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Abstract

In this work we develop a general optimization framework to more ac-
curately recover structural variants (SVs) in low-coverage sequencing data from
genomes of related individuals. In previous work the framework incorporated
biological constraints that reflect relatedness between individuals and enforced
sparsity to model the rarity of SVs. This framework operated under the as-
sumption that the genomes were haploid, meaning that each individual had one
copy of the genetic material. There are two main contributions of this thesis:
First we propose an approach that allows the child signal to possess variants
that are not present in either parent (i.e., novel SVs) under the assumption of
haploid signals. Second, we propose an approach to reconstruct the signals of
two parents and a child under the assumption of diploid genomes. We tested
the e↵ectiveness of these approaches on both simulated data and data from the
1000 Genomes Project.
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Chapter 1

Introduction

1.1 Genetic Structural Variation

The complete DNA sequence of an organism (the genome) is one or more ordered
linear sequences of the letters A,C,G, or T. The total genome length is anywhere from
millions (for bacteria) to billions (for mammals) of letters. Every cell in most multi-
cellular organisms contains a complete and nearly identical copy of an organism’s
genome. When cells divide, the genome must be duplicated so each cell will have its
own copy, but every time the genome is copied there is the opportunity for mutational
processes to introduce variation. Genomic variation may consist of a modification to
a single letter, termed single nucleotide variants (SNVs), or rearrangements of larger
regions, termed structural variants (SVs) [2,24]. For multi-cellular organisms, variants
are often further classified into those which transmitted from parents to progeny,
germline variants, or those which occur during cell division in the lifetime of an
organism, somatic variants [29]. In humans, the accumulation of somatic mutations is
commonly associated with the development of cancer [25] while the presence of certain
germline variants has been shown to increase the susceptibility for certain types of
cancer [27,28]. Beyond cancer, genomic variants are associated with many significant
biological outcomes for individuals including a variety of diseases in humans [41,45],
flowering behavior in plants [46] and have contributed to rates of adaptation and the
emergence of new species [18].

The detection of genomic variants such as SVs remains a challenging scientific
and computational problem. Even with modern DNA sequencing technologies, it is
not possible to construct the complete genome of every cell. As such, the common
practice has been to construct a high-quality reference genome for each species and
then annotate this reference with sites of variation [3, 14, 30]. The dominant method
for identifying SNVs or SVs involves comparing fragments of DNA sequenced from a
test (unknown) genome to a given reference (see Figure 1.1) [26, 33, 35, 43, 44]. SVs
are typically detected through indirect evidence – a fragment that maps to a larger
than expected distance – and as such they are more di�cult to identify than SNVs
which may be directly observed through alignment of sequences from the test genome

1
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Figure 1.1: Detecting Structural Variants. To detect structural variants (SVs)
in a test individual, fragments of DNA (black) are sampled from their (unknown)
genome (top) and aligned to a reference genome (bottom). Fragments whose map-
pings are consistent with the underlying sampling process (right) suggest that test
and reference genomes are the same. Fragments whose mappings are discordant in-
dicate the presence of an SV. In our example (left) the test genome has a deletion
relative to the reference. Two black fragments in the test genome that contain the
deletion map to a much longer than expected length (red). Other variants, such as
duplications and inversions, have their own unique discordant signal.

to the reference. However, predicting either type of variant is complicated by DNA
sequencing and alignment errors. Because of these errors, algorithms for variant
detection have su↵ered from high false-positive rates especially when the coverage –
expected number fragments supporting each variant – is low [26, 35]. One hope for
improving the ability to accurately predict SVs has come from methods that combine
the information of many individuals [20]. This allows researchers to leverage large-
scale public e↵orts, such as the 1000 Genomes Project, that have made available
sequencing data from thousands of individuals, including parent-child trios [1, 23].
Population level algorithms have the potential to improve variant detection because
the signal of true SVs will be boosted, but only when variants are likely to be shared
among multiple individuals. Because of the massive population expansion, many
variants in humans are rare and may only be shared by close relatives [19]. One
approach for accurately detecting rare variants would be to simultaneously predict
variants in a parent and a child. In particular, as shown in Figure 1.2, a parent and
child will share many but not all SVs.

Our group has developed computational methods to improve SV prediction through
considering pedigrees of related individuals [4, 6, 7, 9]. Our previous methods con-
strained the set of potential SVs through parent-child relationships by requiring that
every variant present in the child was a germline variant transmitted from a parent.
While these approaches have improved the ability to reduce false-positive predictions,
they also increase the false-negative rate because they do not allow for novel variants
(SVs that are not inherited from a parent) in the child genome.
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Figure 1.2: Inheritance of Structural Variants. Because germline structural
variants (black and red bars) are transmitted from parents to their children, a child
and parent will share many variants. However, because of recombination not all
variants present in a parent’s genome will be present in a child’s genome and, although
rare, a child may acquire novel variants not present in a parent (red).

The work presented in this thesis improves upon our previous work in two ways:
First, we allow the child genome to possess novel variants. Secondly, we extend
our assumptions to develop our model for diploid genomes. In Chapter 2 and 3 we
will allow the child genome to possess novel variants. For simplicity in this work,
we develop our model for haploid genomes so that at each potential SV site each
individual either has the variant or does not. Chapter 2 focuses on building this
framework for information from one parent and one child, while Chapter 3 extends
this to include information from both parents. In Chapter 4 we make the step to
consider diploid signals from each of the three individuals; however we do not allow the
child to possess novel variants for simplicity. We consider a continuous relaxation of
these discrete problems but favor sparse solutions through the use of the `1 norm. To
demonstrate the e↵ectiveness of the approach we present results from simulated data
and data from the 1000 Genomes project. We also demonstrate that by a hierarchical
approach it is possible to generalize our method to multiple generations. The results
from the 1000 Genomes project were generated by Professor Mario Banuelos but are
presented here for completeness.



Chapter 2

Haploid Genomes from
Parent-Child Pairs with Novel
Variants

Here we consider a general framework for detecting structural variants (SVs) given
sequencing data from one parent (p) and one child (c). We assume that there are m
locations in the genome that could be a potential SV for each individual. We assume
that the variants in the child primarily come from the parent (inherited), but the
child may have variants not present in the parent (novel). For simplicity, we consider
each individual to be haploid (only one copy of each chromosome). As such, the true
SV signal for the parent, ~f ⇤

p 2 {0, 1}m, has either a 0 at position j if the parent does
not have an SV at location j or 1 otherwise. In contrast, the true SV signal for the
child, ~f ⇤

c 2 {0, 1}m, comprises two vectors, i.e., ~f ⇤
c = ~f ⇤

i + ~f ⇤
n, where ~f ⇤

i 2 {0, 1}m is
the vector of SVs that are inherited from the parent and ~f ⇤

n 2 {0, 1}m is the vector
of SVs that are novel. Specifically, the vector ~f ⇤

i has either a 1 at position j if an
SV is inherited from the parent at position j or a 0 otherwise. Similarly, the vector
~f ⇤
n has a 1 if and only if there is a variant at position j that is not inherited from
the parent and 0 otherwise. This approach is based on the paper [37, 39] coauthored
with Professors Mario Banuelos, Roummel Marcia, and Suzanne Sindi published in
Methods.

2.1 Observational model

The observed data are the number of DNA fragments supporting each potential
SV, and the vectors ~sp 2 Rm and ~sc 2 Rm are the observation vectors of the parent
and child, respectively. As in previous work [8,21,32], we assume that the data follow
a Poisson distribution,

4
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
(~sc)j
(~sp)j

�
⇠ Poisson

 "
(�c � ✏)

n
(~fi)j + (~fn)j

o
+ ✏

(�p � ✏)(~fp)j + ✏

#!
(2.1)

where j 2 {1, 2, . . . ,m}, �p and �c are the sequencing coverage of the parent and child,
respectively, and ✏ > 0 is the measurement error corresponding to the sequencing and
mapping processes. Let

~s =


~sc
~sp

�
and ~f ⇤ =

2

64
~f ⇤
i
~f ⇤
n
~f ⇤
p

3

75 .

Then the general observation model can be expressed as

~s ⇠ Poisson(A~f ⇤ + ✏ ), (2.2)

where 2 R2m is the vector of ones and A 2 R2m⇥3m is the coverage matrix given by

A =


(�c � ✏)Im (�c � ✏)Im 0

0 0 (�p � ✏)Im

�
,

where Im 2 Rm⇥m is the m⇥m identity matrix.

2.2 Problem formulation

Under the Poisson process model (3.1), the probability of observing ~s is given by

p(~s |A~f ⇤) =
2mY

j=1

((A~f ⇤)j + ✏)~sj

~sj!
exp

⇣
�(A~f ⇤)j + ✏

⌘
. (2.3)

We use the maximum likelihood principle to determine the unknown Poisson pa-

rameter A~f ⇤ such that the probability of observing the vector of Poisson data ~s in
(2.3) is maximized. Specifically, we minimize the corresponding negative Poisson
log-likelihood function

F (~f) =
2mX

j=1

�
A~f

�
j
� ~sj log

⇣
(A~f)j + ✏

⌘
.

In our approach for minimizing F (~f), we will apply gradient-based methods and relax
the domain of ~f . In particular, rather than enforcing ~f to be binary in value, i.e.,
~f 2 {0, 1}3m, we only require the values of ~f to lie between 0 and 1, i.e., 0  ~f  .
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2.3 Familial constraints

To improve the accuracy of our SV predictions, we incorporate additional con-
straints that exploit information about the signal ~f . First, if the child has a structural
variant, then it must be from the parent or it must be novel, but not both, i.e.,

0  ~fi + ~fn  .

Second, if the child has a structural variant from the parent, then that SV must be
present in the parent, i.e.,

0  ~fi  ~fp  .

Finally, we enforce that if there is a novel SV present in the child, it cannot be present
in the parent, i.e.,

0  ~fn  � ~fp.

We will denote the set of all vectors satisfying these constraints by S, i.e.,

S =

8
><

>:

2

64
~fi
~fn
~fp

3

752R3m :
0  ~fi + ~fn  , 0  ~fi  ~fp  ,

0  ~fn  � ~fp, 0  ~fi, ~fn, ~fp 

9
>=

>;
.

2.4 Sparsity

Structural variants are relatively rare in an individual’s genome. Without incor-
porating how uncommon SVs are in a genome sequence, predictions result in false
positives that mistake fragments that are incorrectly mapped to locations in the
genome as SVs. In our work, we promote sparsity in our predictions by incorporating
an `1-norm penalty term in our problem formulation, which is a common technique
found in statistical literature [12, 13, 42]. What is particularly novel in our formula-
tion is that while SVs are rare, SVs that are not inherited from a parent (~fn in our
notation) are even rarer. To this end, we use two penalty terms: one for the parent

SV (~fp) and for the child SV inherited from the parent (~fi), and another penalty term

for the novel child SVs (~fn). Mathematically, we express this penalty as

pen(~f) =
�
k~fpk1 + k~fik1

�
+ �k~fnk1,

where � � 1 is a penalty weight that places greater emphasis on ~fn being much
sparser than both ~fp and ~fi, meaning the novel child SVs are much rarer than either
the parent SVs or the inherited child SVs.
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Figure 2.1: Illustration of feasible regions, sparsity penalty, and maximum likelihood
surfaces for the two scenarios for child SVs: (a) When there is not a novel child
variant (f̂n = 0), our approach reduces to our original model for germline structural
variant prediction, where 0  f̂i  f̂p  1, meaning an inherited child SV can only
be present if the parent also has that SV. (b) When there is not an inherited child
variant (f̂i = 0), a parent SV cannot be present where there is a novel child variant
and vice versa, i.e., 0  f̂p + f̂n  1.

2.5 Optimization problem

With these components defined, the genomic variants reconstruction problem has
the following constrained optimization form:

minimize
~f2R3m

F (~f) + ⌧pen(~f)

subject to ~f 2 S
(2.4)

where ⌧ > 0 is a regularization parameter that balances the negative Poisson log-
likelihood data fidelity term with the sparsity-promoting penalty term. This objective
function in (2.4) will serve as the basis for each of the frameworks in the following
chapters; however, F and S will change according to the assumptions we make in
each chapter. Figure 2.1 provides a visualization of each of the components in our
optimization framework: likelihood, sparsity and constraints.

We use the Sparse Poisson Intensity Reconstruction ALgorithm (SPIRAL) frame-
work [16] to solve (2.4) by minimizing a sequence of quadratic models to the function
F (~f). First we approximate F (~f) using a second-order Taylor series expansion at the
current iterate ~fk:

F (~f) ⇡ F (~fk) + (~f � ~fk)>rF (~fk) + 1
2(
~f � ~fk)>r2F (~fk)(~f � ~fk). (2.5)
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The gradient of F (~f) is given by

rF (~f) =

2

4
�c (1�Dc~sc)
�c (1�Dc~sc)
�p (1�Dp~sp)

3

5 ,

where 1 2 Rm is a column vector of ones and Dc, Dp 2 Rm⇥m are diagonal matrices
with

(Dc)j,j =
1

�c(~fi)j + �c(~fn)j + ✏

(Dp)j,j =
1

�p(~fp)j + ✏

for 1  j  m. We approximate the second-derivative Hessian matrix with a scalar
multiple of the identity matrix ↵kI where ↵k > 0 (see [10, 11] for details) and define
the quadratic model

F k(~f) ⌘ F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22. (2.6)

Now, each quadratic subproblem will be of the form

~fk+1 = arg min
~f2R3m

F k(~f) + ⌧pen(~f)

subject to ~f 2 S.

It can be shown that this constrained quadratic subproblem is equivalent to the
following subproblem:

~fk+1 = arg min
~f2R3m

Q(~f) = 1
2k~f � ~q kk22 + ⌧

↵k
pen(~f)

subject to ~f 2 S,
(2.7)

where

~q k =

2

64
~q k
i

~q k
n

~q k
p

3

75 = ~fk � 1

↵k
rF (~fk).

We note that the objective function Q(~f) separates into the function

Q(~f) =
mX

j=1

Qj

�
~fi, ~fn, ~fp

�
,

where

Qj

�
~fi, ~fn, ~fp

�
= 1

2

⇢�
(~fi�~q k

i )j
�2
+
�
(~fn�~q k

n )j
�2
+
�
(~fp�~q k

p )j
�2
�

+ ⌧
↵k

⇢
|(~fp)j|+ |(~fi)j|+ �|(~fn)j|

�
.
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Since the bounds that define the feasible set S are component-wise, then (2.7) sepa-
rates into subproblems of the form

minimize
fi,fn,fp2R

1
2(fi � qi)

2 + 1
2(fn � qn)

2 + 1
2(fp � qp)

2

+ ⌧
↵k
|fp| + ⌧

↵k
|fi| + �⌧

↵k
|fn|

subject to 0  fi + fn  1, 0  fi  fp  1,

0  fn  1� fp, 0  fi, fn, fp  1,

(2.8)

where {fi, fn, fp} and {qi, qn, qp} are scalar components of the vectors {~fi, ~fn, ~fp} and
{~qi, ~qn, ~qp}, respectively, at the same location. Completing the squares and ignoring
constant terms, the optimization problem (3.3) can be expressed as

minimize
fi,fn,fp2R

1
2(fi � a)2 + 1

2(fn � b)2 + 1
2(fp � c)2

subject to 0  fi + fn  1, 0  fi  fp  1,

0  fn  1� fp, 0  fi, fn, fp  1,

(2.9)

where a = qi � ⌧
↵k
, b = qn � �⌧

↵k
and c = qp � ⌧

↵k
. The unconstrained minimizer of

(2.9) is (a, b, c). If (a, b, c) is feasible with respect to the constraints, then it is also the
constrained minimizer. If (a, b, c) is not feasible, then we obtain the feasible solution
to (2.9) by orthogonally projecting (a, b, c) onto the three-dimensional feasible set,
which is illustrated in Fig. 2.2. In particular, the fi-fn-fp three-dimensional space
partitions into 15 di↵erent regions that projects onto a vertex, edge, or surface of the
feasible set for infeasible points. Tables 2.1 and 2.2 enumerate and define the regions
of interest and the corresponding projections.

2.5.1 Forward and Backward Hierarchical Approaches

In application, observations for related individuals may span multiple generations.
As such, we propose two approaches to address prediction of novel child variants. In
the case we have observations ~yc, ~yp, and ~ygp, where ~ygp is the observation vector of
the grandparent signal, we describe both of these approaches below.

Forward Hierarchical (FH) Approach:

Step 1: Given ~yp and ~ygp, reconstruct ~fp and ~fgp.

Step 2: Use ~f 0
p ⌘ ~fp from Step 1 as initialization to reconstruct ~fi, ~fn, and ~fp.

Backward Hierarchical (BH) Approach:

Step 1: Given ~yc and ~yp, reconstruct ~fi, ~fn, and ~fp.

Step 2: Use ~f 0
i ⌘ ~fi and ~f 0

n ⌘ ~fn from Step 1 as initialization to reconstruct ~fi, ~fn, and
~fgp.

We note that for the backward hierarchical approach, the final novel variants are
those not present in the grandparent signal.
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Figure 2.2: The three-dimensional feasible region of the minimization problem (2.9)
on the fi-fn-fp axis. Because novel child SVs are not present in the parent genome,
i.e., fn  1 � fp, fn ! 0 as fp ! 1. Similarly, because inherited SVs come from
the parent genome, i.e., fi  fp, fi ! 0 as fp ! 0. Finally, because novel and
inherited child SVs are mutually exclusive, i.e., fn + fi  1, fn ! 0 as fi ! 1 and
vice versa. These define the vertices of the feasible region, which is a polytope since
the constraints are linear. Subproblem minimizers not satisfying the constraints are
orthogonally projected onto this feasible region.

2.6 Results

2.6.1 Implementation Details

We implemented our method for variant detection in Matlab by extending our
previous approach [9] based on the SPIRAL method [16]. We next analyze the per-
formance of our method on both simulated and real data. We compared the per-
formance of our new method with two other variant prediction methods. First, we
compare to our previously published method for variant prediction in the context of
one-parent/one-child [8]. This method had a similar sparsity-promoting term ⌧ , but
required all predictions in the child to occur in the parent (i.e., did not allow for novel
variants in the child). Second, we compare to the same method but with only sparsity
constraints (i.e., no family constraints). When choosing ⌧ we have found that there
are a wide range of acceptable values for which the reconstruction will work well. If
we are reconstructing the genome of a species for which the sparsity of the variants is
well documented, then we can make an informed choice for ⌧ . However if the sparsity
is not well known, then we can choose a ⌧ value in a reasonable range to enforce
the sparsity. The regularization parameters ⌧ were chosen to be the same for all
methods and, when showing results for our new method, � was chosen to maximize
the area under the curve (AUC). In all cases, the SPIRAL algorithm was run with
the same terminating criteria, if the relative di↵erence between consecutive iterates
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Projection a b c

In
te

ri
or

(a, b, c) 0  a  c 0  b b + c � 1  0

V
er

te
x

(0, 0, 0) a  �c b  0 c  0

(0, 0, 1) a  0 b  c � 1 1  c

(0, 1, 0) a  b � c � 1 1  b c  b � 1

(1, 0, 1) 1  a b  a + c � 2 2 � a  c

E
d
ge

(0, b, 0) a < �c 0 < b < 1 c < 0

c < 2a � 1 + b
c < 2 � a + b

(u1, v1, w1) 2 � 2b � c < a b < 1 + a + c

(0, v2, w2) a < 0 b < 1 + c 1 � b < c < b + 1

(u3, 0, w3) c < a < 2 � c b < 0 �c < a

S
u
rf

ac
e (a, v4, w4) 0  a b  1 � 2a + c b � 1  c  b + 1

(u5, b, w5) |c|  a 0  b  1 c  �a � 2b + 2

Table 2.1: The partitioning of the fi-fn-fp space and the corresponding orthogonal
projections onto the feasible set. The projection of the unconstrained minimizer
(a, b, c) is the minimizer of (2.9). Projections onto edges and surfaces are represented
as linear combinations of a, b, and c in Table 2.2.

converged to k~fk+1 � ~fkk2/k~fkk2  10�8. For each trio, the numerical experiments
took on average of 6 minutes to run in serial on a commodity machine. In contrast, in
real experiments, the SV-caller GASV took an average of 180 minutes to process the
.bam files and 1.5 minutes to generate candidate SVs for each trio. In other words,
the memory footprint of our method is extremely low and does not result in fatalistic
warnings. In particular, the main computational overhead is in the generation of pre-
dictions. We are currently developing an open-source, parallel version of our method,
but our Matlab code is available upon request.

2.6.2 Simulated Experiments

Because our model was developed in the simplified assumption of one-parent and
one-child with haploid genomes, before applying it to real human data violating our
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Projection u v w

E
d
ge

(u1, v1, w1)
1
3(1 + a � b + c) 1

3(2 � a + b � c) 1
3(1 + a � b + c)

(0, v2, w2) 0 1
2(1 + b � c) 1

2(1 � b + c)

(u3, 0, w3)
1
2(a + c) 0 1

2(a + c)
S
u
rf

ac
e (a, v4, w4) a 1

2(1 � c + b) 1
2(1 + c � b)

(u5, b, w5)
1
2(c + a) b 1

2(c + a)

Table 2.2: Orthogonal projections (u, v, w) of the unconstrained minimizer (a, b, c)
onto the surfaces and edges of the feasible set.

assumptions, we studied its performance on data we simulated to match our assump-
tions. For simplicity we do not directly simulate the generation and mapping of reads,
we only generated the sequencing depth (or coverage). In these cases we simulated
the true signal for a parent and child by creating a vector of 105 potential SVs and
selecting 500 locations to be true variants for the parent and child signal separately.
We selected 500 locations uniformly at random to be the true SVs in the parent. The
child signal was then generated by randomly selecting b500⇢c of the parent variants to
be inherited (where ⇢ is the percent overlap between parent and child SVs) and then
choosing (500�b500⇢c) locations from the remaining (105� 500) locations that were
not chosen as a parent variant to be novel variants in the child. In our experiments,
we chose 0.5  ⇢  1.

Analysis

When the percentage of novel variants is (< 10%) in the child, our method is better
able to reconstruct the child signal. Hence, we are able to more accurately recover
the SVs in the child reconstruction when we allow for novel variants. Figure 2.3
illustrates how our proposed method can adequately recover the parent signal under
the assumptions that the novel variants are far more rare than the inherited variants
in the child. As we were running test cases we noticed the trend that if we allow for
a larger number of novel variants in the child (⇡ 50%), then our reconstruction is
more reliant on the depth of the sequencing coverage. In these cases we need higher
sequencing coverage (⇡ 10⇥) for both individuals to accurately recover their signals.

2.6.3 1000 Genomes Project Trio Data

To test our proposed method of novel variant detection, we apply our method to
both father-mother-daughter trios sequencing data from the 1000 Genomes Project
[3]. In the pilot study of the project, both the CEU (European ancestry) and YRI
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Figure 2.3: Left. ROC curves of three methods illustrating the false positive rate vs.
the true positive rate in the simulated child reconstruction, where ⌧ = 20 and � = 3

2 .
Right. ROC curves of three methods illustrating the false positive rate vs. the true
positive rate in the simulated parent reconstruction, where ⌧ = 20 and � = 3

2 . These
simulations were done with sequencing coverage of 4 in both individuals and ⇢ = 0.9
(so the child has 50 novel variants).

(Yoruba population) genomes were sequenced at high coverage using three sequenc-
ing platforms with a mean mapped depth of 43.14, and 40.05, respectively. This
data was subsequently subsampled to ⇡ 4⇥ coverage and aligned to NCBI36. In
particular, we use the .bam files corresponding to SLX (Illumina Genome Analyser
ABI SOLiD system), with 36 - 50 bp reads. We incorporate the SV-caller GASV to
obtain candidate variant positions for all six individuals [34]. The preprocessing of
GASV, BamToGASV, was run with default settings and candidate variants were
obtained with the –batch option in GASV for candidate deletions. In addition to
comparing our method to other constrained models (i.e., sparsity and sparsity with
family constraints), we benchmark our work against GASV output by thresholding
at each observed number of fragments supporting a potential SV. As such, our model
mitigates the high false positive rates of previous SV-calling tools.

For the true signals ~f ⇤, the study reported deletions passing filters associated with
a post-beagle 95% confident call rate and a Hardy-Weinberg equilibrium p-value <
0.01 in each of the populations. Additionally, we filter out LowQual deletions near
centromeres or telomeres longer than 250bp of the reported validated deletion set.
Moreover, variants in the child signal not in one of the parents represent the the
novel deletion signal we aim to reconstruct. In particular, the child has an average
of 8.55% and 6.26% novel variants (of total variants) for the YRI and CEU trios,
respectively.
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Figure 2.4: ROC curves of four methods illustrating the novel deletions (validated
set of deletions may be incomplete) vs. true positives in the signal of the CEU parent
NA12891, where ⌧ = 0.0129 and � = 10. We observe an increase of true positive
predictions when the number of novel predictions < 1000.

Analysis

For parent signal reconstructions, we note an initial improvement in true positive
prediction of our proposed model when the number of novel predictions is low. Figure
2.4 illustrates our findings for the CEU parent NA12891. Although the area under the
curve (AUC) for the ROC curve is less for our proposed method, we note an improve-
ment from simple thresholding techniques (GASV). Moreover, constraints from our
initial model favor parent signal recovery [8]. Next, we focus on the reconstruction of
the entire child signal ~fc. Figure 2.5 illustrates the novel variant predictions against
validated deletions in the YRI child NA19240 considering the same four methods.
We observe comparable results with enforcing only sparsity (i.e., no inheritance con-
straints) and an improvement over previous methods. Since the rate of novel variants
is less than 10% in this low coverage regime, this is consistent with our simulated
experiments.

2.6.4 Platinum Genomes

We also apply our method to low-coverage (⇡ 5⇥) sequencing data for the three-
generation, 17-member CEU pedigree (dbGaP accession phs001224.v1.p1) using the
same four models as before [14]. All 17 family members’ DNA was originally se-
quenced on an Illumina HiSeq2000 to an average depth of 50⇥ using 2⇥100 bp reads
and PCR-free sample preparation. Although originally sequenced at high coverage,
we use Samtools to subsample and achieve low coverage of approximately 5⇥ [22].



15

Figure 2.5: ROC curves of four methods illustrating the novel deletions vs. true
positives in the combined child signal ~fc of the child in the YRI trio (NA19240),
where ⌧ = 1 and � = 10. We note comparable performance of our proposed model
with only enforcing sparsity.

We determine true SVs with the intersection of GASV and Delly SV calls [31, 34].
In particular, we look at the deletions from the grandparent-parent-child (NA12889,
NA12877, and NA12882) and apply our method using the proposed hierarchical ap-
proaches. As before, we benchmark our method by comparing to the thresholding of
GASV candidate structural variants.

Analysis

For both the forward and backward hierarchical approaches, we find similar pat-
terns for parent and grandparent signal reconstruction, namely less predictive power
of true positives. Fig 2.6 illustrates the novel child signal reconstructions for NA12882.
We note that the forward hierarchical (FH) approach achieves competitive AUC val-
ues when initializing the parent signal from one application of our method (with
parent with the grandparent signals). We highlight that the backward hierarchical
(BH) method results in an increase of the true positive predicted for the novel child
signal. The BH approach is also compared to applying the method once (with child
and parent observations) and note that it outperforms all other methods. When we
considered higher coverage in this data set (⇡ 10⇥), we observe similar performance
for the backward hierarchical approach for novel deletions and less improvement in
sensitivity when compared to thresholding GASV deletion call set (data not shown).
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Figure 2.6: ROC curves of four methods illustrating the novel deletions vs. true
positives in the signal of the CEU child NA12882, where ⌧ = 0.0129 and � = 10.
Left. Using the forward hierarchical (FH) approach, we observe comparable detection
of novel variants. Right. With the backward hierarchical (BH) approach, we note an
increase in true positive rate compared to applying our method only once (dashed
blue line).

2.7 Conclusions

We propose a new method to detect novel structural variants – SVs present in a
child not inherited from a parent – from sequencing data in parent-child pairs. Our
method incorporates both relatedness and sparsity constraints, allowing for varying
penalty parameters in the reconstruction of the child signal. By doing so, our new
model is less sensitive to our regularization parameters. Although parent signal re-
covery resulted in reduced predictive capacity, our proposed method improved true
positive predictions in the child. We present our results for both simulated, real
data from the 1000 Genomes Project and a subset of the Platinum Genomes, and
suggest further exploration in varying sequencing coverage for future parent-o↵spring
data. In future studies, we intend to incorporate other SV-calling tools, larger family
structures, and a general relatedness parameter in our methods.



Chapter 3

Haploid Genomes from
Parent-Child Trios with Novel
Variants

We now describe a structural variant (SV) detection framework given genomic
data from both parents (p1, and p2) and from one child (c). Let ~f ⇤

I 2 Rm be the
vector of m locations of potential SVs for each individual I 2 {p1, p2, c}. We make
the following assumptions:

• Inherited variants: The variants in the child primarily come from the parents.
In particular, if both parents have an SV at a particular location, the child must
also have an SV at that location. Furthermore, we assume SVs are rare.

• Novel variants: On rarer occasions, the child may have variants not present in
either parent.

• Haploid genotype: For simplicity, we consider each individual to be haploid (only
one copy of each chromosome).

• Low-coverage sequencing: The expected number of fragments supporting each
variant is low, and the observed measurements are governed by a Poisson process.

We denote the true SV signal for either parent, P 2 {p1, p2}, by ~f ⇤
P 2 {0, 1}m, which

has either a 1 at position j if the parent has an SV at location j or 0 otherwise for
j = 0, . . . ,m. In contrast, the true SV signal for the child, ~f ⇤

c 2 {0, 1}m, is composed
of two vectors:

~f ⇤
c = ~f ⇤

i + ~f ⇤
n,

where ~f ⇤
i 2 {0, 1}m and ~f ⇤

n 2 {0, 1}m denote the vector of SVs that are inherited from
either parent and are novel, respectively. In particular, (~f ⇤

i )j has either a 1 if an SV

17
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is inherited from the parent at position j or a 0 otherwise. Similarly, (~f ⇤
n)j has a 1

if and only if there is a variant at position j that is not inherited from the parent
and 0 otherwise. We note that at each location, ~fi and ~fn cannot simultaneously
be both non-zero since a child variant can only either be inherited or be novel, but
not both. In other words, the vectors ~f ⇤

i and ~f ⇤
n satisfy the complementary condition

(~f ⇤
i )j(~f

⇤
n)j = 0 for 1  j  m.

This approach is based on the paper [38] coauthored with Professors Mario Banue-
los, Roummel Marcia, and Suzanne Sindi published in the conference proceedings for
2019 IEEE International Symposium on Medical Measurements and Applications
(MeMeA).

3.1 Observation model

We denote the vector of observations and the vector of true SV signals by ~s =
[~sc;~sp1 ;~sp2 ] and ~f ⇤ = [~f ⇤

i ; ~f
⇤
n; ~f

⇤
p1 ;

~f ⇤
p2 ], where the entries in the measurement vector ~sI

correspond to the number of DNA fragments supporting each potential SV, and the
vector ~sI 2 Rm, where I 2 {c, p1, p2}, is the observation vectors for each individual.
Because we assume that the sequence coverage is low, we expect that the number of
fragments covering any position in the genome to follow a Poisson distribution (see
e.g., [8, 35]).

In particular, we can express the general observation model as

~s ⇠ Poisson(A~f ⇤ + ✏ ), (3.1)

where 2 R3m is the vector of ones and A 2 R3m⇥4m is the coverage matrix given by

A =

2

4
(�C�✏)Im (�C�✏)Im 0 0

0 0 (�F�✏)Im 0
0 0 0 (�M�✏)Im

3

5 ,

where Im 2 Rm⇥m is the m⇥m identity matrix.

3.2 Problem formulation

We use the maximum likelihood principle to determine ~f ⇤ such that the probability
of observing the vector of Poisson data ~s in (3.1) is maximized. More precisely, we
minimize the corresponding negative Poisson log-likelihood function

F (~f) =
3mX

j=1

n�
A~f

�
j
� ~sj log

⇣
(A~f)j + ✏

⌘o
.
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To apply gradient-based optimization approaches for minimizing F (~f), we allow ~f
to take on more than the binary values of 0 and 1 and instead be continuous in the
interval [0, 1].

3.3 Feasibility constraints

We impose the following constraints on the SV signal estimate ~f , which correspond
to the biological assumptions we make:

• Since each entry in an individual’s SV signal is binary, i.e., ~f ⇤
c , ~f

⇤
p1 ,

~f ⇤
p2 2 {0, 1}m,

and since ~f ⇤
c = ~f ⇤

i + ~f ⇤
n with ~f ⇤

i , ~f
⇤
n 2 {0, 1}m, then we have 0  ~fi, ~fn, ~fp1 , ~fp2  1

and 0  ~fi + ~fn  1.

• Because a novel variant in the child cannot be inherited from either parent, we have
0  ~fn  1� ~fp1 and 0  ~fn  1� ~fp2 .

• If both parents have an SV, then the child must inherit the same SV: ~fp1 + ~fp2 �1 
~fi. Similarly, if neither parent has an SV, then the child cannot have an inherited
SV: ~fi  ~fp1 + ~fp2 .

We will denote the set of ~f satisfying these constraints by S.

3.4 Optimization Setup

With these components defined, the genomic variants reconstruction problem has
the following constrained optimization form:

minimize
~f2R4m

F (~f) + ⌧pen(~f)

subject to ~f 2 S
(3.2)

where pen(~f) is a penalty that promotes sparsity in ~f and ⌧ > 0 is a regularization
parameter that balances the negative Poisson log-likelihood term with the sparsity-
promoting penalty term. We use the Sparse Poisson Intensity Reconstruction ALgo-
rithm (SPIRAL) framework [16, 37] to solve (2.4), which involves solving a sequence
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of scalar quadratic subproblems of the form

minimize
fi,fn,fp1 ,fp2

2R

1
2(fi�qi)

2+ 1
2(fn�qn)

2+ ⌧
↵k
|fi|+ ⌧�

↵k
|fn| +

1
2(fp1�qp1)

2 + 1
2(fp2�qp2)

2+ ⌧
↵k
|fp1 |+ ⌧

↵k
|fp2 |

subject to 0  fi, fn, fp1 , fp2  1, 0  fi + fn  1

0  fn  1� fp1 , 0  fn  1� fp2 ,

fp1 + fp2 � 1  fi  fp1 + fp2 .

(3.3)

where at each iteration k,

• {fi, fn, fp1 , fp2} and {qi, qn, qp1 , qp2} are scalar components of the vectors ~f k =

{~f k
i , ~f k

n , ~f k
p1 ,

~f k
p2} and ~q k = {~q k

i , ~q
k
n , ~q

k
p1 , ~q

k
p2}, respectively, at the same location;

• ↵k is the learning rate;

• ~q k = ~f k � 1
↵k
rF (~f k) is the predicted new iterate along the steepest descent (neg-

ative gradient) from the current iterate with step length 1/↵k;

• 0 < � < 1 is a parameter that further amplifies sparsity on novel child SVs.

Note that because the constraints are more complex in (3.3) than in our previous
work, we must use a di↵erent approach.

3.5 Optimization approach

We propose using an alternating block-coordinate descent approach to solve (3.3).
Specifically, the proposed method solves (3.3) by alternating between child and parent
indicator variables. First, we fix the parent structural variant signals, fp1 and fp2 , and
solve the resulting minimization problem for the child signal, fi and fn. Next, we fix
the child signal and minimize over the parent indicator variables. The method contin-
ues until the di↵erence between subsequent iterates falls below a specified threshold.
We outline the steps below.

Step 0: Initially, we fix the values for the parent indicator variables by setting
f (0)
p1 = f (0)

p2 = 0.5 for each candidate SV location.

Step 1: Suppose we have obtained f̂ (j�1)
p1 and f̂ (j�1)

p2 from the previous iteration. The
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child indicator variables f̂ (j)
i and f̂ (j)

n are obtained from solving

minimize
fi,fn2R

1
2(fi � ci)

2 + 1
2(fn � cn)

2 (3.4)

subject to 0  fi + fn  1

0  fn  min
⇣
1� f̂ (j�1)

p1 , 1� f̂ (j�1)
p2

⌘

max
⇣
0, f̂ (j�1)

p1 + f̂ (j�1)
p2 � 1

⌘
 fi

fi  min
⇣
1, f̂ (j�1)

p1 + f̂ (j�1)
p2

⌘
,

where ci = qi � ⌧
↵j

and cn = qn � �⌧
↵j
. The feasible region is shown in Fig. 3.1(a).

(a) (b)

Figure 3.1: The feasible set (indicated by the shaded region) for each step of the
proposed block-coordinate minimization approach. (a) In Step 1, we minimize over
the child indicator variables fi and fn given fixed parent indicator variables f̂p1 and
f̂p2 . (b) In Step 2, we minimize over the parent indicator variables fp1 and fp2 given
fixed child indicator variables f̂n and f̂i.

Step 2: Suppose we have obtained f̂ (j)
i and f̂ (j)

n from Step 1. To obtain the solution

for the current iteration f̂ (j)
p1 and f̂ (j)

p2 , we have

minimize
fp1 ,fp22R

1
2(fp1 � cp1)

2 + 1
2(fp2 � cp2)

2 (3.5)

subject to 0  fp1  min
⇣
1, 1� f̂ (j)

n

⌘
,

0  fp2  min
⇣
1, 1� f̂ (j)

n

⌘
,

fp1 + fp2 � 1  f̂ (j)
i  fp1 + fp2 ,

where cp1 = qp1 � ⌧
↵j

and cp2 = qp2 � ⌧
↵j
. The feasible region is shown in Fig. 3.1(b).



22

We note that both problems (3.4) and (3.5) have closed form solutions, where the
minimizer is obtained by projecting the unconstrained solution to the feasible set (see
e.g., [37]).

3.6 Results

We implemented our method for variant detection in Matlab by extending our
previous approach [37] based on the SPIRAL method [16]. We analyze the perfor-
mance of our method on both simulated and real data by comparing our new method
with two other variant prediction methods. We compare our previous method for
variant prediction in the context of two-parents/one-child [7]. This method includes
a sparsity promoting term ⌧ , but did not specifically model novel variants in the child.
Second, we include a comparison to the model that only enforces sparsity. The regu-
larization parameter ⌧ was chosen to be the same for all methods and � was chosen
when the area under the curve (AUC) was maximized. Each model was run with
the same terminating criteria, checking if the relative di↵erence between consecutive
iterates converged to k~fk+1 � ~fkk2/k~fkk2  10�8.

3.6.1 Simulated Data

Because our model was developed in the simplified assumption of two-parent and
one-child with haploid genomes, before applying it to real human data violating our
assumptions, we studied its performance on data we simulated to match our assump-
tions. In these cases we simulated the true signal for both parents and the child and
varied the fraction of similarity between parents and the number of novel variants in
the child to study the performance of our model. We first created the parent signals
and then derived the child with its novel variants. Each simulated true signal con-
sisted of 105 potential SVs. For the parents, 500 locations were chosen at random to
be true variants; the fraction of variants the parents had in common was varied ac-
cording to their chosen percent similarity. For the child signal, if both parents had an
SV at a particular location the child signal did as well. If only one parent had an SV
at a location, the child had a 50% chance of inheriting that SV. Novel variants in the
child were chosen randomly from locations where no parent had an SV. From these
true signals, observed signals were created by sampling from the Poisson distribution
with a given coverage and error.

Analysis. When the percentage of novel variants is small in the child (< 10%),
we observe better performance of our new method. In Figure 3.2 we show an ROC
curve for a simulated data set where the parents were chosen to have 50% similarity
and the child had 50 novel variants. We note that the area under the curve for
our proposed method is higher than our other methods for the child reconstruction.
Hence, we are able to more accurately recover the SVs in the child reconstruction
when we allow for novel variants. We also note that while our performance is reduced
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for reconstructing the parent genome as compared to our previous method, our new
method still outperforms sparsity constraints alone as can be seen in Figure 3.3. We
also observed that for the child reconstruction, our proposed method is more stable
under varying ⌧ values.

Figure 3.2: ROC curves of three methods illustrating the false positive rate vs. the
true positive rate in the simulated child reconstruction, where �p1 = �p2 = 8, �c = 10,
✏ = .01, ⌧ = 100 and � = 500.

(a) (b)

Figure 3.3: ROC curves of three methods illustrating the false positive rate vs. the
true positive rate in the simulated parent reconstructions, where �p1 = �p2 = 8,
�c = 10, ✏ = .01, ⌧ = 100 and � = 500.

3.6.2 1000 Genomes Project Trio Data

To validate our method, we consider trio data of two separate populations from
the 1000 Genomes Project [3]. Both the European (CEU) and Yoruba (YRI) father-
mother-daughter trio genomes were sequenced at ⇡ 4⇥ coverage and aligned to
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NCBI36. We obtain our candidate set of SVs from the GASV pipeline, but our
method is also applicable to other SV callers [34]. We filter the validated set of vari-
ants by eliminating experimentally validated SVs shorter than 250bp and which are
classified as low quality. We note that only 15 of the validated variants in the child
signal not present in either of the parents constitute our novel child signal ~f ⇤

n.

Analysis. For child (inherited and novel) signal reconstructions, we achieve compet-
itive sensitivity with our previous methods. When reconstructing the parent signals,
we improve on our previous 2 parent - 1 child model, whose iterates are updated by
non-alternating closed-form projections [7]. Figure 3.4 illustrates this improvement
with predicted novel deletions against experimentally validated variants in the CEU
mother NA12891 when comparing against previous models. We also find that our
new method is stable under changes of ⌧ and � values.

Figure 3.4: ROC curves of four methods illustrating novel variants vs. true positives
(experimentally validated) in the signal of the CEU mother NA12891, where ⌧ = 10
and � = 1

10 . We observe an overall improvement in correctly classifying SVs compared
to previous methods.

3.7 Conclusions

We propose a new method to detect novel structural variants – SVs present in a
child not inherited from a parent – from sequencing data in parent-child trios. Our
method incorporates both relatedness and sparsity constraints, allowing for varying
penalty parameters in the reconstruction of the child signal. By doing so, our new
model is less sensitive to our regularization parameters. With real data, our method
achieves competitive true positive predictions in the child and improves parent signal
recovery, and we intend on exploring this with further simulated data studies. We
present our results for both simulated and real data from the 1000 Genomes Project
and suggest further exploration in varying sequencing coverage for future parent-
o↵spring data. In future studies, we intend to incorporate other SV-calling tools,
larger family structures, and a general relatedness parameter in our methods.



Chapter 4

Diploid Genomes from
Parent-Child Trios

We consider a framework for refining structural variant (SV) recovery signals for
multiple related individuals. This work considers diploid data from one father (p1),
one mother (p2), and one child (c). We assume that each signal consists of m locations
in the genome where an SV may occur. Humans have two copies of each chromosome,
one inherited from each parent. If both parents have an SV at the same location,
this impacts the probability that the child also has an SV at the same location. For
each individual I in our model, we consider two signals that take on binary values:
a heterozygous indicator ~yI 2 {0, 1}m and a homozygous indicator ~zI 2 {0, 1}m. The
heterozygous vector is an indicator that the individual has one copy of the SV while
the homozygous vector indicates that the individual has two copies of the SV. If an
individual is heterozygous for an SV at position j, then (~yI)j = 1 and (~zI)j = 0.
Similarly, if an individual is homozygous for an SV at position j, then (~zI)j = 1 and
(~yI)j = 0.

This approach is based on the paper [40] coauthored with Professors Mario Banue-
los, Roummel Marcia, and Suzanne Sindi under review for the 2020 European Signal
Processing Conference (EUSIPCO) proceedings.

4.1 Observation Model

The observed data are the number of DNA fragments supporting each potential
SV. In particular, we denote the observation vectors for the parents (father and
mother) and child by the vectors ~sp1 2 Rm,~sp2 2 Rm, and ~sc 2 Rm, respectively. We
assume the data follow a Poisson distribution ( [21, 36]):

2

4
~sc
~sp1
~sp2

3

5⇠Poisson

0

@

2

4
zc(2�c�✏)+yc(�c�✏)+✏

zp1(2�p1�✏)+yp1(�p1�✏)+✏
zp2(2�p2�✏)+yp2(�p2�s✏)+✏

3

5

1

A, (4.1)
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where �c,�p1 , and �p2 are the sequencing coverage of the child, father, and mother,
respectively, and ✏ > 0 (see [8]). The parameter ✏ is reflective of measurement errors
corresponding to the sequencing and mapping process. These errors are a large hin-
drance to accurate SV discovery methods and lead to a high false-positive discovery
rate.

Letting

~s =

2

4
~sc
~sp1
~sp2

3

5 , ~z =

2

4
~zc
~zp1
~zp2

3

5 , ~y =

2

4
~yc
~yp1
~yp2

3

5 , and ~f =


~z
~y

�
,

we note that ~f 2 {0, 1}6m. Our general observation model (4.1) can be expressed as

~s ⇠ Poisson (Af + ✏1) ,

where 1 2 R3m is the vector of ones and A = [A1 A2] 2 R3m⇥6m is the coverage
matrix with

A1 =

2

4
(2�c � ✏)Im 0 0

0 (2�p1 � ✏)Im 0
0 0 (2�p2 � ✏)Im

3

5

and

A2 =

2

4
(�c � ✏)Im 0 0

0 (�p1 � ✏)Im 0
0 0 (�p2 � ✏)Im

3

5 .

Here, Im 2 Rm⇥m is the m⇥m identity matrix.

4.2 Problem Formulation

Assuming a Poisson process to model the noise in the measurements [24], the
probability of observing the observation vector ~s, given the true signal ~f , is given by

p(~s|A~f) =
3mY

j=1

((A~f)j + ✏)~sj

~sj!
exp (�(A~f)j + ✏). (4.2)

We use the maximum likelihood principle to determine the unknown Poisson pa-
rameter A~f such that the probability of observing the vector of Poisson data ~s in
(4.2) is maximized. Specifically, we minimize the corresponding negative Poisson
log-likelihood function

F (~f) =
3mX

j=1

(A~f)j � ~sj log((A~f)j + ✏). (4.3)

To minimize F (~f), we apply a continuous relaxation of the variables and use gradient-
based methods. Specifically, we let that the values of ~f to lie between 0 and 1, i.e.,
0  ~f  1, or equivalently,

0  ~zI , ~yI  1, (4.4)
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where 0 is the vector of zeros, I 2 {c, p1, p2}, and the inequalities are to be understood
component-wise. We note that since a variant cannot be both heterozygous and
homozygous simultaneously, we require further that

0  ~zI + ~yI  1. (4.5)

4.3 Familial Constraints

We incorporate additional constraints that exploit information about the signal
~f to help improve the accuracy of our SV predictions. The constraints control for
biological realities in each individual as well as constraints from the relatedness of
individuals.

First, if one of the parents is homozygous for an SV at location j, i.e., (~zp1)j = 1
or (~zp2)j = 1, then the child must be at least heterozygous, i.e., (~zc)j + (~yc)j = 1.
This means that

0  ~zp1  ~zc + ~yc
0  ~zp2  ~zc + ~yc.

These constraints indicate that if the child does not have an SV in a particular
location, then neither parent can have a homozygous SV at that location.

Second, the child can only be homozygous, i.e., (~zc)j = 1, if both of the parents
are at least heterozygous, i.e., (~zp1)j+(~yp1)j = 1 and (~zp2)j+(~yp2)j = 1. Furthermore,
the child must be homozygous if both parents are homozygous, i.e.,

max{~zp1+~zp2�1,0}  ~zc  min{~zp1 + ~yp1 , ~zp2 + ~yp2},

where max{·, ·} and min{·, ·} are to be understood componentwise.
Finally, the child can only be heterozygous if at lest one of the parents is at least

heterozygous, and the child cannot have an SV if neither parent has an SV, i.e.,

0  ~yc  min{~zp1 + ~yp1 + ~zp2 + ~yp2 ,1}.

We denote the set of all vectors satisfying these constraints by S, i.e.,

S =

8
>>>>>><

>>>>>>:

2

6666664

~zc
~zp1
~zp2
~yc
~yp1
~yp2

3

7777775
2 R6m :

0  ~zI + ~yI  1, 0  ~zp1  ~zc + ~yc,

0  ~zp2  ~zc + ~yc,

max{~zp1 + ~zp2�1,0}  ~zc,

~zc  min{~zp1 + ~yp1 , ~zp2 + ~yp2},
0  ~yc  min{~zp1 + ~yp1 + ~zp2 + ~yp2 ,1}

9
>>>>>>=

>>>>>>;

.
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(a) (b)

Figure 4.1: The feasible set (shown above by the shaded region) for each step of the
proposed block-coordinate minimization approach. (a) In Step 1, we obtain the solu-
tion for the child’s variables zc and yc given fixed parent indicator variables zp1 , yp1 , zp2
and yp2 . (b) In Step 3, we obtain the solution for the mother’s variables zp2 and yp2
given fixed indicator variables zc, yc, zp1 and yp1 . The feasible set represented in Step
2 is similar to that in Step 3.

4.4 Optimization Setup

A common di�culty with SV recovery is predicting false positive SVs by mistaking
fragments that are incorrectly mapped against the reference genome. Since SVs are
rare in an individual’s genome, we enforce sparsity in our predictions by incorporating
an `1-norm penalty term in our objective function (see [42]). Our objective function
takes the following form:

minimize
~f2R6m

F (~f) + ⌧ ||~f ||1

subject to ~f 2 S
(4.6)

where F (~f) is the negative Poisson log-likelihood function shown in (4.3) and ⌧ > 0 is
a regularization parameter. We then use a second-order Taylor series approximation
around the current iterate ~fk to formulate a sequence of quadratic subproblems. In
this approach, we approximate the Hessian matrix by a scalar multiple of the identity
matrix, ↵kI, where ↵k > 0 (see [10] for details) for how to compute ↵k), and define
the function

F k(~f) = F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22, (4.7)
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which we use as a surrogate function for F (~f) in (2.4). This approximation leads to
the following equivalent subproblem formulation:

~fk+1 = arg min
~f2R6m

1

2
||~f � ~rk||22 + �||~f ||1

subject to ~f 2 S
(4.8)

where ~rk = ~fk � 1
↵k
rF (~fk) and � = ⌧

↵k
(see [15, 17] for details). Note that the

objective function in (4.8) is separable in f . Thus, (4.8) can be solved in batches. In
particular, at each candidate SV position, we solve

fk+1 = arg min
f2R6

1

2
||f � rk||22 + �||f ||1

subject to f 2 S

(4.9)

where the vectors rk = [rkzc ; r
k
zp1

; rkzp2 ; r
k
yc ; r

k
yp1

; rkyp2 ] and f = [zc; zp1 ; zp2 ; yc; yp1 ; yp2 ]

correspond to the components of ~rk and ~f , respectively, and the set S is similar to
the feasible set S but restricted to the particular candidate SV position.

4.5 Optimization Approach

Here we propose solving our problem using a block-coordinate descent approach.
Following methods used in previous work (see [5]), we fix all but one individual and
solve (4.9) over both indicator variables for that individual. In subsequent steps,
the variables corresponding to some other individual are minimized while the other
individuals signals are fixed. This block-coordinate descent approach continues until
the iterates satisfy a pre-determined convergence criteria.

Step 0: First, we compute the unconstrained minimizer of (4.9), which is given by

f̂ (0) = rk � �1.

Then we initialize the parent indicator variables by

ẑ(0)I =| {0, rkzI � �, 1} and ŷ(0)I =| {0, rkyI � �, 1},

where I 2 {p1, p2} and mid{·, ·, ·} takes on the value that is in the middle to ensure
that the constraint in (4.4) is satisfied. To ensure that the constraint in (4.5) is
satisfied, if

ẑ(0)p1 + ŷ(0)p1 > 1,

then we let ẑ(0)p1 = ŷ(0)p1 = 0.5. We adjust ẑ(0)p2 and ŷ(0)p2 similarly. To initialize the child
indicator variables we let

ẑ(0)c = rkzc � � and ŷ(0)c = rkyc � �.
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We initialize the index with i = 1.

Step 1: Once we have obtained estimates for both parents’ diploid indicator variables,
ẑ(i�1)
p1 , ŷ(i�1)

p1 , ẑ(i�1)
p2 and ŷ(i�1)

p2 , from the previous iteration, we project ẑ(i�1)
c and ŷ(i�1)

c

onto the feasible set S with fixed parent variables to obtain the new child indicator
variables ẑ(i)c and ŷ(i)c . This projection is similar to the projections done in [5]. The
feasible region for this step is illustrated in Fig. 4.1(a).

Step 2: After obtaining the new estimates for the child’s diploid indicator variables,
ẑ(i)c and ŷ(i)c , from Step 1, we project ẑ(i�1)

p1 and ŷ(i�1)
p1 onto our feasible set S with fixed

child and mother indicator variables to obtain the new father indicator variables ẑ(i)p1

and ŷ(i)p1 . This projection is also similar to the projections done in [5]. The feasible
region for this step is similar to that illustrated in Fig. 4.1(b).

Step 3: After obtaining the new estimates for the father’s diploid indicator variables,
ẑ(i)p1 and ŷ(i)p1 , from Step 2, we project ẑ(i�1)

p2 and ŷ(i�1)
p2 onto our feasible set S with fixed

child and father indicator variables to obtain the new mother indicator variables ẑ(i)p2

and ŷ(i)p2 . This projection is also similar to the projections done in [5]. The feasible
region for this step is illustrated in Fig. 4.1(b).

Steps 1, 2 and 3 are repeated in an alternating cycle until some convergence criteria
are satisfied. In our numerical experiments, we saw that iterates did not change after
three cycles. Thus, we terminated each cycle after three iterations. Note that Steps
2 and 3 are equivalent and result in identical feasible regions.

4.6 Results

4.6.1 Simulated Data

Before applying our method to real human data, we first tested the performance
on simulated data to match our assumptions. To do this we simulated two parent
signals with a set number of structural variants and a set similarity between the
parent signals. The simulated true signals all consisted of 105 potential SVs. In the
parent signals 500 locations were chosen at random to be variants; the percentage
of variant sites the parents had in common was varied for testing. We then formed
the child signal using a logical implementation of inheritance. If both parents were
homozygous for an SV at position j then the child is homozygous for an SV at position
j. If one parent was homozygous for an SV at position j and the other parent was
heterozygous for an SV at position j then the child was at least heterozygous for
an SV at that position, and had a 50% chance of being homozygous for an SV at
position j. After forming the true signals for each individual, the observed signals
were created by sampling from the Poisson distribution with a given coverage and
error.

Analysis. Given an optimal ⌧ value, our method is better able to reconstruct the
homozygous signals for each individual. In Figure 4.2 we show an ROC curve gener-
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Figure 4.2: ROC curves of two methods illustrating the false positive rate vs. the
false true positive rate in the child reconstruction broken into the heterozygous signal
and the homozygous signal, where ⌧ = 150, the parents share 90% of their SVs and
30% of each parents SVs are homozygous.The coverage values for each individual are
as follows (�c,�p1 ,�p2) = (5, 10, 10).

ated for a simulated data set where the parents share 90% of their SVs and 30% of
their SVs are homozygous. The area under the curve for each signal recovered from
our method is greater than that of our previous diploid model which only includes
information from one parent and one child [5]. We found that given optimal ⌧ we
were able to better recover not only the child signal, but also each of the parents as
compared to our previous method.

4.6.2 1000 Genomes Project Trio Data

We next apply our diploid method to the 1000 Genomes Project CEU trio data [1].
The father-mother-daughter (NA12891-12892-12878) trio was sequence at approxi-
mately 4 ⇥ coverage and structural variants were experimentally validaded for these
individuals. To create ~z and ~y, we filter LowQual predictions and incorporated the
genotype to separate heterozygous from homozygous reported deletions. Moreover,
we only consider deletions longer than 250bp in the experimentally validated set.

Analysis. For each CEU genome, there are n = 57, 078 candidate deletion locations.
Of these GASV predictions, 686, 637, and 724 are validated deletions (heterozygous
and homozygous combined) in the father, mother, and child, respectively. Whereas
our previous method fixes one individual at a time, our new method simultaneously
predicts all three individuals while improving the heterozygous signal reconstruction
for the child (see Fig. 4.3). Moreover, we see comparable performance for the recon-
struction of both heterozygous and homozygous signals for both parents. Fig. 4.4 is
representative of the slightly improved predictions for the parent signals for varying
values of ⌧ .
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Figure 4.3: ROC curves for the reconstruction of the heterozygous child signal, ~yc,
where �c = �p1 = �p2 = 4, ⌧ = 1 ⇥ 10�4, and ✏ = 0.01. Since the validated set may
not contain all true deletions, we plot novel deletions against validated true positives.
We observe a considerable improvement in the detection of true positives with our
proposed method.

Figure 4.4: ROC curves for the reconstruction of the homozygous mother signal, ~zp2 ,
where the coverage is approximately 4⇥ for all individuals, ⌧ = 1⇥10�4, and ✏ = 0.01.
We note a marginal improvement over our previous method in this reconstruction.

4.7 Conclusions

We present an optimization method to detect SVs in sequencing data from parent-
child trios. This method leverages relatedness between the individuals to improve
signal reconstruction of noisy data. This extends previous work that focused on
diploid signals from one parent and a child. We present results for both simulated
and real data from the 1000 Genomes Project. We demonstrate that we are able to
capture variants for which the individual possessed two copies. In future studies we
intend to apply this work to a multi-generational framework with multiple o↵spring.



Chapter 5

Conclusions

The overall goal of this work was to use information about biological relatedness
to improve the ability to predict structural variants. The two main contributions of
this thesis are the following:

1. In Chapters 2 and 3, we formulated a framework for detecting novel variants in
a child genome ,i.e., variants that are not present in the parent but are in the
child.

2. In Chapter 4, we developed a framework to work with diploid genomic data.

For these frameworks we employed an approach that is traditionally used in image
reconstruction. We modified these methods to handle constraints that ensure our
results are biologically feasible. In the first framework we began with a one parent, one
child model which results in a three-dimensional optimization formulation for every
potential SV. Solving this problem required us to calculate orthogonal projections to
return to our feasible region. We employed a di↵erent approach in our two parent,
one child model. In this case our constraints led to a four-dimensional problem which
required an alternating projection process to minimize each subproblem. Finally, in
Chapter 4 we focused on developing a two parent, one child diploid model. This model
resulted in a six-dimensional problem which we solved similarly to the previous model
through an alternating projection process. Each of these Chapters has generalized a
previous problem which increases the dimension of our subproblems but increases the
accuracy of our SV predictions. We have shown the benefit of our methods on both
simulated and real data from the 1000 Genomes project.

The optimization approach we developed for SV detection is composed of many
subproblems. These subproblems are low dimensional, however with the addition of
these biologically relevant constraints solving the subproblems becomes increasingly
challenging. In particular we had to introduce an alternating block coordinate descent
approach (in Chapter 3 and 4) for the frameworks where the feasibility sets were
more than 3 dimensions. We have built these methods one at a time because each
additional feature represents a dimension added to the problem and the projections.
This means that as we add biologically relevant constraints or we add individuals we

33



34

increase the number of dimensions and constraints, hereby further complicating the
process to ensure we have a feasible solution. A general method is needed to solve
a quadratic subproblem subject to n-dimensional constraints for low values of n in
order to e↵ectively include all of the proposed features in one model. We believe
that the block-coordinate descent approach that we use may be a valuable tool when
developing a general method.
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