modified and adapted from [6, 19, 37, 138, 140, 233, 283])
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(VEGF), and other cytokines and secreted proteins are 
thought to attract migrating NCM, but whether such gra-
dients are sufficient to guide long-range NCM migration 
remains an open question [165–169]. Other in vivo and 
in silico data predict that a chemoattractive gradient may 
not be required for collective NCM migration. Instead, 
contact inhibition may drive the long-range, directional 
migration of NCM [153, 169–172]. Repulsive signals also 
steer streams of migrating NCM by way of Eph/ephrin 
and neuropilin/semaphorin signaling for example [173–
175]. Likely a combination of contact inhibition along 
with attractive and repulsive signals regulates cranial 
NCM streaming and funnel NCM into their proper oro-
pharyngeal destinations where they eventually differenti-
ate as an array of interconnected jaw tissues.

Although NCM differentiates into many cell and tissue 
types, the extent of their initial developmental potency 
has been disputed. Conflicting interpretations of clonal 
analyses and lineage tracing experiments have obscured 
whether NCM is truly multipotent, or whether NCM is a 
diverse population of fate-restricted cells [162, 176–182]. 
For instance, studies using fluorescent “confetti” reporter 
mice reveal that individual migratory neural crest cells 
commonly contribute to many cell types and multiple tis-
sues and suggest that NCM is indeed multipotent [183]. 
Correspondingly, the gene regulatory networks that 
direct NCM toward differentiation have become much 
better understood [184–188] and undoubtedly their 
continued delineation will help clarify the multifaceted 
genetic underpinnings of neurocristopathies, which often 
have widespread and debilitating effects [189–191].

Besides NCM, the development of the jaw complex 
also involves critical contributions from non-neural 
ectoderm and pharyngeal endoderm, which form the 
epithelia that surround the mandibular arch, as well as 
from paraxial  mesoderm (Fig.  3b, c). Epithelial tissues 
derived from the non-neural ectoderm include placo-
des that produce tissues like olfactory epithelium in the 
nasal capsule as well as cranial ganglia like the trigemi-
nal that support the innervation of the mandibular 
arch [194–199]. The epidermis, which becomes strati-
fied into multiple layers, likewise comes from the non-
neural ectoderm and produces the enamel of teeth [46, 
76] as well as the keratinized portions of jaw structures 
such as horns, beaks, and egg teeth [193, 200–204]. 
Paraxial mesoderm gives rise to angioblasts that build 
blood vessels, osteoclasts that resorb bone, and myo-
cytes that make skeletal muscle in the jaws [63, 71, 128, 
161, 205–211].

Cranial skeletal muscles are distinct from trunk mus-
cles in terms of the organization of their embryonic pre-
cursor populations and the gene regulatory networks that 
govern their differentiation [128, 205, 213–221]. Amniote 

jaw muscles derive from unsegmented populations of 
paraxial mesoderm [128, 161, 71, 206, 209] whereas in 
the trunk, skeletal muscles arise from paraxial mesoderm 
that is organized into segmented somites [222–225]. 
These differences not only reflect the complex develop-
mental and evolutionary histories of the head but also 
seem to influence the patterns of muscle gene expres-
sion. While transcription factors like Mrf4, Myf5, MyoD, 
and Myogenin are required for myogenesis throughout 
the body, the specific subsets of genes and the genetic 
hierarchy regulating these factors vary between cranial 
muscle groups [205]. For example, jaw muscles employ 
a suite of genes that is distinct from trunk muscles and 
even other cranial muscles [217, 218, 226]. Some signals 
like those from the bone morphogenetic protein (BMP) 
pathway repress muscle differentiation in both the head 
and trunk, while Sonic Hedgehog (SHH) and Wingless 
(WNT) signaling promotes muscle differentiation in 
the trunk but inhibits muscle differentiation in the head 
[216]. Specifically, connective tissues surrounding head 
muscles express antagonists like Gremlin and Frizzled-
related protein (Frzb), which relieve repression of mus-
cle development by BMPs and WNTs, respectively, and 
allow cranial muscles to differentiate.

The above example involving BMP and WNT signaling 
illustrates one of the many ways the patterning and dif-
ferentiation of cranial skeletal muscle rely upon signals 
emanating from adjacent NCM-derived connective tis-
sues. Myogenic precursors migrate alongside NCM en 
route to the first and second oropharyngeal arches [55, 
161, 71, 227, 228] and multiple aspects of jaw muscle pat-
tern are regulated by NCM-derived connective tissues 
such as fiber type, muscle orientation, and the precise 
locations of attachments [128, 205, 212, 218, 226, 229, 
230]. This intimate spatial and temporal relationship is 
similar to what occurs in the trunk [225] where connec-
tive tissue fibroblasts (although these instead arise from 
trunk mesoderm) supply critical signals for both fast- and 
slow-twitch muscle differentiation and lay down the basic 
muscle patterns prior to tendon differentiation [231, 
232].

Not only do such developmental interactions between 
NCM and mesodermal mesenchyme ensure the struc-
tural integration necessary for achieving appropriate 
muscle function during ontogeny, but they also seem-
ingly help maintain the co-evolution of the musculo-
skeletal system throughout phylogeny. This conclusion 
is buttressed by results from chimeric transplant experi-
ments that exploit the different jaw morphologies of 
quails and ducks (Fig.  3d–g). In particular, quail–duck 
chimeras have revealed the ability of NCM-derived ten-
don and muscle connective tissues to dictate the species-
specific attachments of jaw muscles that have evolved 
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in connection with the distinct modes of feeding that 
characterize each of these birds [6, 233]. For example, 
transplanting pre-migratory NCM from quail to duck 
embryos produces duck-host-derived muscles with quail-
like shape and attachment sites [6]. Such mechanistic 
reliance of the jaw muscles on their associated connective 
tissues during development likely underlies the capacity 
of species to adapt by co-evolving their musculoskeletal 
system in ways that often seem astonishingly well suited 
for novel functions.

Epithelial interactions underlying jaw patterning 
and differentiation
Despite the wide variety of highly specialized jaw mor-
phologies, the basic Bauplan and the underlying genetic 
modules of the developing jaw complex remain relatively 
conserved across amniotes. All amniote jaws are ori-
ented such that the most proximal components articulate 
at a hinge even though the distal components may vary 
greatly in length and in form. To establish the correct 
positional information along the axes of the developing 
jaw skeleton, the mandibular arch relies upon discrete 
and nested molecular programs that are regulated by and 
affect the NCM. One elegant hypothesis to explain this 
phenomenon is known as the “hinge and caps model” 
wherein two appositional units (i.e., upper jaw and lower 
jaw) are thought to maintain their own intrinsic polarity 
through a patterning system that reflects the competence 
of NCM to respond to an array of positionally located 
epithelial signals [234]. In this context, species-specific 
changes to protein coding sequences, ligand and receptor 
expression domains, duration of gene expression, and/or 
sensitivity to signaling could allow the proportions and 
relative positions of skeletal elements to change along the 
proximodistal axis during evolution while simultaneously 
maintaining the basic “hinge and caps” organization of 
the jaws [38, 39, 235–239].

Numerous studies have shown that the signals from the 
epithelium are spatially and temporally dynamic and, in 
response, NCM expresses a combinatorial suite of tran-
scription factors such as the Msx, Dlx, Prx, Hand, Six, 
Bapx, and Barx families, which in turn affects the ana-
tomical identity of the maxillary and mandibular promi-
nences [173, 240–260]. For example, perturbing Dlx gene 
expression transforms maxillary into mandibular jaw 
bones [243, 244, 249]. Such homeotic transformations 
caused by disruptions to homeobox genes like Dlx and 
others demonstrate that in general the stereotypic and 
programmatic responses of transcription factors, which 
are elicited by signals from adjacent epithelia, are a key-
stone of jaw morphogenesis. This is not unlike what hap-
pens along the anteroposterior axis of the trunk or the 
proximodistal axes of the limbs, which are patterned by 

overlapping expression domains of Hox-family transcrip-
tion factors. However, a seemingly important difference 
is that the frontonasal process as well as the maxillary 
and mandibular primordia of the first oropharyngeal arch 
(unlike the more posterior arches such as the hyoid arch) 
are Hox free and, thus, they are reliant on different gene 
regulatory networks and signaling interactions to guide 
their morphogenesis [261–264].

One of the primary functions of these epithelial–mes-
enchymal signaling interactions is to establish axial 
polarity in the face and jaws. For example, to set up the 
dorsoventral axis of the upper jaw, retinoic acid (RA) 
signaling triggers a sequence of reciprocal signaling 
events among the neuroepithelium, NCM, and surface 
ectoderm [265–267]. Epithelial–mesenchymal signal-
ing between the NCM and the surface ectoderm defines 
a signaling center called the frontonasal ectodermal 
zone (FEZ) that consists of complementary Fgf8 and Shh 
domains separated by a precise boundary [143, 268]. RA 
signaling maintains Fgf8 and Shh expression domains in 
both the neuroepithelium and surface ectoderm [265, 
269]. Rotating the FEZ 180° induces ectopic Fgf8 and Shh 
domains, extra dorsoventral axes, and supernumerary 
structures of the upper jaws such as duplicated cartilages 
and egg teeth in birds [141, 268].

Likewise, the anteroposterior axis of the jaw skel-
eton is established through interactions between NCM 
and the pharyngeal endoderm, which also relies on Shh 
expression to establish polarity and support cartilage 
development [79, 270–273]. Ablating localized regions 
or altering the growth of pharyngeal endoderm pre-
vents formation of the quadrate, Meckel’s cartilage, the 
articular, and the hyoid [274–276]. Rotating pharyngeal 
endoderm by 90°, 180°, or 270° leads to ectopic and cor-
respondingly re-oriented cartilaginous elements. Finally, 
in terms of the mediolateral axis, ectopic midline struc-
tures like egg teeth can be induced in the lateral nasal 
process by simultaneous local inhibition of BMP signal-
ing and the administration of exogenous RA, which pre-
sumably mimics the local signaling environment of the 
frontonasal process [245, 266]. These experiments and 
many others underscore the critical role of epithelia and 
their cadre of secreted factors in establishing the axes of 
the jaw skeleton and ultimately the relative positions of 
individual jaw bones and cartilages [147, 148, 237, 265, 
277–279].

As part of its genetic response to the epithelial interac-
tions that establish the major axes and anatomical iden-
tity of skeletal elements along the jaws, NCM executes 
intrinsic developmental programs that impart individual 
cartilages and bones with species-specific size and shape. 
Such insight comes mostly from interspecific transplant 
experiments involving the embryos of salamanders, 
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frogs, birds, and mice, which have shown that this aspect 
of patterning in the jaws is largely driven autonomously 
by the NCM [37, 39, 40, 42, 156, 280–286]. Chimeric 
model systems have also enabled mechanisms underlying 
the complex interactions between NCM and surround-
ing epithelial tissues to be interrogated on the molecular 
level. For instance, transplanting quail NCM into a duck 
host produces a smaller jaw with quail-like, species-
specific morphology [7, 283, 287]. Such a complex mor-
phological transformation is driven by NCM-mediated 
temporal and spatial changes in the expression of genes 
known to be involved in the patterning, differentiation, 
and growth of the jaw skeleton such as members and 
targets of the BMP, FGF, SHH, and transforming growth 
factor beta (TGFβ) pathways [38, 40, 283, 287, 288]. Fur-
thermore, NCM seems to be remarkably pliant and, for 
example, can even follow cues from the local develop-
mental environment that normally pattern mesoderm-
derived skeletal elements [114]. These experimental 
findings serve as a testament to the regulatory abilities, 
developmental plasticity, and evolutionary significance of 
the NCM during jaw evolution [7, 19, 37, 39, 96, 138, 140, 
164, 191, 289].

Moreover, the use of an anatomically diverse range of 
model systems (especially avian) has enabled the develop-
mental programs responsible for evolutionary changes to 
the dimensions of the jaw skeleton to be elucidated [290]. 
For example, studies involving Darwin’s finches and other 
birds including chicks, ducks, quails, and cockatiels have 
not only uncovered components of genetic modules 
and/or gene regulatory networks that specify the axes 
of the jaw skeleton but have also helped elucidate how 
changes to these components can generate species-spe-
cific variation in depth, width, and length during evolu-
tion. In particular, BMP signaling affects depth and width 
whereas calcium signaling affects length [291–295]. 
Species-specific jaw length also appears to be depend-
ent on NCM-mediated expression of enzymes involved 
in bone resorption such as matrix metalloproteinase 13 
(Mmp13). In this case, quail embryos express high levels 
of MMP13 in the NCM-derived jaw skeleton while duck 
embryos express relatively little, and inhibiting MMP13 
in quail embryos lengthens the jaw [38]. TGFβ and WNT 
signaling also appears to regulate the size and shape of 
the upper jaw [236]. Similarly, sequence changes in tran-
scription factors like Alx1 also affect species-specific jaw 
shape [296]. Finally, thousands of putative active enhanc-
ers seem to be operating during craniofacial morphogen-
esis indicating that there are many yet to be discovered 
mechanisms from paracrine signaling to transcriptional 
regulation likely governing the evolutionary diversifica-
tion of jaw size and shape [297, 298].

Not only does the initial patterning of NCM in terms of 
axial orientation and anatomical identity require numer-
ous reciprocal signaling interactions with adjacent epi-
thelia but also the differentiation of NCM into skeletal 
tissues such as bone depends on these interactions as 
well [138, 288, 299]. For example, intramembranous ossi-
fication of the lower jaw requires precisely timed, recip-
rocal interactions with overlying epithelium. Surgically 
removing mandibular epithelium prevents NCM from 
forming bone [288, 299]. However, there does not seem 
to be anything intrinsically osteogenic about mandibular 
epithelium since NCM can still make bone in the man-
dibular primordia even when interacting with epithelium 
from the forelimb [300]. These and other tissue recombi-
nation experiments reveal that NCM helps establish the 
location of osteogenesis during jaw development likely 
through some yet to be identified instructive signals.

NCM also controls the timing of mandibular osteo-
genesis. If mandibular epithelium is removed at an early 
stage, then jaw bone fails to form. However, at a slightly 
later stage (presumably after some critical signaling 
events between NCM and the mandibular epithelium 
have occurred) bone can form in the absence of the epi-
thelium [288, 299]. While on the surface this would sug-
gest that the epithelium determines when bone forms, 
quail–duck chimeras demonstrate that the precise timing 
of this epithelial–mesenchymal interaction and ultimately 
the induction of bone is reliant upon an NCM-mediated 
developmental program involving BMP signaling [288]. 
Quail embryos develop faster than duck embryos due to 
intrinsic differences in their rates of maturation (17 ver-
sus 28 days from fertilization to hatching). When NCM 
is transplanted unilaterally from quails to ducks, the 
entire program for osteogenesis is accelerated and pre-
cocial bone forms on the quail-donor side three develop-
mental stages earlier than on the contralateral duck-host 
side [40]. Additionally, in chimeras, bone can form much 
sooner in the absence of epithelium coincident with the 
presence of faster-developing quail donor NCM [288]. 
NCM appears to accomplish this task by using BMP sign-
aling to govern the timing of interactions with epithelium 
as well as  jaw bone formation. The ability of NCM to 
exert control over the location and timing of key osteo-
genic events as well as the regulation of critical signaling 
pathways provides another crucial insight into how NCM 
acts as a fundamental developmental mechanism linking 
the species-specific evolution of form with function in 
the amniote jaw skeleton.



Page 11 of 21Woronowicz and Schneider ﻿EvoDevo           (2019) 10:17 

The role of mechanical forces in jaw form 
and function
During embryogenesis, the formation and growth of jaw 
tissues are also influenced by external factors, includ-
ing the mechanical environment. Throughout the body, 
muscles, bones, and tendons respond and adapt to 
mechanical stimulation via various mechanotransduction 
pathways, often undergoing hypertrophy in the presence 
of increased loading, and atrophy with disuse [136, 137, 
301–305]. In sites where tendons transduce high mag-
nitude forces from muscles, bony eminences may form. 
Pools of cells which express both cartilage (e.g., Sox9) 
and tendon (e.g., Scx) lineage markers contribute to bony 
eminence development in the head and trunk such as the 
angular process of the mandible, deltoid protuberance 
of the humerus, and great trochanter of the femur [306, 
307]. In this way, achieving proper musculoskeletal pat-
tern, structural integration, and linkage between form 
and function depends on the dynamic ability of tendons 
and other tissues to detect and respond to biomechani-
cal cues in the local environment. Such developmental 
plasticity in response to mechanical forces helps shape 
the jaw skeleton and creates robust muscle attachments. 
For these reasons, gaining a deeper understanding of 
the molecular and cellular mechanisms that allow cer-
tain tendons to achieve robust osseointegration might 
some day help enhance the capacity of torn muscle inser-
tions to be re-attached to bone or even regenerated in 
clinical situations via molecular therapies [308–311].

The primary source of biomechanical forces that con-
tribute to jaw development is embryonic motility. As 
neuromuscular junctions form, they facilitate sponta-
neous muscle contractions and cause embryos to move 
various parts of the skeleton. Presumably, embryonic 
motility feeds directly into a cascade of molecular and 
cellular events [137, 233, 312–317] that ultimately enable 
embryonic form to presage adult function. Birds have 
served as a well-suited model system for characterizing 
and quantifying embryonic motility because their rela-
tively large embryos are easily accessed and observed 
[42, 318–326]. In chicks, the first neuromuscular junc-
tions form in the trunk [327]. Random depolarizations 
strengthen neuromuscular junctions and mature into 
cyclic, stereotyped movements of the head, jaws, trunk, 
and limbs. As Wolff’s Law predicts, disruptions to 
embryonic motility cause widespread and severe mus-
culoskeletal defects. Early paralysis can lead to abnor-
mal joint cavitation [323–331]. Later paralysis can alter 
the size, shape, extent of ossification, and relative pro-
portions of skeletal elements [303, 305, 332–334]. How-
ever, mechanisms that facilitate the relationship between 

mechanical stimulation and musculoskeletal pattern have 
for the most part remained obscure.

One mechanically responsive skeletal tissue that 
appears to be unique to amniotes and plays a critical role 
in the proper form and function of the jaw is secondary 
cartilage. Secondary cartilage develops independent of, 
and subsequent to, the primary cartilaginous skeleton 
(e.g., the neurocranium and viscerocranium) [3, 51, 335, 
336]. Secondary cartilage is found within cranial joints, 
the sutures of some calvarial bones, the clavicles, antlers 
of deer, certain ligaments and tendons, and the transient 
calluses that arise during the healing of broken bones 
[42, 80, 85, 233, 337–340]. While secondary cartilage is 
now limited to birds and mammals, there is some fossil 
evidence suggesting that a non-avian dinosaur possessed 
secondary cartilage within the mandibular adductor 
insertion, raising the possibility that this tissue was also 
present in archosaurian reptiles more broadly [341, 342].

The formation of secondary cartilage relies on mechan-
ical stimulation and, therefore, the evolutionary presence 
or absence of secondary cartilage reflects species-specific 
variation in functional jaw anatomy [336, 339, 343, 344]. 
In humans, rats, cats, and ducks, secondary cartilage 
forms at the tendon insertion (i.e., enthesis) of the jaw 
adductor muscles on the coronoid process (Fig. 3h, i) [45, 
80, 233, 340, 345–350]. An equivalent secondary cartilage 
is absent in mice, guinea pigs, chicks, and quails [233, 
346–354]. Why secondary cartilage arises at this location 
in some species and not others is unclear but presumably 
the underlying mechanisms are responsive to differential 
forces generated by muscle attachments and jaw move-
ments [42, 137, 233, 312, 313, 315, 350]. In humans and 
ducks, a robust and protruding secondary cartilage at the 
coronoid process (that eventually becomes a bony pro-
cess) provides a broad lateral insertion for the adductor 
muscles, which enhances leverage and facilitates the slid-
ing motion needed for their specialized modes of feeding 
[355–362]. Ducks feed via a suction pump mechanism 
and the levered straining of water. This involves rapid 
opening and closing of the mandible, which requires sud-
den acceleration and significant force [356]. Conversely, 
in quails and chicks, which peck at their food and use the 
distal tips of their beaks like precise pincers, the adductor 
muscles insert dorsally and the coronoid process appears 
as a slight bony ridge (Fig. 3h) [109, 110, 201, 363–367].

As is the case for the jaws of other mammals, second-
ary cartilage at the human condylar and coronoid pro-
cesses is required for proper kinetic movement of the 
temporal-mandibular joint (TMJ) [349, 357, 368, 369]. 
As described earlier, the TMJ is a uniquely mammalian 
articulation point for the upper and lower portions of the 
jaw that is not homologous to the quadrate-articular jaw 
joint of other vertebrates. The TMJ plays a critical role in 
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normal mammalian jaw function and is especially reliant 
upon the secondary cartilage that covers its articulat-
ing surfaces. Secondary cartilage degeneration can often 
result from trauma, altered mechanical loading, genetic 
perturbations, and/or hormonal changes, and lead to 
temporomandibular disorders (TMD). TMD are perva-
sive human clinical conditions that affect approximately 
10% of the population [370, 371] and cause acute pain 
and suffering for patients [372]. Strategies for molecular 
and cell-based therapies to restore normal TMJ function 
impaired by birth defects, injury, or disease can likely 
benefit by identifying mechanisms that control the devel-
opment of secondary cartilage. However, mechanisms 
through which chondrogenic and mechano-responsive 
factors are regulated, and how changes to the mechani-
cal environment alter expression of these factors remain 
unclear. Thus, elucidating how secondary cartilage is 
induced and maintained can provide an important exam-
ple of how form and function become integrated during 
the development of the jaw skeleton and also can help 
shed light on a major unmet clinical need.

The exact nature of the mechanical forces and the 
downstream molecular mediators that induce and main-
tain secondary cartilage requires further elaboration. 
Secondary cartilage fails to form on the duck coronoid 
process following in ovo paralysis [42, 233], whereas 
ex vivo culture of embryonic chick jaws shows that cyclic 
mechanical stimulation is sufficient to promote second-
ary chondrogenesis at the joint between the quadrate and 
quadratojugal [312, 313]. Finite element models, which 
integrate embryonic motility with species-specific varia-
tion in jaw anatomy, have predicted that there are signifi-
cant qualitative and quantitative differences in the local 
force environment leading to the presence of secondary 
cartilage on the duck coronoid process but not on that of 
the quail [233]. This is based primarily on the observa-
tion that in duck, the mandibular adductor inserts on the 
lateral aspect of the surangular bone, whereas in quail, 
the insertion is along the dorsal margin. Additionally, 
the duck insertion is also much more proximal to the jaw 
joint. Such geometries imply that duck embryos experi-
ence substantially higher and more heterogeneous shear 
stress concentrations at the mandibular adductor inser-
tion, which at their maximum can be 60 times greater 
than those predicted for quail [42]. Also, based on cross-
sectional area, the embryonic duck mandibular adduc-
tor has a maximum contractile force approximately 2.8 
times  greater than that of quail. Importantly, chimeric 
“quck” (i.e., quail donor NCM transplanted into a duck 
host) form a quail-like jaw complex including a transfor-
mation of the lateral to dorsal insertion of the mandibular 
adductor muscle and a corresponding lack of secondary 

cartilage even though the mandibular adductor muscle 
itself comes from the duck host.

Thus, the lateral position of the insertion of the man-
dibular adductor muscle in ducks, which is established as 
a consequence of patterning by NCM-derived connective 
tissues [6, 233], seemingly creates a combination of axial 
tension and compression when the adductor muscle con-
tracts and the jaw closes [42, 233]. By comparison, cells in 
the dorsal insertion of the mandibular adductors in quails 
likely experience primarily axial tension. These diver-
gent mechanical environments presumably lead to the 
differential activation of mechano-responsive signaling 
pathways, which in turn produce cellular changes that in 
due course dictate the presence or absence of secondary 
cartilage on the coronoid process. Such results point to 
the indispensable contributions of NCM to establishing 
the species-specific form and function in the jaw appara-
tus. Moreover, some of the pathways required for deriva-
tives of the NCM to adapt and respond to the mechanical 
environment are beginning to be better understood. Not 
surprisingly, the ways that developmental programs inte-
grate biomechanical forces and the individual genes and 
cells that respond to cues from the mechanical environ-
ment appear to be context dependant and tissue specific. 
For example, WNT signaling and the osteocyte-spe-
cific WNT inhibitor, sclerostin, have been implicated in 
mechanosensitive bone remodeling [373–375]. Other 
mechanisms of mechanotransduction seem to include 
ligands being freed from the extracellular matrix, signal-
ing through ion channels, changes in focal adhesions, and 
dynamic rearrangement of the cytoskeleton, among oth-
ers [233, 302, 376–387].

The quail–duck chimeric system has been especially 
useful for further pinpointing molecular mechanisms 
through which jaw morphology and mechanical forces 
interact [42, 233]. For instance, members and targets 
of the FGF and TGFβ signaling pathways are differen-
tially  responsive to the species-specific variation in the 
mechanical force environment of quail versus duck. Both 
of these pathways are known to play a role during mecha-
notransduction and chondrogenesis in other biological 
contexts [388–394], and both pathways are required for 
secondary chondrogenesis at the coronoid process [42]. 
Moreover, exogenous FGF and TGFβ ligands can rescue 
secondary cartilage in paralyzed duck (again, when no 
secondary cartilage forms) and also induce cartilage in 
the quail mandibular adductor insertion, where normally 
there is none. These important mechanistic insights help 
explain how species-specific morphology, mechani-
cal forces, and resultant changes in signaling activity 
become integrated and contribute to musculoskeletal 
plasticity in the jaw apparatus. In other words, the rea-
son why secondary cartilage forms in some locations in 
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some species and not others is likely because of the way 
embryonic motility interacts with NCM-mediated mus-
cle pattern to create a qualitatively and quantitatively dif-
ferent mechanical force environment. Thus, this example 
illustrates that  while form initially determines function, 
function can also serve as a forceful regulator of muscu-
loskeletal form in the jaw complex during development 
and evolution.

Conclusion
In 1916, E.S. Russell posed the question in his now classic 
book, Form and Function [18], “Is function the mechani-
cal result of form, or is form merely the manifestation of 
function or activity? What is the essence of life, organi-
sation or activity? (p.v).” A broad range of experimental 
strategies across different model systems have revealed 
that NCM is an essential player in most, if not all, of 
the decisive events that generate the primary organiza-
tion of the amniote jaw complex. NCM not only pro-
vides the raw materials for the cartilages, bones, and 
other essential components that comprise the jaws, but 
NCM is also required for the critical signaling interac-
tions that imbue these tissues with the multidimensional 
aspects of patterning from which their form is derived. 
Deficiencies in NCM or perturbing these interactions 
on the molecular or cellular level alters the form of the 
jaw complex in profound ways, which illuminates why 
the jaw complex is both highly evolvable and extremely 
susceptible to developmental defects [164]. Moreover, 
while NCM and neighboring epithelia typically collabo-
rate to pattern the cartilages and bones of the jaws, and 
while NCM and mesodermal mesenchyme work together 
to pattern the jaw muscles, NCM seems to act as the 
dominant source of information that gives all of these 
jaw structures their species-specific size and shape. In 
this role, NCM is the common denominator that under-
lies the structural integration of the jaw apparatus, gen-
erates species-specific variation, and likely serves as a 
responsive target of natural selection during evolution 
[7, 37, 138, 140, 191]. Moreover, NCM has augmented 
the evolutionary potential (i.e., adaptability) of the phar-
yngeal and rostral portions of the head and imparts the 
jaw skeleton with developmental plasticity, as evidenced 
by the ability of the NCM-derived skeleton to respond to 
mechanical forces like in the case of secondary cartilage. 
Initially, the form of the jaw appears to dictate function, 
but then through embryonic motility, function modu-
lates form. In other words, NCM sets up the species-
specific “organisation” of the jaw apparatus prior to the 
onset of muscle “activity.” But once jaw activity starts, 
the form of the skeleton adapts to support its functional 
needs. The species-specific form of the duck jaw appa-
ratus, especially the geometry of the NCM-mediated 

muscle attachments, produces mechanical forces that 
differentially regulate FGF and TGFβ signaling and cause 
secondary cartilage to form on the coronoid process. In 
this regard, NCM not only mediates form but also helps 
shape the biomechanical environment. Additionally, the 
patterning abilities and plasticity found in NCM-derived 
jaw progenitors facilitate seamless integration of form 
and function during embryonic development and evolu-
tion. These same processes are likely perturbed in cases 
of injury or disease. Overall, elucidating the molecular 
and cellular mechanisms through which NCM governs 
the species-specific patterning of cartilage, bone, tendon, 
and muscle has shed light on the evolutionary integration 
of form and function in the amniote jaw complex, and 
in the near future could help remedy an unmet clinical 
need to repair and regenerate jaw tissues affected by birth 
defects, disease, or injury.
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