
Lawrence Berkeley National Laboratory
LBL Publications

Title
Towards a High-Order Embedded Boundary Finite Volume Method for the Incompressible
Navier-Stokes Equations with Complex Geometries

Permalink
https://escholarship.org/uc/item/4wr0s21w

ISBN
9781624106316

Authors
Overton-Katz, Nathaniel
Gao, Xinfeng
Guzik, Stephen M
et al.

Publication Date
2022-01-03

DOI
10.2514/6.2022-2202

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wr0s21w
https://escholarship.org/uc/item/4wr0s21w#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Towards a High-Order Embedded Boundary Finite Volume
Method for the Incompressible Navier-Stokes Equations with

Complex Geometries

Nathaniel Overton-Katz ∗, Xinfeng Gao †, and Stephen Guzik ‡

Computational Fluid Dynamics and Propulsion Laboratory
Colorado State University, Fort Collins, CO, USA

Oscar Antepara §, Daniel T. Graves ¶, and Hans Johansen ‖

Computational Research Division
Lawrence Berkeley National Lab, Berkeley, CA, USA

In this paper, we present components of a fourth-order finite volume method that will
eventually allow for solving the incompressible Navier-Stokes equations. The algorithm
represents complex geometries on a Cartesian embedded boundary grid, and takes special steps
to achieve stable and accurate discretizations. Spatial discretizations are based on a weighted
least-squares technique that mitigates the “small cut cell” problem, without mesh modifications,
cell merging, or redistribution. Solutions are advanced in time using a projection method
coupled with a higher-order additive implicit-explicit (ImEx) Runge-Kutta method, where the
diffusion and advection terms are treated implicitly and explicitly, respectively. We demonstrate
convergence tests for a scalar advection-diffusion equation and an approximate projection solver
and confirm fourth-order accuracy for complex geometries. These methods are key components
of solvers for the incompressible Navier-Stokes equations, and indicate feasibility of achieving
higher-order accuracy on an arbitrary cut cell mesh.

Notation

D spatial dimension, indexed with 𝑑

V𝒊 volume of a cell 𝒊
A 𝒇 area of a face 𝒇
^ volume fraction relative to the Cartesian cell
n̂ surface unit normal vector
x location in space, e.g., (𝑥, 𝑦, 𝑧)
®F flux tensor, components F𝑑

u velocity vector, components u𝑑
𝑝 pressure scalar

𝒊 grid indices, e.g., (𝑖, 𝑗 , 𝑘)
𝒆𝑑 unit vector in direction 𝑑

𝒇 face indices, e.g.
⟨·⟩ the cell-averaged or face-averaged quantity
A the advection operator
D the divergence operator
G the gradient operator
L the Laplacian operator
P projection operator
𝑂 (ℎ) order of accuracy proportional to a cell length

I. Introduction
The finite volume method is inherently conservative in its construction, which is a valuable property when solving

for fluid flows with combustion or shock waves present. When operating on structured grids, finite volume methods
have been developed to achieve high solution accuracy and code performance. This is demonstrated by the Chombo
framework [1], where adaptive mesh refinement is one of the key features for improving solution accuracy with a high

∗PhD Student, noverton@colostate.edu, Student AIAA member
†Associate Professor, Xinfeng.Gao@colostate.edu, Senior AIAA member
‡Assistant Professor, Stephen.Guzik@colostate.edu, Senior AIAA member
§Researcher, oantepara@lbl.gov
¶Researcher, dtgraves@lbl.gov
‖Researcher, hjohansen@lbl.gov

1

degree of parallelism. High-order methods have successfully been created with structured grid solvers [2] due to the
convenience of polynomial reconstructions with regular data. Despite these advantages, representation of complex
geometries on structured grids is a significant challenge. Technologies such as mapped multi-block methods allow
for moderately complex structured grid geometries by combination of several curvilinear grids. However, mapped
multi-block grids struggle to represent rough surfaces, and creating quality grids is generally time-consuming.

Alternatively, embedded boundary grids have little restriction in geometries that may be represented, while
maintaining the advantages of structured grid solvers. Embedded boundary grids are created by first generating a
Cartesian grid independent of boundary geometry. Then, the boundary geometry is overlain on the grid, and cells that
intersect the boundaries are cut (Fig. 1). The resulting grid is one that is structured everywhere away from the boundary,
while near the boundary the grid is made up of partial, or “cut” cells. The resulting method retains the advantages of
solving on structured grids on the interior of the domain, while having relatively little restriction in geometries that may
be represented. Additionally, this grid generation process can be done efficiently and quickly. However, the presence of
cut cells brings about additional challenges that must be overcome. Elaborate reconstruction schemes are required near
the boundaries of embedded boundary methods, since regular or grid-aligned stencils are not accurate or stable in the
presence of cut cells. Volumes of cut cells may also be arbitrarily small with respect to the Cartesian cells they originate
from, and maintaining stability of these small cells requires special care.

The embedded boundary method has been used with great success in a number of complex fluid dynamics
applications [3–6]. Previous time dependent applications have only achieved up to second-order accurate solutions, with
first-order or inconsistent results near embedded boundaries [7]. A high-order finite volume embedded boundary method
for smooth and kinked (𝐶0) domains was demonstrated for Poisson’s equation by Devendran et al [8]. The goal of this
work is to extend the fourth-order embedded boundary method to solve the time dependent incompressible Navier-Stokes
equations. Advancing the diffusion terms in time is straightforward using a fourth-order implicit time marching method.
Advection can be treated with explicit time marching methods, but doing so requires special consideration for arbitrarily
small cut cells. These two schemes can be combined using an additive Runge-Kutta (ARK) scheme coupled with a
projection method to solve the incompressible Navier-Stokes equations.

II. The Finite-Volume Method for Embedded Boundaries
Finite volume methods express time dependent PDEs in “flux-divergence” form of

𝜕

𝜕𝑡
u(x, 𝑡) + ∇ · ®F(u) = 0 , (1)

based on conservation laws over discrete control volumes. To apply the finite volume method, the system of PDEs is
converted to integral form over volumes V𝒊 , and the divergence theorem is applied to the flux term ®F yielding

𝜕

𝜕𝑡

∫
V𝒊

u dx +
∫
𝜕V𝒊

®F · n̂ dx = 0 .

The flux term may be broken into separate regions over the volume surface 𝜕V𝒊 as∫
𝜕V𝒊

®F · n̂ dx =
∑︁
𝒇 ∈𝜕V𝒊

∫
A 𝒇

®F · n̂ 𝒇 dx ,

where 𝒇 indexes a particular face of the cell indexed by 𝒊, and n̂ 𝒇 is the corresponding outward normal vector.
Averaged quantities are defined as

⟨u⟩𝒊 =
1
V𝒊

∫
V𝒊

u dx , ⟨F⟩ 𝒇 =
1
A 𝒇

∫
A 𝒇

®F · n̂ 𝒇 dx .

Using cell averaged notation, the finite volume scheme is expressed in terms of averages as

𝜕

𝜕𝑡
⟨u⟩𝒊 +

∑︁
𝒇 ∈𝜕V𝒊

A 𝒇

V𝒊
⟨F⟩ 𝒇 = 0 . (2)

This is an exact formulation, as no approximations have been made. In practice, the fluxes and time derivatives are not
known exactly, so a numerical solution is created by producing approximations for each. Cut cells can potentially be

2

arbitrarily small in a limit where V𝒊 approaches zero. This is numerically troublesome, since the flux term is potentially
divided by zero, and the other geometric quantities and stencils must have similar limits to avoid this. Thus numerical
stability for small cells requires extra care, and is dealt with by scaling with a cell volume fraction, as detailed in
Devendran et al [8].

A. Projection Formulation for the Incompressible Navier-Stokes Equations
The incompressible Navier-Stokes equations with constant density are given by

𝜕

𝜕𝑡
u + ∇ · (uu) = −∇𝑝 + aΔu , (3)

∇ · u = 0 , (4)

where u is the flow velocity, 𝑝 the pressure, and a the kinematic viscosity.
A Hodge projection operator P has been used in the finite volume literature [9, 10] to enforce a divergence-free

velocity field:

P(w) = v , (5)
∇ · v = 0 where , (6)

P(w) ≡
(
I − ∇Δ−1∇·

)
w . (7)

B. Finite Volume Projection Formulation
We choose discretizations for each of the spatial operators in Eqs. (3-4), and write the resulting discrete equations at

grid locations 𝒊 as

𝜕

𝜕𝑡
u𝒊 = −A(u)𝒊 − (G𝑝)𝒊 + a(Lu)𝒊 , (8)

(Du)𝒊 = 0 , (9)

where A,D,G, and L are fourth-order finite volume approximations of advection, divergence, gradient, and Laplacian
terms, respectively. (From this point forward, we will drop the subscript 𝒊 except for clarity.) The goal is to discretize
these operators so that

Au = ∇ · (uu) +𝑂 (ℎ4) , (10)

Du = ∇ · u +𝑂 (ℎ4) , (11)

Gu = ∇u +𝑂 (ℎ4) , (12)

aLu = a∇ · ∇u +𝑂 (ℎ4) (13)

in the regular interior of the domain, with some potential loss of accuracy near boundaries and in cut cells.
Because we are using co-located cell-average velocity and pressure, we take the approach of an approximate

projection [11]. Instead of a strictly zero discrete divergence, we allow u to have a divergence that is at the level of the
discretization error. The equivalent discrete projection is

P(w) =
(
I − GL−1D

)
w , (14)

which requires the inversion of the Laplacian operator over the whole domain. Using the projection operator, the
incompressible flow equations can be approximated by

𝜕

𝜕𝑡
u = P (−A(u) + aLu) , (15)

Du = 𝑂 (ℎ4) . (16)

The general procedure for solving this system separates into an intermediate update that integrates the right-hand side of
Eq. (16), and then projects that update using Eq. (14), to maintain an approximately-divergence free stage value for the
time integrator. This is essentially a higher-order accurate version of the projection operator described in [7].

3

1. Advection-Diffusion
In the projected form of the incompressible Navier-Stokes equations given by Eq. (16) there are two components

required for a solution: the projection operator, and an advection-diffusion time integration scheme. As building blocks
for an incompressible Navier-Stokes solver, the projection and advection-diffusion schemes can be developed and
tested separately. Showing stability and correctness of the approximate projection is required for the incompressible
Navier-Stokes equations. To show algorithm verification, the scalar form of the advection-diffusion equation

𝜕

𝜕𝑡
𝜙 = P (−A(𝜙) + aL𝜙) , (17)

is sufficient to prove the order of accuracy of the high-order embedded boundary algorithm developed. Once the
components are proven correct, the process of combining these pieces to form an incompressible Navier-Stokes solver
should be straightforward. The only remaining challenge is introducing the non-linear vector advection term, A(u).

2. Projection Formulation for Open Boundaries
We must specify boundary conditions for the projection operators for open domain boundaries to split a given w into

three separate components: a scalar potential flow solution, 𝜓, which only satisfies the boundary conditions, and the
remainder which is split into pure gradient, 𝜙, and divergence-free parts: w = G𝜓 + v + G𝜙, such that

L𝜓 = DG𝜓 = 0, G𝜓 · n̂ = u · n̂ (potential), (18)
Dv = 0, v · n̂ = 0 (divergence-free), (19)
L𝜙 = DG𝜙 = Dw, G𝜙 · n̂ = 0 (gradient). (20)

In the end, our desired divergence-free velocity field that satisfies the correct boundary conditions is just the components
u = v + G𝜓.

III. Embedded Boundary Spatial Discretization
In the embedded boundary (EB) approach, cells fall into one of three categories; regular cells, irregular cells, and

invalid cells. This distinction between cell types is illustrated in Fig. 1. Regular cells are those that are full Cartesian
cells. Irregular cells, or cut cells, are those which are partial cells because they intersect with the boundary geometry.
Invalid cells, as the name indicates, are cells that fall outside the domain boundaries and are thus not in the solution
domain. To denote the embedded boundary regions, let Ω be the irregular domain and Υ𝒊 be any regular cell, then a
particular cell can be denoted by V𝒊 = Υ𝒊 ∩Ω.

The challenge of embedded boundary methods is to approximate the flux terms ⟨F⟩ 𝒇 when regular grid stencils can
not be used due to nearby cut cells. To solve this requires knowledge of the flux as a function, so that face averages may
be computed appropriately. A general reconstruction is done by creating local polynomials and evaluating their value
and derivatives on the face as needed. For a structured grid, reconstructed polynomials lead to grid-aligned regular
stencils. When using an embedded boundary method, the cells near the boundary require a consistent approach to
generate stencils that depend on the local geometry. On irregular regions, our approach is to use a weighted least-squares
polynomial approximation from the cell average values in a local region of neighboring cells. The scheme presented
theoretically can produce any order spatial discretization desirable, but for the context of this paper, fourth-order is the
focus. The present study continues and extends the work developed by Devendran et al.[8], and the procedure is briefly
summarized in this section.

A. Multi-Dimensional Taylor Expansion
A multi-dimensional polynomial can be defined using

(x − x̄)q =

D∏
𝑑=1

(𝑥𝑑 − 𝑥𝑑)q𝑑 , q! =
D∏
𝑑=1

q𝑑! , |q| =
D∑︁
𝑑=1

q𝑑 ,

where q is a multi-index or D dimensional non-negative integer vector, and x̄ is a given point in space. For a sufficiently
smooth scalar function 𝜙, its multi-dimensional Taylor series of order Q can be written as

𝜙(x) =
∑︁
|q |<Q

1
q!

𝜙 (q) (x̄) (x − x̄)q +𝑂 (ℎQ) , (21)

4

Regular
Cell

Irregular
Cell

Invalid
Cell

Vi

Ai− 1
2e

1

Fig. 1 Illustration of notation used for embedded boundary methods. The shaded region lies outside the
problem domain of interest.

where the convention 0! = 1 is used, and 𝜙 (q) is the multi-index partial derivative notation

𝜙 (q) (x) =
(D∏
𝑑=1

𝜕q𝑑

𝜕𝑥
q𝑑
𝑑

)
𝜙(x) ,

and any q𝑑 = 0 implies no derivative. In formulating multi-dimensional polynomials to fit cell averaged data, integration
over cells is needed. Moments are defined to be the integration of basis polynomials over a region, as

𝑚
q
𝒊 (x̄) =

∫
V𝒊

(x − x̄)q dx , (22)

for volume moments, while for face moments

𝑚
q
𝒇
(x̄) =

∫
A 𝒇

(x − x̄)q dx . (23)

B. Flux Reconstruction
To reconstruct a high-order solution from cell averaged data, we use a Taylor expansion about cell centers x̄𝒊 . By

defining the multi-dimensional polynomial coefficients 𝑐q
𝒊 = 1

q! u
(q)
𝑑

(x̄𝒊), approximated cell averages can be represented
as

⟨u𝑑⟩𝒋 =
1
V𝒋

∫
V𝒋

u𝑑 𝑑x

=
1
V𝒋

∫
V𝒋

∑︁
|q |<Q

1
q!

u(q)
𝑑

(x̄𝒊) (x − x̄𝒊)q +𝑂 (ℎQ) 𝑑x

=
1
V𝒋

∑︁
|q |<Q

𝑐
q
𝒊 𝑚

q
𝒋 (x̄𝒊) +𝑂 (ℎQ) . (24)

The number of unknown coefficients is determined by 𝑝 =
(D+Q)!
D! Q! . Determining the 𝑝 coefficients requires solving a

linear system of equations including at least the same number of cell values ⟨u𝑑⟩𝒋 . If the values ⟨u𝑑⟩𝒋 are more than

5

enough linearly independent values to determine each coefficient, this is an over-determined linear least-squares system.
Note that there are degenerate cases where values are almost linearly dependent, in which case the least-squares system
will typically distribute the solution between those values.

Thus, given a vector 𝑈 that is a vector of neighboring cell-average velocities ⟨u𝑑⟩𝒋 , using matrix notation we can
write the approximation as

𝑈 ≈ 𝑀 𝐶 ,

where the geometric moment matrix 𝑀 comes from Eq. (24) for each of the neighboring cells 𝒋 , and the multi-dimensional
coefficients vector 𝐶 is to be determined.

A diagonal weighting matrix 𝑊 is added to enable further control of the least-squares fit with the goal to improve
stability as in [8]; further discussion is in section III.C. With the weighting matrix, this yields the system and solution
for the coefficients as

𝐶 = arg min
�̃�

𝑊𝑈 −𝑊𝑀�̃�

2 → 𝐶 = (𝑊 𝑀)†𝑊𝑈 , (25)

where (𝑊 𝑀)† indicates the pseudo-inverse of (𝑊 𝑀), which is equivalent to a true inverse when the matrix is square.

1. Higher-order EB Viscous Flux Stencil
Using this method of reconstruction gives a way to evaluate fluxes for Eq. (2). In the convenient case when the flux

is linear, such as the diffusion term, a Taylor expansion is applied as

A 𝒇 ⟨F𝑉
𝑑 ⟩ 𝒇 =

∫
A 𝒇

∇u𝑑 · n̂ 𝒇 dx +𝑂 (ℎQ)

=

∫
A 𝒇

∇
(∑︁
|q |<Q

𝑐
q
𝒇
(x − x̄ 𝒇)q

)
· n̂ 𝒇 dx

≡
∑︁
|q |<Q

𝑐
q
𝒇
𝐺

q
𝒇
,

This too is a linear equation, which can be expressed in matrix form as in Eq. (25) to derive an expression for the
corresponding stencil as in [8]:

A 𝒇 ⟨F𝑉
𝑑 ⟩ 𝒇 = 𝐺 𝐶

= 𝐺 (𝑊 𝑀)†𝑊𝑈

≡ 𝑆T
𝒇 𝑈 .

where 𝐶 is the same coefficient as before, and 𝐺 = [· · ·𝐺q
𝒇
· · ·], and

𝐺
q
𝒇
=

D∑︁
𝑑=1

∫
A 𝒇

𝜕

𝜕𝑥𝑑

(
(x − x̄ 𝒇)q)n̂ 𝒇 ,𝑑 dx =

D∑︁
𝑑=1

q𝑑𝑚
q−𝒆𝑑
𝒇 ,𝑑

. (26)

The viscous flux stencil 𝑆 𝒇 depends only on the local neighbors selected, their moments, and flux function, so it may be
computed once per grid at initialization and cached as a sparse matrix operator.

2. Higher-order EB Advection Flux Stencil
Unlike the diffusion term, the scalar advection term does not use boundary conditions since the solution is defined

only by velocity characteristics. However, we can still evaluate the velocity average on faces as

⟨u𝑑⟩ 𝒇 = 𝑀 𝒇 𝐶

= 𝑀 𝒇 (𝑊up 𝑀)†𝑊up 𝑈

= 𝑅 𝒇 𝑈 .

Where 𝑀 𝒇 is the row vector of moments of the face 𝒇 , and 𝑊up is an upwind-weight matrix that is evaluated using the
face-centroid velocity field for simplicity. The reconstruction vector 𝑅 𝒇 may still be cached, since it only depends upon
the grid.

6

For the advection term ⟨∇ · (uu)⟩, we combine upwind polynomial approximations for u to create face-average
fluxes using a convolution formula (see [12]):

⟨®F · n̂𝑑⟩ = ⟨u𝑑u⟩ +𝑂 (ℎ4)

≡
(
𝑠T

avgu𝑑
) (

𝑠T
avgu

)
+
A2

𝒇

12

(
𝑠T

1 u𝑑
) (

𝑠T
1 u

)
(27)

𝑠avg = 𝑊up
(
𝑀𝑊up

)†
𝑓avg (28)

𝑠1 = 𝑊up
(
𝑀𝑊up

)†
𝑓1 (29)

𝑓avg = vector that evaluates coefficients to get fourth-order ⟨u⟩ 𝒇 (30)
𝑓1 = vector that evaluates coefficients to get second-order ⟨𝜕𝑑′u⟩ 𝒇 , tangential to the face. (31)

In 2D, Eq. (27) holds because odd moments of the face around the centroid x̄ are 0, so the convolution formula only
involves even moments, which are simply powers of A 𝒇 . With some algebraic manipulation (see [12]) for 𝑂 (ℎ4), it
reduces to this formula. However, in 3D or higher-order in 2D, there are additional terms that must be included for the
general case without this cancellation.

3. Approximate Projection
The higher-order projection operator must start with cell average velocities, ⟨u⟩𝒊 , and correct them to be approximately

divergence-free, Eq. (16). To accomplish this, we require discretizations and boundary conditions for each operator in
Eq. (14).

First, the Laplacian operator L is essentially the same as the viscous flux in section III.B.1, but with different
boundary conditions based on Eq. (18), that are homogeneous Neumann for inflow or solid walls, and homogeneous
Dirichlet for outflow.

For the cell-average gradient operator, G, the least-squares polynomial fit is again used to evaluate a stencil just as in
Eq. (26). In this case, as it is not a finite volume flux, cell moments are used instead of face moments:

𝐺
q
𝑑,𝒊 =

∑︁
𝑑

∫
V𝒊

𝜕

𝜕𝑥𝑑

(
(x − x̄𝒊)q) dx = q𝑑𝑚

q−𝒆𝑑
𝒊 . (32)

The gradient operator uses the same boundary conditions as the Laplacian.
Finally, we define a cell-average Divergence operator using the divergence theorem,∫

V𝒊

∇ · u dx =

∫
𝜕V𝒊

u · n̂ dx ,

so the cell average of the divergence of the velocity field can be determined from face average quantities as

⟨∇ · u⟩𝒊 =
∑︁
𝒇 ∈𝜕V𝒊

A 𝒇

V𝒊
⟨u · n̂ 𝒇 ⟩ 𝒇 .

These face averages are similar to those in the advection flux, however, without any upwind weighting for the reconstruction.
The terms on regular faces have single component normal vectors n̂ 𝒇 = 𝒆𝑑 , and as a result ⟨u · n̂ 𝒇 ⟩ 𝒇 = ⟨u𝑑⟩ 𝒇 . Boundary
conditions for the divergence are u · n̂ = 0 at any solid walls, including EB boundaries. At inflow boundaries, the
velocity is specified, while on outflow no boundary conditions are used, as in [7].

7

4. Physical Boundary Conditions
For regions where stencils encompass a Dirichlet boundary condition, the boundary value is defined as ubc = ⟨u⟩ 𝒇

when 𝒇 corresponds to a face with a prescribed value. A polynomial can be reconstructed to fit the face value using

A 𝒇ubc,𝑑 =

∫
A 𝒇

u𝑑 dx

=

∫
A 𝒇

∑︁
|q |<Q

𝑐
q
𝒇
(x − x̄ 𝒇)q dx

=
∑︁
|q |<Q

𝑐
q
𝒇
𝑚

q
𝒇
.

Including this additional equation and value into the stencil system will match the boundary condition in a least-squares
sense, with a similar method for Neumann boundaries. These extra boundary condition equations are used when any
neighboring cell included in the reconstruction contains a portion of the boundary, and so can accommodate different
parts of the boundary (such as corners, etc.).

5. Interpolation Neighborhoods
An important aspect of the weighted least squares method is neighborhood selection, choosing which neighboring

cells to include in the stencil, which becomes important when dealing with embedded boundaries. In this paper, the focus
is on fourth-order accurate stencils in two dimensions, which require a minimum of 10 neighbors for flux reconstruction
in the most general case, which must span both the 𝑥 and 𝑦 directions to estimate higher-order derivatives. To achieve
this with the developed weighted least squares approach, stencils of radius 3 cells from the reconstructed face are used
(see Fig. 2). These stencils encompass 18 cells in regular regions. For stencils in embedded boundary regions, the same
radius of 3 cells is used along with the inclusion of boundary conditions.

1
1

2

2

2

2

3

3

3

3

3

3

3

(a) An example of an irregular flux stencil, using 13 cells
and 6 boundary conditions.

1 12

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

(b) Regular flux stencils with 18 cells an no boundary
conditions.

Fig. 2 An illustration of stencil neighborhoods for flux construction. The stencils are for the red highlighted
faces, with cells numbered according to the neighbor distance from the face.

C. The Problem of Small Cut Cells
To reconstruct the stencils required for the spatial discretization, the weighted least-squares method Eq. (25) is used

to simplify generation of stencils near the embedded boundaries. First, a large neighborhood is created to interpolate
from, which includes many potential neighboring cells, some of which may be very small cut cells. These cut cells with
potential small cell volumes can result in a poorly conditioned system of equations. Rather than exhaustively choosing
an interpolation neighborhood which is better conditioned, a weighting scheme is chosen to assign relative importance
to each cell’s entry in the WLS system. Smaller relative weights mean that cells has less importance and a smaller
absolute stencil value. An effective weighting for cell 𝒊 with target construction face 𝒇 of

𝑊𝒊, 𝒇 = 𝐷−5
𝒊, 𝒇 , (33)

8

where 𝐷𝒊, 𝒇 is the Euclidean distance, has been shown to increase solution stability and spectral properties [8], especially
when interpolation neighborhoods are large and there are many possible consistent stencils.

IV. Time Marching Method
When solving the Navier-Stokes equations, time constraints for the advection and diffusion portions of the fluxes can

be significantly different. The advection terms are hyperbolic in nature and generally non-linear and less stiff, making
them well suited for explicit time marching methods. In contrast, the diffusion fluxes are parabolic, more stiff, and
linear, making them well suited for implicit time marching methods using fast linear solvers. In the context of embedded
boundary methods, where cut cells can become arbitrarily small, this difference of time step stability constraints between
advection and diffusion terms is can be orders of magnitude different. To maintain reasonable time step sizes, a hybrid
implicit-explicit (ImEx) Runge-Kutta method is chosen for the embedded boundary algorithm [13]. This allows for the
advection terms to be updated using an explicit method, and the diffusion terms with an implicit method. As a result,
the time evolution is generally not limited by the small time steps required for the diffusion physics. At each stage of the
implicit RK time marching, a large sparse matrix system must be solved. To do this efficiently, we use a geometric
multigrid solver included in Chombo [14] with PETSC [15, 16] as a bottom solver.

To achieve the desired fourth-order accuracy of the presented algorithm, the ARK4(3)6L[2]SA time marching
method [17] is used. This method has successfully been demonstrated for stiff, higher-order finite volume methods that
use AMR for advection-diffusion problems [18].

V. Algorithm Verification
To show verification of the algorithm developed, the method of manufactured solutions is used. By producing

an artificial exact solution, solution error can be computed and used for testing grid convergence. The method of
manufactured solutions is explained in detail by Salari et al. [19]. First, a manufactured solution form is chosen. Once
the manufactured solution is chosen, a source term and boundary conditions are derived by substituting the manufactured
solution into the governing equations.

For algorithm verification with more complicated solutions is to use Richardson extrapolation to evaluate the order
of convergence, by comparing coarser solutions to the finest solution in a series, and evaluate the relative errors for
convergence rates.

To verify our algorithm, convergence tests are used to demonstrate the claimed solution order of accuracy. The
solution error is computed, and convergence rates evaluated using each of the 𝐿∞, 𝐿2, and 𝐿1 norms. The solution error
is computed from cell averages as

𝐸𝒊 = ⟨𝜙(x, 𝑡)⟩𝒊 − ⟨𝜙exact (x, 𝑡)⟩𝒊 .
The solution norms are computed as

𝐿∞ = max
𝒊∈Ω

|𝐸𝒊 | ,

𝐿2 =

(
1
𝑁𝑐

∑︁
𝒊∈Ω

𝐸2
𝒊

) 1
2

,

𝐿1 =
1
𝑁𝑐

∑︁
𝒊∈Ω

|𝐸𝒊 | ,

where 𝑁𝑐 is the number of cells in the domain Ω. Convergence can be tested by the expectation on a grid having cell
size ℎ that error 𝐸ℎ = 𝑂 (ℎQ), and thus Q = log 𝐸𝑟ℎ

𝐸ℎ /log 𝑟 should be observed when 𝑟 is the refinement ratio.

VI. Results
To demonstrate the developed algorithm, solutions of projections, scalar advection, and diffusion were evaluated on

a set of simple embedded boundary geometries. To begin with, verification is performed for each part of the developed
algorithm. First, a potential flow case is examined to verify correctness of the projection operator, verify solution
accuracy in space, and determine stability. Next, manufactured solutions for the scalar diffusion equation are tested
to verify solution order of accuracy in space and time in the presence of boundary conditions. Following, analytic
solutions for the scalar advection equations are used to verify the solution order of accuracy in space and time, and

9

stability. Finally, the scalar advection and scalar diffusion equations are joined together, and again verified for solution
order of accuracy.

A. Potential Flow for a Circle in a Channel
The approximate projection operator P(u) is demonstrated to be both fourth-order accurate and stable by solving

for bounded potential flow. A geometry is generated by creating an embedded boundary grid with a circle of radius
0.15 placed in the center of a square domain of unit length, shown with a cell size of ℎ = 1/128 in Fig. 3. The left
boundary is specified as an inlet condition with unit velocity in the x-direction, the right boundary is specified by an
outlet condition, and the remaining boundaries are slip-walls with zero normal velocity. The initial solution is a potential
flow in an infinitely long domain evaluated for cell averages.

Stability of the approximate projection operator is demonstrated by showing that repeatedly applications of the
projection on a velocity field reduces the divergence towards zero. The velocity divergence Du and pressure gradient
G𝜙 from the projection are computed on a grid with cells size ℎ = 1/128 for 100 iterations and plotted in Fig. 4. These
quantities are shown to strictly decrease, showing stability of the high-order approximate projection.

Convergence tests are performed to ensure the spacial discretization achieves the targeted fourth-order accuracy. The
projection is applied once for grids of decreasing refinement, and the divergence field Du is used to evaluate the solution
error. The finest level is chosen with cell size ℎ = 1/128, and subsequent coarser levels each double ℎ. The 𝐿1, 𝐿2, and
𝐿∞ errors and convergence rates are calculated and listed in Table 2. The tabulated convergence rates approach the
expected fourth-order accuracy, but fail to maintain it consistently. Error in the solution is found to be focused around
both the regular and embedded boundaries. The failure to reach consistent fourth-order accuracy is attributed to using
an initial condition which does not exactly match the boundary conditions, but further investigation is required.

(a) The entire potential flow solution. (b) A closeup view of potential flow, showing the grid lines in
gray.

Fig. 3 Potential flow around a circle in a channel, where the left boundary is a uniform inlet, the right an
outlet, and all other boundaries slip walls. The streamlines are shown in black, and the contours plot the velocity
magnitude.

Table 1 Projection errors and convergence rates

𝑁 𝐿1 Rate(𝐿1) 𝐿2 Rate(𝐿2) 𝐿∞ Rate(𝐿∞)
32 3.02930758e-03 1.04956527e-02 6.93443497e-02
64 1.65516269e-04 4.193 8.52493945e-04 3.622 1.02405856e-02 2.759
128 1.48544088e-05 3.478 8.25666001e-05 3.368 1.15735534e-03 3.145

10

1 10 100
10−3

10−2

10−1

100

Iteration

L∞(Du)

L2(Du)

L1(Du)

(a) Error norms of the divergence of velocity.

1 10 100
10−6

10−5

10−4

10−3

10−2

Iteration

L∞(Gφ)

L2(Gφ)

L1(Gφ)

(b) Error norms of the pressure gradient.

Fig. 4 The 𝐿1, 𝐿2, and 𝐿∞ norms from repeated projections of the channel bounded potential flow over a
cylinder of grid size ℎ = 1/128.

B. Manufactured Solution for Diffusion inside a Circle
To demonstrate the accuracy of the diffusion equation 𝜕

𝜕𝑡
𝜙 = aL𝜙, a manufactured solution is employed. The

algorithm targets fourth-order in space and time using the high-order stencils described in section IV and the ImEx
scheme in section III. A circular domain is created of radius 0.3 centered about the point (0.5, 0.5) The manufactured
solution is defined on this domain by

𝜙(x, 𝑡) = sin(2𝜋𝑡) sin(𝑅2 − (x − x0)2) (34)

where 𝑅 = 0.3 matches the domain radius, and x0 = (0.5, 0.5) to match the domain center. The embedded boundaries
are specified by Dirichlet conditions with values determined by the manufactured solution. Following the method of
manufactured solutions, a source term is added to balance the equation. The source term is evaluated explicitly in time,
while the Laplacian term is evaluated implicitly. The solution is initialized to the fourth-order cell averaged form of the
manufactured solution at time 0.125, and uses a dissipation rate of a = 1. On the finest level, of grid size ℎ = 1/128, a
time step of 𝛿𝑡 = 0.1 is taken to advance the solution forward for 128 steps. Subsequent coarser levels double the cell
size and time step, while halving the time steps to reach the same end time. Using the chosen exact solution in Eq. (34),
the 𝐿1, 𝐿2, and 𝐿∞ errors and convergence rates are calculated and compiled in Table 2. The expected fourth-order
accuracy is demonstrated in all error norms, verifying the algorithm for scalar diffusion.

Table 2 Scalar diffusion convergence errors and rates

𝑁 𝐿1 Rate(𝐿1) 𝐿2 Rate(𝐿2) 𝐿∞ Rate(𝐿∞)
32 8.95629002-02 1.08337606-01 1.88167528-01
64 7.83876744-03 3.514 9.09994654-03 3.574 1.65467909-02 3.507
128 3.31932144-04 4.562 4.02585953-04 4.499 7.89145300-04 4.390

C. Advection inside a Periodic Channel
To show verification of the scalar advection equation 𝜕

𝜕𝑡
𝜙 = −A(𝜙), where in this case A = ∇ · (u𝜙), comparison to

an analytic solution is used. Analytic solutions to scalar advection are defined purely by shifts in the initial profile as a
function of time. The algorithm targets fourth-order in space and time using the high-order stencils described in section
IV and the explicit portion of the ImEx scheme in section III. The channel geometry is generated in a rectangle of unit

11

height. The left plane is defined by the normal vector (−4, 1) and intersects the point (0.5, 0.5). The right plane uses
the same normal vector, but intersects the point (1, 0.5). The top and bottom boundaries are periodic, and the left and
right boundaries are slip walls. The initial and exact solution is a Gaussian profile is defined by

𝜙(x) = 𝑎𝑒
−

| (x−x2
0 |

𝜎2 . (35)

The profile in Eq. (35), and shown in Fig. 5, is initialized along the left boundary about the point x0 = (0.5, 0.5) with
𝑎 = 1 and 𝜎2 = 1𝑒 − 2, with velocity vector u set to unit magnitude aligned with the channel. In the finest case, the grid
size is ℎ = 1/256, and the time step corresponds to a CFL number of 1 based on the grid spacing. Each coarser level
has the grid size and time step doubled from the finest. The profile is advected for a total of one unit in time, after which
the solution should return to the initial profile. Using the exact solution, 𝐿1, 𝐿2, and 𝐿∞ errors and convergence rates
are calculated and compiled in Table 3. The expected fourth-order accuracy is observed in all error norms, even in small
cells, verifying the algorithm for scalar advection. Of particular note, this solution achieves a stable high-order explicit
advection scheme at CFL of 1 without the use of cell merging or redistribution. This is a significant achievement for
embedded boundary methods, where small cell problems are typically problematic for explicit advection schemes.

(a) Solution 𝜙 of the advected Gaussian profile after one
periodic cycle in the angled channel, which is visually indis-
tinguishable from the initial condition.

(b) A close up view of the angled channel mesh and cell
volume fraction ^.

Fig. 5 Advection of a Gaussian profile in an angled channel. The channel is periodic in the vertical direction,
and imposes slip walls on the left and right boundaries.

Table 3 Scalar advection errors and convergence rates

𝑁 𝐿1 Rate(𝐿1) 𝐿2 Rate(𝐿2) 𝐿∞ Rate(𝐿∞)
64 8.13151344e-05 3.24451671e-04 3.90291704e-03
128 2.91882209e-06 4.800 1.27778440e-05 4.666 2.58432941e-04 3.917
256 1.02664699e-07 4.829 4.94748718e-07 4.691 1.56887807e-05 4.042

D. Advection-Diffusion for Solid Body Rotation inside a Circle
Prior results in sections VI.B and VI.C verify scalar advection and diffusion separately. Approaching the

incompressible Navier-Stokes equations, these two equations must be coupled and the resulting algorithm verified. The
scalar advection-diffusion equation is given by 𝜕

𝜕𝑡
𝜙 = −A(𝜙) + aL𝜙. Since few analytic solutions are available, the

Richardson extrapolation method is used with a “best” solution to compare against. The algorithm targets fourth-order

12

accuracy in space and time using the high-order stencils described in section IV and the ImEx scheme in section III
where the advection term is solved explicitly and the diffusion term implicitly. A circular geometry centered about
(0.5, 0.5) with radius of 0.3183 is specified, and zero valued Neumann boundary conditions are enforced. The initial
profile is in defined by the Gaussian profile in Eq. (35), and shown in Fig. 6, is initialized along the left most boundary
centered about the point x0 = (0.1817, 0.5) with 𝑎 = 1 and 𝜎2 = 1e-2. The velocity field for the solid body rotation is
specified as u1 = 𝜔(x1 − 0.5) u2 = −𝜔(x0 − 0.5). The rotation rate 𝜔 and diffusion rate a are both with unit values. At
the finest case, the grid size is ℎ = 1/128, and the time step is set corresponding to a CFL number of 1. Each coarser
level has the grid size and time step doubled from the finest. The profile is advanced in time for 3.14159 time units,
or half of a rotation by the velocity field. In Fig. 6 the initial and final solution profiles are shown. It is seen that the
initial profile diffuses while it travels along the boundary. Using the Richardson interpolated solution at resolution
ℎ = 1/256 as a reference, the 𝐿1, 𝐿2, and 𝐿∞ errors and convergence rates are calculated and compiled in Table 4. The
expected fourth-order accuracy is shown for in all error norms, verifying the algorithm for scalar advection-diffusion.
Conservation of the scalar with Neumann boundary conditions can be confirmed near round-off. As in the pure advection
case, it is particularly noteworthy that this algorithm achieves a stable high-order semi-explicit scheme at a CFL of 1
without the use of cell merging or redistribution.

(a) Initial profile of 𝜙. (b) Profile of 𝜙 run for half a rotation.

Fig. 6 Advection-diffusion of a Gaussian profile in a counter-clockwise rotating velocity field. The boundary
conditions are specified as zero valued Neumann boundaries.

Table 4 Advection-Diffusion convergence rate

𝑁 𝐿1 Rate(𝐿1) 𝐿2 Rate(𝐿2) 𝐿∞ Rate(𝐿∞)
32 1.41938306e-04 3.97170178e-04 2.57621273e-03
64 5.11025648e-06 4.795 1.40567604e-05 4.820 9.69850826e-05 4.731
128 2.51271473e-07 4.346 7.09506437e-07 4.308 6.33940341e-06 3.935

VII. Conclusions and Future Work
In this work, we demonstrate that our embedded boundary algorithm is fourth-order accurate. Additionally, our

algorithm is shown to be stable when encountering small cells, without cell merging, redistribution, or grid remediation
to avoid small cells. These results demonstrate the feasibility of high-order embedded boundary methods, and provide
confidence that the developed code can be extended to correctly solve engineering problems.

13

The immediate next step is to extend this algorithm for the incompressible Navier-Stokes equations. The primary
challenge of this will be implementing and testing the non-linear advection term, and then coupling that with the existing
diffusion and projection methods. Although this work only demonstrates two-dimensional results, the algorithm should
be dimension independent and we plan to verify it next in three-dimensions. We also hope to extend this higher-order
algorithm to the compressible Navier-Stokes equations, building on second-order methods previously published [3].
This introduces a number of additional challenges, such as computing more complicated non-linear upwind fluxes as
well as introducing limiters into weighted least-squares stencils.

A. Acknowledgements
LBNL co-authors were supported by the Applied Mathematics Program of the U.S. DOE Office of Advanced

Scientific Computing Research under contract number DE-AC02-05CH11231.

References
[1] Adams, M., Colella, P., Graves, D. T., Johnson, J. N., Johansen, H. S., Keen, N. D., Ligocki, T. J., Martin, D. F., McCorquodale,

P. W., Modiano, D., Schwartz, P. O., Sternberg, T. D., and Van Straalen, B., “Chombo Software Package for AMR
Applications—Design Document,” Tech. Rep. LBNL-6616E, Lawrence Berkeley National Laboratory, 2015.

[2] Guzik, S. M., Gao, X., Owen, L. D., McCorquodale, P., and Colella, P., “A Freestream-Preserving Fourth-Order Finite-Volume
Method in Mapped Coordinates with Adaptive-Mesh Refinement,” Comput. Fluids, Vol. 123, 2015, pp. 202–217.

[3] Graves, D. T., Colella, P., Modiano, D., Johnson, J., Sjogreen, B., , and Gao, X., “A Cartesian Grid Embedded Boundary
Method for the Compressible Navier Stokes Equations,” Comm. App. Math. Comp. Sci., Vol. 8, No. 1, 2013, pp. 99–122.

[4] Aftosmis, M., Berger, M., and Adomavicius, G., A parallel multilevel method for adaptively refined Cartesian grids with
embedded boundaries, 2000. doi:10.2514/6.2000-808.

[5] Richards, K., Senecal, P., and Pomraning, E., “CONVERGE 3.0*,” Convergent Science, Madison, WI, 2021.

[6] Berger, M. J., and Aftosmis, M. J., “Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow,” 50th
AIAA Aerospace Sciences Meeting, AIAA, 2012. https://arc.aiaa.org/doi/10.2514/6.2012-1301.

[7] Trebotich, D., and Graves, D. T., “An adaptive finite volume method for the incompressible Navier-Stokes equations in complex
geometries,” Comm. App. Math. and Comp. Sci., Vol. 10, No. 1, 2015, pp. 43–82.

[8] Devendran, D., Graves, D. T., Johansen, H., and Ligocki, T., “A fourth-order Cartesian grid embedded boundary method for
Poisson’s equation,” Comm. App. Math. and Comp. Sci., Vol. 12, No. 1, 2017, pp. 51–79.

[9] Chorin, A. J., “Numerical solution of the Navier-Stokes equations,” Mathematics of Computation, Vol. 22, No. 104, 1968, pp.
745–745. doi:10.1090/s0025-5718-1968-0242392-2, URL https://doi.org/10.1090/s0025-5718-1968-0242392-2.

[10] Bell, J. B., Colella, P., and Glaz, H. M., “A second-order projection method for the incompressible navier-stokes equations,”
Journal of Computational Physics, Vol. 85, No. 2, 1989, pp. 257–283. doi:10.1016/0021-9991(89)90151-4, URL https:
//doi.org/10.1016/0021-9991(89)90151-4.

[11] Martin, D. F., Colella, P., and Graves, D., “A cell-centered adaptive projection method for the incompressible Navier–Stokes
equations in three dimensions,” Journal of Computational Physics, Vol. 227, No. 3, 2008, pp. 1863–1886. doi:https:
//doi.org/10.1016/j.jcp.2007.09.032.

[12] McCorquodale, P., and Colella, P., “A high-order finite-volume method for conservation laws on locally refined grids,” Comm.
App. Math. Comput. Sci., Vol. 6, No. 1, 2011, pp. 1–25.

[13] Ascher, U. M., Ruuth, S. J., and Spiteri, R. J., “Implicit-explicit Runge-Kutta methods for time-dependent partial differential
equations,” Applied Numerical Mathematics, Vol. 25, No. 2, 1997, pp. 151 – 167. Special Issue on Time Integration.

[14] Martin, D. F., and Cartwright, K. L., “Solving Poisson’s equation using adaptive mesh refinement,” Tech. Rep. UCB/ERI
M96/66, University of California, Berkeley, 1996.

[15] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eĳkhout, V., Gropp, W. D., Kaushik,
D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang,
H., and Zhang, H., “PETSc Users Manual,” Tech. Rep. ANL-95/11 - Revision 3.9, Argonne National Laboratory, 2018.

14

https://arc.aiaa.org/doi/10.2514/6.2012-1301
https://doi.org/10.1090/s0025-5718-1968-0242392-2
https://doi.org/10.1016/0021-9991(89)90151-4
https://doi.org/10.1016/0021-9991(89)90151-4

[16] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F., “Efficient Management of Parallelism in Object Oriented Numerical
Software Libraries,” Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen,
Birkhäuser Press, 1997, pp. 163–202.

[17] Kennedy, C., and Carpenter, M., “Additive Runge-Kutta schemes for convection-diffusion-reaction equations,” Applied
Numerical Mathematics, Vol. 44, 2003, pp. 139–181.

[18] Zhang, Q., Johansen, H., and Colella, P., “A fourth-order accurate finite-volume method with structured adaptive mesh
refinement for solving the advection-diffusion equation,” SIAM J. Sci. Comput., Vol. 34, 2012, pp. B179–B201.

[19] Salari, K., and Knupp, P., “Code Verification by the Method of Manufactured Solutions,” Technical Report SAND2000-1444,
Sandia National Laboratories, June 2000.

15

	Introduction
	The Finite-Volume Method for Embedded Boundaries
	Projection Formulation for the Incompressible Navier-Stokes Equations
	Finite Volume Projection Formulation
	Advection-Diffusion
	Projection Formulation for Open Boundaries

	Embedded Boundary Spatial Discretization
	Multi-Dimensional Taylor Expansion
	Flux Reconstruction
	Higher-order EB Viscous Flux Stencil
	Higher-order EB Advection Flux Stencil
	Approximate Projection
	Physical Boundary Conditions
	Interpolation Neighborhoods

	The Problem of Small Cut Cells

	Time Marching Method
	Algorithm Verification
	Results
	Potential Flow for a Circle in a Channel
	Manufactured Solution for Diffusion inside a Circle
	Advection inside a Periodic Channel
	Advection-Diffusion for Solid Body Rotation inside a Circle

	Conclusions and Future Work
	Acknowledgements

