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ABSTRACT OF THE DISSERTATION

Dynamical Methods for the Sarnak and Chowla Conjectures

by

Redmond McNamara

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Terence Tao, Chair

This thesis concerns the Liouville function, the prime number theorem, the Erdős discrepancy

problem and related topics. We prove the logarithmic Sarnak conjecture for sequences of

subquadratic word growth. In particular, we show that the Liouville function has at least

quadratically many sign patterns. We deduce this theorem from a variant which bounds

the correlations between multiplicative functions and sequences with subquadratically many

words which occur with positive logarithmic density. This allows us to actually prove that

our multiplicative functions do not locally correlate with sequences of subquadratic word

growth. We also prove a conditional result which shows that if the κ− 1-Fourier uniformity

conjecture holds then the Liouville function does not correlate with sequences with O(nt−ε)

many words of length n where t = κ(κ+1)/2. We prove a variant of the 1-Fourier uniformity

conjecture where the frequencies are restricted to any set of box dimension < 1. We give

a new proof of the prime number theorem. We show how this proof can be interpreted in

a dynamical setting. Along the way we give a new and improved version of the entropy

decrement argument. We give a quantitative version of the Erdős discrepancy problem. In

particular, we show that for any N and any sequence f of plus and minus ones, for some
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n ≤ N and d ≤ exp(N) that |
∑

i≤n f(id)| ≥ (log logN)
1

484
−o(1).
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CHAPTER 1

Introduction

Arguably the oldest known algorithm for finding primes is the sieve of Eratosthenes, first

recorded by Nicomachus in the second century A.D. but attributed to the third century B.C.

mathematician. Up to cosmetic modifications, the algorithm works as follows. Let x be a

natural number. Then write a list of all the numbers between x and 2x. Cross off all the

multiples of 2, then all the multiples of 3, then all the multiples of 5 and so on. What remains

after everything else has been crossed off (say up to multiples of
√

2x) are the primes. This

naturally gives a way to count primes. The number of primes between x and 2x is x minus

the number of numbers divisible by 2, minus the number of numbers divisible by 3 minus the

number of numbers divisible by 5 and so on. Except now we have twice subtracted off the

number of numbers divisible by 6 because we subtracted them off once when we subtracted

off the multiples of 2 and once when we subtracted off the multiples of 3. Similarly with 10,

15 et cetera. So we add on all the multiples of 6, all the multiples of 10, all the multiples of

15 and so on. But now again we have over counted the multiples of 30. Altogether, we get

the formula

# of primes between x and 2x = x −
(

# of #s divisible by 2
)
−
(

# of #s divisible by 3
)

−
(

# of #s divisible by 5
)
− · · ·

+
(

# of #s divisible by 6
)

+
(

# of #s divisible by 10
)

+
(

# of #s divisible by 15
)

+ · · ·

−
(

# of #s divisible by 30
)
− · · ·

1



or to rewrite this using variables

# of primes between x and 2x =
∑
d≤
√

2x
d squarefree

±
(

# of #s divisible by d
)
.

How do you know whether you are supposed to add or subtract the multiples of d? The

coefficient of the ( # of #s divisible by d ) is precisely (−1)# of prime factors of d. This is the

Liouville function

λ(d) = (−1)# of prime factors of d,

and its central role in the sieve of Eratosthenes is the first of its many important roles in

number theory. Another hint that the Liouville function might be an important function in

the study of the primes is the identity

ζ(2s)

ζ(s)
=
∑
n∈N

λ(n)

ns

where ζ is the famous Riemann zeta function defined by

ζ(s) =
∑
n∈N

1

ns

=
∏
p

(
1− 1

ps

)−1

.

Therefore the famous zeros of the zeta function correspond to poles of the Dirichlet series for

λ. Yet another hint that the Liouville function might be central to analytic number theory

is given by the convolution formula

Λ = λ ∗ log ∗ φ

where φ(d2) = λ(d) if d is squarefree and 0 otherwise i.e. φ(d2) = µ(d) and Λ is the von

Mangoldt function, which acts sort of like the normalized indicator function of the primes.

All of this perhaps makes the following fact less surprising: the prime number theorem,

which states that the number of primes less than x is x
log x

(1 + error) where the error term

goes to 0 as x tends to infinity, is equivalent to the fact that

lim
n→∞

En≤Nλ(n) = 0,

2



where by definition

En≤Nf(n) =
1

N

∑
n≤N

f(n).

There are many interesting ways of thinking about this theorem, which in turn lead to their

own interesting generalizations.

First, we can think of

lim
n→∞

En≤Nλ(n) = 0

as telling us that λ(n) = +1 roughly 50% of the time and λ(n) = −1 roughly 50% of the

time. One might naturally then ask what about (λ(n), λ(n+1))? Is that (+1,+1), (+1,−1),

(−1,+1) and (−1,−1) with equal probability as well? What about (λ(n), λ(n+1), λ(n+2))?

It turns out that the answer to this question is still unknown and would represent major

progress in analytic number theory. In fact, this is a famous conjecture. To state it precisely,

define a word of length k of a sequence f as a string of k consecutive values of f i.e. ε is a

word of f if there exists n such that

f(n+ i) = εi

for all i ≤ k. Then Chowla’s conjecture states

Conjecture (Chowla). All 2k possible words of length k of the Liouville function occur with

equal probability.

This is open. In fact, we do not even know whether all 2k possible words of length k

occur at all. Previously [Hil86a] showed that all 8 words of length 3 occur infinitely often.

[MRT16] showed all 8 words of length 3 occur with positive density. [Tao16b] proved that

all 4 words of length 2 occur with equal probability if one uses logarithmic weights rather

than the normal uniform weights. (We will define logarithmic weights later on). [TT17b]

proved that all 16 sign patterns of length 4 occur with positive density using an argument

communicated to them by Matomäki and Sawin. [TT17b] showed that all 8 words of length

3 occur with equal probability again using logarithmic weights. [TT17b] also showed the

3



number of words of length k is at least 2k + 8 for k ≥ 4. [FH18b] showed that the number

of words is super linear. In this thesis (see Chapter 2), based on work in [McN18], we show

Theorem. There is a constant c such that at least ck2 many words of length k occur with

positive upper logarithmic density.

Since [McN18] was published, it was proved in [MRT+] that actually super polynomially

many words occur, but not necessarily with positive density.

Another way to generalize

lim
n→∞

En≤Nλ(n) = 0

is to ask about multiple correlations. Is it true that

lim
n→∞

En≤Nλ(n)λ(n+ 1) = 0?

What about the more general question

lim
n→∞

En≤Nλ(n+ h1)λ(n+ h2) · · ·λ(h+ hk) = 0 (1.1)

where none of the hi’s are equal? Clearly this would follow from the Chowla conjecture as

stated earlier. But actually, it is equivalent, since

Probability λ(n+ i) = εi for all i ≤ k = ± 1

2k
E(λ(n+ 1)− ε1) · · · · · (λ(n+ k)− εk)

for any possible word ε of length k. (Expanding out the product and applying (1.1) to each

term completes the proof). For all k > 1, this is again open. However, Terence Tao proved

an exciting averaged version of 1.1 in the case k = 2. In particular, define the logarithmic

average of a function f over a set A by the formula,

Elog
a∈Af(n) =

(∑
a∈A

1

a

)−1∑
a∈A

f(a)

a
.

Then Tao proved

4



Theorem ([Tao16b]). For all h 6= 0

limEn≤Nλ(n)λ(n+ h) = 0

Inspired by this proof and the proof of [TT17b], I managed to give a new proof of the

prime number theorem which will be given in Chapter 3. Tao then used [Tao16b] to resolve a

longstanding and important problem in combinatorics called the Erős discrepancy problem.

Theorem ([Tao16a]). For any function f from N to {±1},

sup
d,n

∣∣∣∣∣∑
i≤n

f(id)

∣∣∣∣∣ = +∞.

One could try to generalize these results in further by asking for a quantitative version:

how quickly does En≤Nλ(n) go to 0? how quickly does Elog
n≤Nλ(n)λ(n + h) go to 0? how

quickly does supd,n
∣∣∑

i≤n f(id)
∣∣ go to infinity? The first and second questions turn out to

be extremely important. For instance, the famous Riemann hypothesis is equivalent to the

fact that

|En≤Nλ(n)| ≤ CεN
− 1

2
+ε.

The twin primes conjecture would probably follow from an estimate of the form

|En≤Nλ(an+ b)λ(cn+ d)| ≤ CA log−AN

for all a, b, c and d ≤ N . (See [SS] for an exciting result showing that the twin primes

conjecture is true using this strategy over function fields). [HR21] also made significant

progress on this second question recently, showing essentially that

|Elog
n≤Nλ(n)λ(n+ h)| ≤ C|h| · (log logN)−

1
2 .

Using their result, I was able to give something of an answer to the third question.

Theorem. Let f be a function from N to {±1}. Then

sup
n≤N,d≤eN

∣∣∣∣∣∑
i≤n

f(id)

∣∣∣∣∣ ≥ (log logN)
1

484
−o(1).
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The proof of this theorem is contained in Chapter 4.

Another way to think about

lim
n→∞

En≤Nλ(n) = 0

is that it is saying λ does not correlate with the constant function 1. (We will say two

sequences a and b correlate if Ea(n)b(n) does not tend to 0). Then one could ask what

other sequences does λ not correlate with? what does that tell us about the prime numbers?

These turn out to be very fruitful questions. For example, the fact that λ does not correlate

with periodic functions i.e. for any periodic function f

lim
N→∞

En≤Nf(n)λ(n) = 0

is equivalent to Dirichlet’s theorem and the prime number theorem in arithmetic progressions

which says that 25% of primes have 1 as their last digit, 25% of primes end in a 3, 25% of

primes end in a 7 and 25% of primes end in a 9 and the same thing happens in every other

base. Using the discrete Fourier transform, we see that this is equivalent to saying that for

any rational angle α

lim
N→∞

En≤Nenαλ(n) = 0.

One could try to generalize this further: does the previous estimate hold when α is any

(possible irrational) real number? The answer is yes. This is a theorem of Davenport which

can be implicitly found already as the key ingredient in Vinogradov’s proof that any large odd

number can be written as the sum of three primes. Green and Tao proved a version where

the function n 7→ nα is replaced by an arbitrary polynomial in n. This was an ingredient in

their proof of the Hardy-Littlewood conjecture in the case where one has at least two degrees

of freedom. For instance, this lets them show that the number of arithmetic progressions in

the primes of length d with starting point and jump size ≤ N is

N2

logdN
(Cd + o(1)).

for some positive constant Cd independent of N . In particular, this implies the Green-Tao

theorem. This motivated Sarnak to propose the following conjecture:

6



Conjecture. Let b a sequence with zero entropy. Then b does not correlate with λ i.e.

lim
n≤N

En≤Nb(n)λ(n) = 0.

The condition that b has zero entropy is a bit technical. Perhaps the most illuminating

thing one can say in a few lines is that it is implied by the following condition: if the number

of words of length k in b is less than (1+ε)k for all ε > 0 and all k sufficiently large depending

on ε then b has zero entropy. The zero entropy condition is actually a quantitative version of

the previous condition: for instance if a word shows up with probability zero, then it does not

count toward the entropy. However, it will do no harm if the unacquainted reader chooses

to think of the zero entropy condition as being essentially equivalent to subexponential word

growth. Tao also introduced a logarithmically averaged version of Sarnak’s conjecture.

Conjecture. Let b a sequence with zero entropy. Then b does not correlate with λ i.e.

lim
n≤N

Elog
n≤Nb(n)λ(n) = 0.

The reader may chose to think of the word growth rate as a measure of the complexity

of the sequence b. Sarnak’s conjecture claims that for any sequence with subexponential

complexity that sequence does not correlate with λ. So what is the best complexity rate we

know how to prove Sarnak’s conjecture for? [FH18b] showed the logarithimically averaged

Sarnak conjecture holds for any sequence of linear complexity i.e. any sequence where the

number of words of length k is bounded by C · k for some constant k. Later in Chapter 2,

we will show that

Theorem. Let b a sequence with subquadratic complexity i.e. the number of words of length

k is smaller than εk2 for any ε > 0 for some k sufficiently large depending on ε. Then b

does not correlate with λ i.e.

lim
n≤N

Elog
n≤Nb(n)λ(n) = 0.

7



In [Tao17a], Tao showed that the logarithmically averaged Sarnak and Chowla conjectures

are equivalent. He did this by introducing a third conjecture which both the logarithmically

averaged Sarnak and Chowla conjectures are equivalent to.

Conjecture. Let G be a k-step nilpotent Lie group, Γ a cocompact subgroup, F a continuous

function on G/Γ and x a point in G/Γ. Then

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

g∈G
|Eh≤HF (gh)λ(n+ h)| = 0.

The definition of a k-step nilpotent Lie group will be given later but it is not too important

for the moment. For the moment, it suffices to know that when k = 1, this reduces to the

conjecture

Conjecture.

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

α∈[0,1]

|Eh≤He(αh)λ(n+ h)| = 0.

This is still open but some exciting recent progress has been made in [MRT20] and

[MRT+] handling the case when H is a small power of N . Another way to make progress on

this conjecture is by proving the conjecture when we restrict our frequencies to lie in some

subset C of the interval i.e.

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

α∈C
|Eh≤He(αh)λ(n+ h)| = 0. (1.2)

In Chapter 2, we prove this for every subset C of the interval of box dimension < 1. (If we

knew this for all sets of box dimension 1 that would imply the conjecture). This theorem is

only theorem I know of the form (1.2) for any infinite set C.

We remark that Chapters 2 and 3 are based upon [McN18] and [McN20] respectively

with very few changes. As such, these chapters more or less read independently. Although

the introductory material may be slightly repetitive, we hope that the reader still finds it

enjoyable. In contrast, Chapter 4 is original work first appearing in this thesis.

8



CHAPTER 2

Sarnak’s Conjecture for Sequences of Almost

Quadratic Word Growth

2.1 Introduction to Chapter 1

The prime number theorem states that

lim
N→∞

En≤NΛ(n) = 1,

where Λ(n) = log p if n is a power of a prime p and 0 otherwise is the von Mangoldt function.

(We refer the reader to Section 2.1.1 for an explanation of the E notation). This is equivalent

to the estimate

lim
N→∞

En≤Nλ(n) = 0,

where λ(n) = (−1)# of prime factors of n is the Liouville function. Dirichlet’s theorem on prime

numbers in arithmetic progressions morally follows from the estimate

lim
N→∞

En≤N1n≡r mod dλ(n) = 0,

for any d and r. Taking linear combinations, we find that for any periodic function f ,

lim
N→∞

En≤Nf(n)λ(n) = 0.

Equivalently, for any function F : S1 → C and any rational angle α,

lim
N→∞

En≤NF (αn)λ(n) = 0.

9



The analogous estimate when α is irrational and F is a continuous function was proved by

Vinogradov and was a key ingredient in his proof that any sufficiently large odd number is

the sum of three primes. Green and Tao proved that

lim
N→∞

En≤NF (gnΓ)λ(n) = 0.

where G is a nilpotent Lie group, g is an element of G, Γ is a cocompact lattice and F is a

continuous function F : G/Γ→ C. A version of this statement was a key ingredient in their

proof with Tamar Ziegler that counts the solutions to almost any system of linear equations

over the primes. This motivates the following conjecture, due to Sarnak:

Conjecture 2.1.1 (Sarnak, see [Sar12] ). For any topological dynamical system (X,T ) with

zero entropy, any continuous function F : X → C and any point x in X,

lim
N→∞

En≤NF (T nx)λ(n) = 0.

Tao introduced the following variant,

Conjecture 2.1.2 (Logarithmically Averaged Sarnak Conjecture). For any topological dy-

namical system (X,T ) with zero entropy, any continuous function F : X → C and any point

x in X,

lim
N→∞

Elog
n≤NF (T nx)λ(n) = 0.

Many instances of Sarnak’s conjecture have been proven. We give a few examples but

stress that this is an incomplete list: [Bou13a], [BSZ13], [Bou13b], [DK15], [EAKL16], [EAK-

PLdlR17], [FJ18], [HLSY17], [LS15], [MMR14], [Mül17], [Pec18], [Vee17], [Wan17].

Definition 2.1.3. A word ε of length k is an element of Ck. Let k be a natural number,

let ε ∈ Ck and let b : N → C. We say that ε occurs as a word of b if there exists a natural

number n such that b(n+h) = εh for all h ≤ k. We say that ε occurs with (upper) logarithmic

density δ ∈ R if

lim sup
N→∞

Elog
n≤N1εh=b(n+h) for all h ≤ k = δ.

10



In this chapter, when we refer to log-density we mean upper logarithmic density. A word ε

whose entries are all ±1 is called a sign pattern. We say that b has subquadratic word growth

if b takes finitely many possible values and the number of words of length k that occur with

positive upper logarithmic density is o(k2).

Then a particular case of Sarnak’s conjecture predicts that for any bounded sequence

b : N→ C with subexponential word growth that

lim
N→∞

Elog
n≤Nb(n)λ(n) = 0.

Because λ correlates with itself, this in particular implies that the number of sign patterns

of λ of length k is exponential in k. [FH18b] proved the special case where b has linear word

growth. In this chapter, we prove the following special case:

Theorem 2.1.4. Let b be a bounded sequence with subquadratic word growth. Then

lim
N→∞

Elog
n≤Nb(n)λ(n) = 0.

Previously [Hil86a] showed that all 8 sign patterns of length 3 occur infinitely often.

[MRT16] showed all 8 sign patterns of length 3 occur with positive density. [TT17b] proved

that all 16 sign patterns of length 4 occur with positive density using an argument commu-

nicated to them by Matomäki and Sawin. [TT17b] also showed the number of sign patterns

of length k is at least 2k + 8 for k ≥ 4. [FH18b] showed that the number of sign patterns

is super linear. In particular, Theorem 2.1.4 implies that λ does not have subquadratically

many sign patterns. We actually prove something slightly stronger.

Theorem 2.1.5. There is a constant δ > 0 such that λ has at least δk2 many sign patterns

of length k.

[Tao17a] showed that the log Sarnak conjecture is equivalent to the following Fourier

uniformity conjecture for every natural number t.

11



Conjecture 2.1.6 (t-Fourier uniformity). Let G be a nilpotent Lie group of step t, Γ a

cocompact lattice and F : G/Γ→ C a continuous function. Then

lim
H→∞

lim
N→∞

Elog
n≤N sup

g∈G
|Eh≤Hλ(n+ h)F (ghΓ)| = 0.

[Tao17a] also showed that this is equivalent to the log-Chowla conjecture for every t.

Conjecture 2.1.7 (Logarithmic Chowla Conjecture). For every natural number t and every

distinct natural numbers h1, . . . , ht, we have

lim
N→∞

Elog
n≤Nλ(n+ h1) · · ·λ(n+ ht) = 0.

A function a : N→ C is said to be unpretentious, nonpretentious or strongly aperiodic if

there exists a function φ from N to N such that, for all natural numbers A, for all Dirichlet

characters χ of period at most A we have, for all natural numbers N sufficiently large and

for all real numbers |t| ≤ AN we have∑
p≤N

1− Re(a(p)χ(p)p−it)

p
≥ φ(A),

and φ(A)→∞ as A→∞. The main goal of this chapter is to prove the following theorems.

Theorem 2.1.8. Let a : N → S1 be an unpretentious completely multiplicative function

taking values in the unit circle. Let b : N→ C be a finite-valued 1-bounded function. Suppose

further that for any δ > 0 there are infinitely many k such that the number of words of b of

length k that occur with positive upper logarithmic density is at most δk2. Then

lim
N→∞

∣∣Elog
n≤Na(n)b(n)

∣∣ = 0.

We also obtain a conditional version of this result.

Theorem 2.1.9. Let κ be a natural number. Set t =
(
κ+1

2

)
. Let a : N → S1 be an unpre-

tentious completely multiplicative function taking values in the unit circle so that the local

κ − 1-Fourier uniformity conjecture holds for a. Let b : N → C be a finite-valued 1-bounded

12



function. Suppose further that for some ε > 0 there are infinitely many k such that the

number of words of b of length k that occur with positive upper logarithmic density is at most

kt−ε. Then

lim
N→∞

∣∣Elog
n≤Na(n)b(n)

∣∣ = 0.

We note that this result matches the numerology in [Saw20] and may be almost the

best possible result one can obtain with purely dynamical methods. We also note that

even the 1−Fourier uniformity conjecture is still unknown and so this theorem currently has

no unconditional content. We also obtain a version of the theorem where b need not take

only finitely many values and we only have information about the number of “approximate”

words.

Definition 2.1.10. We say a sequence b has at most h words of length k up to ε rounding

if there exists a set Σ of words of length k such that for all n ∈ N there is an ε in Σ such

that |b(n+ j)− εj| ≤ ε for all j ≤ k and the cardinality of Σ is at most h. We say b has at

most h words of length k that occur with positive logarithmic density up to ε rounding if we

only require |b(n+ j)− εj| ≤ ε for a set of n of lower logarithmic density 1.

Theorem 2.1.11. Let c > 0 and ε > 0. Then if ε is sufficiently small depending on c then

the following holds: Let a : N → S1 be an unpretentious completely multiplicative function

taking values in the unit circle. Let b : N → C be a 1-bounded function with entropy zero.

Suppose further that for every δ > 0 there are infinitely many k such that the number of

words of b of length k that occur with positive logarithmic density up to ε rounding is at most

δk. Then

lim sup
N→∞

∣∣Elog
n≤Na(n)b(n)

∣∣ ≤ c.

In fact, this works for any ε satisfying c2 > 2ε.

We list a few new applications of this theorem.

Proof of Theorem 2.1.5. Apply Theorem 2.1.8 to a = b = λ. �
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Theorem 2.1.12. If S is a finite set of sequences of subquadratic word growth and a is an

unpretentious completely multiplicative function taking values in the unit circle then

lim
H→∞

lim
N→∞

Elog
n≤N sup

φ∈S
|Eh≤Ha(n+ h)φ(h)| = 0.

Remark 2.1.13. We remark that since the set S is finite, it is enough to show that any one

function does not locally correlate with a. However, we also remark that it is generally harder

to show that a does not locally correlate with b than it is to show that a does not correlate

with b. For Theorem 2.1.12, we need to use that Theorem 2.1.8 allows us to handle the case

where b may have many words which occur with 0 log-density but still only subquadratically

many words which occur with positive log-density. Theorem 2.1.12 in the linear word growth

case seems to follow implicitly from [GLdLR19].

Proof. For convenience, we will assume that 0 is in S. Let ε > 0. We aim to show that

lim sup
H→∞

lim sup
N→∞

Elog
n≤N sup

φ∈S
|Eh≤Ha(n+ h)φ(h)| = O(ε).

Suppose not. We will now use an argument of [Tao17a] (see Section 5 of that paper) to

show that a must be correlate with a “ticker tape” function. We define Sε to be the set

of sequences of the form φ′(n) = e(α)φ(n) where φ is an element of S and α is a rational

number with denominator O(ε). By the pigeonhole principle, for any φ in S and any natural

numbers H and n in N there exists α a rational number with denominator O(ε) such that

Re
(
|Elog

h≤Hφ(h)a(n+ h)| − Elog
h≤He(α)φ(h)a(n+ h)

)
= O(ε).

Therefore, we may assume for the sake of contradiction that for some φn,H in Sε

lim sup
H→∞

lim sup
N→∞

Re
(
Elog
n≤NEh≤Ha(n+ h)φn,H(h)

)
� ε.

By a diagonalization argument, we may find a sequence Hi and Ni of natural numbers both

tending to infinity and functions φn,i = φn,Hi such that Ni+1 � Ni � Hi and

lim
i→∞

Re
(
Elog
n≤NiEh≤Hia(n+ h)φn,i(h)

)
� ε.
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Since the functions φ in Sε and a are bounded, for i sufficiently large there exists a set Ai

of natural numbers of lower logarithmic density � ε in the interval [1, Ni] such that for n in

Ai,

Re
(
Eh≤Hia(n+ h)φn,i(h)

)
� ε.

By a greedy algorithm, we can select a subset Bi of Ai of upper logarithmic density at least

ε
Hi

in [1, Ni] that is at least Hi separated (meaning distinct points of Bi differ by at least

Hi). Now define the “ticker tape” function ψ as follows:

ψ(n+ h) = φn,i(h),

for all n in Bi between Ni−1 and Ni and h ≤ Hi. If m is not of the form n + h for n in Bi

between Ni−1 and Ni and h ≤ Hi then we set ψ(m) = 0. Thus,

lim sup
N→∞

Re
(
Elog
n≤Na(n)ψ(n)

)
� ε2.

Now we aim to show that ψ has subquadratically many words of length k that occur with

positive upper logarithmic density. Let k be a natural number and let ε be a word of length

k which occurs in ψ with positive upper logarithmic density. Consider the set C of natural

numbers m such that m is within k of an element n of Bi or Bi +Hi for some i. Then since

elements of Bi are at least Hi separated, the upper logarithmic density of C in [Ni−1, Ni] is

at most 2k
Hi

which clearly tends to 0 as i tends to infinity. Since Ni � Ni−1, we may assume

that the log-density of [1, Ni−1] in the interval [1, Ni] is also o(1). Thus, C has log-density 0.

Therefore, if ε occurs with positive log-density then (ψ(n+ h))kh=1 = ε for a positive density

set of n not in C. Since Sε has only finitely many members, we get that there exists φ in Sε

such that for a positive upper logarithmic density set of n, ψ(n+ h) = φ(n+ h) = εh for all

h ≤ k. Thus, ψ has subquadratic word growth and a does not correlate with ψ by Theorem

2.1.8, which gives a contradiction.

Theorem 2.1.14. Let C be a subset of [0, 1] of upper box dimension < 1. Then if a is an

unpretentious completely multiplicative function taking values in the unit circle

lim
H→∞

lim
N→∞

Elog
n≤N sup

α∈C
|Eh≤Ha(n+ h)e(hα)| = 0.

15



Remark 2.1.15. In particular, this implies that if C is the middle thirds Cantor set then

lim
H→∞

lim
N→∞

Elog
n≤N sup

α∈C
|Eh≤Ha(n+ h)e(hα)| = 0.

Of course, the result also applies to a large family of other fractals. The author does not

know of any results in the literature where this is established for any infinite set. He does not

know of any proof for any set of positive box dimension which does not use Theorem 2.1.11.

Proof. Suppose the upper box dimension of C ⊂ S1 is < d < 1. Let ε > 0. As in the proof

of Theorem 2.1.12, we assume that

lim sup
H→∞

lim sup
N→∞

Elog
n≤N sup

α∈C
|Eh≤Ha(n+ h)e(hα)| � ε,

and derive a contradiction. As before, there is a ticker tape function ψ : N→ C such that

lim sup
N→∞

Re
(
Elog
n≤NEh≤Ha(n+ h)ψ(h)

)
� ε2,

of the following form: there exists sequences of natural numbers Ni and Hi tending to infinity

with Ni+1 � Ni � Hi, a sequence of Hi-separated sets Bi, and ψ(n + h) = e(βn)e(αnh)

for some rational βn of denominator at most O(ε), some αn in C and for all n in some set

Bi ∩ [Ni−1, Ni] and h ≤ Hi. We set ψ(m) = 0 for all natural numbers m not of this form.

As before, for any natural number k, the natural numbers m that are within k of a number

n in Bi or Bi +Hi has log-density 0.

Let k be a natural number sufficiently large depending on C and ε. Let ε′ = ε2. Then

because C has upper box dimension < d there exists a collection of at most ( k
ε′

)d intervals

of length ε′

k
covering C. If two points on the circle α and α′ differ by at most ε′

k
then by the

triangle inequality, for all h ≤ k, we have that |e(hα)− e(hα′)| ≤ ε′. Therefore, the number

of sign patterns of ψ that occur with positive log-density up to ε′ rounding is sublinear. In

particular, for any δ > 0, there are fewer than δk many sign patterns that occur with positive

log-density up to ε2 rounding. By Theorem 2.1.11, we get a contradiction.
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On the surface, this argument appears to be very close to the t-Fourier uniformity con-

jecture, which Tao introduced in [Tao17a] and proved was equivalent to the log-Chowla and

log-Sarnak conjectures. (For recent significant progress on the Fourier uniformity conjecture,

see [MRT18]). If you wanted to prove the Fourier uniformity conjecture in the case d = 1,

namely that

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

α∈R
|Eh≤Ha(n+ h)e(hα)| = 0,

the ticker tape functions that you would need λ to be orthogonal to have ∼ ε−1k many sign

patterns of length k up to ε rounding. Thus, one might hope that a simple argument could

adjust the constants in Theorem 2.1.11 and thereby prove the Fourier uniformity conjecture.

However, there is a major theoretical obstacle to further progress. [FH18b] introduced the

dynamical system (S1 × S1, dx, T,B) where T (α, β) = (α, αβ). [Saw20] showed that this

dynamical system with some additional structure is a dynamical model for the Liouville

function (a notion which we will precisely define later). This is an obstruction to solving

the Fourier uniformity conjecture purely with dynamical methods and without any new

input from number theory. [Saw20] further showed that there are dynamical models for the

Liouville function which have only polynomially many sign patterns. Explicitly, consider

the following function ã which behaves almost like a multiplicative function: we partition

the natural numbers into intervals with the length of the intervals slowly tending to infinity.

For instance, we could split all the numbers between 1010n and 1010n+1
into blocks of length

∼ n. Then on each interval I we pick a random phase αI in S1 uniformly and indepently.

Then we set ã to be the function obtained by rounding the function which sends n 7→ e(αIn)

for n in I. In formulas, we set ã(n) = 21Re e(αIn)>0 − 1 for n in I. We remark that the

dynamical model for this sequence is isomorphic to the product of the dynamical system

introduced by [FH18b] with Ẑ (again, we defer the precise definition until later). Clearly, ã

is not multiplicative. However, it is “statistically” multiplicative in the sense that, with high

probability, for any sign pattern ε of length k, for any m and for large N

Elog
n≤N1ãn+h=εh for all h≤k ≈ Elog

n≤Nm1m|n1ãn+mh=−εh for all h≤k.
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This function clearly does not satisfy the 1-Fourier uniformity conjecture and [Saw20] showed

that it has quadratically many sign patterns that occur with positive upper logarithmic

density even though it does satisfy the a version of [MRT15]. If we had used a random κ−1-

degree polynomial instead of a random linear polynomial, we would get a function which is

again statistically multiplicative but which fails the κ− 1-Fourier uniformity conjecture and

[Saw20] showed that it has . k(κ+2
2 ) many sign patterns of length k. However, the author

is unaware of any “dynamical” techiniques that distinguish these statistically multiplicative

functions from the Liouville function. This is made precise with Definition 2.1.18.

We give one last application.

Theorem 2.1.16. Again, suppose that a is an unpretentious completely multiplicative func-

tion taking values in the unit circle. There is a set C ⊂ [0, 1] of Hausdorff dimension 1 such

that

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

α∈C
|Eh≤Ha(n+ h)e(hα)| = 0.

Proof. The main idea is to combine Theorem 2.1.14 with a diagonalization argument. For a

disjoint collection of intervals J = {J} and a natural number n we define Dn(J ) to be the

set of intervals obtained by taking each J , removing a ball of diameter |J |
n

around the center

of the interval J , taking the two remaining intervals, then taking the union over all J in J .

We construct C inductively as follows. Start with any interval I and set J2 = {I}.

Assume inductively that we have constructed Jn−1 Then we apply Dn again and again. Let

Cn = ∩m∈N ∪J∈DmJn−1 J.

Since Cn has box dimension logn−1
logn

, we know by Theorem 2.1.14 that there exists a natural

number Hn such that if H ≥ Hn then

lim sup
N→∞

Elog
n≤N sup

α∈C
|Eh≤Ha(n+ h)e(hα)| ≤ 1

n
.

Then define

Jn = DnHn
n Jn−1.
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We set

C = ∩n≥2 ∪J∈Jn J.

Clearly, the Hausdorff dimension of C is at least − log 2

log(n−1
2n

)
for every n and therefore the

Hausdorff dimension is precisely 1. Now we verify that C has the desired property. For each

natural number m, by enlarging the set we are maximizing over, we have that

lim sup
H→∞

lim sup
N→∞

Elog
n≤N sup

α∈C
|Eh≤Ha(n+ h)e(hα)|

. lim sup
N→∞

Elog
n≤N sup

α∈J∈Jm
|Eh≤Hma(n+ h)e(hα)|.

Since every element α ∈ J ∈ Jm is in DmHm
m (Jm−1) there exists β = βα depending on α

such that β is in Cm and the distance from α to β is no more than 1
Hmm

. Therefore, for all

h ≤ Hm, αh is within 1
m

of βh. Thus,

. lim sup
N→∞

Elog
n≤N sup

β∈Cm
|Eh≤Hma(n+ h)e(hβ)|+ 1

m
.

However, by our choice of Hm, we have

.
1

m
.

Since m was arbitrary, we obtain the desired result.

Remark 2.1.17. We have stated our main theorems in the case that a is completely mul-

tiplicative and takes values in the unit circle. We remark that these assumptions can be

weakened to include all multiplicative functions taking values in the unit disk. The reduction

from multiplicative functions taking values in the unit disk to multiplicative functions taking

values in the unit circle is essentially due to Tao (see [Tao16b], Proposition 2.1). The re-

duction from multiplicative functions to completely multiplicative functions (say both taking

values in the unit circle) is carried out in section 2.5. The argument is rather short and was

essentially communicated to me by Tao. However, it may be more broadly known and I make

no claim of originality.
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We now sketch an outline of an argument that is morally very similar to the main argu-

ment in this chapter. However, for the moment we will work in a more concrete setting. To

make this argument rigorous, it is much easier to pass to the dynamical context. Suppose

that b is a sequence with quadratic word growth rate and that

lim sup
N→∞

|Elog
n≤Nλ(n)b(n)| > c > 0.

Then we can fix a natural number k and average over translates,

lim sup
N→∞

|Elog
n≤NEh≤kλ(n+ h)b(n+ h)| > c.

Fix a large natural number P with N � P � k. Because λ also has a multiplicative

symmetry, we can average over dilates

lim sup
N→∞

|Elog
n≤NEP/2<p≤PEh≤kλ(pn+ ph)b(n+ h)| > c.

Moving the absolute values inside and crudely replacing b by the worst word of length k, we

get

lim sup
N→∞

Elog
n≤N sup

ε
EP/2<p≤P |Eh≤kλ(pn+ ph)εh| > c,

where the supremum is taken over all words ε of b. Tao’s entropy decrement argument,

introduced in [Tao16b], allows us to replace pn by n.

lim sup
N→∞

Elog
n≤N sup

ε
EP/2<p≤P |Eh≤kλ(n+ ph)εh| > c.

Now if λ behaves randomly, then we already know that λ is orthogonal to b. Therefore, if λ

correlates with b it must have some structure. Morally, [FH18b] says we can break up λ into

a structured part and a random part, and that all the correlation comes from the structured

part. [HK05] proves that the structured part must take the form of a nilsequence. For the

purposes of this sketch, we will focus on the case that there exists αn and βn irrational such

that

lim sup
N→∞

Elog
n≤N sup

ε
EP/2<p≤P |Eh≤ke(αn(ph)2 + βnph)εh| > c.
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By Hölder’s inequality,

lim sup
N→∞

Elog
n≤N sup

ε
EP/2<p≤P |Eh≤ke(αn(ph)2 + βnph)εh|4 > c4.

By the pigeonhole principle, since there are only δk2 many sign patterns, there is a sign

pattern ε such that,

lim sup
N→∞

Elog
n≤NEP/2<p≤P |Eh≤ke(αn(ph)2 + βnph)εh|4 > δ−1k−2c4.

Expanding everything out and using that δ ≤ c4

2

lim sup
N→∞

Elog
n≤N |EP/2<p≤PEj∈[k]4e(αnp

2(j2
1 + j2

2 − j2
3 − j2

4) + βnp(j1 + j2 − j3 − j4))| > 2k−2.

When j2
1 + j2

2 − j2
3 − j2

4 6= 0 or j1 + j2 − j3 − j4 6= 0 then for P large, by the circle method

EP/2<p≤P e(αnp2(j2
1 + j2

2 − j2
3 − j2

4) + βnp(j1 + j2 − j3 − j4)) ≈ 0.

The analogue of the circle method for more general nilpotent Lie groups was introduced in

[GT12a], [GT10] and [GTZ12]. The analogue of the step where we conclude that the sums

of powers is 0 for more general nilpotent Lie groups is an argument of [Fra17]. Thus the only

contribution is from the terms where j2
1 + j2

2 − j2
3 − j2

4 = 0 and j1 + j2 − j3 − j4 = 0. But

it is easily seen from Newton’s identities for symmetric polynomials that this only happens

for the 2k2 “diagonal” terms. Thus, we get

2k−2 > 2k−2,

which of course provides a contradiction. For the proof of Theorem 2.1.9, we need to not

only use the theory of symmetric polynomials but also use [BDG16].

2.1.1 Background and notation

Suppose a(n) is a 1-bounded, unpretentious multiplicative function with |a(n)| = 1 for all

n. Let b(n) a sequence where only o(k2) or O(kt−ε) many sign patterns occur with positive
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log-density. The usual construction of a Furstenberg system (see [FKO82]) for (a, b) proceeds

as follows: consider the point (a, b) in the space of pairs of sequences. Then apply a random

shift to this deterministic variable, (T na, T nb). This gives a random variable in the space of

pairs of sequences. The distribution of this random variable is then a shift invariant measure

on the space of pairs of sequences. Furthermore, if f is the function on the space of pairs of

sequences that evaluates the first sequence at 1 and f ′ is the function which evaluates the

second sequence at 1 then

f(T na, T nb)f ′(T na, T nb) = a(n+ 1)b(n+ 1),

which is the sequence whose average value we care about. Therefore, if the average of

a(n)b(n) is greater than c in absolute value then∣∣∣∣∫ f · f ′
∣∣∣∣ > c,

as well. Of course, it does not really make sense to take a random natural number. Instead,

one must shift by a random natural number in a large but finite interval whose length tends

to infinity, then find a subsequence of the random variables that converges in distribution.

This corresponds to taking a weak-∗ limit of the corresponding measures.

However, we take a slightly modified approach. The reason is that the function a has

some additional symmetry, namely a(nm) = a(n)a(m). As such, the probability that some

word occurs i.e., that a(n + h) = εh for h = 1, . . . , k and for n randomly chosen between 1

and N is the same as the probability that a(pn + ph) = a(p) · εh for h = 1, . . . , k and for

n chosen randomly between 1 and N . That’s the same as p times the probability that for

a randomly chosen n between 1 and pN one has a(n + ph) = a(p) · εh for h = 1, . . . , k and

p divides n. Just flipping everything around, the probability that a random n between 1

and pN satisfies a(n + ph) = a(p) · εh and is divisible by p is 1
p

times the probability that

a random n between 1 and N satisfies a(n + h) = εh. We want our dynamical system to

capture this symmetry. There are two difficulties which arise when we want to translate

this symmetry to our dynamical system. The first is that the interval keeps changing: the
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distribution of T na might be very different on the intervals from 1 to N and from 1 to pN so

when we take a weak limit along a subsequence of intervals, the distribution T na for shifts

in one interval might approximate our invariant measure while shifts along the other interval

might not. The fix for this problem is to use log-averaging. After we weight each natural

number n by 1
n
, the probability that a random n will be between N and pN is ∼ log p

logN
which

tends to 0 as N tends to infinity. Therefore, the distribution of T na for a random n between

1 and N is very close to the distribution of T na for a random n between 1 and pN as long as

we choose n randomly using logarithmic weights. The other problem is that our dynamical

system does not have a good notion of “being divisible” by a number. To remedy this, we

make use of the profinite completion of the integers

Ẑ =
∏
p

Zp,

where p is always restricted to be a prime and Zp is the p-adic integers Zp = lim← Z/pkZ

i.e. the inverse limit of Z/pkZ for all k. For each natural number n, we get an element of

Ẑ by reducing n mod pk for every prime p and every natural number k. Then to build our

dynamical system, we take the space of triples consisting of two sequences and a profinite

integer and for a logarithmically randomly chosen integer n we consider the random variable

(T na, n, T nb) in this space. The distribution of this random variable is a shift invariant

measure. Furthermore, we have the following symmetry: let Y = {T nb : n ∈ N} and X =

(S1)N × Ẑ. Define the function

M : X → Ẑ,

by projecting onto the Ẑ coordinate in X,

M : (α, r) 7→ r.

Define the function

Ip : M−1(pẐ)→ X,
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by “zooming in” by a factor of p and multiplying by a(p) on the first factor and dividing by

p on the second,

Ip : (α(n), r) 7→ (a(p)α(pn), r/p),

where r/p is the unique element of Ẑ such that p · (r/p) = r. Then if ν is our invariant

measure on X×Y and µ is its first marginal then Ip pushes forward µ restricted to M−1(pẐ)

to 1
p
µ. Formally, we make the following definition:

Definition 2.1.18. Let (X,µ, T ) be a dynamical system, let f : X → C be a measurable

function, let M : X → Ẑ be a measurable function and for each m let Im : M−1(mẐ) → X

be a measurable function. We say (X,µ, T, f,M, Im) is a dynamical model for a if,

• M ◦ T = M + 1 almost everywhere.

• Im ◦ Tm = T ◦ Im almost everywhere in M−1(mẐ).

• Im pushes forward the measure µ restricted to M−1(mẐ) to 1
m
µ. Symbolically, for any

function φ in L1(µ) we have∫
X

φ(x)µ(dx) =

∫
X

m1x∈M−1(mẐ)φ(Im(x))µ(dx).

• f ◦ Im = a(m) · f almost everywhere in M−1(mẐ).

• For all m and n, Inm = In ◦ Im almost everywhere in M−1(mnẐ).

We also ask for the following property that [Saw20] does not impose.

• For any natural number m and any measurable subset A of Cm,

µ{x ∈ X : (f(T 1x), . . . , f(Tmx)) ∈ A} ≤

dlog{n ≤ N : (a(n+ 1), . . . , a(n+m)) ∈ A},

where dlog denotes upper logarithmic density. We remark that we can also fix a Banach

limit p− lim extending the usual limit functional and require that equality holds in the
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previous equation holds for any limit taken with respect to that Banach limit. For more

details, see [Tao17b].

Let (X × Y, ν, T ) be a joining of two dynamical systems X and Y . Suppose that µ is the

first marginal and (X,µ, T, f,M, Im) is a dynamical model for a. Let f ′ be a measurable

function on X × Y which is Y measurable. We say (X × Y, ν, T, f, f ′,M, Im) is a joining

of a dynamical model of a with b if we also have that, for any natural number m and any

measurable subset A of Cm,

ν{(x, y) ∈ X × Y : (f ′(T 1y), . . . , f ′(Tmy)) ∈ A} ≤

dlog{n ≤ N : (b(n+ 1), . . . , b(n+m)) ∈ A}

where dlog denotes upper logarithmic density. We could also require that the joint statistics

of (f, f ′) agree with the joint statistics of (a, b) but this is not necessary for our argument.

Remark 2.1.19. The preceding definition was used first in [Tao17b] and generalized in

[Saw20].

We abuse notation and denote all transformations by the letter T . We also remark that

for the proof of Theorems 2.1.8 and 2.1.9 that f ′ only takes finitely many values.

We now specify some notation used in the main argument:

• We fix an unpretentious 1-bounded multiplicative function a. (For the definition of

unpretentious, see [MRT15]; we will only really use that a is unpretentious in Theorem

2.2.1; we remark that the Liouville function is unpretentious). We fix constants t ∈ N,

c > 0 and δ > 0. We fix a 1-bounded function b with at most o(k2) or kt−ε many words

of length k occurring with positive upper logarithmic density for all k ∈ K where K is

some fixed infinite set. We suppose that

lim sup
N→∞

|Elog
n≤Na(n)b(n)| > c.
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We fix η > 0 such that

lim sup
N→∞

|Elog
n≤Na(n)b(n)| > c+ η.

• We use the following theorem of [FH18a].

Theorem 2.2.8 ([FH18a] Theorem 1.5). There exists a joining of a dynamical model

for a with b, (X × Y, T, ν, f, f ′,M, Im) satisfying∣∣∣∣∫
X×Y

f(x, y)f ′(x, y)ν(dxdy)

∣∣∣∣ > c+ η,

and if µ is the first marginal then the ergodic components (X,µω, T ) are isomorphic to

products of Bernoulli systems with the Host-Kra factor of (X,µω, T ).

Because the statement here is slightly different than Theorem 1.5 in [FH18a], we will

go through the details in section 2.4. We fix such a system. We will always denote

by µ the first marginal of ν. We also fix ergodic decompositions ν =
∫

Ω
νωdω and

µ =
∫

Ω
µωdω. We define the words of length k of f ′ to be those words ε of length

k such that the set of (x, y) such that f ′(T hx, T hy) = εh for all h ≤ k has positive

measure. We note that the set of words of f ′ is a subset of the set of words of b that

occur with positive upper log density: after all, if f ′(T hx, T hy) = εh then by definition

of a joining of a dynamical model a with b,

0 <µ{(x, y) ∈ X × Y : f ′(T hy) = εh for all h ≤ k}

≤dlog{n ∈ N : b(n+ h) = εh for all h ≤ k},

where dlog denotes upper logarithmic density.

• G will always refer to a nilpotent Lie group. Gs will always refer to the sth step in

the lower central series. Γ will always refer to a cocompact lattice in G, meaning that

Gs/Γs is compact for every s. g, σ and τ will always refer to group elements. B will

always refer to the Borel sigma algebra. We will fix a particular G, Γ and g following

Corollary 2.2.20. For more on this see [GT12b].
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• For a nonempty, finite set A and φ : A → C, we denote En∈Aφ(n) = 1
#A

∑
n∈A φ(n).

For A ⊂ N, we denote

Elog
n∈Aφ(n) =

1∑
n∈A

1
n

∑
n∈A

φ(n)

n
.

This notation is due to Frantzikinakis (see [Fra17]). We always restrict p to be prime.

By definition a nilsystem is a dynamical system (G/Γ, dx, T,B) where G is a nilpotent

Lie group, Γ is a cocompact subgroup, dx is Haar measure, there exists g such that

T (x) = gx and B is the Borel sigma algebra. A nilsequence is a sequence of the

form F (gnΓ) where G is a nilpotent Lie group, Γ is a cocompact lattice in G, g is an

element in G and and F : G/Γ → C is a continuous function. Suppose G is an s-step

nilpotent Lie group so that Gs is an abelian group and Gs/Γs is a compact abelian

group. Then a nilcharacter Φ is a function G/Γ→ C such that there exists a character

ξ : Gs/Γs → S1 called the frequency of Φ such that, for all x in G/Γ and u in Gs we

have Φ(ux) = ξ(uΓs)Φ(x). We will abuse notation and identify ξ with the function

on Gs that maps u 7→ ξ(uΓs). We say ξ is nontrivial if there exists u in Gs such that

ξ(u) 6= 1. We say ξ is nontrivial on the identity component if we can find a u in the

identity component of Gs such that ξ(u) 6= 1.

• For Theorem 2.2.14, we will adopt conventions from the theory of Shannon entropy.

In particular, H(x) will denote the Shannon entropy of x and I(x, y) will denote the

mutual information between x and y. For more details, see [Tao16b].

• We will always denote by Z the smallest sigma algebra on X generated by the union

of the sigma algebras corresponding each of the Host-Kra factors. We will denote

B = {(x, y) ∈ X × Y : f ′(T ny) is eventually periodic as a function of n}.

Since whether (x, y) is in B depends only y, we will abuse notation and also use

B = {y ∈ Y : f ′(T ny) is eventually periodic as a function of n}.

• For a complex numbers z, a set A and a real number w we say z = OA(w) and z .A w

if there exists a constant C depending on A but not z and w such that |z| ≤ Cw. If
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there are more subscripts we mean that the constant may depend on more parameters.

For instance, by .A,u,K we mean that the implied constant can depend on A, u and

K.
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2.2 Main Argument

In this section, we prove Theorem 2.1.8 and Theorem 2.1.9. In Section 2.3, we explain how

to adapt the proof to handle Theorem 2.1.11.

We remark that much of the notation, including X, Y, µ, ν, f, f ′, a, and b was defined in

Subsection 2.1.1.

We start off with a theorem by [MRT15], relying on work in [MR16]. This is a special

case of our theorem, so it is no surprise that we need this result.

Theorem 2.2.1 ([MRT15] Theorem 1.7; see also [MR16]). Let a be a bounded, non-pretentious
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multiplicative function. Let θ be a periodic sequence. Then

lim
H→∞

lim sup
N→∞

Elog
n≤N |Eh≤Ha(n+ h)θ(h)| = 0.

This theorem says that a does not locally correlate with periodic functions. Eventually,

we plan to use a local argument. In particular, our argument will only work for those points

where f ′ does not behave locally like a periodic function. Therefore, we need to exclude any

contribution to the integral coming from points where f ′ behaves like a periodic function.

That is the content of the following corollary.

Corollary 2.2.2. Let B = {(x, y) ∈ X×Y : f ′(T ny) is eventually periodic as a function of n}.

Then ∫
B

f(x)f ′(y)ν(dxdy) = 0.

Proof. In this proof, we introduce some notation which will not be used in the rest of the

chapter. Because T preserves ν and because B is T -invariant, we can average over shifts:∫
B

f(x)f ′(y)ν(dxdy) = lim
H→∞

∫
B

Eh≤Hf(T hx)f ′(T hy)ν(dxdy).

We know f ′ takes only finitely many values. There are only countably many different periodic

sequences taking values in a finite alphabet. Therefore, it suffices to prove that if Bθ is the

set of points (x, y) on which f ′(T hy) is eventually equal to the periodic function θ that

0 = lim
H→∞

∫
Bθ

Eh≤Hf(T hx)f ′(T hy)ν(dxdy).

Let ε > 0. By Theorem 2.2.1, for H sufficiently large

ε3 � lim sup
N→∞

Elog
n≤N sup

j∈N
|Eh≤Ha(n+ h)θ(h+ j)|. (2.1)

We claim that, translating this to the dynamical world using the definition of a dynamical

model for a,

ν{(x, y) : lim sup
H→∞

|Eh≤Hf(T hx)θ(h)| > ε} ≤ ε.
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After all, by Chebyshev’s inequality, for any H such that 2.1 holds,

dlog{n ∈ N : sup
j∈N
|Eh≤Ha(n+ h)θ(h+ j)| ≥ ε} � ε2,

where dlog denotes upper logarithmic density. Fix such an H for the moment and fix a

natural number H ′ > H. In fact, more is true. Let S be the subset of the natural numbers

such that n is in S if and only if there exists a natural number H ′ ≥ Hn ≥ H such that

|Eh≤Hna(n+ h)θ(h)| ≥ ε.

Let S ′ denote the union of all the intervals [n + 1, n + Hn] for n in S. We claim there

is a subcollection I of these intervals which covers S ′ and such that each natural number

is contained in at most two intervals in I. This is a somewhat standard covering lemma,

but we include the details for the interested reader. For instance, consider the following

construction. Let I0 denote the empty set. Then assuming we have constructed I` for some

natural number `, let m denote the smallest natural number in S ′ not contained in the union

of the intervals in I`. (If no such m exists, then just set I`+1 = I`). Let n be a natural

number maximizing n+Hn subject to the constraints that n is in S and m is in [n+1, n+Hn].

Such an n exists because m is in S ′. Then let I`+1 = I` ∪ {[n + 1, n+ Hn]}. Now we check

that I = ∪I` has the desired property. First, for any m in S, m is clearly contained in the

union of the intervals in Im. Thus, I covers S ′. Second, suppose that m in S ′ is contained

in I1, I2 and I3 with I` chosen before I`+1 for ` = 1, 2. Suppose that I`i is the first set of

the form I` where Ii is contained in I`i . Then the union of the intervals in I`1 contains m.

Thus, there exists m′ in S ′ such that I2 = [n + 1, n + Hn] was chosen to maximize n + Hn

subject to the constraint that m′ is in I2. Since we assumed m was contained in I2, we have

that n < m. Now let I3 = [n′ + 1, n′ +Hn′ ]. Since I3 also contains m, n′ is also less than m

which is in turn less than m′. But I2 maximized n+Hn over all intervals containing m′ and

if n′ + Hn′ were larger than n + Hn which is larger than m′, then I3 would contained m′ as

well. Thus n′+Hn′ ≤ n+Hn and therefore any point contained in I3 is already contained in

the union of the intervals in I`2 . Therefore, I3 should not have been selected for I`3 which
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leads to a contradiction. Thus, every natural number is covered at most twice by the union

of the intervals in I. If

|Eh≤Hna(n+ h)θ(h)| & ε

then

Eh≤Hn|Eh′≤Ha(n+ h+ h′)θ(h+ h′)| & ε.

Therefore, for at least ε ·Hn many points n+ h′ in the interval [n+ 1, n+Hn],

sup
j∈N
|Eh≤Ha(n+ h+ h′)θ(h+ j)| & ε.

However, we know that

dlog{n ∈ N : sup
j∈N
|Eh≤Ha(n+ h)θ(h+ j)| ≥ ε} � ε2,

and that each such natural number is contained in at most two intervals of the form [n +

1, n+Hn] in I. We conclude that, by Chebyshev’s inequality, the logarithmic density of S ′

is at most ε. Therefore, the logarithmic density of S is at most ε. This precisely means

dlog{n ∈ N : sup
L∈[H,H′]

|Eh≤La(n+ h)θ(h)| ≥ ε} ≤ ε.

The condition supL∈[H,H′] |Eh≤La(n+h)θ(h)| ≥ ε depends measurably on (a(n+1), . . . , a(n+

H ′)) so by definition of a dynamical model for a,

ν{(x, y) : sup
L∈[H,H′]

|Eh≤Lf(T hx)θ(h)| ≥ ε} ≤ ε.

Since this is true for all H ′, we get that

ν{(x, y) : sup
L≥H
|Eh≤Lf(T hx)θ(h)| ≥ ε} ≤ ε.

Since this is true for all ε > 0, for all (x, y) outside a set of measure 0, we have

lim
H→∞

Eh≤Hf(T hx)θ(h) = 0.
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For (x, y) ∈ Bθ, we know that f ′(T hy) = θ(h) for h sufficiently large so for (x, y) ∈ Bθ outside

a set of measure 0, we know Eh≤Hf(T hx)f ′(T hy) → 0. By the dominated convergence

theorem, we have

0 = lim
H→∞

∫
Bθ

Eh≤Hf(T hx)f ′(T hy)ν(dxdy)

as desired.

We will also need the following result later. It states that f does not correlate locally

with periodic functions.

Corollary 2.2.3. Let µ =
∫

Ω
µωdω be an ergodic decomposition of µ. For almost every ω,

for all 1-bounded function φ : X → C such that, for µω almost every x, φ(T hx) is periodic

in h we have ∫
X

f(x)φ(x)µω(dx) = 0.

Proof. Let d be a natural number. Then we claim that,

lim
H→∞

lim
N→∞

Elog
n≤N sup

θ∈Sd
|Eh≤Ha(n+ h)θ(h)| = 0,

where Sd is the set of d!-periodic, 1-bounded functions. Since the supremum is over a finite

set, this directly follows from Theorem 2.2.1. Let ε > 0. For H sufficiently large,

lim sup
N→∞

Elog
n≤N sup

θ∈Sd
|Eh≤Ha(n+ h)θ(h)| ≤ ε3.

Therefore, as in the proof of Proposition 2.2.2

ν{(x, y) : lim sup
H→∞

sup
θ∈Sd
|Eh≤Hf(T hx)θ(h)| > ε} ≤ ε.

Since this is true for all ε, we get that∫
X

lim sup
H→∞

sup
θ∈Sd
|Eh≤Hf(T hx)θ(h)|µ(dx) = 0.

Therefore, there exists Ωd ⊂ Ω of full measure such that for ω in Ωd, we have∫
X

lim sup
H→∞

sup
θ∈Sd
|Eh≤Hf(T hx)θ(h)|µω(dx) = 0.
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Now let ω be an element of Ωd for all d and let φ be a 1-bounded function such that φ(T hx)

is periodic in h for µω-almost every x. Suppose that there exists ε > 0 such that∣∣∣ ∫
X

f(x)φ(x)µω(dx)
∣∣∣ > ε.

Then by translation invariance, we know∣∣∣ lim sup
H→∞

∫
X

Eh≤Hf(T hx)φ(T hx)µω(dx)
∣∣∣ ≥ ε.

Let Xd be the set of all points x such that φ(T hx) is periodic with period at most d. Note

by assumption that µω(∪Xd) = 1. Then by dominated convergence, there exists d such that∫
Xd

lim sup
H→∞

|Eh≤Hf(T hx)φ(T hx)|µω(dx) > .5ε.

Since φ(T hx) is d! periodic for every x in Xd, this integral is bounded by∫
X

lim sup
H→∞

sup
θ∈Sd
|Eh≤Hf(T hx)θ(h)|µω(dx),

which gives a contradiction.

For the proof of Theorem 2.1.9, we also need an upgraded version of Corollary 2.2.3 under

the assumption that the κ− 1-Fourier uniformity conjecture holds.

Proposition 2.2.4. Suppose that the κ−1-Fourier uniformity conjecture holds i.e., for every

nilpotent Lie group G of step < κ, every cocompact lattice Γ and every continuous function

F : G/Γ→ C

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

g∈G
|Eh≤Ha(n+ h)F (ghΓ)| = 0.

Then for almost every ω, we have the following property: for every nilpotent Lie group G

of step < κ, every cocompact lattice Γ, every continuous function F : G/Γ → C and every

function φ on X such that for µω almost every x there exists x′ in G/Γ and g in G we have

φ(T hx) = F (ghx′) for all h in N we have that∫
X

f(x)φ(x)µω(dx) = 0.
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Proof. In the proof of this proposition, we will introduce some notation which will not be used

in the rest of the chapter. By, for instance, [HK18, Chapter 10, Theorem 28] there are only

countably many pairs (G,Γ) up to isomorphism of G/Γ. Thus, we can fix a sequence (Gi,Γi)

of nilpotent Lie groups of step < κ and cocompact lattices such that, for any nilpotent Lie

group G of step < κ and for any cocompact lattice Γ there exists a natural number i and a

Lie group isomorphism ψ : Gi → G such that ψ(Γi) = Γ. By Stone-Weierstass, there exists

a countable, uniformly dense subset of the continuous functions on Gi/Γi. Fix such a subset

and call it Fi. We are assuming the κ− 1-Fourier uniformity conjecture:

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

g∈Gi
|Eh≤Ha(n+ h)F (ghΓi)| = 0,

for all i and all F a continuous function on G/Γ. By [Fra17, Section 4.5, Step 4] we also get

that, for all i and F as before,

lim
H→∞

lim sup
N→∞

Elog
n≤N sup

g∈Gi
x∈Gi/Γi

|Eh≤Ha(n+ h)F (ghx)| = 0.

Fix a natural number i for the moment and a function F in Fi. For each ε > 0 there exists

Hε such that

lim sup
N→∞

Elog
n≤N sup

g∈Gi
x∈Gi/Γi

|Eh≤Hεa(n+ h)F (ghx)| � ε3.

Therefore, by Chebyshev’s inequality,

dlog{n ∈ N : sup
g∈Gi

x∈Gi/Γi

|Eh≤Hεa(n+ h)F (ghx)| ≥ ε} � ε2,

where dlog denotes the upper logarithmic density. Note that

sup
g∈Gi

x∈Gi/Γi

|Eh≤Hεa(n+ h)F (ghx)|

depends measurably on (a(n+ 1), . . . , a(n+Hε)). Thus, there exists some set A in CHe such

that

sup
g∈Gi

x∈Gi/Γi

|Eh≤Hεa(n+ h)F (ghx)| ≥ ε
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if and only if (a(n+ 1), . . . , a(n+Hε)) are in A. Therefore, we know that

dlog{n ∈ N : (a(n+ 1), . . . , a(n+Hε)) ∈ A} � ε2.

By the definition of a dynamical model for a,

µ{x′ ∈ X : (f(T 1x′), . . . , f(THεx′)) ∈ A} � ε2.

Unpacking definitions, we get

µ{x′ ∈ X : sup
g∈Gi

x∈Gi/Γi

|Eh≤Hεf(T hx′)F (ghx)| ≥ ε} � ε2.

We call this set

{x′ ∈ X : sup
g∈Gi

x∈Gi/Γi

|Eh≤Hεf(T hx′)F (ghx)| ≥ ε} = Sε.

Remember that Sε implicitly depends on i and F . By the definition of the ergodic decom-

position, we have that

µ(Sε) =

∫
Ω

µω(Sε)dω.

Therefore, by another application of Chebyshev’s inequality, we find that

|{ω ∈ Ω: µω(Sε) ≤ ε}| ≥ 1− ε.

We call this set Kε = {ω ∈ Ω: µω(Sε) ≤ ε}. Of course Kε depends on i and F . Define

Ωi,F =
⋂
m∈N

⋃
r≥m

K 1
r
,

and define,

Ω′ =
⋂
i∈N

⋂
F∈F

Ωi,F .

Since |Kε| ≥ 1− ε, we know that for any m, we have
∣∣∣⋃r≥mK 1

r

∣∣∣ = 1 and therefore |Ω′| = 1.
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Now we check that Ω′ has the desired properties. Thus, fix ω in Ω′, φ a measurable

function on X, G a nilpotent Lie group of step < κ, Γ a cocompact lattice and F ′ a function

on G/Γ. Suppose that for µω almost every x in X, there exists x′ in G/Γ such that φ(T hx) =

F ′(ghx′) for some g in G. Fix ε > 0. We aim to show∣∣∣∣∫
X

f(x)φ(x)µω(dx)

∣∣∣∣ . ε · (||F ′||L∞ + 1) .

Fix i in the natural numbers such that (G,Γ) is isomorphic to (Gi,Γi). Fix ψ : Gi → G an

isomorphism such that ψ(Γi) = Γ. Fix F in Fi such that ||F ◦ ψ − F ′||L∞ ≤ ε. Then ω is in

Ω′ so ω is in Ωi,F and therefore there exists r > 1
ε

such that ω is in K 1
r
. Therefore, for some

H = H 1
r
,

µω{x′ ∈ X : sup
g∈Gi

x∈Gi/Γi

|Eh≤Hf(T hx′)F (ghx)| ≥ ε} ≤ ε.

By the triangle inequality,

µω{x′ ∈ X : sup
g∈G
x∈G/Γ

|Eh≤Hf(T hx′)F ′(ghx)| ≥ 2ε} ≤ ε.

Next, we use that φ locally looks like F ′:

µω{x′ ∈ X : |Eh≤Hf(T hx′)φ(T hx′)| ≥ 2ε} ≤ ε.

Bounding the exceptional points by the L∞ norm, we get that:∫
X

∣∣Eh≤Hf(T hx)φ(T hx)
∣∣µω(dx) . ε · (||F ′||L∞ + 1) .

By the triangle inequality,∣∣∣∣∫
X

Eh≤Hf(T hx)φ(T hx)µω(dx)

∣∣∣∣ . ε · (||F ′||L∞ + 1) .

By translation invariance, ∣∣∣∣∫
X

f(x)φ(x)µω(dx)

∣∣∣∣ . ε · (||F ′||L∞ + 1) .

This completes the proof.
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Proposition 2.2.5. Let (X,µ, T ) be a (topologically) compact, invertible, not necessarily

ergodic dynamical system. Let µ =
∫

Ω
µωdω be an ergodic decomposition. Recall that, for

each ω, the Host-Kra factor Zω is defined up to sets of µω-measure 0. For each ω, fix such

a Host-Kra factor. For instance, one could use any definition of the Host-Kra factor and

then add all sets of µω-measure 0 to obtain the complete Host-Kra factor. Then there exists

a sigma algebra Z on X such that, for any measurable set A, A is Z measurable if and only

if there exists a full measure subset Ω′ ⊂ Ω such that for all ω in Ω′, A is Zω measurable.

This implies that a function f in L∞(µ) is Z measurable if and only if there exists a full

measure subset Ω′ ⊂ Ω such that f is Zω measurable for every ω in Ω′.

Proof. Let Z be the set of measurable subsets of X such that there exists a full measure set

ΩA ⊂ Ω such that for all ω in ΩA, A is Zω measurable. For each such set, fix such an ΩA.

Let A1, A2, A3, . . . be a countable list of sets in Z. Consider

Ω′ =
⋂
i∈N

ΩAi .

Because Ω′ is the intersection of countably many full measure sets, it has full measure. Let

ω be an element of Ω′. Then for every natural number i, Ai is Zω measurable. Because Zω is

a sigma algebra, that implies the countable intersection and countable union of the sets Ai

are also Zω measurable. Thus the intersection ∩Ai and union ∪Ai are both Zω measurable

for a full measure subset Ω′ ⊂ Ω and thus, by definition of Z, Z is closed under countable

unions and intersections. If A is in Z, then A is in Zω for every ω in ΩA. Since Zω is a sigma

algebra, the complement Ac is also in Zω for every ω in ΩA. By definition of Z, we conclude

that Z is closed under complements. Obviously X and ∅ are in Z so Z is a sigma algebra.

Lastly, we check that a function f in L∞(µ) is Z measurable if and only if it is Zω

measurable for a full measure set of ω. First, suppose there exists a full measure subset

Ω′ ⊂ Ω such that, for ω in Ω′, f is Zω measurable. Let A be a measurable subset of C. Then

since f is Zω measurable for any ω in Ω′, f−1(A) is in Zω for any ω in Ω′. Therefore, by

definition of Z, f−1(A) is in Z so f is Z measurable.
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Now suppose f is Z measurable. We approximate f by simple functions fi. For instance,

we can take fi(x) = k · 2−i if f(x) is between k · 2−i and (k+ 1) · 2−i for any natural number

k. Then fi → f in L1(µ) and also in L1(µω) for any ω by the dominated convergence

theorem. For each i, the function fi has only finitely many distinct level sets. Because f is

Z measurable, the level sets of fi are Z measurable. Therefore, there exists a full measure

subset Ωi ⊂ Ω such that fi is Zω measurable for all ω in Ωi. Let

Ω′ =
⋂
i∈N

Ωi.

Then since Ω′ is the intersection of sets of full measure, Ω′ has full measure. For each ω in

Ω′, fi is Zω measurable for all natural numbers i. But fi → f in L1(µω) so the limit f is

also Zω measurable for all ω in Ω′.

Definition 2.2.6. By Proposition 2.2.5, there exists a sigma algebra Z such that a L∞(µ)

function f is Z measurable if and only if it is Zω measurable for almost every ω in Ω. We

fix such a sigma algebra and call it the Host-Kra sigma algebra for (X,µ, T ).

Proposition 2.2.7. Let f be a function in L∞(µ). Then there exists a set Ω′ of full measure

in Ω such that for ω in Ω′,

Eµ[f |Z] = Eµω [f |Zω],

µω almost everywhere.

Proof. First, we need the following quick ergodic theoretic fact. The space X can be essen-

tially partitioned into pieces where each piece carries all the mass of an ergodic component.

More precisely, there exists a map ω′ : X → Ω such that∫
Ω

∫
X

φ(x)µω(dx)dω =

∫
Ω

∫
X

φ(x)1ω=ω′(x)µω(dx)dω

for any integrable φ. For instance, in the usual construction of an ergodic decomposition,

one can take Ω to be the set of atoms of X with respect to the invariant sigma algebra I.
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Then let
∫
ψ(x′)µ[x](dx

′) = E[ψ|I](x) where x is any point in the atom [x]. In this case the

map ω′ just sends x to the atom containing x.

By Proposition 2.2.5, there is a set Ω0 of full measure such that Eµ[f |Z] is Zω measurable

for every ω in Ω0. We also ask that for ω in Ω0 that

||f ||L∞(µω) ≤ ||f ||L∞(µ)

which holds for a full measure set of ω. Fix such an Ω0. Since X is compact, there exists

a countable uniformly dense subset of the space of continuous functions. Fix such a subset

and fix an order on that subset f1, f2, f3, f4, . . .. Again by Proposition 2.2.5, there exists a

full measure subset Ωi of Ω such that for ω in Ωi, the function Eµ[fi|Z] is Zω measurable.

Let

Ω′ =
⋂
i≥0

Ωi.

Since each Ωi has full measure and there are only countably many choices of i, we conclude

that Ω′ has full measure. Now let ω be an element of Ω′ and suppose for the sake of

contradiction that

Eµ[f |Z] 6= Eµω [f |Zω],

meaning equality does not hold up to sets of µω measure 0. The conditional expectation is

uniquely defined by two properties, namely that Eµω [f |Zω] is Zω measurable and that∫
X

Eµω [f |Zω](x)φ(x)µω(dx) =

∫
X

f(x)φ(x)µω(dx),

for any Zω measurable function φ in L∞(µω). If Eµ[f |Z] satisfies the same properties then

Eµ[f |Z] equals Eµω [f |Zω] µω-almost everywhere. We know since ω is in Ω′ which is contained

in Ω0 that Eµ[f |Z] is Zω measurable. Therefore, there exists φ in L∞(µω) which is Zω

measurable such that∫
X

Eµ[f |Z](x)φ(x)µω(dx) 6=
∫
X

f(x)φ(x)µω(dx).
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By subtracting off the appropriate multiple of Eµ[f |Z], we may assume that φ is µω-

orthogonal to Eµ[f |Z]. Multiplying by a scalar we may assume that 〈f, φ〉L2(µω) is a positive

real number greater than 1.

For each ω in Ω′ such that Eµ[f |Z] 6= Eµω [f |Zω], we showed there exists φ a Zω measurable

function such that 〈Eµ[f |Z], φ〉L2(µω) = 0 and 〈φ, f〉L2(µω) > 1. Let φ be such a function.

Suppose for the moment that ||φ||L∞(µω) < C. Since f1, f2, f3, . . . are dense in L2(µω), for

any ε and for any power p <∞ we can find an i such that ||φ− fi||Lp(µω) ≤ ε. This implies,

by Cauchy-Schwarz, that

〈Eµ[f |Z], fi〉L2(µω) ≤ ε||f ||L∞(µ) (2.2)

and

〈φ, fi〉L2(µω) > 1− ε. (2.3)

We also need a quantitative way of saying that fi is close to being Zω measurable. One

option is to use the Host-Kra norms defined for an ergodic system in [HK05] section 3.5.

Let |||φ|||k,ω denote the kth Host-Kra norm. The key feature of the Host-Kra norms is that

a function φ is Zω measurable if and only if |||φ|||k,ω = 0 for all k (see [HK05] Lemma 4.3).

We claim that |||φ|||k,ω is a measurable function of ω. After all, by definition |||φ|||2kk,ω is the

integral of some fixed function on X2k , namely (x1, . . . , x2k) 7→ φ(x1) . . . φ(x2k) with respect

to some measure (namely µ
[k]
ω defined in [HK05] section 3.1) which depends measurably on

ω. Thus, we can find also fi with

|||fi|||k,ω ≤ 2ε, (2.4)

for all k ≤ 1
ε
. Since we also know that

||φ||Lp(µω) < C

for some constant C then also by the triangle inequality,

||fi||Lp(µω) ≤ C + ε. (2.5)
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Fix a constant C. Now we define a function i : Ω×R>0 → N∪{∞} as follows: Let i(ω, ε)

be the first index such that all four inequalities 2.2 - 2.5 are satisfied with p = 1
ε

if such an i

exists and +∞ otherwise. Note that i implicitly depends on C. Let E denote the set of ω

such that i(ω, ε) is finite for all ε. In particular, if Eµ[f |Z] 6= Eµω [f |Zω] then ω is in this set

for some choice of C. Thus, we may assume for the sake of contradiction that the measure

of E is positive. Let

ψε(x) =


fi(ω,ε)(x) ω ∈ E,ω′(x) = ω

0 otherwise

Since, for all 1 < p < 1
ε

||ψε||Lp(µ) =

∫
Ω

||ψε||Lp(µω)dω ≤ C + ε,

we can take an Lp(µ) weak-∗ limit (which is the same as a weak limit in this case) ψε → ψ

for some subsequence of epsilons tending to 0. By a diagonalization argument, we can ensure

that this weak-∗ limit exists for all 1 < p <∞. By 2.4, we conclude that ψ is Zω measurable

for each ω in E. If ω is not in E, then ψ = 0 on a set of µω full measure so ψ is measurable

with respect to Zω for a full measure set of ω in Ω so by definition ψ is Z measurable.

Futhermore, by 2.3

〈φ, ψ〉L2(µω) ≥ 1

so we conclude that

〈φ, ψ〉L2(µ) ≥ |E|

by integrating in ω. On the other hand, by 2.2

〈Eµ[f |Z], ψ〉L2(µ) = 0.

This contradicts the definition of Eµ[f |Z]. Thus,

Eµ[f |Z] = Eµω [f |Zω]

for almost every ω in Ω.
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A crucial input is the following theorem of [FH18a]. This theorem says that if a correlates

with b then it does so for some algebraic reason. In particular, any correlation between f

and f ′ is due solely to some locally algebraic structure in f .

Theorem 2.2.8 ([FH18a] Theorem 1.5; see also section 2.4). Let µ be the first marginal of ν

corresponding to the factor X. Then the ergodic components (X,µω, T ) of µ are isomorphic

to the product of a Bernoulli system with the Host-Kra factor of (X,µω, T ).

To use this theorem, we need the following result, which essentially appears in [FH18b]:

Lemma 2.2.9 ([FH18b]; see the proof of Lemma 6.2). Suppose that (X,µω, T ) ∼= (W,dw, T )×

(Z, dz, T ) where W is a Bernoulli system, Z is a zero entropy system and µω is the first

marginal of νω. Then for any function φ : X → C and any function ψ : Y → C we have∫
X×Y

φ(x)ψ(y)νω(dxdy) =

∫
X×Y

Eνω [φ|Z](x)ψ(y)νω(dxdy)

where Eνω [φ|Z] denotes the conditional expectation of φ with respect to the measure νω and

the sigma algebra of Z-measurable functions.

Proof. By density, it suffices to consider the case φ(w, z) = φW (w)φZ(z). Because any joining

of the Bernoulli system W and the zero entropy system Z×Y is trivial i.e. is equipped with

the product measure, we can break up the the integral∫
W×Z×Y

φW (w)φZ(z)ψ(y)νω(dwdzdy) =

∫
W

φW (w)νω(dwdzdy) ·
∫
Z×Y

φZ(z)ψ(y)νω(dwdzdy)

=

∫
X×Y

Eνω [φ|Z](z)ψ(y)νω(dwdzdy).

We also need the following result, which says that conditional expectation is essentially

local.
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Corollary 2.2.10. Let X, Y , ν, f , f ′, c and η be as in Subsection 2.1.1. Let B be as in

Corollary 2.2.2. Then ∣∣∣∣∫
Bc

Eh≤kT h(Eν [f |Z] · f ′)dν
∣∣∣∣ > c+ η.

Proof. Recall that ∣∣∣∣∫
X×Y

f(x) · f ′(y)ν(dxdy)

∣∣∣∣ > c+ η.

By Corollary 2.2.2, we have that∣∣∣∣∫
Bc
f(x) · f ′(y)ν(dxdy)

∣∣∣∣ > c+ η.

Since Bc is T invariant and ν is T invariant, we can average over shifts∣∣∣∣∫
Bc

Eh≤kf(T hx) · f ′(T hy)ν(dxdy)

∣∣∣∣ > c+ η.

Next, we disintegrate the measure ν,∣∣∣∣ ∫
Ω

∫
Bc

Eh≤kf(T hx) · f ′(T hy)νω(dxdy)dω

∣∣∣∣ > c+ η.

Notice, for each h, f ′(T hy)1y 6∈B is a function on Y . By Theorem 2.2.8, (X,µω, T ) is isomor-

phic to a product of a Bernoulli factor with the Host-Kra factor for almost every ω. Since

the Host-Kra factor has entropy zero, the hypotheses of Lemma 2.2.9 are satsified. Thus, by

Lemma 2.2.9, ∣∣∣∣ ∫
Ω

∫
Bc

Eh≤kEµω [f |Zω](T hx) · f ′(T hy)νω(dxdy)dω

∣∣∣∣ > c+ η.

By Proposition 2.2.7,∣∣∣∣ ∫
Ω

∫
Bc

Eh≤kEµ[f |Z](T hx) · f ′(T hy)νω(dxdy)dω

∣∣∣∣ > c+ η.

By definition of the ergodic decomposition,∣∣∣∣ ∫
Bc

Eh≤kEµ[f |Z](T hx) · f ′(T hy)ν(dxdy)

∣∣∣∣ > c+ η.

This completes the proof.
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Now we forget everything about the joining of X and Y and reduce to the worst case

scenario, where we choose the worst possible y in Y for each x in X.

Corollary 2.2.11. Let X, Y , ν, µ, f , f ′, c and η be as in Subsection 2.1.1. Let Z be as in

Definition 2.2.6. Let B be as in Corollary 2.2.2. Since whether (x, y) ∈ B only depends on

y, we abuse notation and write y ∈ B to mean (x, y) ∈ B for some x. Then,∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T hx) · f ′(T hy)
∣∣∣µ(dx) > c+ η,

where the supremum is an essential supremum taken with respect to the second marginal of

ν.

We will need the following lemma, which states that conditioning with respect to a con-

ditional measure is essentially the same as conditioning with respect to the original measure.

Lemma 2.2.12. Let A be a positive measure set in Z and denote µA(S) = µ(S|A). Then

for any measurable function f ,

EµA [f |Z] = Eµ[f |Z],

µA almost everywhere i.e. for µ-almost every point in A.

Proof. Let C be another set in Z. Then∫
C

Eµ[f |Z](x)µA(dx) =

∫
C∩A

1

µ(A)
Eµ[f |Z](x)µ(dx)

Since A is in Z, we know that A ∩ C is in Z. By definition of conditional expectation, this

is

=
1

µ(A)

∫
C∩A

fµ(dx)

=

∫
C∩A

fµA(dx).

This is the defining property of EµA [f |Z]. Since conditional expectation is well defined up

to sets of measure 0, we obtain the result.
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The system X possesses an extra symmetry that most dynamical systems do not have,

a dilation symmetry. In fact, it possesses a whole family of dilation symmetries. It is not

obvious which dilation makes the problem easiest. Therefore, instead of choosing a particular

dilation, we use a random dilation.

Proposition 2.2.13. Let P be any natural number. Then

EP/2<p≤P
∫
X

p1M−1(pẐ)(x) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c+ η,

where p is always restricted to be prime.

Proof. By Corollary 2.2.11 we have∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T hx) · f ′(T hy)
∣∣∣µ(dx) > c+ η.

Now we use that Ip pushes forward p1M−1(pẐ)µ to µ for every p and average in p.

EP/2<p≤P
∫
X

p1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T hIpx) · f ′(T hy)
∣∣∣µ(dx) > c+ η.

Because Ip ◦ T hp(x) = T h ◦ Ip(x) for almost every x in M−1(pẐ) we have that,

EP/2<p≤P
∫
X

p1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](IpT
phx) · f ′(T hy)

∣∣∣µ(dx) > c+ η.

Next we use the standard fact that

Eµ[f |Z] ◦ Ip = EIp∗µ[f ◦ Ip|I−1
p (Z)],

Ip∗µ-almost everywhere, where Ip∗µ is the pushforward of µ. Since Ip∗µ = 1
p
µ, we can replace

Ip∗µ by µ. Note that Ip defines a factor map between (M−1(pẐ), pµ, T p) and (X,µ, T ). Since

Host-Kra factors are functorial, the Host-Kra factor for (M−1(pẐ, pµ, T p)) factors onto the

Host-Kra factor for (X,µ, T ). Thus, I−1
p (Z) is contained in the Host-Kra factor of some

dynamical system and thus corresponds to an inverse limit of nilsystems. This is all we

actually need for our purposes. However, for the sake of avoiding notation, we also prove

that

1M−1(pẐ)E
µ[f ◦ Ip|I−1

p (Z)] = 1M−1(pẐ)a(p)Eµ[f |Z].
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That f ◦Ip = a(p)f follows from the definition of Ip. If Zi(T p) denotes the ith Host-Kra factor

for T p and Zi(T ) denotes the ith Host-Kra factor for T , then any T p invariant subset of the

cube X2i is an element of the Konecker factor i.e. the first Host-Kra factor for (X2i , T, µ[i])

(where µ[i] is the measure on the cube defined in section 3 of [HK05]). Since the Host-Kra

factor of an ergodic system is the smallest sigma algebra generating the invariant factor on

the cube, we conclude that Zi(T p) ⊂ Zi+1(T ) so I−1
p (Z) ⊂ Z∩M−1(pẐ). In fact, as in section

2.4, the Host-Kra factor for X is a joining of the Host-Kra factor on the space of sequences

DZ and Ẑ. On the second factor, Ip acts by division by p. On the first factor, Ip ◦T p = T ◦Ip

and so on each ergodic component of the first factor, Ip acts by multiplication by p up to a

possible translation. Multiplication by p is a local isomorphism of any nilmanifold that does

not contain p torsion. However, by Corollary 2.2.3, f is already orthogonal to all p torsion.

Thus,

1M−1(pẐ)E
µ[f ◦ Ip|I−1

p (Z)] = 1M−1(pẐ)a(p)Eµ[f |Z].

Combined with Lemma 2.2.12 and the fact that M−1(pẐ) is T p invariant and therefore an

element of Z we get,

EP/2<p≤P
∫
X

p1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµa(p)[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c+ η.

Recall that |a(p)| = 1 for all p. Thus, a(p) merely gets absorbed into the absolute value.

EP/2<p≤P
∫
X

p1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c+ η.

2.2.1 The Entropy Decrement Argument

Next, we use the entropy decrement method to replace p1M−1(Ẑ) by its average, 1. This is

essentially due to Tao but because our statement is slightly different we reproduce the argu-

ment. For the definitions of entropy, conditional entropy, mutual information and conditional

mutual information see [Tao16b].
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Let x′ be a random variable distributed according to µ and fix a natural number P .

From this, we get the following two random variables. Set XP = (x1, . . . , x(k+1)P ) where

xi = Eµ[f |Z](T ix′) and set YP in
∏

P/2<p≤P Z/pZ by YP = (M(x′) mod p)P/2<p≤P . De-

note YP mod p = yp so that YP = (yp)P/2<p≤P . Note that YP is uniformly distributed in∏
P/2<p≤P Z/pZ and that the distribution of XP is the same as the distribution of T iXP for

any i because µ is translation invariant. Technically, if Eµ[f |Z] takes infinitely many values

then we will have to round Eµ[f |Z](T ix′) so that each xi takes values in a finite set but this

slightly annoying detail may be delayed for the moment. We want to study the following

integral:

EP/2<p≤P
∫
X

p1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx)

By translation invariance, this is equal to

EP/2<p≤PEi≤P
∫
X

pT i1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T ph+ix) · f ′(T hy)
∣∣∣µ(dx).

Notice that this is the expected value of some function of XP and YP . In particular, we are

interested in

E
(
EP/2<p≤PfP,p(XP , yp)

)
where fP,p : C(k+1)P × Z/pZ→ C is defined by the formula

fP,p(XP , yp) = Ei≤P p1yp=i sup
y 6∈B

∣∣∣Eh≤kxhp+if(Ty)
∣∣∣.

Define

fP (XP , YP ) = EP/2<p≤PfP,p(XPyP ).

Thus, we are interested in

EfP (XP , YP ).

We would like to say that XP and YP are very close to independent for some large choice of

P . Let WP be a random variable with the same distribution as YP but which is independent

of XP . We would like to say that

E[fP (XP , YP )] ≈ E[fP (XP ,WP )].
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A property like this actually holds in a more general setting, which we take the liberty of

stating now.

Theorem 2.2.14 ([Tao16b] Section 3; see also [Mor18],[TT17b] Lemma 3.4 and Proposition

3.5 and [TT17a] Section 4). Let A be a finite set and let C be a natural number. For each

power of two P , let XP = (x1, . . . , xCP ) be a sequence of random variables with xi taking

values in A and let YP be a random variable that is uniformly distributed in
∏

P/2<p≤P Z/pZ.

We write YP = (yp)P/2<p≤P where yp = YP mod p. We further assume that for different

values of P , the random variables YP are jointly independent meaning (yp)p≤P is uniformly

distributed in
∏

p≤P Z/pZ for all powers of two P . Suppose that, for any natural numbers i

and m such that i + m ≤ CP we have that the distribution of (x1, . . . , xm) is equal to the

distribution of (xi+1, . . . , xi+m). Furthermore, suppose that for any P and any element b in∏
p≤P Z/pZ and any S a measurable subset of Cm,

P((x1, . . . , xm) ∈ S | (yp)p≤P = b) = P((xi+1, . . . , xi+m) ∈ S | (yp)p≤P = b+ i).

For each p with P/2 < p ≤ P , let fP,p be a 1-bounded function ACP × Z/pZ → C and let

fP (XP , YP ) = EP/2<p≤PfP,p(XP , yp). Let WP be a random variable with the same distribution

as YP but which is independent of XP . Then

lim inf
P→∞

E[|fP (XP , YP )− fP (XP ,WP )|] = 0.

Proof. Fix a large power of two P and ε > 0. By replacing fP,p(a, b) by fP,p(a, b)−fP,p(a,WP )

we may assume that fP,p(a,WP ) = 0 for all a. To prove the theorem, first we need a very

good understanding of the case when XP and YP are independent. In that case, even if we

know the exact value of XP , fP is still a sum of independent random variables fP,p(a,WP )

and therefore exhibits concentration. This is formalized in Hoeffding’s inequality, which says

that large collections of independent random variables exhibit concentration.

Lemma 2.2.15 (Hoeffding’s Inequality). Suppose Z1, . . . , Zn are independent random vari-
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ables taking values in [−2, 2]. Then

P(|Z1 + · · ·+ Zn − E[Z1 + · · ·+ Zn]| > t) ≤ exp(−nt2/16).

Let a be an element of ACP . We apply Hoeffding’s inequality to the random variables

fP,p(a, YP ). (We remind the reader that there are roughly P
2 logP

many such terms, by the

prime number theorem).

P(|fP (a,WP )| > ε) ≤ exp(− ε2P

40 logP
). (2.6)

Next, we aim to show that if YP is not necessarily independent of XP but nearly independent

of YP , we still can obtain a good bound. To do this, we use a Pinsker-type inequality.

Lemma 2.2.16. [[TT17a] Lemma 3.4] Let Y be a random variable taking values in a finite

set, let W be a uniformly distributed random variable on the same set and let E be a set.

Then

P(Y ∈ E) ≤ −H(W )−H(Y ) + log 2

logP(W ∈ E)
.

Let a be an element of ACP . Let E be the set of b in
∏

P/2<p≤P Z/pZ such that |fP (a, b)| >

ε. By 2.6, we know

P(WP ∈ E) ≤ exp(− ε2P

40 logP
).

Applying Lemma 2.2.16 to P( · |XP = a), we find

P(|f(a, YP )| > ε|XP = a) ≤ −(H(WP )−H(YP |XP = a) + log 2)40 logP

ε2P
.

Note that∑
a

P(XP = a)(H(WP )−H(YP |XP = a)) = H(WP )−H(YP |XP ) = I(XP , YP ),

where the last equality follows since H(WP ) = H(YP ) since the two random variables have

the same distribution. Therefore, summing over a, we get

P(|f(XP , YP )| > ε) ≤ −(I(XP , YP ) + log 2)40 logP

ε2P
.
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If

I(XP , YP ) .
εP

logP

then

P(|f(XP , YP )| > ε) . ε.

This would complete the proof. Let Y≤P/2 = (yp)p≤P/2. Fix b′ an element of
∏

p≤P/2 Z/pZ.

Then we may repeat the previous argument with P( · |Y≤P/2 = b′) to conclude:

P(|f(XP , YP )| > ε) ≤ −
(I(XP , YP |Y≤P/2) + log 2)40 logP

ε2P
.

and therefore if

I(XP , YP |Y≤P/2) .
ε3P

logP

then

P(|f(XP , YP )| > ε) . ε

and therefore

E|f(XP , YP )| . ε.

Let P0 be a power of two. We will try to show that there exists P ≥ P0 such that

E|f(XP , YP )| . ε.

This would complete the proof. Suppose not. Then

I(XP , YP |Y≤P/2)� ε3P

logP
,

for all P ≥ P0. By definition of mutual information,

H(XP |Y≤P ) = H(XP |Y≤P/2)− I(XP , YP |Y≤P/2)

where Y≤P = (yp)p≤P . By assumption, we have a lower bound for the mutual information

≤ H(XP |Y≤P/2)− ε3P

logP
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By subadditivity of entropy,

≤ H(XP/2|Y≤P/2) +H(xCP/2+1, . . . , xCP |Y≤P/2)− ε3P

logP
(2.7)

whereXP/2 = (x1, . . . , xCP/2). Since (x1, . . . , xCP/2) has the same distribution as (x1, . . . , xCP/2),

for any set S in CCP/2 and for any b′ in
∏

p≤P/2 Z/pZ

P((x1, . . . , xCP/2) ∈ S|Y≤P/2 = b′) = P((xCP/2+1, . . . , xCP ) ∈ S|Y≤P/2 = b′ + CP/2).

Since the entropy of a random variable only depends on its distribution, we conclude that,

for all b′

H(x1, . . . , xCP/2|Y≤P/2 = b′) = H(xCP/2+1, . . . , xCP |Y≤P/2 = b′ + CP/2)

Since Y≤P/2 is uniformly distributed, for all b′,

P(YP/2 = b′) = P(YP/2 = b′ + CP/2).

Therefore, summing in b′,

H(x1, . . . , xCP/2|Y≤P/2) (2.8)

=
∑
b′

P(YP/2 = b′)H(x1, . . . , xCP/2|Y≤P/2 = b′)

=
∑
b′

P(YP/2 = b′ + CP/2)H(xCP/2+1, . . . , xCP |Y≤P/2 = b′ + CP/2)

=H(xCP/2+1, . . . , xCP |Y≤P/2).

Applying 2.8 to 2.7,

H(XP |Y≤P ) ≤ 2H(XP/2|Y≤P/2)− ε3P

logP
.

We just obtained an upper bound for H(XP |Y≤P ). We can apply the same argument to

obtain an upper bound for H(XP/2|Y≤P/2).

≤ 4H(XP/4|Y≤P/4)− 2
εP/2

logP/2
− ε3P

logP
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where XP/2 = (x1, . . . , xCP/4) and where Y≤P/4 = (yp)p≤P/4. Applying this argument induc-

tively, if P = 2m · P0 then

≤ 2m

(
H(XP0|Y≤P0)− ε

m∑
j=1

P0

j

)
. (2.9)

However,
∑

m≤log2 P/P0

1
m
∼ log logP so for large P

ε

m∑
j=1

P0

j
� CP0 log |A| ≥ H(XP0|Y≤P0).

Combining this with 2.7,

H(XP , Y≤P ) < 0

which is impossible.

Applying the Theorem 2.2.14 to our situation yields,

Corollary 2.2.17. Let X, Y , µ, f , f ′, M , Ip, c and η be as in Subsection 2.1.1. Let Z be

as in Definition 2.2.6. Let B be as in Corollary 2.2.2. We have

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c.

Proof. Recall that, for all natural numbers P ,

EP/2<p≤P
∫
X

p1M−1(pẐ) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c+ η.

By translation invariance, for all natural numbers P ,

EP/2<p≤PEi≤P
∫
X

p1M−1(pẐ+i) sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T ph+ix) · f ′(T hy)
∣∣∣µ(dx) > c+ η.

Let x′ be a random variable with distribution µ. Fix ε > 0 small. We will ask that ε < 10 ·η.

Let φ be a measurable function on X which uniformly approximates Eµ[f |Z] i.e.

||φ− Eµ[f |Z]||L∞ < ε.
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For instance, φ(x) could be obtained by rounding Eµ[f |Z](x) to the closest element of ε
10
·Z[i].

By the triangle inequality

EP/2<p≤PEi≤P
∫
X

p1M−1(pẐ+i) sup
y 6∈B

∣∣∣Eh≤kEµφ(T ph+ix) · f ′(T hy)
∣∣∣µ(dx) > c+ η − ε.

For each natural number P , let XP = (x1, . . . , xCP ) where xi = φ(T ix′) and where C = k+1.

Let YP = (yp)P/2<p≤P where yp = M(x′) mod p. For each natural number P , let

fP,p(XP , yp) = Ei≤P p1yp=i sup
y 6∈B

∣∣∣Eh≤kxhp+if(Ty)
∣∣∣.

Define

fP (XP , YP ) = EP/2<p≤PfP,p(XPyP ).

Unpacking definitions, for every natural number P ,

EfP (XP , YP ) > c+ η − ε.

Now we check the hypotheses of Theorem 2.2.14. Because φ takes only finitely many values,

xi takes values in a finite set. For all natural numbers P , since the distribution of (yp)p≤P

is a +1 invariant measure on
∏

p≤P Z/pZ, it must be the uniform distribution. Since µ is

translation invariant, for any natural numbers i and m and any subset E of Xm

P((Tx′, . . . , Tmx′) ∈ E) = P((T i+1x′, . . . , T i+mx′) ∈ E).

Applying this to the preimage under (φ, . . . , φ) of an arbitrary subset S of Cm reveals that

the distribution of (x1, . . . , xm) is the same as the distribution of (xi+1, . . . , xi+m). Similarly,

if b is an element in
∏

p≤P Z/pZ if E is the preimage under (φ, . . . , φ) of an arbitrary set S

intersected with the set of points z in X such that M(z) = b mod
∏

p≤P p then we conclude

P((x1, . . . , xm) ∈ S | (yp)p≤P = b) = P((xi+1, . . . , xi+m) ∈ S | (yp)p≤P = b+ i).

For each natural number P and each prime P/2 < p ≤ P , for at most two values of i ≤ P

is it true that yp = i mod p. Therefore, at most two terms in the sum

Ei≤P p1yp=i sup
y 6∈B

∣∣∣Eh≤kxhp+if(Ty)
∣∣∣
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are nonzero. Therefore fP,p is bounded by 2. Let WP be a random variable with the same

distribution as YP . Then by Theorem 2.2.14

lim inf
P→∞

E[|fP (XP , YP )− fP (XP ,WP )|] = 0.

Since, for any natural number P ,

EfP (XP , YP ) > c+ η − ε.

We conclude that

lim sup
P→∞

EfP (XP ,WP ) > c+ η − ε.

Unpacking definitions, this proves

lim sup
P→∞

EP/2<p≤PEi≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kφ(T ph+ix) · f ′(T hy)
∣∣∣µ(dx) > c+ η − ε.

By the triangle inequality

lim sup
P→∞

EP/2<p≤PEi≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T ph+ix) · f ′(T hy)
∣∣∣µ(dx) > c+ η − 2ε.

Since ε was arbitrary

lim sup
P→∞

EP/2<p≤PEi≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T ph+ix) · f ′(T hy)
∣∣∣µ(dx) > c.

By translation invariance

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c.

This completes the proof.

2.2.2 Nilsystems and Algebraic Structure

Now we want to use [HK05] to show that Eµ[f |Z] has some local algebraic structure. This

algebraic structure makes Eµ[f |Z] much easier to understand than f .
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Proposition 2.2.18. Let ω be an element of Ω such that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

Then for almost all such choices for ω, there exists a collection of nilsystems (G(j)/Γ(j), dx, g(j),B),

1-bounded functions Fj and factor maps ψj : X → G(j)/Γ(j) so that Fj is a nilcharacter on

G(j)/Γ(j) with frequency nontrivial on the identity component and such that, after identify-

ing Fj with a function on X, we have that
∑
Fj = F satisfies ||F ||∞ ≤ 1 and

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kF (T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

Proof. We are given that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

Recall that by Lemma 2.2.7, we know that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµω [f |Zω](T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

By [HK05] Theorem 10.1, (X,µω, T,Z) is isomorphic to an inverse limit of nilsystems. There-

fore, there exists (G/Γ, dx, g,B) a nilsystem, ψ : X → G/Γ a factor map such that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµω [f |ψ−1(B)](T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

We denote F = Eµω [f |ψ−1(B)]. By a Fourier decomposition, we may write F as a sum of

nilcharacters, F =
∑

ξ Fξ. For each ξ, either ξ is nontrivial on the identity component of

G/Γ or ξ is trivial on the identity component. If ξ is trivial on the identity component and

the step s of G is > 1, then ξ is actually trivial on Gs. That is because, for any σ in G, the

multiplication by σ map σ : G/Γ→ G/Γ is continuous so it takes components to components.

Let σ∗ : components of G→ components of G be the induced map on components and let τ

be any other element of G. Then if σ and τ are in the same component of G then for any σ′

in G, multiplication by σ′ on the right is also continuous, so σσ′ is in the same component

as τσ′ so σ∗ = τ∗. We return to the general case where σ and τ are not necessarily in the
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same component. Also note that, for any element γ in Γ, (γσ)∗ = [γ, σ]∗σ∗γ∗ = [γ, σ]∗σ∗.

Pick n, m, γ and γ′ such that gnγ is in the same component as σ and gmγ′ is in the same

component as τ . Thus [σ, τ ]∗ = [gnγ, gmγ′]∗ = π∗[g
n, gm]∗ where π is an element of higher

order. Of course [gn, gm] = e and by induction we get that [σ, τ ]∗ is the identity and therefore

[σ, τ ]γ is in the identity component for some γ. Therefore, if s > 1, the function Fξ descends

to a function on (G/Gs)/(Γ/Γs). By induction, we can almost prove the theorem, namely

we can find a collect of nilsystems (G(j)/Γ(j), dx, g(j),B) and functions Fj and factor maps

ψj : X → G(j)/Γ(j) so that Fj is a nilcharacter on G(j)/Γ(j) with frequency nontrivial on

the identity component or G(j) is abelian and such that, after identifying Fj with a function

on X, we have that
∑
Fj = F satisfies ||F ||∞ ≤ 1 and

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kF (T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

It remains to observe that the case of a locally constant function on an abelian group cannot

occur by Corollary 2.2.3 as follows: we can think of the F ′js as all functions on the group G

with some additional equivariance properties; by construction the different Fj’s have different

frequencies so if Fr is a locally constant function on an abelian group and thus is locally

periodic, meaning Fr(T
hx) is a periodic function of h. Then by Corollary 2.2.3,

0 =

∫
X

f · Frµω(dx).

Since Fr is ψ−1(B) measurable,

=

∫
G/Γ

F · Frdx.

Since all the Fj’s have different frequencies, they are all orthogonal to each other.

=

∫
G/Γ

Fr · Frdx.

Remark 2.2.19. Note that if we also know the κ − 1-Fourier uniformity conjecture then

the step of all nilpotent Lie groups is ≥ κ by Proposition 2.2.4 (plugging in Fr = φ in the

statement of that proposition).
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Corollary 2.2.20. There exists a natural number L independent of k, a nilpotent Lie group

G of step s, a cocompact subgroup Γ, an ergodic element g in G and a nilcharacter Φ with

nontrivial frequency even when restricted to the identity component,

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣dx > c

L
,

where K as defined in Subsection 2.1.1 is an infinite set such that for k in K, the number of

words of length k of f ′ is o(k2) if t = 2 or O(kt−ε) if t 6= 2 for some ε.

Proof. By Corollary 2.2.17,

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µ(dx) > c.

Thus, for a positive measure set of ω,

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kEµ[f |Z](T phx) · f ′(T hy)
∣∣∣µω(dx) > c.

By Proposition 2.2.18, we know that for almost every ω,

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤k∑
j

Fj(T
phx) · f ′(T hy)

∣∣∣µω(dx) > c,

where Fj is as in Proposition 2.2.18. Fix such an ω.

Since the sum
∑

j Fj converges in L2(µω), there exists a natural number L independent

of k such that ||
∑

j≤L
2
Fj −

∑
j Fj||L2(µω) <

c
2
. By the triangle inequality

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤k∑
j≤L

2

Fj(T
phx) · f ′(T hy)

∣∣∣µω(dx)

+

∫
X

sup
y 6∈B

Eh≤k
∣∣∣∑
j>L

2

Fj(T
phx) · f ′(T hy)

∣∣∣µω(dx) > c.

The second term is bounded by ∫
X

∣∣∣∑
j>L

2

Fj(x)
∣∣∣µω(dx),
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using that µω is shift invariant and f ′ is 1-bounded. By Cauchy-Schwarz, this term is

bounded by ||
∑

j≤L
2
Fj −

∑
j Fj||L2(µω) <

c
2
. Thus by the triangle inequality.

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤k∑
j≤L

2

Fj(T
phx) · f ′(T hy)

∣∣∣µω(dx) >
c

2
.

By the pigeonhole principle, there exists some Fj such that

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kFj(T phx) · f ′(T hy)
∣∣∣µω(dx) >

c

L
.

Renaming everything gives the conclusion. We remark that the corollary just stated that

such an L, G, Γ, g and Φ exist and therefore the statement of the corollary allows L to

depend on G, Γ and all the other data that comes from ω. The remainder of the argument

essentially takes place inside a single ergodic component and so how the constants vary from

component to component is not important for our purposes.

For the remainder of the proof, we fix G, Γ, g and Φ. We let c0 = c
L

. For the next few

pages, we fix an integer k in K such that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣dx > c0.

We will later send k to infinity. The following lemma does two things: First, it uses Hölder’s

inequality to raise the exponent of
∣∣∣Eh≤kΦ(gphx) · f ′(T hy)

∣∣∣. We want this term raised to an

even power because we want to expand out the product and get rid of the absolute values

which are less “algebraic” and therefore harder to understand directly using the theory of

nilpotent Lie groups. We also want this even power to be larger the more oscillatory our

function Φ is. This is because the more Φ oscillates, the more cancellation we expect in

larger and larger products. The larger the power we use, the smaller the fraction of terms

which do not exhibit cancellation is. Second, we use the pigeonhole principle. This lemma

and the following lemma are where we make essential use of our bound on the word growth

rate of b.
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Lemma 2.2.21. Recall that b had at most kt−ε words of length k occuring with positive upper

logarithmic density for k in K or b has o(k2) many words of length k that occur with positive

upper logarithmic density if t = 2. Fix δ a constant that is small even when compared to c0.

Then for each k in K there is a word ε = (ε1, . . . , εk) of length k such that

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > k−t+εc2t

0 ,

for t 6= 2 and when t = 2, we have

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > δ−1k−tc2t

0 .

Proof. We know that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣dx > c0.

By Holder’s inequality, we have

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣2tdx > c2t

0 .

Because each term is nonnegative, we can replace the essential sup by a sum over words that

occur with positive log-density.∑
ε

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > c2t

0 .

We assumed that the number of words occuring with positive logarithmic density and there-

fore the number of terms in the sum is at most δkt when t = 2 or kt−ε when t 6= 2. By the

pigeonhole principle, when t = 2 there is a word such that

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > δ−1k−tc2t

0 ,

and similarly for t 6= 2, we have

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > k−t+εc2t

0 ,

which completes the proof.
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We need a slightly different estimate for the abelian case. The key to the next lemma

is the idea that if e(αh) correlates with εh for h ≤ k then e(αh) also must correlate with

translates of ε of size ∼ k. Thus, in the abelian case, the previous lemma is rather lossy.

When we replace the sup by a sum, we should gain an extra power of k.

Lemma 2.2.22. For t = 2, for all k in K, there is a word ε such that

lim sup
P→∞

∫
X

EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · εh
∣∣∣2t−2

dx

>
c2t−2

0

9
·
⌊
c2t−2

0 k

6

⌋
δ−1k−t.

Proof. Again, we know that

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣dx > c0.

Again, by Holder’s inequality

lim sup
P→∞

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣2t−2

dx > c2t−2
0 .

Again we want to replace F ′(T hy) by a sum over words. Let P be a number satisfying

EP/2<p≤P
∫
X

sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣2t−2

dx > c2t−2
0 .

Let A be the set of x such that

EP/2<p≤P sup
y 6∈B

∣∣∣Eh≤kΦ(gphx) · f ′(T hy)
∣∣∣2t−2

>
2c2t−2

0

3
.

Therefore, the measure of A is at least c2t−2

3
. We want to show that for µ-almost every x in

A, there are at least
⌊
c2t−2k

6

⌋
many distinct words of f ′ such that

EP/2<p≤P sup
`∈N

sup
y 6∈B

∣∣∣Eh≤kΦ(gph+`x) · f ′(T hy)
∣∣∣2t−2

>
c2t−2

0

3
.

Let y be an element of Bc such that the words of f ′(T hy) are words of Y and such that

EP/2<p≤P
∣∣∣Eh≤kΦ(gphx) · f ′(T hy)

∣∣∣2t−2

>
2c2t−2

0

3
.
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Denote by ε(m) the word of length k whose hth entry is ε(m)h = f ′(Tm+hy). If the words

ε(m) are distinct for m = 1, . . . ,
⌊
c2s0 k

6

⌋
then by the triangle inequality

EP/2<p≤P sup
y 6∈B

∣∣∣Eh≤kΦ(gph+pmx) · ε(m)h

∣∣∣2t−2

=EP/2<p≤P
∣∣∣Eh≤kΦ(gph+pmx) · f ′(T h+pmy)

∣∣∣2t−2

.

We note that all but 2mk many terms in the average are the same if we replace Φ(gph+pmx) ·

f ′(T h+pmy) with Φ(gphx) · f ′(T hy). Thus

≥EP/2<p≤P
∣∣∣Eh≤kΦ(gphx) · f ′(T hy)

∣∣∣2t−2

− 2m

k

≥EP/2<p≤P
∣∣∣Eh≤kΦ(gphx) · f ′(T hy)

∣∣∣2t−2

− c2t−2
0

3
.

Suppose for a moment that instead the words ε(m) are not distinct for m = 1, . . . ,
⌊
c2t−2
0 k

6

⌋
.

Then there exist a minimum j such that ε(1), . . . , ε(j) are not distinct. Fix such a j for the

remainder of Section 2.2. Thus, there exists some 1 ≤ d < j such that ε(j) = ε(j − d). We

claim that ε(j−d) is d-periodic: that’s because ε(j−d)h = ε(j)h = ε(j−d)h+d. Furthermore,

if ε(j − d− 1)1 = ε(j − 1)1 then since ε(j − d− 1)h = ε(j − d)h−1 = ε(j)h−1 = ε(j − 1)h for

all h > 1, we clearly have ε(j − d − 1) = ε(j − 1) and j is not minimal. For the rest of the

proof, let r be the minimum number such that r ≥ j − d and ε(r) is not d periodic. For

y not in B, we can find such an r because f ′(T hy) is not eventually periodic. Since ε(r) is

not d periodic but ε(r − 1) is d periodic and is equal to ε(q) for some q between j − d and

j − 1, we have that ε(r)k 6= ε(r)k−d but ε(r)h = ε(r)h−d for all other h ≤ k. We claim that

the words 1, . . . , j − 1 and r, . . . , r +
⌊
c2t−2
0 k

6

⌋
− j + 1 are all distinct. The reason is that for

all m between 1 and j − d, we have that ε(m)h = ε(j − d)h+m−j+d for all h > m− j + d and

precisely no larger range of h and for all m between r and r +
⌊
c2t−2
0 k

6

⌋
− j + 1 we have that

ε(m)h = ε(j − d)h+m−r for all 1 ≤ h < k −m + r and precisely no larger range of h. For m

between j − d and j − 1, ε(m) is d periodic but because j was the minimal natural number

such that ε(1), . . . , ε(j) are not distinct, we have that the ε(m) for m between j−d and j−1

are still distinct. For m between 1 and j − d and m′ between r and r +
⌊
c2t−2
0 k

6

⌋
− j + d we
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have that the intervals h > m−j+d and h < k−m+r meet so the previous argument shows

that ε(m) 6= ε(m′). A similar triangle inequality computation shows that for m between r

and r +
⌊
c2t−2
0 k

6

⌋
− j + 1 we still have

EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · ε(m)h

∣∣∣2t−2

=EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · f ′(T h+my)
∣∣∣2t−2

≥EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · f ′(T h+r−1y)
∣∣∣2t−2

− 2(m− r + 1)

k

Next, we use that ε(r − 1) = ε(q) for some q between j − d and j − 1.

≥EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · f ′(T h+qy)
∣∣∣2t−2

− 2(m− r + 1)

k

≥EP/2<p≤P
∣∣∣Eh≤kΦ(gphx) · f ′(T hy)

∣∣∣2t−2

− c2t−2
0

3
.

This proves the claim that for x in A there are at least
⌊
c2t−2
0 k

6

⌋
many distinct words ε of f ′

such that

EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · εh
∣∣∣2t−2

>
c2t−2

0

3
.

Summing over words we get that for almost every x in A,∑
ε a word of f ′

EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · εh
∣∣∣2t−2

>

⌊
c2t−2k

6

⌋
· c

2t−2
0

3
.

Next, we use that µ(A) >
c2t−2
0

3
.∫

X

∑
ε a word of f ′

sup
`∈N

EP/2<p≤P
∣∣∣Eh≤kΦ(gph+`x) · εh

∣∣∣2t−2

>
c2t−2

0

3

⌊
c2t−2

0 k

6

⌋
· c

2t−2
0

3
.

Sending P to infinity and using the pigeonhole principle, we deduce that for some word ε,

lim sup
P→∞

∫
X

sup
`∈N

EP/2<p≤P
∣∣∣Eh≤kΦ(gph+`x) · εh

∣∣∣2t−2

dx

>
c2t−2

0

9
·
⌊
c2t−2

0 k

6

⌋
δ−1k−t.
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Remark 2.2.23. For G abelian and therefore Φ a character, we have

lim sup
P→∞

∫
X

EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · εh
∣∣∣2t−2

dx

= lim sup
P→∞

∫
X

EP/2<p≤P
∣∣∣Eh≤kΦ(gphx) · εh

∣∣∣2t−2

dx

Therefore, by choosing δ sufficiently small, in the abelian case, we get

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

|Eh≤kεhΦ(gphx)|2dx� k−1.

The next theorem contradicts the previous two lemmas and proves Theorem 2.1.8. In its

proof, we rely heavily on [BDG16], [Fra17], [GT10], [GT12a] and [GTZ12].

Theorem 2.2.24. Recall that, after Corollary 2.2.20, we fixed a nilpotent Lie group G, a

cocompact lattice Γ, a nilcharacter Φ with with nontrivial frequency on the identity component

ξ and an element g which acts ergodically on G/Γ, such that ||Φ||L∞x = 1. Recall that the

step s of G is at least κ where t =
(
κ+1

2

)
. Let ε be a sequence of words implicitly depending

on k. Let ε > 0. Then

lim sup
k∈K

lim sup
P→∞

∫
X

EP/2<p≤P |Eh≤kεhΦ(gphx)|2tdx · kt−ε = 0,

If t = 2 then we do not need the epsilon loss and instead get the estimate

lim sup
k∈K

lim sup
P→∞

∫
X

EP/2<p≤P |Eh≤kεhΦ(gphx)|2tdx · kt ≤ Cs.

This contradicts Lemmas 2.2.21 and 2.2.22 as follows. When G is abelian and thus t = 2,

Lemma 2.2.22 states that there is a word ε of length k such that

lim sup
P→∞

∫
X

EP/2<p≤P sup
`∈N

∣∣∣Eh≤kΦ(gph+`x) · εh
∣∣∣2t−2

dx

>
c2t−2

0

9
·
⌊
c2t−2

0 k

6

⌋
δ−1k−t,
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for any δ we choose so long as k is chosen from the set K of natural numbers such that f ′

has fewer than δk2 many words of length k. Thus, picking δ small, (in particular, smaller

than say C−1
1 100c4

0), we find that

lim sup
P→∞

∫
X

EP/2<p≤P
∣∣∣Eh≤kΦ(gphx) · εh

∣∣∣2t−2

dx > k−tC1,

contradicting Theorem 2.2.24. (Note that we have replaced |Eh≤kΦ(gph+`)εh| by the same

expression without the shift in ` as in Remark 2.2.23). Similarly, if the group is not abelian,

Lemma 2.2.21 states that there exists a word ε of length k such that

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > k−t+εc2t

0 ,

for t 6= 2 and when t = 2, we have

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > δ−1k−tc2t

0 .

When t = 2, again by picking δ small, this time smaller than C−1
s c2t

0 , proves that

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > Csk

−t,

again contadicting Theorem 2.2.24. Finally, when t 6= 2,

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kΦ(gphx) · εh
∣∣∣2tdx > k−t+εc2t

0 ,

contradicts

lim sup
k∈K

lim sup
P→∞

∫
X

EP/2<p≤P |Eh≤kεhΦ(gphx)|2tdx · kt−ε = 0,

from Theorem 2.2.24.

Thus, the rest of this section will be devoted to showing that Theorem 2.2.24 is true.

Suppose not and for the moment fix k in K such that

lim sup
P→∞

EP/2<p≤P
∫
X

∣∣∣Eh≤kεhΦ(gphx)
∣∣∣2tdx� k−t+ε.

The first step is to replace averages over primes by uniform averages over natural numbers.

To do this, we need the machinery of Green-Tao [GT12a] [GT10] and Green-Tao-Ziegler
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[GTZ12]. By the triangle inequality, we may replace averages over primes by averages

weighted by the von Mangoldt function.

lim sup
P→∞

EP/2<n≤P
∫
X

Λ(n)
∣∣∣Eh≤kεhΦ(gphx)

∣∣∣2tdx� k−t+ε.

We denote ψx(m) = Φ(gmx). We expand:

lim sup
P→∞

EP/2<n≤P
∫
X

Λ(n)EJ∈[k]2tεJψx(nj1) · · · · · ψx(njt)·

ψx(njt+1) · · · · · ψx(nj2t)dx� k−t+ε,

where εj is a phase given by the formula εJ = εj1 · · · εjt · εjt+1 · · · εj2t .

We say J ∈ [k]2t is diagonal if #{m ≤ t : jm = h} = #{m > t : jm = h} for all h ≤ k.

We say J solves the Vinogradov mean value problem if, for all m between 1 and s, we have

jm1 + · · ·+ jmt = jmt+1 + · · ·+ jm2t .

Every diagonal J also solves Vinogradov’s mean value problem. We rely on the following

Theorem due to Bourgain, Demeter and Guth which says that those account for “most”

solutions, up to a constant.

Theorem 2.2.25 ([BDG16] Theorem 1.1). For all ε and s there exists a constant Cs,ε such

that the number of solutions to the Vinogradov mean value problem is less than Cs,εk
t+ε where

t ≤
(
s+1

2

)
.

We will show that if J does not solve Vinogradov’s mean value problem then J does not

contribute to the sum. Thus, fix J which does not solve Vinogradov’s mean value theorem

and suppose that

lim sup
P→∞

∣∣∣∣EP/2<n≤P ∫
X

Λ(n)ψx(nj1) · · · · · ψx(njt) · ψx(njt+1) · · · · · ψx(nj2t)dx

∣∣∣∣
&k,s,c 1.

We denote

Ψx(n) = ψx(nj1) · · · · · ψx(njt) · ψx(njt+1) · · · · · ψx(nj2t).
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Fix a subsequence such that

lim
P∈I

∣∣∣∣EP/2<n≤P ∫
X

Λ(n)Ψx(n)dx
∣∣∣ = lim sup

P→∞

∣∣∣EP/2<n≤P ∫
X

Λ(n)Ψx(n)dx

∣∣∣∣ &k,s,c 1,

where I is some infinite subset of the natural numbers and where the implied constant may

depend on Ψx. Fix a large number W , a product of many small primes. We will later choose

exactly how large W must be. We pass to a subsequence where the following limit exists for

each b ≤ W ,

lim
P∈I′

∣∣∣∣EP/2<Wn≤P

∫
X

Λ(Wn+ b)Ψx(Wn+ b)dx

∣∣∣∣ ,
where I ′ is an infinite subset of I. We may do this by a diagonalization argument. By the

triangle inequality,

Eb<W lim
P∈I′

∣∣∣∣EP/2<Wn+b≤P

∫
X

Λ(Wn+ b)Ψx(Wn+ b)dx

∣∣∣∣ &k,s,c 1,

where the implied constant does not depend on W . Note that because b < W , we miss at

most one term by changing the bounds of the sum from P/2 < Wn+ b ≤ P to P/2 < Wn ≤

P . Since W is much smaller than P , this is an acceptable error. Note that if b is not coprime

to W , then

lim
P∈I′

EP/2<Wn≤P

∫
X

Λ(Wn+ b)Ψx(Wn+ b)dx = 0,

because Wn+ b is never prime. By the pigeonhole principle, there exists b < W such that

lim
P∈I′

∣∣∣∣EP/2<Wn≤P

∫
X

W

ϕ(W )
Λ(Wn+ b)Ψx(Wn+ b)dx

∣∣∣∣ &k,s,c 1,

where again the implied constant does not depend on W and where ϕ(W ) is Euler’s torient

function, the function which counts the number of residue classes mod W that are coprime

to W . Denote W
ϕ(W )

Λ(Wn + b) = Λb,W . Then we can write our expression as a sum of two

terms

lim
P∈I′

∣∣∣∣EP/2<Wn≤P

∫
X

Λb,W (n)Ψx(Wn+ b)dx

∣∣∣∣
= lim

P∈I′

∣∣∣∣EP/2<Wn≤P

∫
X

(Λb,W (n)− 1)Ψx(Wn+ b) + Ψx(Wn+ b)dx

∣∣∣∣
To handle the first term, we need the following theorems of Green-Tao and Green-Tao-Ziegler.
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Theorem 2.2.26 ([GT10] Proposition 11.2). Let G/Γ be a degree s filtered nilmanifold, and

let M > 0. Suppose that F (gnx)∞n=1 is a bounded nilsequence on G/Γ with Lipschitz constant

at most M , where F is a function on G/Γ, g is an element of G and x is a point in G/Γ.

Let ε ∈ (0, 1) and P a large natural number. Then we may decompose

F (gnx) = F1(n) + F2(n),

where F1 : N→ [−1, 1] is a sequence with Lipschitz constant OM,ε,G/Γ(1) and obeying the dual

norm bound

||F1||Us+1[P/2<Wn≤P ]∗ = OM,ε,G/Γ(1),

while F2 : N→ R obeys the uniform bound

||F2||∞ ≤ ε.

Note that the bound ||F1||Us+1[N ]∗ = OM,ε,G/Γ(1) is uniform in the element g. We also need

the following theorem of Green-Tao-Ziegler. The proof of this theorem is spread out over

[GTZ12], [GT10] and [GT12a], making it somewhat hard to give a specific theorem number.

Essentially, if the Gowers norm were big then the Inverse Conjecture for the Gowers Norms

would imply that the Mobius function correlates with a nilsequence which it does not by the

Mobius-Nilsequence Conjecture. In [GT10], Theorem 7.2 states the theorem follows from the

Mobius-Nilsequence Conjecture and the Inverse Conjecture for the Gowers Norms. The first

of these conjectures is an immediate consequence of Theorem 1.1 in [GT12a]. The second of

these conjectures is Theorem 1.3 in [GTZ12].

Theorem 2.2.27 ([GTZ12]; see also [GT12a] and [GT10]). With all the notation as before,

||Λb,W − 1||Us+1[P/2<Wn≤P ] = oW→∞(1).

Thus, our nilsequence Ψx can be written as a sum Ψx = F1+F2 where F1 and F2 implicitly

depend on x and enjoy the following properties. F2 is uniformly small so

lim sup
P∈I′

∣∣EP/2<Wn≤P (Λb,W (n)− 1)F1(Wn+ b)
∣∣
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can be estimated by simply moving the absolute values inside. The remaining term is

bounded in dual norm so

(Λb,W − 1)(n) · F1(n) ≤ ||Λb,W − 1||Us+1[P/2<Wn≤P ] · ||F1||Us+1[P/2<Wn≤P ]∗

which tends to 0. For a similar argument, see the proof of Proposition 10.2 in [GT10]. It

may also be possible to circumvent the use of [GTZ12] by using Theorem 7.1 in [GT12a].

Putting this together, we get that

lim sup
P∈I′

∣∣∣∣EP/2<Wn≤P

∫
X

(Λb,W (n)− 1)Ψx(Wn+ b)dx

∣∣∣∣ = oW→∞(1).

As such for W sufficiently large, by the triangle inequality

lim inf
P∈I′

∣∣∣∣EP/2<Wn≤P

∫
X

Ψx(Wn+ b)dx

∣∣∣∣ &k,s,c 1.

So far we exploited cancellation in the Λb,W (n)−1 term and simply boundedness in the Ψx(n)

term. Next, we will try to exploit cancellation in Ψx to obtain a contradiction. To exploit

this cancellation we interpret the average as an integral over a complicated nilmanifold, then

use the fact that the frequency of Φ is nontrivial on the identity component of G/Γ and

therefore nontrivial on every component of G/Γ. Let G2t = G× · · ·×G be the product of G

with itself 2t many times and let g = (gWj1 , gWj2 , . . . , gWj2t) be the element of G2t whose `th

coordinate is gWj` . For any σ in G let ∆σ = (σ, . . . , σ) be the element of G2t whose entries

are all σ and let G∆ be the set of all the elements of the form ∆σ. Define

G = 〈g, G∆,Γ× · · · × Γ〉,

the closure of the group generated by g, G∆ and Γ2t inside G2t. Our sequence Ψx is a

nilsequence on G/Γ2t. Consider the sequence of “empirical” measures on G2t/Γ2t,

ρP = EP/2<Wn≤P (g(Wn+b)j1 , . . . , g(Wn+b)j2t)∗(∆∗dx),

where ∆∗dx is the Haar measure on G∆/(Γ
2s ∩ G∆) and where ∗ denotes the pushforward.

By construction, if Ξ: G2t/Γ2t → C is defined by

Ξ(x1, . . . , x2t) =
t∏

j=1

Φ(xj) ·
2t∏

j=t+1

Φ(xj),
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then

EP/2<Wn≤P

∫
X

Ψx(Wn+ b)dx =

∫
G2t/Γ2t

Ξ ρP (dx).

By the Banach-Alaoglu theorem, there is a further subsequence along which the empirical

measures converge weakly,

lim
P∈I′′

ρP
∗
⇀ ρ,

where I ′′ is an infinite subset of I ′. Note that, by summation by parts, ρP is almost invariant

by g in the following sense:

g∗ρP = ρP +O

(
W

P

)
Therefore ρ is actually g invariant. Since ρ is an average of G∆ invariant measures, ρ is a also

G∆ invariant. Of course ρ is also Γ2t invariant because Γ2t acts trivially on G2t/Γ2t. Since

stabilizers of measures are closed, ρ is invariant under G. By the classification of invariant

measures, we know that ρ is actually (a translate of) Haar measure on some nilmanifold X.

Next we need the following result essentially due to Frantzikinakis [Fra17].

Lemma 2.2.28 ([Fra17]; see section 5.7 and especially the proof of Proposition 5.7). With

all the notation as before, for any u ∈ Gs and m ≤ s, we have (u(Wj`)
m

)2t
`=1 ∈ G.

We include the proof for completeness and because our result differs very slightly from

the way it was stated in [Fra17].

Proof. We split Lemma 2.2.28 into three claims:

Claim 2.2.29. Let m and ` be natural numbers. If g1 is in Gm and g2 and g3 are in Gr

then there exists σ in Gm+r+1 such that

[g1, g2] · [g1, g3] = [g1, g2 · g3] · σ.

Moreover, σ depends continuously on g1, g2 and g3. In fact, this holds for any nilpotent Lie

group, not just G.
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Claim 2.2.30. For any m between 1 and s and any element τ in Gm and in the identity

component (which is automatic for m > 1), there exists an element σ in (Gm+1)2t such that

(τ (Wj`)
m

)2t
`=1 · σ ∈ G.

Claim 2.2.31. For any natural number r between 1 and s and any natural number m between

1 and r and for any τ in Gr there exists an element σ in (Gr+1)2s such that

(τ (Wj`)
m

)2t
`=1 · σ ∈ G.

We remark that taking τ = u in Claim 2.2.31 gives Lemma 2.2.28.

Proof of Claim 2.2.29. The proof is simply a computation. For any g1, g2 and g3 as above

[g1, g2] · [g1, g3] =g1g2g
−1
1 g−1

2 [g1, g3]

=g1g2g
−1
1 [g1, g3]g−1

2 mod Gm+r+1

=g1g2g3g
−1
1 g−1

3 g−1
2 mod Gm+r+1

=[g1, g2g3] mod Gm+r+1

Proof of Claim 2.2.30. We prove Claim 2.2.30 by induction on m. First, suppose m = 1.

Consider the torus Z = G/G2Γ. Let π be the projection map π : G → Z. Then since g

acts ergodically on G/Γ, we know π(g) is an ergodic element in Z. Therefore, for any π(τ)

in G/G2, note that π(τ) is in the orbit of π(g). By the definition of G, (π(gWj`))2t
`=1 is an

element of π2t(G). Thus, for any τ in G, (π(τWj`))2t
`=1 is an element of π2t(G) so by definition

of the quotient

(τWj`)2t
`=1 · σ ∈ G

for some σ in G2t
2 .

Next, assume by induction that Claim 2.2.30 holds for m. We will try to prove the claim

for m+1. We begin with the case where τ is the commutator of two elements of the following
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form. Suppose that there exists g1 in G and g2 in Gm such that [g1, g2] = τ . By assumption,

there exists σ1 in G2t
2 and σ2 in G2t

m+1 such that

(gWj`
1 )2t

`=1 · σ1 ∈ G and (g
(Wj`)

m

2 )2t
`=1 · σ2 ∈ G.

Since G is a group, we conclude that the commutator is in G.

[(gWj`
1 )2t

`=1 · σ1, (g
(Wj`)

m

2 )2t
`=1 · σ2] ∈ G.

Using Claim 2.2.29 repeatedly, this is

([g1, g2]Wjm+1
` )2t

`=1σ ∈ G,

for some σ in G2t
m+2.

Finally, we note that commutators generate Gm+1 so it suffices to show that if τ1 and τ2

are elements of Gm+1 that satisfy Claim 2.2.30 then so does their product. After all, if

(τ
(Wj`)

m+1

1 )2t
`=1 · σ1 ∈ G and (τ

(Wj`)
m+1

2 )2t
`=1 · σ2 ∈ G,

where σ1 and σ2 are in G2t
m+2 then

(τ
(Wj`)

m+1

1 )2t
`=1 · σ1 · (τ (Wj`)

m+1

2 )2t
`=1 · σ2

=(τ
(Wj`)

m+1

1 )2t
`=1 · (τ

(Wj`)
m+1

2 )2t
`=1 · σ

=((τ1τ2)(Wj`)
m+1

)2t
`=1 · σ′

=(τ (Wj`)
m+1

)2t
`=1 · σ′,

where σ and σ′ are in G2t
m+2. This completes the proof of Claim 2.2.30.

Proof of Claim 2.2.31. First, if m = r then we are done by Claim 2.2.30. Thus, we will

assume m < r.

Second, we check that if τ1 and τ2 are in Gr and satisfy Claim 2.2.31 then so does their

product. By assumption, we may write

(τ
(Wj`)

m

i )2t
`=1 · σi ∈ G,
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where σi is an element of (Gr+1)2s and i = 1, 2. Then the product is given by

(τ
(Wj`)

m

1 )2t
`=1 · σ1 · (τ (Wj`)

m

2 )2t
`=1 · σ2

=(τ
(Wj`)

m

1 )2t
`=1 · (τ

(Wj`)
m

2 )2t
`=1 · σ1 · [σ−1

1 , (τ
−(Wj`)

m

2 )2t
`=1] · σ2.

Then we use that τ
(Wj`)

m

1 · τ (Wj`)
m

2 = (τ1τ2)(Wj`)
m

up to higher order terms.

=((τ1τ2)(Wj`)
m

)2t
`=1 mod (Gr+1)2s.

Therefore, it suffices to prove Claim 2.2.31 in the case that τ = [g1, g2] where g1 is in Gm

and g2 is in Gr−m because such commutators generate Gr as a group up to higher order

corrections.

By Claim 2.2.30, there exists σ in (Gm+1)2s such that

(g
(Wj`)

m

1 )2t
`=1 · σ ∈ G.

We also know, because G contains diagonal elements, that (g2)2t
`=1 is an element of G. We

conclude that

[(g
(Wj`)

m

1 )2t
`=1 · σ, (g2)2t

`=1] ∈ G.

By Claim 2.2.29, this is given by

(τ (Wj`)
m

)2t
`=1 · σ′ ∈ G,

for some σ′ in Gr+1.

This completes the proof of Lemma 2.2.28 by plugging in r = s.

Since the frequency ξ of Φ is nontrivial on the identity component, there exists an element

u in the identity component of Gs such that 1
2πi

log ξ(u) is irrational. Fix such a u. Now

since J does not solve Vinogradov’s mean value problem there exists m ≤ s such that

jm1 + · · · + jmt − jmt+1 − · · · − jm2t 6= 0. Fix such an m. Then the map Gs → Gs given by

v 7→ v(jm1 +···+jmt −jmt+1−···−jm2t )Wm
has image both open and closed so u is in the image. For more
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details, see [Fra17]. Fix a v such that v 7→ u. Then by Lemma 2.2.28, (v(Wj`)
m

)2t
`=1 ∈ G. As

such ∫
X

Ξ(x) ρ(dx) =

∫
X

Ξ(vx) ρ(dx)

=

∫
X

ξ(u)Ξ(x) ρ(dx)

=0.

This gives a contradiction. We conclude that the terms which do not solve Vinogradov’s

mean value problem do not contribute to our sum.

For every 2t-tuple j1, . . . , j2t in [k]2t, we have that for all p

∣∣Φ(gpj1x) · · · · · Φ(gpjtx) · Φ(gpjt+1x) · · · · · Φ(gpj2tx)
∣∣ ≤ 1,

simply using a trivial L∞ bound. For every 2t-tuple which does not solve Vinogradov’s mean

value problem we have

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

Φ(gpj1x) · · · · · Φ(gpjtx) · Φ(gpjt+1x) · · · · · Φ(gpj2tx) = 0.

Therefore, the average is bounded by the fraction of terms which solve Vinogradov’s mean

value problem. There are no more than Cs,εk
t+.5ε such solutions by Bourgain-Demeter-Guth

(Theorem 2.2.25). Thus

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

|Eh≤kεhΦ(gphx)|2tdx · kt−ε = 0,

in the case t 6= 2 and

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P
∫
X

|Eh≤kεhΦ(gphx)|2tdx · kt ≤ C,

in the case t = 2. After all, since diagonal solutions are the only solutions to Vinogradov’s

mean value problem in the case of two variables and one equation i.e. j1 = j2, there is no ε

loss when t = 2. Thus, we obtain Theorem 2.2.24 and in turn Theorem 2.1.8 and Theorem

2.1.9.
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2.3 Proof of Theorem 2.1.11

The proof of Theorem 2.1.11 is essentially the proof of Theorem 2.1.8 with a few minor

simplifications. As before suppose not. Then as before, we can find a joining such that∣∣∣∣∫
X×Y

f(x)f ′(y)ν(dxdy)

∣∣∣∣ > c.

As before, we can apply [FH18a] such that∣∣∣∣∫
X×Y

Eµ[f |Z](x)f ′(y)ν(dxdy)

∣∣∣∣ > c.

Unlike before, we do not need to restrict the integral to B. As before, we can average over

translates ∫
X×Y
|Eh≤kEµ[f |Z](T hx)f ′(T hy)|ν(dxdy) > c.

As before, we can take an essential supremum over y∫
X

sup
y∈Y
|Eh≤kEµ[f |Z](T hx)f ′(T hy)|µ(dx) > c.

As before, we can apply the entropy decrement argument, for some P � k, we have

EP/2<p≤P
∫
X

sup
y∈Y
|Eh≤kEµ[f |Z](T phx)f ′(T hy)|µ(dx) > c.

We can use the Cauchy-Schwarz inequality

EP/2<p≤P
∫
X

sup
y∈Y
|Eh≤kEµ[f |Z](T phx)f ′(T hy)|2µ(dx) > c2.

This time, would like to replace f ′ by a sum over words of length k up to ε rounding. In the

no-rounding case, we knew that words of f ′ were words of b. We double check that a similar

result holds for words up to constant rounding. In particular, fix k such that there are at

most δk words of length k that occur with positive log density up to ε rounding. Thus, we

can fix a set Σ of words of length k such that #Σ ≤ δk and for all n outside a set of 0 log

density there exists an ε in Σ such that |b(n+h)− εh| ≤ ε. Translating this to the dynamical

setting,

ν{(x, y) : there exists ε in Σ such that |f ′(T hy)− εh| ≤ ε} = 0.

74



Therefore, we can replace f ′ by a sum over words as before.∑
ε

EP/2<p≤P
∫
X

|Eh≤kEµ[f |Z](T phx)εh|2µ(dx) > c2 − 2ε.

Notice that this time, when we replace f ′(T hy) by a word, we incur an error of ε. Now

the rest of the argument runs exactly the same as before. In fact, after pigeonholing, any

dependence on b completely drops out of the argument.

2.4 Frantzikinakis-Host and dynamical models

[Tao17b] shows that there is a joining (X0 × Y, ν0, T, f, f
′,M, Im) of a dynamical model for

a with b where X0 = DZ × Ẑ is the space of sequences in the unit disk with the product

topology, T is the shift map on DZ and +1 on Ẑ, f is the evaluation at 0 map, M is projection

onto the second factor and Im((x(n))n∈Z, r) = ((a(m)x(mn))n∈Z,
r
m

) whenever r is in mẐ.

Call µ0 the pushforward of ν0 onto X0. Of course, X0 factors onto DZ by projection onto the

first factor. Call ρ the pushforward of ν onto DZ. [FH18a] (Proposition 4.2 in that paper)

showed that (DZ, T, ρ) is a factor of a system (X̃, ρ̃, T ) where X̃ = (DZ)Z, T is the shift map

and there exists a natural number d so that if Pd is the set of primes which are 1 mod d then∫
X̃

K∏
j=−K

Fj(T
jx)ρ̃(dx) = lim

N→∞
Ep∈Pd∩[N ]

∫
DZ

K∏
j=−K

Fj(T
pjx)ρ(dx),

where K is any natural number, the functions Fj are any bounded measurable functions

depending only on the 0th coordinate and by [FH18a] the limit always exists. We fix such a

d. By [FH18a] (see Theorem 4.5 in that paper), each ergodic component of X̃ is isomorphic

to a product of a Bernoulli system with an inverse limit of nilsystems. Thus, we get a joining

of X̃ with X0 over their common factor DZ. Call this joining (X,µ, T ). We also get a joining

of X0 × Y and X over their common factor X0, which we call (X × Y, ν, T ). Explicitly, this

joining is defined as follows. A point in (X × Y, ν, T ) can be thought of as a triple of points

(x1, x2, y) with x1 in X̃ and (x2, y) in X0×Y . Since X0 = DZ× Ẑ, we have that x2 = (x3, r)

for some x3 in DZ and r in Ẑ. The measure is supported on triples where π(x1) = x3 so we
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will often forget x1 and simply write a point in X × Y as a triple (x, r, y) with x in X̃, r in

Ẑ and y in Y . The measure is given explicitly by the following formula: if K is a natural

number, Fj are bounded measurable functions on DZ depending only on the 0th coordinate,

φ is a bounded measurable function on Ẑ and ψ is a bounded measurable function on Y then∫
X×Y

K∏
j=−K

Fj(T
jx) · φ(r) · ψ(y)ν(dxdrdy)

= lim
N→∞

Ep∈Pd∩[N ]

∫
X0×Y

K∏
j=−K

Fj(T
pjx) · φ(r) · ψ(y)ν0(dxdrdy).

We will proceed to check that X×Y has all the desired properties. We define M : X → Ẑ

by taking an element (x, r) with x in X̃ and r in Ẑ to r. Let x be an element of X̃.

We will write x = (xn)n∈Z for a sequence of elements xn in DZ and write xn(k) ∈ D

for the kth element of the sequence xn. Let ιm((x(k))k∈Z) = a(m)(x(mk))k∈Z We define

Im(x, r) = (ιm((xnm)n∈Z), r
m

). Explicitly

Im(x, r) =
(

(a(m)xnm(km)k∈Z)n∈Z,
r

m

)
whenever r is in mẐ. We define f : X × Y → C by the formula f(x, r, y) = x0(0). This

is just the pullback of f : X0 × Y → C under the factor map X × Y → X0 × Y . We

define f ′ : X × Y → C by pulling back f ′ : X0 × Y → C under the same factor map i.e.

f ′(x, r, y) = y. Now we check

• M(T (x, r)) = M(Tx, r + 1) = r + 1 = M(x, r) + 1

• We have

Im ◦ Tm(x, r) =

(
(a(m)xnm+m(km)k∈Z)n∈Z,

r +m

m

)
=
(

(a(m)x(n+1)m(km)k∈Z)n∈Z,
r

m
+ 1
)

=T
(

(a(m)xnm(km)k∈Z)n∈Z,
r

m

)
=T ◦ Im(x, r).
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for any m and whenever r is in mẐ.

• Let K be a natural number and Fj : X̃ → C be a sequence of bounded measurable

functions depending only on 0. Let φ be a function which is measurable with respect

to Ẑ. Then for any m,∫
X

1M−1(mẐ)(x)φ(Imx) ·
K∏

j=−K

Fj(T
jImx)µ(dx)

= lim
N→∞

Ep∈Pd∩[N ]

∫
X0

1r∈mẐφ
( r
m

)
·

K∏
j=−K

Fj ◦ ιm(T pmjx)µ0(dxdr),

by definition of µ. Next, we use that ιm ◦ T pmj = T pj ◦ ιm.

= lim
N→∞

Ep∈Pd∩[N ]

∫
X0

1r∈mẐφ
( r
m

)
·

K∏
j=−K

Fj ◦ T pj ◦ ιm(x)µ0(dxdr).

Because X0 is a dynamical model for a, it possesses a dilation symmetry,

= lim
N→∞

Ep∈Pd∩[N ]

∫
X0

1

m
φ(r) ·

K∏
j=−K

Fj(T
pjx)µ0(dxdr).

Finally, we apply the definition of µ one more time,

=

∫
X

1

m
φ(x) ·

K∏
j=−K

Fj(T
jx)µ(dx).

• For any natural number m and any r in mẐ, we have

f(Im(x, r)) = f(
(

(a(m)xnm(km)k∈Z)n∈Z,
r

m

)
) = a(m)x0(0) = a(m)f(x, r).

• Clearly, for any natural numbers m and h,

IhIm(x, r) =
(

(a(mh)xnmh(kmh)k∈Z)n∈Z,
r

mh

)
= ImIh(x, r),

for any r in hmẐ.

• Since f and f ′ are pulled back from X0× Y , the “statistics” of f : X × Y → C will be

the same as the statistics of f : X0 × Y → C and similarly for f ′.
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Therefore, (X × Y, ν, T, f, f ′, Im,M) is a joining of a dynamical model for a with b.

Let (X,µω, T ) be an ergodic component of (X,µ, T ) which joins the corresponding ergodic

component (X̃, ρ̃ω, T ) of (X̃, ρ̃, T ) with Ẑ. Note that Ẑ is already an ergodic inverse limit of

nilsystems: after all it is an inverse limit of the ergodic systems of the form Z/mZ and the

inverse limit of ergodic systems is ergodic. By [FH18a], there is a Bernoulli system (W,dw, T )

and an inverse limit of nilsystems (Z0, dz, T ) such that (X̃, ρ̃ω, T ) ∼= (W,dw, T )× (Z0, dz, T ).

Therefore (X,µω, T ) is isomorphic to (W ×Z0× Ẑ, µ′, T ) where µ′ is some mystery measure

and where T is just the product transformation. We can think of this system as a joining of

(W ×Z0, dw×dz, T ) with (Ẑ, dz, T ) or we can think of this system as a joining of (W,dw, T )

with (Z0 × Ẑ, ζ, T ) where ζ is some unknown measure given by pushing forward µ′ onto

Z0× Ẑ. Next, we claim that any ergodic joining of two inverse limits of nilsystems is in fact

isomorphic to an inverse limit of nilsystems. After all, if Z1 and Z2 are two nilsystems and

ζ is an ergodic invariant measure on Z1×Z2, then ζ is a translate of Haar measure on some

closed subgroup by measure classification for nilsystems. Thus (Z1 × Z2, ζ, T ) ∼= (Z3, dz, T )

for some nilsystem Z3. Taking inverse limits, (Z0×Ẑ, ζ, T ) is isomorphic to an inverse limit of

nilsystems (Z, dz, T ). Because (Z, dz, T ) is an inverse limit of nilsystems, it has zero entropy

so the only possible joining of (Z, dz, T ) with the Bernoulli system (W,dw, T ) is the trivial

joining i.e. µ′ is the product measure dw× dz. Lastly, we claim that Z is isomorphic to the

Host-Kra factor of (X,µω, T ). Since the Host-Kra factor Z(X) is isomorphic to an inverse

limit of nilsystems, it has zero entropy, so any factor map from W × Z to Z(X) where W

is Bernoulli necessarily factors through Z. Thus Z factors onto Z(X). Of course, since X

factors onto Z, the Host-Kra factor for X factors onto the Host-Kra factor for Z. Implicitly

in [HK05] and explicitly, for instance, in [HK18] chapter 12, for any nilsystem (Z1, dz, T ) the

Host-Kra factor of Z1 is Z1. Thus, taking inverse limits gives that the Host-Kra factor of Z

is Z so Z(X) ∼= Z. This completes the proof.
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2.5 Reduction to the completely multiplicative case

We have stated our main theorems in the case that a is completely multiplicative. In this

section, we show that these assumptions can be weakened to include all multiplicative func-

tions. For example, we will show that Theorem 2.1.8 holds in this generality. The same

argument works for Theorem 2.1.9 and Theorem 2.1.11 (although in this last case, the way

that c depends on ε gets worse). The argument here will be entirely formal, using nothing

of the proof of Theorem 2.1.8 and only the result. However, we remark that the interested

reader could check that the proof we give can be adapted to the more general case of mul-

tiplicative functions. The main difference is that now the dynamical model for a does not

satisfy the identity that the push forward of µ restricted to M−1(mẐ) is 1
m
µ but instead we

incur a 1
m

error i.e. for all φ in satisfying ||φ||L∞(µ) ≤ 1 we have∫
X

φ(x)µ(dx) =

∫
X

m1x∈M−1(mẐ)φ(Im(x))µ(dx) +O

(
1

m

)
.

This introduces an error term of size O
(

1
P

)
in Corollary 2.2.17 which tends to 0 as P tends

to infinity.

However, here we proceed just using the statement of Theorem 2.1.8. Famously, we can

write

µ(n) =
∑
d2|n

λ
( n
d2

)
µ(d),

where λ is Liouville function and µ is the Möbius function which agree with the Liouville

function on squarefree numbers and vanishes on numbers which are not squarefree. Of course,

λ
( n
d2

)
= λ(n),

but we write it this way to suggest that the convolution identity

µ = λ ∗ φ

where φ(d2) = µ(d) may be generalized. In fact, for any multiplicative function a taking

values on the unit circle, we may write

a = a1 ∗ a2
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where a1 is some completely multiplicative function taking values on the unit circle and a2

is a (possibly unbounded) multiplicative function supported on numbers of the form dk for

some natural numbers d and k with k ≥ 2. To prove this is possible, it suffices to check it is

possible on prime powers since both sides are multiplicative. For any prime p, we define

a1(p) = a(p)

and so

a1(p) · a2(1) + a1(1) · a2(p) = a(p) · 1 + 1 · 0 = a(p).

We also want,

a(p2) =a1(p2) · 1 + 1 · a2(p2)

so we choose

a2(p2) =a(p2)− a1(p2)

=a(p2)− a(p)2.

Iteratively, we may define

a2(pk) =a(pk)−
∑

0≤i<k

a1(pk−i)a2(pi)

=a(pk)−
∑

0≤i<k

a(p)k−ia2(pi).

Since whether a is unpretentious or not depends only on the behavior of a at primes, clearly

if a is unpretentious then so is a1.

Informally, the probability that a random number is divisible by d is roughly 1
d
. Thus,

the expected number of times that any number of the form dk for k ≥ 2 divides a random

natural number is at most ∑
d≥2

∑
k≥2

1

dk
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which is summable. Thus the tails ∑
d≥C

∑
k≥2

1

dk

and ∑
d≥2

∑
k≥C

1

dk

tend to zero as C tends to infinity. Let S be the set of natural numbers n for which dk

divides n for d, k ≥ 2 implies d, k ≤ C. The previous analysis says most numbers are in S.

Fix a function b as in the statement of Theorem 2.1.8, that is a bounded function such that

for any δ > 0 there are infinitely many k such that the number of words of b of length k that

occur with positive upper logarithmic density is at most δk2. Our goal will be to show that

for N large,

|Elog
n≤Na(n)b(n)|

is small, say less than a constant times some small positive number ε. If C is sufficiently

large depending on ε but still very small compared to N , we may modify a on the set of

numbers outside S. In particular, a is given by the formula

a(n) =
∑
`|n

a1

(n
`

)
a2(`)

For most numbers, this is the same as

=
∑
`|n

`≤CC

a1

(n
`

)
a2(`).
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That formula works as long as n is not divisible by a number of the form dk where either

d or k is greater than C. In that exceptional case when n is divisble by a number of the

form dk with d or k greater than C, we can write n as i · j where i is not divisible by any

number greater than CC and is as large as possible given that constraint. We conclude that

if ` ≤ CC and `|n then `|i. Thus, expanding the definitions and using multiplicativity,

a1(j) · a(i) =a1(j)
∑
`|i

`≤CC

a1

(
i

`

)
a2(`)

=
∑
`|i

`≤CC

a1

(
ij

`

)
a2(`)

=
∑
`|n

`≤CC

a1

(n
`

)
a2(`)

We conclude that the formula ∑
`|n

a1

(n
`

)
a2(`)

is bounded and agrees with a(n) all but at most∑
d≥C

∑
k≥2

1

dk
+
∑
d≥2

∑
k≥C

1

dk

of the time. Thus, it suffices to show∣∣∣∣∣∣∣∣E
log
n≤N

∑
m`=n
`≤CC

a1(m)a2(`)b(n)

∣∣∣∣∣∣∣∣
is small. By changing variables and applying Fubini,

=

∣∣∣∣∣∣
∑
`≤CC

a2(`)Elog
m≤N/`a1(m)b(m`)

∣∣∣∣∣∣ .
Fix a natural number `. Notice that every word of length k of the function m 7→ b(m`)

embeds in a word of b of length k · `. Thus, it is easy to check that m 7→ b(m`) still satisfies
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the conditions of Theorem 2.1.8. Therefore, as N tends to infinity, the previous expression

tends to 0.
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CHAPTER 3

A Dynamical Proof of the Prime Number Theorem

3.1 Introduction to Chapter 2

The prime number theorem states that

π(N) = (1 + oN→∞(1))
N

logN
,

where π(N) denotes the number of primes of size at most N . In some sense, the result was

first publicly conjectured by Legendre in 1798 who suggested that

π(N) =
N

A logN +B + oN→∞(1)
,

for some constants A and B. Legendre specifically conjectured A = 1 and B = −1.08366.

Gauss conjectured the same formula and stated he was not sure what the constant B might

turn out to be. Gauss’ conjecture was based on millions of painstaking calculations first

obtained in 1792 and 1793 which were never published but nonetheless predate Legendre’s

work on the subject. It is worth noting that later in his 1849 letter to Encke Gauss conjec-

tured that π(N) ≈ Li(N), which in particular implies the correct values for A and B. The

first major breakthrough on the problem was due to Chebyshev who showed that

c+ oN→∞(1) ≤ π(N) logN

N
≤ C + oN→∞(1)

for some explicit constants c and C with c > 0. There is a long history of improvements to

these explicit constants for which we refer to Goldstein [Gol73] and Goldfeld [Gol04]. The

prime number theorem was important motivation for Riemann’s seminal work on the zeta

function.
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The first proofs of the prime number theorem were given independently by Hadamard

and de la Vallée Poussin in 1896. The key step in their proof is a difficult argument showing

that the Riemann zeta function does not have a zero on the line Re(z) = 1. Their proof was

later substantially simplified by many mathematicians. In 1930, Wiener found a “Fourier

analytic” proof of the prime number theorem. In 1949, Erdös [Erd49] and Selberg [Sel50]

discovered an elementary proof of the prime number theorem, where here elementary is used

in the technical sense that the proof involves no complex analysis and does not necessarily

mean that the proof is easy reading. The bitter battle over credit for this result is the subject

of an informative note by Goldfeld [Gol04]. Other proofs are due to Daboussi [Dab89] and

Hildebrand [Hil86b]. In a blog post from 2014, Tao proves the prime number theorem using

the theory of Banach algebras [Taoc]. A published version of this theorem can be found in

a book by Einsiedler and Ward [EW17]. In an unpublished book from 2014, Granville and

Soundarajan prove the prime number theorem using pretentious methods (see, for instance,

[GHS19]). A note by Zagier [Zag97] from 1997 contains perhaps the quickest proof of the

prime number theorem using a tauberian argument in the spirit of the Erdös-Selberg proof

combined with complex analysis in the form of Cauchy’s theorem. Zagier attributes this

proof to Newman.

The goal of this note is to present a new proof of the prime number theorem. Florian

Richter and I discovered similar proofs concurrently and independently. His proof can be

found in [Ric]. Terence Tao wrote up a version of this argument on his blog following personal

communication from the author which can be found in [Taoa].

The proof proceeds as follows. To prove the prime number theorem, it suffices to prove

that
1

N

∑
n≤N

Λ(n) = 1 + o(1),

where Λ(n) is the von Mangoldt function which is log p if n is a power of a prime p and 0

otherwise. The reader may think of Λ as the normalized indicator function of the primes.
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The von Mangoldt function is related to the Möbius function via the formula

Λ = µ ∗ log,

where the Möbius function µ(n) is 0 if n has a repeated factor, −1 if n has an odd num-

ber of distinct prime factors, +1 if n has an even number of distinct prime factors. This

formula, sometimes called the Möbius inversion formula, encodes the fundamental theorem

of arithmetic. Thus, there is a dictionary between properties of the von Mangoldt function

Λ and the Möbius function µ. Landau observed that cancellation in the Möbius function is

equivalent to the prime number theorem i.e. the prime number theorem is equivalent to the

statement
1

N

∑
n≤N

µ(n) = oN→∞(1).

This is what we actually try to prove.

The next observation is that, if one wants to compute a sum, it suffices to sample only a

small number of terms. Typically (for instance for an i.i.d. randomly chosen sequence) the

average value

1

N

∑
n≤N

a(n)

is approximately the same as the average over only the even terms

≈ 2

N

∑
n≤N

a(n)12|n.

However, for certain sequences, like a = (−1,+1,−1,+1, . . .), the averages do not agree.

Still for this sequence, if we instead sample every third point or every fifth point or every

pth point for any other prime then the averages are approximately equal. It turns out, this

is a rather general phenomenon: for any sequence, for most primes p, the average of the

sequence is the same as the average along only those numbers divisible by p.

Applying this to the Möbius function, for each N , for most primes p

1

N

∑
n≤N

µ(n) ≈ 1

N

∑
n≤N

µ(n)p1p|n.
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For the purposes of this introduction, we will “cheat” and pretend that this equation is true

for any prime p. By changing variables

1

N

∑
n≤N

µ(n)p1p|n =
p

N

∑
n≤N/p

µ(pn).

But µ(pn) = −µ(n) for most numbers n since µ is multiplicative. Combining the last two

equations gives
1

N

∑
n≤N

µ(n) ≈ − p

N

∑
n≤N/p

µ(n).

The plan is to use this identity three times. Suppose we can find primes p1, p2 and p such

that p1p2
p
≈ 1. Then by applying the previous identity

1

N

∑
n≤N

µ(n) ≈ − p

N

∑
n≤N/p

µ(n)

and also

1

N

∑
n≤N

µ(n) ≈− p1

N

∑
n≤N/p1

µ(n)

≈+
p1p2

N

∑
n≤N/p1p2

µ(n).

But since p1p2
p
≈ 1, we know that

p1p2

N

∑
n≤N/p1p2

µ(n) ≈ p

N

∑
n≤N/p

µ(n).

Putting everything together we conclude that

1

N

∑
n≤N

µ(n) ≈− 1

N

∑
n≤N

µ(n)

which implies

1

N

∑
n≤N

µ(n) ≈ 0.

This implies the prime number theorem.
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Thus, the main difficulty in the proof is finding primes p, p1 and p2 lying outside some

exceptional set for which p1p2
p
≈ 1. We give a quick sketch of the argument. The Selberg

symmetry formula (Theorem 3.2.5) roughly tells us that, even if we do not know how many

primes there are at a certain scale (say in the interval from x to x(1+ε)) and we do not know

how many semiprimes (products of two primes) there are at that scale, the weighted sum

of the number of primes and semiprimes is as we would expect. In particular, if there are

no semiprimes between x and x(1 + ε) there are twice as many primes as one would expect

(meaning 2 · ε x
log x

many primes). Let x be a large number. If there are both primes and

semiprimes between x and x(1 + ε) then we can find p, p1 and p2 such that p1p2
p
≈ 1 +O(ε)

and we are done. Thus, assume that there are either only primes or only semiprimes in the

interval [x, x(1 + ε)]. For the sake of our exposition, we will assume there are only primes

between x and x(1+ε). By the Selberg symmetry formula, there are twice as many primes in

this interval as expected. Now if there is a semiprime p1p2 in the interval [x(1 + ε), x(1 + ε)2]

then picking any prime p in the interval [x, x(1 + ε)] we conclude that there exists p, p1 and

p2 such that p1p2
p
≈ 1+O(ε). Thus, either we win (and the prime number theorem is true) or

there are again twice as many primes in the interval [x(1+ε), x(1+ε)2] as one would expect.

Running this argument again shows that there are again only primes and no semiprimes in

the interval [x(1 + ε)2, x(1 + ε)3]. Iterating this argument using the connectedness of the

interval, we find large intervals [x, 100x] where there are twice as many primes as predicted

by the prime number theorem. But this contradicts Chebyshev’s theorem: Chebyshev’s

theorem gives a lower bound on the number of primes, which in turn gives a lower bound

on the number of semiprimes; alternately, we remark that one could use Erdös’s version of

Chebyshev’s theorem that the number of primes less than x is at most log 4 x
log x

and because

log 4 < 2 this gives a contradiction. This completes the proof.
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3.1.1 A comment on notation

Throughout this chapter, we will use asymptotic notation. Since number theory, dynamics

and analysis sometime use different conventions, we take a moment here to fix notation. We

will write

x = O(y)

to mean that there exists a constant C such that

|x| ≤ Cy.

When we adorn these symbols with subscripts, the subscripts specify which variables the

constants are allowed to depend on. Thus

x = OA,B(y)

means that there exists a constant C which is allowed to depend on A and B such that

|x| ≤ Cy.

We write

x = y +O(z)

to mean that

x− y = O(z).

We also adopt little o notation:

x = on→∞(y)

means that

lim
n→∞

x

y
= 0.

Occasionally, when the variable with respect to which the limit is being taken is clear from

context, we may simply write

x = o(y).
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As before, we write

x = y + on→∞(z)

to mean

x− y = on→∞(z).

If the expression x depends on more than one variables, say n, m and k, we may use subscripts

to make explicit that the rate of convergence implicit in the little o notation is allowed to

depend on more variables. Thus,

x = on→∞,m,k(y)

means that x
y

tends to zero with n at a rate which may depend on m and k.

3.1.2 Acknowledgments

I would like to thank Florian Richter for his patience and conversation. I would also like

to thank Terence Tao for including this proof in his class on number theory and for many

helpful discussions. I would like to thank Gergley Harcos and Joni Teräväinen for comments
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3.2 Proof of the prime number theorem

From number theory, we will use Mertens’ Theorem, in particular the version which states,∑
p≤x

1

p
= log log x+M +O

(
1

log x

)
for some constant M; we will also use Chebyshev’s Theorem, the Selberg Symmetry Formula,

Landau’s formulation of the prime number theorem (i.e. that the prime number theorem is
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equivalent to
∑

n≤N µ(n) = oN→∞(N)) and a slightly modified version of the Turán-Kubilius

inequality which we will prove using the following Bombieri-Halász-Montgomery inequality.

Proposition 3.2.1 (Bombieri-Halász-Montgomery inequality [Bom71]). Let wi be a sequence

of nonnegative real numbers. Let u and vi be vectors in a Hilbert space. Then

n∑
i=1

wi|〈u, vi〉|2 ≤ ||u||2 ·

(
sup
i

n∑
j=1

wj|〈vi, vj〉|

)
.

Proof. By duality, there exists ci such that

n∑
i=1

wi|ci|2 = 1

and

n∑
i=1

wi|〈u, vi〉|2 =

(
n∑
i=1

wici〈u, vi〉

)2

and therefore by conjugate bilinearity of the inner product

=

〈
u,

n∑
i=1

wicivi

〉2

.

By Cauchy-Schwarz, this is at most

≤||u||2
∣∣∣∣∣∣∣∣ n∑

i=1

wicivi

∣∣∣∣∣∣∣∣2.
By the pythagorean theorem this is given by

=||u||2
n∑
i=1

n∑
j=1

wiwjcicj〈vi, vj〉.

The geometric mean is dominated by the arithmetic mean.

≤||u||2
n∑
i=1

n∑
j=1

wiwj
1

2
(|ci|+ |cj|)|〈vi, vj〉|.

By symmetry this is

=||u||2
n∑
i=1

wi|ci|2
n∑
j=1

wj|〈vi, vj〉|.
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Because everything is nonnegative, we may replace the inner term with a supremum

≤||u||2
n∑
i=1

wi|ci|2 sup
k

n∑
j=1

wj|〈vk, vj〉|.

Using that
∑
wi|ci|2 = 1 completes the proof.

The next proposition applies the previous proposition in order to show that, for any

bounded sequence, the average of the sequence is the same as the average over the pth terms

in the sequence for most prime p.

Proposition 3.2.2 (Turán-Kubilius [Kub64]). Let S denote a set of primes less than some

natural number P . Let N be a natural number which is at least P 3. Let f be a 1-bounded

function from N to C. Then

∑
p∈S

1

p

∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣
2

= O (1) .

Proof. We will apply Proposition 3.2.1: our Hilbert space is L2 on the space of function

on the integers {1, . . . , N} equipped with normalized counting measure; set wp = 1
p
; set

vp = (n 7→ 1− p1p|n) and u = f ; thus, by Proposition 3.2.1

∑
p∈S

1

p

∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣
2

≤ 1

N

∑
n≤N

|f(n)|2 · sup
p∈S

∑
q∈S

1

q

∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

∣∣∣∣∣ .
Since f is 1-bounded, we may bound the L2 norm of f by 1. Thus,

≤ sup
p∈S

∑
q∈S

1

q

∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

∣∣∣∣∣ . (3.1)

For primes p and q,
1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)
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can be expanded into a signed sum of four terms

1

N

∑
n≤N

1− p1p|n − q1q|n + pq1p|n1q|n.

When p 6= q, we claim that each term is 1 +O
(
P 2

N

)
. The trickiest term is the last term

1

N

∑
n≤N

pq1p|n1q|n.

When p 6= q, we have that

1p|n1q|n = 1pq|n.

Of course, for any natural number m,

# of n ≤ N such that m divides n =
N

m
+O(1),

where the O(1) term comes from the fact that m need not perfectly divide N . Thus,

1

N

∑
n≤N

pq1p|n1q|n = pq

(
1

pq
+O

(
1

N

))
,

which is 1 + O
(
P 2

N

)
as claimed. A similar argument handles the three other terms. Alto-

gether, we conclude that

1

N

∑
n≤N

(1− p1p|n)(1− q1q|n) = O

(
P 2

N

)
,

when p 6= q. Inserting this bound into 3.1 and remembering that there are at most P terms

in the sum over q in S, we find

∑
p∈S

1

p

∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣
2

≤ sup
p∈S

∑
q∈S

1

q

∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

∣∣∣∣∣
≤ sup

p∈S

1

p

∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− p1p|n)

∣∣∣∣∣+O

(
P 3

N

)
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Expanding out the product, the main term is

sup
p∈S

1

p

∣∣∣∣∣ 1

N

∑
n≤N

p2
1p|n

∣∣∣∣∣ .
By the same trick as before, we may replace the average of 1p|n by 1

p
plus a small error

dominated by the main term. Cancelling factors of p as appropriate, we are left with

= sup
p∈S

1

p

∣∣∣∣∣ 1

N

∑
n≤N

p2 1

p

∣∣∣∣∣ = O(1).

Of course, all the smaller terms can be bounded by the triangle inequality. This completes

the proof.

Note that, ∑
p∈S

1

p

1

N

∑
n≤N

1 =
∑
p∈S

1

p
.

For instance, if S is the set of all primes less than P , Euler proved that

∑
p≤P

1

p
→∞

as P tends to infinity. In fact, Mertens’ theorem states that this sum is approximately

log logP . Thus, Proposition 3.2.2 represents a real improvement over the trivial bound.

Therefore, for S, P , N and f as in the statement of Proposition 3.2.2∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣
2

is small for “most” primes. This shows that most primes are “good” in the sense that

1

N

∑
n≤N

f(n) ≈ 1

N

∑
n≤N

f(n)p1p|n

This notion is captured in the following definition.

Definition 3.2.3. Let ε be a positive real number, let P be a natural number which is

sufficiently large depending on ε and let N be a natural number sufficiently large depending
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on P . Denote by `(N) the quantity

`(N) =
∑
n≤N

1

n
.

Denote by S(N) the set of primes p ≤ P such that

1

N

∣∣∣∣∣∑
n≤N

µ(n)−
∑
n≤N

µ(n)p1p|n

∣∣∣∣∣ ≥ ε.

Then we say a prime p is good if

1

`(N)

∑
n≤N

1

n
1p∈S(n) ≤ ε.

Otherwise, we say p is bad.

From Proposition 3.2.2, we obtain the following corollary.

Corollary 3.2.4. Let ε be a positive real number, let P be a natural number which is suf-

ficiently large depending on ε and let N be a natural number sufficiently large depending on

P . Then the set of bad primes is small in the sense that∑
p bad ≤P

1

p
= O(ε−3).

Proof. By Proposition 3.2.2, for each n sufficiently large,∑
p≤P

1

p
1p6∈S(n) = O(ε−2).

Summing in n gives, ∑
p≤P

1

p

1

`(N)

∑
n≤N

1

n
1p6∈S(n) = O(ε−2) + oN→∞,P (1).

We remark that for N sufficiently large depending on P , this second error term may be

absorbed into the first term. By definition, the set of bad primes is the set of primes such

that

1

`(N)

∑
n≤N

1

n
1p 6∈S(n) ≥ ε.
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But then by Chebyshev’s inequality (i.e. not his theorem on counting primes),∑
p bad ≤P

1

p
= O(ε−3).

as desired.

Next, we turn to the Selberg symmetry formula. To state Selberg’s symmetry formula,

we need to introduce the following function. Let Λ2 = log ·Λ + Λ ∗ Λ i.e.

Λ2(n) = log(n)Λ(n) +
∑
d|n

Λ(d)Λ
(n
d

)
,

where the von Mangoldt function Λ(n) when log p is n is a power of a prime p and 0 otherwise.

Thus, we remark that Λ2 is supported on prime powers and products of two prime powers.

It is not too hard to show that Λ2 is “mostly” supported on primes and semiprimes. Recall

that the prime number theorem is the statement that

1

N

∑
n≤N

Λ(n) = 1 + oN→∞(1)

and thus
1

N

∑
n≤N

Λ(n) log n = log(N)(1 + oN→∞(1)).

We are now ready to state the Selberg symmetry formula.

Theorem 3.2.5 (Selberg symmetry formula). The average of the second von Mangoldt func-

tion defined above is
1

N

∑
n≤N

Λ2(n) = 2 logN(1 + oN→∞(1)).

We will refer the reader to, for instance, [Taoc] section 1 for the proof. The next propo-

sition says that, at each scale, there are either many primes or many semiprimes.

Proposition 3.2.6. Let ε > 0 be a sufficiently small number. Suppose that k0 is sufficiently

large depending on ε and let Ik denote the interval [(1 + ε)k, (1 + ε)k+1]. Then for every

k ≥ k0, ∑
p∈Ik

1

p
≥ 1

k
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or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2

≥ 1

k
.

Proof. This follows from the Selberg symmetry formula (Theorem 3.2.5): after all, by the

Selberg symmetry formula, for k0 sufficiently large, for all k ≥ k0,

1

(1 + ε)k

∑
n≤(1+ε)k

Λ2(n) =2 log(1 + ε)k(1 +O(ε2)).

The same holds for k replaced by k + 1.

1

(1 + ε)k+1

∑
n≤(1+ε)k+1

Λ2(n) =2 log(1 + ε)k+1(1 +O(ε2)).

Taking differences, and using that k log(1 + ε) = (k + 1) log(1 + ε)(1 + O(ε2)), for k ≥ k0

sufficiently large, we find that

1

ε(1 + ε)k

∑
n∈Ik

Λ2(n) =2 log(1 + ε)k(1 +O(ε)). (3.2)

We aim to show that prime powers do not contribute very much to this sum. Notice that,

if a prime power contributes to the sum, then the corresponding prime must be at most the

square root of (1 + ε)k+1 and there is at most one power of any prime in the interval Ik

(because ε < 1). Also, notice that Λ2(pa) ≤ 2Λ(pa) log pa. Thus, we bound

1

ε(1 + ε)k

∑
n=pa,a>1
n∈Ik

Λ(n) log n =
1

ε(1 + ε)k

∑
n=pa,a>1
n∈Ik

log p log pa

≤ 1

ε(1 + ε)k

∑
p≤(1+ε)(k+1)/2

log p log(1 + ε)k+1.

Now the number of primes less than (1 + ε)(k+1)/2 is certainly less than (1 + ε)(k+1)/2, so

≤ 1

ε(1 + ε)k
(1 + ε)(k+1)/2 log(1 + ε)(k+1)/2 log(1 + ε)k+1.

=ok→∞,ε(1).
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For instance, by choosing k0 large depending on ε, we can make this quantity

=O(ε)

Similarly for products of a natural number m and a prime power,

1

ε(1 + ε)k

∑
n=pam,a>1

n∈Ik

Λ(p)Λ(m) ≤ 1

ε(1 + ε)k

∑
n=pam,a>1

n∈Ik

log p logm

≤ 1

ε(1 + ε)k

∑
p≤(1+ε)(k+1)/2

log p
∑

1<a≤logp(1+ε)k

∑
mpa∈Ik

Λ(m).

Now the inner most sum is bounded by Chebyshev’s inequality. We simplify slightly using

the factor of 1
ε(1+ε)k

out front.

≤C
∑

p≤(1+ε)(k+1)/2

log p
∑

1<a≤logp(1+ε)k

1

pa
.

≤C
∑

p≤(1+ε)(k+1)/2

log p

p2
.

=O(1).

Finally, we claim that when one of the prime factors of a semiprime is less than exp(ε3k)

then that semiprime does not contribute very much to the sum. Indeed,

1

ε(1 + ε)k

∑
p1p2∈Ik

p1≤exp(ε3k)

Λ(p1)Λ(p2) =
ε

(1 + ε)k

∑
p1p2∈Ik

p1≤exp(ε3k)

log p1 log p2.

Now we use that p1 is at most exp(ε3k) and p2 is at most (1 + ε)k+1.

≤ 1

ε(1 + ε)k

∑
p1p2∈Ik

p1≤exp(ε3k)

ε3k · log(1 + ε)k+1.

Summing over scales,

≤ 1

ε(1 + ε)k
ε3k · log(1 + ε)k+1

∑
m≤kε3

∑
m≤log p1≤m−1

p1p2∈Ik

1.
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The number of terms in the inner sum is can be estimated using Chebyshev’s theorem. The

outersum has roughly kε3 many terms. Thus, for some constant C,

≤C 1

ε(1 + ε)k
· ε3k log(1 + ε)k+1 · ε3k · exp(ε3k)

ε3k

(1 + ε)k+1

log(1 + ε)k+1

Simplifying, this is

=O(ε2k)

=O(ε · log(1 + ε)k).

Altogether, we find that we can restrict 3.2 to primes and semiprimes where neither factor

is too small.

1

ε(1 + ε)k

∑
n∈Ik

n=p or n=p1p2
pi≥exp(ε3k)

Λ2(n) =2 log(1 + ε)k(1 +O(ε)).

For any two numbers n and m in Ik,
1
n

= 1
m
· (1 +O(ε)), so

ε−1
∑
n∈Ik

n=p or n=p1p2
pi≥exp(ε3k)

Λ2(n)

n
=2 log(1 + ε)k(1 +O(ε)).

By the pigeonhole principle, either

ε−1
∑
p∈Ik

Λ2(p)

p
≥ log(1 + ε)k(1 +O(ε))

or

ε−1
∑

p1p2∈Ik
pi≥exp(ε3k)

Λ2(p1p2)

p1p2

≥ log(1 + ε)k(1 +O(ε)).

In the first case, moving the ε and log p ≈ log(1 + ε)k terms to the other side

∑
p∈Ik

1

p
≥ ε

k log(1 + ε)
· (1 +O(ε)).
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Taylor explanding the logarithm gives

≥1

k
· (1 +O(ε)),

as desired. In the second case,

ε−1
∑

p1p2∈Ik
pi≥exp(ε3k)

1

p1p2

k2 log2(1 + ε) ≥ log(1 + ε)k(1 +O(ε)).

Rearranging terms gives ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2

≥ ε

k log(1 + ε)
(1 +O(ε)).

Taylor expanding the logarithm again completes the proof.

Next, we show that we can actually find two nearby scales where both inequalities from

Proposition 3.2.6 hold. The key idea is to use the connectedness of the interval.

Proposition 3.2.7. Let ε > 0 be a number sufficiently small. Suppose that k0 is sufficiently

large depending on ε and let Ik denote the interval (1 + ε)k to (1 + ε)k+1. Then there exists

k and k′ such that |k − k′| ≤ 1 with k and k′ in [k0, ε
−2 + k0] and such that∑

p∈Ik

1

p
≥ 1

2k

and ∑
p1p2∈Ik′

pi≥exp(ε3k′)

1

p1p2

≥ 1

2k′

Proof. Suppose not. Then by Proposition 3.2.6, for each k in [k0, ε
−2 + k0] either∑

p∈Ik

1

p
≥ 1

2k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2

≥ 1

2k
.
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If both hold for some k, then by choosing k = k′, we could conclude that Proposition 3.2.7

holds. Thus, we will assume that exactly one of

∑
p∈Ik

1

p
≥ 1

2k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2

≥ 1

2k

hold for any choice of k. Whichever holds for k0 must also hold for k0 + 1 since otherwise

we may choose k = k0 and k′ = k0 + 1. Inductively, we may assume that for every k in

[k0, ε
−2 + k0] either ∑

p∈Ik

1

p
<

1

2k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2

<
1

2k
.

Summing in k, we eventually obtain a contradiction with Mertens’ theorem: either

∑
(1+ε)k0≤p≤(1+ε)k0+ε

−2

1

p
<

1

10
·
(

log(k0 + ε−2)− log k0 +O

(
1

k0

))
(3.3)

or ∑
k∈[k0,ε−2+k0]

∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2

<
1

2
·
(

log(k0 + ε−2)− log k0 +O

(
1

k0

))
. (3.4)

We remark that a Taylor expansion could simplify

log(k0 + ε−2)− log k0 +O

(
1

k0

)
= O

(
1

ε2k0

)
.

Note that Mertens’ theorem implies that

∑
p≤x

1

p
= log log x+M +O

(
1

log x

)
,
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for some constant M . Taking differences,

∑
(1+ε)k0≤p≤(1+ε)k0+ε

−2

1

p
= log log(1 + ε)k0+ε−2 − log log(1 + ε)k0 +O

(
1

k0 log(1 + ε)

)

= log(k0 + ε−2)− log(k0) +O

(
1

k0 log(1 + ε)

)
.

But 3.3 says that the sum on the left is 2 times smaller than that which gives a contradiction.

In the next proposition, we show that this implies there are nearby primes and semiprimes

which are good.

Proposition 3.2.8. Let ε > 0. Let P be a natural number which is sufficiently large de-

pending on ε. Let N be a natural number which is sufficiently large depending on P . Then

there exists p1, p2 and p such that

p1p2

p
= 1 +O(ε)

with p1, p2 and p good in the sense of Definition 3.2.3 meaning p1, p2 and p are not in S(n)

for “most” n ≤ N (see Definition 3.2.3 for details). Furthermore, we can require that p1, p2

and p are all greater than 1
ε
.

Proof. By Proposition 3.2.7, it suffices to show that, for some k0 sufficiently large depending

on ε with the property that (1 + ε)k0+ε−2 ≤ P , we have

∑
p∈[(1+ε)k0 ,(1+ε)ε

−2+k0 ]
p bad

1

p
≤ 1

10k0

(3.5)

and that ∑
p1p2∈[(1+ε)k0 ,(1+ε)ε

−2+k0 ]
p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2

≤ 1

10k0

. (3.6)

102



After all, once we have shown this, we can argue as follows: by Proposition 3.2.7 there exists

an interval of the form k and k′ in [k0, k0 + ε−2] with |k − k′| ≤ 1 for which

∑
p∈[(1+ε)k,(1+ε)k+1]

1

p
>

1

k

and ∑
p1p2∈Ik′

pi≥exp(ε3k′)

1

p1p2

≥ 1

k′
,

where Ik = [(1 + ε)k, (1 + ε)k+1] and similarly for Ik′ . By 3.5

∑
p∈[(1+ε)k,(1+ε)k+1]

p good

1

p
> 0

and by 3.6 ∑
p1p2∈Ik′

pi≥exp(ε3k′)
p1,p2 good

1

p1p2

> 0.

Now any good p in Ik and any good p1p2 in Ik′ suffices to prove the result.

Now, for the sake of contradiction, suppose first that

∑
p∈[(1+ε)k0 ,(1+ε)ε

−2+k0 ]
p bad

1

p
≥ 1

10k0

.

Summing in k0 ≤ log logP , for P large enough we get that

∑
p≤logN
p bad

1

p
≥ 1

20
log log logP

which contradicts Corollary 3.2.4. Second, suppose that

∑
p1p2∈[(1+ε)k0 ,(1+ε)ε

−2+k0 ]
p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2

≥ 1

10k0

.
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Summing in k0 ≤ log logP gives, for P large enough

∑
p1p2≤logN
p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2

≥ 1

20
log log logP.

For each p1, by Mertens’ theorem,

∑
pε

3
1 ≤p2≤pε

−3
1

1

p2

≤ −10 log ε.

By Corollary 3.2.4, this implies

∑
p1p2≤logN
p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2

= O
(
ε−3| log ε|

)

which yields a contradiction since for P large enough, 1
20

log log logP � ε−3| log ε|.

Finally, we show this implies the prime number theorem.

Theorem 3.2.9. The prime number theorem holds, i.e.

1

N

∑
n≤N

Λ(n) = 1 + oN→∞(1)

Proof. Let ε be a positive real number, let P be a natural number which is sufficiently

large depending on ε and let N be a natural number sufficiently large depending on P . By

Proposition 3.2.8, there exist primes p1, p2 and p all good and greater than 1
ε

such that

p1p2

p
= 1 +O(ε).

By definition of a good prime,

1

M

∣∣∣∣∣∑
n≤M

µ(n)−
∑
n≤M

µ(n)p1p|n

∣∣∣∣∣ ≥ ε,
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for at most a small set of M (exactly how small will be spelled out shortly). In particular,

let S(M) denote the set of primes such that

1

M

∣∣∣∣∣∑
n≤M

µ(n)−
∑
n≤M

µ(n)p1p|n

∣∣∣∣∣ ≥ ε.

Then by definition of a good prime,

1

`(N)

∑
M≤N

1

M
1p1∈S(M)1p2∈S(M)1p∈S(M) = O(ε).

Thus, we may conclude that

1

`(N)

∑
M≤N

1

M

1

M

∣∣∣∣∣∑
n≤M

µ(n)−
∑
n≤M

µ(n)p1p|n

∣∣∣∣∣ = O(ε).

Since µ(np) = −µ(n) for most n (including all but those O(1
p
) = O(ε) fraction of n which

are not divisible by p), we conclude that

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ 1

M

∑
n≤M

µ(n) +
p

M

∑
n≤M/p

µ(n)

∣∣∣∣∣∣ = O(ε).

Similarly, since p1 is good,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ 1

M

∑
n≤M

µ(n) +
p1

M

∑
n≤M/p1

µ(n)

∣∣∣∣∣∣ = O(ε).

By change of variables,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ p1

M

∑
n≤M/p1

µ(n) +
p1p2

M

∑
n≤M/p1p2

µ(n)

∣∣∣∣∣∣ = O(ε) +O

(
log p1

logN

)
.

By the triangle inequality and since N is much larger than p1,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ pM
∑

n≤M/p

µ(n) +
p1p2

M

∑
n≤M/p1p2

µ(n)

∣∣∣∣∣∣ = O(ε).

But since p1p2
p

= 1 +O(ε),

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ pM
∑

n≤M/p

µ(n)

∣∣∣∣∣∣ = O(ε).
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and therefore, again using that p is good,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣ 1

M

∑
n≤M

µ(n)

∣∣∣∣∣ = O(ε).

This is an averaged version on the equation we want. We want that∣∣∣∣∣ 1

N

∑
n≤N

µ(n)

∣∣∣∣∣ = O(ε),

for all N sufficiently large. Thus, we just need to prove

Lemma 3.2.10. Let ε > 0, let N be sufficiently large depending on ε and suppose that

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣ 1

M

∑
n≤M

µ(n)

∣∣∣∣∣ = O(ε).

Then ∣∣∣∣∣ 1

N

∑
n≤N

µ(n)

∣∣∣∣∣ = O(ε),

To prove this we use the identity

µ · log = −µ ∗ Λ.

Summing both sides up to N gives∑
n≤N

µ(n) log n = −
∑
n≤N

∑
d|n

µ
(n
d

)
Λ(d).

Now by switching the order of summation

= −
∑
d≤N

Λ(d)

 ∑
n≤N/d

µ(n)

 .

If it were not for the factor of Λ(d), this would be exactly what we want. Each
∑

n≤M µ(n)

for an integer M occurs in this sum the number of times that
⌊
N
d

⌋
= M where b·c denotes

the floor which is proportional to N
M2 . The factor of Λ(d) can be removed using the Brun-

Titchmarsh inequality as follows. First, we break up the sum into different scales

=−
∑

a∈(1+ε)N

∑
d≤N

a≤d<(1+ε)a

Λ(d)

 ∑
n≤N/d

µ(n)

 .
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For all d between a and (1 + ε)a, the sums
∑

n≤N/d µ(n) all give roughly the same value.

Therefore

=−
∑

a∈(1+ε)N

∑
d≤N

a≤d<(1+ε)a

Λ(d)

 ∑
n≤N/a

µ(n)



+O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)
∑

N
a(1+ε)

≤n≤N
a

1


First, we focus on the error term.

O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)
∑

N
a(1+ε)

≤n≤N
a

1



=O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)

(
N

a
− N

a(1 + ε)

)

=O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)
Nε

a(1 + ε)


By the Brun-Titchmarsh inequality

=O

 ∑
a∈(1+ε)N

a≤N

εa
Nε

a(1 + ε)



=O

 ∑
a∈(1+ε)N

a≤N

Nε2


=O

(
Nε2 log1+εN

)
=O (εN logN)
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where the last step involves Taylor expanding log(1 + ε) near ε = 0. Next, we turn our

attention to the main term. We begin by pulling out the sum over µ(n) which no longer

depends on d.

−
∑

a∈(1+ε)N

∑
d≤N

a≤d<(1+ε)a

Λ(d)

 ∑
n≤N/a

µ(n)



=−
∑

a∈(1+ε)N

 ∑
n≤N/a

µ(n)


 ∑

d≤N
a≤d<(1+ε)a

Λ(d)

 .

By the Brun-Titchmarsh inequality, this is bounded in absolute value by

≤
∑

a∈(1+ε)N

a≤N

∣∣∣∣∣∣
∑
n≤N/a

µ(n)

∣∣∣∣∣∣ · (10εa) .

Earlier, we replaced a sum indexed by n ≤ N/d by a sum indexed by n ≤ N/a, showing

these two sums were close up to an error of size O(εN logN). Undoing this process, we find

=10
∑
d≤N

∣∣∣∣∣∣
∑
n≤N/d

µ(n)

∣∣∣∣∣∣+O(εN logN).

Now we let M = N
d

. The number of values of d such that
⌊
N
d

⌋
is the number of values of d

such that M ≤ N
d
< M + 1 and therefore N

M+1
< d ≤ N

M
. The number of such d’s is bounded

by N
M
− N

M+1
= N

M(M+1)
. Thus

≤10
∑
M≤N

N

M2

∣∣∣∣∣∑
n≤M

µ(n)

∣∣∣∣∣+O(εN logN).

But we already showed that this sum is bounded by

=O(εN`(N))

=O(εN logN).

Thus, ∑
n≤N

µ(n) log(n) = O(εN logN).
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Since log n = logN(1+O(ε)) for n between ε N
logN

and N and ε sufficiently small we conclude

that ∑
n≤N

µ(n) = O(εN).

But this classically implies the prime number theorem.

3.3 In what ways is this a dynamical proof?

To begin the argument, we showed that for all N , for most p i.e. all p outside a bad set

where ∑
p bad

1

p
≤ Cε

we have that ∑
n≤N

µ(n) =
∑
n≤N

µ(n)p1p|n +O(ε).

We did this using an L2 orthogonality argument (Propositions 3.2.1 and 3.2.2). Alternately,

we can argue using a variant of Tao’s entropy decrement argument (the first version of

this argument appeared in [Tao16b]; a different version of the entropy decrement argument

appeared in [TT17b] and [TT17a]; the version presented here is somewhat different from

what appeared in those papers). Let n be a random integer less than N . Let xi = µ(n + i)

and let yp = n mod p. In probability and dynamics, a stochastic process is a sequence of

random variables (. . . , ξ−2, ξ−1, ξ0, ξ1, ξ2, . . .) such that

P((ξ1, . . . ξk) ∈ A) = P((ξ1+m, . . . ξk+m) ∈ A)

for any set A and for any m. In our setting (. . . ,x−2,x−1,x0,x1,x2, . . .) is approximately

stationary in the sense that

P((x1, . . .xk) ∈ A) ≈ P((x1+m, . . .xk+m) ∈ A)

where the two terms differ by some small error which is oN→∞,m(1). A stationary process

is the same as a random variable in a measure preserving system where ξi+1 is the transfor-
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mation applied to ξi. A key invariant of a stationary process is thus the Kolmogorov-Sinai

entropy:

h(ξ) = lim
n→∞

1

n
H(ξ1, . . . , ξn)

where

H(ξ1, . . . , ξn)

is the Shannon entropy of (ξ1, . . . , ξn). This limit exists because

1

n
H(ξ1, . . . , ξn) =

1

n

∑
i≤n

H(ξi|ξ1 . . . , ξi−1)

by the chain rule for entropy, which is equal to

=
1

n

∑
i≤n

H(ξ0|ξ−1 . . . , ξ−i+1)

by stationarity. This is a Caesaró average of a decreasing sequence which is therefore de-

creasing. Since entropy is nonnegative, we can conclude that the limit exists. In our case,

because (. . . ,x−1,x0,x1, . . .) is almost stationary, we can conclude that

1

n
H(x1, . . . ,xn)

is almost decreasing in the sense that, for m > n,

1

m
H(x1, . . . ,xm) ≤ 1

n
H(x1, . . . ,xn) + oN→∞,n(1).

The same is true for the relative entropy

1

n
H(x1, . . . ,xn|yp1 , . . . ,ypk)

for any fixed set of primes p1, . . . , pk.

We define the mutual information between two random variables x and y as

I(x; y) = H(x)−H(x|y)
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and more generally the conditional mutual information

I(x; y|Z) = H(x|Z)−H(x|y,Z).

We assume for the rest of the explanation that all random variables take only finitely many

values. Mutual information measures how close two random variables are to independent.

Two random variables x and y are independent if and only if

I(x; y) = 0.

Intuitively, we think of x and y as close to independent if the mutual information is

small. The crux of the entropy decrement argument is that we can find primes p such that

(x1, . . . ,xp) is close to independent of yp. The argument is as follows. Let p1 < p2 < . . . < pk

be a sequence of primes. Consider the relative entropy

1

pk
H(x1, . . . ,xpk |yp1 , . . . ,ypk)

=
1

pk
H(x1, . . . ,xpk |yp1 , . . . ,ypk−1

)− 1

pk
I(x1, . . . ,xpk ; ypk |yp1 , . . . ,ypk−1

)

and because the relative entropy is almost decreasing

=
1

pk−1

H(x1, . . . ,xpk−1
|yp1 , . . . ,ypk−1

)− 1

pk
I(x1, . . . ,xpk ; ypk |yp1 , . . . ,ypk−1

) + o(1).

Inductively, we find

≤H(x1)−
∑
j≤k

1

pj
I(x1, . . . ,xpj ; ypj |yp1 , . . . ,ypj−1

) + o(1)

We conclude that the set of bad primes pj for which

I(x1, . . . ,xpj ; ypj |yp1 , . . . ,ypj−1
) ≥ ε

satisfies ∑
pj bad

1

pj
≤ ε−1H(x1) + o(1) <∞.
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Thus, for most primes,

I(x1, . . . ,xpj ; ypj |yp1 , . . . ,ypj−1
) < ε.

In a slight abuse of terminology, we say such primes are good. Although this definition is ap-

parently different from Definition 3.2.3, we will show that this notion of good meaning small

mutual information essentially implies the “random sampling” version defined in Definition

3.2.3.

Intuitively, if p is good then x1, . . . ,xp and yp are nearly independent. This is formalized

by Pinsker’s inequality. Pinsker’s inequality states that

dTV (x,y) ≤ D(x||y)1/2

where dTV is the total variation distance and D is the Kullback-Leibler divergence. For our

purposes, the important thing about the Kullback-Liebler divergence is that if y′ is a random

variable with the same distribution as y which is independent of x then

D((x,y)||(x,y′)) = I(x; y).

Therefore, we conclude that

dTV ((x,y), (x,y′)) ≤ I(x; y)1/2.

Similarly, there is a relative version

dTV ((x,y,Z), (x,y′,Z)) ≤ I(x; y|Z)1/2,

where now y′ has the same distribution as y but is relatively independent of x over Z

meaning that

P(x ∈ A,y ∈ B|Z = c) = P(x ∈ A|Z = c)P(y ∈ B|Z = c).

Thus, for bounded function F ,

EF (x,y,Z) = EF (x,y′,Z) +O(I(x; y)1/2),
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where again y′ is relatively independent of x over Z and E denotes the expectation. In our

case, for a good prime p where

I(x1, . . . ,xp; yp|(yq)q<p) < ε

we note that

EF (x1, . . . ,xp,yp) = EF (x1, . . .xp,y
′
p) +O(ε1/2).

for any bounded function F where y′p is relatively independent of (x1, . . . ,xp) over (yq)q<p.

Since yp and (yq)q<p are already very nearly independent by the Chinese remainder theorem

(and in fact if N is a multiple of the product of primes less than p, then yp and (yq)q<p are

genuinely independent) we can conclude that

EF (x1, . . . ,xp,yp) = EF (x1, . . .xp,y
′
p) +O(ε1/2),

where now y′p is genuinely independent of (x1, . . . ,xp). For example, if we want to evaluate

1

N

∑
n≤N

µ(n)

we could interpret this as

EF (x0)

where F (x) = x. Alternately, we can average

1

N

∑
n≤N

µ(n) ≈ 1

p

∑
i≤p

µ(n+ i),

which is

EF (x1, . . . ,xp)

where now F (x1, . . . , xp) = 1
p

∑
i≤p xi. Now let y′p as before be independent of (x1, . . . ,xp)

and uniformly distributed among residue classes mod p. Then this is also

EF (x1, . . . ,xp,y
′
p)
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where

F (x1, . . . , xp, yp) =
1

p

∑
i≤p

xip1yp=−i.

As we noted, for p a good prime, this is approximately,

EF (x1, . . . ,xp,y
′
p) ≈ EF (x1, . . . ,xp,yp)

and unpacking definitions this is

EF (x1, . . . ,xp,yp) =
1

N

∑
n≤N

1

p

∑
i≤p

µ(n+ i)p1n=−1 mod p.

Undoing the averaging in i gives

≈ p

N

∑
n≤N

µ(n)1p|n.

Thus, the analogue of Corollary 3.2.4 can be proved using the entropy decrement argument,

which can be interpreted in the dynamical setting.

The rest of the proof can also be translated to the dynamical setting. The Furstenberg

system corresponding to the Möbius function can be constructed as follows. The underlying

space is the set of functions from Z to {−1, 0, 1}. We construct a random variable on this

space. Consider a random shift of the Möbius function. Formally, let n be a uniformly

chosen random integer between 1 and N and let XN denote the function µ (say extended

by 0 to the left) shifted by n i.e. XN(i) = µ(i+ n). Since the underlying space of functions

from Z to {−1, 0, 1} is compact, there is a subsequence of (XN)N which converges weakly to

a random variable X. Since the distribution of each random variable XN is “approximately”

shift invariant, the distribution of the limit X is actually shift invariant. Thus, we obtain a

shift invariant measure ν on the space of functions from Z to {−1, 0, 1} with the property

that if f is the “evaluation at zero” map

f((an)n∈Z) = a0

then ∫
f(x)ν(dx) = Ef(X)
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is a subsequential limit of terms of the form

1

N

∑
n≤N

µ(n).

Thus, we can encode questions about the average of µ or more generally shifts like µ(n)µ(n+

1) in a dynamical way.

In order to take advantage of the fact that µ is multiplicative, we need to impose extra

structure on the dynamical systems we associate to µ. This extra structure is implicit in

[TT17b] and [TT17a] and is explicitly described first in [Tao17b]. See also [Saw20] and

[McN18]. One key feature of multiplicative functions is that they are statistically multiplica-

tive in the sense that for any ε1, . . . , εk in {−1, 0, 1},

p

N
#{n ≤ N : µ(n+ pi) = εi for all i and p|n}

=
p

N
#{n ≤ N/p : µ(n+ i) = −εi for all i}+O

(
1

p

)
.

(This holds simply by changing variables and using that µ is multiplicative). For N in some

subsequence, we can think of the right hand side as

p

N
#{n ≤ N/p : µ(n+ pi) = εi for all i} ≈ ν{x : f(T ipx) = εi}.

We would like a way of encoding this identity in our dynamical system. One solution is to

use logarithmic averaging. Now let n denote a random integer between 1 and N which is

not uniformly distributed but which is logarithmically distributed meaning the probability

that n = m is proportional to 1
m

for m ≤ N . Let XN(i) = µ(n + i) be a random translate

of the Möbius function. Consider the pair (XN ,n) in the space of pairs of functions from

Z to {−1, 0, 1} and profinite integers. This product space is compact so there is a weak

limit (X,y) where X is a functions from Z to {−1, 0, 1} and y is a profinite integer. Let

T (x, y) = (n 7→ x(n + 1), y + 1). Let ρ be the distribution of (X,y) which is a T -invariant

measure on our space. Consider the map Ip on pairs of functions and profinite integers which

are 0 mod p which dilates the function by p, multiplies the function by −1 and divides the
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profinite integer by p i.e.

Ip(x, y) = (n 7→ −x(pn), y/p).

For a point (x, y) in our space, let M denote the projection onto the second factor

M(x, y) = y.

Let f be the “evaluation of the function at 0” function i.e.

f(x, y) = x(0).

Then the dynamical system has the following properties, where x is always a function from

Z to {−1, 0, 1}, p and q are primes and y is a profinite integer:

1. For all p, for all x and y such that M(x, y) = 0 mod p,

Ip(T
p(x, y)) = T (Ip(x, y)).

2. For all p and q, for all x and y where M(x, y) is 0 mod pq, we have

Ip(Iq(x, y)) = Iq(Ip(x, y)).

3. For all p, and for all measurable functions on our space φ,∫
φ(x, y)ρ(dxdy) =

∫
p1M(x,y)=0 mod pφ(Ip(x, y))ρ(dxdy) +O

(
1

p

)
.

4. For all p and for all x and y such that M(x, y) = 0 mod p we have that

f(Ip(x, y)) = −f(x, y).

A tuple (X, ρ, T, f,M, (Ip)p) where (X, ρ, T ) is a measure preserving system and satisfying

(1) through (4) is a called a dynamical model for µ. Translating our argument over to the

dynamical context, there exists some p such that∫
f(x, y)ρ(dxdy) ≈

∫
f(x, y) · p1M(x,y)=0 mod p,
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with an error term which we may make arbitrarily small by increasing p. On the other hand,∫
f(x, y) · p1M(x,y)=0 mod p =

∫
−f(Ip(x, y)) · p1M(x,y)=0 mod p

= −
∫
f(x, y).

We conclude that ∫
f = 0,

for any dynamical model for µ.

In [Tao17b], Tao constructs a dynamical model where∫
f ≈ 1

logN

∑
n≤N

1

n
µ(n)

i.e. using logarithmic averaging and the Furstenberg correspondence principle. However

using either Corollary 3.2.4 or a version of the entropy decrement argument, we can argue

as follows. Let ρN denote the distribution of (XN ,n) in the space of pairs of functions

Z→ {−1, 0, 1} and profinite integers and where n is a uniformly distributed random integer

between 1 and N and XN(i) = µ(n + i). For any ε in S1 and φ, define ε∗ρn by∫
φ(x, y)ε∗ρN(dxdy) =

∫
φ(ε · x, y)ρN(dxdy).

Choose εN so that

νm =

(∑
n≤m

1

n

)−1 ∑
N≤m

1

N
(εN)∗ρN ,

satisfies ∫
f(x, y)νm(x, y) =

(∑
n≤m

1

n

)−1 ∑
N≤M

1

N

∣∣∣∣∣ 1

N

∑
n≤N

µ(n)

∣∣∣∣∣ ,
i.e. εN is the sign of

∑
n≤N µ(n). Using a version of Corollary 3.2.4 or the entropy decrement

argument, one can prove that for most p (except for a set of logarithmic size at most a

constant depending on ε),

(Ip)∗(p1M=0 mod p νm) ≈ νm +O

(
ε+

log p

logm

)
.

By the argument from before (see the proof of Theorem 3.2.9), this is enough to conclude

the prime number theorem.
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CHAPTER 4

A Quantitative Erdős Discrepancy Theorem

4.1 Introduction to Chapter 3

Does there exist a sequence f : N→ {±1} such that

sup
d,n

∣∣∣∣∣∑
i≤n

f(id)

∣∣∣∣∣ <∞?

This was apparently one of Paul Erdős’ favorite problems, mentioned, for instance, in [Erd57]

and [Erd90]. He proposed the problem in the 1930s and offered a $500 prize to any mathe-

matician who could solve it. In 2015, it was solved by Terence Tao in [Tao16a]. The purpose

of this chapter is to show the following quantitative version of Tao’s theorem.

Theorem 4.1.1. For any sequence f taking values in the unit sphere of a Hilbert space, for

all natural numbers N ,

sup
n≤N

d≤e(log logN)
−1
242 ·N

∣∣∣∣∣
∣∣∣∣∣∑
i≤n

f(id)

∣∣∣∣∣
∣∣∣∣∣ & (log logN)

1
484

(log log log logN)
1
4 (log log log log logN)

.

We begin with a review of Tao’s proof. Tao’s proof uses an idea from the [Pol] which shows

that it suffices to settle the Erdős discrepancy problem in the case of a random multiplicative

function. Tao then splits up his multiplicative functions into two cases: a random case and

a structured case.

First, let us talk about the random case. If f is a random string of independent plus or
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minus ones, then expanding the square shows

E

∣∣∣∣∣∑
n≤N

f(n)

∣∣∣∣∣
2

=E
∑
ni≤N

f(n1)f(n2).

By interchanging the sum and the expectation,

=
∑
ni≤N

Ef(n1)f(n2).

Now if n1 6= n2 then f(n1) and f(n2) are independent. Thus the only contribution comes

from the N different terms where n1 = n2. We conclud that

E

∣∣∣∣∣∑
n≤N

f(n)

∣∣∣∣∣
2

=N.

This implies that much of the time, the sum
∣∣∑

n≤N f(n)
∣∣ is at least � N

1
2 . For this

argument to work, we needed that f(n1) and f(n2) were uncorrelated even when n1 and

n2. However, this is too much to ask of most multiplicative functions. After all, if this kind

of logic worked for λ we could use it to imply the Riemann hypothesis. However, Tao in

[Tao16b] was able to show that for a large class of unstructured multiplicative functions g

that g(n) and g(n+h) were in some sense uncorrelated for small h. Running this same style

of argument

E

∣∣∣∣∣∑
h≤H

g(n+ h)

∣∣∣∣∣
2

= E
∑
hi≤N

g(n+ h1)g(n+ h2). (4.1)

=
∑
hi≤H

E g(n+ h1)g(n+ h2).

≈ H + small error.

As long as H tends to infinity, this style of argument shows that E
∣∣∑

h≤H g(n+ h)
∣∣2 tends

to infinity as well.

If our multiplicative function g is not random and unstructured, then it must have some

algebraic structure. For Tao, that means g pretends to be an algebraic multiplicative function
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namely a Dirichlet character times nit for some t which is not too big. For instance, let χ3

denote the multiplicative function for which χ3(n) = 1 if n is 1 mod 3, χ3(n) = −1 when

n = −1 mod 3, and χ3(n) = 0 when n = 0 mod 3. Then χ3 is almost a counter example

to the Erdős discrepancy problem. After all, the partial sums of χ3 are all either 0 or 1

and since χ3 is multiplicative, summing over multiples of d changes nothing about the size

of the partial sums (in absolute value). The reason χ3 is not a counter example is that χ3

is sometimes 0, so it does not fulfill the hypotheses of the Erdős discrepancy problem. To

remedy this, one can define

χ̃(3an) = χ3(n)

for any n which is not divisible by 3 and any natural number a. Now χ̃ always takes values

±1. However, it is not too hard to see that for any natural number k∑
i≤3k+3k−1+···+3+1

χ̃(i) = k.

Thus the partial sums

lim
N→∞

sup
n≤N

∣∣∣∣∣∑
i≤n

χ̃(i)

∣∣∣∣∣
do tend to infinity; they just do so slowly at a rate of ∼ log3N . Note the differences

between the random case and the structured case. In the structured case, there were clearly

correlations between g(n) and g(n + h) even when h was small which meant we could not

apply the techniques that worked in the random setting. However, there were advantages to

being in the structured case. For example, we could explicitly describe for which values of n

was ∣∣∣∣∣∑
i≤n

χ̃(i)

∣∣∣∣∣
big. Since the two cases have different advantages and disadvantages and since some tech-

niques which work in one case do not work in the other, it makes sense to split our proof

into cases: when g is random and when g is structured.

In order to split into cases, we have to have a way to decide if g is close to a structured,

algebraic multiplicative function like χ(n)nit for some Dirichlet character χ. Thus, we need
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a way of deciding if two multiplicative functions are close. Note that for any prime p, the

fraction of numbers divisible by p is roughly 1
p
. This means that if P is a set of primes and∑

p∈P

1

p
< ε

then average number of divisors of a number in the set P is ε. In particular, if g and f are

multiplicative functions which differ only on the set P then they agree on all but ε share of

all natural numbers. Even if g and f agree on all but a set of primes P for which∑
p∈P

1

p
∼ 1

I claim that we should think of g and f as being “close”. After all, since this is a convergent

sum, it means the tails are eventually less than ε, which means that once we restrict our

attention to some specific residue class say b mod W then for those n which are b mod W

at most ε fraction of the terms fail to satisfy

g(n) = const · f(n)

for some constant independent of n. This motivates the following notion of distance.

D(f, g;N)2 =
∑ 1− Re f(n)g(n)

p
.

Here the distance between f(p)g(p) and 1 is weighted according to which fraction of numbers

are divisible by by p and therefore “care” about the difference. When

D(g, nitχ(n);N)

is small for some |t| ≤ N and χ a Dirichlet character of small modulus, say ≤ log log logN ,

then we will say that g is pretentious. Otherwise, we will say that g is nonpretentious. This

terminology might seem a little funny but it is standard in the field. In the case that our

function g is pretentious, we will try to use structured methods to understand g. In the case

where g is nonpretentious, we will use “random” methods to understand g.

Our proof of Theorem 4.1.1 is similar to Tao’s proof in [Tao16a], adding in quantitative

details as we go along. The proof of Theorem 4.1.1 is based on the following five results.
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Lemma 4.2.1. Let M and N be natural numbers and let p1, . . . , pr be the primes less than

N . Let f be a function taking values on the unit sphere in some Hilbert space H. Let A be

a real number. Suppose that, for all N ′ ≤ N ,

1

M r

∑
b1,...,br≤M

∣∣∣∣∣
∣∣∣∣∣∑
n≤N ′

f(pb11 · · · · · pbrr n)

∣∣∣∣∣
∣∣∣∣∣
2

≤ A2.

Then there exists a random multiplicative function gξ (meaning for each ξ a point in a

probability space there exists a multiplicative function gξ) such that

Eξ

∣∣∣∣∣∑
n≤N ′

gξ(n)

∣∣∣∣∣
2

≤ A2 +O

(
N

M

)
.

Lemma 4.3.1. Suppose that for some function g taking values in the unit circle and for

natural numbers H and N , for all 1 ≤ |h| ≤ H, we have

1

logN

∑
n≤N

g(n)g(n+ h)

n
≤ 1

2H
.

Then

1

logN

∑
n≤N

1

n

∣∣∣∣∣∑
h≤H

g(n+ h)

∣∣∣∣∣
2

≥ H

2
− H + 10

logN
.

Corollary 4.3.5. Suppose g is a completely multiplicative function taking values on the unit

circle. Let N be a sufficiently large natural number. Suppose further that

inf
|t|≤10N

q≤log20H

∑
p≤N

1− Re (g(p)χ(p)p−it)

p
≥ B.

Then for all h ≤ log
1
4 logN ,∣∣∣∣∣∑

n≤N

g(n)g(n+ h)

∣∣∣∣∣ . (e− B
60 + log

−1
4 logN

)
·N.

Corollary 4.4.3. Suppose that g is a multiplicative function, χ and χ′ are characters of

modulus q and q′ respectively and t and t′ are real numbers such that log |t− t′|+ log qq′ lies

between 0 and log1.4N . Then either

(log logN)
1
2 . qq′D(g, nitχ(n);N) or (log logN)

1
2 . qq′D(g, nit

′
χ′(n);N).
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Lemma 4.4.4. Suppose that g is a multiplicative function satisfying, for some H, N , A ≥ 1,

χ, q, t and B that ∑
H′∼H

∑
n∈N

∣∣∑
m≤H′ g(n+m)

∣∣2
n1+c

≤ A2H logN

and ∑
p≤N

1− Re g(p)χ(p)p−it

p
≤ B

where χ is a primitive, non-principal Dirichlet character mod q and c = 1
logN

. Then for any

k,

min

(
k − 1,

logH

log q

)
· e−2B−20 · 1

40 log log q
− Error ≤ A2

where the error term smaller than the main term as long as

1. |t| ≤ 1
H3N

1
H2 .

2. logN
qk
≥ 20.

3. e10qk log qkeB
1
2 ≤ e(log logN)

1
2 .

4. H4 ≤ 2k.

5. N and H are sufficiently large i.e. larger than some constant.

In particular, for q ≤ (log log logN)20, |t| ≤ 1
logN

elog
1
2 N , k =

(
log logN

2 log log log logN

) 1
2
, logH = 1

4
k

and B = 60
242
· log log logN + log log log log log logN we get that

log
1

242 logN

80e20 log
1
2 log log logN log2 log log log logN

≤ A2

Now we show how to use these five results to conclude Theorem 4.1.1. Suppose that

sup
n≤N

d≤elog
−1
242 logN·N

∣∣∣∣∣
∣∣∣∣∣∑
i≤n

f(id)

∣∣∣∣∣
∣∣∣∣∣ ≤ A.

For the sake of contradiction we may assume A is a small multiple of

(log logN)
1

484

(log log log logN)
1
4 (log log log log logN)

1
2

.
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By squaring both sides, we find

sup
n≤N

d≤elog
−1
242 logN·N

∣∣∣∣∣
∣∣∣∣∣∑
i≤n

f(id)

∣∣∣∣∣
∣∣∣∣∣
2

≤ A2.

By Lemma 4.2.1,

Eξ

∣∣∣∣∣∑
n≤N ′

gξ(n)

∣∣∣∣∣
2

. A2,

for all N ′ ≤ N . Taking differences, we find that for any H � N and any n ≤ N −H,

Eξ

∣∣∣∣∣∑
h≤H

gξ(n+ h)

∣∣∣∣∣
2

. A2.

Now summing in n gives

Eξ
∑
n≤N ′

∣∣∑
h≤H gξ(n+ h)

∣∣2
n

. A2 logN ′ (4.2)

for all N ′ ≤ N and similarly

Eξ
∑
n≤N ′

∣∣∑
h≤H gξ(n+ h)

∣∣2
n1+ 1

logN

. A2 logN ′ +O

(
1

logN

)
. (4.3)

The error term can be absorbed into the main term because we assumed that A was not too

small. In particular we can assume that (4.2) holds when N ′ = N and H = (log logN)
1
4

and when N ′ = 1
logN

e(logN)
1
2 and H = (log logN ′)

1
4 and (4.3) holds when N ′ = N and H =

exp

(
log

1
2 logN

8 log log log logN

)
. By the pigeonhole principle, there exists at least one multiplicative

function for which all three hold, possibly after worsening the implicit constant by 1
3
. Fix such

a g. If g is nonpretentious then Lemma 4.3.1 and Corollary 4.3.5 will provide a contradiction:

after all, if ∑
p≤ 1

logN
e(logN)

1
2

1− Re g(p)χ(p)p−it

p
≥ 60

242
log log logN +O(1)

for all characters χ of modulus . log log logN then by Corollary 4.3.5, for all h ≤ log
1
4 logN ,∣∣∣∣∣∣∣∣

∑
n≤ 1

logN
e(logN)

1
2

g(n)g(n+ h)

∣∣∣∣∣∣∣∣ . (log logN)
−1
242 ·N ;
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then by Lemma 4.3.1

A2 ≥ (log logN)
1

242 .

A similar thing happens for N . Thus there exists t, t′ χ and χ′ such that

∑
p≤ 1

logN
e(logN)

1
2

1− Re g(p)χ(p)p−it

p
≥ 60

242
log log logN +O(1)

and ∑
p≤N

1− Re g(p)χ′(p)p−it
′

p
≥ 60

242
log log logN +O(1).

By Corollary 4.4.3, |t − t′| ≤ 1. In particular, we may conclude that |t′| ≤ 1
logN

e(logN)
1
2 +

1. Replacing χ′ with a primitive character (by possibly reducing the modulus if neces-

sary) only changes the value of χ′(p) for primes p dividing q, of which there are at most

log log log logN . The sum of the reciprocals of the primes up to log log log logN is at most

log log log log log logN by Mertens’ theorem. Thus, the hypotheses for Lemma 4.4.4 are

satisfied and we conclude that

log
1

242 logN

80e20 log
1
2 log log logN log2 log log log logN

≤ A2

4.2 Multiplicative Fourier Reduction

The goal of this section is to prove the following lemma, which we need to reduce the proof

of the Erdős discrepancy problem to the multiplicative case.

Lemma 4.2.1. Let M and N be natural numbers and let p1, . . . , pr be the primes less than

N . Let f be a function taking values on the unit sphere in some Hilbert space H. Let A be

a real number. Suppose that, for all N ′ ≤ N ,

1

M r

∑
b1,...,br≤M

∣∣∣∣∣
∣∣∣∣∣∑
n≤N ′

f(pb11 · · · · · pbrr n)

∣∣∣∣∣
∣∣∣∣∣
2

≤ A2.
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Then there exists a random multiplicative function gξ (meaning for each ξ a point in a

probability space there exists a multiplicative function gξ) such that

Eξ

∣∣∣∣∣∑
n≤N ′

gξ(n)

∣∣∣∣∣
2

≤ A2 +O

(
N

M

)
.

Proof. We begin with a quick overview of the general strategy. Completely multiplicative

functions on the interval [1, N ] are functions which satisfy

g(pa1+b1
1 · · · · · par+brr ) = g(pa11 · · · · · parr )g(pb11 · · · · · pbrr ).

We can think about a multiplicative function as a homomorphism from (N,×) to (C,×).

However, (N,×) is not a group since there is no inverse operation. Our goal is to use Fourier

analysis so we want to artificially introduce inverses. Thus, we want to think of multiplicative

functions as associated to functions

G : (Z/MZ)r → C

under the identification

G(a1, . . . , ar) = g(pa11 · · · · · parr ).

With this language, the condition that g is multiplicative corresponds to the condition that

G is a homomorphism now from ((Z/MZ)r,+) to (N,×) i.e.

G(a1 + b1, . . . , ar + br) = G(a1, . . . , ar)G(b1, . . . , br).

Thus, with this new language, multiplicative functions correspond to group characters.

Fourier analysis lets us write any function as a weighted sum of characters. Therefore,

we hope to write our function as a weighted sum of multiplicative functions. We are given

an L2 condition on our original function f . The other good reason to use Fourier analysis in

this situation is that L2 conditions on a function transform to L2 conditions on the Fourier

transform. Analytic number theory gives us many tools to recast the same problem in many

different languages (e.g. Dirichlet characters, Dirichlet series, Möbius inverse, all different
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kinds of Laplace transforms, etc.). However, we hope that the use of a “multiplicative Fourier

transform” in this context makes sense for the reasons stated above: we want to write our

function as a sum of multiplicative functions which correspond to characters in this setting

and we have an L2 estimate which works well with the Fourier transform. To this end, we

begin by rewriting

1

M r

∑
0≤b1,...,br≤M−1

∣∣∣∣∣
∣∣∣∣∣∑
n≤N ′

f(pb11 · · · · · pbrr n)

∣∣∣∣∣
∣∣∣∣∣
2

≤ A2

in terms of a product of primes

1

M r

∑
0≤b1,...,br≤M−1

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
p
a1
1 ·····p

ar
r ≤N ′

f(pa1+b1
1 · · · · · par+brr )

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ A2. (4.4)

As promised, we want to think about f as a function on (Z/MZ)r. Therefore, we define

F : N → H by the formula

F (a1, . . . , ar) = f(pa11 · · · · · parr ),

whenever 0 ≤ a1, . . . , ar ≤M − 1. Therefore

F (a1 + b1, . . . , ar + br) = f(pa1+b1
1 · · · · · par+brr ),

unless ai + bi ≥ M for some i i.e. unless there is some “wrap around”. Our next goal is to

show that this wrap around does not happen very often. Note that if paii ≤ N ′ ≤ N then

ai = O(logN). Therefore, for only O(logN) many choices of bi ≤ M − 1 is ai + bi ≥ M or

put another way this only happens O
(

logN
M

)
percent of the time for each i. Therefore,

1

M r
·
(

# of b1, . . . , br ≤M − 1 such that ai + bi ≥M for some i
)

= O

(
r

logN

M

)
,

which is O
(
N
M

)
by Chebyshev’s theorem or the prime number theorem. Going back to (4.4),

we find

1

M r

∑
0≤b1,...,br≤M−1

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
p
a1
1 ·····p

ar
r ≤N ′

F (a1 + b1, . . . , ar + br)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ A2 +O

(
N

M

)
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The Fourier transform allows us to rewrite F as a sum of characters,

F (a1, . . . , ar) =
∑

ξ1,...,ξr≤M

F̂ (ξ)e(ξ1a1 + · · ·+ ξrar),

where e(x) = e2πix. We will also use the notation ξ · a = ξ1a1 + · · · + ξrar in which case we

have

F (a1, . . . , ar) =
∑

ξ1,...,ξr≤M

F̂ (ξ)e(ξ · a).

Explicitly, this is achieved by the formula

F̂ (ξ) =
1

M r

∑
b1,...,br≤M

F (b1, . . . , br)e(−ξ · b).

By Plancherel, the Fourier transform of any function Φ satisfies

∑
ξ1,...,ξr≤M

∣∣∣∣∣∣Φ̂(ξ1, . . . , ξr)
∣∣∣∣∣∣2 =

1

M r

∑
b1,...,br≤M

||Φ(b1, . . . , br)||2 .

We apply this identity with

Φ(b1, . . . , br) =
∑

p
a1
1 ·····p

ar
r ≤N ′

F (a1 + b1, . . . , ar + br).

Plugging this in yields

∑
ξ1,...,ξr≤M

∣∣∣∣∣∣Φ̂(ξ1, . . . , ξr)
∣∣∣∣∣∣2 ≤ A2 +O

(
N

M

)
,

with Φ as above. Of course translation Fourier transforms to modulation; if τaF denotes the

translate τaF (b) = F (a+ b) then

τ̂aF (ξ) =
1

M r

∑
b1,...,br≤M

F (b1 + a1, . . . , br + ar)e(−ξ · b)

=
1

M r

∑
b1,...,br≤M

F (b1 + a1, . . . , br + ar)e(−ξ · (a+ b))e(ξ · a)

=F̂ (ξ)e(ξ · a),
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where the last step just involves a change of variables replacing a+b with b. Also, the Fourier

transform is linear. Therefore, we get

∑
ξ1,...,ξr≤M

∣∣∣∣∣∣
∣∣∣∣∣∣F̂ (ξ1, . . . , ξr)

∑
p
a1
1 ·····p

ar
r ≤N ′

e(a · ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ A2 +O

(
N

M

)
.

We notice that F̂ (ξ1, . . . , ξr) does not depend on a and so we may factor

∑
ξ1,...,ξr≤M

∣∣∣∣∣∣F̂ (ξ1, . . . , ξr)
∣∣∣∣∣∣2 ·

∣∣∣∣∣∣
∑

p
a1
1 ·····p

ar
r ≤N ′

e(a · ξ)

∣∣∣∣∣∣
2

≤ A2 +O

(
N

M

)
.

For each frequency ξ, define the completely multiplicative function gξ by the formula

gξ(pi) = e(ξi).

With this definition, ∑
p
a1
1 ·····p

ar
r ≤N ′

e(a · ξ) =
∑
n≤N ′

gξ(n).

Therefore, ∑
ξ1,...,ξr≤M

∣∣∣∣∣∣F̂ (ξ1, . . . , ξr)
∣∣∣∣∣∣2 · ∣∣∣∣∣∑

n≤N ′
gξ(n)

∣∣∣∣∣
2

≤ A2 +O

(
N

M

)
. (4.5)

We claim that this is actually a weighted average of sums of multiplicative functions. By

Plancherel again, ∑
ξ1,...,ξr≤M

∣∣∣∣∣∣F̂ (ξ1, . . . , ξr)
∣∣∣∣∣∣2 =

1

M r

∑
b1,...,br≤M

||F (b1, . . . , br)||2.

Now recall that f and therefore F takes values on the unit sphere by assumption.

=1.

So (4.5) tells us that the weighted average of sums of the form∣∣∣∣∣∑
n≤N ′

gξ(n)

∣∣∣∣∣
2

is at most ≤ A2 +O
(
N
M

)
.
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4.3 The Nonpretentious Case

We begin with a lemma which shows that the Erős discrepancy problem can be solved when

g does not have local correlations. This is the rigorous, quantitative analogue of the analysis

preformed in (4.1).

Lemma 4.3.1. Suppose that for some function g taking values in the unit circle and for

natural numbers H and N , for all 1 ≤ |h| ≤ H, we have

1

logN

∑
n≤N

g(n)g(n+ h)

n
≤ 1

2H
. (4.6)

Then

1

logN

∑
n≤N

1

n

∣∣∣∣∣∑
h≤H

g(n+ h)

∣∣∣∣∣
2

≥ H

2
− H + 10

logN
. (4.7)

Proof. We expand the square

1

logN

∑
n≤N

1

n

∣∣∣∣∣∑
h≤H

g(n+ h)

∣∣∣∣∣ =
1

logN

∑
n≤N

1

n

∑
h1,h2≤H

g(n+ h1)g(n+ h2).

Changing variables and shifting the sum by h1 gives

≥

(
1

logN

∑
n≤N

1

n

∑
h1,h2≤H

g(n)g(n+ h2 − h1)

)
− H

logN
.

When h1 = h2 we get H different terms all of size 1.

1

logN

∑
n≤N

1

n
≥ 1− 10

logN
.

There are at most H2 many remaining terms each of which can be bounded by (4.6), for a

total error of

# of terms · size of each term = H2 · 1

2H
=
H

2
.

Putting everything together gives (4.7).
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We just showed that we could settle the Erdős discrepancy problem if we could control

local correlations. The following result was explicitly used in [HR21] to control correlations

of λ(n)λ(n + 1) with a good error term and they mention that this result can be used to

control local correlations more generally.

Theorem 4.3.2. Let N , H and H0 be real numbers. Let P be a set of primes between H0

and H with H0 ≤ H and log
2
3 H · log2 logH ≤ H0. Set

L =
∑
p∈P

1

p

and suppose L > e and logH ≤
(

logN
L

) 1
2 . Let f and g be 1 bounded functions from N to C.

Then

1

NL

∣∣∣∣∣∣∣∣
∑
n∼N

∑
σ=±1

∑
p∈P
p|n

f(n)g(n+ σp)−
∑
n∼N

∑
σ=±1

∑
p∈P

1

p
f(n)g(n+ σp)

∣∣∣∣∣∣∣∣ .
1√
L
.

Now we apply Theorem 4.3.2 to the graph where we connect two numbers n and m if

n+ h · p = m.

Corollary 4.3.3. Let h be a natural number. Let N , H and H0 be real numbers. Let P be

a set of primes between H0 and H with H0 ≤ H and log
2
3 H · log2 logH ≤ H0 which does not

contain h. Set

L =
∑
p∈P

1

p

and suppose L > e and logH ≤
(

log N
h

L

) 1
2

. Let f and g be 1 bounded functions from N to

C. Then

1

NL

∣∣∣∣∣∣∣∣
∑
n∼N

∑
σ=±1

∑
p∈P
p|n

f(n)g(n+ σph)−
∑
n∼N

∑
σ=±1

∑
p∈P

1

p
f(n)g(n+ σph)

∣∣∣∣∣∣∣∣ .
h√
L
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One can deduce Corollary 4.3.3 from Theorem 4.3.2 in one of two more or less equivalent

ways. Firstly, for each residue class a mod h, define fa(n) = f(h · n + a) and similarly

ga(n) = g(h · n+ a). Now by the triangle inequality we can bound

1

NL

∣∣∣∣∣∣∣∣
∑
n∼N

∑
σ=±1

∑
p∈P
p|n

f(n)g(n+ σph)−
∑
n∼N

∑
σ=±1

∑
p∈P

1

p
f(n)g(n+ σph)

∣∣∣∣∣∣∣∣
by

1

NL

∑
a mod h

∣∣∣∣∣ ∑
n∼N

n=a mod h

∑
σ=±1

∑
p∈P
p|n

f(n)g(n+ σph)

−
∑
n∼N

n=a mod h

∑
σ=±1

∑
p∈P

1

p
f(n)g(n+ σph)

∣∣∣∣∣.
By changing variables, we can write this as

=
1

NL

∑
a mod h

∣∣∣∣∣ ∑
n∼N

h

∑
σ=±1

∑
p∈P
p|n

f(h · n+ a)g(h · n+ a+ σph)

−
∑
n∼N

h

∑
σ=±1

∑
p∈P

1

p
f(h · n+ a)g(h · n+ a+ σph)

∣∣∣∣∣.
By definition of fa and ga this is

=
1

NL

∑
a mod h

∣∣∣∣∣∣∣∣
∑
n∼N

h

∑
σ=±1

∑
p∈P
p|n

fa(n)ga(n+ σph)−
∑
n∼N

h

∑
σ=±1

∑
p∈P

1

p
fa(n)ga(n+ σph)

∣∣∣∣∣∣∣∣ .
We are now in a position to apply Theorem 4.3.2 for each a:

.
∑

a mod h

1√
L

=
h√
L
.

This completes the first possible proof.

The second proof is not so different: one can simply argue that the graph on the natural

numbers that one gets by connecting n of size ∼ N with n+ h · p is isomorphic to h disjoint
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copies (one for every residue class) of the graph one gets by connecting every n of size ∼ N
h

with n+p. One can then deduce the appropriate bound on the eigenvalues just using abstract

graph theory which Matomäki and Helfgott in turn use to deduce Theorem 4.3.2 in the first

place.

In order to use Corollary 4.3.3 to understand local correlations, we need the following

theorem. (We remark to the reader that the approach given here also works to circumvent

the use of the circle method explicitly in [Tao16b], resulting in a somewhat easier proof).

Theorem 4.3.4 ([MRT15], Theorem 5.1). Let N and H be natural numbers with H . logN .

Suppose that g1 and g2 be 1-bounded functions from N to C. Suppose g1 is multiplicative and

inf
|t|≤10N

q≤log20H

∑
p≤N

1− Re (g(p)χ(p)p−it)

p
≥ B.

Suppose finally that H ≤ e100·B. Then there exists a set S such that∑
n6∈S
n≤N

1 .

(
e−

B
60 +

log logH

logH

)
·N,

and such that ∑
h≤H

∣∣∣∣∣∑
n≤N

g1(n)g2(n+ h)

∣∣∣∣∣ ≤ H1− 1
500N.

We remark that the original result in [MRT15] is stated with e−
B
80 but a cursory glance

at the proof of Theorem 5.1 in that paper shows that all that was need was that 80 ≥

3 ·20. There are probably other improvements to the exponent one could find going carefully

through [MRT15], but we stick with this for now. Finally, we can combine Theorem 4.3.4

with Corollary 4.3.3 to control local correlations.

Corollary 4.3.5. Suppose g is a completely multiplicative function taking values on the unit

circle. Let N be a sufficiently large natural number. Suppose further that

inf
|t|≤10N

q≤log20H

∑
p≤N

1− Re (g(p)χ(p)p−it)

p
≥ B.
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Then for all h ≤ log
1
4 logN ,∣∣∣∣∣∑

n≤N

g(n)g(n+ h)

∣∣∣∣∣ . (e− B
60 + log

−1
4 logN

)
·N.

Proof. By multiplicativity and since g takes values on the unit circle, for any prime p,

Elog
n≤Ng(n)g(n+ h)

=Elog
n≤Ng(pn)g(pn+ ph).

By changing variables, this is

=Elog
n≤p·Np1p|ng(n)g(n+ ph).

By the almost dilation invariance of logarithmic averages this is

=Elog
n≤p·Np1p|ng(n)g(n+ ph) +O

(
log p

logN

)
.

This holds for any prime p. We want to average over some set of primes described in the set

up of Corollary 4.3.3. Thus, let H = log.49N and H0 = exp(log
3
4 H). Let P be the set of all

primes between H0 and H. Then

=
1

L

∑
p∈P

Elog
n≤p·N1p|ng(n)g(n+ ph) +O

(
log logN

logN

)
.

Now we can apply Corollary 4.3.3 to the previous sum to conclude that

=
1

L

∑
p∈P

Elog
n≤p·N

1

p
g(n)g(n+ ph) +O

(
log

−1
4 logN

)
,

where here we have used the fact that h . log
1
4 logN and Mertens’ thereom. Now we are

summing over all primes between H0 and H. By the prime number theorem, the primes

have density at least & 1
logH

in that interval. But by Theorem 4.3.4, outside a small set S,

one has a power savings of size ∼ H
−1
500 . Thus, by Theorem 4.3.4,

=O
(
e−

B
60 + log

−1
4 logN

)
.

This completes our treatment of the nonpretentious case.
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4.4 The Pretentious Case

Now we turn to the pretentious or structured case. Our first goal is to prove that if the

Erdős discrepancy problem fails at multiple different scales and therefore (by the previous

section) g pretends to be a function of the form χ(n)nit at many different scales, we can use

that information to lower t. We begin with a lemma which can be found on [Taob].

Lemma 4.4.1 ([Taob] Proposition 19). Suppose that N is a natural number and t is a real

number such that log |t| lies between 0 and log1.4N . Then

D(1, nit;N)2 ∼ log logN

Next, we use Lemma 4.4.1 to show that 1 is not too close to χ(n)nit unless t is small.

Corollary 4.4.2. Suppose that χ is a Dirichlet character of modulus q, N is a natural

number and t is a real number such that log |t|+ log q lies between 0 and log1.4N . Then

log logN . q2D(1, nitχ(n);N)2 (4.8)

Proof. By the pretentious triangle inequality,

D(1q, (nitχ(n))q;N) ≤ qD(1, nitχ(n);N).

Squaring both sides gives

D(1q, (nitχ(n))q;N)2 ≤ q2D(1, nitχ(n);N)2.

The right hand side is now just as in (4.8). Now the left hand side is

D(1, niqt;N)

to which we apply Lemma 4.4.1, which finishes the proof.

Finally, we use Corollary 4.4.2 to show that if g is close to both χ(n)nit and χ′(n)nit
′

then t and t′ are close together.

135



Corollary 4.4.3. Suppose that g is a multiplicative function, χ and χ′ are characters of

modulus q and q′ respectively and t and t′ are real numbers such that log |t− t′|+ log qq′ lies

between 0 and log1.4N . Then either

(log logN)
1
2 . qq′D(g, nitχ(n);N) or (log logN)

1
2 . qq′D(g, nit

′
χ′(n);N).

Proof. By the pretentious triangle inequality,

D(g, nitχ(n);N) + D(g, nit
′
χ′(n);N) ≥ D(1, χ(n)χ′(n)ni(t−t

′);N).

Applying Corollary 4.4.2 finishes the proof.

Now we arrive at the hardest part of the proof. We have to show that pretentious

multiplicative functions actually do satisfy the Erdős discrepancy problem.

Lemma 4.4.4. Suppose that g is a multiplicative function satisfying, for some H, N , A ≥ 1,

χ, q, t and B that ∑
H′∼H

∑
n∈N

∣∣∑
m≤H′ g(n+m)

∣∣2
n1+c

≤ A2H logN (4.9)

and ∑
p≤N

1− Re g(p)χ(p)p−it

p
≤ B (4.10)

where χ is a primitive, non-principal Dirichlet character mod q and c = 1
logN

. Then for any

k,

min

(
k − 1,

logH

log q

)
· e−2B−20 · 1

40 log log q
− Error ≤ A2

where the error term smaller than the main term as long as

1. |t| ≤ 1
H3N

1
H2 .

2. logN
qk
≥ 20.

3. e10qk log qkeB
1
2 ≤ e(log logN)

1
2 .

4. H4 ≤ 2k.

136



5. N and H are sufficiently large i.e. larger than some constant.

In particular, for q ≤ (log log logN)20, |t| ≤ 1
logN

elog
1
2 N , k =

(
log logN

2 log log log logN

) 1
2
, logH = 1

4
k

and B = 60
242
· log log logN + log log log log log logN we get that

log
1

242 logN

80e20 log
1
2 log log logN log2 log log log logN

≤ A2

Proof. Define χ̃ to be the completely multiplicative function such that χ̃(d) = d for (d, q) = 1

and χ̃(p) = g(p)p−it for p|q. Set h(n) = χ̃(n)n−itg(n) i.e. define h such that

g(n) = χ̃(n)nith(n).

(It is perhaps worth remarking that with this definition h(p) = 1 for p dividing q). Now

plugging this into (4.9) yields

∑
H′∼H

∑
n∈N

∣∣∑
m≤H′(n+m)itχ̃(n+m)h(n+m)

∣∣2
n1+c

≤ A2H logN. (4.11)

By Taylor expansion

(n+m)it = nit + itnit ·
(m
n

)
+O

((m
n

)2
)
.

Since m ≤ H ′ ≤ 2H, we can see that∣∣(n+m)itχ̃(n+m)h(n+m)− nitχ̃(n+m)h(n+m)
∣∣ ≤ 2

H · |t|
n

+O

(
H2t2

n2

)
.

Plugging this into (4.11), we get

∑
H′∼H

∑
n∈N

∣∣∑
m≤H′ χ̃(n+m)h(n+m)

∣∣2
n1+c

≤ A2H logN + E1 (4.12)

where

E1 =
∑
H′∼H

∑
n∈N

4H2 min(1, 2H · |t|
n

+O
(
H2t2

n2 )
)

n1+c

=
∑
n∈N

8H3 min(1, 2H · |t|
n

+O
(
H2t2

n2 )
)

n1+c
.
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We remark that so long as |t| ≤ 1
H3N

1/H2
thenby splitting up the sum we find

≤
∑

n≤N
1
H2

8H3

n1+c
+

∑
n>N

1
H2

16H
|t|
n2+c

+O

(
H5t2

n3+c

)
.

By the integral test this is at most,

≤8H3 · logN
1
H2 + 16H4|t|N−

1
H2 +O

(
H5t2N−

2
H2 .
)

which is no larger than A2H logN for N large enough.

Next, we say that a residue class a mod qk is good if a + m is not divisible by pk for

any m ≤ 2H and for any p dividing q. For any residue class b mod qk and for any natural

number n = b mod qk we check that

χ̃(b) = χ̃(n).

To see this, set d = (n, qk). By the Euclidean algorithm, we also have d = (b, qk). If p

divides q then if pj is the highest power of p dividing n, because n = b mod qk and pk does

not divide bm we conclude that j < k. Since pk divides qk, we conclude that pj divides d by

definition of the greatest common divisor. Thus, since j was the highest power of p dividing

n, p does not divide n
d
. Since p was an arbitrary prime dividing q, we conclude that n

d
is

coprime to q. Thus by multiplicativity

χ̃(n) =χ̃(d) · χ̃
(n
d

)
. (4.13)

Since n
d

is coprime to q, by definition of χ̃,

=χ̃(d) · χ
(n
d

)
.

Since χ is a Dirichlet character, it is q periodic so this none other than

=χ̃(d) · χ
(
b

d

)
.
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Since the right hand side no longer depends on n, this yields

=χ̃(b).

By definition of a good residue class, for any m ≤ 2H and for any n = a mod qk,

χ̃(n+m) = χ̃(a+m). (4.14)

Returning for (4.12), because the summand is nonnegative, we may restrict our sum to

only good residue classes∑
H′∼H

∑
a good

∑
n=a mod qk

∣∣∑
m≤H′ χ̃(n+m)h(n+m)

∣∣2
n1+c

≤ A2H logN + E1.

Applying (4.14) yields

∑
H′∼H

∑
a good

∑
n=a mod qk

∣∣∑
m≤H′ χ̃(a+m)h(n+m)

∣∣2
n1+c

≤ A2H logN + E1.

By Cauchy Schwartz

∑
H′∼H

∑
a good

∣∣∣∣∣∣
∑

n=a mod qk

∑
m≤H′ χ̃(a+m)h(n+m)

n1+c

∣∣∣∣∣∣
2

(4.15)

≤
∑
H′∼H

∑
a good

 ∑
n=a mod qk

∣∣∑
m≤H′ χ̃(n+m)h(n+m)

∣∣2
n1+c

 ·
 ∑
n=a mod qk

1

n1+c


≤
(
HA2 logN + E1

)
·
(

logN

qk
+ 10

)
.

Set

E ′1 = E1 ·
(

logN

qk
+ 10

)
and

E2 = 10 ·
(
HA2 logN + E1

)
.

Then plugging this notation into (4.15) gives

∑
H′∼H

∑
a good

∣∣∣∣∣∣
∑

n=a mod qk

∑
m≤H′ χ̃(a+m)h(n+m)

n1+c

∣∣∣∣∣∣
2

≤ HA2 log2N

qk
+ E ′1 + E2. (4.16)
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It is worth remarking that if logN
qk
≥ 20 then

H
log2N

qk
≥ E2

so it is appropriate to think of E2 as a small error term. By applying Fubini to (4.16), we

obtain

∑
H′∼H

∑
a good

∣∣∣∣∣∣
∑
m≤H′

χ̃(a+m)
∑

n=a mod qk

h(n+m)

n1+c

∣∣∣∣∣∣
2

≤ HA2 log2N

qk
+ E ′1 + E2. (4.17)

We turn our attention to the sum

∑
n∈N

1n=a mod qk ·
h(n+m)

n1+c
,

for some (momentarily) fixed choice of a and m. By a change of variables, this is

=
∑
n>m

1n=a+m mod qk ·
h(n)

(n−m)1+c
.

By Taylor expansion,

=
∑
n>m

(
1n=a+m mod qk ·

h(n)

n1+c
+ r1

)
. (4.18)

for some r1 of size at most

|r1| ≤
m

n2
+O

(
m2

n3

)
.

Summing over n yields ∑
n>m

|r1| ≤ 1 +O

(
1

m

)
.

The first m terms, ∑
n≤m

1n=a+m mod qk ·
h(n)

n1+c

also contribute no more than 1 + logm+10
qk

to the total sum. Therefore, (4.18) equals

=

(∑
n∈N

1n=a+m mod qk ·
h(n)

n1+c

)
+ r′1 (4.19)
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for some r′1 satisfying

|r′1| ≤ 2 +
logm+ 10

qk
+O

(
1

m

)
.

Now if a + m is coprime to q then by the theory of the Fourier transform applied to the

group (Z/qkZ)×, we can write

1n=a+m mod qk =
1

ϕ(qk)
χ0 +

∑
χ1

cχ1 · χ1(n)

where χ0 is the principal character, ϕ is Euler’s totient function, the sum is over non-principal

characters χ1 and the cχ1 are coefficients with the property that

∑
χ1

|cχ1 |2 ≤
1

ϕ(qk)
(4.20)

by Bessel’s inequality. If a+m is not coprime to q, say if d = (a+m, qk) then by change of

variables, (4.19) redues to
h(d)

d1+c

∑
n∈N

1
n=a+m

d
mod qk

d

· h(n)

n1+c
.

Now the function

1
n=a+m

d
mod qk

d

can similarly be written as a weighted sum of Dirichlet characters. This motivates our study

of sums of the form ∑
n∈N

h(n)χ1(n)

n1+c
. (4.21)

Using the usual Euler product trick, which applies because we have a sum of completely

multiplicative functions, we may write (4.21) as a product

=
∏
p

(
1 +

h(p)χ1(p)

p1+c
+

(
h(p)χ1(p)

p1+c

)2

+ · · ·

)

which, by the geometric series formula yields

=
∏
p

(
1− h(p)χ1(p)

p1+c

)−1

. (4.22)
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Multiplying and dividing by L(χ1, 1 + c) gives

=L(χ1, 1 + c)
∏
p

(
1− h(p)χ1(p)

p1+c

)−1(
1− χ1(p)

p1+c

)
. (4.23)

This step makes sense because h pretends to be the function 1 so L(χ1, 1 + c) should be kind

of like the main term in (4.22) and in analysis it is often profitable to to subtract off, or in

this case divide off the main term and then try to bound the remainder. it is classical that

|L(χ1, 1 + c)| ≤ log qk + 10.

Thus (4.23) is in absolute value at most

≤ log qk

∣∣∣∣∣∏
p

(
1− h(p)χ1(p)

p1+c

)−1(
1− χ1(p)

p1+c

)∣∣∣∣∣ . (4.24)

Applying the definition of the logarithm to (4.24), we get

= log qk

∣∣∣∣∣∏ exp

(
log

(
1− h(p)χ1(p)

p1+c

)−1(
1− χ1(p)

p1+c

))∣∣∣∣∣
which by the log rules simplifies to

= log qk

∣∣∣∣∣exp

(∑
p

log

(
χ1(p)

p1+c

)
− log

(
1− h(p)χ1(p)

p1+c

))∣∣∣∣∣ . (4.25)

By Taylor’s theorem, (4.25) is at most

≤ log qk exp

(∑
p

|χ− 1(p) · (1− h(p))|
p1+c

+ r2

)
(4.26)

for some

|r2| ≤ 5
∑
p

1

p2
.

The sum of the reciprocals of the squares of the primes is clearly some finite absolute constant

less than π2

6
, so (4.26) is at most

≤ e9 log qk exp

(∑
p

|1− h(p)|
p1+c

)
(4.27)
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where we have also used that χ1(p) is a unit or 0 which is therefore absorbed by the absolute

values. Since h(p) takes values on the unit circle and because, for any z near 1, (1−Re z)
1
2 ∼

Im z essentially because 1− cos θ does not vanish to 2nd order, we have

|1− h(p)| ≤ 2 · (1− Re h(p))
1
2 .

Plugging this into (4.27) is at most

e9 log qk exp

(
2
∑
p

(1− Re h(p))
1
2

p1+c

)
.

By Cauchy Schwarz and Mertens’ theorem,

≤e9 log qk exp

2

(∑
p

1

p1+c

) 1
2
(∑

p

1− Re h(p)

p1+c

) 1
2

 . (4.28)

The sum over the reciprocals of the primes is bounded by Mertens’ theorem by log logN + 1

for N large enough which means (4.28) is bounded by

≤e10 log qk exp

2(log logN)
1
2

(∑
p

1− Re h(p)

p1+c

) 1
2

 . (4.29)

We can replace the sum ∑
p

1− Re h(p)

p1+c

by a sum over only those primes less than N

∑
p≤N

1− Re h(p)

p1+c

at a cost of at most ∑
p>N

1

p1+c
≤ 10

logN

by the integral test. By assumption (4.10),

∑
p≤N

1− Re h(p)

p1+c
≤ B.
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Thus, (4.29) is bounded by

≤ e10 log qk exp

(
2(log logN)

1
2 (B +

10

logN
)
1
2

)
.

Altogether, this says∑
n∈N

χ1(n)h(n)

n1+c
≤ e10 log qk exp

(
2(log logN)

1
2 (B +

10

logN
)
1
2

)
(4.30)

for any non-principal character χ1 of modulus dividing qk.

Alternatively, we can lower bound the similar sum where χ1 is replaced by a principal

character χ0 of modulus d dividing qk:∑
n∈N

χ0(n)h(n)

n1+c
. (4.31)

Again by the Euler product trick we used in transforming (4.21) to (4.22), we find (4.31) is

equal to

=
∏
p

(
1− χ0(p)h(p)p1+c

)−1
. (4.32)

Recall that χ0(p) = 0 for p divding d and χ0(p) = 1 for p not dividing d by definition of a

principal character. Thus, we may rewrite (4.32) as

=
∏
p-d

(
1− h(p)

p1+c

)−1

. (4.33)

Define the singular series S by the formula

S =
∏
p

(
1− h(p)

p1+c

)−1

. (4.34)

Using this definition, we may rewrite (4.33) as

S ·
∏
p|d

(
1− h(p)

p1+c

)
.

Note that h(p) = 1 for p dividing q by definition of h so this simplifies to∑
n∈N

χ0(n)h(n)

n1+c
= S

∏
p|d

(
1− 1

p1+c

)
. (4.35)
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Next, we lower bound |S|. To get a lower bound on |S|, we attempt to upper bound∣∣∣∣ζ(1 + c)

S

∣∣∣∣ .
We remark that this analysis will be similar to the argument (4.21). By the Euler product

expansion, this is ∣∣∣∣∣∏
p

(
1− 1

p1+c

)−1(
1− h(p)

p1+c

)∣∣∣∣∣ .
Applying the definition of the logarithm yields∣∣∣∣∣exp

(∑
p

log

(
1− h(p)

p1+c

)
− log

(
1− 1

p1+c

))∣∣∣∣∣ .
By Taylor expanding the logarithms just as in (4.26), we find

≤e9

∣∣∣∣∣exp

(∑
p

1− h(p)

p1+c

)∣∣∣∣∣ . (4.36)

Now comes the crucial difference from how we bounded (4.21): since there is no absolute

value on 1−h(p), we can simply note that |ez| = eRe (z) for any complex number z. Applying

this to (4.36) yields

=e9 exp

(∑
p

1− Re h(p)

p1+c

)
.

As before, we can crudely bound the sum over p ≥ N to conclude that for N large enough

≤e10 exp

(∑
p≤N

1− Re h(p)

p1+c

)
.

By assumption (4.10), this is bounded by

≤eB+10.

Since ζ(1 + c) ≥ logN − 10,

|S| ≥ e−B−10(logN − 10). (4.37)
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Plugging (4.37) into (4.35), we find∣∣∣∣∣∑
n∈N

χ0(n)h(n)

n1+c

∣∣∣∣∣ ≥ e−B−10(logN − 10) ·
∏
p|d

(
1− 1

p1+c

)
. (4.38)

By Taylor expansion,
1

p1+c
=

1

p
+O

(
1

logN

)
.

Plugging this into (4.38) produces∣∣∣∣∣∑
n∈N

χ0(n)h(n)

n1+c

∣∣∣∣∣ ≥ e−B−10(logN − 10) ·
∏
p|d

(
1− 1

p

)
+ r3. (4.39)

for some r3 satisfying

|r3| = O
(
e−Bq

)
.

Recall that ϕ, Euler’s totient function, is a multiplicative and ϕ(p) = p− 1. Thus, we may

simplify the product over prime divisors of d as∏
p|d

(
1− 1

p

)
=
∏
p|d

p

p− 1

=
∏
p|d

p

ϕ(p)

=
d

ϕ(d)
. (4.40)

Plugging (4.40) into (4.39) gives∣∣∣∣∣∑
n∈N

χ0(n)h(n)

n1+c

∣∣∣∣∣ ≥ e−B−10(logN − 10) · d

ϕ(d)
+ r3. (4.41)

By plugging (4.41), (4.30) and the simple bound (4.20) into (4.17) we find

∑
H′∼H

∑
a good

∣∣∣∣∣ ∑
m≤H′

χ̃(a+m)

∣∣∣∣∣
2

· e−2B−20 log2N

q2k
≤ HA2 log2N

qk
+ E ′1 + E2 + E3

where

E3 =
(
e10 log qk exp

(
2(log logN)

1
2B

1
2

)
+ r3

)
· e−B−10 logN

qk
H

+qk
(

2e10 log qk exp
(

(log logN)
1
2B

1
2

))2

.
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Note that for E3 to be smaller than the main term it suffices to ask that

e10qk log qk exp(2B
1
2 ) ≤ exp

(
(log logN)

1
2

)
We conclude that

∑
H′∼H

∑
a good

∣∣∣∣∣ ∑
mi≤H′

χ̃(a+m)

∣∣∣∣∣
2

≤ e2B+20HA2qk + E4 (4.42)

where

E4 =
E ′1 + E2 + E3

log2N
q2ke2B+20.

Now if q = 1 then χ̃ = 1 and we obtain the bound

H3 ≤ e2B+20HA2 + E4

or (
(H2 − E4) · e−2B−20

) 1
2 ≤ A.

In the rest of the argument we turn out attention to the case q 6= 1. Returning to (4.42) and

expanding the square, we find∑
H′∼H

∑
a good

∑
mi≤H′

χ̃(a+m1)χ̃(a+m2) ≤ e2B+20HA2qk + E4.

Setting di = (a+mi, q
k), which since a is good is also (a+mi, q

k−1) yields∑
H′∼H

∑
a good

∑
mi≤H′

di=(a+mi,q
k)

χ̃(a+m1)χ̃(a+m2) ≤ e2B+20HA2qk + E4. (4.43)

As in (4.13), we can rewrite χ̃(a+mi) as χ̃(di)χ̃
(
a+mi
di

)
and as before χ̃

(
a+mi
d

)
= χ

(
a+mi
d

)
.

Plugging this into (4.43) produces

∑
H′∼H

∑
a good

∑
mi≤H′

di=(a+mi,q
k)

χ̃(d1)χ̃(d2) χ

(
a+m1

d1

)
χ

(
a+m2

d2

)

≤ e2B+20HA2qk + E4.
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Pulling out the sum in di gives∑
di|qk−1

χ̃(d1)χ̃(d2)
∑
H′∼H

∑
a good

∑
mi≤H′

di=(a+mi,q
k)

χ

(
a+m1

d1

)
χ

(
a+m2

d2

)
(4.44)

≤ e2B+20HA2qk + E4.

Right now, our sum over residue classes mod qk is restricted to only those good residue

classes. Now we wish to add in all those “bad” residue classes a for which there exists

m ≤ 2H such that a+m is divisible by pk for some p dividing q. For each prime p, there qk

pk

residue classes which are divisible by pk and therefore there are at most 2H qk

pk
many residue

classes a such that there exists m ≤ 2H such that a + m is divisible by pk. Therefore, the

number of bad residue classes is at most

2H ·
∑
p|q

≤2H
qk

2k

∑
n∈N

(
2

n

)k
≤20H

qk

2k
.

Therefore, we can bound∑
di|qk−1

∑
H′∼H

∑
a bad

∑
mi≤H′

di=(a+mi,q
k)

1 ≤20H2 · q
k

2k
·
∑
d|qk−1

∑
mi≤H′

di=(a+mi,q
k)

1

≤ 20H4 · q
k

2k
,

where in the last step we used that for each (m1,m2) there is at most one choice of (d1, d2)

satisfying di = (a+mi, q
k). Plugging this into (4.44) yields∑

di|qk−1

χ̃(d1)χ̃(d2)
∑
H′∼H

∑
a mod qk

∑
mi≤H′

di=(a+mi,q
k)

χ

(
a+m1

d1

)
χ

(
a+m2

d2

)

≤ e2B+20H2A2qk + E4 + E5

where

E5 ≤ 20H4 · q
k

2k
.
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We remark that this is smaller than the main term if H4 ≤ 2k i.e. logH � k. We also

remark that unless a+mi
di

is coprime to q that χ
(
a+mi
di

)
is zero so instead of summing over

those mi such that (a+mi, q
k) = di we can instead sum over all mi such that di|a+m; after

all, the only time χ
(
a+mi
di

)
contributes to the sum for any choice of di|a+mi is when a+mi

d

is coprime to q which implies (a+mi, q
k) = di. Thus

∑
di|qk−1

χ̃(d1)χ̃(d2)
∑
H′∼H

∑
a mod qk

∑
mi≤H′
di|a+mi

χ

(
a+m1

d1

)
χ

(
a+m2

d2

)
(4.45)

≤ e2B+20HA2qk + E4 + E5.

Momentarily fix some choice d1, d2, H
′,m1 and m2. We will try to show that if d1 6= d2

then ∑
a mod qk

di|a+mi

χ

(
a+m1

d1

)
χ

(
a+m2

d2

)
= 0. (4.46)

By the theory of the Fourier transform applied to the group (Z/qZ,+), we can write

χ(n) =
∑
ξ≤q

cξe

(
ξ

q
· n
)
,

and since χ is primitive, we claim the cξ are zero unless ξ is a unit in (Z/qZ,×) (see, for

instance, Theorem 4.16 of [Eve13] or equation 3.9 and the remarks after equation 3.12 in

[IK04]). Therefore, by substitution,

1di|a+mi · χ
(
a+mi

di

)
= 1di|a+mi ·

∑
ξ≤q

cξe

(
ξ

q
· a+mi

di

)
.

Thinking of a as the “variable” and mi and di as constants, we could also write

1di|a+mi · χ
(
a+mi

di

)
= 1di|a+mi ·

∑
ξ≤q

cξ,mi,die

(
ξ

qdi
· a
)
,

by the rules for exponents where

cξ,mi,di = cξ · e
(
ξ

q
· mi

di

)
.
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In particular, we still have that cξ,mi,di = 0 unless (q, ξ) = 1. Thus, if d1 and d2 are different

then 1d1|a+m1 ·χ
(
a+m1

d1

)
and 1d2|a+m2 ·χ

(
a+m2

d2

)
can be written as sums of additive characters

with different frequencies. Since qk is a multiple of both qd1 and qd2, we conclude that (4.46)

holds.

Naively combining (4.46) and (4.45), we find that∑
d|qk−1

χ̃(d)χ̃(d)
∑
H′∼H

∑
a mod qk

∑
mi≤H′
d|a+mi

χ

(
a+m1

d

)
χ

(
a+m2

d

)

≤ e2B+20HA2qk + E4 + E5.

Now we cancel the χ̃(d) and χ̃(d) and write the innermost sum as a square.

∑
d|qk−1

∑
H′∼H

∑
a mod qk

∣∣∣∣∣∣∣∣
∑
m≤H′
d|a+m

χ

(
a+m

d

)∣∣∣∣∣∣∣∣
2

≤ e2B+20HA2qk + E4 + E5.

Since the summand is now nonnegative, we may restrict our attention those values of d for

which d is less than H
4

.

∑
d|qk−1

d<H
4

∑
H′∼H

∑
a mod qk

∣∣∣∣∣∣∣∣
∑
m≤H′
d|m

χ

(
a+m

d

)∣∣∣∣∣∣∣∣
2

≤ e2B+20HA2qk + E4 + E5. (4.47)

Fix, for the moment, some value of d < H
4

diving qk−1, some a mod qk and some value of H ′

between H and 2H. Then usually the sums∑
m≤H′
d|a+m

χ

(
a+m

d

)
(4.48)

and ∑
m≤H′+d
d|a+m

χ

(
a+m

d

)
(4.49)

differ by a complex number on the unit circle because there is precisely one m between H ′

and H ′ + d such that d|a+m and for that value of m, we know that χ
(
a+m
d

)
will appear in
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the second sum but not the first. Occasionally, χ
(
a+m
d

)
is not a unit length complex number

but that happens only when
(
q, a+m

d

)
6= 1. Classically (for instance see [RS62] Theorem 15),

we can bound

ϕ(q) ≥ q

10 log log q
.

Therefore, for each H ′and d, for at least qk

10 log log q
many values of a, (4.48) and (4.49) do

differ by a unit length complex number. By the triangle inequality, if z and w are complex

numbers,

|z|+ |w| ≥ |z − w|.

Squaring both sides, one finds that

|z|2 + |w|2 ≥ |z − w|2.

Therefore, if (4.48) and (4.49) do differ by a unit complex number,∣∣∣∣∣∣∣∣
∑
m≤H′
d|a+m

χ

(
a+m

d

)∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
∑

m≤H′+d
d|a+m

χ

(
a+m

d

)∣∣∣∣∣∣∣∣
2

≥ 1.

Plugging everything in to (4.47),∑
d|qk−1

d<H
4

qk

10 log log q
·
(
H

2
− d
)
≤ e2B+20HA2qk + E4 + E5.

Since there are at least min
(
k − 1, logq

H
4

)
many valid choices for d, this simplifies to

min

(
k − 1,

logH

log q

)
· e−2B−20 · 1

40 log log q
− E ′4 − E ′5 − E6 ≤ A2

where

E ′4 = E4 · q−kH−1e−2B−20, E ′5 = E5 · q−kH−1e−2B−20

and E6 =
log 4

log q
· e−2B−20 · 1

40 log log q
.

As long as H � 1, the main term dominates the E6 error term.

This completes the proof of Theorem 4.1.1.
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[GLdLR19] Alexander Gomilko, Mariusz Lemańczyk, and Thierry de La Rue, Möbius orthogonality in

density for zero entropy dynamical systems (2019), available at https://arxiv.org/abs/

1905.06563.

153

http://www.math.leidenuniv.nl/~evertse/ant13-4.pdf
http://www.math.leidenuniv.nl/~evertse/ant13-4.pdf
https://doi.org/10.1017/etds.2016.121
https://doi.org/10.1017/etds.2016.121
https://arxiv.org/pdf/1804.08556.pdf
https://doi.org/10.4007/annals.2018.187.3.6
https://doi.org/10.1090/S0273-0979-1982-15052-2
https://doi.org/10.1090/S0273-0979-1982-15052-2
https://doi.org/10.2307/2318546
https://doi.org/10.2307/2318546
https://arxiv.org/abs/1905.06563
https://arxiv.org/abs/1905.06563


[GHS19] Andrew Granville, Adam J. Harper, and K. Soundararajan, A new proof of Halász’s theorem,

and its consequences, Compos. Math. 155 (2019), no. 1, 126–163, available at https://doi.

org/10.1112/s0010437x18007522. MR3880027

[GT10] Ben Green and Terence Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), no. 3,

1753–1850, available at https://doi.org/10.4007/annals.2010.171.1753. MR2680398
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