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Originofbiogeographicallydistinct ecotypes
during laboratory evolution

Jacob J. Valenzuela 1,11, Selva Rupa Christinal Immanuel 1,11, James Wilson 1,
Serdar Turkarslan 1, Maryann Ruiz1, Sean M. Gibbons 1,2,3,4,
Kristopher A. Hunt 5, Nejc Stopnisek 5, Manfred Auer6, Marcin Zemla7,
David A. Stahl5 & Nitin S. Baliga 1,7,8,9,10

Resource partitioning is central to the incredible productivity of microbial
communities, including gigatons in annual methane emissions through syn-
trophic interactions. Previous work revealed how a sulfate reducer (Desulfo-
vibrio vulgaris, Dv) and a methanogen (Methanococcus maripaludis, Mm)
underwent evolutionary diversification in a planktonic context, improving
stability, cooperativity, and productivity within 300–1000 generations. Here,
we show that mutations in just 15 Dv and 7 Mm genes within a minimal
assemblage of this evolved community gave rise to co-existing ecotypes that
were spatially enrichedwithin a fewdays of culturing in afluidized bed reactor.
The spatially segregated communities partitioned resources in the simulated
subsurface environment, with greater lactate utilization by attached Dv but
partial utilization of resulting H2 by low affinity hydrogenases of Mm in the
same phase. The unutilized H2 was scavenged by high affinity hydrogenases of
planktonic Mm, producing copious amounts of methane. Our findings show
how a few mutations can drive resource partitioning amongst niche-
differentiated ecotypes, whose interplay synergistically improves productivity
of the entire mutualistic community.

Microbial communities drive all biogeochemical processes on
Earth through spatiotemporal resource partitioning among co-
existing members or ecotypes that are ecologically differentiated
by their preference for a particular environmental context like
seasonal fluctuations or physical attributes like free-floating
(planktonic) or attached lifestyles1,2. Ecotype differentiation,
which leads to resource partitioning, has long been known to be a
key mechanism by which microbes divide and conquer diverse
niches. There are numerous examples of how even within a species

(e.g., species of Prochlorococcus3, Vibrio2, etc.) resources are par-
titioned in a single habitat through ecotype differentiation. Each
ecotype is specialized to maximally utilize some subset of
resources, each occupying a different niche. In fact, only recently
using comparative genomics have we gained a better under-
standing of how finely niche space is divided, even in what might
appear to be a homogeneous environment. This adaptive diversi-
fication is the underpinnings of the remarkable diversity of
microbial life now being more revealed through the developing
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science of metagenomics. It has recently been estimated that
20–80% of the cells in subsurface environments exist as biofilms
exhibiting, relative to their planktonic counterparts, distinct phy-
siologies and phenotypes, such as increased resistance to anti-
microbials, heavy metals, desiccation and substrate deprivation4–7.
The local genotype interactions among these ecologically differ-
entiated strains confer emergent properties such as stability and
cooperativity to the microbial community8. While there is evi-
dence that extended periods of evolution may eventually drive
sympatric speciation of ecologically differentiated strains9–11,
there is scant evidence of early events, mechanisms, and time
frames over which ecological differentiation manifests in a
microbial community of clonal isolates of two or more organisms.

We have discovered early events in ecological differentiation of a
nascent community of sulfate reducing bacteria (SRB) and methano-
gens engaged in a type of mutualism called syntrophy, which is
responsible for transformation of > 1 gigaton/year of C into CH4

12. This
particular type of syntrophy can be either obligate or facultative,
depending on the availability of sulfate. Sulfate respiration (SR) is
energetically favorable compared to syntrophic growth, which
requires interaction with a methanogen in a sulfate-depleted and an
energy limited anaerobic ecological niche13–18. The two-organism syn-
thetic community (SynCom) of a SRB, Desulfovibrio vulgaris Hilden-
borough (Dv)19, and an archaeal methanogen, Methanococcus
maripaludis S2 (Mm)20, has been used as a model to study syntrophic
interactions in the laboratory16–18,21–25. When cocultured in the absence
of sulfate, Dv mainly oxidizes lactate to acetate, minimal amounts of
formate and H2, but the build-up of H2 partial pressure eventually
becomes growth inhibitory. Consumption of H2 by Mm to produce
methane (i.e., hydrogenotrophic methanogenesis) supports its
growth, while reducing H2 partial pressure and alleviating Dv growth
inhibition, making the overall reaction energetically favorable13,26.
Previous studies have indicated that H2 from Dv is the only electron
carrier when paired syntrophically with Mm17,18,27. However, flux bal-
ance analysis (FBA), using a constraints-based metabolic model of
syntrophy, predicted that in the presence of H2 there could be
exchange of formate fromDv toMm, but that by itself formate cannot
serve as the sole electron carrier17. Alternatively, alanine could serve as
a C and N exchange intermediate from Dv during syntrophic growth
with Mm, but this only occurs in the absence of ammonia16,28. Ulti-
mately, the energetically favorable reduction of H2 to methane, by the
SRB and methanogen allows these microbes to access a niche pre-
viously uninhabitable to both independently, and together drive one
of the major processes of methane production on Earth.

Early on in the laboratory evolution of syntrophic interactions
between Dv and Mm there were periods of instability and extinction
events, but stability emerged within 300 generations significantly
improving growth rate and yield24. Subsequent analysis discovered
that while each evolved partner had individually contributed to
improvements in growth characteristics, pairings of evolved clonal
isolates of Dv andMm from the 1000th generation (1 K) synergistically
improved overall growth characteristics. However, maximal improve-
ments in growth rate and yield were observed in minimal assemblages
of the syntrophic community that were obtained through end-point
dilution of the evolved community from the 1,000th generation2,4.
Notably, dilution to extinction had generated distinct sub-populations
that had segregated mutated genes with high G-scores (i.e., mutations
observed in the same gene across multiple independent evolutionary
lines) that co-existed for up to 700 generations of laboratory evolu-
tion. In fact, some minimal assemblages had enriched variants that
were below the limit of detection in bulk sequencing of the parental 1 K
generation line. In the absence of distinct functional interactions, we
would have expected to see all mutations from the parental line
represented proportionally within each minimal assemblage. Thus,
these observations suggested that overall growth improvements

observed during laboratory evolution had likely emerged from struc-
tured interplay of multiple variants across the two organisms, includ-
ing low frequency variants that had retained SR capability22,23.

Using custom fluidized bed reactors (FBRs) to simulate an ecolo-
gically relevant subsurface environmental context for syntrophic
interactions in soil (i.e., attached to sediment and free-floating in
groundwater) we investigate how the interplay between variants of
vastly different abundance and physiological capabilities contribute to
improved growth characteristics of the minimal assemblage of the
laboratory evolved community. Specifically, we ask whether diversifi-
cation of genotypes in one environmental context (i.e., planktonic
growth) could give rise to genotypes that might thrive in a separate
environmental context29,30 (i.e., attached to sediment) to improve
overall community characteristics? We perform longitudinal assess-
ments of changes in genetic diversity and transcriptome responses of
Dv and Mm across attached and planktonic phases in the context of
overall growth and productivity of the SynCom (i.e., lactate utilization
and methane production). Further, by developing contextualized gen-
ome scale metabolic network models for biogeographically differ-
entiated syntrophic communities, we investigate the dynamic changes
in metabolic flux states across the planktonic and sediment phases. In
so doing, we follow the segregation of variants that emerged at the
origin of a nascent microbial mutualism into biogeographically inter-
dependent sub-communities, quantifying both the emergence and
maintenance of new ecotypes. We observe how mutations in a few
genes, across the two organisms from a previously evolved community,
mechanistically lead to ecotype differentiation in a simulated subsur-
face environment, likely driving resource partitioning and improving
overall productivity of the mutualistic microbial community.

Results
Adaptation of a laboratory evolved syntrophic community to a
simulated sub-surface environment
Custom anaerobic FBRs were designed as an analog for a subsurface
environment, wherein sediment and groundwater are in flux and free
to exchange metabolites and biota31,32. Three independent FBRs were
inoculated concomitantly with a minimal assemblage of the Dv-Mm
SynCom obtained through end-point dilution of the mutualistic com-
munity adapted to obligate syntrophy conditions through 1000 gen-
erations of laboratory evolution22–24. Each FBR contained 75 g of
sediment (210–297μm crushed quartz) and approximately 350mL
(FBR and reservoir) of lactate coculture medium (Supplementary
Data 1) without sulfate to impose obligate requirement of growth by
syntrophy (Table 1 and Fig. 1A). The sediment bed in each FBR was
briefly fluidized by recirculating the lactate coculture medium from
the bottomof the reactor and up vertically through the column tomix
cells throughout the reactor. The SynComwas cultured in batchmode
for approximately 48 h, as done previously15. After 2 days of growth,
the FBRs were set to continuous fluidization (Day 1–6) (350mL ⋅min−1)
with a duty cycle of 1 h on and 1 h off for the remainder of the
experiment. The triplicate reactors were operated anaerobically (Dis-
solved Oxygen: DO ~ 1mg/L) at pH ~7.2 for approximately 175 h under
semi-continuous batch culture conditions with supplementation of
fresh lactatemedium at 7.8mL ⋅ h−1, with a net dilution rate of 0.022h−1

(Table 1, Supplementary Fig. 1), which was similar to conditions used
for growing biofilms (0.017 h−1)15.

Biomass in the planktonic phase increased at a steady rate with a
maximum growth rate of 0.23 d−1 and an average doubling time of ~3
days (Fig. 1B). Using total protein fromwashed sediment as a proxy for
biomass we determined that the attached community accumulated at
a slower rate of 0.087 d−1 (doubling time: ~8 days) (Fig. 1C). Syntrophic
coupling between Dv and Mm was evident in sustained lactate oxida-
tion to acetate,with the subsequentproductionofmethane (Fig. 1D, E).
While significant increase in methane production was observed within
72 h, the levels were steady at ~0.75mM for the remainder of the
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experiment. However, it should be noted that since the reactor head-
space was allowed to vent through a one-way check valve to prevent
pressure from exceeding ~1 atm, the methane measured does not
reflect the total amount produced throughout the experiment. Toge-

ther, these results demonstrated that the coculture established syn-
trophic growth in the simulated subsurface environment within
the FBRs.

Heterogeneity of population structure and genetic variability
across growth phases
Total DNA and RNA was sampled daily for 6 days once the reactor
fluidizationwas turned on (Fig. 1. Grey triangles) at approximately 48 h
(Fig. 1. grey bar) to evaluate population dynamics and functional het-
erogeneity of Dv and Mm across attached and planktonic growth
phases. Based on normalized numbers of metagenomic sequencing
reads corresponding to eachorganism,we determined that Dvwas the
dominant partner in both phases but community composition was
significantly different between the planktonic and attached commu-
nities (Fig. 2A). For instance, Mm in the planktonic phase nearly dou-
bled in relative abundance from day 1 to day 2 but thereafter
accounted for about a third of the SynCom composition (i.e., ~3:1
Dv:Mm). In contrast, the relative proportion of Dv in the attached
SynCom was ~18 times that of Mm. The relatively lower abundance of
Mm in the attached SynCom is likely because Dv attachment occurs
first and acts as a scaffold for Mm to join the biofilm, which takes
~25 days for full maturation15. However, it is also likely that variants of
both organisms within the evolved SynCom have different propen-
sities of adaptation to syntrophic interactions in either the planktonic
or the attached phases. Regardless, these findings suggested different

A)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
.D

. 6
00

 n
m

PlanktonicB)

0

5

10

15

20

ng
 P

ro
te

in
 / 

m
g 

S
ed

im
en

t

Sediment (attached)C)

D) E)

0.0

0.5

1.0

1.5

2.0

1 2 1 2 3 4 5 6
Day

(Fluidization)

m
M

 M
et

ha
ne

Reactor Methane

Day
(Batch Mode)

Lactate
Acetate

0

10

20

30

40

1 2 1 2 3 4 5 6

m
M

 L
ac

ta
te

 &
 A

ce
ta

te

Reactor Organics

Day
(Fluidization)

Day
(Batch Mode)

Reactor 
Reservior

Diffuser 
Plate

Recycling
pump

Gas Outlet 
(1-way Check valve)

Media 
Reservior

~200 mL

Fluidized 
Sediment

~75 g

~150 mL

High Rate
Recycling port

Headspace 
Sampling Port

Effluent

Sediment 
Sampling Port

Gas 
input

Fig. 1 | Partitioning of attached and planktonic syntrophic communities
in FBRs. A A schematic of the custom FBRs developed to simulate biphasic growth
of microbial communities by recirculating growth medium upward through a
column of sediment. Temporal growth dynamics of planktonic (B) and sediment
attached (C) phases of the microbial community. Metabolite profiles provide
confirmation syntrophic growth via the oxidation of lactate to acetate by Dv (D)
and the production of methane by Mm (E). The grey opaque background bars

indicate the first 48 h of growth in batch culturemode (beginning of Day 1 through
the end of Day 2) in FBRs prior to fluidization (i.e., Day 1 throughDay 6, indicated in
bold typeface); grey triangles represent timepoints (from Day 1 through Day 6),
when SynComs from planktonic and attached phases were harvested for DNA and
RNA profiling. All data presented as mean values +/− standard deviation (95%
Confidence Interval) across 3 replicate FBRs (n = 3). Source data are provided as a
Source Data file.

Table 1 | Operational parameters for anaerobic FBR
arrays (n = 3)

Operational Parameters Settings Notes

Total Reactor Liquid
Volume

~350mL ~150 (body), 200
(reservoir).

Cross-sectional Area 12.56 cm2

Pump Recycle Rate ~350mL ⋅ min−1

Volume Flux 20.54mL ⋅ min−1 ⋅ cm−2

Influent Volumetric
Flow Rate

0.13mL ⋅ min−1

(7.8mL ⋅ h−1)

Reactor Dilution Rate 0.022 h−1 Flow Rate/Volume

Duty Cycle 1:2 1 h on: 2 h period

Diffuser Plate (Frit Size) 160–250 μm Borosilicate Glass

Sediment Size 210–297 μm SiO2 (Crushed Quartz)

SedimentMass in Reactor 75g

Sediment density 1.622g ⋅ cm3

Reactor Tubing Viton, Neoprene
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mechanisms of syntrophic interactions had likely manifested across
the attached and planktonic phase SynComs.

We analyzed the metagenomic data using sequence alignment
and variant calling to quantify mutation frequencies of Dv and Mm
variants in SynComs across the two phases. The overall distribution of
mutation frequencies of Dv was significantly lower in the planktonic as
compared to the attached SynCom (Fig. 2B). Further analysis revealed
that the mean frequency distributions of Dv mutations were statisti-
cally similar across the planktonic (78.5) and attached (76.0) phases on
day 1, but over time themean frequency distribution in the planktonic
phase trends progressively lower, while it remained relatively stable in
the attached phase (Fig. 2C). This progressive decrease in Dvmutation
frequencies over time in the planktonic phase was likely due to wash
out of genotypes with growth rates lower than the dilution rate (Sup-
plementary Fig. 2A, B). In contrast, the overall mutation frequencies of
the Mm population remained stable in both phases. We performed

nonmetric multidimensional scaling (NMDS) analysis to investigate if
there was evidence of ecological differentiation33 by specific Dv and
Mm variants (Fig. 2D).While most Dv variants, including DVU0168 and
DVU1295, oriented towards attached habitats, most Mm variants,
including MMP1227 and MMP1718, showed clear ordination towards
planktonic growth (Fig. 2D shows the top 3 variants of each Dv and
Mm). Strikingly, the MMP1718 variant and was only observed 2 of 18
samples in the sediment phase (Fig. 2E). Consistent with the demon-
strated role of MMP1718 as a transcriptional activator of the fla
operon34, a loss-of-function frame-shift mutation at arginine 23 in this
gene (Mmp1718p.R23fs) resulted in decreased expression of archaellum
genes (specifically, flaB2) in the planktonic phase (Fig. 2F), which may
have disrupted surface attachment of Mm35,36. While this was also
consistent with the observation that the Mm-Mmp1718p.R23fs variant
had likely enhanced fitness during laboratory evolution, which was
performed through sequential transfers of the planktonic phase
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and nonsynonymous changes in coding sequence; intergenic mutations are clas-
sified as “modifier mutations”37. F Significantly decreased expression (two-sided t-
test) of MMP1667 (archaellin flaB) over days 3 through 6 in the planktonic phase
(n = 11) due to the loss-of-function mutation in archaellum regulator
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quartiles; whiskers, 1.5× interquartile range. G Change in average mutation fre-
quency of nonsynonymous variant in galUP32S (DVU1283); dashed line indicates
linear regression and R2 is the correlation statistic for longitudinal trends for fre-
quency change of each phase. The ribbon represents standard error (95% Con-
fidence Interval). H Scanning electron microscopy images show EPS
overproduction by evolvedDvwith the nonsynonymous galUP32Smutation, but not
by ancestral Dv-galUwt cells, which was confirmed across three independent
evolved lines. Source data are provided as a Source Data file.
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evolved cocultures22, it was intriguing that theWTallele remained even
after end point dilution and ultimately swept through the Mm popu-
lation in the attached phase.

Of the total 22 (15 Dv and 7Mm) mutations, nearly half (n = 10)
were predicted by SnpEff to have high impact, meaning they disrupted
function of the encoded protein, by introducing a gain or loss of start
and stop codons or frameshift mutations37. The other mutations were
predicted to have moderate impact, such as through introduction of a
nonsynonymous change, meaning deletion or insertion of triplet
codon(s)37 (Fig. 2E). Onemutation in an intergenic region (IG-2053158)
in Dv, was classified as a modifier, given the challenge of predicting its
consequence37. Using linear regression across the three independent
reactors (Supplementary Fig. 2B), we discovered that while fre-
quencies of most variants were stable in the attached community,
mutations ina fewDvgenes showedpreference for the attachedphase.
In particular, a nonsynonymous variant that changed a non-polar
proline to a polar serine in a UTP-glucose-1-phosphate uridylyl-
transferase (i.e., galUP32S), increased in frequency in the attachedphase
(R2 = 0.55) (Fig. 2G). Further investigation, using scanning electron
microscopy, demonstrated that the nonsynonymous mutations in
galU had likely resulted in overproduction of extracellular poly-
saccharides (EPS), which may have facilitated attachment to sediment
(Fig. 2H)38–40. Thus, the NMDS analysis uncovered evidence that spe-
cific variants of both organisms had likely led to niche differentiation
of the SynCom ecotypes across the planktonic and attached phases.

Distinct mechanisms of adaptation and mutualism manifest
across co-existing planktonic and attached syntrophic
communities
We analyzed longitudinal transcriptome changes to understand
adaptive consequences of ecological differentiation on the nature of
syntrophic interactions across the planktonic and attached commu-
nities. A similar proportion of genes in Dv (536 genes, 14% of total
genes), as compared to Mm (295 genes, 17% of total genes), were dif-
ferentially expressed over time and across the two phases. There was a
cascading pattern of changes in gene expression across the planktonic
phase cells of Dv, but the transcription of these genes was relatively
stablewith sustainedup- or downregulation in the attachedphase cells
(Fig. 3A). These expression patterns of Dv genes likely reflect adapta-
tion of a stable, slow growing, sessile community to the attached
phase, as compared to faster growing planktonic cells that experience
greater environmental dynamics. In stark contrast, although Mm
transcriptional response was relatively uniform over time in both
phases, there was a significant shift in expression levels of 173 genes
during transition from day 1 to day 2 (Fig. 3A), which is consistent with
how the two organisms establish syntrophy, especially when attaching
to surfaces, with SRB colonizing first and laying the foundation for
subsequent attachment of the methanogen15.

We investigated whether the transcriptome state of the SynCom
had changed significantly over 1 K generations of laboratory evolution,
and after adaptation of the evolved community to attached and
planktonic phases in the FBR. Specifically, we performed principal
component analysis (PCA) to compare transcriptome states of Dv and
Mm before evolution (i.e., planktonic coculture of WT isolates21), after
1 K generations of laboratory evolution (day 1 of culturing a minimal
assemblage from the 1 K generation in the FBR), and across the
attached and planktonic phases over the subsequent five days of cul-
turing. The PCA showed that transcriptome state of the wild-type
SynCom (i.e., before evolution) had changed significantly after 1 K
generations of evolution. There was further divergence of tran-
scriptome states of the evolved SynCom upon adaptation to plank-
tonic and attached phases (Fig. 3B).

Expression patterns of key genes for motility and attachment,
lactate utilization, andmethanogenesis revealed distinct physiological
states of the two organisms across the two phases. For instance,

expression of 13 flagellar biosynthesis genes in Dv were constitutively
down- or upregulated in the planktonic and attached phases, respec-
tively, which was consistent with the known role of these genes in
driving attachment35,36 and partner selection41,42. A similar expression
pattern was observed for Mm, although in this case, the constitutive
downregulation of the archaellum encoding genes could be attributed
to selection of loss-of-function mutations in the cognate transcrip-
tional activator (i.e., Mmp1718p.R23fs) in the planktonic phase. Further,
all three lactate permeases in Dv were upregulated in the planktonic
phase, especially day 4 onwards when there was an accumulation of
biomass and a decline of available lactate for oxidation, which is the
primary mechanism for generating H2 as a reductant for establishing
syntrophic growth. Interestingly, upregulation of DVU2451, which can
functionally compensate43 for the primary lactate permeases DVU2110
and DVU302644, was likely a lactate scavenging mechanism by the
planktonic Dv cells. By contrast, the attached Dv cells appeared to be
not lactate limited as all permeases were constitutively downregulated
in sediment.

Some methanogenesis genes in Mm were upregulated in the
planktonic phase (e.g., formylmethanofurandehydrogenase and F420-
reducing hydrogenase), whereas a different set was upregulated in the
attached phase (e.g., H2 methylenetetrahydromethanopterin dehy-
drogenase). Notably, while the low affinity hydrogenases45 inMmwere
upregulated in the attachedphase, the high affinity hydrogenaseswere
upregulated in the planktonic phase. Thisfinding is consistent with the
expectation of significantly higher H2 partial pressure in the micro-
environment surrounding Mm in the attached phase, due to physical
proximity to Dv cells, which were also in relatively higher abundance
(Dv:Mm ~18:1) in sediment. Conversely, lower cell density and relative
abundance of Dv likely generated lower H2 partial pressure in the
planktonic phase, triggering upregulation of the high affinity isoform
of the hydrogenase inMm as amechanism for H2 scavenging (Fig. 3C).
Thus, results of the expression analysis illustrated how ecological dif-
ferentiation driven by differential segregation of mutants (e.g., Dv-
galUP32S and Mm-Mmp1718p.R23fs) led to further niche partitioning
through differential expression of key genes across the two phases of
growth within the same reactor, while still maintaining nutritional
cooperation (i.e., syntrophy).

Flux balance analysis using a curated genome-scale metabolic
model for syntrophy reveals differential reaction fluxes across
the two phases
A genome-scale metabolic network model of syntrophy was exten-
ded and curated to investigate reaction flux through the two
members of the syntrophic community. In brief, metabolic models
iJF477 (Dv)46 and iMR539 (Mm)47 were updated by curating 1014 and
688 reactions, respectively, and subsequently integrated into a
genome-scale model of syntrophic interactions by setting inter-
facial constraints for interspecies exchange of 54 metabolites,
including formate, H2, and alanine16,18. Further, the new syntrophy
model (iSI1283) was contextualized to planktonic and attached
phases and across phases by using the GIMME algorithm48 to
exclude reactions encoded by genes that were expressed below a
threshold (Fig. 4A, Table 2).

Relative abundance of the two organisms in the attached and
planktonic communities was accurately predicted (R2 = 0.77) by the
unconstrainedmodelwhen itwas contextualizedwith gene expression
data,with upper boundson total biomassofMm,demonstrating that it
had captured general trends of metabolic interplay and community
structure within and across phases (Fig. 4B). For further investigation
of these evolved strategies, the experimentally quantified relative
abundances of both Dv andMm (Fig. 2A) were included as constraints
for prediction of syntrophic growth of both organisms, which sig-
nificantly improved model accuracy (R2 = 0.92 from 0.77) (Fig. 4B,
Supplementary Fig. 3). Further, t-SNE (Stochastic Neighbor
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Embedding) analysis using biomass constrained syntrophy models
demonstrated that while flux states of the SynCom were indis-
tinguishable on day 1, they became increasingly divergent over time as
the communities partitioned across the two phases (Fig. 4C). We used
the iSI1283models to uncover relative contributions of SynComs in the
attached and planktonic phases (i.e., the relative flux values given
equal amounts of dry cell weight— DCW) to overall productivity of
hydrogenotrophic methanogenesis in the FBRs. Notably, when opti-
mizing for methane production (i.e., syntrophic growth) the relative

flux towards Dv biomass was higher in the attached phase for all days
(Fig. 4D). In contrast, the relative flux towardsMmbiomass was higher
in the planktonic phase (Fig. 4E). This analysis predicted that the
relative rate of lactate utilization by Dv was on average significantly
higher in the attached phase compared to the planktonic cells
(p-value = 0.034; t-test) (Fig. 4F). The production rate of H2 (Dv) was
stoichiometrically proportional to rate of lactate utilization. Con-
sistent with findings reported in previous studies, the model also
predicted that H2 was the dominant electron exchange intermediate
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for both planktonic and attached Mm, whereas electron transport
through exchange of formate was near zero (Supplementary
Fig. 4)17,18,27. Interestingly, the contextualized model predicted that a
significantly higher fraction of H2 produced in the attached phase was
unutilized (~59.4%), as compared to the planktonic phase (15.1%)
(p-value = 5.3e-5; t-test; Fig. 4G). Methane production was significantly
higher in planktonic phase, relative to the attached phase, likely due to
the excess H2 from both phases and the higher relative proportion of
Mm (Fig. 4H). The FBA prediction of low efficiency of H2 utilization in
the attached community was consistent with the higher expression
level of low affinity hydrogenases in Mm. The excess H2 release by the
attached community was likely scavenged by high affinity hydro-
genases towards significantly higher rate of methanogenesis by
planktonic Mm (Fig. 4I).

Discussion
Our study demonstrates that, even within a simple two organism
community that originated from clonal isolates, ecotypes adapted to
different biogeographies can arise very rapidly (300–1000 genera-
tions), introducing complex structure and division of labor, thereby
increasing the overall productivity of the community. In the soil sub-
surface, microbial communities can be more productive in attached
(sediment) relative to planktonic phase35,36,49. Two explanations have
been put forth to explain this phenomenon: first, that the particulate
material in sediment is largely organic and nutrient rich, or inorganic
material with adsorbed nutrients36,50,51. Second, it has been argued that
an attached community in a flowing environment has greater access to
soluble nutrients due to change in the depth of the diffusive boundary
layer - the greater the flow, the thinner the layer and greater the flux of
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nutrients through the boundary layer35,52–54. Both of these mechanisms
may be at play in the FBRs and responsible for higher relative rate of
lactate utilization by Dv in sediment, also explaining why the Dv-
galUP32S mutant might have benefitted from attachment. By contrast,
Dv cells in the planktonic phase likely went with the flow and were
therefore relatively less efficient at accessing and utilizing lactate,
although they leveraged their diverse physiological capabilities as
generalists by continually adapting to changing availability of nutri-
tional sources as reflected in the cascade of changes in expression of
large numbers of genes. The high amounts of H2 produced by Dv
generated a higher local H2 partial pressure in sediment, however H2

wasnot completelyutilized by attachedMmcells despite their physical
proximity. Attached Mm cells upregulated low affinity hydrogenases
to aid H2 consumption and reduce H2 partial pressure in the micro-
environment of attached cells to prevent feedback growth inhibition
of Dv. Interestingly, in the attached phase,Mmwas also less efficient at
transforming H2 to methane, and as a result excess H2 was released
into the fluid environment, where planktonic Mm used high affinity
hydrogenases to capture/scavenge H2 and use it towards copious
amounts ofmethaneproduction. Indeed,Mmexisted inhigher relative
proportion to Dv in the planktonic phase as compared to sediment,
and this also explains why the loss-of-function mutation in the
archaellum regulator (Mmp1718 p.R23fs) conferred higher fitness in the
planktonic phase (Fig. 4I). The enrichment of certain ecotypes
demonstrated their adaptation to the sediment phase through
attachment and to the planktonic phase by doubling at a rate (~3 days)
that exceeded the dilution rate (~3.7 days). In other words, despite the
mixing of genotypes; the ecotypes that had differentially adapted to
sediment and planktonic phases through attachment and fast growth,
respectively, segregated into distinct communities that were func-
tionally interdependent.

It is clear that interplay of ecotypes of the two organisms across
the planktonic and attached phases greatly improved cooperativity
and overall productivity (i.e., biomass andmethane production) of the
entire mutualistic community22. But the emergence of a sediment
adapted evolved ecotype in this interplay was perplexing because the
laboratory evolution was specifically designed for selection of muta-
tions that optimized syntrophy in a planktonic growth state through
serial transfers of liquid coculture. In other words, it is intriguing how
mutations that improved characteristics of the attached community
arose and how they remained at low frequency. For instance, it is
understandable that theMmp1718p.R23fsmutationwas selectedbecause

it promoted better planktonic growth of the methanogen, but it’s
puzzling how the ancestral allele persisted in the population at low
frequency, even after end-point dilution. Our results show that the
ancestral Mmp1718wt allele may have benefited from improved physi-
cal interactions with Dv, especially upon appearance of the EPS over-
producing galUP32S mutant. The Dv-galUP32S mutant may have
segregated withMm-Mmp1718wt as attached communities on the walls
of Balch tubes, which begs the question of how they persisted despite
multiple serial transfers of the liquid culture, especially given that
establishment of syntrophy in a biofilm takes significantly longer than
the period of culturing between transfers, and the growth rate of cells
is significantly slower in an attached state than in a planktonic state15.
Perhaps, the Dv-galUP32S andMm-Mmp1718wt variants survived as free-
floating cell-to-cell interactions (i.e., attachedpartners)41. Regardless of
how these traits persisted through serial transfers of the planktonic
phase, our findings suggest that even in well mixed environments, cell
aggregation through biofilm formation may improve emergent prop-
erties by providing spatial structure to the community55.

Our findings suggest that the planktonic and attached lifestyles of
the two organisms in a syntrophic association are intricately inter-
twined such thatoptimizationof one lifestyledrives co-optimizationof
the other. This hypothesis is supported by our findings that sediment
attachment of the Dv-galUP32S mutant was associated with improved
lactate utilization, and may have required physical interactions with
Mm-Mmp1718wt for reducing H2 partial pressure in its microenviron-
ment, and conversely, improved planktonic growth of the Mm-
Mmp1718p.R23fsmutantwas associatedwithmoreefficientH2 utilization
and also likely benefitted frommetabolite exchange with free Dv cells
that continually adapted to changing conditions of the flowing med-
ium. Nevertheless, the interplay of physiologies associated with
planktonic and attached ecotypes of the two organisms is likely
ingrained in the molecular networks of the two organisms, such that
mutations affecting one physiological state potentiated selection of
mutations in genes associated with the other linked physiological
state. Future experiments, could provide important parameters, such
as diffusion constants and uptake rates for each extracellular meta-
bolite that takes into account the complex hydrodynamics across
gradients and boundary layers, relative abundance of Dv andMm, and
thickness of the attached community. These experimentally deter-
mined values will be critical for parametrizing and modeling complex
cross-feeding interactions between the planktonic and attached com-
munities of biogeographically differentiated ecotypes56.

Table 2 | Summary of reactions, genes, and metabolites in metabolic models for Dv and Mm, individually, and together in
syntrophic interaction

Model System Reactions* Genes* Metabolites*

iJF744 Dv strain Hildenborough 1014 (1016) 744 (744) 948 (951)

iMR539 Mm strain S2 688 539 710

iSI1283 Dv-Mm SynCom 1707 1283 1658

GIMME-contextualized models Day 1 planktonic 1519 [922] 1032 [584] 1491 [892]

Day 1 sediment 1572 [956] 1068 [612] 1553 [921]

Day 2 planktonic 1611 [957] 1102 [598] 1592 [925]

Day 2 sediment 1607 [945] 1120 [610] 1594 [912]

Day 3 planktonic 1584 [933] 1108 [608] 1582 [920]

Day 3 sediment 1595 [952] 1120 [609] 1573 [922]

Day 4 planktonic 1617 [956] 1114 [601] 1598 [924]

Day 4 sediment 1627 [964] 1119 [614] 1611 [928]

Day 5 planktonic 1599 [953] 1090 [594] 1585 [926]

Day 5 sediment 1611 [949] 1088 [611] 1599 [916]

Day 6 planktonic 1582 [922] 1094 [585] 1577 [901]

Day 6 sediment 1582 [922] 1094 [585] 1577 [901]

*Numbers within parentheses refer to the original model, and numbers within brackets correspond to Dv associated reactions, genes, and metabolites from the SynCom (Dv + Mm) model.
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Our results demonstrate that physical segregation of specific
genotypes that arose over short evolutionary timescales (i.e.,
300–1000 generations) led to ecotype differentiation and resource
partitioning wherein the SynComs manifested distinct physiological
states and vastly different community structures across the attached
and planktonic phases. Yet there was meaningful interplay between
the attached and planktonic communities that likely contributed to
overall higher productivity. Thus, our findings shed insight into the
evolutionary mechanisms by which microbial communities leverage
ecotype differentiation to divide and conquer spatiotemporally com-
plex environments. Remarkably, our findings also show that ecotype
differentiation occurredwithin 300–1000generations bymutations in
as few as 15 genes in Dv and 7 in Mm, which is consistent with obser-
vations in natural microbial communities in the environment11,57,58.
Importantly, ecotype differentiating mutations in the SRB and the
methanogen, respectively, had previously calculated high G-scores
during laboratory evolution experiments, which is a measure of
reproducibility of selecting mutations in the same gene across many
independent evolution lines22. Evidence of high G-scores indicates that
the ecotype differentiating mutations (including the Mmp1718p.R23fs
and the galUP32S) were observed independently and at high frequency
across multiple evolution lines demonstrating further that this
mechanismof ecotype differentiation was fairly common and also that
the attached community (primarily Mm-Mmp1718wt and Dv-galUP32S)
had co-optimized with the planktonic community across multiple
lines. We predict that prolonged laboratory evolution of such a
microbial community with co-existing but physically segregated gen-
otypes that exclude each other across habitats could eventually lead to
sympatric speciation2,10,11,59.

Methods
FBR setup, operation, and inoculation with SynCom
We designed custom glass anaerobic fluidized bed reactors that operate
by recirculatingmedia from thebottomof the reactor to the top creating
a vertical velocity through the column to create a bed of fluidized sedi-
ment. The anaerobic FBRs were arrayed in triplicate in a temperature-
controlled room (~30 °C) and filled with 75 g of 210–297 μm crushed
quartz (Sigma-Aldrich: 50–70 mesh Quartz) to act as the sediment
bed for microbial attachment, which sits above a diffuser plate (P0
Frit: 160–250 μm) allowing only the flow of liquid generating sedi-
ment fluidization. All three reactors were operated at the same time
in a temperature controlled room held at ~30 °C. Reactors were filled
with sterile lactate coculture medium (Supplementary Data 1) (no
sulfate and Resazurin anaerobic indicator) to an operating volume of
approximately 350mL. We then used flow meters (~200mL ⋅ min-1)
to flush each reactor with an 80%:20% N2:CO2 gas mix through 0.2
micron filters for approximately 15min to ensure anoxic conditions
prior to inoculation. Peristaltic pumps were used for recirculation to
generate fluidization at 350mL ⋅ min−1 with a duty cycle of 1 h on 1 h
off. Fresh lactate coculture medium was added (0.13mL ⋅ min−1) to
each reactor at the same duty cycle as the rate of fluidization. The
reactors were inoculated with a minimal assemblage of Dv and Mm
that was obtained from a previous study22–24 through end-point
dilution of a laboratory evolved coculture after 1000 generations of
obligate syntrophic growth. Specifically, a glycerol stock of the
minimal assemblage was revived in anaerobic Balch tubes containing
lactate coculturemedium and subjected to three successive transfers
to reestablish growth and then transferred to a 60mL serum bottle
for inoculation into FBRs. A 15mL aliquot of optical density (OD600)
0.3 culture from a single serumbottle was used to inoculate each FBR
containing anaerobic lactate coculture medium. FBRs were briefly
fluidized to mix cells throughout the reactor and allowed to grow in
batch mode for approximately 48 h to allow biomass accumulation
before switching to fluidization mode (Days 1–6) for the rest of the
experiment.

Sample collection and analysis
While reactors were fluidizing, approximately 15mL of planktonic
culture was sampled anaerobically using a sterile 20mL syringe and
needle. Planktonic fractions were split for OD600 analysis (1mL), pro-
tein extractions (2mL), nucleic acid extractions (4mL), nutrient ana-
lysis, pH (2mL), and dissolved oxygen (DO) (2mL). Protein and nucleic
acid samples were kept on ice until pelleted. Inmicrocentrifuge tubes,
2mL of planktonic culture was spun down and pelleted at 12,000× g
for 10min at 4 °C. The decanted supernatant was saved (−20 °C) for
organic acid (lactate and acetate) analyses, while the cell pellets for
protein and nucleic acids were flash frozen in liquid N2 and stored at
−80 °C until extraction. Lactate and acetate samples were diluted with
milliQ H2O and measured using ion chromatography60. A summary of
monitored parameters over the experimental time-course is provided
as Supplementary Table 1.

To sample the communities attached to sediment, we created
sample chambersmade fromBalch tubes thatwere filledwith 100%N2.
While reactors were fluidizing, sediment was sampled anaerobically by
pulling a vacuum from a sampling port of the FBR into a sterile anae-
robic Balch tube that was on ice. Immediately following sediment
sampling from the FBR, samples (on ice) were taken directly to a 4 °C
cold room for washing. The sediment samples were transferred to
15mL conical tubes and excess planktonic culture was decanted into a
waste container. Approximately, 10mL of pre-chilled PBS (4 °C) was
added to the conical tubes containing sediment was washed for 5min
on a benchtop tube rotator. The PBS wash solution was then decanted
from the sediment samples and the 5minwash step was repeated with
fresh chilled PBS. After the second wash, sediment samples were split
into three 2mL microcentrifuge tubes (Protein, DNA, and RNA) and
any excess wash solution was pipetted out of the samples were
immediately frozen in liquid N2.

We prepared glass vials filled with 100% N2 and crimped closed
with rubber septum and aluminum seal to store sampled headspace
from the FBRs to be analyzed via gas chromatography (GC). Immedi-
ately prior to sampling reactor headspace, 2mL of 100% N2 was
removed from the ethanol washed storage vials using a small diameter
needle and 2mL syringe. The same needle and syringe was then used
to sample 2mL of reactor headspace through the ethanol sterilized
headspace sampling port and reinjected into the storage glass vials for
quantification of methane using GC. Methane was measured using an
SRI 8610CGC (SRI Instruments, Torrance, CA) equippedwith a 6’ silica
gel column (SRI Instruments, Torrance, CA) at an oven temperature
of 80 °C and a flame ionization detector operated at 385 °C. The
carrier gas consisted of >99.998% N2 gas (Praxair, Danbury, CT) at
20mL ⋅ min−1, >99.5% H2 gas (Praxair, Danbury, CT) at 25mL ⋅ min−1,
and air supplied via an internal pump at 250mL ⋅ min−1.

DNA, RNA, and protein extractions
Nucleic acids were extracted from planktonic pellets and sediment
samples using the MasterPure Complete DNA and RNA Purification
Kit (Epicentre: #MC85200). Nucleic acid samples were then split
between DNA and RNA samples. DNA samples were treated with
RNase and RNA samples were treated with DNase. All samples were
quantified using the Qubit DNA or RNA High Sensitivity (HS) kits
(Invitrogen). Protein extractions for planktonic cell pellets were
performed according to Thermo Scientific B-PER Complete Bac-
terial Protein Extraction Reagent protocol. For sediment samples,
sediment was transferred to a 1.5 mL eppendorf tube and incubated
with B-PER Bacterial Protein Extraction Reagent and rotated for
15 min to extract protein. After protein extraction, sediment was
transferred to a glass petri dish and dried in a 70 °C oven overnight
to quantify the mass of the sediment. All protein samples were
quantified using the Qubit Protein Broad Range Assay and normal-
ized to dry sediment weight.
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DNA and RNA library preparation and sequencing
DNA sequencing libraries were prepared using the Nextera XT
DNA library prep kit, while RNA samples were rRNA depleted
using RiboZero Plus kit followed by library construction using the
Truseq Stranded Total RNA library prep kit. Both DNA and RNA
libraries were sequenced using a mid-output 2 × 75 bp kit for 150 bp
fragments using the Illumina NextSeq 500 platform. MultiQC61

output from DNA sequencing was used to quantify relative abun-
dance from metagenomes of the SynCom based on percentage of
reads per GC content for Dv (~63.2%) and Mm (~33.1 %) for each
sample (n = 35).

Identification of mutations
In this study, we used the same sequence alignment and variant
calling pipeline generated in our previous work by ref. 22 (see
also https://github.com/sturkarslan/evolution-of-syntrophy62). This
pipeline included quality control and trimming of the raw sequen-
cing reads in fastq format by using Trim Galore software63 (http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore). The align-
ment of the quality trimmed sequences to reference D. vulgaris
(Genbank assembly: GCA_000195755.1.30 [https://www.ncbi.nlm.nih.
gov/datasets/genome/GCA_000195755.1/]) and M. maripaludis (Gen-
bank assembly: GCA_000011585.1 [https://www.ncbi.nlm.nih.gov/
datasets/genome/GCF_000011585.1/]) genomes and subsequent pro-
cessing steps before calling the variants was done by following The
Genome Analysis Toolkit (GATK)64 best practices. Briefly, reads were
first aligned to the reference genome using Burrows-Wheeler Align-
ment Tool (bwa)65 (version 0.7.17-r1188) in paired-end mode. The
resulting alignment files in the SAM format were converted to BAM
files, sorted and indexed by using Samtools version 1.966. BAM files
were marked for duplicates using Picard Tools (http://broadinstitute.
github.io/picard/) (version 1.139), and local realignment around indels
was performed to identify the most consistent placement of reads
relative to the indels. Variant calling was performed independently by
using three different algorithms including GATK UnifiedGenotyper,
Varscan 267 (version 2.3.9) and bcftools from Samtools package. The
default parameters were used for UnifiedGenotyper, whereas for
Varscan parameters were --min-coverage 8 --min-reads2 2 --minavg-
qual 30 and bcftools parameters were -vmO -s LOWQUAL -i’%QUAL >
30. A variant was included in the analysis only if it is simultaneously
called by at least two of the callers. The resulting variants were anno-
tated using SnpEff tools37 (version 4.3). Variant analysis, NMDS, and
linear regressions were done using custom scripts and a list of com-
piled variants is described in Supplementary Data 2.

Calculation of G-scores
In the current study, we refer to G-scores (goodness-of-fit) for ecotype
differentiating mutations (including the Mmp1718p.R23fs and the
galUP32S). The G-scores68 were previously calculated from ref. 22, in
which each gene was calculated based on the frequency of observed
nonsynonymous mutations (normalized to gene length and genome
size) across 13 evolved lines23,24. G-scores for all genes in the genome of
Dv and Mm were summed to get the “total observed G-statistic” and
compared to the simulated “total expected G-statistic” by calculating a
z-score as previously described22,68.

Scanning electron microscopy
Scanning electron microscopy (SEM) was used to visualize the over-
production of EPS from Dv-galUP32S using a 300 generation evolved
line22–24. Monocultures were grown in 5ml CCMA medium17 supple-
mented with 10mM sodium acetate and 30psi H2, whereas cocultures
were grown in 20ml CCMA medium supplemented with 30mM
sodium DL-lactate. Cocultures were incubated shaking at 37 °C until
reaching early (OD600 = 0.11–0.15) and late stationary phase
(OD600 = 0.4–0.45). 1ml of culture was removed, diluted to an OD600

of 0.08 and fixed with glutaraldehyde (1% V/V) and sent for SEM to the
Lawrence Berkeley National Laboratory.

Samples for SEM were prepared on 0.1% poly-l-lysine coated sili-
conwafers and a cell suspensionwas placed on thewafers for 15min to
allow cells to adhere. Excess cell suspension was then gently rinsed off
with water and the wafers were fixed with 2.5% glutaraldehyde in
Sodium Cacodylate (pH 7.2) for 1 h and post-fixed with 1% Osmium
Tetroxide in Sodium Cacodylate (pH 7.2) on ice for another hour and
finally rinsed three times with Sodium Cacodylate buffer (pH 7.2) to
remove the remaining fixatives. Dehydrationwas performed through a
graded ethanol series (20%, 40%, 60%, 80%, 90%, 100%, 100%, 100% at
7min per step), followed by critical point drying using the Tousimis
AutoSamdri 815 Critical Point Dryer (Tousimis, MD, USA). After the
samples were dried, they were sputter coated with gold-palladium
using a Tousimis Sputter Coater (Tousimis, MD, USA) to prevent
charging in the microscope. Images were collected using the Hitachi
S5000 Scanning Electron Microscope (Hitachi High Technologies
America Inc, CA, USA).

Calculations of maximum growth rates and doubling times
To calculate themaximumgrowth rate of the planktonic and sediment
phase we used the R package “growthrates”, which uses a logistic
growth model, where μmax is the maximum growth rate and K is the
carrying capacity69.

dy
dt

=μmax × y 1� y
K

� �
ð1Þ

To calculate doubling time, we divided the ln(2) by the maximum
growth rate.

ln 2ð Þ
μmax

ð2Þ

Gene expression analysis
Paired-end Illumina reads were processed using TrimGalore version
0.4.363 and aligned to concatenated reference genomes ofDesulfovibrio
vulgaris Hildenborough (ASM19575v1 [https://www.ncbi.nlm.nih.gov/
datasets/genome/GCA_000195755.1/]) and Methanococcus maripaludis
strain S2 (ASM1158v1 [https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_000011585.1/]). Transcript abundancewas quantifiedusing kallisto
v0.44.070 followed by separation of Dv and Mm reads prior to differ-
ential gene expression analysis using DESeq2 package v1.22.271 in R.
Using kallisto transcript abundance estimates as TPMs (Transcript Per
Million) for each organism, expression matrices were imported using
the function “DESeqDataSetFromMatrix”. Specifically, differential
expression analysis was performed by comparing planktonic expres-
sion to the sediment expression for all comparisons using the “col-
lapseReplicates” function from DESeq2 for each day separately (e.g.,
Day 1 Planktonic vsDay 1 Sediment) and for all days combined (Days 1–6
Planktonic vs Days 1–6 Sediment) (Supplementary Data 3). Gene
expression data of a wild-type (i.e., ancestral) Dv and Mm SynCom was
obtained from a previous study21 (NCBI GEO database accession:
GSE79022). The data were quantile normalized prior to performing
principal component analysis to compare transcriptome states of the
SynCom pre-evolution, after 1 K generations of laboratory evolution,
andacross theplanktonic andattachedphasesover sixdaysof culturing
a minimal assemblage of the evolved community in the FBR.

Metabolic model refinement and integration
The genome-scale metabolic models of Dv (iJF744)46 and Mm
(iMR539)47 wereused in this study to representDv andMmindividually
and further updated for accuracy. The published version of iJF744
metabolic model consisted of 1016 reactions and 951 metabolites.
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The gene-protein-reaction (GPR) relationship was represented using
744 genes of Dv in the network. These 1016 reactions were then
curated as suggested in the publication. These updates included the
renaming of the reaction ‘rxn05938’ as pyruvate synthase, removing
the protein biosynthesis, DNA replication, and RNA transcription (i.e.,
reactions - ‘rxn13782’, ‘rxn13783’, and ‘rxn13784’) and fixing the capi-
talization of ‘Ex_cpd00218’ (Rxn name changed from ‘Ex_cpd00218(e)’
to ‘EX_cpd00218(e)’). Two reactions (‘rxn11934B_CC’ ‘QMO (Cocul-
ture)’ and ‘rxn11934B_SR - ‘QMO(Sulfate Reducing)’) were added in the
place of one reaction (rxn11934) and also the exchange reactions of
hydrogen, acetate and pyruvate were renamed to ‘EX_cpd11640(e)’,
‘EX_cpd00029(e)’, ‘EX_cpd00020(e)’ respectively. All of these updates
were performed according to the ‘alterDvhModel.m’ script from the
original publication. This curation of the iJF744model resulted in 1014
reactions, 744 genes and 948metabolites.We also updated the GPR of
the reaction (rxn14403) as an “OR” relationship for the gene 208282
(DVU2776) because the sulfite reductase has been characterized to
have multiple functions72,73. The published version of the iMR539
model consisted of 539 genes from Mm that were linked to a total of
668 reactions and 710 metabolites47. 51 exchange reactions in the Mm
model were updated for the lower bounds to limit the metabolite
exchanges for the syntrophic condition.

The integration of the two metabolic networks (iJF744 and
iMR539) into a single syntrophy community model iSI1283 was
achieved by interlinking the compartments of Dv andMm through the
known metabolite exchanges across Dv and Mm16. Initially, the meta-
bolites ofMmwere compartmentalized using standard tags for cytosol
(“c0”) and extracellular (“e0”) compartments with ‘0’ at the end to
specifically mention that these metabolites belonged to Mm. Hence,
these tags identify Mm as “Organism 0”. Metabolite tags with (“c”) and
(“e”) represent Dv. All the exchange reactions used for introducing
metabolites to the extracellular compartment were standardized in
“EX_{metabolite ID}[e0]” format. These exchanges were not removed
because the ions and CO2 were allowed from extracellular compart-
ment i.e., themedia. The dependency ofMmonDvwas set by allowing
interfacial constraints using the tDM [(t)ransport between (D)v and (M)
m) reactions for hydrogen, formate and alanine that transports the
metabolites from compartment [c] of Dv to compartment [c0] of Mm.
Thus, the iSI1283 model integrated the two networks (iJF744 and
iMR539) directly, given that the metabolites and reaction ids are the
same but contains these additional tags to identify them.

Aftermodel integration, additional refinements to the individual
Dv model were added to improve its proportionate predictions of
hydrogen production from lactate oxidation by curating the model
reactions from the iJF744 reconstruction46. The iSI1283 model was
checked for elemental balance of key metabolites including reduced
ferredoxin (cpd11620[c]), oxidized ferredoxin (cpd11621[c]), Mena-
quinol (cpd15499[c]), Menaquinone (cpd15500[c]), reduced DsrC
(cpd18072[c]), oxidized DsrC (cpd18073[c]) that were initially pro-
posed by ref. 46 in their iJF744 model for Quinone-interacting
membrane-bound oxidoreductase (Qmo), Heterodisulfide reduc-
tase/NADH reductase (Hdr-Flx) and oligomeric lactate dehy-
drogenases (Ldh). According to ref. 46, for fermentative growth on a
lactate medium, the overall expected stoichiometry is:
Lactate +H2O -> Acetate + 2H2 + CO2. While checking for the ele-
mental balance and expected stoichiometry, we have identified that
the reduced ferredoxin (cpd11620[c]) and oxidized ferredoxin
(cpd11621[c]) in one reaction (rxn06874) may have been mis-
represented to carry 1 electron, hence we updated the reaction to
represent the elemental balance to reflect these two metabolites as 2
electron carriers. This was performed using the COBRA toolbox
script [model = addReaction(model,‘rxn06874’, ‘reactionFormula’,‘4
cpd11620[c] + 16 cpd00001[c] + 16 cpd00002[c] + cpd00528[c] <=>
16 cpd00009[c] + 2 cpd00013[c] + 4 cpd11621[c] + 6 cpd00067[c] +
16 cpd00008[c] + cpd11640[c]’,‘geneRule’,’(209712 and 209711 and

209708)’);]. In addition to this, reaction rxn14407which accounts for
periplasmic hydrogenases was also updated to reflect the repre-
sentation of Cytochrome c2 (cpd00110[e]) and Cytochrome c3
(cpd00109[e]). This was also performed using the COBRA toolbox
script [model = addReaction(model,‘rxn14407’, ‘reactionFormula’,‘2
cpd00110[e] + 2 cpd00067[e] <=> 2 cpd00109[e] + cpd11640[e]’,‘
geneRule’,’((207234 and 207235) or (207390 and 207391) or (208022
and 208023))’);]. We also identified 50 bidirectional reactions that
were constrained to be unidirectional by having an upper bound of 0
in iJF744 model (Supplementary Data 4). We reassigned them as
bidirectional by changing the upper bound to be 1000. This allowed
the model to release acetate into the extracellular environment,
which is more accurate to what is observed during experimentation.

The final iSI1283 model was performance tested by comparing
it with the core Dv and Mmmutualismmodel from ref. 17 by setting
the same constraints for lactate and Dv biomass. iSI1283 predicted a
ratio of hydrogen produced by Dv as 1.8-fold with respect to lactate;
and methane release by Mm as 0.4-fold with respect to lactate; with
an accuracy of 94% compared to the Stolyar et al., core model17. All
the metabolic model files are available for download from our
GitHub repository https://github.com/baliga-lab/Metabolic-Model-
of-Syntrophy-for-Dv-and-Mm74 and are also provided in the Sup-
plementary Data 4.

Flux predictions using state-specific models and analysis
The iSI1283 metabolic model was contextualized using gene expres-
sion data from planktonic and sediment phase obtained for day 1 to
day 6 (generating 12 models). This step involved the use of the GIMME
algorithm48. The GIMME algorithm takes the gene expression profile
and reduces the model into a reduced network with all reactions that
have genes expressed above the threshold. We applied the constraint-
based method for simulating the metabolic steady-state of the Syn-
Commodel using flux-balance analysis (FBA)48,75. The initial validation
steps involved checking the capacity of the syntrophic model to pro-
duce biomass in a defined media for the syntrophic coculture and
checking whether Mm can produce methane in a Dv-dependent
manner. In silico flux predictions were performed using the COBRA
toolbox “optimizeCbModel” function and “fluxVariability” function in
MATLAB. For predicting the day-wise phase-specific flux values, the 12
models (6 for planktonic and 6 for sediments) were further con-
strained by using Mmbiomass by setting an upper bound for Mm that
limits the Mm’s growth according to the phases and the day i.e.,
planktonic or sediment based on the experimentally measured Mm
abundances. We used our models to predict key parameters of syn-
trophic growth, such as the biomass for two organisms (Dv biomass,
Mm biomass), lactate exchange, acetate exchange, hydrogen produc-
tion (used and unused), and methane production. Constraint-based
modeling requires that one of the key parameters to be a measured
value in order to predict the 5 other interplaying parameters. Here, we
constrained the Mm biomass and then predicted the flux states by
using either theDv biomass or themethane as objective function. Final
contextualization of the models integrated the measured ratio of Dv
and Mm as weights to generate the most accurate predictions of flux
states and microenvironment measurements of lactate, hydrogen and
methane. All model simulations related to FBA were performed on the
MATLAB_R2023b platform using the recent version of COBRA -The
COnstraint-Based Reconstruction and Analysis toolbox (version 3.0)76.
The GitHub repository https://github.com/baliga-lab/Metabolic-
Model-of-Syntrophy-for-Dv-and-Mm74 contains all the details of the
metabolic models. Supplementary Data 4 contains detailed spread-
sheets related to iSI1283.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The DNA and RNA sequencing data generated in this study have been
deposited in the Sequence Read Archive (SRA) database under Bio-
Project PRJNA974067. TheprocessedDNA,RNA, FBA, andmetadata are
available from the Github Repositories https://github.com/baliga-lab/
Metabolic-Model-of-Syntrophy-for-Dv-and-Mm74 and https://github.
com/jacobvalenzuela/Origin-of-biogeographically-distinct-ecotypes/
tree/main77. Additional gene expression and FBAoutput data generated
in this study are provided in Supplementary Data 2, 3, respectively.
Gene expressiondata of awild-type (i.e., ancestral) Dv andMmSynCom
was obtained from a NCBI GEO database accession: GSE79022. Source
data are provided with this paper as a Source Data file. Source data are
provided with this paper.

Code availability
Variant analysis pipeline can be accessed via the GitHub repository
https://github.com/sturkarslan/evolution-of-syntrophy62. All meta-
bolic model files are available for download from the GitHub reposi-
tory https://github.com/baliga-lab/Metabolic-Model-of-Syntrophy-for-
Dv-and-Mm74. All scripts for analysis ofDNA,RNA, FBA, andmetadata is
available for download from the GitHub repository https://github.
com/jacobvalenzuela/Origin-of-biogeographically-distinct-ecotypes/
tree/main77.
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