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Alongside derivative-based methods, which scale better to higher-dimensional

problems, derivative-free methods play an essential role in the optimization of many

practical engineering systems, especially those in which function evaluations are deter-

mined by statistical averaging, and those for which the function of interest is nonconvex

in the adjustable parameters.
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This work focuses on the development of a new family of derivative-free, or

“data-driven”, optimization schemes, namely �-DOGS schemes. The idea unifying this

e�cient and (under the appropriate assumptions) provably-globally-convergent family

of schemes is the minimization of a search function which linearly combines a computa-

tionally inexpensive ”surrogate“ (that is, an interpolation, or in some cases a regression,

of recent function evaluations - we generally favor some variant of polyharmonic splines

for this purpose), to summarize the trends evident in the data available thus far, with a

synthetic piecewise-quadratic ”uncertainty function“ (built on the framework of a Delau-

nay triangulation of existing datapoints), to characterize the reliability of the surrogate

by quantifying the distance of any given point in parameter space to the nearest function

evaluations. This thesis introduces a handful of new schemes in the �-DOGS family:

(a) �-DOGS(⌦) designs for nonconvex (even, disconnected) feasible domains defined

by computable constraint functions within a bound search domain. (b) �-DOGS(⌦Z)

accelerates the convergence of �-DOGS(⌦) by restricting function evaluation coordina-

tions at each iteration to lie on a Cartesian grid in a bounded search domain. The grid

is successively refined as convergence is approached. (c) gradient-based acceleration

of �-DOGS combines derivative-free global exploration with derivative-based local re-

finement. (d) �-DOGS(⇤) modifies the idea of restricting function evaluations at each

iteration to lie on a dense lattice (derived from an n-dimensional sphere packing) instead

of a Cartesian grid. Moreover, it handles the linear constraint domain. (e) ↵-DOGSX

designs to simultaneously increase the sampling time, and refine the numerical approx-

imation, as convergence is approached.
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This work also introduces a method to scale the parameter domain under consid-

eration based on adaptive variation of the seen data in the optimization process, thereby

obtaining a significantly smoother surrogate. This method is called the Multivariate

Adaptive Polyharmonic Splines (MAPS) surrogate model.

Practical applications of these algorithms are explored that include (A) the de-

sign of low-storage implicit/explicit Runge-Kutta (IMEXRK) schemes for high perfor-

mance computing (HPC) problems such as the numerical simulation of turbulence flows,

and (B) the design of airfoils and hydrofoils.

These algorithms have been compared with existing state-of-the-art algorithms,

particularly the Surrogate Management Framework (SMF) using the Kriging model and

Mesh Adaptive Direct Search (MADS), on both standard synthetic and computer-aided

shape designs. We showed that in most cases, the new �-DOGS algorithms outperform

the existing ones.
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Chapter 1

Introduction

Failure is an option here. If things are not failing, you are not innovating

enough.—Elon Musk

1.1 Overview

Delaunay-based Derivative-free Optimization via Global Surrogates (�-DOGS)

is a generalizable family of practical, e�cient, and provably-convergent derivative-free

algorithms designed for a range of nonconvex optimization problems with expensive

function evaluations. Algorithms in this family are a subset of response surface meth-

ods (RSMs) that iteratively minimize metrics based on a surrogate model of existing

datapoints as well as a synthetic model of the uncertainty of this surrogate.

We developed a handful of schemes in this family, including schemes designed

specifically for (a) simple bound constraints, (b) linear constraints, and (c) nonconvex

1
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constraints, including those that define disconnected feasible domains. Accelerated vari-

ants of these �-DOGS algorithms have been proposed that, at each iteration, restrict the

function evaluations to lie on Cartesian grids or dense lattices that are successively re-

fined as convergence is approached. The interpolation strategy used in these surrogate-

based optimization techniques have also been examined closely; polyharmonic splines

interpolation provides a natural starting point, but improved interpolation strategies,

which rescale the parameter space based on the existing function evaluations at each

iteration, have also been explored. This rescaling approach facilitates, in a certain set-

ting, the reduction of the dimension of the optimization problem considered at many

iterations, thereby further accelerating convergence.

In many practical problems, the calculation of the true objective function, for any

feasible set of values of the parameters in the problem, is not exact. In some cases, the

true objective function that we desire to minimize is given by the infinite-time average

of a statistically-stationary ergodic process; in such problems, any numerical or exper-

imental approximations of this function is characterized by sampling error, which may

be reduced by additional sampling. For problems of this type, a variant was designed to

simultaneously increase the statistical sampling and refine the numerical approximation

of the function evaluations as convergence is approached, dubbed ↵-DOGSX 1. This

unique algorithm is specifically designed to e�ciently minimize the true objective func-

tion, while using minimal sampling over the parameter space. ↵-DOGSX is improved

for the cases where a lower estimation for the objective function is available to accel-
1↵-DOGSX has been adapted from ↵-DOGS algorithm [3].
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erate the convergence results. The key idea which ↵-DOGSX e�ciently implements is

that only a limited number of sampling is needed far from the global minimum in or-

der to e↵ectively “rule out” that region of parameter space, whereas more extensive and

accurate sampling is required as convergence is approached in order to more precisely

quantify the objective function in regions closer to the global minimum.

Chapter 2 introduces a Delaunay-based derivative-free optimization algorithm,

dubbed �-DOGS(⌦), for problems with both (a) a nonconvex, computationally expen-

sive objective function f (x), and (b) nonlinear, computationally expensive constraint

functions c`(x) which, taken together, define a nonconvex, possibly even not connected

feasible domain ⌦, which is assumed to lie within a known rectangular search domain

Ls, everywhere within which f (x) and the c`(x) may be evaluated. Approximations of

both the objective function f (x) as well as the feasible domain ⌦ are developed and

refined as the iterations proceed. The work is an extension of our original Delaunay-

based optimization algorithm (see JOGO DOI: 10.1007/s10898-015-0384-2), and in-

herits many of the constructions and strengths of that algorithm, including: (1) a sur-

rogate function p(x) interpolating all existing function evaluations and summarizing

their trends, (2) a synthetic, piecewise-quadratic uncertainty function e(x) built on the

framework of a Delaunay triangulation amongst existing datapoints, (3) a tunable bal-

ance between global exploration (large K) and local refinement (small K), (4) provable

global convergence for su�ciently large K, under the assumption that the objective and

constraint functions are twice di↵erentiable with bounded Hessians, and (5) remarkably

fast global convergence on a variety of benchmark problems.
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Chapter 3 introduces �-DOGS(⌦Z) that is a modification to �-DOGS(⌦) to ac-

celerate the convergence speed to a global minimizer in the practical application prob-

lems. �-DOGS(⌦Z) is applied to the problem of identifying a new, low-storage, high-

accuracy, Implicit/Explicit Runge-Kutta (IMEXRK) time integration scheme for high

performance computing (HPC) applications, like the simulation of turbulence. The op-

timization scheme developed and used in this work, which is provably globally conver-

gent under the appropriate assumptions, combines the essential ideas of (a) �-DOGS(⌦)

algorithm, which is designed to e�ciently optimize a nonconvex objective function f (x)

within a nonconvex feasible domain ⌦ described by a number of constraint functions

c`(x), with (b) acceleration of �-DOGS using Cartesian grid, which aims to reduce

the number of function evaluations on the boundary of the feasible domain that would

otherwise be called for via the restriction that all function evaluations lie on a Carte-

sian grid, which is subsequently refined as the iterations proceed, over the rectangular

search domain Ls considered. The identification of the optimal parameters of IMEXRK

schemes involves (1) a complicated set of nonlinear constraints, which are imposed in

order to achieve the desired order of accuracy in addition to a handful of important

stability properties, which leads to a highly nonconvex, disconnected feasible domain,

and (2) a highly nonconvex objective function, which represents a compromise between

a few di↵erent measures characterizing the leading-order error and potential stability

shortcomings of the resulting scheme. This structure makes the computation of new

IMEXRK schemes a challenging and well-suited practical test problem for global op-

timization algorithms to solve. In this work, the new optimization algorithm devel-



5

oped, �-DOGS(⌦Z), introduces the notion of “support points”, which are points defined

and used to eliminate constraint and objective function evaluations on the boundary of

the search domain, where these functions are sometimes ill-behaved, while restricting

all datapoints to like on a Cartesian grid that is successively refined as convergence

is approached. For validation, the convergence of �-DOGS(⌦Z) and �-DOGS(⌦) are

compared on a challenging problem of optimizing a low-storage IMEXRK formulation.

Results indicate a notably accelerated convergence rate using �-DOGS(⌦Z). In the end,

a low-storage third-order accurate IMEXRK algorithm for the time integration of sti↵

ODEs was identified which exhibited remarkably good stability and accuracy properties

as compared with existing IMEXRK schemes.

Chapter 4 proposes a hybrid optimization scheme combining an e�cient (and,

under the appropriate assumptions, provably globally convergent) derivative-free opti-

mization algorithm, �-DOGS, to globally explore expensive nonconvex functions, with

a new derivative-based local optimization algorithm, to maximally accelerate local con-

vergence from promising feasible points discovered in parameter space. The result-

ing hybrid optimization scheme proceeds iteratively, automatically shifting between

(derivative-free) global exploration and (derivative-based) local refinement as appropri-

ate. The new local derivative-based trust region method implemented uses the Voronoi

partitioning of the existing datapoints for the construction of a trust region around the

current best point. The resulting algorithm is analyzed, and its global convergence is

proven under certain assumptions on the objective function. Finally, the algorithm is

applied to nonconvex optimization problems with multiple local minima, and its com-
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putational cost compared with that of the original �-DOGS algorithm.

Chapter 5 introduces an accelerated variant of our Delaunay-based derivative-

free optimization strategy for feasible domains bounded by linear constraints. One

of the challenges of the basic algorithms in this class is their over-exploration of the

boundaries of feasibility, which slows convergence. For feasible domains with simple

bound constraints, we recently introduced a method to coordinate such a Delaunay-

based search by quantizing each new point to be evaluated onto a Cartesian grid which

is successively refined as convergence is approach; this approach substantially acceler-

ated convergence. For feasible domains with linear constraints, this chapter introduces

a new algorithm, dubbed �-DOGS(⇤), to coordinate a Delaunay-based search with a

“fitted lattice”, which implements an n-dimensional dense lattice over the interior of the

feasible domain, and successively lower-dimensional dense lattices over the boundaries

of the feasible domain with increasing numbers of active constraints. Global conver-

gence of the algorithm is proved under the appropriate assumptions, and the algorithm

is validated on a number of representative test problems.

Chapter 6 presents a new interpolation strategy, dubbed multivariate adaptive

polyharmonic splines (MAPS), which is proposed to mitigate this irregular behavior,

thereby accelerating the convergence of �-DOGS. The MAPS approach modifies the

polyharmonic spline (PS) approach by rescaling the parameters according to their sig-

nificance in the optimization problem based on the data available at each iteration. This

regularization of the PS approach ultimately reduces the number of function evaluations

required by �-DOGS to achieve a specified level of convergence in optimization prob-
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lems characterized by parameters of varying degrees of significance. The importance

of this rescaling of the parameters during the interpolation step is problem specific. To

quantify its beneficial impact on a practical problem, we compare �-DOGS with MAPS

to �-DOGS with polyharmonic splines on an application related to hydrofoil shape op-

timization in seven parameters; results indicate a notable acceleration of convergence

leveraging the MAPS approach.

Chapter 7 extends �-DOGS to e�ciently solve those problems whose function

evaluations are not accurate, but these inaccuracies can be improved. In many practical

problems, the calculation of the true objective function, for any feasible set of values

of the parameters in the problem, is not exact. ↵-DOGSX e�ciently solves these types

of problems by having a limited amount of sampling far from the minimum of the ob-

jective function and e↵ectively “rule out” that region of parameter space, and considers

more extensive sampling in regions closer to the global minimum as convergence is

approached. ↵-DOGSX could address uncertainties of the objective function that are

generated by the numerical discretization of an original ODE or PDE problem of in-

terest. For validation, this modified optimization algorithm is applied to the (chaotic)

Lorenz system. Numerical results indicate that, following the new approach, most of the

computational e↵ort is spent close to the optimal solution as convergence is approached.

1.2 Organization of the thesis

The content of this thesis can be summarized as follows:
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Chapter 2 presents �-DOGS(⌦) as a global optimization algorithm which can

minimize any nonconvex objective function inside nonconvex (and even disconnected)

constrained domains.

Chapter 3 presents �-DOGS(⌦Z), a modification of �-DOGS(⌦) that accelerates

its convergence results and applies it to design new IMEXRK schemes, IMEXRKiCBA,

for high performance computing.

Chapter 4 combines �-DOGS with local derivative-based methods for faster con-

vergence results when the gradient information is available.

Chapter 5 presents �-DOGS(⇤), which solves one of the issues associated with

the bound search domain and extends these algorithms to use any dense lattice within

linear constrained domains.

Chapter 6 applies the �-DOGS(⇤) framework for e�cient design of hydrofoils.

Also, a new interpolation strategy called Multivariate Adaptive Polyharmonic Spline

(MAPS) is introduced to deal with the practical problems which the variation of objec-

tive function non-uniformly changes respect to the design parameters over the feasible

domain.

Chapter 7 develops an optimization algorithm ↵-DOGSX, which can minimize

objective functions that are obtained by taking the infinite time-averaged statistics of a

stationary ergodic process and whose error is due to finite sampling and discretization

error.



Chapter 2

Delaunay-based derivative-free

optimization via global surrogates with

nonconvex feasible domain:

�-DOGS(⌦)

We choose to go to the moon in this decade and do the other things, not because

they are easy, but because they are hard. —John F. Kennedy

9
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2.1 Introduction

The problem considered in this paper is as follows:

minimize f (x) with x 2 ⌦ := Lc \ Ls ✓ Rn where

Lc = {x|c`(x)  0 , for ` = 1, · · · ,m}, Ls = {x|a  x  b}, (2.1)

where both f (x) and c`(x) for ` = 1, · · · ,m are twice di↵erentiable and possibly non-

convex functions which map Rn ! R within the search domain Ls. The optimization

problem (2.1) has two sets of constraints:

a. a set of 2 n bound constraints that characterize the n-dimensional box domain

Ls = {x|a  x  b}, dubbed the search domain, and

b. a set of m possibly nonlinear inequality constraints c`(x)  0 that together charac-

terize the possibly nonconvex domain Lc, dubbed the constraint domain.

The feasible domain is the intersection of these two domains, ⌦ := Ls \ Lc.

Potential applications of an e�cient optimization algorithm of this type include:

(a) minimizing the ratio of lift to drag, while holding the lift coe�cient constant, in the

design optimization of airfoils [5]; (b) minimizing entropy generation, with a constant

wall temperature or wall heat flux, in the optimization of finned-tube heat exchangers

[6]; (c) optimization of cardiovascular stints [7, 8]; and (d) maximizing solar power

plant e�ciency [9, 10].

Constrained optimization problems of the form given in (2.1), dubbed Nonlinear
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Inequality Problems (NIPs), have been studied widely using both derivative-based and

derivative-free optimization strategies.

In the derivative-based setting, there are two main classes of approaches for

NIPs. The first, Sequential Quadratic Programming (SQP) methods (see, e.g., [11, 12]),

impose a local quadratic model for the objective function and a local linear model for the

constraint functions to estimate the location of the local minimum at each step. These

models are defined based on the local gradient and Hessian of the objective function,

and the local Jacobian of the constraint functions; thus, these methods are applicable

only when either these derivatives, or accurate approximations thereof, are available.

SQP methods only convergence to a KKT point, or to a local minimum, and special

care is needed to guarantee such convergence. Application of SQP methods to problems

with nonconvex feasible domains leads to some especially di�cult technical challenges.

E↵ective implementations of SQP methods include SNOPT [12] and SQP Filter [13].

The other main class of derivative-based approaches for NIPs is penalty methods

(see, e.g., [14]), which modify the objective function by adding a penalty term which

is successively refined as the optimization proceeds. In this way, a series of uncon-

strained problems is considered, these problems are iteratively adjusted as convergence

is approached such that the iterative process eventually converges to a local minimizer

of the original constrained problem. There are two main types of penalty functions

used in such approaches, quadratic penalty functions (see, e.g., [15, 16, 17]) and barrier

functions (see, e.g., [18]).

Methods based on quadratic penalty functions add a smooth penalty outside the
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feasibility boundary. This penalty goes to zero at the feasibility boundary, and is made

successively steeper near the feasibility boundary (that is, it increases without bound on

the exterior of the feasible domain) as convergence is approached. Methods based on

quadratic penalty functions do not require the identification of an initial feasible point

during initialization, though the objective function is evaluated over a search domain

which extends outside the feasible domain, so these infeasible objective function com-

putations need to be well behaved.

Methods based on barrier functions add a smooth penalty inside the feasibility

boundary. This penalty goes to infinity at the feasibility boundary, and is made succes-

sively steeper near the feasibility boundary (that is, it is diminished towards zero on the

interior of the feasible domain) as convergence is approached. Methods based on bar-

rier functions require the identification of an initial feasible point during initialization,

though all subsequent function evaluations are feasible, so the objective function need

not be well behaved outside the feasible domain.

Derivative-based methods, though scaling to higher-dimensional optimization

problems far better than derivative-free methods, have certain distinct challenges. First,

they are usually not designed to find the global minimum of a nonconvex objective

function. Further, an expression (or, a numerical approximation) of the gradients of

the objective and constraint functions are needed; such derivative information is often

di�cult or impossible to obtain.

A large number of derivative-free strategies for constrained optimization have

been proposed. Some of these methods, like the downhill simplex and direct search
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methods [including the generalized pattern search (GPS) and mesh-adaptive direct search

(MADS) algorithms], only assure local convergence. Others, like simulated annealing,

genetic algorithms, exhaustive search strategies, and response surface methods, provide

global convergence; however, most such methods perform global exploration steps in

either a random or an exhaustive fashion, and are thus quite ine�cient with function

evaluations. Response surface methods are, today, the most e�cient class of optimiza-

tion schemes which provide global convergence [19].

Direct search methods do not use any model for the objective or constraint func-

tions, and the solution of the optimization problem is found based only on a series

of exploratory function evaluations inside the feasible domain. GPS methods [20] are

well-known algorithms in this class, which restrict all function evaluations to lie on un-

derlying grid that is successively refined. GPS methods were initially designed for un-

constrained problems, but have been modified to address bound constrained problems

[21], linearly-constrained problems [22], and smooth nonlinearly constrained problems

[23]. MADS methods [24, 25, 26, 27, 28] are modified GPS methods which can handle

non-smooth constraints.

Response Surface Methods (RSMs) [29, 28, 30, 31, 32, 33], on the other hand,

leverage an underlying inexpensive model, or “surrogate”, of the objective function1.

Kriging interpolation [34, 35, 36] was initially used to develop this surrogate. This

convenient choice provides both an interpolant and a model of the uncertainty of this
1This approach generalizes the SQP method, where a quadratic function is used to locally model the

objective function, and linear function is used to locally model the constraints.
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interpolant. However, such correlation-based interpolation strategies have a number

of numerical shortcomings (see, e.g., the appendix of [37]). Thus, our group has ex-

plored [1, 37] a new class of RSMs which can employ any interpolation strategy for

the surrogate. Up to now, these approaches have been restricted to problems for which

the feasible domain is convex and the constraint functions are numerically inexpensive.

The present work modifies the algorithms developed in [1, 37] to address problems for

which the constraint functions are nonlinear and expensive to compute and the feasible

domain is nonconvex.

The structure of this paper is as follows. Section 2.2 describes the main elements

of the optimization algorithm itself. Section 2.3 analyzes its convergence properties, and

describes the technical conditions needed to guarantee its convergence to a global mini-

mizer. Section 2.4 presents a procedure to adjust the tuning parameter of the algorithm

developed in §2.2 to maximize the speed of convergence if an estimate of the global

minimum (but, not the global minimizer) is available. Section 2.5 discusses briefly the

behavior of the algorithm proposed when the feasible domain is empty. In Section 2.6,

the algorithm is applied to some benchmark optimization problems to illustrate its be-

havior. Conclusions are presented in Section 2.7.

2.2 Algorithm

In this section, we present an algorithm to solve the optimization problem de-

fined in (2.1), in a manner which e�ciently handles inequality constraint functions c`(x)
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that are nonlinear and computationally expensive, and which (together with Ls) define a

feasible domain ⌦ that may be nonconvex and, even, not connected.

2.2.1 Preliminary definitions

We first present some preliminary notions.

Definition 1. Let S be a set of points in Ls, including its vertices. Define� as a Delaunay

triangulation (see [38]) of S . Then, for each simplex �i 2 �, the local uncertainty

function ei(x) is defined as

ei(x) = (ri)2 � kx � zik2, (2.2)

where zi and ri are the circumcenter and circumradius of the simplex �i, respectively.

The global uncertainty function e(x) is then defined as

e(x) = ei(x), 8x 2 �i. (2.3)

The functions ei(x) and e(x) have a number of properties which are shown in §3

of [37], the most important of which, for the present purposes, are as follows.

Property 1. The global uncertainty function e(x) is piecewise quadratic, continuous,

and Lipschitz, with Lipschitz constant 2 Rmax, where Rmax is the maximum circumradius

of the corresponding Delaunay triangulation.

Property 2. The Hessian of local uncertainty function ei(x) is equal to �2 I.
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Property 3. The global uncertainty function e(x) is equal to the maximum of the local

uncertainty functions ei(x), that is,

e(x) = max
i=1,··· ,E

ei(x), 8x 2 �, (2.4)

where E is the number of simplices in the triangulations.

Definition 2. Let S be a set of (both feasible and infeasible) points in Ls, including its

vertices, at which the objective function f (x) has been evaluated. Consider p(x) as an

interpolating function in � that interpolates the objective function f (x) at all points in

S . Then, for each simplex �i 2 �, the local search function si(x) is defined as

si(x) = p(x) � K ei(x), (2.5)

where K is a tuning parameter. The global search function s(x) is defined as

s(x) = si(x) 8x 2 �i, (2.6)

where �i is the i’th simplex in �. Note that

s(x) = min
i=1,··· ,E

si(x) 8x 2 �.

Definition 3. Consider g1(x), g2(x), · · · , gm(x) as interpolating functions in � that inter-

polate the constraint functions c1(x), c2(x), · · · , cm(x), respectively, through the points
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in S . Then, for each simplex �i 2 �, the `’th local constraint search function s̃`,i(x) is

defined as

s̃`,i(x) = g`(x) � K ei(x)  0, ` = 1, 2, · · · ,m, (2.7)

where K is a constant tuning parameter. The `’th global constraint search function s̃`(x)

is defined as

s̃`(x) = s̃`,i(x), 8x 2 �i, ` = 1, 2, · · · ,m. (2.8)

Note that, by Property 3 above,

s̃`(x) = min
i=1,··· ,E

s̃`,i(x), 8x 2 �.

Remark 1. The (single) constant K is a tuning parameter that specifies the trade-o↵

between global exploration, for large K, and local refinement, for small K, when (si-

multaneously) exploring both the shape of the objective function, via the search function

s given in Definition 2, and the extent of the feasible domain, via the constraint search

functions s̃` given in Definition 3.

2.2.2 Feasible constraint projections

The feasible constraint projection process (developed in §4 of [37] for linearly

constrained domains), when applied to a Delaunay optimization algorithm, ensures that

the maximum circumradius of the Delaunay triangulation of the datapoints remains

bounded as the iterations proceed, thus leading to better-behaved uncertainty func-
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tions near the boundary of the feasible domain. In this paper, since the search domain

Ls = {x|a  x  b} is a simple bound domain, implementation of the feasible constraint

projection process is simpler than in [37], as described below.

We first define some preliminary concepts.

Definition 4. A finite set of points S k ⇢ Ls = { x | a  x  b } is called well-situated with

factor of r > 1 if, for any point xk 2 S k and for all constraints cT x  d of the search

domain Ls which are not active at xk, a point z 2 S k lies on the hyperplane cT x = d such

that

kxk � zk
kxk � x0k  r, (2.9)

where x0 is the projection of xk on the hyperplane cT x = d.

We now present the feasible constraint projection algorithm, developed in §4 of

[37], for the simple bound domain Ls = { x | a  x  b }.

Definition 5. Let us consider xk 2 Ls, and S k as a set in Ls that is well-situated with

factor r. A feasible constraint projection is the iterative adjustment of the point xk in Ls

until the resulting augmented set, S k+1 = S k [ {xk}, is also well situated with factor r.

This projection may be achieved with Algorithm 2.1.

Algorithm 2.1 Feasible constraint projection of xk prior to appending to S k.

1: If S k+1 = S k [ {xk} is well situated with factor r (see Definition 4), exit.
2: Otherwise, there is a constraint cT x = d that is not active at xk, such that there is no

point z 2 S k that lies on the hyperplane cT x = d for which (2.9) is satisfied. In this
case, redefine xk as the projection of xk on the hyperplane cT x = d, and repeat from
step 1.
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In this paper, the value r = 2 is found to be suitable for the feasible constraint

projection process in our numerical simulations. Detailed explanation of the above al-

gorithm, and proofs of the following properties of the result, are given in [37].

Property 4. Consider Rmax as the maximum circumradius of a Deluanay triangulation

of a set S ⇢ Ls = { x | a  x  b } that is well-situated with factor r. Define D =

maxx,y2Ls kx � yk as the diameter of the feasible domain, and d = min1in{bi�ai}. Then,

Rmax  D rn�1
1 where r1 = max {r, D

d
}.

Property 5. Consider x0 as the feasible constraint projection of x. Then,

min
z2S
kz � xk  ⇢min

z2S
kz � x0k, ⇢ = [2 r2

1 (1 � 1
r2 )]�

n�1
2 , r1 = max {r, D

d
}.

That is, if the projected point x0 is close to some point z 2 S , then the original point x is

correspondingly close to z as well.

Remark 2. Since the maximum circumradius Rmax is bounded for all iterations, the

Lipschitz constant of e(x) is bounded by some corresponding value Le.

2.2.3 A Delaunay-based constant K algorithm for solving (2.1)

A Delaunay-based constant K algorithm for solving (2.1), dubbed �-DOGS(⌦),

is presented in Algorithm 2.2.

Figure 2.1 illustrates the application of Algorithm 2.2 to a representative n = 2
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Algorithm 2.2 Scheme for solving (2.1) with constant K

1: Set k = 0 and initialize S 0 with all of the vertices of Ls together with the user-defined
initial points (if any are provided). Evaluate f (x) and c`(x), 8 ` 2 {1, 2, · · · ,m}, for
all x 2 S 0.

2: Calculate (or, for k > 0, update) interpolating functions pk(x) and gk
`(x) for the

evaluations of f (x) and c`(x), respectively, at all x 2 S k.
3: Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points

in S k.
4: Determine x̂k as the solution of the following optimization problem:

min
x2Ls

sk(x) = pk(x) � Kek(x) (2.10a)

subject to s̃k
`(x) = gk

`(x) � Kek(x)  0 8 ` 2 {1, 2, · · · ,m}. (2.10b)

where the global search function sk(x) and the `’th global constraint search function
s̃k
`(x) are introduced in Definitions 2 and 3.

5: Define xk as the feasible constraint projection of x̂k (Algorithm 2.1).
6: Evaluate f (xk) and c`(xk) 8 ` 2 {1, 2, · · · ,m} and set S k+1 = S k [ {xk}. Increment k

and repeat from step 2.

example, in which the objective function f (x) = x2 is minimized within the search

domain Ls = {x|0  x1  1, 0  x2  1} subject to c(x) = x2 + 0.8 sin(x1⇡) = 0 (that is,

c1(x) = c(x)  0 and c2(x) = �c(x)  0), which defines the constraint domain Lc as a

1D curve. Note that the feasible region ⌦ := Lc \ Ls is nonconvex.
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(a) k = 0 (b) k = 1 (c) k = 2

(d) k = 3 (e) k = 4

Figure 2.1: Illustration of Algorithm 2.2 on a representative example (see text). The search
domain Ls is represented by the 2D square, and the global optimum is indicated by the star. The

feasible domain ⌦ is the 1D curve shown in black.
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At each iteration k, by minimizing the search function sk(x) within the approx-

imation of the feasible domain defined by the s̃k
`(x) (e.g., within the shaded regions in

Figure 2.1), the objective function and the extent of the feasible domain are explored

simultaneously using analogous interpolating functions. The solution of (2.10) in step

4 of Algorithm 2.2 at each iteration leads to improved estimates of both the objective

function and the constraint functions, and thus to the minimum of the objective function

within the actual feasible domain.

Remark 3. Algorithm 2.2 is not listed with a specific stopping criterion. It is shown

in §2.3 that a limit point of the dataset obtained by this algorithm is a solution of the

original problem (2.1). A practical stopping criterion is easily added such that Algo-

rithm 2.2 terminates after a finite number of iterations. A convenient stopping criterion

is �k  �desired, where �k = minz2S kkz� xkk. It follows from the compactness of the search

domain Ls and the Bolzano-Weierstrass theorem that such termination will occur after

a finite number of iterations (see, e.g., Remark 3 in [1]). It is shown later in this paper

(see Lemma 2) that a point z 2 S k is computed via this approach such that the residual of

the objective function value, | f (z) � f (x⇤)|, as well as the worst-case constraint function

violation, max{c`(z), 0} for all `, are both bounded by �k times a prefactor related to the

Lipschitz bounds on f (x) and c`(x), which can thus both be made as small as desired by

appropriate selection of �desired.

Step 4 of Algorithm 2.2 computes the global minimizer of the search function

within the current approximation of the feasible domain. In the next subsection, we



23

consider this important step in greater detail.

2.2.4 Minimizing the search function inside the approximated fea-

sible domain

At step 4 of Algorithm 2.2, at each iteration k, the global search function sk(x) is

minimized inside the approximation of the feasible domain via solution of (2.10).

Recall that, within each simplex �k
i in the triangulation �k, the local search func-

tion and the local constraint search functions are defined as sk
i (x) = pk(x) � Kek

i (x) and

s̃k
`,i(x) = gk

`(x) � Kek
i (x), respectively. Define ⌫k

i as follows:

⌫k
i = argminx2�k

i
sk

i (x) subject to s̃k
`,i(x)  0 8 ` 2 {1, · · · ,m}. (2.11a)

The outcome xk of step 4 of Algorithm 2.2 is thus computed as follows:

⌫k = ⌫k
imin

where imin = argmini2{1,··· ,Ek}
h

sk
i (⌫

k
i )
i

, (2.11b)

where Ek is the number of simplices in the triangulation �k. To find ⌫k in each sim-

plex, we must solve Ek constrained optimization problems (2.11a), with the nonlinear

constraints s̃k
`,i(x)  0 and the linear constraints x 2 �k

i . This computational task is

simplified significantly by Lemma 1.

Lemma 1. If the linear constraints x 2 �k
i in the optimization problems defined in

(2.11a) are relaxed to the entire search domain x 2 Ls, the resulting values of the optimal
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points remain unchanged.

Proof. Define uk
j and uk [cf. (2.11)] as

uk
j = argminx2Ls

sk
j(x) subject to s̃k

`, j(x)  0 8 ` 2 {1, · · · ,m}, (2.12a)

uk = uk
jmin

where jmin = argmin j2{1,··· ,Ek}
h

sk
j(u

k
j)
i

. (2.12b)

We now show that uk is also a solution of the optimization problem (2.10). By construc-

tion, uk
jmin
= uk. According to Property 3 of the uncertainty function, and the fact that

K > 0,

sk(uk)  sk
jmin

(uk), s̃k
`(u

k)  s̃k
`, jmin

(uk)  0 8` 2 {1, · · · ,m}. (2.13)

Thus, uk is a feasible point for optimization problem (2.10). We now check its optimal-

ity; that is, 8y 2 Ls such that s̃k
`(y)  0 8 `, that sk(uk)  sk(y). Assuming that y 2 �k

q,

by (2.12) and Property 3 of the uncertainty function,

s̃k
`,q(y) = s̃k

`(y)  0. (2.14)

Thus, y is a feasible point for optimization problem (2.12a). By construction of uk,

sk
jmin

(uk)  sk
q(uk

q), and thus

sk(uk)  sk
jmin

(uk)  sk
q(uk

q)  sk
q(y) = sk(y), (2.15)

and the optimality condition is established. ⇤
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Remark 4. Lemma 1 shows that the (possibly, multiple) global solutions of (2.11) and

(2.12) are identical. The process of solving these two problems might lead to di↵erent

solutions. Note that we just need to find a global solution of (2.11) [or, equivalently

(2.12)] as the algorithm proceeds, so this di↵erence is inconsequential.

Remark 5. If the approximation of the feasible domain at iteration k in problem (2.10) is

empty, then the feasible domain of the subproblem (2.12a) is empty for all j 2 {1, · · · , Ek}.

In this case, using a derivative-based method like SQP, we can instead find a local min-

imum of the following objective function:

bs̃
k
(x) =

m
X

`=1

max
n

s̃k
`(x), 0

o

. (2.16)

At all steps that the approximation of the feasible domain is empty, xk is taken as the

minimizer of the above function, in order to search for a feasible point.

The solution of (2.10) can thus be obtained by solving the optimization problem

(2.12a) for each j 2 {1, · · · , Ek} (and, by Lemma 1, for x 2 Ls). These optimiza-

tion problems may be solved e�ciently using standard derivative-based NLP solvers.

Filter SQP [13], SNOPT [12], and IPOPT [39] are among the best derivative-based op-

timization algorithms available today for such nonlinear programming problems. In our

implementation of Algorithm 2.2, both Filter SQP and SNOPT have been implemented.

The initial point which is used when solving (2.12a) for each j 2 {1, · · · , Ek} is taken

simply as the body center of simplex j. One of the advantages of using such o↵-the-

shelf SQP-based algorithms for this subproblem is that they can verify, at least locally,
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whether or not the feasible domain of each subproblem (2.12a) is empty. If it is, then

these solvers find the x that minimizes

bs̃
k
j(x) =

m
X

`=1

max
n

s̃k
`, j(x), 0

o

.

If all of the (2.12a) subproblems are found to be infeasible, then the resulting values of

bs̃
k
j(x) are compared in order to find the x minimizing (2.16) in the search for a feasible

point, as desired, thereby ignoring the search function until a feasible region is identified.

2.2.5 Parallel implementation

The parallelization approach suggested in Algorithm 5 of [37] extends imme-

diately to the present optimization framework in order to solve (2.1) in parallel on np

processors. Note that the three most expensive steps of Algorithm 2.2 of the present

work are as follows:

1. Evaluating the objective and constraint functions. This is assumed to be the most

expensive part of the present problem; thus, a framework for simultaneously eval-

uating the objective and constraint functions at np di↵erent points of interest on a

parallel computer architecture is the focus of this section.

2. Solving the optimization problem (2.12a) at each simplex via an SQP method.

This part of the optimization algorithm is already “embarrassingly parallel”, as

each subproblem j 2 {1, · · · , Ek} may be solved independently.
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3. Partitioning the search domain into a Delaunay triangulation. An incremental

method is used to update the Delaunay triangulation at each iteration, thus reduc-

ing the computational cost of this procedure somewhat. Regardless, the cost of

this step increases quickly as the dimension of the problem is increased.

In Algorithm 2.2, xk is derived by solving the optimization subproblem (2.10), then

performing a feasible constraint projection. Note, however, that the uncertainty function

ek(x) is independent of the interpolation function pk(x). Thus, we can calculate ek+i(x),

for i = 1, . . . , np�1, before completing the objective and constraint function evaluations

at xk. That is, steps k + i of Algorithm 2.2, for i = 1, . . . , np � 1, can be performed in

parallel with step k under the simplifying assumption that

pk+i(x) = pk(x), and gk+i
` (x) = gk

`(x) for 1  `  m. (2.17)

For the purpose of parallelization, we thus impose (2.17), for i = 1, . . . , np�1 additional

iterations, in order to determine, based on the information available at step k, the best

(np � 1) additional points to explore in parallel with xk.

Algorithm 2.3 illustrates how this idea may be implemented for parallel com-

putation. Note that minimizing sk,i(x) for 0 < i  np is relatively easy, since sk,i(x) =

sk,i�1(x) in most of the simplices, and the incremental update of the Delaunay triangula-

tion can be used to flag the indices of those simplices that have been changed by adding

xk,i to S k,i�1(x) (see [40]).
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Algorithm 2.3 Modification of Algorithm 2.2 such that, at each iteration k, np points are identi-
fied for parallel evaluation of the objective and constraint functions.

1: Set k = 0 and initialize S 0 with all of the vertices of Ls together with the user-
defined initial points. Evaluate (in parallel) f (x) and c`(x), 8 ` 2 {1, 2, · · · ,m}, for
all x 2 S 0.

2: Calculate (or, for k > 0, update) interpolating functions pk(x) and gk
`(x) for the

evaluations of f (x) and c`(x), respectively, at all x 2 S k.
3: Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points

in S k.
4: Determine x̂k,0, a global minimizer of sk(x) = pk(x) � Kek(x) which is subject to

s̃k,0
` (x) = gk

`(x) � Kek(x)  0, 8 ` 2 {1, · · · ,m} (as in step 4 of Algorithm 2.2). Note
that this calculation may be done in parallel for each simplex. Define xk,0 as the
feasible constraint projection of x̂k,0 (Algorithm 2.1), and take S k,1 = S k [ {xk,0}.
Compute �k,0 = miny2S k kxk,0 � yk.

5: For each substep i 2 {1, 2, · · · , np � 1}, do the following:

a. Update the Delaunay triangulation of the datapoints in S k,i, thus defining the
new uncertainty function ek,i(x).

b. Determine x̂k,i as a global minimizer of sk,i(x) = pk(x) � Kek,i(x) subject
to s̃k,i

` (x) = gk
`(x) � Kek,i(x)  0, 8 ` 2 {1, · · · ,m}. Compute �k,i =

miny2S k,i kx̂k,i � yk.
c. If �k,i  c �k,0 for some c such that 0 < c  1, replace x̂k,i with a global

minimizer of ek,i(x).

d. Define xk,i as the feasible constraint projection of x̂k,i, and take S k,i+1(x) =
S k,i [ {xk,i}.

6: Take S k+1 = S k,np , and evaluate the objective and constraint functions, f (x) and
c`(x), at all of the points {xk,0, xk,1, · · · , xk,np�1} in parallel.

7: Increment k, and repeat from step 2 until �k,0  �des.

2.3 Convergence Analysis

This section analyses the convergence properties of Algorithm 2.2. The analysis

presented is analogous to, but somewhat di↵erent from, that presented in §4 of [37]. The

convergence analysis is based on the following assumptions.

Assumption 1. The objective and constraint functions f (x) and c`(x), as well as the

interpolating functions pk(x) and gk
`(x) for all k, are Lipschitz for the same Lipschitz
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constant L̄.

Assumption 2. There is a constant K̂ such that, for all x 2 Ls and k > 0,

r2{ f (x) � pk(x)} + 2 K̂I � 0, r2{c`(x) � gk
`(x))} + 2 K̂I � 0,

r2 f (x) + 2 K̂I � 0, r2c`(x) + 2 K̂I � 0.

Assumption 3. The problem in (2.1) has a nonempty feasible domain,⌦ , ;. Moreover,

since⌦ is compact, there exists a minimizer of f (x) in⌦, which is denoted in this section

as x⇤. (In §2.5, we relax this assumption to consider the case for which the feasible

domain ⌦ may be empty.)

Lemma 2. At each step of Algorithm 2.2, if K � K̂, then there is a point x̃ 2 Ls for

which

sk(x̃)  f (x⇤) and s̃k
`(x̃)  0 for 1  `  m, (2.18)

where x⇤ is a global minimizer of f (x) in ⌦.

Proof. Consider �k
i as a simplex in �k which includes x⇤. Define the functions F(x) and

C`(x), 8` 2 {1, · · · ,m}, such that

F(x) = pk(x) � K ek
i (x) � f (x), C`(x) = gk

`(x) � K ek
i (x) � c`(x), (2.19)

where ek
i (x) is the local uncertainty function in simplex �k

i . Property 2 of the uncertainty
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function states that r2ek
i (x) = �2 I. Taking the Hessian of (2.19), we have

r2F(x) = r2 pk(x) � r2 f (x) + 2 K I, r2C`(x) = r2gk
`(x) � r2c`(x) + 2 K I.

By choosing K > K̂, according to Assumption 2, r2F(x) and r2C`(x) are positive

semidefinite; thus, F(x) and C`(x) are convex inside the closed simplex �k
i , which in-

cludes x⇤. Thus, the maximum value of F(x) is located at one of the vertices of �k
i

(see, e.g. Theorem 1 of [41]). Moreover, by construction, the value of F(x) and

C`(x) at the vertices �k
i are zero; consequently, F(x⇤)  0 and C`(x⇤)  0. On the

other hand, sk(x⇤) = sk
i (x⇤), and s̃k

`(x⇤) = s̃k
`,i(x⇤). Therefore, sk(x⇤)  f (x⇤) and

gk
`(x⇤) � K ek(x⇤)  c`(x⇤)  0. ⇤

Remark 6. Lemma 2 shows that the constrained feasible domain is nonempty if K > K̂.

Lemma 3. At each step of Algorithm 2.2, if K � K̂, then there is a point z 2 S k, such

that

f (z) � f (x⇤)  (L̄ + K Le) ⇢ min
z2S k
kz � xkk, (2.20a)

c`(z)  (L̄ + K Le) ⇢ min
z2S k
kz � xkk 8` 2 {1, · · · ,m}, (2.20b)

where the parameter ⇢ is defined in Property 5, and is related to the feasible constraint

projection procedure.

Proof. Choose a point y 2 S k which minimizes � = miny2S kky � x̂kk. According to
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Property 1 of the uncertainty function and Assumption 1, the following inequalities

hold, as in the proof of Lemma 3 in [1]:

|pk(x̂k) � pk(y)|  L̄�, |gk
`(x̂k) � gk

`(y)|  L̄� 8` 2 {1, 2, . . . ,m}, (2.21a)

|ek(x̂k) � ek(y)|  Le�. (2.21b)

Recall that sk(x) = pk(x) � K ek(x) and s̃k
`(x) = gk

`(x) � K ek(x). Using (2.21),

|sk(y) � sk(x̂k)|  (L̄ + K Le) �, |s̃k
`(y) � s̃k

`(x̂k)|  (L̄ + K Le) �,

sk(y) = pk(y) = f (y), s̃k
`(y) = gk

`(y) = c`(y),

f (y)  sk(x̂k) + (L̄ + KLe) �, c`(y)  s̃k
`(x̂k) + (L̄ + KLe) �. (2.22)

Since x̂k is a global minimizer of sk(x) with respect to s̃k
`(x)  0, it follows from Lemma

2 that sk(x̂k)  f (x⇤) and s̃k
`(x̂k)  0, and thus

f (y)  f (x⇤) + (L̄ + K Le) �, c`(y)  (L̄ + K Le) �. (2.23)

In addition, �  ⇢ miny2S kky�xkk holds according to Property 5 of the feasible constraint

projection. Hence, we have shown that (2.20) is true for z = y. ⇤

Theorem 1. There is an !-limit point of the series {xk} which is a global solution of the

optimization problem (2.1).
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Proof. Define T (x) = max{ f (x) � f (x⇤), c`(x)}. Take zk as the value of x 2 S k that

minimizes T (x). By construction, T (x) � 0; thus, T (zk) � 0, and T (zk) is non-increasing

with k. Since the search domain is compact, by the Bolzano-Weierstrass theorem, the

series {xk} has an !-limit point. Thus, for any " > 0, for su�ciently large k, there are i

and j such that i < j  k and kxi� x jk  ". Using Lemma 3 and considering that zk 2 S k,

we have

0  T (zk)  (2 L̄ + K Le)⇢ "

The above equation is true for all positive values of "; additionally, since T (zk) is a

non-increasing series; then,

lim
k!1

T (zk) = 0.

Now define z1 as an !-limit point for the zk. By construction, T (x) is a continuous

function of x, which leads immediately to T (z1) = 0. Thus, z1 is a solution of (2.1). ⇤

2.4 Adaptive K Algorithm

The tuning parameter K in Algorithm 2.2 specifies the trade-o↵ between global

exploration (for large K) and local refinement (for small K). In this section, we develop

a method to adjust this tuning parameter at each iteration to maximally accelerate local

refinement while still assuring convergence to the global solution of the constrained

problem.

The method proposed builds on the fact that, if for each k there exists an x̃ such
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Algorithm 2.4 Scheme for solving (2.1) with adaptive K.
This algorithm is almost identical to Algorithm 2.2. Instead of solving the subproblem
(2.10) at step 4, the following search function is minimized instead:

sk
a(x) = max

n pk(x) � f0

ek(x)
,

gk
1(x)

ek(x)
,

gk
2(x)

ek(x)
, . . . ,

gk
m(x)

ek(x)

o

. (2.25)

Note that, if sk
a(x)  0; then, the following subproblem is solved, which is equivalent

to (2.10) when K = 0:

min
x2Ls

pk(x) subject to gk
`(x)  0 8` = {1, · · · ,m}. (2.26)

that pk(x̃) � K ek(x̃)  f (x⇤) subject to gk
`(x̃) � K ek(x̃)  0 for all ` 2 {1, 2, . . . ,m}, then

Eq. (2.18) is satisfied, which is su�cient to establish the convergence of Algorithm 2.2

in Theorem 1. It is not necessary to choose a constant value for K in Algorithm 2.2;

instead, we may adapt it at each iteration k, taking Kk as bounded and nonnegative with

pk(x̃) � Kk ek(x̃)  f (x⇤) subject to gk
`(x̃) � Kk ek(x̃)  0 for all ` 2 {1, 2, . . . ,m} at each

iteration k.

Take f0 as a (known) lower bound for f (x) over the feasible domain ⌦. By

choosing Kk adaptively at each iteration of Algorithm 2.2 such that

0  Kk  Kmax, (2.24a)

9 x̃ 2 ⌦ pk(x̃) � Kk e(x̃)  f0 and gk
`(x̃)  Kk ek(x̃), (2.24b)

for all ` 2 {1, 2, · · · ,m}, this variant of Algorithm 2.2, with Kk adapted at each iteration

k as described above, preserves the guaranteed convergence of the original Algorithm

2.2 as established in Theorem 1.
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An adaptive K variant of Algorithm 2.2, for solving (2.1) when a lower bound f0

for the objective function f (x) is available, is given in Algorithm 2.4. Note that reduced

values of Kk accelerate local convergence. Thus, at each iteration k of Algorithm 2.4,

we seek the smallest value of Kk which satisfies (2.24). The optimal Kk is thus taken as

Kk = min
x2Ls

sk
a(x), (2.27)

where sk
a(x) is defined in (2.25). It is straightforward to verify that the x that mini-

mizes (2.27) also minimizes the corresponding search function pk(x) � Kk ek(x) subject

to gk
`(x)  Kk ek(x) 8 ` 2 {1, 2, · · · ,m}. Note that, if at some iteration k the solution of

(2.27) is negative, we set Kk = 0, and thus the search at iteration k reduces to (2.26).

Since ek(x) is defined in a piecewise fashion, to minimize sk
a(x) in Ls, we must

solve several optimization problems with linear constraints. Using similar reasoning as

in Lemma 1, we can relax these linear constraints.

Again, to minimize sk
a,i(x) within each simplex �k

i , a good initial point is re-

quired. Within �k
i , a minimizer of sk

a,i(x) generally has a large value of ek
i (x); thus,

the projection of the circumcenter of �k
i onto the simplex itself provides a reasonable

initialization point for the search for the minimum of sk
a,i(x).

The minimization of sk
a(x) is a minimax problem, akin to those studied in [42,

43, 44]. In our implementation, we use the exponential fitting method to solve this

minimax problem, as explained in detail in [43]. To apply this method, the gradient

and Hessian of (pk(x) � f0)/ek(x) and gk
`(x)/ek(x) are needed. Analytical expressions for
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these quantities are derived in §4 in [37].

We now analyze the convergence properties of Algorithm 2.4 under the same set

of assumptions as used in §2.3.

Note that the formal proof of convergence of Algorithm 2.4, given below, is not

trivial. The main challenge is that the Kk derived by minimizing sa(x) is not necessarily

bounded. In fact, if f0 < f (x⇤), the value of Kk will go to infinity as the algorithm pro-

ceeds. Regardless, Algorithm 2.4 still converges to the global minimum, as established

below.

Theorem 2. Assuming f0  f (x⇤), at each iteration k of Algorithm 2.4,

min
z2S k

max{ f (z) � f (x⇤), c`(z)}  C [ ⇢ �k +
p

⇢ �k +
4
p

⇢�k], (2.28)

where �0k = minz2S kkz � x̂kk, ⇢ is a parameter defined in Property 5 related to the fea-

sible boundary projection process, A = K̂ Le + L̄, B = ( f (x⇤) � f0) Le L̄2, and C =

2 max{A, B,
p

A,
p

B, 4pA, 4pB}.

Proof. We first show that there is a z 2 S k such that

min
z2S k

max { f (z) � f (x⇤), c`(z)}  C [�k +
p

�k +
4
p

�k], (2.29)

where �k = minx2S kkx � x̂kk. By construction, there are two cases for x̂k.

In the first case, x̂k is found by solving (2.26). By construction, pk(x̂k)  f0 and

g`(x̂k)  0. Now take y as a point in S k that minimizes kx̂k � yk; since f0  f (x⇤) and



36

y 2 S k, noting Assumptions 1-2, it follows that

f (y) � f (x⇤)  L̄ �k and c`(y)  L̄ �k, (2.30)

which establishes that (2.29) is true in this case.

In the second case, x̂k is found by solving (2.25). As x̂k is the minimizer of sk
a(x),

it follows that sk
a(x̂k)  sk

a(x⇤). There are now two possible situations for sk
a(x⇤). In the

first such situation, sk
a(x⇤) = gk

`(x⇤) / ek(x⇤). Define y and z as the closest points in S k to

x̂k and x⇤, respectively. In Lemma 2, it is shown that gk
`(x⇤)� K̂ ek(x⇤)� c`(x⇤)  0; thus,

noting that x⇤ is feasible, we have

K̂ � gk
`(x⇤) / ek(x⇤). (2.31)

Via Assumption 1 and the fact that y 2 S k,

pk(y) = f (y), gk
`(y) = c`(y),

pk(y) � pk(x̂k)  L̄ �k, gk
`(y) � gk

`(x̂k)  L̄ �k.

In Lemma 2, it is also shown that pk(x̂k) � K̂ ek(x̂k) � f (x⇤)  0; thus, using the above

equations and gk
`(x̂k)  K̂ ek(x̂k), we have

f (y) � f (x⇤)  K̂ ek(x̂k) + L̄ �k, c`(y)  K̂ ek(x̂k) + L̄ �k.
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By Property 1 of the uncertainty function, and the fact that ek(y) = 0, it follows that

ek(x̂k)  Le �k, which establishes that (2.29) is true in this situation.

In the situation which is left to analyze, sk
a(x⇤) = (pk(x⇤) � f0)/ ek(x⇤). Recall that

w is the closet point to x⇤ in S k. By Assumptions 1-2, and the fact that x⇤ is a feasible

point for problem (2.1), it follows that

pk(w) � pk(x̂k)  L̄ kw � x̂kk, gk
`(y) � gk

`(x̂k)  L̄ kw � x̂kk,

pk(w) = f (w), gk
`(w) = c`(w),

f (w) � f (x⇤)  L̄ kw � x⇤k, ck
`(w)  L̄ kw � x⇤k. (2.32)

By Lemma 4 in [1], we have

kw � x⇤k2  ek(x⇤). (2.33)

Using (2.33) and the square of (2.32) leads to

⇣

f (w) � f (x⇤)
⌘2  L̄2ek(x⇤), c`(z)2  L̄2 ek(x⇤),

max
n⇣

f (w) � f (x⇤)
⌘2
, c`(w)2

o

 L̄2 ek(x⇤). (2.34)

Since x̂k is a minimizer of sk
a(x̂k)  sk

a(x⇤), and sk
a(x⇤) = (pk(x⇤) � f0)/ ek(x⇤),

pk(x̂k) � f0

ek(x̂k)
 pk(x⇤) � f0

ek(x⇤)
,

gk
`(x̂k)

ek(x̂k)
 pk(x⇤) � f0

ek(x⇤)
.
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Thus,

pk(x̂k) � f0

ek(x̂k)
 pk(x⇤) � f (x⇤)

ek(x⇤)
+

f (x⇤) � f0

ek(x⇤)
, (2.35)

gk
`(x̂k)

ek(x̂k)
 pk(x⇤) � f (x⇤)

ek(x⇤)
+

f (x⇤) � f0

ek(x⇤)
. (2.36)

As in (2.31), we can show that

K̂ � pk(x⇤) � f (x⇤) / ek(x⇤). (2.37)

Using (2.35), (2.36), and (2.37)

pk(x̂k) � f0

ek(x̂k)
 K̂ +

f (x⇤) � f0

ek(x⇤)
,

gk
`(x̂k)

ek(x̂k)
 K̂ +

f (x⇤) � f0

ek(x⇤)
,

pk(x̂k) � f (x⇤)
ek(x̂k)

 K̂ +
f (x⇤) � f0

ek(x⇤)
,

gk
`(x̂k)

ek(x̂k)
 K̂ +

f (x⇤) � f0

ek(x⇤)
,

f (y) � L̄ �k  pk(x̂k), c`(y) � L̄ �k  gk
`(x̂k),

f (y) � L̄ �k � f (x⇤)
ek(x̂k)

 K̂ +
f (x⇤) � f0

ek(x⇤)
,

c`(y) � L̄ �k

ek(x̂k)
 K̂ +

f (x⇤) � f0

ek(x⇤)
.

We thus conclude that

max{ f (y) � f (x⇤), c(y)} 
⇣

K̂ +
f (x⇤) � f0

ek(x⇤)

⌘

ek(x̂k) + L̄ �k.
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According to Property 1 and the fact that y 2 S k,

max{ f (y) � f (x⇤), c(y)} 
⇣

K̂ +
f (x⇤) � f0

ek(x⇤)

⌘

Le �k + L̄ �k. (2.38)

Let us define the variables �w and �y as follows:

�w = max
n⇣

f (w) � f (x⇤)
⌘2
, ck
`(w)2

o

, �y = max
n

f (y) � f (x⇤), c`(y)
o

.

Using (2.34) and (2.38),

�y �w 
⇣

K̂ Le + L̄
⌘

�k �w +
⇣

f (x⇤) � f0

⌘

Le L̄2 �k,

�y �w  A �k �w + B �k.

Defining u = max{�y , �w} and v = min{�y , �w}, it follows that2

v  2 max{A �k,
p

B �k}  2 A �k + 2
p

B �k. (2.39)

If v = �y, then (2.29) is a direct outcome of (2.39); otherwise,

max
n⇣

f (w) � f (x⇤)
⌘

, ck
`(w)

o

 C [
p

�k +
4
p

�k], (2.40)

which establishes that (2.29) is true in this situation as well. Thus, (2.29) is valid for all
2If A, B,C > 0 and A2  A B +C then A  B +

p
C  2 max{B,

p
C}.
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cases. By Property 5, �k  ⇢kx � xkk; thus, (2.28) is obtained from (2.29). ⇤

Remark 7. By Theorem 2 above, as in Theorem 1, we can easily show that, if f0  f (x⇤),

an !-limit point of the datapoints determined by Algorithm 2.4 is a solution of (2.1).

2.4.1 Using an inaccurate estimate of f0

In the previous section, convergence of Algorithm 2.4 is proved when f0  f (x⇤).

It is observed (see §2.6) that, if f0 is not a tight lower bound for the global minimum, the

rate of convergence is reduced. In this subsection, we study the behavior of Algorithm

2.4, when the estimated value of f0 is somewhat larger than the actual minimum of

the function of interest within the feasible domain. It it shown that, upon convergence,

Algorithm 2.4 determines a feasible point z such that f (z)  f0.

Theorem 3. Assuming f0 > f (x⇤), at each step of Algorithm 2.2, there is a point z 2 S k

such that

max{ f (z) � f0, c`(z)}  [L̄ + K̂ Le] ⇢ �k, �k = min
z2S k
kxk � zk. (2.41)

Proof. As in Theorem 2, we first show that

max{ f (y) � f0, c`(y)}  [L̄ + K̂ Le]ky � x̂kk, (2.42)

where y 2 S k minimizes �k = kz� x̂kk. As before, during the iterations of Algorithm 2.4,

there are two possible cases for step k. In the first case, x̂k is found by solving (2.26).
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Similar to the first case in Theorem 2,

pk(y) � pk(x̂k)  L̄�k, f (y) � pk(x̂k)  L̄�k,

gk
`(y) � gk

`(x̂k)  L̄�k, c`(y) � gk
`(x̂k)  L̄ �k,

max{ f (y) � f0, c`(y)}  L̄ �k,

which establishes that (2.42) is true in this case.

In the second case, x̂k is found by solving (2.25), and is a minimizer of sa
k(x). As

in (2.31), using the fact that f0 > f (x⇤), it is easy to show that

max
n

pk(x⇤) � f (x⇤), gk
`(x⇤)

o

 K̂ek(x⇤),

sa(x⇤) =
max{pk(x⇤) � f0, gk

`(x⇤)}
ek(x⇤)

 K̂.

Since x̂k is a global minimizer of sk
a(x), it follows that

sk
a(x̂k)  sk

a(x⇤)  K̂,

max
n

pk(x̂k) � f0, gk
`(x̂k)

o

 K̂ ek(x̂k)  K̂ Le ky � x̂kk, (2.43)

pk(y) � pk(x̂k)  Le �k, gk
`(y) � gk

`(x̂k)  Le �k, (2.44)

pk(y) = f (y), gk
`(y) = c`(y). (2.45)

Using (2.43), (2.44) and (2.45), then (2.42) is satisfied. Finally, using Lemma 2 as done

in Theorem 2, (2.41) is obtained from (2.42). ⇤
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Remark 8. Analogous to Remark 7 for the case with f0  f (x⇤), it follows easily from

Theorem 3 above, for the case with f0 > f (x⇤), that an !-limit point of the datapoints

determined by Algorithm 2.4 is a feasible point of (2.1) with objective function value

less than or equal to f0.

2.5 The case of an empty feasible domain

In the previous section, it was assumed that the feasible domain⌦ of the problem

considered, (2.1), is nonempty. We now consider the behavior of Algorithm 2.2 when

the feasible domain of (2.1) might be empty (and, thus, Assumption 9 might not hold),

though Assumptions 1-2 remain in e↵ect. We will show that Algorithm 2.2 can be used,

in fact, to verify whether or not the feasible domain is empty.

Lemma 4. If the feasible domain of (2.1) is empty, and K > K̂; then,

m
X

`=1

max
n

c`(y), 0
o


m

X

`=1

max
n

c`(x f ), 0
o

+ m (L̄ + K Le) ⇢ min
z2S k
kz � xkk, (2.46)

where x f is the point x 2 Ls that globally minimizes
Pm
`=1 max{c`(x) , 0}, and y is the

point z 2 S k that minimizes kz � x̂kk.

Proof. Take �k
i as a simplex in �k which includes x f . In the proof of Lemma 2, it is
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shown that C`(x f )  0 if K � K̂, where C`(x) is defined in (2.19); thus,

g`(x f ) � K ek(x f )  c`(x f ),
m

X

l=1

max
n

g`(x f ) � K ek(x f ), 0
o


m

X

`=1

max
n

c`(x f ), 0
o

.

(2.47)

By construction, either x̂k is a feasible point of (2.10), or it is a minimizer of
Pm
`=1 max{g`(x)�

K ek(x), 0}. In either case, we have:

m
X

`=1

max
n

g`(x̂k) � K ek(x̂k), 0
o


m

X

`=1

max
n

g`(x f ) � K ek(x f ), 0
o

.

Using (2.47),

m
X

`=1

max
n

g`(x̂k), 0
o

 m K ek(x̂k) +
m

X

`=1

max
n

c`(x f ), 0
o

.

By construction, Le and L̄ are Lipschitz norms for ek(x) and g`(x), respectively. More-

over, ⇢ �k  ky � x̂kk. Using Assumption (9), we have

m
X

`=1

max
n

gk
`(y), 0

o


m

X

`=1

max
n

c`(x f ), 0
o

+ m (L̄ + K Le) ⇢ �k.

Since y 2 S k, it follows that gk
`(y) = c`(y), and thus (2.46) is satisfied. ⇤

Remark 9. By Lemma 4 above (cf. Theorem 1), if Algorithm 2.2 is not terminated

at any step, an !-limit point of the datapoints determined is a global minimizer of

Pm
`=1 max{c`(x), 0} in Ls. If Algorithm 2.2 is terminated at step k, an approximation
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of this point is obtained; this approximation is improved as k is increased.

2.6 Results

Several benchmark optimizations are now considered to study the behaviour of

the algorithms developed in this work. In §2.6.1, Algorithm 2.2 (constant K) and the

(usually, more practical) Algorithm 2.4 (adaptive K) are applied to three test problems,

and the roles of the tuning parameters K (on Algorithm 2.2) and f0 (on Algorithm 2.4)

are studied. In §2.6.2, the performance of Algorithm 2.3, the parallel version of Algo-

rithm 2.2, is considered; note that Algorithm 2.4 may be parallelized in an analogous

fashion. Finally, §2.6.3 compares the performance of Algorithm 2.4 with other modern

derivative-free optimization methods on a representative test problem with nonconvex

constraints, assuming accurate knowledge of f0.

In the test optimizations performed in this section, polyharmonic spline interpo-

lation [45] is used for interpolation of the known values of the objective and constraint

functions. The optimizations are stopped, at iteration k, when the new datapoint, xk, is

within a �desired neighborhood of an existing datapoint (in S k); the present simulations

take �desired = 0.01.

To highlight the unique features of the algorithms developed, the three test opti-

mization problems chosen for this study, described below, have nonconvex equality and

inequality constraints, in certain cases even defining disconnected feasible domains. To

compare the performance of the optimization algorithms in finding a global minimum
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amongst several local minima, the number of function evaluations required in order to

achieve a desired level of convergence is used as the evaluation criterion.

The three test problems considered in this work are:

A) A simple linear objective function, defined over an n-dimensional space, sub-

ject to a nonlinear equality constraint, generated using a Rastrigin function ha(x),

defining an (n � 1)-dimensional nonconvex feasible domain:

min
x2Ls

f (x1, . . . , xn) = xn � 0.1, subject to c(x) = xn � ha(x) = 0, (A.1)

ha(x) =
n � 1

6
+

1
12

n�1
X

i=1

n

3.52 (xi � 0.7)2 � 2 cos
⇣

7⇡ (xi � 0.7)
⌘o

+ 0.1, (A.2)

0  x1, x2, . . . , xn  1. (A.3)

This problem has 4n�1 local minima, including the unique global minimum x⇤ =

[0.7, · · · , 0.7, 0.1]T , with f (x⇤) = 0.

B) A quadratic objective function (given by the distance to the origin), defined over

an n-dimensional space, subject to a nonlinear inequality constraint, again gen-

erated using a Rastrigin function h2(x), defining an n dimensional nonconnected
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feasible domain characterized by 2n distinct “islands” within the search domain:

min
x2Ls

f (x) = xT x � 0.024 n, subject to hb(x)  0, (B.1)

hb(x) =
n

12
+

1
6

n
X

i=1

n

4 (xi � 0.7)2 � 2 cos
⇣

4⇡ (xi � 0.7)
⌘o

, (B.2)

0  x1, x2, . . . , xn  1. (B.3)

This problem has 2n local minima, including the unique global minimum x⇤ =

[0.154969, 0.154969, . . . , 0.154969]T , with f (x⇤) = 0.

C) A quadratic objective function (given by the distance to the origin), defined over

a 2D space, subject to two nonlinear inequality constraints defining a nonconvex

feasible domain with a “petal”-shaped hole, as proposed by Simionescu [46]:

min
x2Ls

f (x1, x2) = x2
1 + x2

2 � 0.64, subject to 0  hc(x)  1 (C.1)

hc(x) = x2
1 + x2

2 �
n

rt + rs cos
h

ns tan�1
⇣ x1

x2

⌘io2
, (C.2)

�1.25  x1, x2  1.25, (C.3)

where rt = 1, rs = 0.2, and ns = 8. This problem has eight global minima,

located at x = [±0.306,±0.739]T and x = [±0.739,±0.306]T , each characterized

by f (x⇤) = 0.
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Table 2.1: Implementation of Algorithms 2.2 and 2.4 on Problems A, B, and C.

Prob. Alg. Parameter Conv. Best point # evals.

A

2.2
K = 1 no f (xk) = 0.08

ha(xk) = �0.02 9

K = 2 yes
f (xk) = 0

ha(xk) = �0.002 16

K = 10 f (xk) = 0.007
ha(xk) = �0.077 30

2.4
f0 = 0.9 > f (x⇤) no f (xk) = 0.287

ha(xk) = 0.005 11

f0 = 0 = f (x⇤) yes
f (xk) = 0.001

ha(xk) = �0.001 18

f0 = �0.02 < f (x⇤) f (xk) = 0.005
ha(xk) = �0.006 25

B

2.2
K = 5 no f (xk) = 0.347

hb(xk) = 0.006 11

K = 12 yes
f (xk) = 0.002

hb(xk) = �0.015 25

K = 15 f (xk) = 0.002
hb(xk) = �0.015 42

2.4
f0 = 0.752 > f (x⇤) no f (xk) = 0.335

hb(xk) = �0.035 18

f0 = 0 = f (x⇤) yes
f (xk) = 0.002

hb(xk) = �0.0203 23

f0 = �0.028 < f (x⇤) f (xk) = �0.003
hb(xk) = 0.032 45

C

2.2
K = 0 no f (xk) = 0.183

hc(xk) = �0.005 7

K = 5 yes
f (xk) = �0.01
hc(xk) = 0.034 16

K = 10 f (xk) = 0.016
hc(xk) = �0.011 30

2.4
f0 = 0.16 > f (x⇤) no f (xk) = 0.152

hc(xk) = �0.133 14

f0 = 0 = f (x⇤) yes
f (xk) = 0.01

hc(xk) = 0.013 19

f0 = �0.04 < f (x⇤) f (xk) = �0.01
hc(xk) = 0.034 40

2.6.1 Performance of Algorithms 2.2 and 2.4
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The performance of Algorithms 2.2 and 2.4 on Problems A, B, and C, in n = 2

dimensions, and the dependence of convergence on the the tuning parameters K and f0

are compared in Table 2.1. These computations are illustrated further in the figures of

this section as follows:

• Figure 2.2 illustrates the behavior of Algorithm 2.2 on Problem A,

• Figure 2.3 illustrates the behavior of Algorithm 2.4 on Problem A,

• Figure 2.4 illustrates the behavior of Algorithm 2.2 on Problem B,

• Figure 2.5 illustrates the behavior of Algorithm 2.4 on Problem B,

• Figure 2.6 illustrates the behavior of Algorithm 2.2 on Problem C, and

• Figure 2.7 illustrates the behavior of Algorithm 2.4 on Problem C.

It is observed in Table 2.1 that Algorithm 2.2 converges to the global minimum

whenever the parameter K is made su�ciently large, and that unnecessarily large values

of K result in additional global exploration over the search domain, slowing conver-

gence. Similarly, it is observed that Algorithm 2.4 converges to the global minimum

whenever the parameter f0  f (x⇤), and that unnecessarily small values of f0 result in

additional global exploration over the search domain, again slowing convergence. In

cases for which f0 > f (x⇤), a feasible point is identified for which objective function at

least as small as f0.
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For Problem A, it is seen in Figures 2.2 and 2.3 that, even though the feasible

domain in this case is a meandering 1D line over the 2D search domain, a (nearly) feasi-

ble point which (nearly) minimizes the objective function is found within a remarkably

small number of function evaluations if K is taken su�ciently large in Algorithm 2.2

(or, if f0 is taken su�ciently small in Algorithm 2.4).



50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) position of datapoints, K=1

0 5 10 15 20 25 30
-0.5

0

0.5

1

0 5 10 15 20 25 30
-1

0

1

(b) f (x) and c(x), K=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) position of datapoints, K=2

0 5 10 15 20 25 30
-0.5

0

0.5

1

0 5 10 15 20 25 30
-1

0

1

(d) f (x) and c(x), K=2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(e) position of datapoints, K=10

0 5 10 15 20 25 30
-0.5

0

0.5

1

0 5 10 15 20 25 30
-1

0

1

(f) f (x) and c(x), K=10

Figure 2.2: Algorithm 2.2 applied to Problem A. The left plots illustrate the position of the
considered datapoints and the feasible domain (dark line). The right plots illustrate the

optimization history, with the optimal value for the objective function f (x⇤) (dashed line).
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Figure 2.3: Algorithm 2.4 applied to Problem A. See caption of Fig. 2.2 for description.
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Figure 2.4: Algorithm 2.2 applied to Problem B. See caption of Fig. 2.2 for description; note
that the islands of feasibility are indicated by the shaded regions in the left plots.
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For Problem B, it is seen in Figures 2.4 and 2.5 that all of the islands of feasibility

are sampled for K su�ciently large (for Algorithm 2.2), or for f0 su�ciently small (for

Algorithm 2.4), and that convergence is assured.
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Figure 2.5: Algorithm 2.4 applied to Problem B. See caption of Fig. 2.4 for description.
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Figure 2.6: Algorithm 2.2 applied to Problem C. See caption of Fig. 2.2 for description; note
that the nonconvex region of feasibility is indicated by the shaded regions in the left plots.
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Figure 2.7: Algorithm 2.4 applied to Problem C. See caption of Fig. 2.6 for description.
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For Problem C, it is seen in Figures 2.6 and 2.7 that at least one of the eight

feasible global minimum points is found if K is taken su�ciently large (or, if f0 is taken

su�ciently small), that convergence is assured, and that additional global exploration is

performed if K is larger than this (or, if f0 is taken smaller than this).

Application of Algorithm 2.4 to Problems A and B in n = 3 dimensions

We now consider the extension of Algorithm 2.4 to Problems A and B in n = 3

and 4D optimization problems. Similar to the 2D cases depicted in Figures 2.2 and 2.3,

we impose an equality constraint such that the feasible domain is imposed by a n � 1

surface, and for the second problem, an inequality constraint to generate a disconnected

feasible domain; the feasible domain in the second problem is derived by an inequality

constraint, so it has several disconnected regions, like multiple islands, inside the search

domain.

2.6.2 Parallel performance using Algorithm 2.3

In Figure 2.9, the parallel performance of Algorithm 2.3, using np = 8 proces-

sors, is compared with the (serial) performance of Algorithm 2.2 on Problem B. The

optimizations were performed with K = 12 in all cases, and were terminated when

minx2S k kxk� xk  0.01. It is seen that the more frequent updates to the interpolations, as

performed by the serial algorithm, do not play a very significant role in the overall num-

ber of function evaluations required by the optimization algorithm in this case. Indeed,

during the first 20 function evaluations, when the search algorithm is focusing mostly



58

(a) Problem A (b) Problem B

(c) Problem A (d) Problem B

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100
-2

0

2

(e) f (xk) and c(xk) versus k in Problem A.

0 20 40 60 80 100

0

1

2

3

0 20 40 60 80 100

-2

0

2

(f) f (xk) and c(xk) versus k in Problem B.

Figure 2.8: Illustration of Algorithm 2.4 on the n = 3 cases of Problems A and B.
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on global exploration, the function evaluations are e↵ectively the same in the serial and

parallel cases. In the later iterations, when the algorithm is focusing mostly on local re-

finement of the solution, the intermediate updates of the interpolant that are performed

in the serial case do somewhat improve the rate of convergence when considered per

function evaluation. However, when considering the clock time required, assuming a

parallel computer architecture is available, the parallel algorithm is clearly superior.

In particular, assuming (as elsewhere in this paper) that the computational cost

of the optimization problem considered is dominated by the cost required to perform

the individual objective and constraint function evaluations, as shown in Figure 2.9,

the parallel case (Algorithm 2.3) with np = 8 processors can converge to the global

minimum in the clock time it takes to run only 5 function evaluations (because many

functions evaluations may be performed in parallel), whereas the serial case (Algorithm

2.2) requires the clock time it takes to to run 30 function evaluations (one after the other).

Thus, it is seen that the parallel implementation is able to reduce the clock time of the

optimization process significantly when a parallel computer architecture is available,

even though the parallel algorithm will generally perform more function evaluations.

2.6.3 Comparison with other Derivative-free methods

We now briefly compare the new optimization algorithm developed here with

some other leading derivative-free optimization schemes on the di�cult class of opti-

mization problems considered in this work.

The first algorithm considered is the pattern search method called Mesh Adaptive
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(d) f (xk) and c(xk) versus k (parallel case).

Figure 2.9: Comparison of (serial) Algorithm 2.2 and (parallel) Algorithm 2.9 on Problem B.

Direct Search (MADS), as proposed in [25]. We apply the e�cient implementation of

MADS in the NOMAD software package [47]. The NOMAD solver (implementing

MADS with 2n neighbors) is a local derivative-free optimization algorithm that can

solve di�cult non-di↵erentiable optimization problems.

The second method considered is the Surrogate Management Framework (SMF)

proposed by [29]. SMF is one of the most popular derivative-free, globally-convergent,

computationally-e�cient optimization algorithms available today. The SMF algorithm
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has two main steps, “search” and “poll”. SMF is a hybrid method that combines a

pattern search with a surrogate-based optimization algorithm, and switches back and

forth between (local) polling and (global) searching steps. The surrogate used by SMF is

usually developed using a Kriging interpolation method. In practice, the optimization is

usually initialized in the SMF approach using an initial set of datapoints generated with

a Latin Hypercube Sampling (LHS) approach [29, 48, 49], which generally provides a

well-distributed set of datapoints in a parameter space with box constraints, with each

input variable fairly well distributed over its feasible range. The search step then uses

(and updates) a Kriging-based surrogate to look for reduced objective function values

inside the feasible domain, which is discretized onto a Cartesian grid that is successively

refined as the iterations proceed. The search continues until it fails to return a new point

on the current grid with a reduced value of the objective function, at which point a

pattern search (e.g., that in MADS) is used to poll the neighborhood around the current

best point. If the poll step succeeds in finding a point with a reduced objective function

value, then the surrogate model is updated, and another search is performed; if it does

not, the grid is refined and the process repeated. The implementation of SMF that is used

in the present work is that used in [50], and was developed by our group in collaboration

with Prof. Alison Marsden.

The third method considered in this section, for comparison purposes, is the �-

DOGS(C) algorithm reported previously by our group (see [1]). �-DOGS(C) is a highly

e�cient, provably convergent, nonlinearly-constrained Delaunay-based optimization al-

gorithm, which in many cases compares favorably with SMF in terms of computational
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e�ciency (see [1]). Like the present algorithm, which is also in the �-DOGS family,

�-DOGS(C) leverages a synthetic uncertainty function built on the framework of a De-

launay triangulation of existing datapoints, together with an interpolation of all existing

datapoints using any desired well-behaved interpolation strategy (many of our numerical

experiments thus far have used polyharmonic spline interpolation).

The di�cult class of problems considered in the present work is characterized by

expensive constraint functions c`(x), as well as expensive objective functions f (x); both

c`(x) and f (x) are probed on the fly as the iterations proceed, and the c`(x) together ulti-

mately define a nonconvex (possibly even disconnected) feasible domain ⌦. The global

optimization algorithm developed in two di↵erent variants (Algorithm 2.2 with con-

stant K, and Algorithm 2.4 with adaptive K) in the present work, dubbed �-DOGS(⌦),

is designed specifically for problems of this class. In contrast, the three comparison

methods described above [MADS, SMF, and �-DOGS(C)] were each designed to mini-

mize a single nonconvex function inside a known (a priori) convex feasible domain. We

thus define the following new objective function in order to apply these three existing

schemes to the di�cult class of problems considered in this work:

f̃ (x) = max
n

f (x) � f0, max
`=1,...,m

{c`(x), 0}
o

. (2.51)

Problem B is well suited to characterize and compare the four di↵erent schemes con-

sidered here [that is, to compare MADS, SMF, and �-DOGS(C), with the objective

function as defined in (2.51), with �-DOGS(⌦)] on this di�cult class of problems. In
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all cases, a stopping criteria of �desired = 0.01 is applied [see Remark 3]. Note that many

derivative-free optimization methods, like MADS, in fact do not guarantee convergence

to the global minimum of the problem considered. Further, if the solution of the prob-

lem considered is on the boundary of the feasibility, as in Problem B, the task of finding

a global solution is especially di�cult.

Comparison of the five plots in Figure 2.10, and the corresponding data sum-

marized in Table 2.2, indicates that the number of function evaluations is minimized in

this (typical) example using Algorithm 2.4, which accurately locates the feasible global

minimizer in this case with only 23 function evaluations.

The SMF method (Figure 2.10c) explores the search domain globally, and lo-

cates the global minimizer (albeit with significantly reduced precision) with 48 function

evaluations. Note that more than half of the function evaluations are performed in the

polling steps, in order to guarantee convergence. Also note that the datapoints tend to

accumulate in the vicinity of the feasible global minimizer as the iterations proceed,

thereby causing the Kriging interpolation model to become numerically ill-conditioned.

Due to this ill-conditioning of the Kriging method itself, achieving more accurate con-

vergence using Kriging-based SMF proves to be quite di�cult.

The �-DOGS(C) algorithm (Figure 2.10d) fails to converge to the global min-

imizer on this problem; since the objective function (2.51) is non-di↵erentiable, this

method is in fact not guaranteed to converge on this problem. Note, however, that this

method does perform global exploration during the search, and successfully locates a

feasible point near the boundary of feasibility, which is fairly near to the global mini-
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(d) �-DOGS (C).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Algorithm 2.4

Figure 2.10: Problem B: comparison of MADS (via NOMAD), SMF, and �-DOGS(C) with
the adaptive K variant of the �-DOGS(⌦) algorithm developed and analyzed in this work, as

presented in Algorithm 2.4.
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Table 2.2: Performance comparison on Problem B with n = 2.

Algorithm Initial point(s) Converged f (z) c(z) # of fn. evals.
MADS {1, 0} no 0.328 �0.011 50
MADS {0.4, 0.3} yes �0.003 0.031 31
SMF 3n + 3 LHS points yes 0.01 �0.074 48

�-DOGS(C) n + 1 vertices no 0.047 �0.147 24
Algorithm 2.4 2n vertices yes 0.002 �0.020 23

mizer, with only 24 function evaluations. By relaxing the stopping criterion �desired =

0.01 mentioned previously, it was found that this method would eventually locate the

global minimizer using about 40 function evaluations.

The MADS algorithm (Figure 2.10a-b) converges only locally. If a good initial

guess is provided (Figure 2.10b), the global minimizer is located, to about the same

accuracy as Algorithm 2.4, in 31 function evaluations. If a good initial guess is not

provided (Figure 2.10a), the global minimizer is not located by the time the stopping

criteria of �desired = 0.01 is reached (after 50 function evaluations).

2.7 Conclusions

This chapter presents a new Delaunay-based derivative-free optimization ap-

proach, dubbed �-DOGS(⌦), of the same general family as introduced in [1, 37]. The

approach developed here is designed specifically for the optimization of computation-

ally expensive nonconvex functions within a nonconvex (possibly lower-dimensional,

or even disconnected) feasible domain, which is itself defined by computationally ex-

pensive constraint functions which are explored as the iterations proceed. Two main
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variants of �-DOGS(⌦) have been presented.

Algorithm 2.2 uses any well-behaved interpolation strategy, such as polyhar-

monic splines, for both the objective function f (x) and the constraint functions c`(x), to-

gether with a synthetic piecewise-quadratic uncertainty function built on the framework

of a Delaunay triangulation. A search function defined by comparing simple functions

of the uncertainty model and the interpolants (of both the objective and the constraint

functions) is minimized within the search domain at each iteration, and new objective

and constraint function computations are performed at the optimized point, thereby re-

fining the surrogate models of the objective and constraint functions at each iteration

until convergence is achieved. Convergence to the feasible global minimum is proved

mathematically under reasonable technical conditions on the smoothness of the objec-

tive and constraint functions.

Algorithm 2.4 modifies Algorithm 2.2 to use an estimate of the lower bound

of the function in order to maximally accelerate local refinement while still ensuring

convergence to the global minimizer.

We have also proposed, in Algorithm 2.3, a framework to e�ciently parallelize

on multiple processors the objective and constraint function evaluations required by

Algorithm 2.2 at each step in the optimization process; this parallelization approach

extends in an obvious fashion to the parallelization of Algorithm 2.4.

There is an inherent “curse of dimensionality” associated with derivative-free op-

timization problems. High-dimensional derivative-free optimization problems are gen-

erally computationally intractable with any method; for high-dimensional optimization



67

problems, derivative-based methods should always be preferred.

The main limitation of the derivative-free optimization algorithms developed in

the present work, and the related optimization algorithms in [1, 37], is the memory re-

quirements of the Delaunay triangulation algorithms upon which this body of work is

based. The required Delaunay triangulations makes the “curse of dimensionality” asso-

ciated with this family of optimization algorithms even more pronounced than it might

be otherwise. Constructing Delaunay triangulations in problems higher than about ten

dimensions is generally computationally intractable. The focus in this body of work

on the use of Delaunay triangulations, which are generally the most “regular” triangu-

lations possible for a given distribution of datapoints, provides an essential ingredient

in our proofs of convergence. Regardless, for practical applications, the notion of using

triangulations that are “nearly” Delaunay might be helpful in future work, for practically

extending the algorithms developed here to somewhat higher-dimensional problems.

Though the test problems considered in this paper illustrate well the key fea-

tures of the new optimization algorithms presented here, in future work we will test

these optimization algorithms on additional benchmark and application-focused prob-

lems. We will also consider di↵erent interpolation approaches, as alternatives to the

standard polyharmonic spline interpolation approach used here.

Problems in which the feasibility at point x is only computable in a binary fash-

ion (feasible or infeasible), rather than given by the union of inequalities based on com-

putable (and, smooth) constraint functions c`(x), will also be considered. Problems in

which both the objective and constraint function evaluations are inaccurate will also be
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considered.

Acknowledgements

Chapter 2 contains material that has been submitted for publication and is under

review. S. R. Alimo, P. Beyhaghi, T. R. Bewley, “Deluanay-based optimization algo-

rithm via global surrogates: non convex constraints ", Journal of Global Optimization.

The dissertation author was the primary researcher and author of this material.



Chapter 3

Design of IMEXRK time integration

schemes via Delaunay-based

derivative-free optimization with

nonconvex constraints and grid-based

acceleration

Be happy for this moment. This moment is your life.—Omar Khayyam

69



70

3.1 Introduction

Over the past 30 years, the Direct Numerical Simulation (DNS) and Large Eddy

Simulation (LES) of turbulent flows have been based on a wide variety of di↵erent

strategies for discretization of the spatial derivatives of the governing Navier-Stokes

equation, including pseudospectral representations, finite di↵erences, Padé methods, fi-

nite elements, spectral elements, and wavelet-based approaches. Surprisingly, however,

much less attention has been applied to the exploration of suitable time-marching ap-

proaches for such problems. Early work, in [51, 52], combined an implicit second-order

Crank-Nicolson (CN) scheme for the time integration of the sti↵ terms with an explicit

second-order Adams-Bashforth (AB2) scheme for the time integration of the non-sti↵

terms; this implicit/explicit (IMEX) combination is commonly called a CNAB scheme.

This approach was later refined in [53], in which the explicit component was replaced

by the third-order low-storage Runge-Kutta-Wray (RKW3) scheme [54]; this IMEX

combination, dubbed CN/RKW3, is an example of a broad class of time-marching

schemes commonly known as IMEXRK schemes. The CN/RKW3 scheme is only

second-order accurate overall, and has an implicit component which is only A-stable.

The CN/RKW3 scheme was improved somewhat in [55], in which a scheme dubbed

here as IMEXRKSMR2 was introduced. This scheme applies the same three-step incre-

mental formulation of CN/RKW3, with a modified implicit component which improves

its accuracy and stability properties. Though the implicit component of the resulting

method was made strongly A stable by this e↵ort, it is not possible, as noted by [55], to
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achieve full third-order accuracy with a scheme of this specific form.

The A-stable CN/RKW3 and strongly A-stable IMEXRKSMR2 schemes men-

tioned above, both of which are second-order accurate, facilitate low-storage implemen-

tations in which only two or three “registers” per system state in the spatially-discretized

system need to be stored in memory in order to march the system considered in time.

These schemes have thus dominated the turbulence simulation literature since their in-

troduction long ago.

Recently, in [4], it was shown that much can be gained by either relaxing the low-

storage requirement, allowing an additional register to be used by the time-marching

algorithm, or increasing the number of stages used to perform the time advancement

over each timestep. In particular, by generalizing and extending the incremental for-

mulation used by CN/RKW3 and IMEXRKSMR2 to a four-step scheme, it was pos-

sible to achieve full-third order accuracy and better stability properties for both the

implicit and the explicit parts of the scheme. The resulting scheme was obtained by

imposing the accuracy constraints in a manner that reduced the parameter space to be

searched to a three-dimensional bounded domain. An extensive and time-consuming

brute-force search was then performed over this bounded 3D domain in order to opti-

mize the scheme’s fourth-order truncation error and stability properties.

As mentioned in the abstract, the optimization of the parameters of IMEXRK

schemes involves

1. a complicated set of nonconvex constraints, which are imposed to achieve the de-
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sired order of accuracy and a handful of important stability properties, and which

leads to a challenging disconnected feasible domain, and

2. a highly nonconvex objective function, which represents a compromise between

a few di↵erent measures characterizing the leading-order error and the potential

stability shortcomings of the resulting scheme.

This structure makes the computation of new IMEXRK schemes a challenging practical

test problem for global optimization algorithms. Indeed, most available optimization

algorithms are ill-suited for problems of this structure. As a result, these problems are

generally approached with expensive direct search methods [56].

The present work shows that such tedious and time-consuming manual searches

can be automated and remarkably accelerated leveraging appropriately-designed, globally-

convergent optimization algorithms.

Formulating the challenge of finding appropriate coe�cients for a four-step low-

storage incremental Runge-Kutta scheme as an optimization problem leads to a di�-

cult nonlinear programming problem with multiple local minima and several nonlinear

constraints. Derivative-based optimization methods applied to such problems often get

stalled at local minima, failing to explore parameter space thoroughly enough to locate

the global minimum [57].

Derivative-free optimization methods, on the other hand, are often designed from

the outset to achieve global convergence. Unfortunately, it is di�cult with many such

methods to handle general nonlinear constraints. Although several e↵orts have appeared
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in the literature to handle linear and convex constraints within the surrogate-based [1, 37]

and pattern-search [26] frameworks, to the best of our knowledge, only the algorithm

in [58] guarantees global convergence under the assumptions of smooth nonconvex con-

straints and a smooth nonconvex cost function. For this reason, the algorithm in [58] is

the starting point for the present chapter.

Delaunay-based optimization algorithms [1, 37, 58] represent a new, computa-

tionally e�cient, highly extensible class of derivative-free optimization methods. They

have been developed to address a range of practical nonconvex optimization problems

whose function evaluations are computationally (or, experimentally) expensive. These

new algorithms, which are provably globally convergent under the appropriate assump-

tions, are response surface methods which iteratively minimize metrics based on an

interpolation of existing datapoints and a synthetic model of the uncertainty of this in-

terpolant, which itself is built on the framework of a Delaunay triangulation over the

existing datapoints. Unlike other response surface methods, these algorithms are de-

signed to leverage any well-behaved interpolation strategy.

There are four main algorithms developed in this class thus far, which address

a wide range of practical optimization problems. The first [37], dubbed �-DOGS, ef-

ficiently minimizes expensive objective functions inside linearly constrained feasible

domains. The second [1] extends �-DOGS to handle e�ciently more general con-

vex search domains. The third [58] extends �-DOGS to nonconvex and numerically

expensive constraint functions. The fourth [59] incorporates a grid into �-DOGS to

achieve faster convergence, primarily by performing fewer function evaluations along
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the boundary of feasibility.

A key limitation of the algorithm developed in [58], dubbed �-DOGS(⌦), is the

overexploration over the boundary of the search domain, Ls, that might otherwise be

unnecessary. This characteristic is caused in [58] by the poor behaviour of the generated

uncertainty function near the boundary of search domain. This behaviour is exacerbated

when the objective function itself has irregular behavior close to the boundary of Ls,

which is especially common in situations in which the objective function value on the

boundary is close to the minimum.

To address this limitation, we introduce in this chapter a new variant of �-DOGS

that significantly accelerates the algorithm developed in [58], which optimizes noncon-

vex and computationally expensive functions within nonconvex feasible domains, by

incorporating a Cartesian grid, as motivated by [59], to significantly reduce the number

of function evaluations performed on the boundary of the search domain.

This chapter is organized as follows. Section 3.2 describes our new (accelerated)

optimization algorithm for solving nonconvex, computationally expensive optimization

problems within nonconvex feasible domains. Section 3.3 analyzes the convergence of

this algorithm. Section 3.4 outlines the accuracy constraints that need to be satisfied

for an incremental IMEXRK scheme to be third-order accurate; stability properties and

other metrics are also introduced. Section 3.5 provides a detailed description of how

the new optimization algorithm is used to design the new IMEXRK scheme. Section

3.6 presents numerical results, demonstrating the third-order accuracy of the IMEXRK

scheme determined. Conclusions and future directions are discussed in Section 3.7.
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3.2 The Optimization Algorithm

In this section, we modify �-DOGS(⌦) to obtain faster convergence. The algo-

rithm developed is a globally-convergent derivative-free optimization method designed

to solve the following problem:

minimize f (x) with x 2 ⌦ := Lc \ Ls ✓ Rn where

Lc = {x|c`(x)  0 , for ` = 1, · · · ,m}, Ls = {x|a  x  b}, (3.1)

where both f (x) and c`(x) for ` = 1, · · · ,m are twice di↵erentiable and possibly non-

convex functions which map Rn ! R within the search domain Ls.

The optimization problem (3.1) has two sets of constraints:

a. a set of 2 n bound constraints that characterize the n-dimensional box domain

Ls = {x|a  x  b}, dubbed the search domain, and

b. a set of m possibly nonlinear inequality constraints c`(x)  0 that together char-

acterize the possibly nonconvex domain Lc = {x|c`(x)  0 , for ` = 1, · · · ,m},

designated the constraint domain.

The feasible domain, ⌦, is the intersection of these two domains, ⌦ := Ls \ Lc.

3.2.1 Preliminary definitions

Let us first present some preliminary definitions.
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Definition 6. Given S as a set of points that includes the vertices of domain Ls, and

� as a Delaunay triangulation of S , we define the local uncertainty function, ei(x), for

each simplex �i 2 �

ei(x) = r2
i � kx � Zik2, (3.2)

where ri and Zi are the circumradius and circumcenter of �i. The global uncertainty

function, e(x), is

e(x) = ei(x), for all x 2 �i. (3.3)

The uncertainty function (3.3) has the following properties1:

1. For all x 2 Ls, e(x) � 0. For all x 2 S , e(x) = 0.

2. The piecewise quadratic uncertainty function (3.3) is continuous and Lipschitz.

3. For any x 2 Ls, the uncertainty function e(x) is equal to the maximum of the local

uncertainty functions ei(x):

e(x) = max
i

ei(x) for all x 2 Ls. (3.4)

In this work, we assume that there is a known target value f0 that is achievable

(that is, 9 x 2 Ls such that f (x)  f0 and c`(x)  0 for all ` = 1, . . . ,m). The c`(x)

are nonlinear, computationally expensive constraint functions. Note that the present

algorithm can be easily extended to problems for which a target value and constraint
1Proofs of these properties are provided in §3 of [37].
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violation thresholds are not available, as in Algorithm 1 of [58].

Definition 7. Take S k
E as the set of evaluated points at iteration k, which includes the ver-

tices of domain Ls, at which the objective and constraint functions f (x), c1(x), · · · , cm(x)

have been evaluated. Define pk(x), gk
1(x), · · · , gk

m(x) as smooth interpolations of the

objective and constraint functions, respectively, through all points in S k
E. Define

Fk(x) = max
h

pk(x) � f0, gk
1(x), · · · , gk

m(x)
i

. (3.5)

The continuous search function is defined, 8x 2 Ls such that x < S E, as

sk
c(x) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Fk(x)/ek(x), if Fk(x) � 0,

Fk(x), otherwise.

(3.6)

The discrete search function is defined, 8x 2 Ls such that x < S E, as

sk
d(x) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Fk(x)/Dist{x,Sk
E}, if Fk(x) � 0,

Fk(x), otherwise,

(3.7)

where Dist{x, S k
E} is defined as the minimum distance between the point x and the set of

points in S k
E:

Dis{x, S k
E} = min{kx � zk | z 2 S k

E}.
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3.2.2 Summary of the original �-DOGS(⌦) algorithm

Delaunay-based Derivative-free Optimization via Global Surrogates (�-DOGS)

is a generalizable family of practical, e�cient, and provably-convergent derivative-free

algorithms designed for a range of nonconvex optimization problems with expensive

function evaluations [1, 37]. A new variant in this family of algorithms, dubbed �-

DOGS(⌦), was developed in [58] to solve optimization problems with both nonconvex

and computationally expensive objective functions and nonconvex and computationally

expensive constraint functions, of the form (3.1). The feasible domain⌦ defined in such

a problem may be nonconvex; indeed, it may even be disconnected.

In the original �-DOGS(⌦) algorithm, approximations pk(x) and gk
`(x) of, re-

spectively, the objective function f (x) and the constraint functions c`(x) are developed

at each iteration k, based on the data obtained thus far, and refined as the iterations pro-

ceed. No prior knowledge of the constraint functions is assumed. The solution of (3.1)

[that is, minimization of f (x) subject to c`(x)  0 and x 2 Ls] is found iteratively, lever-

aging at each iteration k the continuous search function sk
c(x) defined in (3.6), which is

based upon these approximations, the uncertainty function ek(x) defined in (3.3) [which

for any x and k quantifies our confidence in these approximations], and a target value f0

for the objective function f (x). The algorithm is initialized by evaluating f (x) and c`(x)

at all vertices of the search domain Ls.

The essential steps of �-DOGS(⌦) are summarized in Algorithm 3.1. Note that

any smooth interpolation strategy can be used in Algorithm 3.1; a common choice for
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Algorithm 3.1 �-DOGS(⌦), designed for minimization of (3.1), from [58].

1: Set k = 0. Take S 0 as the initial set of datapoints, which are the vertices of the
search domain Ls. Evaluate f (x) and c`(x) for all ` 2 {1, · · · ,m} at S 0.

2: Calculate interpolating functions gk
`(x) for the evaluations of c`(x), and p(x) for the

evaluations of f (x), over all points in S k (see §4 of [58] for details).
3: Perform a Delaunay triangulation, �k, over all points in S k.
4: For each simplex �k

j of the triangulation �k, calculate zk
j and rk

j as the circumcenter
and circumradius of �k

j.
5: Noting the definitions of ek(x) in (3.3) and sk

c(x) in (3.6), determine xk as a global
minimizer as follows

xk = minx2Ls sk
c(x) subject to x 2 ⌦. (3.8)

6: Evaluate f (xk) and c`(xk), set S k+1 = S k [ {xk}, and repeat from step 2 until conver-
gence.

the surrogate models gk
`(x) and p(x) is polyharmonic-spline interpolation [9, 60, 37].

3.2.3 �-DOGS(⌦Z): implementation of Cartesian grids to acceler-

ate �-DOGS(⌦)

We now present the modified optimization algorithm proposed in the present

work. One of the drawbacks of �-DOGS(⌦), as summarized in Algorithm 3.1, is its

overexploration of the boundaries of feasibility; we thus now incorporate a grid to im-

prove its convergence properties. The new algorithm, dubbed �-DOGS(⌦Z), does not

require the cumbersome feasible boundary constraint projections of [58, 59], and results

in significantly fewer function evaluations at the boundary of the search domain than

�-DOGS(⌦).

Moreover, note that the initialization cost of �-DOGS(⌦) is function evaluations

at all 2n vertices of Ls. This initialization cost grows rapidly as dimension n of the
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problem increases. The new algorithm, �-DOGS(⌦Z), only requires initial function

evaluations at n + 1 points.

The following three key modifications to �-DOGS(⌦), summarized in Algo-

rithm 3.1, are performed to obtain �-DOGS(⌦Z), as summarized in Algorithm 3.2:

1. All the datapoints in Algorithm 3.2 are restricted to lie on a Cartesian grid, which

is occasionally refined as the algorithm proceeds.

2. At each iteration, two di↵erent sets of points are considered, S E and S U . Function

evaluations are available only for the points in S E; the points in S U , dubbed sup-

port points, are used only to regularize the triangulation of the domain, and the

uncertainty function which is built upon this triangulation.

3. Two di↵erent search functions, sc(x) and sd(x), are considered at each iteration.

The continuous search function, sc(x), is designed is minimized over the entire

search domain Ls. The discrete search function, sd(x), is minimized only over the

points in S U .

It is shown in [1, 58, 59] that the irregular behavior of the uncertainty function

e(x) close to the boundary of feasibility in many problems causes many additional func-

tion evaluations on the boundaries, which can significantly reduce the convergence rate

of �-DOGS(⌦). The new �-DOGS(⌦Z) algorithm aims to have far fewer datapoints

accumulate on the boundary of the search domain. To achieve this, as mentioned above,

Algorithm 3.2 makes use of support points, which are used to eliminate function evalu-

ations at points where they are not truly needed. The set of datapoints at each iteration,
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Algorithm 3.2 �-DOGS(⌦Z), designed for (grid-based) accelerated minimization of (3.1).

1: Set k = 0 and initialize ` = 3. Take the initial set of support points S 0
U as all 2n

vertices of the feasible domain ⌦. Choose at least n + 1 points on the initial grid,
n + 1 of which are a�nely independent, put them in S 0

E, and calculate f (x) at each
of these n + 1 points.

2: Calculate (or, for k > 0, update) interpolating functions pk(x) and gk
`(x) for f (x) and

c`(x) over the set of points in S k
E.

3: Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points
in S k = S k

U [ S k
E, and generate the ek(x).

4: Find xk as the minimizer of sk
c(x) (see Definition (3.6)) in Ls, and take yk as its

quantization onto the grid L`.
5: Find wk as the minimizer of sk

d(x) (see Definition (3.7)) in S k
U .

6: If the pair (xk, S k) is not activated, then take S k+1
U = S k

U [ {yk}, increment k, and
repeat from 2.

7: If sk
d(wk)  sk

d(xk), then take S k+1
U = S k

U � {wk}, S k+1
E = S k

E [ {wk}, calculate f (wk)
and c`(wk), and increment k; if f (wk) > f0 or c`(yk) > 0, repeat from 2, otherwise
halt.

8: If yk < S k
E, then take S k+1

E = S k
E [ {yk}, calculate f (yk), and increment k; if f (yk) > f0

or c`(yk) > 0, repeat from 2, otherwise halt.
9: Increment both ` and k, and repeat from 2.

S k, is thus divided into evaluated points S k
E and support points S k

U .

Definition 8. The Cartesian grid of level ` for the search domain Ls = {x|a  x  b},

denoted as L`, is:

L` =
⇢

x|x = a +
1
N

(b � a) ⌦ z, z 2 {0, 1, . . . ,N}
�

, where N = 2`.

A quantization of any point x 2 Ls on L` is a point xq with the minimum distance to x

from the L` grid. See the appendix for a review of essential elements of the Cartesian

grid as used in this work.

Algorithm 3.2 aims to have fewer datapoints accumulate on the boundary of

the search domain. It is shown in [1, 58, 59] that as the irregular behavior of the
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uncertainty function e(x) close to the boundary of feasibility causes many additional

function evaluations on the boundaries which can ultimately result in slow convergence.

To address this issue Algorithm 3.2, �-DOGS(⌦Z), introduces the notion of

“support points”, which are points defined and used to eliminate constraint and objective

function evaluations on the boundary of the search domain, where these functions are

sometimes ill-behaved, while restricting all datapoints to like on a Cartesian grid that is

successively refined as convergence is approached.

As a result the datapoints S k are divided into evaluated points S k
E and support

points S k
U . That way, �-DOGS(⌦Z) explores the interior of feasible domain more ex-

tensively using both continuous and discrete search functions, and the convergence is

achieved with fewer function evaluations. It is of note that this issue is more visible

when the objective functions themselves have irregular behavior on the boundaries, such

as the application of interest in this work.

Consider xk as the minimizer of the continuous search function sk
c(x) in Ls, yk as

the quantization of xk onto the grid L`, and wk as the minimizer of the discrete search

function sk
d(x) in S k

U . There are four possible cases at each iteration of Algorithm 3.2,

that are corresponding to four of the numbered steps of this algorithm:

(6) The pair (xk, S k) is not activated. This is called the inactivated step: yk is simply

added to S k
U , and no function evaluation is performed. (Note that the other three

steps below, in contrast, are said to be activated.)

(7) The pair (xk, S k) is activated and sk
d(wk) < sk

d(xk). This is called the replacing step:



83

x1

w1

x2 w2

x4

w4

x3

w3

(a) Activated steps. Respective nearest points to
x1:4 are w1:4, on the same set of binding

constraints Aa(xi) ✓ Aa(wi).

x5 w5

x6

w6

(b) Inactivated steps. Respective nearest points
to x5:6 are w5:6, not on the same set of binding

constraints Aa(xi) * Aa(wi).

Figure 3.1: Activated and inactivated steps. Squares: S k
E , stars: S k

U .

wk is removed from S k
U , added to S k

E, and f (wk) calculated.

(8) The pair (xk, S k) is activated, sk
d(xk)  sk

d(wk), and yk < S k
E. This is called the

improving step: the new point yk is added to S k
E, and f (yk) is calculated.
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(9) The pair (xk, S k) is activated, sk
d(xk)  sk

d(wk), and yk 2 S k
E. This is called the

refinement step: L` is refined, and the sets S k
E and S k

U are unchanged.

As the algorithm proceeds at a given iteration k of Algorithm 3.2, only one of the above

four cases applies, and the corresponding step is taken. Replacing and improving and

iterations (in which the replacing and improving steps are taken, respectively) are rep-

resented in Fig. 3.1 (note that, in 1D, all iterations are activated).

We presented a new algorithm derived from �-DOGS(⌦) which, by using Carte-

sian grids and support points, performs fewer function evaluations at the boundaries of

the search domain, and thus has a lower computational cost. The question of whether or

not it converges e�ciently remains, and will be tackled in the next section.

As the algorithm proceeds at a given iteration k of Algorithm 3.2, only one of

the above four cases applies, and the corresponding step is taken. Replacing and im-

proving iterations (in which the replacing and improving steps are taken, respectively)

are illustrated in Fig. 3.2; note that, in 1D, all iterations are activated, as the vertices of

the domain are included in S k
U .

3.3 Convergence analysis of Algorithm 3.2

We analyze the convergence of Algorithm 3.2 under the following assumptions:

Assumption 4. The objective function f (x), the constraint functions c`(x), and the in-

terpolating functions pk(x) and gk
`(x) are all Lipschitz, with Lipschitz constant L̂.
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(a) c1(x) (solid), c2(x) (dashed), and
max{c1(x), c2(x)} (blue)

(b) c1(x) (solid), c2(x) (dashed), and
max{c1(x), c2(x)} (blue)

(c) g1(x) (solid), g2(x) (dashed), and
max{g1(x), g2(x)} (blue)

(d) g1(x) (solid), g2(x) (dashed), and
max{g1(x), g2(x)} (blue)

(e) sc(x) (solid) and sd(x) (black squares) (f) sc(x) (solid) and sd(x) (black squares)

Figure 3.2: Improving (left) and replacing (right) iterations of Algorithm 3.2. (c,d)
Approximations g1(x) of c1(x), and g2(x) of c2(x). Stars: S U . Dots, squares: S E . (e,f)

Continuous and discrete search functions. Red dots: global minimizer xk.
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Assumption 5. The objective function f (x) and constraint functions c`(x) are twice

di↵erentiable, and

r2 f (x) + K̂I > 0, �r2 f (x) + K̂I > 0, (3.9)

r2c`(x) + K̂I > 0, �r2c`(x) + K̂I > 0 81  `  m, (3.10)

r2 pk(x) + K̂I > 0, �r2 pk(x) + K̂I > 0 8k > 0 (3.11)

r2ck
`(x) + K̂I > 0, �r2ck

`(x) + K̂I > 0 81  `  m, and 8k > 0. (3.12)

Assumption 6. A point x 2 Ls exists such that both f (x)  f0 and c`(x)  0. This means

that the target value f0 is achievable within the feasible domain ⌦, though a location x

that achieves this target value is, at least initially, unknown.

Lemma 5. There are infinite number of mesh decreasing steps as Algorithm 3.2 pro-

ceeds.

Proof. Lemma 5 is established in Theorem 1 of [59]. ⇤

Lemma 6. Consider x⇤ as a global minimizer of f (x) in ⌦. Then, for each step of

Algorithm 3.2,

min
n sk

c(x⇤)
K̂
,min

z2S k
U

{
sk

d(z)

L̂
}
o

 2. (3.13)

Proof. Lemma 6 is analogous to Lemma 6 of [59]. ⇤

Another result which is required to establish convergence, which is an extension
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of Lemma 2 in [59], is now presented.

Lemma 7. Consider J(x) and G`(x), for 1  `  m, as twice di↵erentiable such that,

for some constant K1, r2J(x) � 2 K1I  0 and r2G`(x) � 2 K1 I  0. Also, J(x) �G`(x)

and Gi(x) �G j(x) are Lipschitz functions with Lipschitz constant L1. Moreover, x⇤ 2 ⌦

is a KKT point of the following optimization problem:

min
x2Ls

J(x) subject to G`(x)  0 ` = {1, . . . ,m}. (3.14)

Then, for each x 2 Ls such that Aa(x⇤) ✓ Aa(x), we have:

max
n

J(x) � J(x⇤),max
`
{G`(x)}

o

 K1kx � x⇤k2 + L1 kx � x⇤k. (3.15)

Proof. Since x⇤ is a KKT point in ⌦, it is a stationary point of the following function

with respect to x:

T (x) =
J(x) +

Pm
`=1 �`G`(x)

1 +
Pm
`=1 �`

, (3.16)

where �` > 0 are the Lagrange multipliers. By construction, r2T (x) � 2 K1 I  0;

therefore, according to Lemma 2 in [59], the T (x) can be expressed as:

T (x) � T (x⇤)  K1kx � x⇤k2. (3.17)
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On the other hand, define F(x) as follows:

F(x) = J(x) � T (x) =
J(x) �Pm

`=1 �`G`(x)
1 +

Pm
`=1 �`

It is easy to observe that F(x) is Lipschitz with constant L1; therefore,

|F(x) � F(x⇤)|  L1kx � x⇤k, (3.18)

|J(x) � J(x⇤)|  K1kx � x⇤k2 + L1kx � x⇤k. (3.19)

Similarly, we can show above equation for G`(x) for 1  `  m. ⇤

Theorem 4. Consider k as a mesh refinement step of Algorithm 3.2. Then,

min
z2S k

E

n

max{ f (z) � f0, max
1`m

c`(z)}
o

 max{3 L̂ �k, 6 K̂ �2
k}, (3.20)

Recall that z is the quantization xk on a grid of level `k, and �k is the maximum quanti-

zation error on a grid of level `k (see Definition 8).

Proof. Theorem 4 is analogous to Theorem 1 of [59] which is established similarly

using Lemma 7 above (instead of Lemma 2 in [59]). ⇤

We may conclude from the above analysis that, given the assumptions men-

tioned at the beginning of this section, Algorithm 3.2 converges quadratically as the

global minimizer of the optimization problem is approached. Note that Algorithm 3.2

may be applied e↵ectively to many nonconvex optimization problems even when the as-
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sumptions of smoothness of the objective and constraint functions do not hold, though

the above analysis on the rate of convergence will no longer apply.

3.4 Runge-Kutta scheme derivation

In this section, we develop the constraints which need to be solved in order for us

to identify a new mixed implicit/explicit incremental Runge-Kutta (IMEXRK) scheme

with low truncation error and third order accuracy. We consider an ordinary di↵erential

equation (ODE) with a separable right-hand side:

du
dt
= Lu +N(u) (3.21)

where L is a linear operator and N is a nonlinear operator. This ODE structure is of

particular interest since it often arises in the field of Computational Fluid Dynamics

(CFD). The incompressible Navier-Stokes Equations (NSE), after appropriate spatial

discretization, are an example of the form (3.21). For incompressible NSE, the linear

operator accounts for discretization of the di↵usive terms, while the nonlinear operator

deals with the convective terms. Since the di↵usive terms are generally sti↵, while the

convective terms are usually nonsti↵, time discretization for DNS and LES simulations

in the past three decades has relied principally on mixed implicit/explicit approaches, in

which the integration of the di↵usive term is carried out implicitly, while the convective

term is marched explicitly.
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Our goal is to derive a mixed implicit/explicit (IMEX) Runge-Kutta (RK) al-

gorithm to integrate the equation in (3.21) over time with third order accuracy, while

keeping memory storage to a minimum. In this framework, the linear term is treated

implicitly, so that the stability of the implicit part is not a↵ected, while the nonlinear

term is treated explicitly. Since the linear operator is general sti↵, while the nonlinear

operator usually is nonsti↵, this approach allows us to significantly relax the stability

constraints for the time step, with which the simulation is marched.

Recently, [4] showed that is possible to extend the three-step incremental formu-

lation presented in [55] to a four-step scheme, in order to achieve third order accuracy.

Such scheme marches the solution un at time tn over the interval [tn, tn+1] of size �t as

follows

u(1) = un + �t
⇣

↵I
1Lu(1) + �I

1Lun + �
E
1 N(un)

⌘

u(2) = u(1) + �t
⇣

↵I
2Lu(2) + �I

2Lu(1) + �E
2 N(u(1)) + �E

2 N(un)
⌘

u(3) = u(2) + �t
⇣

↵I
3Lu(3) + �I

3Lu(2) + �E
3 N(u(2)) + �E

3 N(u(1))
⌘

un+1 = u(3) + �t
⇣

↵I
4Lun+1 + �

I
4Lu(3) + �E

4 N(u(3)) + �E
4 N(u(2))

⌘

(3.22)

where un+1 is the solution at time tn+1. Recasting the coe�cients in Butcher tableaux
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from [61] for explicit and implicit gives

0 0

c2 bI
1 aI

2,2

c3 bI
1 bI

2 aI
3,3

c4 bI
1 bI

2 bI
3 aI

4,4

1 bI
1 bI

2 bI
3 bI

4 bI
5

bI
1 bI

2 bI
3 bI

4 bI
5

0 0

c2 aE
2,1 0

c3 bE
1 aE

3,2 0

c4 bE
1 bI

2 aE
4,3 0

1 bE
1 bE

2 bE
3 bE

4 0

bE
1 bE

2 bE
3 bE

4 0

(3.23)

This alternative formulation allows us to easily impose the nine constraints needed

in order for the scheme to achieve full third order accuracy during the integration of (3.21).

Such constraints are listed below:

⌧(1)I
1 =

s
X

i=1

bI
i � 1 ⌧(1)E

1 =

s
X

i=1

bE
i � 1

⌧(2)I
1 =

s
X

i=1

bI
i ci �

1
2

⌧(2)E
1 =

s
X

i=1

bE
i ci �

1
2

⌧(3)E
1 =

1
2

s
X

i=1

bE
i c2

i �
1
6

⌧(3)II
2 =

s
X

i, j=1

bI
i aI

i, j ci �
1
6

⌧(3)IE
2 =

s
X

i, j=1

bI
i aE

i, j c j �
1
6

⌧(3)EI
2 =

s
X

i, j=1

bE
i aI

i, j ci �
1
6

⌧(3)EE
2 =

s
X

i, j=1

bE
i aE

i, j c j �
1
6

(3.24)

Furthermore, we impose stage-order one constraints at each stage of the Butcher tableaux

in (3.23), i.e.
P5

j=1 aI
i, j =

P5
j=1 aE

i, j = ci. This leaves three free design parameters for
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optimization. All in all, after third order accuracy is imposed, we should minimize the

fourth order truncation error. This is accomplished in [4, 62, 63] by minimizing the

norm of the residuals of the fourth order accuracy constraints, denoted as A(4).

For the ODE in (3.21), such constraints are

⌧(4)EI
2 =

s
X

i, j=1

bE
i ci aI

i, j c j �
3

24
⌧(4)EE

2 =

s
X

i, j=1

bE
i ci aE

i, j c j �
3

24

⌧(4)IE
3 =

1
2

s
X

i, j=1

bI
i aE

i, j c2
j �

1
24

⌧(4)EE
3 =

1
2

s
X

i, j=1

bE
i aE

i, j c2
j �

1
24

⌧(4)III
4 =

s
X

i, j,k=1

bI
i aI

i, j aI
j,k ck �

1
24

⌧(4)IIE
4 =

s
X

i, j,k=1

bI
i aI

i, j aE
j,k ck �

1
24

⌧(4)IEI
4 =

s
X

i, j,k=1

bI
i aE

i, j aI
j,k ck �

1
24

⌧(4)IEE
4 =

s
X

i, j,k=1

bI
i aE

i, j aE
j,k ck �

1
24

⌧(4)EII
4 =

s
X

i, j,k=1

bE
i aI

i, j aI
j,k ck �

1
24

⌧(4)EIE
4 =

s
X

i, j,k=1

bE
i aI

i, j aE
j,k ck �

1
24

⌧(4)EEI
4 =

s
X

i, j,k=1

bE
i aE

i, j aI
j,k ck �

1
24

⌧(4)EEE
4 =

s
X

i, j,k=1

bE
i aE

i, j aE
j,k ck �

1
24
.

(3.25)

In practice, the IMEXRK scheme should have an implicit component, which

is L-stable2. This guarantees proper damping of the largest eigenvalues of L. Based

on linear stability analysis [64, 65], the stability function for the implicit component

of (3.23) can be defined as

�I(zI) =

3
X

i=0

pI
i [z

I]i + pI
4[zI]4

3
X

i=1

qI
i [z

I]i + qI
4[zI]4

, (3.26)

2A time marching scheme is said to be L-stable if its stability region contains the entire left-half plane
(LHP), and �(1) = limz!1 �(z) = 0.
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where pI
4, qI

4, pI
i , and qI

i are functions of the Butcher coe�cients aI
i, j, bI

i , and ci, while

zI = ��t, where � is an eigenvalue ofL. L-stability is achieved when the stability region

|�I(zI)|  1 covers the entire left-half plane and �I(zI) goes to zero as zI approaches

infinity. Algebraically, this is equivalent to imposing pI
4 = 0, provided that qI

4 does

not vanish (exists and does not approach infinity) so that |pI
4/q

I
4| approaches zero. If

L-stability cannot be achieved, a strong A-stability should be sought. This is equivalent

to satisfying

�1 = lim
zI!1
|�(zI)| = |pI

4/q
I
4| < 1. (3.27)

Another important property for IMEXRK schemes is the extension of the sta-

bility region for the explicit component. For fluid dynamics application, the extension

along the imaginary axis is of primary interest, since it directly relates to the Courant-

Friedrichs-Lewy (CFL) condition. For the scheme in (3.23), the stability function for

the explicit component �E(zE) reads

�E(zE) = 1 +
X

i

bE
i zE +

X

i

bE
i ci[zE]2+

+
X

i, j

bE
i aE

i, j c j[zE]3 +
X

i, j,k

bE
i aE

i, j aE
j,k ck[zE]4,

(3.28)

where zE = µ�t, where µ is the eigenvalue of the linearization of the operator N at a

given instant tn. After imposing third order accuracy constraints ⌧(1)E
1 = ⌧(2)E

1 = ⌧(3)EE
2 =

0, the expression for �E(zE) now reads

�E(zE) = 1 + zE + [zE]2/2 + [zE]3/6 + � [zE]4, (3.29)
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where � =
P

i, j,k bE
i aE

i, j aE
j,k ck. In [4] � = 1/24 was found to give the maximum extension

of the stability region |�E |  1 along the imaginary value, achieving the value 2
p

2.

We also found in [4] that a value � > 1/24 produces a stability region, which does

not include the entire imaginary axis between the origin of the complex plane and the

farthest intersection point between the imaginary axis and the stability region. For this

reason, only those schemes with a set of coe�cients for which

�  1
24

(3.30)

will be considered during the optimization stage.

Most importantly, these properties must be achieved while ensuring that the coef-

ficients are all real-valued and reasonably small.This is a practical aspect that simplifies

the implementation and reduces the impact of algebraic error during the time integra-

tion. Another condition that is generally imposed is that all the ci coe�cients must be

in the interval [0, 1]. This ensures that all the function evaluations needed for the time

integration over [tn, tn+1] are performed using points within [tn, tn+1].

3.5 Formulation of the Optimization Problem

In this section, using the analysis we developed in section 3.4, we design the

optimization problem.

Let us consider c = [c2, c3, c4], the free parameters for our optimization algo-
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rithm. Based on the considerations in Section 3.4, a box domain [0, 1]3 was chosen to

perform optimization over the parameter space.

At each iteration of the optimization algorithm, the nine constraints needing to

achieve third order accuracy are imposed as follows. First, equations ⌧(1,2,3)E
1 = 0, and

⌧(1,2)I
1 = 0 are solved together with stage-order one condition. Notice that once the c

coe�cients have numerical values, these equations are linear in the bE
i coe�cients and

are easily solvable. Provided the solution c at the current iteration does not cause the

linear system to become singular, the coe�cients bE
1,2,3 and bI

1,2 are determined at this

stage as a function of the remaining coe�cients. Afterward, the resulting expressions

are replaced into ⌧(3)EE
2 = 0. The arising second order equation is then solved for bE

4 .

Provided the radicand �E of ⌧(3)EE
2 = 0 is non-negative, two choices for bE

4 are obtained.

Replacing the values for bE
4 back into ⌧(1,2,3)E

1 = 0 allows to completely determine the

set of coe�cients bE
i . Such values and the expressions for bI

1,2 are then replaced into

⌧(3)EI
2 = 0 and ⌧(3)IE

2 = 0. These two equations, together with stage-order one condition

for the implicit part, are linear in the bI
i parameters and are used to determine bI

3,4.

Substitution of the resulting expressions into ⌧(3)II
2 = 0 gives a second order equation in

bI
5. Notice that since two values of bE

4 have been found, we have two quadratic equations

to be solved for bI
5, this means that, provided the radicands �I(1,2) are positive, we obtain

four solutions for bI
5. Replacing the values obtained in the previous expressions allows

to completely determine the coe�cient set.

This subroutine can be implemented within the optimization algorithm. How-

ever, such an automatized approach breaks down whenever the initial linear system is
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singular. The singularity can be avoided by two constraints: a) by tightening the bounds

of the search domain to avoid the boundary points, 0 and 1. This is achieved by re-

stricting the search domain to the interval [tolc, 1 � tolc]3. b) by imposing additional

constraints in the optimization, i.e. |ci � c j| � tolc, for i , j to avoid equality between ci

coe�cients.

Notice that this approach prevents from exploring among those schemes (re-

gions) associated to these particular solutions and an ad hoc optimization problem

should be set up for each of these choices. Furthermore, it is necessary to impose that

the solution found is acceptable, i.e. the the coe�cients are all real-valued. This is

achieved by enforcing the extra constraints �E, �I(1,2) � 0 during the optimization.

These constraints have a nonlinear behaviour respect to the ci parameters and

become discontinuous in the parameter space of the solutions. In order to reduce the

discontinuity and bound the objective function and the constraint functions the hyper-

bolic tangent function is used as a saturation function.
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The optimization problem can be cast as follows:

min
c

A(4)

subject to �1 =
pI

4

qI
4
= 0

1/24 � � = 0

�E � 0

�I(1,2) � 0

|ci � c j| � tolc � 0, for i , j

tolc  c2, c3, c4  1 � tolc

(3.31)

There are some thresholds for each constraint and we can write the problem

(3.31) in a way that would in form of adaptive-K algorithm.

With the powerful new derivative-free optimization method we developed, we

were able to design a new IMEX Runge Kutta scheme which is third-order accurate.

This Runge-Kutta scheme is useful for solving the sti↵ ODEs resulting from high per-

formance computing works, like turbulence simulations. We will now present numerical

results we get from the application of these new schemes.

3.6 Results

In this work, we first developed an e�cient derivative-free scheme that handles

problems with multiple nonconvex constraints. We compared the newly developed op-
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timization method with the method developed in [58] on the application-based problem

to design a new IMEX Runge Kutta scheme, as explained in §3.4.

In this section, the discovered IMEXRK scheme is compared to the most com-

monly available scheme that is being used in the Turbulent community. Finally, the

properties of our new scheme are illustrated on a representative example: the Burger

equation.

3.6.1 Comparison between the basic and modified optimization meth-

ods

In this part, we compare the performance of Algorithm 3.2 with the original

�-DOGS(⌦) algorithm as summarized in [58] on optimization problem (3.31). Both

these schemes are applied on the (3.31) problem, which is a relatively computationally

expensive, nonlinear optimization problem with non-analytical constraint and objective

functions that is well suited for the use of �-DOGS(⌦) algorithms.

Using the �-DOGS(⌦) algorithms, several new mixed Implicit/Explicit Runge

Kutta schemes have been discovered which are appropriate for the simulation of incom-

pressible turbulence flow.

Note that the constrained optimization problem (3.31) is nonlinear and most of

the commercial o↵-the-shelf (COTS) available optimization method fail to solve this

problem and find an acceptable solution. Moreover, the brute-force algorithms cost

more than hundred thousands of function evaluations.



99

-2

0

2
 a)

  

0

1

2
 b)

  

0 50 100 150
-2

0

2
 c)

  

(a) �-DOGS(⌦)

-2

0

2
 a)

  

0

1

2
 b)

  

0 20 40 60 80
-2

0

2
 c)

  

(b) �-DOGS(⌦Z)

Figure 3.3: Results from the basic vs modified algorithm. a) L-Stability �1. b) Truncation
error A(4). c) Parameter (1/24 � �).
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Fig. 3.3 shows this improvement and compare the results for both optimization

algorithms. The top figure shows the search function s(x). This search function in fact

represents the maximum violation of constraints and the di↵erence between the target

value f0 and the best available point.

In the situations that there is a rapid change in the objective and constraint values

close to the boundary it is beneficial to quantize the points to a lattice instead of using

the constraint projection method [37]. We stop the algorithm when we have a repeated

point on the lattice and all the constraints are satisfied in that point.

Fig. 3.4 shows the trajectory of the design parameters using both optimization

algorithms. In both plots the top plot shows the maximum violation or the search func-

tion trajectory and the red dashed line the target value that the algorithm is seeking.

It is shown in Fig. 3.4 that to find an acceptable solution, the �-DOGS(⌦Z) uses

half the computational cost of the �-DOGS(⌦). Most of the extra function evolutions

are performed close to the boundary of the solutions which in advance we knew that

is not the case. �-DOGS(⌦Z) generates the support points, defined to regularize the

irregular behaviour of the objective function on the boundaries.

The target value for both optimization algorithms for the objective function

A(4)  0.08 and for the constraint violation the limits of �0.05  �1  0.05 and

�0.0001  � � 1/24  0, �E � 0.001 and �I(1,2) � 0.001, and |ci � c j| � 0.1 � 0.

Table 3.1 illustrates optimized coe�cients and error measures for the IMEXR-

KiCB3(4s) scheme reported in [4], and the two new schemes developed in this work.

The IMEXRKiACBB3a(4s) scheme was found using the �-DOGS(⌦) algorithm in
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Figure 3.4: Results from the basic vs modified algorithm. a) Search function value series. b)
Trajectory of the ci points. c) Trajectory of the solution.
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Table 3.1: Optimized coe�cients and error measures for the IMEXRKiCB3(4s) scheme
reported in [4], and the two new schemes developed in this work.

IMEXRK c2 c3 c4 A(4) �1 1/24 � �
IMEXRKiCB3(4s) [4] 0.560 0.800 0.700 0.059 0.032 �0.003
IMEXRKiACBB3a(4s) 0.5601 0.820 0.700 0.058 0.024 �0.003
IMEXRKiACBB3b(4s) 0.570 0.895 0.725 0.063 �0.008 �0.00007

187 iterations, and the IMEXRKiACBB3a(4s) scheme was found using the new �-

DOGS(⌦Z) algorithm, taking N = 160, in just 88 iterations.

Thus, we can conclude that our new algorithm shows improved performance and

has a lower computational cost when compared with the original algorithm it is derived

from.

3.6.2 Evaluation of the scheme on the 1D Burgers Equation

In order to verify the full third-order accuracy for the innovative scheme we

developed, it was tested on the time integration of the one-dimensional Burgers Equation

(BE):

@u
@t
= � @
@x

 

u2

2

!

+ ⌫
@2u
@x2 (3.32)

The spatial domain considered is x 2 [0, 400 m] with 1024 equally-spaced grid points

and pseudo-spectral approach is adopted for the discretization of all spatial derivatives,

with 2/3-dealiasing rule for the computation of the convective term. Furthermore, the

integration of the di↵usive component is carried out implicitly, assuming ⌫ = 1, while

the convective term is integrated explicitly. The equation in (3.32) is integrated over a
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Figure 3.5: Relative error as a function of the step size for the scheme derived in this chapter
when applied to the integration of (3.32).

time interval of 10 seconds from the initial condition

u(x, 0) = e�(x�200)2
(3.33)

Error convergence is determined by comparing the solutions obtained with dif-

ferent time steps, ranging from 10�3 to 10�1, with the reference solution obtained using

the fourth-order IMEXRK scheme ARK4(3)6L[2]SA from [63] with a constant time

step �t = 10�5. Results are presented in Figure 3.5 and show good agreement with

theoretical expectation.
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Figure 3.6: Stability regions for the scheme derived from IMEXRKiACBB3b(4s). Note that
the di↵erence in the stability region for IMEXRKiACBB3a(4s) and IMEXRKACBB3b(4s)

visually is indistinguishable.

3.6.3 Summary of the comparison performance for the new IMEXRK

scheme

The coe�cients obtained are listed in Table 3.2 in both Butcher tableaux and in-

cremental form, while stability and accuracy properties are shown in Table 3.1. Stability

regions for the implicit and explicit part are shown in Figure 3.6.

Our new scheme shows enhanced computational performance when compared

to the original algorithm it has been derived from. Moreover, it has been successfully

applied to the one-dimensional Burgers equation, giving results which are in good agree-

ment with the theoretical expectation. These numerical results allow us to conclude that

our innovative scheme performs well and is an improvement of existing solutions.
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Table 3.2: Optimal parameters for the new IMEXRK scheme derived in this chapter.

Butcher coe�cients
Parameter Value
bI

1 35965327958/140127563663
bI

2 353083323889/1136747549899
bI

3 �360566052281/1494955198897
bI

4 756596001291/1512335944289
bI

5 189462239225/1091147436423
aI

2,2 343038331393/1130875731271
aI

3,3 288176579239/1140253497719
aI

4,4 253330171251/677500478386
bE

1 829462852521/3426433096921
bE

2 103183819801/448156083531
bE

3 9976429300/709197748683
bE

4 113091689455/220187950967
aI

2,1 14/25
aI

3,2 777974228744/1346157007247
aI

4,3 251277807242/1103637129625
c2 14/25
c3 41/50
c4 7/10

Incremental-form coe�cients
Parameter Value
↵I

1 343038331393/1130875731271
�I

1 35965327958/140127563663
↵I

2 288176579239/1140253497719
�I

2 19632212512/2700543775099
↵I

3 253330171251/677500478386
�I

3 �173747147147/351772688865
↵I

4 189462239225/1091147436423
�I

4 91958533623/727726057489
�E

1 14/25
�E

1 0
�E

2 777974228744/1346157007247
�E

2 �251352885992/790610919619
�E

3 251277807242/1103637129625
�E

3 �383714262797/1103637129625
�E

4 113091689455/220187950967
�E

4 �403360439203/1888264787188
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3.7 Conclusions

This work introduced and applied a powerful new variant, dubbed �-DOGS(⌦Z),

of our lab’s Delaunay-based Derivative-free Optimization via Global Surrogates family

of algorithms to the practical problem of identifying a new, low-storage, high-accuracy,

Implicit/Explicit Runge-Kutta (IMEXRK) time integration scheme for high performance

computing (HPC) applications, like the simulation of turbulence. The optimization

scheme developed and used in this work, which is provably globally convergent under

the appropriate assumptions, combined the essential ideas of (a) our �-DOGS(⌦) al-

gorithm, which is designed to e�ciently optimize a nonconvex objective function f (x)

within a nonconvex feasible domain ⌦ described by a number of constraint functions

c`(x), with (b) our �-DOGS(Z) algorithm, which aims to reduce the number of function

evaluations on the boundary of the feasible domain that would otherwise be called for via

the restriction that all function evaluations lie on a Cartesian grid, which is subsequently

refined as the iterations proceed, over the rectangular search domain Ls considered. The

identification of the optimal parameters of IMEXRK schemes involved (1) a compli-

cated set of nonlinear constraints, which are imposed in order to achieve the desired

order of accuracy in addition to a handful of important stability properties, which leads

to a highly nonconvex, disconnected feasible domain, and (2) a highly nonconvex ob-

jective function, which represents a compromise between a few di↵erent measures char-

acterizing the leading-order error and potential stability shortcomings of the resulting

scheme. This structure makes the computation of new IMEXRK schemes a challenging
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and well-suited practical test problem for global optimization algorithms to solve. In this

work, the new optimization algorithm developed, �-DOGS(⌦Z), introduced the notion

of “support points”, which are points defined and used to eliminate constraint and objec-

tive function evaluations on the boundary of the search domain, where these functions

are sometimes ill-behaved, while restricting all datapoints to like on a Cartesian grid that

is successively refined as convergence is approached. For validation, the convergence of

�-DOGS(⌦Z) and �-DOGS(⌦) are compared on a challenging problem of optimizing a

low-storage IMEXRK formulation. Results indicate a notably accelerated convergence

rate using �-DOGS(⌦Z). In the end, a low-storage third-order accurate IMEXRK algo-

rithm for the time integration of sti↵ ODEs was identified which exhibited remarkably

good stability and accuracy properties as compared with existing IMEXRK schemes.

Using more intelligent function evaluations in the control domain can cause a

significant reduction in time and computation. The number of function evaluations is

significantly reduced, if compared to brute-force approach.

As future work, this optimization problem can be applied to the solution of other

optimization problems with complicated constraint functions. Also, the new IMEXRK

scheme is applied to the Turbulence flow simulation.
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Chapter 4

Optimization combining

derivative-free global exploration with

derivative-based local refinement

Everything in the universe is within you. Ask all from yourself.—Rumi

4.1 Introduction

Consider the optimization of a nonconvex, expensive-to-compute function f (x)

with bound constraints,

minimize f (x) with x 2 B = {x|a  x  b}, (4.1)

109
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where a and b are two vectors in Rn such that a < b. Solving an optimization problem

of the form (4.1) is di�cult and, for general functions, convergence can only be guar-

anteed if the function evaluation set becomes dense everywhere in B as k ! 1 [66].

In this paper, we will restrict our attention to problems in which f (x) is smooth (twice

di↵erentiable), and for which the optimization problem considered has a target value f0;

that is, we seek a point x 2 B that is a local minimum such that f (x)  f0.

There are two classes of optimization algorithms available to solve (4.1): derivative-

based methods, which use gradient information to accelerate the search of a local min-

imum of the objective function, and derivative-free methods, which do not use gradient

information, but may often be developed in a manner which, under the appropriate as-

sumptions, assures convergence to a global solution to (4.1) [67, 68, 69].

Derivative-based methods are designed to handle a large number of design pa-

rameters, and generally require far fewer function evaluations for local convergence.

There are two main approaches for determining the update made at each step of a

derivative-based search: those based on trust regions, and those based on line searches.

Trust region methods define, at each iteration, a region in the vicinity of the

current point, xk, within which a model that approximates the objective function is gen-

erated and used to calculate the next point, which is restricted to lie within the trust

region. Line search methods, in contrast, determine the step length in a chosen search

direction via a number of additional function evaluations, in order to identify a point

with a reduced function value (see [70, 71]), often coordinated by an Armijo condition,

which seeks to ensure that the next iterate reduces the function su�ciently relative to the
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directional derivative of f (x) at xk in the search direction, or a Wolfe condition, which

seeks to enforce conditions on r f as well as the Armijo condition in order to guarantee

that a BFGS update can be safely applied.

Derivative-free methods can, under the appropriate assumptions, guarantee con-

vergence to a global optimum, but are generally quite ine�cient computationally, par-

ticularly at local refinement, requiring many more function evaluations than derivative-

based methods. Response surface methods (RSMs) are the most e�cient and widely-

used globally-convergent derivative-free optimization methods available today. RSMs

iteratively minimize a search function using an interpolant (or, a regressor) of existing

data points, known as the “surrogate”, and a model of the uncertainty of this surro-

gate, which generally goes to zero at the function evaluations themselves. E�cient

global optimization (EGO) [72], optimization by radial basis function interpolation in

trust-regions (ORBIT) [68], the Surrogate-Management-Framework (SMF) [29], and

Delaunay-based derivative-free optimization via global surrogates (�-DOGS) [1, 37,

58], are modern examples of RSMs.

The derivative-free scheme upon which the present work is based is �-DOGS,

which is a generalizable family of computationally-e�cient optimization algorithms de-

veloped by our group for low-dimensional optimization problems in which the objective

function is both nonconvex and expensive to evaluate. There are already a handful of

schemes in this family, including schemes designed specifically for simple bound con-

straints [59], linear constraints [37, 73], and nonconvex constraints [58, 60].

This paper proposes the hybridization of (derivative-free) algorithms in the �-



112

DOGS family with a local derivative-based optimization approach in order to signifi-

cantly accelerate the process of local refinement (for a related discussion, see [69]). The

proposed hybrid algorithm inherits the property of global convergence (under the appro-

priate assumptions) of the particular �-DOGS algorithm upon which it is based. In our

numerical experiments, the algorithm is found to e�ciently handle nonconvex functions

with many local minima, and to scale better with dimension than purely derivative-free

global optimization approaches.

The structure of this paper is as follows: Section 4.2 briefly reviews the essential

ideas of the�-DOGS(Z) algorithm, which accelerates a�-DOGS search by coordinating

it with a Cartesian grid over parameter space that is successively refined as convergence

is approached. Section 4.3 explains the new hybrid optimization scheme, which com-

bines �-DOGS(Z) with a derivative-based optimization algorithm, leveraging a trust

region approach, for local refinement. Section 4.4 analyzes the new hybrid algorithm’s

convergence properties, and describes the technical conditions needed to guarantee its

convergence to a global or local minimizer. In Section 4.5, the hybrid algorithm is ap-

plied to benchmark optimization problems to illustrate its behavior. Conclusions are

presented in Section 4.6.

4.2 A brief review of �-DOGS(Z)

We now review the essential elements of �-DOGS(Z) [59, 73]. Note that this

paper focuses on variants of these algorithms that leverage target values of f0; other
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variants of these algorithms are discussed in [1, 37, 73, 74].

�-DOGS(Z) is an iterative method that sequentially estimates the location in the

feasible domain B with the highest probability, given the current surrogate model, of

having a function value less than or equal to f0 (that is, which maximizes a probabil-

ity measure for finding such a function value). The approach is akin to the expected

improvement [75, 76] and Bayesian optimization algorithms [77].

Definition 9. Consider S = {x1, x2, . . . , xN} as a set of datapoints in the feasible domain

B. The continuous search function s(x) is defined as follows:

s(x) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

p(x)� f0
e(x) if p(x) � f0,

p(x) � f0 otherwise,

(4.2)

where p(x) is an interpolating function such that p(xi) = f (xi),8i 2 {1, 2, . . . ,N}, and

e(x) is an uncertainty function built on the framework of a Delaunay triangulation of

existing datapoings; key properties of e(x), as discussed further in [37], include it being

piecewise quadratic with a constant Hessian, e(x) � 0 8x 2 B, and e(xi) = 0 8i 2

{1, 2, . . . ,N}.

Definition 10. The Cartesian grid of level ` for the feasible domain B = {x|a  x  b},

denoted B`, is defined such that

B` =
⇢

x|x = a +
1
N

(b � a) ⌦ z, z 2 {0, 1, . . . ,N}
�
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where N = 2`. A quantizer of a point x 2 B onto B` is a point xq on the B` grid with

minimum distance to x; note that the quantizer so defined is not necessarily unique. The

maximum discretization error is defined as

�` = max
x2B
kx � xqk. (4.3)

Illustration of the above concepts can be found in Figure 2 of [59]. The Cartesian

grid defined above has a specific property that is useful in this analysis: if any constraints

on B are binding at x, these constraints are also binding at xq.

Given the above concepts, Algorithm 4.1 presents a strawman form of the �-

DOGS(Z) algorithm; more details may be found in [59, 73]. Illustration of an iteration

Algorithm 4.1 Strawman of �-DOGS(Z), designed for minimizing f (x) 2 B leveraging the
target value f0.

0. Initialize k = 0, `, and the initial set of datapoints S 0, and calculate f (xi) for all
xi 2 S 0.

1. Calculate or update the interpolating function pk(x) and the uncertainty function
ek(x) for the points in S k.

2. Minimize the search function (10) in B to obtain x̂k as a point with high probability
of obtaining the target value.

3. Determine yk as the quantization of x̂k on B`k .

4. If yk < S k, S k+1 = S k [ yk, and calculate f (xk); otherwise, refine the mesh by
incrementing `k.

5. Repeat steps 1-4 until a point x is found with f (x)  f0.

of Algorithm 4.1 is shown in Figure 4.1 for 3 subsequent iterations.
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(a) iteration 1. (b) iteration 2. (c) iteration 3.

Figure 4.1: Essential elements of Algorithm 4.1. Top: truth function f (x) (black), interpolating
surrogate function p(x) (blue), synthetic model of the uncertainty e(x) (red), previous (black

dots) and new datapoints (red dots). Bottom: search function s(x) (4.2).

Remark 10. At each iteration, Algorithm 4.1 either adds a new point to the feasible

domain, or refines the mesh.

There are two possible termination scenarios for Algorithm 4.1: either it finds a

point x with a function value f (x)  f0, or it conducts an infinite number of iterations.

In a latter case, it is proved in [59] that there is a limit point amongst the datapoints

computed with a function value equal to f0 if the target value is achievable.

Though the �-DOGS family of schemes is (relative to other derivative-free opti-

mization schemes) quite computationally e�cient for the problem of characterizing and

globally exploring (via the surrogate) a large range of nonconvex functions, it su↵ers

from the same “curse of dimensionality” that plagues all derivative-free optimization

schemes, and scales poorly with the dimension of the problem, n. The proposed hybrid

algorithm mitigates this issue.
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4.3 Accelerating local convergence using a derivative-

based method

This section discusses the blending of the global derivative-free optimization

algorithm �-DOGS(Z) with a local derivative-based optimization approach to accel-

erate the process of local refinement, and to scale better with dimension than purely

derivative-free global optimization approaches. The essential idea of the new approach

is two-fold: once the �-DOGS(Z) scheme constructs a reasonably well-sampled surro-

gate, the best feasible point found thus far is used to initialize a local derivative-based

search. Once this derivative-based search identifies a feasible local minimum point, the

value and slope of the objective function at this point are used to update the surrogate,

and the derivative-free search is resumed, until a new point with an improved objective

function value is found, and another derivative-free local refinement is performed, etc.

For the derivative-based component of the above-described hybrid optimization

scheme, we will implement a trust region method [70] which iteratively solves the fol-

lowing subproblem:

xk = argmin qk(x) subject to x 2 ⌦k, (4.4)

where ⌦k is a subset of B, S k is the set of datapoints available at iteration k, zk is the

point in S k that minimizes f (x), and qk(x) is a local quadratic function constructed such

that qk(zk) = f (zk), rqk(zk) = r f (zk), and r2qk(zk) = r2 f (zk) (or, some approximation
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thereof).

We now define the trust region ⌦k to be used in the derivative-based component

of Algorithm 4.1. Classical trust region methods take the trust region as a sphere around

zk; this approach does not work particularly well if we want to combine the trust re-

gion method with a global optimization algorithm like Algorithm 4.1. In this paper, we

thus instead define ⌦k as the Voronoi cell [78] of zk in S k, which is a convex, linearly-

constrained region defined as follows.

Definition 11. Around each point zk is its constrained Voronoi cell, V(zk), consisting of

all points in B that are at least as close to zk as to any other point x j 2 Rn. Thus,

V(zk) = {x 2 B| dist(x, zk)  dist(x, x j) 8 j 2 S k}. (4.5)

Taking ⌦k = V(zk), the quadratic programming problem in (4.4) may now be

rewritten as

xk = argmin qk(x) subject to x 2 V(zk). (4.6)

We now present, in Algorithm 4.2, a hybrid optimization algorithm combining

Algorithm 4.1 and the trust-region-based deriviative-free optimization method described

above. At each iteration, either the quantization of the minimizer of the search function

(4.2), or the quantization of the solution to the quadratic programming problem (4.6), is

added to S k. The first case is called a global exploration iteration, and the second case

is called a local refinement iteration.
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Algorithm 4.2 The new hybrid optimization algorithm to minimize f (x) in the feasible domain
B, leveraging a gradient-based scheme to accelerate local refinement.

0. Initialize k = 0, ` = `0, and the initial set of datapoints S 0 (confined to the grid
B`), and calculate f (x) for all points in S 0.

1. Denote zk as the point in S k which minimizes f (x). Calculate r f (zk), calculate
or approximate r2 f (zk), generate the local quadratic function qk(x), and solve the
quadratic program defined in (4.6) to obtain xk.

2a. If (4.7) is satisfied [i.e., if q(xk) < ⌘ ( f0 � f (zk)) + f (zk)], then determine yk as the
quantization of xk on B`.

2b. Otherwise [i.e., if (4.7) is not satisfied], calculate or update the interpolating func-
tion pk(x) and the uncertainty function ek(x) for the points in S k, and find the
minimum of the search function (4.2), denoted x̂k, in B. Determine yk as the quan-
tization of x̂k on B`.

3a. If yk < S k, take S k+1 = S k [ yk, and calculate f (yk).

3b. Otherwise (i.e., if yk 2 S k), refine the mesh, `  ` + 1.

4. Repeat from step 1 until convergence.

The indicator used in Algorithm 4.2 to select between global exploration and

local refinement is the following:

qk(xk) < ⌘ ( f0 � f (zk)) + f (zk). (4.7)

If (4.7) is satisfied, the process of local refinement at this iteration is deemed to be

su�ciently promising that it might ultimately lead to a local value of f (x)  f0, and

thus a (derivative-based) local refinement step is performed; otherwise, a (derivative-

free) global exploration step is performed. A parameter ⌘ with 0 < ⌘  1, called the

reduction factor, is used in this indicator function.
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4.3.1 Constructing the local quadratic model

We now discuss the construction of the local quadratic function qk(x). The ap-

proach used is based on Quasi-Newton methods, which construct a locally quadratic

model of the objective function

qk(x) = f (zk) + r f (zk)T (x � zk) +
1
2

(x � zk)T Hk(x � zk), (4.8)

with a Hessian Hk approximated based on recent gradient computations; this approach

can ultimately result in an algorithm with superlinear convergence. In the present work,

we use the venerable BFGS method [70] for the construction of Hk. In the implementa-

tion of the BFGS method, the matrix Hk is initialized by the identity matrix, and at each

iteration that a point yk is obtained such that f (yk)  f (zk), the matrix Hk is updated as

follows:

Hk+1 = Hk +

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�T
k dk

�T
k �k
� dT

k HT
k Hk dk

dT
k Hk dk

if �T
k dk > 0,

0 otherwise,

(4.9a)

dk = yk � zk, �k = r f (yk) � r f (zk). (4.9b)

4.4 Analysis

In this section, we analyze the convergence properties of Algorithm 4.2. Under

the appropriate assumptions, we will establish two main properties:



120

1. If the target value is achievable, the algorithm will either (a) find a feasible point

with objective function value less than or equal to f0 in a finite number of iter-

ations, or (b) if an infinite sequence of points is generated, there will be a limit

point amongst the datapoints computed with a function value equal to f0. This

property is called target achievability.

2. The algorithm will converge to a KKT point for the objective function f (x). This

property is called local minimum convergence.

It is established in [59] that Algorithm 4.1 has the target achievability property;

however, Algorithm 4.1 does not guarantee local minimum convergence. We will es-

tablish both properties for Algorithm 4.2, subject to the following assumptions on the

objective function f (x) and the interpolant pk(x):

Assumption 7. The interpolating function pk(x), objective function f (x), and pk(x) �

f (x) are Lipschitz with the same Lipschitz constant L̂ in B.

Assumption 8. A constant K̂ > 0 exists for which

r2{ f (x) � pk(x)} + 2 K̂ I > 0, 8x 2 B and k > 0, (4.10)

r2{pk(x)} � 2 K̂ I < 0, 8x 2 B and k > 0, (4.11)

r2{ f (x)} � 2 K̂ I < 0, 8x 2 B. (4.12)

Moreover, the gradient of f (x) is Lipschitz with constant K.
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Assumption 9. The local quadratic function qk(x) and its derivative rqk(x) are Lips-

chitz with constant L̂ inside B.

4.4.1 Establishing target achievability of Algorithm 4.2

By construction, each step of Algorithm 4.2 is either a local refinement step or a

global exploration step. For each mesh refinement iteration of Algorithm 4.2, there are

two possible cases:

1. Condition (4.7) is satisfied, or

2. Condition (4.7) is not satisfied, but yk [the quantizer of the minimizer of sk(x)] is

located in S k.

It is noted in §5 of [59] that, if an infinite number of steps are taken, then an

infinite number of mesh refinement steps are taken; there are thus either an infinite

number of mesh refinement steps of the first type above, or an infinite number of mesh

refinement steps of the second type above (or, both). Also, by §5 of [59], if there are

an infinite number of mesh refinement iterations that are of the second type above, then

Algorithm 4.2 converges to a point such that f (x)  f0.

We will now show target achievability when there are an infinite number of mesh

refinement steps that satisfy (4.7).

Theorem 5. If there is an infinite number of iterations k in Algorithm 4.2 which are
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mesh refinement and satisfy (4.7), then

lim
k!1

f (zk)  f0. (4.13)

Proof. Let us consider k an iteration of Algorithm 4.2, which is a local refinement step

and and also mesh refining. Then

f (zk) � q(xk) � ⌘( f (zk) � f0). (4.14)

Since q(zk) = f (zk), and q(x) is Lipschitz with constant L̂, then

f (zk) � f0 
1
⌘

L̂kzk � xkk, (4.15)

On the other hand, step k is mesh refinement. Thus, the quantizer of xk is in S k. However,

by construction yk is in the Voronoi cell of zk. Therefore, zk is a quantizer of xk, and

f (zk) � f0 
1
⌘

L̂�`k ,

where �`k is the maximum discretization error at iteration k. Since there is an infinite

number iterations like k, (4.13) is shown. ⇤

We have thus established that Algorithm 4.2 will achieve the target value. More-

over, if at one iteration we achieve the target value, then all remaining iterations are local

refinement iterations. In the next section, we establish the local minimum convergence
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of Algorithm 4.2.

4.4.2 Establishing local minimum convergence of Algorithm 4.2

We first make a few useful definitions.

Definition 12. Define xk as the solution of the quadratic programming problem (4.6) at

iteration k. There are two possible types of binding constraints at xk:

a. Constraints on the feasible domain B. These constraints are called domain-

sharing active constraints.

b. Constraints on the Voronoi cell of zk. These constraints are called Voronoi-sharing

active constraints.

Definition 13. Let us consider S = {V0,V1,V2, . . . ,Vr} as an a�nely independent1 subset

of the vertices of a unit n-dimensional hypercube. Then we construct a matrix A as a

matrix whose i’th column is ai = (Vi � V0)/kVi � V0k. By construction, A is nonsingular.

Then, the hypercube scaling factor ⇢ is defined as the inverse of the minimum possible

value for �min(A) (the minimum singular value of A) over all possible subsets of S.

Note that, for each z 2 range(A) such that kzk = 1, there is a unique vector

↵ 2 Rr, such that

A↵ = z, k↵k  ⇢,
r

X

i=1

|↵i| =
p

r⇢ 
p

n⇢.

1s={s0, s1, . . . , sd} is a�nely independent if {s1 � s0, . . . , sd � s0} are linearly independent.
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Lemma 8. Let us consider k as an iteration of Algorithm 4.2 which is a mesh refinement;

then

1. Domain-sharing and Voronoi-sharing constraints are orthogonal.

2. Consider a as the normal vector of a Voronoi-sharing active constraint; then

|aTr f (x)|  2 K̂�Lk , (4.16)

where �Lk is the maximum discretization error at step k.

3. Consider b as an outward-facing normal vector of a Domain-sharing active con-

straints; then

bTr f (x) � �K̂ �Lk . (4.17)

4. Consider c as a normal vector which is perpendicular to all active constraints at

xk; then

|cTr f (x)|  K̂ �Lk . (4.18)

5. Consider d as a unit vector which is parallel to the Domain-sharing active con-

straints at xk; then

|dTr f (x)|  (1 +
p

n ⇢) K̂ �Lk , (4.19)

where ⇢ is the scaling factor of the unit hypercube.

Proof. We first show Property 1. Let us consider H1 as a boundary of a Voronoi-sharing

active constraints, then there is a point wk 2 S K , such that kxk � zkk = kwk � zkk. By
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construction, the vector zk � wk is orthogonal to H1. Since step k is a mesh refinement,

both zk and wk are quantizers of xk. As a result, according to the construction of the

Cartesian grid [59], all domain-sharing active constraints like H2 are active at both wk

and zk. Thus, wk and zk lie on the boundary of H2, which establishes Property 1.

To show Property 2, we demonstrate (4.16) is valid, where a is the normal vector

of H1. According to the mean value theorem, there is a point ⇠ on the line between zk

and wk such that

r f (⇠)T (wk � zk)
kwk � zkk

=
f (wk) � f (zk)
kwk � zkk

. (4.20)

Since zk has the minimum objective value in S K , then f (wk) � f (zk). Thus,

r f (⇠)T (wk � zk)
kwk � zkk

� 0. (4.21)

Moreover, the function r f (x) is Lipschitz; thus,

r f (zk)T (wk � zk)
kwk � zkk

� �K̂kzk � wkk � �2K̂kzk � xkk. (4.22)

On the other hand, xk is the solution of the quadratic programming problem (4.6), which

is on the constraint H. Moreover, zk and wk are infeasible and feasible, respectively, with

respect to this constraint. Further, (wk � zk)/kwk � zkk is normal to the boundary of H1,

and goes out of the Voronoi cell. As a result,

rqk(zk)T (wk � zk)
kwk � zkk

 0. (4.23)
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Since rqk(x) is Lipschtiz with constant K̂, and r f (zk) = rqk(zk), it follows that

r f (zk)T (wk � zk)
kwk � zkk

 K̂kzk � xkk. (4.24)

Since iteration k is mesh decreasing, Property 2 is established.

To show Property 3, consider b as an outward-facing normal vector of a domain-

sharing active constraint H2. Since xk is the solution of the quadratic programming

(4.6),

bTrqk(xk)  0. (4.25)

Since rqk(zk) = r f (zk) and rqk(x) is Lipschitz with constant K, Property 3 is estab-

lished.

To show Property 4, since xk is the solution of the quadratic programming (4.6),

then

cTrqk(xk) = 0, (4.26)

Similarly, since rqk(zk) = r f (xk), and rqk(x) is Lipschitz with constant K̂, Property 4

is established.

Finally we consider Property 5. By construction, d can be written as

d = d1 + d2 where d1 =

r
X

i=1

↵iai, (4.27)

where ai are the normal vectors of the Voronoi-sharing active constraints, and d2 is
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a vector which is perpendicular to the domain-sharing active constraints at yk. Using

(4.16) and (4.18), and the triangular inequality, we have:

|dTr f (zk)|  �Lk[2 K̂
r

X

i=1

|↵i| + K̂kd2k].

Furthermore, kdk = 1, and d1 and d2 are orthogonal; thus, kd1k  1, kd2k  1, and

|dTr f (zk)|  K̂�Lk[2
r

X

i=1

|↵i| + 1].

On the other hand, ai is a vector normal of a boundary of the Voronoi cell of zk. There-

fore, there is a point, wi 2 S K , such that kyk � zkk = kyk � wik. Moreover, since iteration

k is a mesh refinement, then {zk,w1,w2, . . . ,wr} are distinct quantizers of xk. As a result,

they are located at the vertices of a hypercube. In other words, the ai are the vectors

obtained by connecting one vertex of a uniform hypercube to the other vertices; thus,

Pr
i=1 |↵i| 

p
n⇢, which establishes Property 5. ⇤

We now prove the local minimum convergence of Algorithm 4.2.

Theorem 6. Let us consider {k1, k2, . . . , } the mesh decreasing steps of Algorithm 4.2:

then all the limit points of the set T = {zk1 , zk2 , . . . } are KKT points for the optimization

problem (4.1).

Proof. Consider z as a limit point for the set T . Then there is a subset of T like

{zq1 , zq2 , . . . }, such that

lim
k!1

zqk = z. (4.28)
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By construction, there is an open ball around z, which does not intersect any boundary

of B that does not contain z. Thus, there is a k0 such that for k > k0, and zqk could lie only

on the boundaries of B that include z. Furthermore, since zqk is the quantization of xqk ,

Aa(yqk) ✓ Aa(z), where Aa(x) is the matrix whose rows are the set of active constraints at

x in B. As a result, according to Lemma (8),

|pTr f (zqk)|  (1 +
p

n ⇢) K �Lqk
,8p 2 null(Aa) (4.29)

pTr f (zqk) � �(1 +
p

n ⇢) K �Lqk
,8p 2 row(Aa) (4.30)

Since �Lqk
converges to zero, z is a KKT point. ⇤

4.5 Results

In this section, we compare the performance of (a) the original Algorithm 4.1,

with (b) Algorithm 4.2 with steepest descent applied for local refinement, and (c) Algo-

rithm 4.2 with the BFGS formula applied for local refinement. The test function consid-

ered is the n-dimensional Styblinski Tang function, which is a standard benchmark test

for global optimization:

f (x) =
n

X

i=1

x4
i � 16 x2

i + 5 xi

2
� 39.16616 n, (4.31)

where L = {x| � 5  xi  5}.
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An initial grid level of `0 = 3 is considered, and the algorithm continues until the

grid level of ` = 8 is terminated. Note that the optimizations are terminated when

Dis(xk, S K)  0.005, which leads to a comparable order of accuracy for both methods

(i.e. the maximum discretization error of level ` = 8 is close to 0.005). The initial

datapoints in S 0
E are constructed by n + 1 points as follows:

S 0
E =

⇢

x0, x0 +
bi � ai

2`0
ei,8i 2 {1, 2, . . . , n}

�

. (4.32)

For each i, ei is the ith main coordinate direction, and x0 is an initial point on the grid of

level `0. In this section, we consider two di↵erent points of x0 for the initialization of

Algorithms 4.1 and 4.2, as shown in Figs. 4.2 and 4.4.

Fig. 4.2 illustrates the position of the datapoints that are used during the opti-

mization process for n = 2. With initial points (x0 = 0.55, x0+0.2 ei) which are far from

all local optima, Algorithm 4.2 focuses on global exploration; as a result, the number of

function evaluations required for convergence is similar to that required by Algorithm

4.1.

Conversely, with an initial point that lies close to a local optima, Algorithm 4.2

performs a much more e�cient local refinement than Algorithm 4.1, resulting in much

faster convergence. Table 4.1 reports noticeable di↵erences that indicate significant

advantages for using Algorithm 4.2 in higher dimensional problems.

As described in §3.B, the local refinement of Algorithm 4.2 can incorporate ei-

ther gradient information or an approximation of the Hessian using the BFGS update
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(a) Algorithm 4.2 w/ BFGS, ⌘ = 0.5.
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(b) Algorithm 4.1.

Figure 4.2: Exact f0 = f (x⇤) = 0, with n = 2.
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(a) Algorithm 4.2 w/ BFGS, ⌘ = 0.8.
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(b) Algorithm 4.1.

Figure 4.3: Exact f0 = f (x⇤) = 0, with n = 4.

Table 4.1: Algorithm 4.2 with ⌘ = 0.8, and with steepest descent and BFGS for local
refinement, vs. Algorithm. 4.1. Results averaged over 5 di↵erent initial values in each case.

Average # fun. eval. / Dimension n = 2 n = 3 n = 4
Algorithm 4.1 �-DOGS [59] 22.5 49 98.5
Algorithm 4.2 with BFGS 25 38 77.8
Algorithm 4.2 with steepest descent 27.2 61.2 59.4

formula. Table 4.1 demonstrates, as expected, that using the Hessian approximation

generally has a superior convergence rate as compared with using steepest descent. Ad-

ditionally, it is observed that the accuracy of the solution is significantly improved for

a fixed number of function evaluations when the BFGS update formula is used. As ex-
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(a) Algorithm 4.2 w/ BFGS, ⌘ = 0.8.
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(b) Algorithm 4.1.

Figure 4.4: Target achievability with f0 = 20 > f (x⇤) = 0.

pected, in the case of Hessian approximation the grid B`0 is refined faster than when

using gradient information only.

Note that Algorithm 4.2 with gradient descent in some situations get stuck at

a local solution and performs many unnecessary function evaluations before starting

to explore more globally. Due to this issue in some specific situations Algorithm 4.2

with gradient descent becomes more computationally expensive than Algorithm 4.1 and

Algorithm 4.2 with BFGS.

In the case that the estimated solution, f0, is greater than the global solution,

f (x⇤), we see another significant advantage of Algorithm 4.2 over Algorithm 4.1. Algo-

rithm 4.1 persists in using global search to find f0, and stops without convergence using

local refinement; thus it does not guarantee to even find a local solution when f0 > f (x⇤).

However, Algorithm 4.2 continues its local refinement until it converges to a KKT point.

This is illustrated in Fig. 4.4.

The computation cost of Delaunay triangulation grows rapidly as the dimen-

sion n of the problem grows. By using Algorithm 4.2 with a good initial guess, the
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(a) n = 6, ⌘ = 0.8, 80 LRS, 11
GES, 5 MRS, 7 initial points
{x0,i = 0.6, x0,i + 0.1 ei}.
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(b) n = 7, ⌘ = 0.4, 106 LRS, 11
GES, 7 MRS, 8 initial points
{x0,i = 0.13, x0,i + 0.1 ei}.
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(c) n = 8, ⌘ = 0.1, 36 LRS, 11
GES, and 8 MRS, 9 initial

points {x0,i = 0.4, x0,i + 0.1 ei}.

Figure 4.5: Applications of Algorithm 4.2 with BFGS. See text.

new algorithm can converge to the global solution with a reasonable number of func-

tion evaluations even up to n = 8; see, e.g., Fig. 4.5. Here, we apply Algorithm 4.2

with BFGS to a variety of examples with di↵erent numbers of local refinement steps

(LRS), global exploration steps (GES) and mesh refinement steps (MRS). Optimiza-

tions in these higher dimensions were simply not possible using Algorithm 4.1, due to

the high computational cost of computing Delaunay triangulations in these dimensions.

Note also that ⌘ specifies a trade-o↵ between global exploration and local re-

finement, and it is desired to decrease ⌘ as the dimension of the problem is increased

in order to perform more local exploration rather than expensive global searches. In the

case of a low-dimensional problem (n < 6), the performance of the algorithm is not

highly sensitive to the choice of ⌘; therefore, in most of the simulations reported here,

we have taken ⌘ = 0.8. As we increased the dimensionality of the problems considered,

we generally found that reducing the value of ⌘ was beneficial, in order to focus more

on local refinement.
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4.6 Conclusions

This paper introduces a modification to the Delaunay-based derivative-free op-

timization algorithm scheme �-DOGS(Z), as proposed in [59], accounting for gradient

information in order to accelerate the local refinement iterations. The new scheme, Al-

gorithm 4.2, has three main modifications as compared with the original �-DOGS(Z)

algorithm:

• A criterion (4.7) for the anticipated reduction due to a local refinement step is

introduced, in order to decide between taking a derivative-based local refinement

step or a derivative-free global exploration step at each iteration. This criterion

has an adjustable parameter ⌘; values in the range of ⌘ = 0.5 to ⌘ = 0.8 were

found to be e↵ective.

• A new trust-region local optimization method is used, in which the trust region

is characterized by the constrained Voronnoi cell of the available datapoints in

the (bound) feasible domain. To guarantee local convergence of the trust-region

method, all the datapoints are coordinated by a grid, with this grid being succes-

sively refined as the optimization algorithm proceeds.

• In order to accelerate the convergence of local refinement scheme and the hybrid

method that uses it, Algorithm 4.2, the Hessian of objective function is approxi-

mated via the usual BFGS formula.

Proof of global convergence of the new scheme, under the appropriate assumptions, is

established. Further, in the numerical experiments we have performed thus far, Algo-
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rithm 4.2 is found to significantly accelerate local convergence, to handle e�ciently

nonconvex functions with many local minima, and to scale better with dimension than

purely derivative-free global optimization approaches.
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Chapter 5

Implementation of dense lattices to

accelerate Delaunay-based

optimization: �-DOGS(⇤)

I will not say I failed 1000 times, I will say that I discovered there are 1000 ways

that can cause failure. —Thomas Edison

5.1 Introduction

This chapter presents a derivative-free optimization algorithm to minimize a pos-

sibly nonconvex function with the feasible domain in a parameter space that is a simple

135
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convex region bounded by linear inequality constraints:

minimize f (x) with x 2 L = {x | A x  b}, a < b. (5.1)

where x 2 Rn, f : Rn ! R, A 2 Rm⇥n, b 2 Rm.

Many modern optimization approaches for shape optimization of computer-aided

designs converge without derivative information, and require only weak regularity con-

ditions [5, 7, 29, 60] to solve problems in the form of (5.1). Since neither the derivative

information of the objective function nor the analytical expression of f (x) is usually

available, derivative-free optimization is an attractive method to find an optimal solu-

tion for (5.1), and has a wide range of applicability in engineering, finance, computa-

tional chemistry, computer science, and social science. The methods are suitable for

problems in which f (x) is computationally/experimentally expensive to evaluate, when

f (x) may be locally nonsmooth, and when derivative information may be unavailable or

unreliable. In derivative-free optimization, there are local and global schemes:

Local derivative-free optimization methods, like the Direct search methods [22],

involve the comparison of each trial solution with the best previous solution. This class

includes the most common derivative-free methods, such as General Pattern Search

(GPS) [79, 80] and Mesh Adaptive Direct Search methods [24, 26, 27]. The advan-

tage of these methods is the easy implementation, suitably for black-box optimization

problems, and rigorous convergence analysis to a first-order stationary point (or to a

KKT point). They do so in part by leveraging lattice theory. However, Direct search
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methods can only converge to a local solution, and require many function evaluations to

explore the feasible domain globally, due to the lack of an appropriate global search ex-

ploration. Most of the Direct search methods quantize the points on the Cartesian grid,

but it was shown in [28] that usage of other lattices, such as di↵erent packing lattices,

could enhance the convergence results.

On the other end, global derivative-free optimization methods seek to find a

global solution of the nonconvex problem (5.1). Global optimization usually is classified

into deterministic and stochastic approaches.

Stochastic approaches usually perform exhaustive random sampling in the feasi-

ble domain based on a search strategy [81]. On the other hand, Deterministic approaches

can be leveraged when information exists about the objective function, making them a

popular approach in simulation-based optimization. Response surface methods (RSMs)

and branch and bound methods are the prime examples of deterministic approaches.

Branch and bound methods split the optimization search into a tree of subsets,

and make decisions about the protectiveness of the subsets for refinement and further

search by imposing some conditions on the objective function. The most popular con-

dition for the objective function is the bound for the Lipschitz norm [82, 83]. Under

appropriate conditions on the objective functions, this class of optimization methods

are provably globally convergent. However, this approach overemphasizes the global

search, and as a result, has issues with the speed of convergence. Moreover, in prac-

tice, implementation of such a scheme requires that a non-di↵erential search function

is minimized at each iteration, making the branch and bound methods computationally
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intractable as the dimension of the problem and generated datapoints increase.

Due to such problems, RSMs are a more popular approach for shape optimiza-

tion to solve (5.1). RSMs employ a surrogate model based on the available datapoints

to approximate the behavior of objective functions over the feasible domain. The Sur-

rogate Management Framework (SMF) [29] is the most well-known scheme. SMF uses

a Kriging-based surrogate model for the global exploration. However, as the datapoints

accumulate close to a minimizer of the problem, the behaviour of this surrogate model

becomes ill-conditioned. To guarantee the convergance and increase the speed of the

method, usually RSM is combined with Direct search methods.With such methods, a

surrogate model is used which builds both an approximation of the function itself, p(x),

as well as a model of the uncertainty of this estimate, e(x), over the entire feasible do-

main of parameter space.

Delaunay-based Derivative-free Optimization via Global Surrogates (�-DOGS)

is a family of RSM algorithms designed for low-dimensional optimization problems, in

which the objective function is both nonsmooth and expensive to evaluate [37]. The

novelty of the �-DOGS algorithms is in modeling the surrogate function uncertainty

regardless of the surrogate itself. However, the convergence to a global minimum is

guaranteed if and only if the maximum circumradius of all the triangulations in the

domain of solutions is bounded.

During the optimization process, �-DOGS models the objective function with a

(computationally inexpensive) interpolating “surrogate”, and represents the uncertainty

of the surrogate using a synthetic piecewise-quadratic model built on the framework of
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a Delaunay triangulation of the available datapoints. Unfortunately, the behavior of this

artificially-generated uncertainty function is sometimes found to be somewhat irregular

near the feasible domain boundaries.

This issue is addressed first in [37] by proposing the boundary constraint projec-

tion algorithm to guarantee the convergence and regularize the behaviour of the uncer-

tainty function by bounding the maximum circumradius of the triangulations. Later, [59]

used �-DOGS(Z), and showed that even by using the boundary constraint projection al-

gorithm, the surrogate uncertainty function behaves irregularly close to the boundary of

feasibility. Thus, to solve the bound simple problem, [59] focused exclusively on simple

bound constraint problems, and restricted the point to lie on the Cartesian grid, which

is successively refined as the algorithm converges to an optimal solution. However, this

solution cannot be extended to the linear constraint problems, and the data points are

restricted to only lie on the Cartesian grid points.

This chapter introduces �-DOGS(⇤), which generalizes �-DOGS(Z) to tackle

linear constraint problems, similar to [37], to address more general problems. To solve

such problems, we consider two search functions, a “discrete search function” (over

existing datapoints) and a “continuous search function” (over the entire feasible do-

main), while restricting the datapoints to lie on any general grid (which coincides with

the corners of the feasible domain) that is successively refined as convergence is ap-

proached. This quantization strategy e↵ectively prevents datapoints from clustering near

the boundary of the feasible domain. Moreover, this chapter considers the more di�cult

case with linear constraints on the feasible domain, for which the generalization of [59]
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is non-trivial.

The structure of this chapter is as follows: Section 5.2 and 5.3 introduce the

innovative elements that compose our quantization process, and a new approach to con-

struct the lattice points on a linear constrained domain. Moreover, the new algorithm

itself, dubbed �-DOGS (⇤), is described. In addition, section 5.2 analyzes the conver-

gence properties of the new algorithm, and establishes conditions which are su�cient to

guarantee its convergence to the global minimum. Section 5.4 presents the concept of

acceptable quantizers, an extension of the concept of the minimum distance quantizer

defined in [59] that we need for our innovative algorithm. Section 5.5 applies the new

algorithm to a selection of benchmark problems in order to illustrate its behavior and

performance. Some conclusions are presented in Section 5.6.

5.2 Delaunay-based optimization for linearly constraint

domains

5.2.1 Initialization

In contrast to the algorithms developed in [1, 37, 58], the algorithm developed

here is initialized by two di↵erent sets of points, “evaluated set” and “support set”. There

is no need to perform function evaluations at all of the vertices of the feasible domain L

[59]; however, it is more e�cient to initialize with a set of n + 1 points whose are inte-

rior points. These n + 1 points which are a�nely independent are initial evaluated set.



141

This is useful since in many application based problems there are some prior knowledge

for the position of the minimizer exist. If such a prior knowledge was not available the

initial points are considered the position of the body center of the feasible domain with

n perpendicular basises. On the other hand, the initial support set points are determined

by the following procedure:

(A) find all of the vertices of the feasible domain L,

(B) remove all redundant constraints from the rows of A x  b, and

(C) project out any equality constraints implied by multiple rows of A x  b. In fact,

we project the feasible domain onto the lower dimensional space that satisfies the

equality constraints.

This procedure will be described in detail in §2 of [37]. The optimization algorithm

developed in this work builds a Delaunay triangulation within the convex hull of the

available points in both evaluated set and support set, and incrementally updates this

Delaunay triangulation at each new datapoint (that is, at each new feasible point x 2 L

at which f (x) is computed as the iteration proceeds) [37, 84].

In the case of box constraints, [59], step (A) of the above procedure corresponds

to 2n function evaluations which are trivial to enumerate and it has been studied in [59].

In the more general case of linear constraints, (5.1), identifying the vertices of

the feasible domain is slightly more involved and an algorithm is introduced in [37]

to find the vertices of the domain in this case. All of these points are considered as
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support points to build Deluanay triangulation over the feasible domain. We review this

brute-force procedure to find all of the vertices of the feasible domain then:

1) Check the rank of all
⇣

m
n

⌘

n ⇥ n linear systems that may be chosen from the m > n

rows of Ax  b,

2) For those linear systems in step 1 that have rank n, solve for the active set of

constraints at a given point x̂ 2 Rn in parameter space, denote as Aa(x̂) x̂ = ba(x̂).

3) For each solution found in step 2, check to see if Ax̂  b; if this condition holds,

then point x̂ is a vertex.

5.2.2 Description of the optimization algorithm

Before presenting the algorithm some preliminary concepts we review the key el-

ements of Delaunay-based Derivative-free Optimization via Global Surrogates, dubbed

�-DOGS as well as the essential modification for the lattice-based version of the algo-

rithm.

This algorithm is a global, derivative-free optimization algorithm to solve (5.1)

using successive function evaluations inside a feasible domain to find the global min-

imum. At each iteration of the algorithm, a metric based on an interpolation of the

existing function evaluations, a model of the uncertainty of this interpolation, and the

target value of the optimization f0 is used to find the best possible candidate point for

the next function evaluation. In this work, the interpolating function and the uncertainty

function, see Definition 11, at iteration k are denote by pk(x) and ek(x), respectively.

This method can handle any well-behaved interpolation strategy which is twice di↵er-
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entiable with bounded Hessian at all iterations. For the uncertainty function, a piecewise

quadratic function is used which is nonnegative everywhere, and which goes to zero at

the available datapoints.

The uncertainty function e(x) has a number of properties which are established

in Lemmas [2:5] of [37], as listed bellow:

a. The uncertainty function e(x) � 0 for all x 2 L, and e(x) = 0 for all x 2 S .

b. The uncertainty function e(x) is continuous and Lipschitz.

c. The uncertainty function e(x) is piecewise quadratic, with Hessian of �2 I.

d. The uncertainty function e(x) is equal to the maximum of the local uncertainty

functions:

e(x) = max
1in

ei(x). (5.2)

Remark 11. Consider S as a set of feasible points that includes the vertices of L as

the set of unevaluated points S U and some initial points as a set of evaluated points S E.

Consider � as a Delaunay triangulation [38] for S . Then, for each simplex �i 2 �, the

local uncertainty function is defined as:

ei(x) = (ri)2 � kx � zik2. (5.3)

where zk
i , and rk

i are the circumcenter, and the circumradius of the simplex �k
i . The
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global uncertainty function, defined as

e(x) = ei(x), 8x 2 �i, (5.4)

Lemma 9. Consider ek(x) and ek+1(x) as the uncertainty functions defined based on the

set S k and S k+1 such that S k+1 = S k [ xk then ek+1(x)  ek(x).

Proof. Define �k and �k+1 as the Delaunay triangulation of the set of points S k, and

S k+1. If x 2 �k
r such that �k

r ✓ �k \ �k+1
r , then ek+1(x) = ek(x) trivially. Otherwise,

x 2 �k+1
j < �k. According to the properties of the Delaunay triangulation, there is a

simplex �k
i 2 �k which is not in �k+1 and shares n vertices like {V1, . . . ,Vn} with �k+1

j

and xk is the other vertex of �k+1
j . Define function L(y) = ek

i (y) � ek+1
j (y)

L(y) = (rk
j)

2 � (rk+1
i )2 + kzk

i k2 � kzk+1
j k2 � 2

h

(y � zk
j) � (y � zk+1

i )
i

. (5.5)

Therefore, the function L(y) is linear that its minimum is located at one of its

vertices. By construction L(Vi) = 0. Moreover, since �k
i is a simplex in �k which is not

in �k+1, xk is located inside the circumesphere of �k
i which leads to ek

i (xk) > 0. As a

result, L(x) � 0.

Moreover, according to Lemma 4 [37], ek(x)  ek+1
j (x) which establishes this

lemma. ⇤

Let S be a set of points in L which is partitioned into two subsets, S = S E [ S U ,

each defined as follows:
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• S E: the set of evaluated points where the function values are available.

• S U : the set of support points where the function values are not available. S U is

helpful during portioning L with triangulations.

Given the target value f0 then the continuous search function at iteration k, denoted

sk
c(x), is defined for all x 2 L such that

sk
c(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

pk(x) � f0

ek(x)
if pk(x) � f0,

pk(x) � f0 otherwise,

(5.6a)

whereas the discrete search function at iteration k, denoted sk
d(x), is defined for all x 2 L

such that

sk
d(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

pk(x) � f0

Dis{x, S k
E}

if pk(x) � f0,

pk(x) � f0 otherwise,

(5.6b)

where ek(x) is the uncertainty function (see Remark 11) constructed with all the points in

S k, pk(x) is an interpolating function passing through all the points in S k
E, and Dis{x, S k

E} =

minz2S k
E
kx � zk.

Definition 14. Let us consider x as a point in L, and S as a nonempty set of points in L,

such that z 2 S is the closest point in S from x. The pair (x, S ) is called activated if and

only if Aa(x) ✓ Aa(z), where Aa(x) is the set of active constraints at x.

Remark 12. If there are multiple points z which share the minimum distance from x in

S , e.g., see Fig. 5.1 (c), then the pair (x, S ) is activated if, for all such z, Aa(x) ✓ Aa(z).
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Remark 13. If x is on the interior of L, then the pair (x, S ) is activated for any nonempty

set S . However, if x is on the boundary of L, the pair (x, S ) may or may not activated,

depending on the position of x and the points in S (see Fig. 5.1).

5.2.3 Strawman form of algorithm

Now we have all of the tools to present the modified optimization algorithm, �-

DOGS(⇤), to incorporate any dense lattice, and to solve problems with general linearly

constrained domains. The steps of the algorithm are presented in Algorithm 5.1. �-

DOGS(⇤) is the extended version of the �-DOGS(Z), optimization algorithm presented

in [59], with two major improvements:

1. Instead of being limited to Cartesian grids, any dense lattices may be employed,

and

2. the boundary of feasibility is generalized to linear constraint domains.

In [59], three main concepts were introduced to improve the performance of �-DOGS

algorithm presented in [37]. In this chapter, to obtain the Algorithm 5.1 for linear con-

straint domain, we follow principles similar to those introduced by [59] to improve the

performance of �-DOGS algorithm:

1. The datapoints in Algorithm 5.1 are restricted to lie on the fitted lattice that is

occasionally refined as the iteration proceeds.

2. At each iteration, two di↵erent sets of points, “evaluated set” and “support set”,
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Algorithm 5.1 Modified Delaunay-based optimization algorithm, �-DOGS(⇤), minimizing
f (x) : Rn ! R subject to A x  b using f0 as the target value.

1: Set k = 0 and initialize `. Take the initial set of support points S 0
U as all 2n vertices

of the feasible domain L. Choose at least n + 1 points on the initial grid, n + 1 of
which are a�nely independent, put them in S 0

E, and calculate f (x) at each of these
points.

2: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through
all points in S k

E.
3: Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points

in S k = S k
U [ S k

E.
4: Find xk as the minimizer of sk

c(x) in L, and take yk as its quantization onto the grid
L`.

5: Find wk as the minimizer of sk
d(x) in S k

U .
6: If the pair (xk, S k) is not activated (see Definition 14), then: If yk < S k, take S k+1

U =

S k
U [ {yk}, increment k, and repeat from 2; otherwise, take S k+1

U = S k
U � {yk}, S k+1

E =

S k
E [ {yk}, calculate f (yk), and increment k; if f (yk) > f0, repeat from 2, otherwise

halt.
7: If sk

d(wk)  sk
d(xk), then take S k+1

U = S k
U � {wk}, S k+1

E = S k
E [ {wk}, calculate f (wk),

and increment k; if f (wk) > f0, repeat from 2, otherwise halt.
8: If yk < S k

E, then take S k+1
E = S k

E[{yk}, calculate f (yk), and increment k; if f (yk) > f0,
repeat from 2, otherwise halt.

9: Increment both ` and k, and repeat from 2.

are considered. Function evaluations are available only for the points in the eval-

uated set that mostly contains internal points.

3. Two di↵erent search functions, “continuous search” function and “discrete search”

function are considered at each iteration. The continuous search function is min-

imized over the entire feasible domain L and the discrete search function is only

minimized only over the points in the support set.

Define xk as the minimizer of the continuous search function, sk
c(x), in L and wk

as the minimizer of the discrete search function sk
d(x) in S k

U . Furthermore, define yk as

the quantization of xk onto the grid L`.
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There are four possible cases at each iteration of Algorithm 5.1:

(1) The pair (xk, S k) is not activated (see Fig. 2a). This is called the inactivated step,

then either:

(a) yk is a new point and simply added to S k
U , and no function evaluation is

performed, [are said to be inactivated exploring step] or

(b) yk is an already observed point in S k
U , and f (yk) is calculated [are said to be

inactivated improving step] and then yk is removed form S k
U and added to

S k
E.

(Note that the other three steps below, in contrast, are said to be activated.)

(2) The pair (xk, S k) is activated and sk
d(wk) < sk

d(xk). This is called the activated

replacing step: wk is removed from S k
U , added to S k

E, and f (wk) calculated.

(3) The pair (xk, S k) is activated, sk
d(xk)  sk

d(wk), and yk < S k
E. This is called the

activated improving step: the new point yk is added to S k
E, and f (yk) is calculated.

(4) The pair (xk, S k) is activated, sk
d(xk)  sk

d(wk), and yk 2 S k
E. This is called the

refinement step: L` is refined, and the sets S k
E and S k

U are unchanged.

Note that these four possible cases are the same as steps 6:9 of the Algorithm 5.1.

At any given iteration k of Algorithm 5.1, exactly one of the above four cases

applies, and the corresponding step is taken.
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xk
yk

wk

(a) Inactivated step.

xk

yk

wk

(b) Activated step for xk 2 interior(L).

xk

yk wk

(c) Activated step for xk 2 @ L,
wk 2 S k

E , S
k
U .

Figure 5.1: Activated and inactivated steps for di↵erent situations. Squares: S k
E , stars: S k

U . xk,
yk and zk are shown by filled square, triangle, and square respectively.
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Definition 15. Consider the reduction factor ⌘ = 1 in 4.7 and xk as the minimizer of

the pk(xk), the surrogate model of the objective function at iteration k, then we call the

iterations of Algorithm 5.1 for which pk(xk) < f0, trust restriction iterations.

When pk(xk) << f0, the value of the interpolation itself may be unreliable near

xk [59]. In this scenario, it was proposed in [59] to evaluate a point x, such that

pk(x) = f0 (which is, thus, closer to the existing datapoints), and evaluate the function

at x instead. This approach is similar to the trust region approach in derivative-based

optimization (see, e.g., [85]).

We accomplish this at the end of step 4 of Algorithm 5.1: if pk(xk) < f0, a trust

restriction iteration, then a point xc is identified as the closest point in S k
E to xk (since

the algorithm has not yet terminated, pk(xc) > f0). Afterward a point x̂ is found on the

segment between xc and xk such that pk(x̂) = f0. Finding x̂ in one-dimensional space

is similar to the root finding problem. For higher dimensions in [59], a false position

method is proposed to find x̂ such that pk(x̂) = f0.

5.2.4 Convergence analysis

In this section, we provide the convergence proof to a global minimizer for Al-

gorithm 5.1. However, most of the analysis will be referred from §4 in [59].

We now analyze the convergence properties of Algorithm 5.1. If the algorithm

terminates after finite number of iterations k, then a point xk is found for which the

function value is less than or equal to the target value f0; otherwise, all computed values
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of the objective function are greater than the target value. In this section, we will show,

in the latter case, that a limit point of the datapoints that are obtained in the evaluation

set S E includes a feasible point whose objective function is equal to the target value.

Therefore, for this analysis, we will assume that Algorithm 5.1 proceeds for an infinite

number of iterations.

Before analyzing the convergence of Algorithm 5.1, we first show that Algorithm

5.1 includes an infinite number of mesh refinements. To show this, a preliminary lemma

is first established.

Remark 14. If iteration k is an inactivated iteration of Algorithm 5.1; then, either

T (xk) = yk < S k or T (xk) = yk 2 S k
U. It was established in Lemma 1 of [59] that

by using the nearest neighbor quantizer on the Cartesian lattice in the simple bound

domain that if a step is inactivated, then yk < S k. However, this lemma is not valid for

the acceptable quantizer (see Definition 20) on the fitted lattice (see Definition 16) in

the linearly constrained domain. This is one of the di↵erences between the �-DOGS(Z)

and the Algorithm 5.1.

Since acceptable quantizer, T (xk), is not the nearest neighbor quantizer, if the

pair (xk, S k) is inactivated step, then considering yk = T (xk) either:

(a) yk is a new point, or

(b) yk is an already observed point in S k
U .

We resolved resolved this problem in the way that: if (a) is true then yk is simply added
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to S k
U , and we do not perform function evaluation; and if (b) is true, then we calculate

f (yk) and add it to S k
E.

Theorem 7. There are an infinite number of mesh refinement iterations if Algorithm 5.1

proceeds without terminating.

Proof. This theorem is established by contradiction. Assume that there are a finite num-

ber of mesh refinement iterations as Algorithm 5.1 proceeds, then all datapoints must lie

on a grid with some level `. At each iteration of Algorithm 5.1,

• if it is activated improving, then |S k
E | and |S k| are both incremented by one.

• If it is activated replacing, then |S k
E | is incremented by one and |S k| is fixed.

• If it is inactivated improving, then |S k
E | incremented by one and |S k| is fixed.

• If it is inactivated exploring, then |S k
E | is fixed and |S k

E | is incremented by one.

Therefore, at each iteration of the algorithm which is not mesh refinement, we will

increment the value of |S k| + |S k
E | by at least one. Since the number of points on the

grid of level ` is finite, we must have only finite number of iterations which are not

mesh refinements, which is in contradiction with the fact that there are infinite number

of iterations for Algorithm 5.1. ⇤

We now analyze the convergence of Algorithm 5.1. To do this, the following

conditions are imposed for the objective and interpolating functions.

Assumption 10. The interpolating functions pk(x), objective function f (x), and pk(x)�

f (x) are Lipschitz with the same Lipschitz constant L̂.
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Assumption 11. A constant K̂ > 0 exists for which

r2{ f (x) � pk(x)} + 2 K̂ I > 0, 8x 2 L and k > 0, (5.7)

r2{pk(x)} � 2 K̂ I < 0, 8x 2 L and k > 0, (5.8)

r2{ f (x)} � 2 K̂ I < 0, 8x 2 L. (5.9)

We now establish six properties that prove convergence.

Property 6. Consider G(x) as a twice di↵erentiable function such that r2G(x)�2 K1I 

0, and x⇤ 2 L as a local minimizer of G(x) in L. Then, for each x 2 L such that

Aa(x⇤) ✓ Aa(x), we have:

G(x) �G(x⇤)  K1kx � x⇤k2. (5.10)

Property 7. Consider k as an iteration of Algorithm 5.1 which is activated and a trust

restriction. Then

pk(zk) � f0  2 {K + K̂}kxk � zkk2, (5.11)

where K = sk
c(xk) > 0.

Property 8. Consider x⇤ as a global minimizer of f (x) in L. Then, for each iteration of

Algorithm 5.1 which is not a trust restriction, we have:

min{ s
k
c(x⇤)
K̂
,min

z2S k
U

{
sk

d(z)

L̂
}}  2. (5.12)
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Property 9. Consider k as a mesh refinement iteration of Algorithm (5.1) which is not

a trust restriction. Then

min
z2S k

E

f (z) � f0  max{3 L̂ �k, 6 K̂ �2
k}, (5.13)

where �k is the maximum discretization error of the Cartesian grid L` at this iteration.

Property 10. If iteration k of Algorithm 5.1 is a mesh refinement and a trust restriction,

then pk(xk) = f0. Additionally, pk(x) is Lipschitz with constant L̂; therefore,

pk(yk) � f0  L̂kxk � ykk  L̂�k. (5.14)

Moreover, yk 2 S k
E, then

f (yk) � f0  L̂kxk � ykk  L̂�k. (5.15)

Remark 15. The proof of properties 1:4 are established in Lemma 2:4 of [59].

Lemma 10. If Algorithm 5.1 is not terminated at any iteration, then the set S1 =

limk!1 S k has a limit point, denoted v 2 L, such that f (v) = f0.

Proof. According to Theorem 7, there is an infinite number of mesh refinement iter-

ations during the execution of Algorithm 5.1, denoted here {k1, k2, . . . }. Define vi =
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argminz2S ki f (z). Using Property 9 and Property 10, then:

f (vi) � f0  max{3 L̂ �ki , 6 K̂ �2
ki
}, (5.16)

Since Algorithm 5.1 is not terminated at any iteration, then f (vi) � f0 � 0. On the

other hand, limi!1 �ki = 0, which leads to limi!1 f (vi) = f0. This proof is analogous to

Theorem 2 of [59]. ⇤

It was shown in [59, 60] that while the datapoints are restricted to the Cartesian

grid, �-DOGS algorithms could be globally convergent under some appropriate condi-

tions. In this section, we introduce the fitted lattice concept to restrict the datapoints

using acceptable quantizer within a linear constraint domain L. In the next section,

we introduce fitted lattice and acceptable quantizer to guarantee the convergence of �-

DOGS(⇤).

5.3 Fitted lattice

In this section, we will present a new concept dubbed “fitted lattice”, which is

applied in �-DOGS(⇤) to improve the performance of the optimization algorithm �-

DOGS(Z) developed in [59]. �-DOGS(Z) is based on the concept of the Cartesian grid,

which is defined only for the bound constrained domain [59]. However, the Cartesian

grid is not an e�cient grid based on the concept of the packing density in the lattice

theory, and are not the only choice for discreting parameter space. There are two key
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drawbacks with Cartesian approaches for such applications. First, the discretization

of space is significantly less uniform when using the Cartesian grid as opposed to the

available alternatives, as measured by the packing density, the covering thickness, and

the mean-squared quantization error per dimension [28, 78]. Second, configuration of

the nearest-neighbor gridpoints is significantly more limited when using the Cartesian

grid, as measured by the kissing number [78], which is an indicator of the degree of

flexibility available when selecting from nearest-neighbor points. Therefore, we will

now introduce the concept of the fitted lattice to implement other dense lattices.

Definition 16. A sequence of set of points M` for ` = {1, 2, . . . } is called a fitted lattice

for the feasible domain L, if and only if,

1. For all `, M` includes all vertices of the feasible domain. Moreover, all elements

of M` must be in L.

2. A sequence (M`)1`=1 of set of points is a nested sequence, which means

M` ✓ M`+1 where 8` 2 {1, 2, . . . }. (5.17)

3. The set M1 = lim`!1 M` should be a dense subset of L. In other words, each

point in L is a limit point of M1.

Remark 16. The union of M`

M1 =
1
[

`=1

M`,
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is dense in L if M̄1 = L, where M̄1 is the closure of M1 that includes all points in M1

as well as all its limit points.

Remark 17. M` icludes a finite number of points for all ` 2 {1, 2, . . . }.

The Cartesian grids are an example of nested fitted lattices and dense series of

points that hold all the above properties for a bound constrained domain.

Using the properties of fitted lattice, it is easy to show that above-mentioned

properties 1:3 gets satisfied to show that �-DOGS is convergent to the global minimum.

We now need to define a quantization process for the fitted lattice in a way to be able to

satisfy other properties.

5.3.1 Constraint-based-partition

We will now develop a concept we require to construct a wide range of fitted

lattices and acceptable sequences of quantizers for a linearly constraint domain L.

Definition 17. Let us consider S , a set of point in L. Moreover, P1, P2, . . . , P2m is the

power set of the {1, 2, . . . ,m}, where m is the number of linear constraints in L. Then

the partition S 1, S 2, . . . , S 2m is a constraint-based partition for S with slag of d > 0, if

8i 2 {1, 2, · · · , 2m},

aT
j x = bj, 8 j 2 Pi, and bj � aT

j x � d, 8 j < Pi.

Fig. 5.2 illustrates an example of the constraint-based-partitions for a 2D prob-
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(a) Vertex points with at least n binding
constraint.
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(b) Partition with one binding constraint
and coarse Cartesian grid points.
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(c) Partition with one binding constraint
suitable for Cartesian grid.
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(d) Interior points with no binding
constraint.

Figure 5.2: Constraint partitions points (red squares) for a 2D problem with m = 3.

lem constrained with three linear constraints.

Another concept we need in order to define the generalize grid is the classical

concept of lattice. We refer to the construction of unconstrained lattices in [28].

5.3.2 Laminated lattice

The most basic families of lattices are often referred to as root lattices due to

their relation to the root systems of Lie algebra denoted Zn, Dn, An, and En. The basic

matrix for each for these lattices are denoted by BZn , BDn , BAn , and BEn, respectively.
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Moreover, it was observed (Fig. 5.2) that dense lattices could possibly help us

increase the total number of points in each partition while the feasible constraint is de-

fined by a set of linear constraints. However, this task is problem-dependent, and dense

lattices can o↵er more appropriate distribution of the points on the binding constraints.

See [86] for more information about dense lattices and their properties.

Any real lattice is defined simply as the integer linear combinations of the

columns of an appropriate basis matrix B. In this work, we considered seven laminated

densest lattices ⇤2 through ⇤8, are given by

We now introduce methods for quantization from an arbitrary point x in Rn onto

its quantizaiton point, T (x), on a discrete lattice, which may be defined via integer linear

combination of the columns of the corresponding basis matrix B⇤i . The solution to this

problem is lattice specific, and explained lattice-by-lattice in [78, 86] 1.

Remark 18. The unconstrained quantization is defined as the minimum distance of

point x from the lattice points M` at grid level `.

T (x) = min
y2M`
kx � yk (5.18)

The regular quantizer of a point x with respect to the set of points in M` is calculated by

rounding each element of x to the nearest point in M`.

For the unconstrained quantization process for any dense lattice see [86, 87].
1Note also that we neglect the problem of scaling of the lattices in this discussion, which needs to be

considered.
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We now develop a framework to construct a fitted lattice for the domain L based

on the constraint-based partition, and a lattice with basis matrix B.

Definition 18. The minimum distance of point x from a set of points M`, defined as

Dist{x,M`} = min {kx � zik |8zi 2 M`} . (5.19)

The nearest neighbor quantization of a point x to M`, is xq = Dist{x,M`}. Also,

the maximum quantization error (i.e., in the language of sphere packing theory, the

“covering radius") of the lattice, ⇢M` , is defined as follows:

⇢M` = max
x2M`
kx � xqk (5.20)

5.3.3 Fitted lattice for linearly constrained domains

In this subsection, we will describe the construction of the fitted lattice and the

quantization process for a linearly constrained domain using the properties of fitted lat-

tice (see Definition 16) and acceptable quantizers (see Definition 21).

According to Eq. (5.1), the feasible domain L is characterized with m linear

constraint functions.

We will now construct the elements of the fitted lattice, M`, at the grid level ` as a

sequence of nested and dense points. Using constraint based partitioning (see Definition
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17), we can decompose M` into 2m number of subsets as follows:

M` =
[

S2P(1:m)

M`,S (5.21)

where P the power set of {1,2,. . . ,m} and M`,S is the fitted lattice, M`, at the grid level

`. By construction, each point in M`,F can be characterized as follows:

AS x = bS , AŜ x < bŜ ,

where AS include those constraints whose indices are in S , and AŜ includes rest of the

constraints. By defining US as the basis matrix for the null space 2 of AS , each point x

can be written as follows.

x = OS +
1
N`

US r, AF̂[
1
N`

US r] < bŜ � AŜ OS ,

where OS is the projection of the origin on the space bS � AS x = 0, and r 2 RtS , where

tS is the dimension of the null space of AS .

Now we will construct the set M`,S such that for all z 2 ZtS , then

x = OS +
1
N`

US [BtS z],
1
N`

AŜ US [BtS z] < bŜ � AŜ OS � ✏`, (5.22)

where the matrix BtS is the basis matrix of ts-dimensional space for the desired lattice
2US is a matrix whose column are an orthonormal basis for the null space of AS .
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lattice, and "` is the pre-imposed mesh slack defined as follows.

Definition 19. The pre-imposed mesh slack at mesh level `, denoted "`, is defined by

"` =
D(L)
N`

where D(L) is the diameter of the feasible domain L, and N` is the number of grid points

in M`.

In constructing the fitted lattice on the active subspace of domain x, some points

will fall too close to the vertices. These points will be removed see Fig. 5.3.

Points near the (n � 1)-dimensional boundaries of the feasible domain are quan-

tized to (n�1)-dimensional lattices defined over these boundaries; points near the (n�2)-

dimensional “edges” of the feasible domain are quantized to (n�2)-dimensional lattices

defined over these edges, etc. A carefully-controlled “gap” is required (and, used) be-

tween each of these families of quantization lattices in order to assure convergence.

Remark 19. It is essential to consider some special cases for M`,S :

a. If the set S = ;, then OS is the origin, and US is equal to the Identity matrix. As

a result, all unconstrained points of the mesh which are su�ciently far from the

boundaries of the feasibility are in M`,S .

b. If the null space of the matrix AS is empty, then there are two possible situations:

either the set M`,S is empty, or it includes exactly one of the vertices of L.
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(a) Project the origin to the active
constraint as a point OS .
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(b) At the projected domain, consider the
fitted lattice.
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(c) Construct the fitted lattice using pre-imposed slack on a partition. The points that are
located inside the gap are removed (green points).

Figure 5.3: Generation of the fitted lattice on a constraint-based-partition. The green marked
points get eliminated and only the red points remain in the fitted lattice.
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(a) 1-dimensional case. (b) 2-dimensional case.

(c) 3-dimensional case.

Figure 5.4: Illustration of the interior points for a fitted lattice in 1, 2, and 3 dimensions using
the Cartesian lattice as a Basis function. M`,; = {OS +

1
N Us Bn�|S |},

Fig. 5.4. shows the construction of fitted lattice, M`,S , on each partition. In 3D

it gives a uniform pyramid, while in 2D it is illustrated by a triangulation.

We will now develop an acceptable quantizer for this fitted lattice.
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(a) The quantizaiton of x on the lattice.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

zℓ

(b) Projection into a vertex.

Figure 5.5: x and its acceptable quantizer, z`.

5.4 Acceptable quantizers

5.4.1 Acceptable quantizer

In addition to the concept of the fitted lattice, we need the concept of acceptable

quantizers, which is an extension of the concept of the minimum distance quantizer

defined in [59]. An acceptable quantizer can be found by Algorithm 5.2 (see section

5.4.2), and is defined as follows:

Definition 20. A set of point {z`} is an acceptable sequence of quantizers of point x on

the fitted lattice M`, if the following properties hold:

1. The sequence z` must be in M`.

2. The set of binding constraints must be preserved by the quantization process. In

other words,

Aa(x) ✓ Aa(z`), (5.23)
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where Aa(.) is the set of active constraints of its argument.

3. The sequence z` must converge to x.

lim
`!1
kx � z`k = 0. (5.24)

Moreover, the point z` is called the quantize of x on level `.

Remark 20. The Cartesian grid defined in [59] is a fitted lattice, and the minimum

distance quantizers defined as z` = argminy2M`ky � xk will construct an acceptable se-

quence of quantizers for the bound constraints domain.

Remark 21. The series of quentizers Ti(x) = argminy2Mi
kx � yk is an acceptable quan-

tizer for the Cartesian grid. This series is typically called the nearest neighbor quantizer.

This series is not acceptable for other fitted lattices, since condition 2 in Definition 20

may not be satisfied (see Fig. 5.6).

Remark 22. The series of function Ti(x) : L! Mi, acceptable series of quantizers, have

the covering radius (maximum quantization error) over the feasible domain L equal to

⇢i = max
x2L

kTi(x) � xk.

According to condition 1 for the series of acceptable quantizer, we have limi!1 ⇢i = 0.

Definition 21. The series of function T`(x) : L ! M` are called acceptable quantizers

for the fitted lattices M`, if they have the following properties:
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x
z

1

z
2

Figure 5.6: An acceptable quantizer of x needs to satisfy Aa(x) ✓ Aa(T`(x)), where Aa(z) is the
set of active constraints at point z. In this case, z2 is the acceptable quantizer of x even though

point z1 is closer to x.

1. T1(x) = x which implies that as ` approaches to infinity, then T`(x) should uni-

formly converge to the point x.

2. If x belongs to M`, then T`(x) = x. .

3. Consider x 2 L and T`(x) 2 M` then Aa(x) ✓ Aa(T`(x)), where Aa(z) is the set of

active constraints at point z.

Moreover, the covering radius (maximum quantization error) for the feasible domain L

quantized onto the fitted lattice M` is defined as

⇢M` = max
x2L
kT`(x) � xk,

Since M` is dense in L then lim`!1 ⇢M` = 0.
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5.4.2 Algorithm to find an acceptable quantizer

Now we want to develop the functions T`(x) : L ! M` which is an acceptable

quantizer. The primary objective for the acceptable quantizer, T`(x) : L ! M`, is that

points in the interior of the fitted lattice, M`, be denser than those in regions close to the

boundary of feasibility.

Remark 23. The acceptable quantization algorithm, Algorithm 5.2, is an iterative method

that is terminated either at step 2 or 4. However, it has at most n�1 number of iterations

that could start from an interior point.

Lemma 11. The optimization problem (5.25) has at least one feasible solution.

Proof. We prove this lemma by contradiction. ⇤

Algorithm 5.2 Acceptable quantizer of x 2 Rn on generalized mesh inside a linearly constrained
domain L = {x|A x  b}.

1: Find Aa as those rows of matrix A that are an active constraints at x, and ba as the
correspondent elements in the vector b.

2: If rank(Aa) = n, x is a vertex of L and itself is the quantizer.
3: Otherwise, set OS as the projection of the origin on the space Aa x = ba. Determine

US = null(Aa) 2 Rn⇥d, then r = UT
S (x � OS ).

4: Calculate rq as the unconstrained quantizer of r on the laminated lattice Bd
` , then set

xq = OS + US rq. If xq 2 M`, the xq is the quantizer.
5: Otherwise, for each constraint of L which is not active x, like aT

j x = bj, determine
z j as the solution of the following optimization problem:

z j = argmin
y2Rn

kx � yk,

subject to Aa y = ba, and aT
j y = bj.

(5.25)

6: Determine j that minimizes kz j � xk, and replace x with z j, and and repeat from 1.
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5.5 Results

In this section, we will check the performance of �-DOGS(⇤), given Algorithm

5.1, and compare it with �-DOGS (as given in Algorithm 2 in [37]).

To evaluate the performance of our algorithm, the Algorithm 5.1 is applied to

a representative test problem in which the objective functions f (x) are (A) Styblinskia

Tang function and (B) Schwefel function. To highlight the unique features of the algo-

rithms developed, the two test optimization problems are chosen for this study, described

below, have linear inequality constraints. To compare the performance of the optimiza-

tion algorithms in finding a global minimum amongst several local minima, the number

of function evaluations required in order to achieve a desired level of convergence is

used as the evaluation criterion.

The two test problems we consider in this work, both defined such that f (x⇤) = 0,

are:

A) The solution is on the interior: a nonconvex objective function, Schwefel function,

defined over an n-dimensional space, is subject to linear equality constraints such

that the global minimizer is an interior point:

f (x) = 418.9829 n �
n

X

i=1

xi sin(
p

xi), where (A.1)

L =
n

x 2 Rn | 0  xi  500 ; and 100 n  |
n

X

i=1

xi |
o

, (A.2)

This problem has 4n local minima, including the unique global minimum x⇤ =
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[420.9878, 420.9878, . . . , 420.9878]T , with f (x⇤) = 0.

B) The solution is on the boundary: A nonconvex objective function, Styblinskia

Tang function, defined over an n-dimensional space, is subject to linear equality

constraints such that the global minimizer is active on one of the constraints:

f (x) =
n

X

i=1

x4
i � 16 x3

i + 5 xi

2
+ 39.1660 n, where (B.1)

L =
n

x 2 Rn | � 5  xi  5 ; and 2.0970 n  |
n

X

i=1

xi |
o

, (B.2)

This problem has 2n local minima, including the unique global minimum x⇤ =

[�2.907,�2.907, · · · ,�2.907]T , with f (x⇤) = 0.

In this section we leverage polyharmonic spline interpolation [45, 74] as an in-

terpolation model of the known values of the objective functions. The exact target value,

i.e., f0 = 0, is considered in all the problems. The e↵ect of inaccurate target value is

exclusively studied in [37, 1, 58].

We considered an initial grid level of `0 = 3, and continued the algorithm un-

til the grid level of ` = 8 is achieved. Note that Algorithm 5.1 is terminated when

Dis(xk, S k)  0.05 ⇢⇤/⇢Z, where ⇢⇤/⇢Z is the maximum covering radios of dense lat-

tices in each dimension respect to the Cartesian grid, the values are listed in Table 5.1.

Dis(xk, S k)  0.05, which leads to a comparable order of accuracy for both

methods (i.e. the maximum quantization error of level 8 is close to 0.05).
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The initial datapoints in S 0
E are n + 1 points as follows:

S 0
E =

⇢

x0, x0 +
bi � ai

2`0
ei, i = 1, 2, . . . , n

�

. (5.28)

where i = 1, . . . , n, ei is one of the main coordinate directions, and x0 is an initial

point on the grid of level `0. The convergence results of �-DOGS(⇤) depends upon the

position of the x0; thus, two di↵erent values of x0 are considered. For the problem (5.27)

Tang test function, we take (a) x0,a
i = 08i, and (b) x0,b

i = �28i. For the problem A test

function, we take (a) x0,a
i = 1008i, and (b) x0,b

i = 4008i.

We first considered the problem A and the problem (5.27) in n = 2 dimension.

It is observed that, even for a bad initial point for �-DOGS(⇤), the convergence to

the global minimum is achieved with fewer number of function evaluations as with �-

DOGS. The position of the datapoints that are used during the optimization process are

illustrated in Fig. 5.8 for the n = 2 dimensional implementation.

We observed that in 2D problem the original �-DOGS method, there were some

points generated close to the boundary of the search domain (see Figure 5.8b and Figure

5.7b ). In contrast, using �-DOGS(⇤), accumulation of the datapoints close to the

boundary was not observed (see Fig. 5.8d).

Table 5.1: Summary of covering radius respect to the Cartesian lattice, ⇢⇤/⇢Z, ⇤q is the best
quantizer lattice.

A2 A3 D4 D5 E6 E7 E8

⇢⇤/⇢Z 1.0746 1.1225 1.1892 1.2312 1.2905 1.3459 1.4143
f� 1.155 1.414 2 2.83 4.62 8 16
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Figure 5.7: Implementation of Algorithms �-DOGS and �-DOGS(⇤) with two di↵erent initial
points on problem B in 2D: (black squares) initial points, (open square) evaluated points, (stars)

support points.
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Figure 5.8: Implementation of Algorithms �-DOGS and �-DOGS(⇤) with two di↵erent initial
points on problem (5.27) in 2D: (black squares) initial points, (open square) evaluated points,

(stars) support points.
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Table 5.2: Summary of the implementation of �-DOGS and �-DOGS(⇤) on problem (5.27) in
n = 2, 3, and 4 dimensions.

Dimension Algorithm initial point fn.
evals

# of support
points

2
�-DOGS N/A 45 N/A

�-DOGS(⇤) xi = 0 34 7
xi = �2 24 3

3
�-DOGS N/A 88 N/A

�-DOGS(⇤) xi = 0 47 18
xi = �2 113 18

4
�-DOGS N/A 242 N/A

�-DOGS(⇤) xi = 0 115 31
xi = �2 215 34
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Figure 5.9: Simulation results of Algorithm 5.1 on the test problem (5.27) using the ⇤ basis
matrix.
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Figure 5.10: Simulation results of �-DOGS (see [1]) on the test problem (5.27).
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Applying algorithms �-DOGS (⇤) and �-DOGS on the test example A for n > 2,

it was observed that �-DOGS (⇤) algorithm performance was much better than that of

�-DOGS (compare Fig. 5.9 and Fig. 5.10).

The convergence rate of �-DOGS was not su�ciently high; therefore, we could

not go n > 5 for the test example. �-DOGS (⇤), in contrast, enabled us to reach larger

"n".

It is observed that the performance of �-DOGS (⇤) was better than the orig-

inal �-DOGS method introduced in [1, 37]. The main reason for this phenomena is

that the introduced algorithm explores the active constraint more than the unnecessary

constraints.

5.6 Conclusion

In this chapter, we have introduced �-DOGS(⇤), a modification of our original

Delaunay-based derivative-free optimization algorithm �-DOGS, previously proposed

in [37]. �-DOGS(⇤) accumulates fewer points on the boundary of feasibility, instead

exploring the interior of the feasible domain more extensively. Also, we extended the

algorithm �-DOGS(Z) developed in [59] to generalized linearly constrained problems

using any general lattice.

This chapter has three main modifications as compared with the original algo-

rithms:

• Two di↵erent sets of points are considered during the optimization process: eval-



177

uation points and support points. The latter set helps to regulate the triangulation

developed.

• Since the uncertainty function is zero at some points that are not in the evaluation

set, another metric for the search function is used at these points.

• The datapoints that are used in the �-DOGS(⇤) all lie on a fitted lattice that is

successively refined as the iterations proceed.

As with our original algorithms, and any other derivative-free optimization algorithm,

there is a curse of dimensionality, and optimization in only moderate-dimensional prob-

lems (i.e., n . 8) is expected to be numerically tractable. A key bottleneck of the

present algorithm as the dimension of the problem is increased is the overhead asso-

ciated with the enumeration of the triangulation. Another limitation of the algorithm

presented in [59] is its restriction to bound-constrained domains. Note that the pro-

posed Delaunay-based optimization algorithm, dubbed �-DOGS (⇤), can handle any

linearly-constrained domain. Also, �-DOGS (⇤) uses a fitted lattice with the best op-

tion for discretization as the dimension n is increased (for further explanation, see [28]).

In the next chapter, �-DOGS(⇤) is applied to the design of hydrofoil to maximize the

e�ciency of the foil.
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Chapter 6

Delaunay-based optimization in CFD

leveraging multivariate adaptive

polyharmonic splines (MAPS)

I have been impressed with the urgency of doing. Knowing is not enough; we

must apply. Being willing is not enough; we must do.—Leonardo da Vinci

6.1 Introduction

Factors contributing to the choice of an algorithm for optimizing a function f (x)

include the cost of computing f (x), the local smoothness of f (x), the availability of

derivative information, the number of design parameters, and the shape of the feasible

domain considered in parameter space. This paper considers simulation-based opti-

179
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mization problems for which the cost of computing f (x) is high, f (x) may be locally

nonsmooth, and derivative information may be unavailable, but the number of design

parameters is relatively low (say, n . 10), and the feasible domain in parameter space is

a simple convex region bounded by linear inequality constraints.

Over the last thirty years, as computational power has increased, derivative-

free optimization algorithms have become increasingly valuable for shape optimization

leveraging commercial o↵-the-shelf (COTS) computer-aided design (CAD) tools. Re-

sponse surface methods [30] are perhaps the most computationally e�cient derivative-

free approaches available for shape optimization problems today, with recent applica-

tions including the design of helicopter blades and airfoils [29, 88].

Response surface methods use a computationally inexpensive model, p(x), of

the (computationally expensive) function of interest, f (x), to approximate the trends

evident in the data available at each iteration. Correlation-based interpolation models

[9, 28, 36] have been widely used in such methods as surrogates to model the under-

lying function f (x), and simultaneously to model the uncertainty associated with this

surrogate. A method of this class considers the objective function as a “realization of

a random process”, and the parameters of the statistical model inherent to the method

are tuned, using a maximum likelihood approach, to maximize the probability of the

observed data at each iteration. Unlike polyharmonic spline interpolation, no metric

of smoothness of the interpolant is minimized in correlation-based interpolation strate-

gies. Thus, surrogates developed using such strategies are sometimes nonsmooth (see,

e.g., the appendix of [37]), which can significantly decrease the convergence rate of the
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associated optimization algorithm [67, 89, 68].

The recently-developed Delaunay-based derivative-free optimization via global

surrogates (�-DOGS) family of methods [1, 37, 58, 59, 60, 73, 90] are response surface

methods which are built upon the framework of a Delaunay triangulation of the available

datapoints at each iteration. These methods are provably globally convergent under the

appropriate assumptions, and are found to be remarkably computationally e�cient on a

range of benchmark as well as application-based problems.

As with other response surface methods, algorithms in the �-DOGS family it-

eratively minimize a search function s(x) based on both an interpolation of the existing

datapoints as well as a model of the uncertainty of this interpolant. Significantly, meth-

ods in the �-DOGS family decouple the tasks of interpolation and uncertainty modeling.

A simple synthetic uncertainty model is used which is zero at each datapoint and piece-

wise quadratic within each simplex; this approach proves to be both e↵ective and easy

to generalize (see [1, 58]). The present paper introduces and demonstrates a new inter-

polation approach that is well suited for optimization algorithms in this family.

In previous implementations of optimization algorithms in the �-DOGS fam-

ily [1, 37, 58, 59, 60, 73, 90], the polyharmonic spline (PS) interpolation approach

was used. Applications included hydrofoil design optimization [2, 74]; in this partic-

ular application, though satisfactory results were ultimately achieved, a non-uniform

dependence of f (x) on the design parameters x over the parameter space considered

was observed, as well an associated (yet, unanticipated) irregularity of the associated

PS interpolants used at each iteration.
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The present paper specifically addresses these shortcomings by introducing a

new interpolation strategy, dubbed multivariate adaptive polyharmonic splines (MAPS)

which, prior to performing the interpolation at each iteration, rescales the coordinate di-

rections of the domain based on the observed variation of the available data in each direc-

tion. The hydrofoil optimization problem described in [2] represents a typical challenge

problem for this e↵ort, as its objective function f (x), which characterizes the lift/drag

ratio of the foil, is much more strongly dependent on some of the design parameters than

others. This behavior is common in shape optimization.

The present paper specifically employs MAPS in the Delaunay-based optimiza-

tion strategy developed in [73]. For comparison, �-DOGS with MAPS and �-DOGS

with PS are both applied to the hydrofoil optimization problem developed in [2].

The structure of the paper is as follows: Section 6.2 briefly reviews the essential

ideas of Delaunay-based optimization (�-DOGS) with acceleration based on Cartesian

grids. Section 6.3 introduces our new interpolation strategy, MAPS, which automati-

cally scales the parameter space prior to performing each interpolation, thereby regular-

izing the interpolant and, ultimately, accelerating convergence. In section 6.4, we com-

pare the performance of the direct and the regularized approaches when searching the ✓

parameters of MAPS and conclude on the inadequacy of the direct approach. Section 6.5

applies the new interpolation strategy within �-DOGS to optimize a high-performance

sailboat hydrofoil design. Some conclusions are presented in Section 6.6.
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6.2 A brief review of �-DOGS

Algorithms in the �-DOGS family are already well suited for majority of low-

dimensional shape optimization problems. In this paper, we consider specifically the

optimization of a nonconvex objective function f (x) inside a convex feasible domain

bounded by linear constraints:

minimize f (x) with x 2 L = {x 2 Rn|A x  b}, (6.1)

where x 2 Rn, f : Rn ! R, and the feasible domain L is assumed to be compact (closed

and bounded). The compactness assumption guarantees that there is at least one solution

of (6.1).

Algorithms of the �-DOGS family attempt to solve (6.1) using successive func-

tion evaluations at feasible points xk 2 L in search of the global minimum of f (x) for

x 2 L. To accomplish this e�ciently, a search function s(x) is minimized at each itera-

tion; this search function is built using an interpolation of the existing datapoints, p(x),

a synthetic model of the uncertainty of this interpolant, e(x), and a target value for the

function itself, y0.

In this work, we assume that a target value y0 is known which is achievable, and

the goal is to find a point x⇤ such that f (x⇤)  y0. The interpolation and the uncertainty

function at each iteration k are denoted pk(x) and ek(x), respectively. The uncertainty

function and the search function are defined as follows.
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Definition 22. Take S as a set of points that includes the vertices of domain L, and �

as a Delaunay triangulation of S . The local uncertainty function ei(x) for each simplex

�i 2 � is defined

ei(x) = r2
i � kx � Zik2, (6.2)

where ri and Zi are the circumradius and circumcenter of �i. The global uncertainty

function e(x) is defined

e(x) = ei(x), for all x 2 �i. (6.3)

The uncertainty function e(x) is illustrated in Figure 6.1 in a parameter space of di-

mension n = 2. The uncertainty function e(x) is characterized by the following useful

properties:

1. the uncertainty function e(x) is non-negative e(x) � 0 for all points x 2 L, and

e(x) = 0 for all x 2 S ,

2. the uncertainty function e(x) is continuous, Lipschitz, and piecewise quadratic.

3. the uncertainty function e(x) is everywhere equal to the maximum of the local

uncertainty functions ei(x); i.e.,

e(x) = max
1i|�|

ei(x) for all x 2 �. (6.4)

A number of additional useful properties of e(x) are established in Lemmas [2:5]

of [37].
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Figure 6.1: Illustration of the uncertainty function e(x) in n = 2 dimensions.

Using the uncertainty function e(x) and a suitable interpolation p(x) of the avail-

able data, the search function s(x) is defined as follows.

Definition 23. Let us take S a set of datapoints that includes the vertices of the domain

L, � as a Delaunay triangulation of S , p(x) as an interpolation of the function f (x)

over S , and e(x) as the global uncertainty function defined in (6.3) and built on the

framework of �. The global search function s(x) is defined as follows:

s(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

p(x) � y0

e(x)
, if p(x)  y0,

p(x) � y0, otherwise,

(6.5)

where y0 is the target value of f (x) (that is, an estimate of its lower bound).

Based on the constructions given above, the essential steps of �-DOGS are given

in Algorithm 6.1. Figure 6.2 illustrates one iteration of �-DOGS on an representative
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p(x)

f(x)

e(x)

y0

 a)

  

x̂

s(x)

 b)

  

Figure 6.2: Elements of �-DOGS: a) truth function f (x), interpolating surrogate function p(x),
model of the uncertainty e(x), datapoints (black dots). b) search function s(x), minimizer x̂ of

s(x) (blue dots).

problem.

One of the challenges of the basic �-DOGS algorithm [37] is its overexplo-

ration of the boundaries of feasibility. This issue may be addressed by using a Cartesian

grid [59] or, more generally, a dense lattice [73] to help coordinate the search, and

successively refining this grid or lattice as convergence is approached. These coordi-

nation steps are useful for minimizing the accumulation of function evaluations along

the boundary of the feasible domain, though they must be implemented with care. The

particular variant of the �-DOGS optimization algorithm that is used in the present work

is that described in [73], which modifies the basic �-DOGS algorithm to coordinate the

search with lattices over L and @L that are successively refined as convergence is ap-

proached. The technical details of the modifications necessary to implement this idea

correctly are somewhat involved, and discussed in detail in [59, 73], together with for-
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Algorithm 6.1 The essential steps of �-DOGS.
1: Set k = 0. Take the set of initialization points S 0 as all M of the vertices of the

feasible domain L.
2: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through

all points in S k.
3: Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points

in S k.
4: Find xk as a global minimizer of sk(x) in L to obtain xk.

x̂k = argminx sk(x) subject to x 2 L.

5: Calculate f (x) at x̂k, and take S k+1 = S k [ xk. Repeat from 2 until convergence.

mal proofs of convergence and illustration on model problems.

One of the parameters that is essential for accelerating the convergence of the

�-DOGS algorithm is the estimate of the lower bound of the objective function, y0, over

the feasible domain L. It is shown in [37] that, if y0  f (x⇤), convergence to the global

minimum is guaranteed for any twice di↵erentiable function f (x); however, values of y0

for which y0 ⌧ f (x⇤) tend to reduce the convergence rate. If y0 > f (x⇤), the algorithm

will stop at some feasible point x̃ 2 L such that f (x̃)  y0; in this case, convergence to

the global minimum is not guaranteed.

Another important factor a↵ecting the performance of �-DOGS algorithms is

the choice of the interpolation strategy used. As mentioned previously, algorithms in the

�-DOGS family can leverage any well-behaved interpolation strategy. In the previous

implementations of �-DOGS, polyharmonic splines (PS) interpolation has been used.

The ultimate performance of �-DOGS algorithms depends strongly on the smoothness

of the interpolations used. In some situations (specifically, when the variation of the

function f (x) with respect to the parameters is nonuniform, with much stronger varia-
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tion in some coordinate directions than others), it is has been found that PS interpolants

are not su�ciently smooth. In the section that follows, we thus introduce a new in-

terpolation method that rescales the parameter domain appropriately while performing

the interpolation, thus developing a significantly smoother interpolant (and thereby, ul-

timately, accelerating convergence of the associated optimization algorithm).

6.3 A new polyharmonic spline interpolation algorithm

for �-DOGS

As discussed above, the choice of the strategy to be used to construct the in-

terpolant p(x) is subtle, and strongly a↵ects the rate of convergence of the associated

optimization algorithm. Polyharmonic splines (PS) interpolation is, in general, one of

the most popular interpolation strategies available today, as its formulation specifically

minimizes a metric measuring the curvature of the resulting interpolant. Numerical ex-

periments in [37] showed that PS interpolation is fairly well behaved, as compared with

Kriging-based approaches, even when the available datapoints are clustered in various

distinct regions of parameter space. Note also that PS interpolation has also been used

in various response surface methods developed by other groups, including [68, 89].

Appropriate rescaling of parameter space is a valuable step in numerical opti-

mization, and various recent papers have attempted to address the rescaling issue in the

optimization setting. In the numerical optimization literature, there are two main ap-
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proaches taken for the automatic rescaling of parameter space1. The first approach is to

use a correlation-based model to develop the interpolant, as discussed in the third para-

graph of the introduction; such approaches naturally solve for correlation length scales

during the computation of the interpolant via a maximum likelihood formulation, but

do not guarantee smoothness of the resulting interpolant. The second approach uses a

statistical method to identify the variation of the function with respect to each parameter

in the available dataset, and uses this statistical information to rescale the parameters

prior to performing the interpolation at each iteration. This approach works well if the

data that is used for this sensitivity analysis is well-distributed over the feasible domain;

however, during the optimization processes, the dataset is expected to become clustered

in some regions of the feasible domain while remaining sparse in others, which renders

this rescaling approach unreliable.

In the following two sections, we first review PS, then develop and analyze our

new interpolation strategy, dubbed MAPS, which includes, during the interpolation pro-

cess, an automatic rescaling of the parameters based on the available data.

6.3.1 Polyharmonic spline (PS)

Polyharmonic spline interpolation is a widely-used strategy to interpolate scat-

tered data in multiple dimensions [45]. An interpolant p(x) is defined as a smooth

function, which is typically inexpensive to compute, which models a “truth” function
1The two approaches described here may be considered specifically for the problem of dimension

reduction; that is, for the exploration of f (x) over a reduced number of parameters during certain steps of
the optimization algorithm. This possibility will be explored in the present setting in a future paper.
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f (x), which might be expensive to compute, such that

p(xi) = f (xi) for i = 1, . . . ,N. (6.6)

To maximize the smoothness of p(x), it is suggested in [45] that the following term

should be minimized
Z

L
krm p(x)k22 dx, (6.7)

subject to p(xi) = f (xi), 8i = 1, . . . ,N, where m is an integer such that m  N. Under

these conditions, the minimizer of (6.7) gives a polyharmonic spline interpolant [45]. By

choosing m = 2 in (6.7), the resulting interpolant will be contained in the Beppo-Livi

space of distributions on Rn with square integrable second derivatives [91]; this choice is

termed natural polyharmonic spline interpolation, and is by far the most common choice

in this class for simplicity we call it polyharmonic spline (PS) interpolation.

PS may be defined as a combination of a weighted sum of a set of radial basis

functions '(r) built around the location of each evaluation point, {xi}Ni=1, and a linear

function of x:

p(x) =
N

X

i=1

wi '(||x � xi||) + vT
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. (6.8)

The coe�cients wi and vi are real numbers in which vi represent the coe�cients of a

linear polynomial.
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The following orthogonality conditions are applied:

N
X

i=1

wi = 0,
N

X

i=1

wi xi` = 0 8 ` = 1, 2, . . . , n; (6.9)

this imposes n + 1 constraints, coupled with the interpolation condition (6.6), which

imposes N constraints, gives the linear system (6.10) below, from which one can solve2

for the parameters w and v in the PS interpolation formula (6.8):
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(6.10a)

where

Fi, j = '(||xi � x j||), i, j = 1, . . . ,N, (6.10b)

and '(r) = r3, r = kx � xik, V =

2
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. (6.10c)

The solution of the above linear system is unique [45]. Thus, by solving the linear

system (6.10), the coe�cients w and v are found, and p(x) is determined.

The polyharmonic spline interpolation formula in (6.8) has various shortcom-

ings, the most significant of which is the ill conditioning of the linear system (6.10)

that is solved to fit the polyharmonic spline to the datapoints. This sti↵ness is a direct
2The reader is encouraged to read about the details associated with e�ciently finding these weights as

described in [45].
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(c) Blue dashed: MAPS interpolant. Black dashed: PS
interpolant. Black solid: truth function f (x). Red cross:
available datapoints. Top: f (x1, 0.45) v.s. x1. Bottom:

f (0.45, x2) v.s. x2.

Figure 6.3: PS and MAPS interpolants with respect to the truth function
f (x) = 0.01 (x1 � 0.45)2 + (x2 � 0.45)2 (solid). See text.

result of the function f (x) having a nonuniform variation in the design parameters. The

result of this sti↵ness is spurious oscillations of the resulting interpolant in coordinate

directions with less pronounced variation of f (x). Figure 6.3 illustrates this behaviour

for a representative problem, and compares with the outcome of the new interpolation
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strategy proposed below. Note that f (x) is much more sensitive to x2 than it is to x1 (see

variations in both directions). Using PS (6.3a) creates deviations in the x1-direction,

absent with MAPS (6.3b). Deviations reduce the convergence rate of optimization.

6.3.2 Multivariate adaptive polyharmonic splines (MAPS)

Consider now an interpolant of the form:

ps(x) =
N

X

i=1

wi '(a.(x � xi)) + vT
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, (6.11)

where '(a.r) := (a.r)3 and a.r :=
n

X

`=1

a` r`,

where the a` are scaling parameters, and inherent functions of w and v. The following

condition is imposed:
n

X

`=1

a2
` = n. (6.12)

Unfortunately, the quadratic constraint (6.12) is more challenging than a linear con-

straint from the perspective of optimizing the weights. Thus, (6.12) is restated as a

linear constraint using the change of variables ✓` = a2
` :

n
X

`=1

✓` = n, where ✓` � 0. (6.13)
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The formulation developed below thus works with ✓ instead of a. The problem of com-

puting a MAPS interpolant thus reduces to the problem of solving for the variables

X = (w1 . . . ,wN , v1, . . . , vn+1, ✓1, . . . , ✓n)T .

In contrast with the PS interpolation formula (6.8), which has N + n + 1 unknowns, the

MAPS interpolation formula (6.11) has N + 2n+ 1 unknowns. With the additional n de-

grees of freedom (i.e., the scaling parameters ✓`) in MAPS, a wider range of parameters

is used in order to obtain a smoother interpolant.

To improve the convergence of �-DOGS, we desire to use smooth interpolants at

each iteration. We achieve this in the present context by performing minimum Frobenius

norm (MFN) interpolations. In an MFN formulation, the Hessian of the interpolant,

r2 ps(x), is minimized by minimizing the L2-norm of the vector w [67]. The scaling ✓

could thus, in theory, be optimally tuned by solving

min
w,v,✓

N
X

i=1

w2
i ,

subject to
n

X

`=1

✓` = n, ✓` � 0, ` = 1, 2, . . . , n,

N
X

i=1

wi = 0,
N

X

i=1

wi xi` = 0, ` = 1, 2, . . . , n,

ps(xi) = f (xi), i = 1, 2, . . . ,N.

(6.14)

The above optimization problem is nonconvex, however, as the last constraint above is

a nonlinear function of ✓. For a fixed value of ✓, this constraint is satisfied by solving a
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linear system, and the resulting objective function may be rewritten as:

Q(✓) := bT A(✓)�T L A(✓)�1 b =
N

X

i=1

w2
i , (6.15a)

where

L =
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, (6.15b)

noting that

F(✓)i, j = '
⇣

k(xi � x j)k✓
⌘

, i, j = 1, . . . ,N, (6.15c)

where '(r) := r3 and krk✓ :=
⇣

n
X

`=1

✓` r2
`

⌘1/2
, V =
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. (6.15d)

The optimum scaling parameter ✓⇤ can thus be found using an appropriate se-

quential quadratic programming (SQP) solver (see, e.g., [92]), with the Hessian approx-

imated using BFGS:

✓⇤ = min
✓2Rn

Q j(✓) subject to 1T ✓ = n, ✓ � 0. (6.16)

The main challenge in minimizing Q(✓) is the singularity of A(✓) as one of the elements

of the vector ✓ approaches zero. This issue is illustrated for a simple quadratic problem

in Figure 6.4 (see section 6.4), which illustrates that there is a significant deviation in
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the value of Q(✓) as determined via SQP applied to (6.15), when compared with the

optimum value of Q(✓), as one of the scaling parameters ✓` ! 0. It is seen that the

SQP approach tends to get caught in a local minimum for small ✓`. This is a common

situation, especially when the actual variation of the objective function with respect to

some of the parameters is small. To address this issue, a series of new problems Q� j(✓) is

defined and iteratively minimized as the relaxation parameter � j is gradually decreased

towards zero:

Q�(✓) = bT (A�(✓))�T L (A�(✓))�1 b, where A�(✓) = A(✓) + � L. (6.17)

Note that, as � ! 0, (6.15) is recovered from (6.17). To minimize Q�(✓) e�ciently, for

any given �, we need the following derivative information:

d Q�(✓)
d ✓`

= 2 BT
` (✓) L W(✓), (6.18a)

A�(✓) B`(✓) = �
@ A�(✓)
@ ✓`

W(✓), (6.18b)

A�(✓) W(✓) = b where W(✓) =
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, (6.18c)

where A�(✓) is defined in (6.17) and L, b, A(✓) are defined in (6.15b). Having this

information on the derivative of Q�(✓), we may use the BFGS method to minimize it.

It is known (see, e.g., [93, 94]) that such a procedure will converge to a local minimum

of (6.14). As codified in Algorithm 6.2, by performing a set of relaxations towards the
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Algorithm 6.2 Scheme to find the scaling parameters of MAPS (6.11)
1: Set j = 0. Take the set of initialization points S 0 and consider �0, ✓` = 1 for all
` = 1, 2, . . . , n.

2: For j > 0, initialize the following system by ✓0  ✓� j�1 with fixed � j

3: Find ✓� j by solving the quadratic programming

✓� j = min
✓2Rn

Q� j(✓)

subject to 1T ✓ = n, 0  ✓  n, ✓� j = argmin✓ [
@W
@ ✓

T

(L W)]T d✓

subject to 1T d✓ = 0, �n  d✓  n,

4: Update � j+1  � j/2, increment j by one, and repeat from step 2 until (6.19) is
satisfied.

solution3, for successively smaller values of �, it is found that reliable convergence to

the desired (global) minimum of (6.14) is obtained; this optimized value of ✓ may then

be used in the MAPS interpolation strategy (6.11).

Step 3 of Algorithm 6.2 can be solved using, e.g., the SNOPT optimization pack-

age [92], given the function of interest, Q� j(✓), as in (6.17), and the gradient information,

d Q� j(✓)/d ✓`, as in (6.18), at each iteration k. The initial value of the relaxation param-

eter in Algorithm 6.2, �0, must be su�ciently large to give a well-conditioned linear

system. To determine an appropriate stopping condition in this relaxation, define first

the interpolation error �yi over all points xi for a given � j:

�yi = f (xi) � ps(xi; ✓� j).

In addition, define the distance between the value of the objective function at xi and the
3Note that the initial point for minimizing Q� j+1 (✓) is the minimizer of Q� j (✓) (see step 2 of Algorithm

6.2).
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target value y0 as

�yi = f (xi) � y0.

An e↵ective stopping criteria is reached when the error of interpolation, �yi, reduces to,

say, less than 10% of �yi at each datapoint xi; that is,

�yi

�yi
< 0.1 for all i = 1, 2, . . . ,N. (6.19)

After a finite number of refinements j of Algorithm 6.2, the stopping criterion

(6.19) will be satisfied. An important observation is that, for the initial iterations of

�-DOGS, since �yi is large, (6.19) is satisfied even for relatively large values of � j.

As �-DOGS proceeds, �yi becomes smaller, which necessitates an increased number

of refinements of � j to make �yi su�ciently small to satisfy (6.19) at all points xi, thus

driving the MAPS surrogate towards a true interpolant as convergence is approached.

6.4 Comparison of direct & regularized approaches to

find the ✓ parameters of MAPS

We now provide a brief discussion about the inadequacy of the direct approach

to find ✓⇤ when one of the scaling parameters is much smaller that the other. Consider a

model problem f (x1, x2) = ⇢ (x1 � 0.45)2 + (x2 � 0.45)2 the scaling parameter is found

both using solution of (6.16) with BFGS (black curve) and solution of Algorithm 6.2
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Figure 6.4: Vertical axis: the smoothness criteria kwk2. Horizontal axis: the variation in x1
direction respect to x2 for a sample problem f (x1, x2) = ⇢ (x1 � 0.45)2 + (x2 � 0.45)2 both in

loglog scale.

(blue curve). It is observed that even in a simple 2D problem using the same datapoints

shown in Fig. 6.3, as one of the scaling parameters approaches zero, the direct SQP

with BFGS solution is not able to provide a correct scaling parameter and converges to a

local minimum. In contrast, the approach used in Algorithm 6.2, even for large ⇢, does

not deviate from the optimum path of the solutions, and converges to a better solution.

In Fig. 6.4 the black dashed line is the solution of (6.15) using direct approach

and blue dashed-line is the solution of (6.15) using the iterative approach presented in

Algorithm 6.2. In the plot 1
⇢ is plotted. It is observed that for direct SQP with BFGS

(black dashed line) converges to a local minimum of kwk2 as ⇢! 0.

Algorithm 6.2 constantly initialize the solution of Q� j(✓) for finding the ✓�k+1 and

enables Algorithm 6.2 to converge to the appropriate scaling solution.
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6.5 Implementation of �-DOGS with both MAPS and

PS on hydrofoil design

For validation purposes, Algorithm 6.1 was applied to the hydrofoil optimization

problem considered in detail in [2], using both PS (6.8) and MAPS (6.11).

In [2], the shape of a racing catamaran’s hydrofoil was characterized by 7 de-

sign parameters, and �-DOGS with PS was used to maximize the hydrofoil e�ciency,

defined as its lift/drag ratio, at a fixed working condition. During the optimization, two

specific challenges were encountered: (a) �-DOGS apparently overexplored the func-

tion f (x) near the boundary of feasibility, L, due in part to the fact that the objective

function f (x) itself had somewhat irregular behavior close to the boundary of L, and

(b) the non-uniform dependence of the objective function f (x) on the various design

parameters x apparently resulted in overexploration of f (x) in the vicinity of the opti-

mizated solution. These challenges resulted in many apparently unnecessary function

evaluations during the optimization. The issue described in (a) above was resolved well

in [59, 73] by leveraging a grid or lattice in �-DOGS to help coordinate the search. In

the following, we incorporate MAPS interpolation (6.11) in �-DOGS to resolve issue

(b).

In our previous work on the hydrofoil optimization problem [2], we observed

that the objective function f (x) depended much more strongly on some design parame-

ters than others. This nonuniform dependence the 7 adjustable parameters defining the

hydrofoil shape (see Table 6.1 and Fig. 6.7) (note that, to ease the visualization, all
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Figure 6.5: Nonuniform dependence of the lift/drag ratio of the hydrofoil on the 7 adjustable
parameters defining its shape. Red line: variation of e�ciency of the foil with 6 fixed and 1

moving parameters.

of the design parameters are normalized to lie between 0 and 1) in the vicinity of the

optimum solution is shown in Fig. 6.5, where the The stars indicate the optimal values,

x⇤` , of each of the 7 parameters of the foil, and the red line indicates the variation in the

e�ciency of the foil as one of the parameters at a time is varied over its full range.

Simulation results (see Figure 6.8) indicate that, after about 30 function evalu-

ations, the optimization algorithm approaches the optimal solution in the present prob-

lem, with a lift/drag ratio of about 36.

As mentioned previously (in particular, see Figure 6.3), spurious oscillations

caused by nonuniform interpolants can be problematical in such optimization problems,

significantly slowing convergence. We illustrate this issue by comparing PS (Figure 6.6,

bottom) and MAPS (Figure 6.6, top) interpolations of the data given by the optimum

solution x⇤ together with the first 30 datapoints generated by Algorithm 6.1. The PS

interpolant is characterized by spurious peaks away from the optimal point, in both

the x1 and x2 coordinate directions. These spurious peaks in the x1 and x2 coordinate

directions are absent in the MAPS interpolant, which much more accurately captures the

trends evident in the truth function itself (see Figure 6.5); this is remarkable, given that
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the interpolation is based on only 31 datapoints in a practical 7-dimensional problem.
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(a) MAPS (Eq. (6.11)).
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(b) NPS (Eq. (6.8)).

Figure 6.6: MAPS v.s. NPS give the first 30 datapoints generated using Algorithm 6.1.
Vertical: interpolant value for the e�ciency of the foil with respect to adjustable parameters.

Horizontal: normalized design parameters (Table 6.1).

We now summarize the design parameters used in this work, as suggested by

[2], which represent a rectangular hydrofoil with an aspect ratio (AR) of 10 and a cross

section of a NACA641�412 foil. The optimization is performed to minimize the drag of

the foil subject to a design vertical and horizontal lift of S Cz = 0.120 and S Cy = 0.066.

Figure 6.7 shows the geometry of the foil, where z is the vertical coordinate, y is

the horizontal cross-flow coordinate, x is the horizontal stream-wise coordinate, s is the

curvilinear coordinate, and S is the planform area. Other parameters of the optimization

govern the y � z plan and the chord distribution along the curvilinear coordinate s. Both

the shape of the foils’ quarter-chord line and the chord distribution are represented using
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Figure 6.7: The optimization design parameters listed in Table 6.1 (see [2] for details of
parametrization).

Table 6.1: Summary of the adjustable parameters used in the hydrofoil shape design problem.

Number ( j) Variable x j Description lower bound upper bound
1 S planform surface 0.2 0.5
2 z1 rational Bezier curve 0.5 1.5
3 dy rational Bezier curve 0.5 1.5
4 dz rational Bezier curve -0.3 0.3
5 w1 vertical plane weight 4.3 11
6 ctip tip chord length 0.05 0.5
7 wc weight spanwise 1.5 11

Bezier curves, where the wi are the weights of the corresponding control points (for

details, see [2]). In this manner, a realizable foil is characterized e�ciently with only

seven parameters subject to simple bound constraints, as listed in Table 6.1.

In this work, as suggested by and validated in [2], AVL has been used to calcu-

late the lift/drag of a foil. AVL is an easy-to-use vortex-lattice-based software package

for inviscid aerodynamic analysis problems of this sort. The estimate of the optimal

objective function value, y0 = max (CL/CD), can be obtained by classical aerodynamic

analysis. The drag coe�cient can be obtained as the sum of the viscous and inviscid

(3D) drag components. For a foil with a specified aspect ratio of AR and an elliptic
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spanwise load, it can be estimated as follows:

CD = CD⌫(CL) +
C2

L

⇡ AR
, (6.20)

where CD⌫(CL) is the viscous drag coe�cient, which can be determined for a given 2D

foil section either via an experiment or a 2D computational model, such as XFoil [95].

Following the detailed analysis in [2], a value of y0 = 37 is used in the present work.

6.5.1 Optimization results and comparison

The optimization process balances the contribution of the viscous drag, propor-

tional to the foil surface, and the inviscid drag, proportional to the square of the lift

surface. The objective function f (x) used is the lift/drag ratio. We actually minimize

log[1 + 1/ f (x)], instead of maximizing the e�ciency of the foil f (x) itself, since Algo-

rithm 6.1 is designed for minimization problems. Note that the plots provided in this

paper show f (x), for ease of interpretation.

By switching from �-DOGS with PS to �-DOGS(⇤) with MAPS interpolation,

the numerical results in Figure 6.8 indicate a significant improvement in the objective

function value, f (x), after a fixed number of function evaluations. Implementing �-

DOGS(⇤) with PS improves the coverage speed as compared with �-DOGS with PS.

After only 33 function evaluations, �-DOGS(⇤) with PS finds a solution with a lift/drag

ratio of 36; convergence to this level required 100 function evaluations using �-DOGS

with PS. Moreover, using �-DOGS(⇤) with MAPS, a lift/drag ratio of 36 is achieved in
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Table 6.2: Comparison between the results reported in [2] using �-DOGS with PS and
�-DOGS(⇤) with MAPS for dy < 1.50.

variable parameter 200 [�-DOGS] 40 80 200 269
x1 S 0.305 0.305 0.305 0.297 0.303
x2 z1 0.89 0.900 0.875 0.862 0.881
x3 dy 1.50 1.500 1.500 1.500 1.500
x4 dz -0.29 -0.300 -0.300 -0.300 -0.300
x5 w1 7.25 7.250 10.09 7.060 9.377
x6 ctip 0.21 0.163 0.129 0.100 0.050
x7 wc 2.58 2.896 2.896 2.814 3.220

f (x) CL/CD 36.81 36.807 36.890 36.897 36.993

only 26 function evaluations. That is, �-DOGS(⇤) with MAPS has 74% improvement

compared to the �-DOGS with PS, and a 21% enhancement compared to �-DOGS(⇤)

with PS. Furthermore, after 55 function evaluations, �-DOGS(⇤) with MAPS found

a solution with a lift/drag ratio of 36.89; on the other hand, [2] reported 160 function

evaluations to reach a maximum lift/drag ratio of 36.81. Table 6.2 shows the optimized

parameters of the hydrofoil design as computed in this paper, after various numbers of

iterations, and in [2].

An important observations is that dy, the total length of the foil, reaches its max-

imum possible value in the optimized result. Intuition also suggests that, by increasing

the foil aspect ratio, the foil e�ciency will increase.

It can be seen in Figure 6.10 (top plot) that variables y2 and z2 do not vary after

30 function evaluations. This indicates it would be beneficial to project the optimization

problem to a lower-dimensional parameter space, and to solve the optimization problem

in that reduced parameter space. This idea, directly leveraging the MAPS formulation,

will be investigated in future work.
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Figure 6.8: Solid lines show the best lift-drag ratio CL/CD at constant lift during the
optimization: Blue curves illustrate the convergence of �-DOGS(⇤) w/MAPS, Black curves w/

PS, and Magenta curves �-DOGS w/ PS [1], as reported in [2].

Convergence histories for the values of the optimized design parameters, using

�-DOGS with PS [2] and �-DOGS(⇤) with MAPS, are shown in Figure 6.10. The

designs achieved by both algorithms are illustrated in Figure 6.9. The final solutions

obtained using both methods, illustrated in Figure 6.11, are quite similar. However,

Figure 6.9a shows that the optimized design is found faster than in Figure 6.9b. These

trends are also evident in Figure 6.10 and Figure 6.8.

Surrogate Management Framework (SMF) is one of the popular derivative-free

methods that is a popular choice for shape optimization [29] [96]. Figure 6.12 illus-

trates the convergence of �-DOGS(⇤) w/ MAPS, Blue curves, and Surrogate Manage-

ment Framework (SMF) w/ Kriging interpolation combined with Mesh Adaptive Search

Method (MADS), Green curves. In this problem, �-DOGS(⇤) w/ MAPS outperforms

SMF given the target value y0 = 37 to both schemes.
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(b) �-DOGS with PS [2]

Figure 6.9: The first 200 evaluated foil geometries in the optimization algorithms: a)
�-DOGS(⇤) with MAPS. b) �-DOGS with NPS [2]. The optimized geometry is shown by a

thick curve in both figures.

6.6 Conclusions

This paper presents a new interpolation strategy, multivariate adaptive polyhar-

monic spline (MAPS), for regularizing the interpolant used in response surface methods

for derivative-free optimization. We have demonstrated that MAPS significantly ac-

celerates the convergence rate of our own family of response surface methods, dubbed

�-DOGS, when applied to practical design optimization problems of engineering inter-

est.

MAPS is an interpolation strategy in the family of radial basis functions that
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Figure 6.10: Convergence history of the optimal design parameter’s values during the
optimization. Top: �-DOGS(⇤) with MAPS. Bottom: �-DOGS [1] with PS. (as it is reported

in [3, 2]). Dashed curves are the most dominant parameters, x1 and x2 in both plots.
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Figure 6.11: The optimum hydrofiol design using �-DOGS(⇤) with MAPS compared with the
reported optimum foil in [2]. The dashed-blue is [2] and the solid line the optimum design

reported in Table 6.2.
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Figure 6.12: Solid lines show the best lift-drag ratio CL/CD at constant lift during the
optimization: Blue curves illustrate the convergence of �-DOGS(⇤) w/MAPS and Green

curves SMF w/ Kriging interpolation combined with MADS.

rescales parameter space, based on the available data generated by an optimization al-

gorithm, in order to reduce the spurious oscillations in the resulting interpolant. In the

present work, MAPS is implemented in the �-DOGS family of optimization algorithms,

and its performance is tested on a simulation-based shape design optimization problem

to maximize the lift/drag ratio of a hydrofoil design. Results indicate fewer function

evaluations are required following the new approach to achieve a given level of conver-

gence. An improved method of coordinating the search with lattices is also introduced

and shown to be e↵ective.

A limitation of the interpolation strategy developed in this work is that its com-

putational expense increases as the number of data points increases, since at each iter-

ation it needs to solve an optimization problem to find the scaling parameters based on

the available datapoints. However, in practice, the determination of these scaling pa-

rameters is found to be relatively inexpensive as compared with the function evaluations

themselves, which are typically determined from expensive CFD simulations.
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In future work, we will implement the present algorithm on additional test prob-

lems, and more computationally e�cient implementations of MAPS will be developed.

Also, the use of MAPS for the problem of dimension reduction in �-DOGS will be ex-

plored; that is, extending MAPS to aid in the exploration of f (x) over a reduced number

of parameters during intermediate steps of the optimization procedure.
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Chapter 7

A Delaunay-based method for

optimizing infinite time averages

of numerical discretizations of ergodic

systems: ↵-DOGSX

When something is important enough, you do it even if the odds are not in your

favor. —Elon Musk

7.1 Introduction

The focus of this work is to develop a computational optimization technique that

can be seamlessly applied to stochastic physical problems, for which the accurate evalu-

211
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ation of the cost function involves a significant computational expense. In particular, we

are interested in complex systems that require the time averaging of large-scale com-

putations of partial di↵erential equations (PDEs) during the design process. We aim

to solve optimization problems whose objective function f (x) : ⌦ ✓ Rn ! R has the

following form:

f (x) = lim
T!1

fT (x), fT (x) =
1
T

Z T

t=0
y(t)dt, (7.1)

dy(t)/dt = G(x, t),

where G(x, t) is a nonlinear function of x and t. Note that x represents the vector of

adjustable parameters in this dynamic system.

Moreover, we assume that the analytical expression for G(x, t) is not available,

and that we can only calculate y(x, t h) numerically. In this way, the only available

measurement for the objective function is

f (x, h,T ) =
1
N

N
X

i=1

y(x, i h), N =
T
h
. (7.2)

Note that f (x, h,T ) is a noisy measurement of f (x), whose accuracy can be increased

by decreasing h and increasing T ; however, by doing so, the accuracy of these values is

changed.

One approach for solving the above problem is via a derivative-based method

using a finite di↵erence estimate for the derivative. However, in order to capture the
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behavior of the gradient of the objective function, a very accurate measurement is

needed, which increases the computational cost of the optimization process. As a re-

sult, derivative-free methods o↵er a better choice for solving (7.1).

An important class of derivative-free algorithms is the family of Response Sur-

face methods, which have been used to successfully solve problems, such as equation

(7.2) [59, 97]. Among such models is the Delaunay-based optimization technique.

Delaunay-based optimization is a generalizable family of practical, e�cient, and prov-

ably convergent derivative-free algorithms designed for a range of nonconvex optimiza-

tion problems with expensive function evaluations. Algorithms in this family are Re-

sponse Surface methods that iteratively minimize metrics based on a surrogate model of

existing datapoints, as well as on a synthetic model of the uncertainty of this surrogate.

One of the recently developed algorithms in this class, named ↵-DOGS, has

been specifically designed to minimize the objective functions given by the infinite-time

average of a statistically-stationary ergodic process; in such problems, any numerical

or experimental approximation of the objective function is characterized by a sampling

error, which may be reduced by additional sampling. The key idea behind the ↵-DOGS

algorithm is that the number of samplings over di↵erent points in the feasible domain

varies. This way, only a limited number of sampling is needed for points far from the

solution, whereas in regions closer to the global minimum, a more extensive sampling

is required for a precise quantification of the objective function, as convergence is ap-

proached. However, ↵-DOGS cannot handle the discretization error. Moreover, it is

only designed for problems where the uncertainty is arise from the finite number of
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sampling.

The existence of the discretization error is an important issue in many practical

optimization problems generated by the numerical discretization of an original PDE

problem of interest. Such challenges arise, for instance, in the minimization of the drag

during the numerical approximation of a turbulent flow [88]. One approach to deal with

discretization error is to use the same spatial grid for all measurements, thus reducing

the problem to one grid. However, this approach is computationally expensive since it

is not necessary to use a fine spatial grid throughout the entire optimization process.

In this paper, a new algorithm, dubbed ↵-DOGSX, is presented. It is an extended

and modified version of ↵-DOGS, which e�ciently automates the trade-o↵ between (a)

the additional sampling of the ergodic process, and (b) the refinement of the spatial dis-

cretization of the ODE (similar approach could be used for PDEs as well) 1. Moreover,

for a wide range of optimization problems having the same form as equation (7.1), a tar-

get value exists. In other words, we want to find control parameters x, so that f (x) < f0,

rather than actually minimizing f (x). Therefore, in this paper, we also modify the ↵-

DOGS in order to optimize the algorithm using the target value.

The structure of this paper is as follows: Section 7.2 briefly explains the es-

sential elements of the ↵-DOGS for problems in which a target value exists. Section

7.3 presents the modified algorithm, which deals with the discretization error e�ciently.

Section 7.4 describes the performance of the algorithm when applied to a model problem
1The e↵ect of domain size is also important. A comprehensive study on this issue is available in [98],

regarding the box size e↵ect in the Turbulence simulations. However, in most cases this error is relatively
small and can be ignored in the computations.
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based on the Lorenz equation. Finally, some conclusions are drawn in Section 7.5.

7.2 ↵-DOGS for problems with target value

In this section, we present the general framework of ↵-DOGS algorithm, which

is designed to minimize objective functions of the form:

f (x) = lim
N!1

1
N

fN(x), fN(x) =
N

X

i=1

fi(x), (7.3)

where fi(x) is a stationary and ergodic random process at each x.

Remark 24. Estimating the value of the uncertainty associated with fN(x) is the classi-

cal uncertainty quantification (UQ) problem, studied in [99, 100, 101]. In this section,

we will assume that this quantity is known, and it is denoted by �N(x).

The original algorithm [90] is designed to optimize the objective function of

form (7.3) in general, but for a wide range of practical optimization problems (see [102,

103, 104]), we seek a point so that f (x)  f0. In this section, a modified version of the

algorithm described in [90] is presented. This version solves the optimization problems

that have a target value f0 more e�ciently than before. This approach is similar to the

EI (Expected Improvement), which is considered a major relevance criterion in global

optimization [30, 75, 105].

Before presenting the algorithm, we briefly explain concepts originally defined

in [1, 37, 58, 59, 60].
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Definition 24. Let S k be a set of points in the feasible domain L, and Y = { fNk
z
(z)| z 2 S k}

a set of measurements of f (x) at these points. Moreover, let p(x) be a regression that

passed through these measurements, and f0 a target value for f (x). Then the continuous

search function is defined as follows:

sc(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

p(x) � f0

e(x)
if p(x) � f0,

p(x) � f0 otherwise.

(7.4)

In this framework, the regression p(x) is a user-defined regression process, and e(x) is

the Delaunay-based uncertainty function defined in [37], which is a piece-wise quadratic

function non-negative everywhere in L and equal to zero over S k.

Definition 25. Let us consider S k a set of feasible points in L, and Y = { fNk
z
(z) | z 2 S k}

a set of measurements of f (x) at these points. Moreover, �Nz(z) denotes the uncertainty

of fNk
z
(z) and p(x) is a regression for these measurements. Then the discrete search

function, denoted sd(z) for each z 2 S k, is defined as follows. Note that this search

function is defined only over S k.

sd(z) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

min{p(z), 2 fNz(z) � p(z)} � f0

�Nz(z)
if p(z) � f0,

p(z) � f0 otherwise.

(7.5)

In order to present the ↵-DOGS algorithm, we also need the concept of the Carte-

sian grid which has been initially defined in [59], and later extended to dense lattices in
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[73].

Definition 26. The Cartesian grid of level ` for the feasible domain B = {x|a  x  b},

denoted as B`, is:

B` =
⇢

x|x = a +
1
N

(b � a) ⌦ z, z 2 {0, 1, . . . ,N}
�

, where N = 2`.

A quantizer of point x 2 B on B` is the point xq, which has the minimum distance to

x from the B` grid. Note that the quantizer of point x is not necessarily unique. The

maximum discretization error is defined as follows:

�` = maxx2Bkx � xqk. (7.6)

Illustration of the above concepts can be found in Fig. 2 of [59].

We can now present a modified ↵-DOGS algorithm, which allows us to find a

point such that f (x)  f0. The steps of this algorithm are summarized in Algorithm 7.1.

Remark 25. Scaling the function evaluations and the domain of the parameters is

required in order to have an e�cient optimization algorithm. We will consider that

0  xi  1, and 0  f (x)  1 after scaling.

For each iteration of the algorithm, there are three possible situations:

• A new point is added to the set of function evaluations. The iteration is called

identifying sampling iteration (Fig. 7.1a and 7.1c).
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(a) identifying sampling iteration. Truth
function f (x) (dashed), target value f0 (lower

black line), regression model pk(x) (black), and
�k(x) (error bars).
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(b) improving iteration. Truth function f (x)
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regression model pk(x) (black), and �k(x)
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(d) improving iteration. Continuous search
function sk

c(x), discrete search function sk
d(x),

and their minimizers.

Figure 7.1: Elements of Algorithm 7.1.

• The averaging length at an existing point is improved. This iteration is called

improving iteration (see Fig. 7.1b and 7.1d).

• The mesh level is increased. This iteration is called mesh refinery step.

Remark 26. An important factor in Algorithm 7.1 is the construction of the regression

pk(x). Generally, any well-behaved regression that is robust [90] can be used. However,

in the simulation of this paper, we have used the e�cient polyharmonic spline regression

process (see [45, 59]).
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Remark 27. Minimizing the search function sk
c(x) is an important sub-problem in Algo-

rithm 7.1, as explained in [37].

In addition to the regression process, there are a few parameters, which play a

key role in Algorithm 7.1, and are summarized as follows:

a. �, which controls the amount of violation of the regression from the measurement

at the available datapoints.

b. `0, which quantifies the mesh level at the first level. In the simulations of this

paper, we have used `0 = 3.

c. The initial averaging length N0, and incrementing length N1, which are problem-

dependent parameters and control the minimum averaging length that should be

considered between each two iterations of Algorithm 7.1.

One of the challenges we face in Algorithm 7.1 is determining the most promis-

ing point for the available measurements at the finite iteration k. This point is called the

candidate and is determined as follows:

1. For k = 0, it is the point in the initial set whose measured value is minimized.

2. If step k is decreasing the mesh, then ⌘k = qk.

3. If step k is improving iteration and wk has the maximum averaging length over all

points in S , then ⌘k = wk.

4. If neither case 2 nor case 3 happens, ⌘k = ⌘k�1 for k > 0.
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Algorithm 7.1 ↵-DOGS: find a point such that f (x)  f0, where f (x) is in the form given in
equation (7.3)

0. Set k = 0 and initialize the algorithm with ` = `0 as the initial grid level, and a
set of points S k which includes some initial points on the initial grid of level `0.
Afterwards, calculate an initial estimate with averaging length of N0 at the initial
points.

1. Calculate a robust regression [90] pk(x) over all available measurement such that

|p(z) � fNk
z
(z)|  ��Nk

z
(z), 8z 2 S k (7.7)

where Nk
z is the averaging length at point z 2 S k at iteration k, and �Nk

z
(z) is the

uncertainty associated with fNk
z
(z).

2. If a point z 2 S k exists such that pk(z)� f0
�Nz (z)  1, then increment the averaging length

at z, Nk
z , by N1; increment k and repeat from 1.

3. Find xk and wk, the minimizer of the continuous search function sk
c(x) and discrete

search function sk
d(x).

4. If sk
c(xk)  sk

d(wk), determine qk a quantizer of xk on the grid of level `k. Then, if
qk < S k, add qk to S k and calculate an initial estimate of length N0 at qk; otherwise,
refine the grid by incrementing `k by 1, and increment k.

5. If sk
c(x) > sk

d(wk), increase the averaging length at wk by N1.

6. Repeat steps 1 to 5 until the convergence is achieved.

In the next section, we analyze the convergence properties of Algorithm 7.1, and show

that the value of the truth function at the candidate point ultimately achieve the target

value, if the target value f0 is achievable.

7.2.1 Convergence analysis of adaptive-K ↵-DOGS

The analysis presented in this section is similar to the one given in section 4 of

[59]. Note that Algorithm 7.1 is a modified version of the Algorithm 1 described in
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[90] for the range of problems where a target value is known; therefore, the analysis is

similar.

In order to analyze the convergence properties of Algorithm 7.1, the following

assumptions are made:

1. The truth function f (x) and the regressions pk(x) are twice di↵erentiable func-

tions, and

�2 K̂I  r2 f (x)  2 K̂I, 8x 2 L, (7.8)

�2 K̂I  r2 pk(x)  2 K̂I, 8x 2 L. (7.9)

2. The truth function f (x) and the interpolating function pk(x) are Lipschitz with

constant L̂.

3. There is a constant � such that for all measurements fN(x) at point x with uncer-

tainty �N , then

| fN(x) � f (x)|  ��N(x). (7.10)

This is a restrictive assumption for Algorithm 7.1. In practice, Algorithm 7.1

works well even if (7.10) is not verified, but in order to simplify the analysis, we

make this additional assumption2.
2In [90], a less restrictive assumption for the measurement process is imposed.
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4. Defining �N(x) as an uncertainty associated with the measurement fN(x), we have

0 < �N(x)  E(N), (7.11)

lim
N!1

E(N) = 0. (7.12)

Note that E(N) is considered to be a positive and monotonically decreasing func-

tion.

5. The target value f0 is achievable.

Before analyzing the convergence of Algorithm 7.1, we present some prelimi-

nary lemmas.

Lemma 12. At each iteration k of Algorithm 7.1, we have:

min{sk
c(xk), sk

d(wk)}  max{3K̂, 2�} (7.13)

Proof. In Lemma 4 of [90], it is shown that using Assumption 1, we have:

min
{z2S k}
{2 f (z) � pk(z)} + pk(x) � 2 f (x) � 3 K̂ek(x)  0, (7.14)

for all x 2 L. Note that ek(x) is the uncertainty function based on the Delaunay triangu-

lation.

On the other hand, according to Assumption 4, for each point z 2 S k with a
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measurement fNk
z
(z) and an uncertainty �Nz(z),

| fNk
z
(z) � f (z)|  ��Nz(z). (7.15)

Thus, we have:

2 fNk
z
(z) � pk(z)  2 f (z) � pk(z) + 2 ��Nk

z
(z) (7.16)

where fNk
z
(z) is the measured value of z at iteration k with uncertainty �(z). Thus, using

(7.14) and (7.16), we have:

min
{z2S k}
{2 fNk

z
(z) � pk(z) � 2��Nz(z)}

+ pk(x) � 2 f (x) � 3 K̂ek(x)  0.

Now let us consider x⇤, the global minimizer of f (x) in L. Since f0 is achievable (As-

sumption 4), then f (x⇤)  f0; therefore,

min
{z2S k}
{2 fNk

z
(z) � pk(z) � 2��(z) � f0}

+ pk(x⇤) � f0 � 3 K̂ek(x⇤)  0,

min{min
{z2S k}
{2 fNk

z
(z) � pk(z) � 2��Nz(z) � f0},

pk(x⇤) � f0 � 3 K̂ek(x⇤)}  0.
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According to the construction of the discrete search function (7.5), to the fact that wk is

its minimizer, and to the fact that �Nz(z) > 0,

min{�(z) (sk
d(wk) � 2�), pk(x⇤) � f (x⇤) � 3 K̂ek(x⇤)}  0. (7.17)

However, if sk
d(wk) � 2�  0, then equation (7.13) is satisfied; thus, we will assume that

pk(x⇤) � f (x⇤) � 3 K̂ek(x⇤)  0. Now, if ek(x⇤) > 0, then according to the construction of

the discrete search function (7.5),

sk
c(x⇤) � 2K̂  0. (7.18)

Furthermore, xk is the minimizer of sk
c(x); thus, (7.13) is satisfied. The only case that is

left is when ek(x⇤) = 0 and pk(x⇤) � f0  0. Note that since ek(x⇤) = 0 by construction

of the uncertainty function [37], with x⇤ 2 S k, and since pk(x⇤) � f0  0, then sk
d(wk) 

sk
d(x⇤)  0. ⇤

Lemma 13. If iteration k of Algorithm 7.1 is a mesh refinery step, then

f (yqk) � f0  (1 + � + �)T, (7.19)

T = max{E �2
k , F �k},

E = 4 K̂ + 2 �, F = L̂

where yqk and �k are the measurement and its uncertainty at point qk. Note that since
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this step is refines the mesh, qk is in S k. Moreover, �k is the quantization error at iteration

k.

Proof. First, we will show that

yqk � f0  (1 + �)T, and �qk  T. (7.20)

Since step k is mesh-decreasing, according to the construction of Algorithm 7.1, R =

sk
c(xk)  sk

d(wk). Then using Lemma 12, R  max {3K̂, 2�}. If R  0, then pk(xk)  f0.

Since pk(xk) is Lipschitz, then

pk(qk) � f0  L̂�k,

�k  pk(qk) � f0,

�k  L̂�k,

yqk � f0  L̂(1 + �)�k.

Thus, equation (7.20) is satisfied. We will now consider the case where R > 0. In this

case, since R is the minimizer of sk
c(x) = pk(x)� f0

ek(x) , then by construction xk is also the

minimizer of G(x) = pk(x) � Rek(x). Using Assumption 1, equality r2ek(x) = 2 I (see

[37]) and Lemma 3 in paper [90],

G(qk) �G(xk)  (K̂ + R)�2
k  (4 K̂ + 2 �)�2

k . (7.21)
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Moreover, G(xk) = f0 and since qk 2 S k, then ek(qk) = 0.

pk(qk) � f0  (4 K̂ + 2 �)�2
k , (7.22)

�k
Nqk
 pk(qk) � f0, (7.23)

fNk
qk

(qk) � f0  (4 K̂ + 2 �)(1 + �)�2
k . (7.24)

Now using equation (7.20) and Assumption 3, (7.19) is satisfied. ⇤

Lemma 14. If iteration k of Algorithm 7.1 is an improving iteration, and thus increases

the uncertainty of the maximum averaging length, then

f (wk) � f0  (� +max{3K̂, 2�})E(Nkwk), (7.25)

where Nk
wk

is the averaging length at wk.

Proof. Since iteration k is improving, sk
d(wk)  max{3K̂, 2 � , 1}, using Lemma 12, then

min{pk(wk), 2 f̂ (wk) � pk(wk)} � f0  max{3K̂, 2�}�k
wk

(yk). (7.26)

Since the regression is robust,

fNk
wk

(wk) � f0  (� +max{3K̂, 2�})�k
Nk

(wk). (7.27)
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Now, according to Assumption 3, we have

f (wk) � f0  (� + � +max{3K̂.2�})�k
Nk

(wk), (7.28)

Thus, using assumption 5, equation (7.25) is shown. ⇤

Theorem 8. Let us consider ⌘k, the candidate point at iteration k. Then

limsupk!1 f (⌘k) � f0  0. (7.29)

Proof. According to the construction of the candidate point, its value is changed each

time that we have either a mesh refinery step or an improving iteration, which maximizes

the averaging length. Therefore, using Lemmas 13 and 14, equation (7.29) is satisfied if

there is an infinite number of modifications in the value of ⌘k.

This theorem is shown by contradiction. Assuming that we have a finite number

of mesh refinery steps, Algorithm 7.1 will obtain only a finite number of datapoints;

thus, there must be an infinite number of improving iterations at a finite number of

points. As a result, there is an infinite number of iterations that increase the averaging

length at one of the available datapoints which has the maximum averaging length; this is

a contradiction with our contradictory assumption; hence the proof of our theorem. ⇤
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7.3 Modified optimization algorithm to deal with dis-

cretization error: ↵-DOGSX

In this section, we modify Algorithm 7.1 to solve more general problems in the

form of equation (7.1). The main di↵erence between the objective function in equations

(7.1) and (7.3) is that the convergence to f (x) in (7.1) can be achieved only when h goes

to zero. The steps of the modified algorithm ↵-DOGSX are the same as in Algorithm

7.1, but with a di↵erent improving iteration.

Recall that during each improving iteration of Algorithm 7.1, the averaging

length at point wk is simply incremented by N1. In this modified algorithm, there are

two possible options for improving the accuracy of the available measurement at point

wk:

a. Incrementing the value of the averaging length, T .

b. Decreasing the mesh size, h.

In order to develop an e�cient trade-o↵ between incrementing T and decreasing h, the

following factors are important:

• The value of the uncertainty associated to the measurement f (wk, hk,Tk) for f (wk),

denoted by �(wk, hk,Tk).

• The required amount of improvement at point wk.

• The computational cost of decreasing the measurement improvement.
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Figure 7.2: E↵ect of the required uncertainty on improvement. Black curve: trend of the
uncertainty function at current h as a function of computational time. Blue curve: behaviour for

a reduced h. For small values of �R
1 , it is more e�cient to increase the averaging length.

Remark 28. The required amount of improvement plays a key role in our measurement

improvement process. Fig. 7.2 illustrates the role of the required uncertainty. It is

observed that in order to achieve a small amount of improvement, it is typically more

e�cient to increase the averaging length, T . However, for a greater improvement, the

measurement should be made by modifying both h and T .

We will now develop a procedure to estimate the required amount of reduction

at point wk. There are two possible cases for an improving step of the iteration k of
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Algorithm 7.1:

1. Iteration k is improving since sk
d(wk)  sk

c(xk). In this case, we expect to improve

the uncertainty until sk
d(wk) = sk

c(xk). Therefore, the required improvement at wk,

denoted by �R
k , is

�R
k =

min{pk(wk), 2 fNw (wk) � pk(wk)}
sk

c(x)
. (7.30)

2. Iteration k is improving since a point z 2 S k exists such that pk(z) � f0  �k(z). In

this case, the required improvement at point z is obtained by

�R
k = max{pk(z) � f0, 0}. (7.31)

Note that expressions (7.30) and (7.31) estimate �R
k assuming that pk(x) is constant dur-

ing the measurement improvement process. This assumption may not be true, especially

if the reduction of the uncertainty is high. Thus, we will limit the reduction of the un-

certainty to half of the current uncertainty.

Based on the available required improvement, the optimal procedure for the mea-

surement improvement can be developed (Algorithm 7.2).

One of the challenges in Algorithm 7.2 is to solve (7.32). In general, this is an

intricate problem, but for a wide range of practical problems [100, 103, 106], the value
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Algorithm 7.2 In this algorithm, the process of measurement improvement at an improving step
of Algorithm 7.1 is presented. In this algorithm, z is considered to be the point to be improved
at iteration k. T k(z) and hk(z) are the current time averaging length and the mesh size of point
z, which gives us a measurement of f (z) with the uncertainty of �k(zk). sk

c(x) and sk
d(x) are the

continuous and discrete search functions at the current iteration, whose minimizers are xk and
wk respectively. The objective is to determine Tk+1 and hk+1.

1. If z = wk, calculate �k
R using (7.30); otherwise, calculate via (7.31).

2. If �k
R >

�k(zk)
2 continue. Otherwise, consider �k

R =
�k(zk)

2 .

3. For each hl = hk 2l for l 2 {0, 1, . . . , }, calculate Tl to impose

�(z, hk 2l,Tl) = �k
R, (7.32)

where �(z, hl,Tl) is the uncertainty associated with the measurement at point z,
with averaging length Tl and mesh size of hl.

4. For each l 2 {0, 1, . . . , }, calculate the cost associated with each required measure-
ment as follows:

Costl =

8

>

>

>

>

>

<

>

>

>

>

>

:

Tl
hk 2l if l = 0,

Tl�Tk
hk

otherwise.
(7.33)

Note that in the above expression, we estimate the cost of the measurement pro-
cess by the number of time marching required.

5. Calculate lopt as the minimizer of costl, and take hk+1 = hl 2l, and Tk+1 = Tl.
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of �(z, h,Tl) has the following expression:

�(z, h,T ) = C0(z) hp +
�0(z)p

T
. (7.34)

Using equation (7.34) as a model for the value of the uncertainty, the constant

C0(z) and �0(z) are determined empirically, based on the available measurement [100].

7.4 Implementation of ↵-DOGSX on a model problem

In this section, we apply the optimization algorithm we presented in the previous

section on a model problem based on the Lorenz system.

The Lorenz system is a strange attractor that arises in a system of equations

describing the 2-dimensional flow of a fluid of uniform depth, with an imposed vertical

temperature di↵erence. The chaotic behavior of a simplified 3-dimensional system of

this problem, known as the Lorenz equations [104], is given below:

d
dt

X = s (Y � X) (7.35)

d
dt

Y = �XZ + r X � Y (7.36)

d
dt

Z = XY � b Z (7.37)

Let us consider an estimation problem in which the values of various moments of the

chaotic attractor (see, e.g., Table 3 in [104]) at the nominal values of the parameters are

taken as the target. The goal is to search over the parameter space (r, b, s) in an attempt
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to determine the parameter values (28, 8/3, 10).

Solving Lorenz system using ↵-DOGSX

We consider di↵erent moments as objective function, J, for optimization:

J(r, b, s) =
K

X

i=1

( fi � fi,target)2 (7.38)

where fi represent di↵erent moments, such as the expected value of Z, E[Z]. The re-

ported target value, f0, using RK4 for time marching of (7.35) for E[Z] is 23.57 [100] [104].

In this problem, we take r as the design parameter.

In the Lorenz system, the values of r, b, and s are positive. The Lorenz system

becomes chaotic if [104]

r > s
s + b + 3
s � b � 1

. (7.39)

Moreover, r is related to the finite time averaging quantity of Z in (7.35), denoted as Z̄.

Using this relationship, the upper bound for r can be estimated by:

Z̄i  (r � 1)i, i = 1, 2, 3. (7.40)

Imposing (7.40) and (7.39), we choose 24  r  30, b = 8/3 and s = 10. It has been

reported in [100] that the discretization error of Z̄, "h, can be modeled as C0 hp for the

Lorenz system where p = 3 and C0 = 0.8 approximately.

Table 7.1 and Fig. 7.3 show the points generated during the optimization algo-
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Figure 7.3: Illustration of the points generated by ↵-DOGSX on Lorenz problem.

rithm. The initialization is performed with an initial time averaging of T0 = 50, and the

solver grid size is h0 = 2.5 ⇥ 10�3 for ↵-DOGS and h0 = 0.05 for ↵-DOGSX.

Table 7.1: The points generated by applying the optimization algorithm to the Lorenz system.

r 27.5 28.5 29.5 25.5 26.5 28.
J 0.9 0.42 3.0 1.65 1.17 10�3

T 50 360 280 210 300 570
h 0.05 2 ⇥ 10�4 1 ⇥ 10�3 3 ⇥ 10�3 8 ⇥ 10�3 5 ⇥ 10�4

Cost 103 106 105 104 105 107

7.5 Conclusions

In this paper, we developed a new algorithm, dubbed ↵-DOGSX, for solving

optimization problems, whose functions are the infinite time-averaged statistics of a

continuous stationary process without discretization error. The method we presented is
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based on the Delaunay-based optimization algorithm which is developed in [90].

We used the finite-time averaging value, which is an estimate for the truth ob-

jective value at each given resolution of the mesh grid. The novelty of our algorithm is

that the di↵erent averaging lengths and mesh grid resolutions are used at di↵erent sets

of design parameters. The flexibility in the calculation of function evaluations that are

less accurate far from the solution allows us to get an e�cient algorithm for solving

problems whose function values are given.

Our algorithm has a tuning parameter ↵, which plays a key role in the opti-

mization process. It is observed that as ↵ decreases, we use more data points for the

convergence, but the total amount of averaging decreases. Note, that this flexibility is

useful since for some applications (e.g., turbulence simulations), it is more e�cient to

use fewer datapoints, as the examination of each data point is costly (because of the

complexity in setting up a measurement process at each point). Note also that in the

limit where the initialization cost is too expensive, it is better to use the same averaging

length for all data points.

Another important issue which has to be considered is the role of the desired

accuracy in our algorithm. It is observed that as the desired accuracy increases, the

e�ciency of the optimization process increases as well. In other words, in the limit

where the desired accuracy goes to 0, the computational cost of the optimization process

converges to the computational cost of the most expensive measurement.

Furthermore, since the stated problem (7.1) is stochastic, the performance of the

presented algorithms are also stochastic. In other words, based on the measured values
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that are derived as the algorithm proceeds, the convergence speed changes; however,

the main advantage of this algorithm is that the convergence is guaranteed under some

conditions.

Although this new method works well for the test functions we presented in

this paper, it cannot be practically used for high-dimensional problems yet, due to the

exponential growth of the number of simplices with the dimension. This is an important

limitation of our optimization algorithm.

In our future work, we intend to implement our algorithm for some practical

optimization problems in turbulence simulations.
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Chapter 8

Conclusions and future work

The thesis presents significant extensions of the new family of surrogate-based

derivative-free optimization schemes, dubbed �-DOGS. The idea unifying this e�cient,

and under the appropriate assumptions provably-globally-convergent, family of schemes

is the minimization of a search function that linearly combines: (1) a computationally

inexpensive “surrogate” (an interpolation, or in some cases a regression, of recent func-

tion evaluations) to summarize the trends evident in the data available thus far; with (2)

a synthetic piecewise-quadratic “uncertainty function” that is built on the framework of

a Delaunay triangulation of existing datapoints, and that characterizes the reliability of

the surrogate by quantifying the distance of any given point in parameter space to the

nearest function evaluations. In this thesis, five optimization algorithms are introduced.

The first algorithm called �-DOGS(⌦), a new Delaunay-based derivative-free

optimization method. �-DOGS(⌦) is designed specifically for the optimization of com-

putationally expensive nonconvex functions within a nonconvex (possibly lower dimen-

237
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sional, or even disconnected) feasible domain, which is itself defined by computation-

ally expensive constraint functions that are explored as the iterations proceed. Two

main variants of �-DOGS(⌦) have been presented. Here, a search function defined by

comparing simple functions of the uncertainty model and the interpolants (of both the

objective and the constraint functions) is minimized within the rectangular search do-

main at each iteration. Next, a new objective and constraint function computations are

performed at the optimized point, thereby refining the surrogate models of the objective

and constraint functions at each iteration until convergence is achieved. Convergence

to the feasible global minimum is proved mathematically under reasonable technical

conditions on the smoothness of the objective and constraint functions.

This optimization algorithm has two main limitations. First, �-DOGS(⌦) over-

explores the boundary of search domain, which increases the number of expensive func-

tion evaluations. Second, the initialization process requires function evaluations at all

vertices of the search domain.

The second algorithm, �-DOGS(⌦Z), modifies �-DOGS(⌦) to overcome the

above two issues. The modified algorithm reduces the number of function evaluations

on the boundary of the search domain, and at the initialization step. This is done by

introducing a new search function, as well as splitting the datapoints into evaluated and

unevaluated points, which improve the behavior of uncertainty near the boundary of

search domain.

The third algorithm is a hybrid approach to leverage the gradient information

when available. We propose a trust region method using the Voronoi cell around the
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best available point. The hybrid algorithm blends derivative-free global exploration with

derivative-based local refinement, inherits the proof of global convergence (under the

appropriate assumptions) of the �-DOGS algorithm. In our numerical experiments, the

algorithm is found to handle well nonconvex functions with many local minima, and to

scale better with dimension than purely derivative-free global optimization approaches.

The fourth algorithm is called �-DOGS(⇤). The algorithm modifies the search

domain to handle a general linear constraint domain. In previous chapters, a Cartesian

grid was used to regularize the datapoints during the optimization algorithm. The exten-

sion to general linear constraints and other dense lattices are highlighted in �-DOGS(⇤),

which outperforms the original �-DOGS algorithms [3]. Thus, �-DOGS(⇤) o↵ers much

greater potential for high-level applications that require linear search domains that the

previous versions of �-DOGS may not have been able to handle as e�ciently or e↵ec-

tively.

The fifth algorithm is called ↵-DOGSX, which is a variant designed to simul-

taneously increase the statistical sampling and refine the numerical approximation of

the function evaluations as convergence is approached. This novel algorithm is highly

application-driven, and addresses most of the practical challenges in the optimization of

computer-aided shape designs.

In addition to the five new algorithms, we developed a new interpolation strategy,

MAPS, as a feature of �-DOGS. In practical applications where the objective function is

non-uniformly dependent on parameters, o↵-the-shelf interpolation strategies may be in-

su�cient or ine↵ective in predicting the trends of the objective function. When coupled
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with �-DOGS, MAPS accelerates the local convergence of algorithms to more accu-

rately provide the trend. The superior performance of MAPS compared to benchmark

strategies was verified in generating the most e�cient hydrofoil design.

To demonstrate practical applicability of the algorithms, the following optimiza-

tion problems were explored: (A) the design of low-storage implicit/explicit RungeKutta

(IMEXRK) schemes for high performance computing (HPC) problems, such as the nu-

merical simulation of turbulence; (B) the shape optimization of the hydrofoil to achieve

the maximum e�ciency. We are currently optimizing the wall texture for fully devel-

oped turbulent flow drag reduction using the algorithms.

Clearly, the presented algorithms are powerful tools, but they do have their lim-

itations, and the next step will be to address the challenges and limitations. The main

limitation of the response surface methods developed in the present thesis, and the re-

lated optimization algorithms in [1, 37], is the memory requirements related to the De-

launay triangulation algorithms. The “curse of dimensionality”, is the main limitation in

this family of algorithms due to the exponential growth of a number of simplices as the

dimensions increases. As a result, constructing Delaunay triangulations for problems of

more than ten dimensions is computationally intractable. Using some dimension reduc-

tion methods based on the surrogate model of available existing points is an attractive

research to be considered.

Overall, the test problems considered in this thesis e↵ectively illustrate the es-

sential features of the new data-driven optimization algorithms. In the future, we will

test these data-driven optimization algorithms on application-based problems to improve
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the engineering designs.
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