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Abstract 

Ligand-based Perspectives on the Evolution of Enzyme Function 

Ranyee A. Chiang 

 

Studying the evolution of enzymes and their functions improves our ability to 

determine the functions of unknown enzymes and engineer enzymes to perform new 

functions.  An enzyme’s function is determined by its sequence and structure and we can 

trace the evolution of enzymes and their function by analyzing their sequences and 

structures.  This dissertation describes work to extend these analyses of sequences and 

structures to use comparisons of enzyme functions in order to study enzyme evolution. 

The first studies described in this dissertation use “traditional” sequence and 

structure analyses follow the evolution of an especially complex superfamily of enzymes.  

We found that within the protein family that we were studying, despite having a single 

function and a single evolutionary origin, no sequence or structural motifs unique to this 

family could be identified.  We also found that sequence and structural determinants of 

specificity may lie outside of the active site.  These results show that the correlation 

between sequence, structure, and function is not always straightforward and demonstrate 

the need for direct analyses of functions to study enzyme evolution. 

In analogy to sequence and structure-based studies of enzyme evolution, we have 

examined a large number of enzyme superfamilies using a new computational analysis of 

patterns of substrate conservation.  The patterns that we observe among substrates during 

enzyme evolution suggest more complex patterns of functional divergence than what has 
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been proposed by previous theories of enzyme evolution.  The method has been 

automated to facilitate large-scale annotation of enzymes discovered in sequencing and 

structural genomics projects.  A data resource has been developed to share this data with 

researchers interested in improving predictions of enzyme function and in enzyme 

engineering. 

The final study presented describes work to select templates for structural 

genomics efforts.  The eventual goal is to increase the number of structures available to 

determine enzyme function and specificity using methods like comparative modeling, 

computational docking, and other experimental efforts. 
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Chapter 1  

Introduction 

1.1. Metabolism and Enzymes 

All living systems take in nutrients from their environment.  Animals eat, plants 

take in gases from the atmosphere and nutrients from the soil, and simpler organisms take 

in individual nutrient molecules.  Living systems actually use a more varied and often 

more complicated set of molecules than the basic nutrients that they ingest.  Thus, to 

survive, living systems must be able to chemically convert the simple set of nutrients into 

all the necessary forms.  Living systems also increase their chance of survival if they 

have a mechanism to chemically break down various toxins into less harmful forms.  

Living systems use enzymes to satisfy these basic survival needs. 

Enzymes, a subset of biological molecules called proteins, are essential for 

driving these chemical reactions in living systems.  They convert molecules (substrates) 

into a chemically different form by first attaching themselves (binding) to the substrate 

and then facilitating the substrate’s chemical change (catalyzing a chemical reaction).  An 

enzyme lowers the thermodynamic energy barrier for its reaction to proceed, often 

through the stabilization of transition states that are very unstable when the enzyme is not 
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present.  Each enzyme has the capability to catalyze a specific reaction on a specific 

substrate (or sometimes, on a set of substrates). (Fersht 1985)  An organism’s entire 

assortment of enzymes make up its metabolic network and allow the organism to perform 

all the different chemical reactions needed to convert nutrients into usable forms, break 

complex molecules down into usable pieces, and break down harmful or unneeded 

molecules to allow the pieces to be reused or excreted. 

1.2. Enzyme Function and Experimental Determination 

There are a several types of assays to confirm the substrate and product of an 

enzyme. (Bergmeyer 1974)  Using spectrophotometric methods, the appearance of a new 

product can be detected by a change in light absorbance that is associated with the 

substrate changing into a product.  The enzyme’s reaction can also be coupled with 

another enzyme and a downstream product can also be detected.  The heat absorbed or 

released during a chemical reaction can also be measured in calorimetric assays.  These 

assays can be used to monitor the substrate and/or product concentration over time which 

can then be used to calculate the maximum velocity (Vmax), reaction rates (kcat), substrate 

concentrations required for the enzyme (for KM, concentration required for enzyme to 

reach half of Vmax), and the efficiency of an enzyme (kcat/KM).  These values are most 

easily calculated for enzymes that follow Michaelis-Menten kinetics (Briggs et al. 1925).  

Using any the above methods requires that the substrate and/or product are known, or at 

least that the substrate and/or product have been narrowed to a smaller list of molecules 

that can be reasonably tested.  Therefore, methods for predicting an enzyme’s function in 

silico from its sequence or structure can greatly facilitate the experimental determination 

of an enzyme’s function.  Because sequence and structure information are expanding 
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quickly due to genomics, metagenomics (Riesenfeld et al. 2004), and structural genomics 

projects (Chandonia et al. 2006) and because experimental methods are time and resource 

intensive, it is often only possible to determine enzyme function computationally. 

1.3. Computational Prediction of Enzyme Function  

The general strategy for computationally predicting the function of 

uncharacterized enzymes usually involves finding homologous enzymes that are likely to 

perform the same function, and then transferring the function from the characterized to 

the uncharacterized enzyme.  This success of strategy depends on 1) the strategy used to 

find homologous enzymes and 2) how well the functions have been conserved between 

homologous enzymes.  These issues are discussed separately in the following paragraphs. 

The basic algorithm for finding homologous enzymes is the Basic Local 

Alignment Search Tool (Altschul et al. 1990).  Starting from the nucleotide or amino acid 

sequence of a given query enzyme, the BLAST algorithm is used to search sequence 

databases for other proteins with statistically significant sequence similarity.  While 

BLAST is suitable for finding closely to moderately related sequences, an iterative 

version of BLAST called PSI-BLAST (Altschul et al. 1997) is more appropriate for 

finding more distantly related sequences.  There are additional methods that can also be 

used to find homologs based on sequence similarity (Pegg et al. 1999; Krishnamurthy et 

al. 2005).  Each of these methods have their own strengths and weaknesses (Brenner et al. 

1998; Sauder et al. 2000), but in general, more distantly related proteins are harder to 

detect accurately than less distantly related proteins.  Because structures are more 

conserved than sequences, structural similarity can be used as additional evidence of 

common ancestry when sequence similarity is difficult to detect.  There are a number of 
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methods that can be used to detect homology by structure similarity (Holm et al. 1996; 

Shindyalov et al. 1998; Lupyan et al. 2005). 

Using these sequence and structure similarity methods to predict functions 

becomes more difficult with increasingly distant relationships.  Not only are these 

relationships harder to detect, functions are also less likely to be conserved at these 

distant levels of relatedness (Hegyi et al. 1999; Wilson et al. 2000).  In addition, the 

conservation of function is not uniform across different families (Glasner, Fayazmanesh 

et al. 2006) and superfamilies (Gerlt et al. 1998) – some sequences can diverge 

considerably while retaining the same function while other sequences can diverge very 

little and have different functions (Seffernick et al. 2001).  Several large-scale studies 

have examined the extent of the non-uniformity in the evolution of enzyme function 

(Rost 2002; Tian et al. 2003).  This variation in the evolution of enzymes leads to 

difficulties with predicting enzyme function accurately, and thus, many sequence 

databases are filled with erroneous annotations (Brenner 1999; Devos et al. 2001; Gilks et 

al. 2002). To understand how to improve the prediction of enzyme function, we need to 

examine in more detail the process of enzyme evolution and how functions are conserved 

or vary. 

1.4. Models of Enzyme Evolution 

Over time, changes in the genes that code for enzymes lead to variations in the 

enzymes themselves.  Some enzymes are more successful in catalyzing needed reactions 

and meeting new environmental demands.  These “fit” enzymes contribute to the survival 

of the individual organism with those enzymes, and, in turn, the survival of the enzymes 

themselves.  Inversely, enzymes that are detrimental to the organism will lead to the 
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organism being less likely to survive.  The primary mechanism that leads to diversity in 

the enzyme repertoire involves the duplication and then divergence of enzymes (Todd et 

al. 2001).  After an ancestral enzyme undergoes a gene duplication, there will be a 

redundant copy of the enzyme.  One copy of the enzyme, now free from functional 

constraints, can accumulate mutations.  This divergence leads to new enzymatic 

functions, both detrimental and beneficial, upon which natural selection can act.  There 

are several hypotheses that describe in more detail how enzymes and their functions 

diverge (Schmidt, Sunyaev et al. 2003) and these hypotheses are described in the 

following paragraphs. 

To understand how individual enzymes evolve, it is useful to examine how 

pathways of enzymes evolve.  Jensen first proposed in 1976 that new enzyme pathways 

are assembled by duplicating enzymes from different existing pathways in a patchwork 

fashion (Jensen 1976) (Figure 1.1).  This hypothesis, called the “patchwork hypothesis,” 

has subsequently been established by a number of examples and studies (Babbitt et al. 

1997; Copley 2000; Aharoni et al. 2005). 

 
Figure 1.1. Pathway evolution by the recruitment of enzymes from different pathways (Schmidt, 

Sunyaev et al. 2003) 

 

During the evolution of new pathways according to the patchwork hypothesis, it 

is easier to “reuse” an enzyme that already promiscuously or partially performs the 

function needed for the new pathway (O'Brien et al. 1999).  Thus, existing enzymes are 



  6 

recruited during evolution to perform modified functions while often maintaining some 

aspects of the ancestral function.  Consequently, among contemporary enzymes we 

observe groups of evolutionarily related enzymes that share some aspects of molecular 

function and differ in others.  The most divergent groups of evolutionarily related 

enzymes that still share aspects of function are called superfamilies.  Within a 

superfamily, we define a family as a set of proteins that perform the same overall 

catalytic reaction in the same way.   

Previously, both large-scale and focused studies of enzyme evolution have 

recognized two primary models of how function is conserved.  In the retro- or substrate-

conserved model of enzyme evolution, Horowitz’s original hypothesis describes how an 

existing enzyme in a pathway is duplicated and then evolves to convert new molecules 

into the substrate for the original enzyme in a metabolic pathway (Horowitz 1945; 

Horowitz 1965).  In the resulting pathway, the newly evolved enzyme will function to 

provide a reaction required upstream of the original enzyme (i.e., the product of the 

newly evolved enzyme would be the substrate for the parent).  In the second model, 

chemistry-constrained evolution, the ancestral enzyme, which can be from any pathway, 

is already promiscuous for or performs a fundamental type of chemistry (often a partial 

reaction) in common with the function of the daughter enzyme.  The aspect of catalysis 

shared by the ancestral and daughter enzymes is maintained through conservation of 

structural features such as active site residues (Babbitt et al. 1997; Gerlt et al. 2001; 

Porter et al. 2004).  The key difference between these two models is in the pattern of 

function conservation within each.  Related proteins that have diverged via the retro- or 

substrate-conserved model will bind substrates in common while the chemical reactions 
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with those substrates differ.  In the chemistry-constrained model, divergence can give rise 

to large superfamilies performing many different reactions. Members of such 

superfamilies will have conserved some aspect of the chemical reaction, which is often a 

partial reaction, while the substrates they use and their overall chemical reactions differ. 

1.5. Studying Enzyme Evolution 

The value of any analysis of the evolution of enzyme function depends on how we 

describe enzyme function, with respect to both the detailed molecular functions of 

individual enzymes and the properties of function shared across diverse members of 

enzyme superfamilies.  Previous approaches to study enzyme evolution range from 

detailed manual analyses of small numbers of related enzyme families and superfamilies 

to automated analyses of many superfamilies.  The former have often included not only 

analyses of sequences and structures but also comparisons of the substrates and reaction 

mechanisms of the constituent enzymes.  These studies have been useful for annotating 

new sequences and structures and for generating and testing hypotheses about patterns of 

enzyme evolution (see (Babbitt et al. 1996; Bessman et al. 1996; Holden et al. 2001; 

Allen et al. 2004; Mildvan et al. 2005) for examples).  However, because of the expert 

knowledge required and their time-intensive nature, these types of analyses are not 

feasible for large numbers of superfamilies.  Other semi-automated efforts have 

contributed to our understanding of enzyme evolution and data from these analyses have 

been made available in a number of online resources that include the Structure-Function 

Linkage Database (Pegg et al. 2006), MACiE (Holliday et al. 2007), the Catalytic Site 

Atlas (Porter et al. 2004), and EzCatDB (Nagano 2005).   
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Automated analyses (Shah et al. 1997; Todd et al. 1999; Schmidt, Sunyaev et al. 

2003) have used enzyme classification systems, like the Enzyme Commission (EC) 

system (Tipton et al. 2000), to represent functional properties and determine what 

properties are conserved.  The EC system represents a large proportion of known enzyme 

reactions, classifying each enzyme with a hierarchical set of four numbers that uniquely 

identify a reaction, and is easy to use for large-scale analyses.  However, this system, 

developed before analyses of enzyme evolution were common, does not provide a 

detailed description of enzyme function or substrates at the atomic level (Rison et al. 

2000).  Moreover, the EC classification of function often does not correspond with either 

the aspects of function that are conserved or those that can change during evolution.  

These issues make this system unsuitable for evaluating how enzyme function evolves, 

especially when evolutionary relationships are distant (Babbitt 2003).  For enzymes, the 

Gene Ontology (GO) system’s (Ashburner et al. 2000) molecular function classifications, 

also often used to describe and analyze function, largely recapitulate the EC system.  

Several groups have analyzed enzyme relationships and evolution on a large scale while 

using substrate and reaction similarities (Nobeli et al. 2005; Keiser et al. 2007; O'Boyle et 

al. 2007).  Although these similarity metrics are useful, especially for clustering enzymes 

by their substrate similarities, they are not informative about what specific aspects of 

function are conserved. 

To do large-scale and detailed studies of the general principles behind enzyme 

evolution, we first need a way to describe enzyme function that is both systematic and 

detailed.  With such a description, we can begin to look at how function is conserved 

during enzyme evolution, within specific superfamilies and among enzymes in general. 
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1.6. Outline of Thesis 

The overarching goal of this body of work is to examine how enzyme functions 

evolve by focusing on the molecules transformed by the enzymes.  Because the enzymes 

themselves also contribute to the story of how they evolve, enzyme sequences and 

structures are also the object of study in this thesis.  In addition providing new 

perspectives and information to improve our understanding of the constraints that drive 

enzyme evolution, our goal is also to improve our ability to predict enzyme function and 

engineer enzymes to perform new functions.  The following paragraphs outline the 

sections of this thesis and how the work in each of these sections contributes to these 

goals. 

The next chapter (Chapter 2) of this thesis demonstrates how traditional analyses 

of sequence and structure can be used to study how enzyme function evolves.  For a well-

studied enzyme superfamily, I report the results of two studies to trace the evolutionary 

history of individual families and analyze the conservation in sequence and structure to 

find specificity determinants.  The second study was done in collaboration with Dr. 

Margaret Glasner, who was the primary contributor.  For both studies, we were interested 

in how functions, especially functional promiscuity, vary within families and how that is 

determined by sequence and structure.  The results demonstrated that the situation is 

complicated.  To leverage additional information to clarify this complicated situation, we 

next turn to studying enzyme functions directly. 

We have extended analyses of conservation in sequence and structure to examine 

the conservation in enzyme substrates (Chapter 3).  We have used graph isomorphism 

algorithms to find the substructures that are conserved among all of the members of a 
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particular superfamily.  These analyses have been automated to enable us to study a large 

set of enzyme superfamilies.  The results for these superfamilies enable us to 1) probe 

general questions about how enzymes and their substrates evolve and 2) improve our 

ability to engineer new enzyme functions, and 3) improve the precision of predictions of 

enzyme function. 

To make this substructure information accessible and useful for researchers 

interested in enzyme evolution, function prediction, and enzyme engineering, we have 

created a data resource.  In Chapter 4, we describe how the conserved substructure 

information can be explored through this data resource.  Additionally, this resource 

allows researchers to examine function variation within one superfamily as well as for a 

particular enzyme. 

Because experiments to determine enzyme function are time and resource 

intensive, computational methods are required to predict functions or at least direct 

experimental researchers to which substrates to test.  The final chapter is focused on work 

to facilitate the prediction of enzyme substrates accurately in the absence of experimental 

information.  The docking strategy (Kitchen et al. 2004), that involves calculating how 

well different molecules fit into an enzyme’s active site and choosing the best-fitting 

molecules, requires the three-dimensional structure of the enzyme.  When there is no 

experimentally determined structure, comparative modeling (Baker et al. 2001) can be 

used to predict the enzyme’s structure based on the structure of a homologous enzyme.  

In Chapter 5, I describe a study to select targets for structural genomics efforts.  Dr. 

Ursula Pieper is the primary contributor on this project.  I contributed to the sequence and 

modeling analyses to find new superfamily members and select targets for crystallization.  
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The goal is to increase the number of experimental structures to increase the number of 

enzyme structures that can be modeled which then improves our ability to predict the 

functions of those enzymes through methods like docking. 
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Chapter 2  

Sequence Analysis to Find 

Determinants of Enzyme Specificity 

2.1. Introduction 

Although majority of this work is focused on ligands and how substrate 

specificity changes during enzyme evolution, because the substrate specificity is 

determined by an enzyme’s sequence and structure, it is also important to consider these 

pieces of the enzyme evolution picture.  In this chapter, I present two studies of how 

functional specificity is determined by variation in sequence and structure.  For the first 

study, I was the primary contributor.  For the second study, Dr. Margaret Glasner was the 

primary contributor and I performed the evolutionary trace and sequence analyses.  The 

results of this second study were published in 2006 (Glasner, Fayazmanesh et al. 2006) 

and the sections of the published work that relate to my contribution are included in this 

chapter. 

Before describing the results of these studies, I first discuss the sequence analysis 

method that was used in these studies (Section 2.1.1) and the enzyme superfamily that is 

the focus of these analyses (Section 2.1.2). 
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2.1.1. Evolutionary trace 

The evolutionary trace (ET) method (Lichtarge et al. 1996; Madabushi et al. 

2004) is commonly used to identify conserved sequence elements at different levels of 

divergence in a group of related proteins. Based on the input of a multiple sequence 

alignment, the ET method finds class-specific residues that have been evolutionary 

conserved in and are specific to a superfamily, subgroup, or family. In other words, the 

class-specific residues are not only conserved within that particular class, they are also 

not conserved between different classes (Figure 2.1). When mapped to a protein’s 

structure, the class-specific residues often correspond to functionally important residues 

(Madabushi et al. 2002).  When the different ET classes correspond to different enzyme 

functions, class-specific residues often correspond to residues that mediate the 

differences in specificity and function.  The documentation and code for our 

implementation of evolutionary evolution can be found in Appendix A. 

 

Figure 2.1. Evolutionary trace example. 

Residues in red are class-specific for Family 1.  Residues in gold are class-specific for Family 2.  

The aspartic acid (D) at the 11th position is conserved but not class-specific, as the same amino 

acid residue is conserved across multiple families. 
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2.1.2. Evolution of the enolase superfamily 

Studying protein evolution requires identification of homologous proteins that 

have evolved to perform different functions, such as those found in mechanistically 

diverse superfamilies.  Mechanistically diverse superfamilies are defined as groups of 

homologous proteins which are unified by a common chemical attribute of catalysis, 

although overall reactions can be quite different.(Gerlt et al. 2001)  Here, we focus on the 

enolase superfamily, which includes enzymes catalyzing at least 14 different 

reactions.(Gerlt et al. 2005)  All enolase superfamily enzymes utilize a common partial 

reaction in which a proton alpha to a carboxylate is abstracted by a base, leading to a 

metal-stabilized enolate anion intermediate.  Apart from this conserved partial reaction, 

the overall reactions catalyzed by enzymes in this superfamily are quite divergent, 

including racemization, β-elimination, and cycloisomerization.  Very few residues are 

required for the superfamily partial reaction; three metal-binding residues are well 

conserved across the superfamily, but the identity and position of the general base is not 

universally conserved. 

Enolase superfamily proteins are composed of two domains, a ∼200 amino acid 

C-terminal modified (β/α)8-barrel domain ((β/α)7β)) and a ∼100–150 amino acid α+β 

domain comprised of elements from both the N and C termini, which we call the capping 

domain (Figure 2.2).  As with other (β/α)8-barrel domain proteins, the active site is 

nestled in a depression formed by the C-terminal ends of the β-strands of the barrel 

domain.  The capping domain is structurally conserved among all members of the enolase 

superfamily and has not been found in combination with any other (β/α)8-barrel domain 

protein superfamily, with domains of other folds, or as a single domain protein.  Thus, it 
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appears that the two domains have been co-evolving since the origin of the enolase 

superfamily.  The capping domain closes the active site and appears to play a role in 

determining substrate specificity and conformational changes that occur upon substrate 

binding.  These functions are thought to be primarily mediated by two N-terminal loops, 

centered around positions 20 and 50 (numbering defined relative to Escherichia coli o-

succinylbenzoate synthase; PDB identifier 1FHV), which will be referred to as the 20s 

and 50s loops.  In most enolase superfamily members, the 20s loop is disordered in the 

absence of ligand, and ordering of this loop upon substrate binding results in interactions 

with the ligand and shields the active site from solvent.(Lebioda et al. 1988; Neidhart et 

al. 1991; Landro et al. 1994; Wedekind et al. 1994; Gulick et al. 2000; Thompson et al. 

2000)  The domain structure and the 20s and 50s loops are the focus of Section 2.3. 

 

Figure 2.2. Capping and barrel domains in the enolase superfamily. 

 

Categorizing superfamily members into families, or groups of proteins sharing the 

same function, is often accomplished by establishing a sequence similarity 

threshhold.(Todd et al. 1999; Devos et al. 2000; Wilson et al. 2000; Rost 2002; Tian et al. 

2003)  However, families in the enolase superfamily, as in other superfamilies, have most 
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likely diverged at different rates or at different times during evolutionary history, making 

it difficult to define a similarity score cutoff that separates different isofunctional 

families.  The o-succinylbenzoate synthase (OSBS) family poses a particularly thorny 

problem.  First, sequence similarity between some OSBSs barely exceeds random 

similarity scores expected between unrelated proteins, making it impossible to define a 

similarity score that encompasses all OSBSs but excludes proteins of other functions.  

Second, a promiscuous protein from Amycolatopsis sp. T-1-60 that shares 42% identity 

with the OSBS from Bacillus subtilis catalyzes both OSB synthesis and N-acylamino acid 

racemization (Palmer et al. 1999).  Even experimental characterization does not 

adequately determine the physiological function of this enzyme, since it catalyzes OSB 

synthesis and racemization of N-succinylphenylglycine at equivalent rates.(Taylor Ringia 

et al. 2004)  Thus, the OSBS/N-acylamino acid racemase (NAAAR) family is an 

especially interesting subject for investigating protein evolution because it includes both 

extremely divergent enzymes having the same function and very similar enzymes having 

different functions and is the focus of the following section (Section 2.2). 

2.2. Evolution of Structure and Function in the o-Succinylbenzoate 

Synthase/N-Acylamino Acid Racemase Family 

2.2.1. Introduction 

The evolution of new protein functions is a major puzzle in biochemistry. Given 

that closely related proteins can have different functions, and distantly related proteins 

can have the same function, what kinds of structural alterations are required or tolerated 

during protein evolution? In addition, what characteristics of a particular protein 
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determine its degree of evolvability, or the likelihood that it will evolve a new function? 

Some previous work has indicated that evolution often proceeds through promiscuous 

intermediates(Ycas 1974; Jensen 1976; Hughes 1994; O'Brien et al. 1999; Schultes et al. 

2000; Gerlt et al. 2001; Matsumura et al. 2001; Copley 2003; Schmidt, Mundorff et al. 

2003; Aharoni et al. 2005) and that conformational flexibility of surface loops near the 

active site might contribute to promiscuous substrate binding and hence to the evolution 

of promiscuous functions(James et al. 2003). Unfortunately, there are still few proteins 

whose evolution, structure, and function have been analyzed in enough detail to fully 

evaluate these hypotheses. With the advent of large-scale genomic sequencing we are 

poised to answer these questions. Understanding how proteins evolve will help address 

several longstanding problems in biochemistry, including how to redesign proteins in the 

laboratory and how to predict function from sequence and structure. 

Here, we have studied the evolution of the OSBS/NAAAR family. This study 

begins to answer several questions about how function and structure evolve in extremely 

divergent protein families. First, what sequence and structural features must be conserved 

to maintain function in extremely divergent families? Second, by what mechanisms do 

proteins evolve new functions? And finally, what functional and structural characteristics 

of a protein make it more or less capable of evolving a new function? Our study of the 

OSBS/NAAAR family’s evolution demonstrates that sequence, structure, and modes of 

substrate binding are surprisingly malleable. In addition, we have identified a number of 

proteins of unknown function whose experimental characterization would be valuable for 

understanding evolutionary relationships and structural determinants of catalysis in the 

enolase superfamily. We also demonstrated that the accuracy and extent of functional 
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annotation could be improved using rigorous phylogenetic reconstruction accompanied 

by analysis of genomic context. Lastly, our in depth analysis of the evolution, structure 

and function of the OSBS/NAAAR family identified several characteristics of 

Amycolatopsis OSBS/NAAAR which might enhance its evolvability relative to other 

OSBSs. 

2.2.2. Methods 

Identification of menaquinone pathway genes 

Menaquinone biosynthesis genes were identified in complete and incomplete 

genomes using the Seed Annotation and Analysis Tool from the Fellowship for 

Interpretation of Genomes (FIG).(Overbeek et al. 2004) Genes were initially annotated as 

menaquinone pathway genes if the percent identity of a pairwise protein alignment 

covering >90% of the length of a characterized menaquinone pathway protein was >40%. 

Experimentally characterized menaquinone pathway proteins include all pathway 

proteins from E. coli; menB, menC, menD, menE, and menF from B. subtilis; ubiE from 

Geobacillus stearothermophilus; and menA and menB from Synechocystis sp. PCC 

6803.(Meganathan et al. 1981; Taber et al. 1981; Driscoll et al. 1992; Rowland et al. 

1995; Koike-Takeshita et al. 1997; Palmer et al. 1999; Johnson et al. 2000; Meganathan 

2001) As a second criterion, genes were annotated as encoding a menaquinone pathway 

protein if they were five or fewer genes distant from another menaquinone pathway gene 

and their proteins had BLAST expectation values <10−20 relative to reliably annotated 

menaquinone pathway proteins when searching the nr database. Most of the remaining 

genes were provisionally assigned functions if their proteins share ∼25%–40% identity 

with a characterized menaquinone pathway protein and nearly all proteins identified as 
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being similar (BLAST E-values <10−5 using the nr database) are annotated as having that 

function. 

Identification of MLE subgroup members 

The initial enolase superfamily data set was downloaded from the Structure-

Function Linkage Database (SFLD).(Pegg et al. 2005; Pegg et al. 2006) Additional 

superfamily members were identified using a subset of the superfamily filtered to include 

only proteins sharing <35% identity as input for Shotgun.(Pegg et al. 1999) This program 

performs a BLAST search (Altschul et al. 1990) of each input sequence and outputs a 

score indicating the number of input sequences that find a given BLAST hit, allowing 

homologs which have barely significant BLAST E-value scores to be identified. These 

sequences were then manually screened to remove fragments and to verify that they 

contained the canonical catalytic residues of the enolase superfamily. The final enolase 

superfamily data set was compared to HMMs from the SFLD to classify sequences into 

subgroups and isofunctional families. All further analyses were performed using protein 

sequences matching the MLE subgroup HMM with expectation values <10−18 and any 

other enolase superfamily sequences, which could not be classified into a subgroup or 

family by the HMMs. 

Phylogenetic analysis 

The MLE subgroup and outlying enolase superfamily members were aligned 

using Muscle v.3.52. (Edgar 2004) The initial alignment was manually refined using 

structural alignments of muconate lactonizing enzyme (1MUC), L-Ala-D/L-Glu 

epimerase (1JPM and 1JPD), N-acylamino acid racemase (1SJB and 1XS2), and OSBS 

(1FHV and B. bacteriovorus OSBS). Structural alignments were generated by MinRMS 
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(Jewett et al. 2003) and the structure matching and alignment feature of UCSF Chimera 

from the Resource for Biocomputing, Visualization, and Informatics at the University of 

California, San Francisco (supported by NIH P41 RR-01081). (Pettersen et al. 2004) 

Phylogenetic reconstruction was performed using Bayesian and distance methods. 

Bayesian trees were constructed with MrBayes v3.1.1(Ronquist et al. 2003; Altekar et al. 

2004) under the WAG amino acid substitution model(Whelan et al. 2001) using a gamma 

distribution to approximate rate variation among sites. 

Distance trees were constructed using the NEIGHBOR program in 

PHYLIP(Felsenstein 2004) under the JTT amino acid substitution model(Jones et al. 

1992) and a gamma distribution of rate variation among sites using the alpha parameter 

estimated in the Bayesian analysis. Trees produced by the two methods were similar, 

although the Bayesian method produced trees with higher resolution and branch 

confidence values. Accession numbers of sequences and species abbreviations used for 

phylogenetic analysis are listed in the supplementary data (Tables 1, 2, 3, 4) of (Glasner, 

Fayazmanesh et al. 2006). In general, species names are abbreviated using the first three 

letters of the genus and first two letters of the species. The strain is indicated if multiple 

strains of the same species were used in the analysis, and Bacteroides is abbreviated with 

‘‘Bct’’ to avoid confusion with Bacillus.  

Sequence analysis  

Sequence conservation was analyzed by comparing the aligned OSBS/NAAAR, 

MLE, and AEE families. Family assignments of MLE and AEE proteins were taken from 

the SFLD, which uses HMMs and information from the literature to assign proteins to 

families. Conserved positions were defined as those in which >90% of family or 
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subfamily members have the same amino acid residue. Phenylalanine and tyrosine or 

aspartate and glutamate were treated as equivalent. Conserved residues were mapped 

onto the structures of 1FHV (E. coli OSBS) and 1SJB (Amycolatopsis OSBS/NAAAR) 

in Chimera.(Pettersen et al. 2004) 

Structural analysis 

Structural superpositions of the whole proteins, capping domains, and barrel 

domains of 1SJB, 1FHV, B. bacteriovorus OSBS, and 1MUC were generated from the 

structure-based sequence alignment of the MLE subgroup using the Match feature of 

Chimera or Combinatorial Extension (CE)(Shindyalov et al. 1998).  

2.2.3. Results 

Summary of phylogenetic analysis results 

To understand the evolution of the OSBS/NAAAR family, we began by 

identifying species which must have OSBS activity.  We identified 127 strains in which 

at least five of the eight menaquinone pathway genes could be identified (Figure 2.3). In 

organisms in which most menaquinone pathway genes were identified, some or all are 

colocalized in the genome and are likely to be coregulated as operons. 
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Figure 2.3. Genomic context of menaquinone biosynthesis genes. 

All identified menaquinone synthesis genes are shown as arrows; hollow arrows indicate 

provisional assignments, as defined in Section 2.2.2. Menaquinone synthesis genes have been 

aligned to show similarities in gene order; as a result, spaces between genes are not proportional to 

the length of the DNA separating the genes. Each horizontal segment indicates a contiguous DNA 

segment. The genomes of some species have multiple chromosomes or have not been completely 

assembled, as indicated by gaps between segments. Hash marks indicate an intervening region 

encoding > 40 genes. Smaller intervening regions are shown as light grey arrows with the number 

of intervening genes and their orientation on the chromosome indicated. 

 

The difficulty of unequivocally identifying OSBSs based on sequence similarity 

and genome context is in agreement with the observation of Palmer et al. that OSBSs are 

extremely divergent and can share < 15% identity(Palmer et al. 1999). In fact, some 

putative OSBSs are barely recognizable as enolase superfamily members. For instance, 

sequence similarity searches using the OSBS from Bdellovibrio bacteriovorus as a query 
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identifies another very divergent, putative OSBS as the best match, but the E-value (0.05) 

is barely significant. Thus, we speculated that OSBS activity might have evolved multiple 

times within the enolase superfamily. To investigate this hypothesis and to understand 

how the NAAAR-like proteins from organisms lacking menaquinone are related to 

OSBS, we examined the phylogeny of a subset of the enolase superfamily comprised of 

288 sequences which includes all OSBS candidates, the rest of the MLE subgroup, and 

any other enolase superfamily members which could not be assigned to a subgroup or 

family by Hidden Markov Models (HMMs) created to describe OSBS and other enolase 

superfamily members in the Structure-Function Linkage Database (SFLD) (Pegg et al. 

2005; Pegg et al. 2006). Contrary to our hypothesis, the phylogenetic tree of a 

representative subset of these sequences demonstrated that all OSBSs and NAAAR-like 

proteins are included in a single clade (Figure 2.4). Although the resolution at many 

interior nodes is low, the branch confidence value separating the OSBS/NAAAR family 

from the rest of the MLE subgroup is 1.00. This result confirms that the OSBSs identified 

by sequence similarity and genomic context, including those that are too divergent to 

match the MLE subgroup HMM and those that are not encoded near other menaquinone 

pathway genes, belong to the OSBS/NAAAR family. In addition, this result strongly 

suggests that this family had a single evolutionary origin, because rooting the tree with 

MLE or AEE, the closest known paralogs of the OSBS/NAAAR family(Babbitt et al. 

1996), leaves the family as a monophyletic group. 
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Figure 2.4. Bayesian phylogenetic tree of proteins in the MLE subgroup. 

A representative set of 54 proteins was selected from the 288-protein subgroup by using only 

proteins sharing < 40% identity. The predicted or verified function is indicated by the prefix 

“osbs”, “aee”, or “mleI”, and characterized proteins are indicated with an asterisk (*). Proteins of 

unknown function are prefixed by “unk”. OSBS/NAAAR family members are shown in red, 

characterized AEEs are in green, and MLE I is in blue. Other possible AEEs are in gray, but they 

cluster with the characterized AEEs with only moderate statistical support. Proteins of unknown 

function are in black. Branch confidence values are indicated as solid circles (≥ 0.95), hollow 

circles (0.7-0.94), or no indication (0.5-0.7). 

 

Diversity in the OSBS/NAAAR family 

Having performed a comprehensive survey of the distribution of the 

OSBS/NAAAR family, we were interested in reevaluating the family’s diversity to 

discover whether it is unusually divergent compared to other protein families, as 

suggested previously (Palmer et al. 1999). Initially, we compared lengths of 

OSBS/NAAAR family trees to tree lengths of other families in the menaquinone pathway 
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or enolase superfamily. Tree length (measured as substitutions per site) is expected to be 

the most accurate measure of sequence divergence, because it corrects for multiple 

substitutions per site. In comparisons of trees built using sequences from the same set of 

species, the length of OSBS/NAAAR trees were usually at least twice as long as those of 

other protein families, indicating that the OSBS/NAAAR family has indeed evolved at a 

much faster rate (data not shown). However, the topology of the OSBS/NAAAR tree was 

similar but rarely identical to the topology of trees built using other families, even when 

using subsets of the OSBS/NAAAR family that are well resolved on the phylogenetic 

tree.  

Because the significance of comparing lengths of trees that have different 

topologies is uncertain, we also calculated pairwise percent sequence identities, even 

though these are a more approximate measure of evolutionary distance. Comparison of 

OSBSs and menBs from a wide taxonomic distribution agree well with those previously 

reported, with menB proteins generally sharing > 40% identity while OSBSs from the 

same set of species generally share < 30% identity (Palmer et al. 1999). To gain a better 

perspective concerning the divergence of the OSBS family, we compared minimum and 

average percent identities of the OSBS family to other families in the enolase superfamily 

and menaquinone pathway (Table 2.1). For each comparison, the set of OSBSs and the 

set of proteins from the compared family were taken from the same set of species. 

Compared to other families in the enolase superfamily, the OSBS family is unusually 

divergent. However, comparison to other proteins in the menaquinone pathway reveals a 

different picture. Although MenB is extremely well-conserved, the sequence divergence 

of MenD and MenE is more similar to OSBS. On average, the OSBS family is slightly 
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more divergent than the MenD or MenE families, but because percent identity is only a 

rough approximation of evolutionary distance, it is unclear whether the OSBS family is 

significantly more divergent than these proteins. Thus, although the OSBS family is 

unusually divergent for the enolase superfamily, it is less extraordinary compared to other 

proteins in its pathway. 

Table 2.1. Relative divergence of the OSBS family 

Family for 
comparison 

Number of 
species

a 
Compared family

b 
OSBS

b 

  
Average  

% identity 
Minimum 
% identity 

Average  
% identity 

Minimum 
% identity 

Enolase
c
   66 56 27 26 15 

Galactonate 
dehydratase

c 
8 55 32 31 20 

Glucarate 
dehydratase

c, d 
11 78 66 45 20 

AEE
c 

30 38 24 33 18 

MenB   67 58 35 26 14 

MenD 66   32 21 26 14 

MenE  67 27 14 26 14 
aOSBSs were compared to proteins from a second family which were taken from the same set of 

species as the OSBSs. 
bPercentage identities were calculated as number identical/length of the longer sequence from pair-

wise alignments generated by ALIGN.83. E.W. Myers and W. Miller, Optimal alignments in linear space, 
Comput. Appl. Biosci. 4 (1988), pp. 11–17. View Record in Scopus | Cited By in Scopus (432)83 

cSome NAAAR-like proteins not encoded in menaquinone operons are included in the OSBS 
family. 

dGlucarate dehydratase related protein, which has an unknown function was excluded. 
 

In addition to being more divergent than other families in the enolase superfamily, 

the OSBS/NAAAR family is unusual in that it includes proteins catalyzing at least two 

different reactions. Surprisingly, the NAAAR-like proteins are not among the more 

divergent proteins in the family, but are closely related to proteins identified as OSBS 

based on genomic context and experimental evidence(Palmer et al. 1999). As shown 

above, phylogenetic analysis failed to separate the NAAAR-like proteins into a separate 
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clade. In fact, most NAAAR-like proteins which are not encoded in menaquinone 

operons share > 40% identity with B. subtilis OSBS. Only the genomic position of the 

genes encoding NAAAR-like proteins hints that their function might differ from the 

menaquinone operon-encoded OSBSs. 

Conservation of sequence in the OSBS/NAAAR family 

Despite the high sequence divergence of the OSBS/NAAAR family, all proteins 

in the family form a single clade in the MLE subgroup phylogenetic tree, indicating that 

there must be conserved sequence information that differentiates this family from the rest 

of the MLE subgroup. To identify conserved residues specific to the OSBS/NAAAR 

family, we compared the pattern of sequence conservation among the OSBS/NAAAR, 

MLE, and AEE families. For this analysis, the OSBS/NAAAR family was treated as a 

single unit or divided into subfamilies representing clades containing at least five 

sequences (γ-Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, and 

Firmicutes/NAAAR-like proteins), as indicated in Figure 2.5. Except for unk.Thefu 

(gi23018694 from Thermobifida fusca), the NAAAR-like proteins were included with the 

Firmicute OSBSs because they could not be cleanly separated based on phylogeny or the 

presence of the menaquinone operon. In addition, the AEEs were divided into two groups 

comprised of close relatives of characterized E. coli or B. subtilis epimerases because the 

clade including both groups had poor statistical support on the MLE subgroup 

phylogenetic tree (Figure 2.4).  
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Figure 2.5. Bayesian phylogenetic tree of the proteins in the OSBS/NAAAR 

Branch confidence values are shown as in Figure 2.4. A) The OSBS/NAAAR family. To build the 

tree, the full set of OSBS/NAAAR proteins was filtered to remove proteins sharing > 94% identity 

with any other in the set. Proteins are colored according to phylum, and arcs indicate the main 

subfamilies. Proteins in gray are environmental sequences derived from the Sargasso Sea data set 

(Venter et al. 2004). A plus sign (+) indicates NAAAR-like proteins found in strains in which 

menaquinone synthesis genes could not be identified. An asterisk (*) identifies proteins which are 

not encoded in menaquinone operons but are found in strains which have the menaquinone 

pathway. 

 

The pattern of sequence conservation is summarized in Figure 2.6, in which 

residues conserved in > 90% of subfamily members are highlighted in magenta, and 

residues conserved in both > 90% of the subfamily and > 90% of the entire MLE 

subgroup are highlighted in black. The only residues conserved throughout the entire 



  29 

MLE subgroup are the catalytic residues in the barrel domain, except for the lysine on 

barrel domain strand β6 (Bar- β6) which is replaced by tyrosine or arginine in some MLE 

subgroup members, including one branch of the Cyanobacteria OSBS subfamily. For 

these Cyanobacteria OSBSs, an arginine at this position might have little effect on 

catalysis, because the lysine at this position in E. coli OSBS appears to stabilize the 

enediolate intermediate rather than act as a general acid/base catalyst(Klenchin et al. 

2003). The other highly conserved residues in the MLE subgroup appear to be involved 

in maintaining the structure. For instance, the conserved elements of capping domain 

strand β3 and helix α3 (Cap-β3 and Cap-α3) are adjacent and probably important for 

capping domain structure, and the glycine before Bar-β6 is located in a tight turn. Other 

than these residues, the pattern of sequence conservation is somewhat variable. Although 

some groups appear to have greater numbers of conserved residues, this is mostly 

because these groups are small (e.g. the Bacteroidetes group) or include sequences of 

limited diversity (e.g. MLE and AEE groups, in which sequences share > 40% identity). 

In comparison, the Firmicutes/NAAAR-like subfamily includes more divergent 

sequences; it should be noted that the most divergent sequences in this group (osbs.Staau, 

osbs.Staep, osbs.Lacla, osbs.Desha, osbs.Leume, and osbs.Exi) are menaquinone operon-

encoded OSBSs, not NAAAR-like proteins.  



  30 

 

Figure 2.6. Analysis of sequence conservation in the OSBS/NAAAR family 

The sequence alignment shows representatives of each of the five OSBS/NAAAR subfamilies, the 

MLE family, and two AEE subfamilies. The membership of each OSBS/NAAAR subfamily is 

shown in Figure 2.5, as indicated by the arcs, with the exception that the NAAAR-like T. fusca 

protein (unk.Thefu) was not included in this analysis. γ-Proteobacteria is represented by 
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OSBS.16130196.Escco, Cyanobacteria by OSBS.33864323.Proma, Bacteroidetes by 

OSBS.53712611.Bctfr, Actinobacteria by OSBS.17367875.Myctu, and the Firmicute/NAAAR-

like protein subfamily by NAAAR.2147746.Amy. The membership of the AEE subfamilies and 

the MLE family consists of proteins sharing > 40% identity with each sequence that is shown. 

Magenta residues indicate conservation in > 90% of subfamily members, and black residues 

indicate conservation in both > 90% of the subfamily and > 90% of the entire MLE subgroup.  

Gray numbers indicate the length of segments that are not shown. Secondary structure of the 

capping and barrel domains are indicated by Cap- and Bar-, respectively. Catalytic residues are 

indicated by a five-pointed star below the sequences. Positions of residues lining the active site 

pocket are indicated for E. coli OSBS (�), Amycolatopsis OSBS/NAAAR (�), and B. 

bacteriovorus OSBS (�, sequence not shown). Solid symbols represent residues < 5 Å away from 

bound OSB, and open symbols indicate residues 5-6 Å away from the ligand. The arrow indicates 

the position of the glutamate or aspartate to glycine mutation that confers OSBS activity on E. coli 

AEE or Pseudomonas sp. P51 MLE II(Schmidt, Mundorff et al. 2003). 

 

Surprisingly, the results of this analysis indicate that there are no conserved 

residues shared by all five OSBS/NAAAR subfamilies, other than residues also shared 

with the rest of the MLE subgroup. Conserved residues within subfamilies are most likely 

to fall in regions near the active site, either on two loops of the capping domain or on the 

strands or loops of the barrel domain. Although one or more OSBS/NAAAR subfamilies 

often has conserved residues at the same position, the identities of those residues are 

rarely the same. In cases where the residue identity is conserved, the same residue is 

often present in the MLE or AEE families. Thus, although the OSBS/NAAAR family is 

phylogenetically unified and most, if not all (including characterized NAAAR-like 

proteins) catalyze the OSBS reaction, there are no unique OSBS/NAAAR family motifs 

to differentiate them from other MLE subgroup members. 
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Summary of structural analysis results 

To understand how substrate specificity is conserved with so little sequence 

conservation, we compared the structures of E. coli OSBS bound to the substrate or OSB 

(1FHV and 1R6W), Amycolatopsis OSBS/NAAAR bound to OSB (1SJB), and B. 

bacteriovorus OSBS bound to OSB (coordinates generously provided by Alexander 

Fedorov, Elena Fedorov and Dr. Steven Almo, Albert Einstein College of 

Medicine)(Thompson et al. 2000; Klenchin et al. 2003; Thoden et al. 2004). In all three 

structures, residues lining the active site pocket are in homologous positions, and these 

residues tend to be more highly conserved within and between subfamilies than regions 

distant from the active site (Figure 2.6). The structures exhibit similar hydrophobic 

interactions between the benzene ring of OSB and the 50s loop, in which at least one of 

the residues interacting with ligand is aromatic. Most members of the OSBS/NAAAR 

family (and many other members of the MLE subgroup) have aromatic residues at one or 

both positions, suggesting that this hydrophobic pocket is important for ligand binding.  

In contrast to these similarities, there are also some striking differences in active 

site structure, which might contribute to differences in function and inherent evolvability. 

As previously reported, the conformation of OSB differs in the Amycolatopsis and E. coli 

enzymes(Thoden et al. 2004). In Amycolatopsis, the succinyl tail of OSB is extended, 

while it is bent in E. coli and B. bacteriovorus (Figure 2.7). Likewise, the succinyl or 

acetyl moieties of N-acylamino acid substrates also lie in extended conformations in 

Amycolatopsis OSBS/NAAAR. For N-succinyl-methionine, this conformation provides 

suitable hydrogen bond donors and acceptors, which are unavailable in E. coli OSBS, 



  33 

accounting for the inability of E. coli OSBS to racemize this substrate(Thoden et al. 

2004). 

 

Figure 2.7. Comparison of OSB binding orientation 

Amycolatopsis OSBS/NAAAR (1SJB) is red, E. coli OSBS (1FHV) is cyan, and B. bacteriovorus 

OSBS is green. 

 

The second major difference among these structures is the position of the 20s loop 

(Figure 2.8, top). In spite of its proximity to the active site, the 20s loop is poorly 

conserved within and between different subfamilies. The lack of conservation might be 

explained by the necessity of compensatory mutations to accommodate other structural 

changes, such as shifts in the orientation between the two domains, although there might 

also be consequences for the catalytic activity (see below). In Amycolatopsis 

OSBS/NAAAR bound to OSB, the 20s loop contacts the catalytic lysine that acts as a 

general base (the second lysine in the KXK motif), sandwiching it between the loop and 

the barrel and orienting it appropriately for proton abstraction. In contrast, the 20s loop of 

E. coli OSBS bound to either substrate or product does not contact the barrel, leaving the 

active site slightly open and the catalytic lysine disordered and solvent accessible. 

Similarly, the catalytic lysine is also solvent accessible in B. bacteriovorus OSBS, 

although the 20s loop is disordered, even when OSB is bound (data not shown). 
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Figure 2.8. Comparison of the 20s and 50s loop positions in E. coli OSBS and Amycolatopsis 

OSBS/NAAAR 

The native structures are shown in the top panels. In the bottom panels, the capping domain of 

Amycolatopsis OSBS/NAAAR has been rotated to match the position of the E. coli OSBS capping 

domain (left), and the E. coli OSBS capping domain has been rotated to match the Amycolatopsis 

OSBS/NAAAR capping domain (right). Metal binding residues and the metal ion are shown in 

green, the Bar-β2 lysine that acts as the general base is shown in blue, the Bar-β6 lysine required 
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for catalysis is purple, and residues on the 20s and 50s loops that contact the ligand are in orange. 

The carbon from which the proton is abstracted is shown in black. 

 

We hypothesize that these structural differences might contribute to differences in 

binding specificity and catalysis among these enzymes, as well as to their capacities to 

evolve new functions, as discussed below. 

In order to understand the consequences of domain orientation on the structure of 

the active site and the function of the enzymes, we analyzed the effect of twisting the E. 

coli OSBS capping domain to match the orientation of the Amycolatopsis OSBS/NAAAR 

capping domain (Figure 2.8, bottom). To do this, the capping and barrel domains were 

superimposed separately on the Amycolatopsis enzyme. Twisting the E. coli capping 

domain shifts the 20s and 50s loops ~ 6 Å down toward Bar-β2. As a result, the 20s loop 

is no longer in contact with the ligand. Instead, it now approaches the catalytic lysine of 

the KXK motif, which is disordered in the E. coli structures. Having the 20s loop in this 

position would prevent this lysine from adopting an extended conformation, possibly 

forcing it into the active site toward the substrate. When the converse experiment is 

performed and the Amycolatopsis capping domain is twisted to match that of E. coli, the 

20s and 50s loops shift ~ 6 Å away from the barrel so that the 50s loop is no longer in 

contact with the ligand. In this position, the 20s loop barely contacts the second lysine of 

the KXK motif, leaving it mostly exposed to solvent outside the active site.  

Although we have only shifted the orientations of the two domains and have not 

refined the models to ameliorate steric hindrances or reposition loop residues into more 

favorable conformations, these results suggest that proper orientation of the capping and 

barrel domains is required for positioning the catalytic lysine for catalysis in 



  36 

Amycolatopsis OSBS/NAAAR. For E. coli OSBS, these results suggest two possibilities. 

First, perhaps the flexible lysine is resident in the active site often or long enough for 

catalysis. Second, it is also conceivable that the crystal structures of E. coli OSBS bound 

to either substrate or product do not capture the structure of the enzyme in the transition 

state. As in Amycolatopsis OSBS/NAAAR, repositioning the 20s loop through domain 

rotation or other conformation changes might be required in order to correctly position 

the lysine for catalysis. The fact that the 20s loop is disordered in B. bacteriovorus OSBS 

in the presence of ligand provides some support for the latter possibility. 

2.2.4. Discussion 

Changes in protein structure during evolution 

Investigating the evolutionary relationships among the OSBS and NAAAR-like 

proteins of the enolase superfamily uncovered several surprising observations. The most 

remarkable are that these proteins exhibit significant structural variation and that 

sequence motifs unique to the OSBS/NAAAR family which distinguish it from other 

families in the enolase superfamily could not be identified, in spite of the fact that OSBS 

activity has been conserved and the family appears to have a single evolutionary origin.  

This raises the question of how enzyme specificity can be maintained over the 

course of evolution. Some structural differences would be expected between 

Amycolatopsis OSBS/NAAAR and the other two OSBSs, since the Amycolatopsis 

enzyme has an additional activity. However, structural differences as exemplified by both 

RMSD and domain orientation are at least as great between E. coli and B. bacteriovorus 

OSBSs. One way in which specificity might be maintained during evolution is through 

compensatory mutations and structural flexibility of surface loops that close the active 
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site (James et al. 2003). In the three OSBS/NAAAR family structures, the function of the 

50s loop appears to be conserved, since it is structurally well-aligned and forms a 

hydrophobic binding pocket for the benzene ring (Figure 2.6). The ring is anchored at one 

end by the carboxyl group binding to the metal ion and by the 50s loop at the other. 

Mutations that affect the orientation of the benzene ring could be accommodated by 

structural reorganization and mutations of the 50s loop, such as the small insertion 

observed in the Amycolatopsis enzyme.  

The 20s loop is also likely to play an important role in maintaining, and perhaps 

altering enzyme specificity. In most enolase superfamily members, this loop is disordered 

in the absence of ligand (Lebioda et al. 1988; Neidhart et al. 1991; Landro et al. 1994; 

Wedekind et al. 1994; Gulick et al. 2000; Thompson et al. 2000). In addition to being less 

well-conserved than the 50s loop, the 20s loop is not well-aligned in the structures of 

Amycolatopsis OSBS/NAAAR and E. coli OSBS bound to OSB, and it is disordered in B. 

bacteriovorus OSBS bound to OSB. The flexibility and apparent mutability of this loop 

suggest that it could have coevolved with other sequence and structure elements (such as 

those determining domain orientation) to maintain substrate binding. In addition, the 

flexibility of this loop might allow promiscuous binding and reactions with new 

substrates without impairing OSBS activity, leading to the evolution of new protein 

functions, such as NAAAR activity(James et al. 2003; Aharoni et al. 2005). 

While the role of flexible loops in maintaining OSBS activity is somewhat 

speculative, it has also been proposed that structural requirements for catalysis are 

relatively permissive because the OSBS reaction is highly exergonic and can proceed 

uncatalyzed at significant rates(Palmer et al. 1999; Taylor et al. 2001). In all three 
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OSBS/NAAAR family structures, interactions with OSB are largely hydrophobic, and 

most hydrogen bonds are formed with water or residues conserved in the whole MLE 

subgroup (Alexander Fedorov, Elena Fedorov and Dr. Steven Almo, 

unpublished)(Thompson et al. 2000; Thoden et al. 2004). Thus, it appears that interaction 

with subgroup-conserved residues is sufficient for correctly orienting the substrate for 

catalysis, and the only additional requirement is a hydrophobic cavity of an appropriate 

size and shape. Additional evidence for this is supplied by single point mutations in 

Pseudomonas sp. P51 MLE II and E. coli AEE which confer OSBS activity on these 

enzymes(Schmidt, Mundorff et al. 2003). These mutations are located at the same 

position in Bar-β8 and exchange an aspartate or glutamate for a glycine, creating space to 

accommodate the succinyl tail of OSB if it is bound in the same conformation as in E. 

coli OSBS (Figure 2.6 and Figure 2.7). 

Ramifications for structure and function prediction in genomics 

Two important contributions of genomics are to correctly annotate protein 

functions and identify proteins of unknown structure and function whose characterization 

will enhance biological understanding. As noted previously and shown here, simple 

sequence metrics are often inadequate for predicting protein function(Rost 2002; Tian et 

al. 2003). Perusal of GenBank annotations of the OSBS/NAAAR family reveals that only 

60% are correctly annotated (43% excluding proteins misleadingly annotated as “o-

succinylbenzoate-CoA synthases”). While only 7% of these annotations are completely 

incorrect, the remainder are incomplete or somewhat misleading, often assigning 

OSBS/NAAAR proteins to the wrong family or subgroup of the enolase superfamily. For 

example, several proteins are incorrectly annotated as muconate or chloromuconate 
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cycloisomerases. Many others are annotated as “COG4948: L-alanine-DL-glutamate 

epimerase and related enzymes of enolase superfamily”, which correctly relates them to 

the MLE subgroup but also implies an incorrect function. 

Functional annotation of the OSBS/NAAAR family is difficult for two reasons. 

First, some members of the family are so divergent that sequence similarity cannot be 

used to distinguish them. Outliers such as the B. bacteriovorus OSBS could only be 

identified using a combination of genomic context, phylogenetic analyses, and ultimately 

experimental validation. Second, the NAAAR-like proteins could not be separated from 

the OSBSs based on sequence similarity or position in the phylogenetic tree. Instead, 

their main characteristics are that they are closely related to Amycolatopsis 

OSBS/NAAAR and they are not encoded in menaquinone operons.  

Given such complexities, it is not surprising that automated annotation methods 

have had so much difficulty with this family. The orthogonal information furnished by 

phylogenetic reconstruction and analysis of genome context not only provides stronger 

confidence in functional annotation, but it is also invaluable for identifying proteins 

whose functions cannot be predicted with certainty. Similarly rigorous application of 

these methods will probably be required for accurate annotation of other protein families 

which exhibit high sequence, structural, and functional divergence. 

Detailed studies of the sort undertaken here are also useful for identifying 

candidates for experimental characterization and structural genomics projects. Not only is 

there significant functional diversity in the OSBS/NAAAR family, but we also 

discovered significant structural variation among the family’s three crystallized members. 

As discussed above, it is expected that several other subfamilies, especially the 
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Actinobacteria subfamily, also exhibit structural variations. Solving the three-

dimensional structures of representatives of other subfamilies will be valuable for 

understanding allowable variations in protein-substrate interactions in isofunctional 

proteins. In addition, our current and future studies of the structure and function of the 

NAAAR-like proteins will help elucidate how new protein functions evolve. Although 

our strategy is more labor-intensive than purely automated methods of target selection for 

structural genomics projects, it provides more context for understanding structure-

function relationships and evolutionary mechanisms. 

Concluding Remarks 

Our analysis of the OSBS/NAAAR family revealed several insights into how 

protein function and structure evolve. First, highly divergent protein families can exhibit 

significant structural variations. Second, enzyme specificity can be maintained in spite of 

limited sequence conservation among ligand-contacting residues. Third, new activities 

can evolve through promiscuous intermediates, and there might be structural features of 

proteins that make them more or less prone to evolve promiscuous activities. Few 

analyses of protein structure, function, and evolution have been performed in this depth; 

thus, extending these studies to other protein families will be important for testing the 

generality of these conclusions. 

2.3. Non-active Site Determinants of Enzyme Specificity 

2.3.1. Introduction 

Traditionally, efforts to study enzyme specificity and evolution have been focused 

on the active site region to explain how enzyme function has evolved.  Our goal is to 
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investigate whether there are non-active site regions that are important for function and 

important for maintaining or altering function through evolution.  Here, we apply 

evolutionary trace (ET) to examine how specificity may have evolved in the enolase 

superfamily, a group of related but diverse enzymes that share a common mechanistic 

step.  The current view is that the C-terminal TIM (β/α)8 barrel domain mediates the 

common mechanistic step shared by the entire superfamily, and that the N-terminal 

capping domain determines the variation in specificity seen in the superfamily (Gerlt et 

al. 2003).  However, these inferences are based on anecdotal observations.  Structural 

analysis in the OSBS family (Section 2.2) suggests that domain orientation and both the 

20s and 50s loops play a role in the substrate specificity.  If these loops are important for 

mediating function and determining substrate specificity, we might expect to find 

function-specific sequence signatures in these loop regions.  If domain orientation is 

important for determining substrate specificity, domain interface residues might be 

important for maintaining the proper domain orientation and we might expect to find 

function-specific sequence signatures in these domain interface regions.  We test these 

ideas by examining the location of residues associated with specificity in relation to the 

two domains, the active site and active site loops, and the interdomain regions.   

2.3.2. Methods 

Sequences and multiple sequence alignment 

The sequences and the quality of the multiple sequence alignment used for an 

evolutionary trace analysis will greatly affect the results.  Therefore, we used sequences 

and a hand-curated alignment of the enolase superfamily from the Structure-Function 

Linkage Database (Pegg et al. 2006).  The alignment includes sequences that are 
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experimentally characterized and sequences that, based on classification using curated 

Hidden Markov Models (HMMs), are predicted with high certainty to be members of the 

enolase superfamily (Brown et al. 2006).  The alignment was generated using ClustalW 

and then manually refined using structural superpositions and to ensure that superfamily-

conserved functionally important residues are aligned properly. 

Evolutionary trace 

The general methodology for evolutionary trace (ET) is described in Section 

2.1.1.  To find residues that determine functional and substrate specificity, the classes for 

the ET analysis were based on SFLD family classifications (Pegg et al. 2006).  In the 

SFLD, sequences are grouped into isofunctional families based on their experimentally 

characterized function or, for uncharacterized sequences, based on how well they 

matched family-specific HMMs.  We focused on the muconate lactonizing enzyme II, 

dipeptide epimerase, and the OSBS families.  We divided the OSBS family into enzymes 

that only performed the OSBS function and enzymes that are also able to promiscuously 

catalyze the NAAAR reaction.  We then found residues that were conserved within a 

class (a residue is present in > 90% of sequences within a class) and not conserved across 

the whole superfamily.  The Python script for performing this analysis is included in 

Appendix A. 

Identification of ligand-binding residues 

Ligand-binding residues are defined based on annotations in LigBase, a database 

of ligand binding sites in protein structures (Stuart et al. 2002).  A residue is defined as 

being in the binding site when at least one atom in that residue is within 5 Å of a ligand 

bound to the structure. 
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Identification of domain interface residues 

PIBASE (Davis et al. 2005) is a database of interacting protein domain pairs and 

properties of their interfaces.  We use the definition of domain interface residues from 

PIBASE for our analyses. 

2.3.3. Results 

We examined where the class-specific residues fall in the structures with respect 

to the 20s and 50s loops (Figure 2.9).  We find very few class-specific residues in the 20s 

loop.  In the dipeptide epimerase family, there are four residues that are class-specific, 

but there are no residues that are class-specific and in the 20s loops in the other three 

families.  There are a few more class-specific residues in the 50s loop than in the 20s 

loop, but this region does not have the highest concentration of class-specific residues.  

The regions that have the most class-specific residues are highlighted as Regions 1, 2, 

and 3 in Figure 2.9. 
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Figure 2.9. Evolutionary trace for four families in enolase superfamily. 

Residues in blue are class-specific for the muconate lactonizing enzyme (MLEI) family.  Residues 

in green are class-specific for the dipeptide epimerase (DPE) family.  Residues in red are class-

specific for N-acylamino acid racemases.  Residues in yellow are class-specific for the o-succinyl 

benzoate synthase (OSBS) family.  Residues in grey are conserved in the whole superfamily.  

Residues that are in the 20s and 50s loops are outlined in black.  These loops and other secondary 

structure elements are shown above the sequence alignment.  The N-terminal capping domain is 

indicated with the blue horizontal line above each section of the multiple sequence alignment and 

the C-terminal barrel domain with a red horizontal line. 

 

Displaying these three regions on a representative structure from the superfamily 

shows that these regions are concentrated in the interface between the N-terminal capping 

domain and the C-terminal barrel domain (Figure 2.10).  Region 1 is on an alpha helix of 

the N-terminal capping domain that faces the barrel domain.  Regions 2 and 3 are on the 
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C-terminal end of the barrel, on two loops between beta strands and alpha helices of the 

barrel.   

 

Figure 2.10. Class-conserved residues in domain interface. 

Class-conserved residues that occur in Regions 1, 2, and 3 are displayed in yellow.  The three 

regions with the highest concentration of class-conserved residues are shown in blue (Region 1), 

green (Region 2), and red (Region 3) and these correspond to the regions highlighted in Figure 2.9 

 

To verify the visual observations, we compared the fraction of class-specific 

residues observed in a given region to what would be expected by chance (the fraction of 

all residues in that region) (Table 2.2).  We focused on two regions of the structures – 

near the ligand (based on LigBase assignments) and near the domain interface (based on 

PIBASE assignments).  Class-specific residues occur more often than expected by chance 

in the regions near the active site as well as near the interface region.  The frequency of 

class-specific residues occurring near the ligand varies between the four families, with 

NAAAR/OSBS enzymes having the highest frequency and the OSBS enzymes having 

the lowest frequency.  In contrast, the frequency of class-specific residues in the interface 
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region, though more than what would be expected based on previous reports of the 

superfamily, does not vary greatly between families. 

Table 2.2. Location of class-specific residues 

 Near Ligand 

(from LigBase) 
In Interface 

(from PIBASE) 
 # cs res 

near ligand 

# cs res % cs res 

near ligand 

% 

cs_ligand/ 

% ligand 

# cs res in 

interface 

# cs res % cs res in 

interface 

% cs_interface/ 

% interface 

1 42 2.38% 1.22 23 42 54.76% 1.44 
MLE 

7 of 360 (1.94%) residues in active site 137 of 360 (38.06%) residues in interface 

11 66 16.67% 2.60 38 66 57.58% 1.50 
DPE 

23 of 359 (6.41%) residues in active site 138 of 359 (38.44%) residues in interface 

5 16 31.25% 4.99 13 16 81.25% 1.88 NAAAR/

OSBS 23 of 367 (6.27%) residues in active site 159 of 367 (43.32%) residues in interface 

1 54 1.85% 1.19 30 54 55.56% 1.54 
OSBS 

5 of 322 (1.55%) residues in active site 116 of 322 (36.02%) residues in interface 

 

2.3.4. Discussion 

We find class-specific residues occurring more frequently than expected both near 

the ligand and also near the interface.  Contrary to what we expected from previous 

studies, we did not find a high concentration of class-specific residues in the 20s loop of 

the N-terminal capping domain.  In the 50s loop of the N-terminal capping domain, we 

find some class-conserved residues, but not a high concentration.  The regions with the 

highest concentration of class-specific residues occur near the interface between the N-

terminal capping domain and the C-terminal barrel domain. 

Previous studies have concluded that the 20s and 50s loops are involved in 

substrate specificity based on their position in “capping” the active site and because the 

position of these loops can vary from structure to structure (Gerlt et al. 2003; Glasner, 

Fayazmanesh et al. 2006).  However, our observation that there are very few class-

specific residues in these loops suggests another explanation for the role of these loops.  
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This lack of class-specific residues on these loops suggests that these loops may be more 

important for excluding water from the active site or for non-specific binding of the 

substrate.  Alternatively, it is possible that the 20s and 50s loops may be involved in 

mediating substrate specificity through multiple sequence signatures that achieve the 

same specificity, despite the lack of class-conserved residues on these loops.  Until 

mutation studies are completed, we cannot be sure of the exact nature these loops. 

Our observation that residues at the interdomain residues are conserved within 

isofunctional families in the enolase superfamily further confirms the conclusion from 

work described in Section 2.2, that the domain orientation is important for achieving 

specificity. 

Combining the observations of this study with those from the study described in 

Section 2.2 suggests that the size and overall shape of the binding pocket is important for 

achieving different specificities among the different families of the enolase superfamily.  

The 20s and 50s loops could contribute to the size and shape of the binding pocket in a 

non-specific manner and functions can be conserved through by maintaining same size of 

loop.  The contribution of the interdomain orientation to the size and shape of the pocket 

can similarly be maintained through the conservation of residues at the interface, as we 

observe in this study.  However, the enzymes in this superfamily are often fairly specific, 

turning over only their own substrate and not similarly sized substrates and the loops and 

interdomain orientation may not completely explain the different specificities within the 

superfamily.  The class-specific residues that we find close to ligand, of which most are 

on the C-terminal domain, could be responsible for fine-tuning the specificity that is 

generally shaped by the 20s and 50s loops and the interdomain orientation. 
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Previous studies (Gerlt et al. 2003) have suggested that the functions performed 

by members of the superfamily are segregated into different domains, with chemistry 

mediated by the C-terminal barrel domain and the substrate specificity determined by the 

N-terminal capping domain.  Based on the results from this study, substrate specificity is 

likely to be mediated by portions of both domains.  Further studies to mutate individual 

residues and combinations of residues are required to determine exactly how the substrate 

specificity is determined in these enzymes and how this specificity is maintained or 

diverges through evolution.  There is ongoing work to mutate the 20s and 50s loops to 

further explore their role in enzyme function. 

2.4. Conclusion 

To more fully understand the sequence, structure, and function relationship in 

superfamilies like this one will require more detailed analysis of functions.  In addition to 

correlating conserved sequence signatures with conservation in structural elements and in 

inter-domain orientations, it will also be useful to correlate conserved sequence 

signatures with conserved aspects of function.  The following chapters (Chapter 3, 

Chapter 4) describe work in this area to systematically describe function and determine 

which aspects of function are conserved among related proteins. 
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Chapter 3  

Evolutionarily Conserved Substrate 

Substructures for Automated 

Annotation of Enzyme Superfamilies 

3.1. Abstract 

The evolution of enzymes affects how well a species can adapt to new 

environmental conditions.  During enzyme evolution, certain aspects of molecular 

function are conserved while other aspects can vary.  Aspects of function that are more 

difficult to change or that need to be reused in multiple contexts are often conserved, 

while those that vary may indicate functions that are more easily changed or that are no 

longer required.  In analogy to the study of conservation patterns in enzyme sequences 

and structures, we have examined the patterns of conservation and variation in enzyme 

function by analyzing graph isomorphisms among enzyme substrates of a large number 

of enzyme superfamilies.  This systematic analysis of substrate substructures establishes 

the conservation patterns that typify individual superfamilies.  Specifically, we 

determined the chemical substructures that are conserved among all known substrates of 
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a superfamily and the substructures that are reacting in these substrates, and then 

examined the relationship between the two.  Across the 42 superfamilies that were 

analyzed, substantial variation was found in how much of the conserved substructure is 

reacting, suggesting that superfamilies may not be easily grouped into discrete and 

separable categories.  Instead, our results suggest that many superfamilies may need to be 

treated individually for analyses of evolution, function prediction, and to guide enzyme 

engineering strategies.  Annotating superfamilies with these conserved and reacting 

substructure patterns provides information that is orthogonal to information provided by 

studies of conservation in superfamily sequences and structures, thereby improving the 

precision with which we can predict the functions of enzymes of unknown function and 

direct studies in enzyme engineering.  Because the method is automated, it is suitable for 

large-scale characterization and comparison of fundamental functional capabilities of 

both characterized and uncharacterized enzyme superfamilies.  This chapter is modified 

from a published report of this project (Chiang et al. 2008). 

3.2. Introduction 

Why are some aspects of function shared and others allowed to change?  By 

examining which aspects of function are shared among contemporary enzymes, we can 

gain insight into the requirements and constraints that govern this evolutionary process. 

The focus of most studies of enzyme evolution has been the examination of 

conservation in sequence and structure.  The data available to conduct such studies is 

enormous and still increasing due to the multiplicity of ongoing genomic and 

metagenomic sequencing efforts (Riesenfeld et al. 2004).  In tandem with the growth of 

sequence and structural data, a large number of new and sophisticated tools have been 
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developed to improve our ability to identify the divergent members of superfamilies, 

allowing us to analyze patterns of conservation in sequence and structure that shed light 

on how enzyme functions have evolved and diversified (for some examples, see (Frazer 

et al. 2003; Pearson et al. 2005; Marti-Renom et al. 2007)).  But such studies only capture 

aspects of enzyme evolution that can be inferred from the machinery that enables 

enzymatic catalysis, the enzymes themselves.  Far fewer studies have focused on the 

substrates and products of these reactions, with most of these focused on the requirements 

of metabolism (Alves et al. 2002; Light et al. 2004).  In this work, our goal is to 

understand the details of how enzymes function and evolve by studying the conservation 

and variation in their substrates and products.  In doing so, we aim for a more extensive 

view of enzyme evolution in order to improve our abilities to annotate enzymes of 

unknown function and to infer common aspects of function for superfamilies that have 

not yet been characterized. 

As described in Section 1.5, the success of any study of the evolution of enzyme 

function depends on how function is defined and described.  Previous studies fall into 

two categories: detailed analyses that are limited in their scope because of the labor-

intensive nature of these analyses and automated analyses that have larger scope but lose 

detail in how they describe function.  The goal of this project was to develop methods 

that can be used for automated analyses of enzyme function, but that also do not sacrifice 

the level of detail. 

Here, we use graph isomorphism analyses to compare substrates of enzymes from 

42 superfamilies to identify specific aspects of function conserved within each 

superfamily.  We also use comparisons of substrates and their corresponding products to 
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determine whether and how much of the conserved substructure is involved in the 

reaction.  This comparison of substrates and products is similar to an analysis performed 

for a previous study with a different purpose, to predict EC numbers (Kotera et al. 2004).  

To simplify the interpretation of results across the multiple superfamilies in this study, 

only enzymes comprised of single domains and that catalyze unimolecular reactions were 

investigated.  Automation of the analysis allows us to describe overall trends in 

functional conservation and variation across a large number of superfamilies.  A 

descriptive representation of conserved enzyme molecular functions using chemical 

structures and SMILES strings (Weininger 1988; Weininger et al. 1989) is also provided.  

This representation should be useful for annotating new members of superfamilies 

discovered in sequencing projects and for characterizing new superfamilies. 

3.3. Methods 

3.3.1. Dataset – Enzyme superfamilies 

For our analyses, we used a subset of superfamilies from SCOP, a database of 

manually classified protein superfamilies, filtered based on criteria chosen to be most 

informative about enzyme evolution at high levels of functional divergence.  We included 

only superfamilies of single-domain enzymes with significant functional information in 

SCOPEC, a subset of SCOP with verified EC numbers, and in BRENDA, the most 

comprehensive database of enzyme experimental results.  Although many enzymes and 

proteins function as multi-domain units, the nature and organization of which can affect 

the specificity and regulation of enzymes (Bashton et al. 2007), for this study, we chose 

to use only single-domain enzymes as this allowed us to clearly assign a single function 
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to one domain.  We included examples of enzymes known to have multiple structural 

domains only when the composite acts as a single functional unit (e.g., the enolase 

superfamily). 

To ensure that the members of each superfamily were sufficiently divergent in 

function to analyze conservation of their substructures, only superfamilies annotated with 

at least two different EC numbers were investigated.  Compared to unimolecular 

reactions, bimolecular reactions have considerably more complex chemical and kinetic 

mechanisms for how substrates interact with the enzyme’s catalytic site (i.e. in what 

order different substrates bind).  Because these variations would have greatly complicated 

the analysis, we excluded superfamilies with any reactions that were not unimolecular.  

Using the top level of the EC annotation, superfamilies were selected in which all the 

characterized members belong to any one of the following classes: hydrolases (EC 

numbers 3.x.x.x), lyases (EC numbers 4.x.x.x), and isomerases (EC numbers 5.x.x.x). 

Experimentally verified substrate and product data were taken from the licensed 

version of the BRENDA database (release 6.2) (Barthelmes et al. 2007).  Reactions were 

excluded in which 1) the product(s) had more than five (non-hydrogen) atoms more than 

the substrate or 2) substrates and products both had three or fewer (non-hydrogen) atoms.  

Reactions in the first category are likely to be erroneous because they are not properly 

balanced.  Reactions in the second category are unlikely to be informative for the analysis 

because they contain so few atoms. 

3.3.2. Definitions 

A “conserved substructure” (Figure 3.1) contains the maximal sets of bonds in a 

substrate that are present in all the substrates of a superfamily, plus their adjacent atoms.  
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In all our analyses, we considered only bonds consisting of two atoms, neither of which is 

a hydrogen.  The “unconserved substructure” is the set of bonds in a substrate that are not 

in the conserved substructure, plus their adjacent atoms.  An atom can be in both the 

conserved and unconserved substructure if it is adjacent to both a bond in the conserved 

substructure and a bond in the unconserved substructure. 

 

Figure 3.1. The conserved substructure (c) (blue square) 

 

A “reacting substructure” (Figure 3.2) consists of the bonds in a substrate that are 

not present in the product, their adjacent atoms, and any atoms that become connected in 

new bonds in the product.  In the case of a racemization reaction, in which the chirality of 

an atom center changes, the reacting substructure is defined as including the chiral atom 

that changes in the reaction, the four adjacent bonds and their adjacent atoms.  The 

“nonreacting substructure” is the set of bonds in a substrate that are also present in the 

product and their adjacent atoms.  An atom can be in both the reacting and nonreacting 

substructure if it is adjacent to both a bond in the reacting substructure and a bond in the 

nonreacting substructure.   

 

Figure 3.2. Reacting substructure (r) (red triangle) 
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3.3.3. Finding the conserved substrate substructure 

The substrate substructure conserved among all characterized members of each 

superfamily was calculated using the maximal common substructure (MCS) algorithm 

implemented in the Chemistry Development Kit (CDK) (Steinbeck et al. 2003), an open 

source Java toolkit for manipulating small molecules.  The molecules are represented as 

graphs in which the nodes represent atoms and the edges represent bonds.  Each node is 

labeled with an atom type and each edge is labeled with the two atom types of the 

connected atoms and the bond order.  This algorithm finds, for a pair of molecules, the 

maximum common substructure (MCS) present in both molecules.  We extended this to 

find the MCS for the set of all known substrates for a superfamily.  In this initial analysis, 

we treated different atoms as dissimilar as long as the element type was different and 

bonds as different when the bond order and the two pairs of connected atoms were not 

identical.  The only exception to this rule was made for phosphate and sulfate groups, 

which we treated as similar in the substrate conservation analyses.  Our code allowed for 

the possibility of multiple unconnected MCSs by representing them as an unconnected 

graph with each connected portion corresponding to one MCS.  Although some of the 

pairwise MCSs contain multiple unconnected subgraphs, none of the superfamily-

conserved substructures contain such multiple unconnected MCSs.  Finally, each 

substrate has a unique unconserved substructure defined as the set of edges not present in 

the conserved substructure and the atoms adjacent to these edges. 

3.3.4. Finding the reacting substrate substructure 

For each enzymatic reaction in which both the substrate and its corresponding 

product(s) are known, we calculated the non-reacting substructure by finding the MCS 
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between the substrate and the product(s).  The reacting substructure is the set of edges in 

the substrate that are not present in the product, plus the atoms adjacent to these edges.  

The reacting substructure also includes atoms that form new bonds in the product. 

3.3.5. Overlap between reacting and conserved substructures 

To quantify the overlap between the reacting and conserved substructures, for 

each reaction in our dataset, we calculate fc (Figure 3.3A), the fraction of the conserved 

substructure that is reacting and fr (Figure 3.3B), the fraction of the reacting substructure 

that is conserved. 

 

Figure 3.3. Measures of overlap between reacting and conserved substructures 

A) fc is the fraction of the conserved substructure (blue square) that is reacting (red triangle 

overlap) B) fr is the fraction of the reacting substructure (red triangle) that is conserved (blue 

square overlap) 

 

The values for fc and fr are calculated in two ways, using atoms or bonds and the results 

for both are reported as they provide different but useful views of the data.  fc for bonds is 

determined by dividing the number of bonds that are in both the conserved and the 

reacting substructures (r ∩ c) by the number of bonds in only the conserved substructure.  

fc for atoms is determined similarly, using the number of atoms instead of bonds.  

Likewise, fr for bonds is determined by dividing the number of bonds that are in both the 

conserved and the reacting substructures by the number of bonds in only the reacting 

substructure; this value was also calculated using atoms.  For each enzyme in the 

BRENDA database, there may be multiple substrates with corresponding reactions that 
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have been characterized.  For these cases, the values of fc and fr were obtained by 

averaging all the substrates of each enzyme and then these values were averaged for all 

the enzymes in each superfamily.  We also determined the standard deviation in fc and fr 

for the enzymes of each superfamily. 

3.3.6. Variation in which substructure is reacting 

To determine whether the same part of the superfamily-conserved substructure 

was used in the different reactions of the superfamily, every pair of reactions was 

analyzed in each of the superfamilies in our dataset.  Each reaction has a substrate 

substructure that is both conserved and reacting (r ∩ c).  For each pair of reactions, we 

calculated how much overlap is observed among the two (r ∩ c) substructures and 

normalized each of these overlaps by the smallest (r ∩ c) of each pair.  The resulting 

measure of overlap (or ∩ c) was then averaged over every pair of reactions in each 

superfamily. 

3.4. Results 

The 42 superfamilies that meet our criteria and for which there is sufficient data in 

Brenda include representatives of six of the seven SCOP fold classes; the only fold class 

not represented is the membrane proteins class.  The enzymes of these 42 superfamilies 

represent a substantial proportion of the diversity of enzyme function, covering 25.4% of 

EC classes defined by the first two digits (subclasses) and 18.7% of EC classes defined 

by the first three digits (sub-subclasses).  Conservation patterns were examined using 

only substrates and products as the data available in BRENDA were not sufficient to 

consider other aspects of reactions, such as transition states and intermediates. 
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Figure 3.4. Summary of superfamilies and their conserved substrate substructures 

Because the portion of the conserved substructure that is reacting often varies among members 

within one superfamily, we do not highlight the reacting substructure in this figure. (See Figure 

3.7 for plots of the distribution of this variation over all superfamilies and Table 3.1 for values of 

variation for each superfamily.) 
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Our goal was to determine the molecular features that the substrates of a 

superfamily share and whether the shared features are involved in the reactions catalyzed 

by that superfamily.  These conserved substructures for the 42 superfamilies in our 

dataset are shown in Figure 3.4. 

Additional information about the diversity and conservation of functions in these 

superfamilies is provided in a hyperlinked table (Table S1 in Chiang et al. 2008).  

Moreover, for each enzyme’s substrate(s), we found the reacting substructure and then 

determined whether the conserved substructure overlaps with the reacting substructure 

and by how much.  Results for these measures of overlap are presented with respect to 

both the number of atoms and the number of bonds. 

For a given superfamily, the average fc and fr calculated using atoms often differ 

from the values obtained using bonds (Table 3.1).  This difference arises because the 

number of bonds is frequently not proportional to the number of atoms in molecular 

structures (e.g., one bond consists of two atoms while three atoms can be connected by 

three bonds; a cyclic structure will have a different number of bonds compared to non-

cyclic structure with the same number of atoms).  In addition, different types of reactions 

vary in the ratio of atoms and bonds that are involved in the reaction (e.g., a lyase may 

break one bond involving two atoms while an intramolecular transferase may involve one 

bond and three atoms).  Because both are valid measures of substructure size, both are 

provided in this report. 

Table 3.1. Overlap between reacting and conserved substructures (fc and fr) 
Overlap between reacting and conserved substructures (fc and fr). The superfamilies in this table 

are sorted by [average fc(atoms) plus fc(bonds)]. *The metallo-dependent hydrolases superfamily does not 
have a substrate substructure that is conserved in all members of the superfamily. Thus, for this 
superfamily, fc, the fraction of the conserved substructure that is reacting, cannot be calculated. 
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  fc fr 

  Avg. Std. Dev. Avg. Std. Dev. 

Superfamily SCOP ID Atoms Bonds Atoms Bonds Atoms Bonds Atoms Bonds 

          

Alkaline phosphatase-like c.76.1 0.98 0.98 0.04 0.05 0.66 0.64 0.06 0.05 

SGNH hydrolase c.23.10 0.95 0.92 0.02 0.03 0.65 0.55 0.04 0.01 

Nitrile hydratase alpha 
chain 

d.159.1 0.72 0.68 0.16 0.17 0.82 0.81 0.26 0.27 

Carbohydrate phosphatase e.7.1 0.72 0.67 0.01 0 0.98 0.97 0.03 0.03 

Cobalamin (vitamin B12)-
dependent enzymes 

c.1.19 0.81 0.54 0.09 0.06 0.81 0.81 0.09 0.09 

Phosphoglycerate mutase-
like 

c.60.1 0.61 0.55 0.29 0.32 0.68 0.64 0.31 0.38 

Six-hairpin glycosidases a.102.1 0.56 0.48 0.14 0.15 0.65 0.67 0.13 0.18 

alpha/beta-Hydrolases c.23.9 0.55 0.48 0.23 0.21 0.64 0.63 0.45 0.47 

PLP-binding barrel c.1.6 0.56 0.47 0.1 0.12 1 1 0 0 

Carbon-nitrogen hydrolase d.160.1 0.5 0.5 0.71 0.71 0.07 0.04 0.09 0.06 

Creatinase/aminopeptidase d.127.1 0.55 0.44 0.24 0.3 0.56 0.45 0.23 0.31 

Metalloproteases 
("zincins"), catalytic domain 

d.92.1 0.55 0.43 0.31 0.38 0.28 0.13 0.17 0.14 

Nudix d.113.1 0.5 0.46 0.2 0.22 0.46 0.40 0.2 0.18 

Phospholipase C/P1 
nuclease 

a.124.1 0.5 0.43 0 0 0.52 0.48 0.21 0.22 

Pyruvoyl-dependent 
histidine and arginine 
decarboxylases 

d.155.1 0.47 0.38 0.06 0.07 0.93 0.95 0.09 0.07 

PLC-like 
phosphodiesterases 

c.1.18 0.43 0.36 0.15 0.16 0.45 0.39 0.1 0.07 

dUTPase-like b.85.4 0.41 0.35 0.03 0 0.92 0.9 0.12 0.14 

Tautomerase/MIF d.80.1 0.58 0.17 0.14 0.17 0.32 0.13 0.16 0.13 

Xylose isomerase-like c.1.15 0.43 0.23 0.26 0.24 0.71 0.49 0.19 0.24 

Zn-dependent 
exopeptidases 

c.56.5 0.42 0.19 0.18 0.13 0.37 0.07 0.16 0.04 

Chelatase c.92.1 0.33 0.23 0.09 0.08 0.68 0.47 0.02 0.11 

L-aspartase-like a.127.1 0.38 0.17 0.31 0.41 0.41 0.1 0.13 0.24 

Protease 
propeptides/inhibitors 

d.58.3 0.30 0.14 0.05 0.13 0.62 0.47 0.21 0.42 

Ribulose-phosphate 
binding barrel 

c.1.2 0.28 0.13 0.28 0.13 0.37 0.25 0.36 0.25 

Metallo-
hydrolase/oxidoreductase 

d.157.1 0.25 0.15 0.15 0.11 0.92 0.88 0.12 0.18 

Enolase C-terminal 
domain-like 

c.1.11 0.31 0.08 0.1 0.13 0.35 0.07 0.07 0.12 

Thioesterase/thiol ester 
dehydrase-isomerase 

d.38.1 0.19 0.19 0.34 0.33 0.12 0.11 0.21 0.18 

Cobalamin (vitamin B12)-
binding domain 

c.23.6 0.21 0.17 0.30 0.26 0.38 0.33 0.53 0.47 

Subtilisin-like c.41.1 0.23 0.14 0.09 0.06 0.57 0.52 0.36 0.42 

Kringle-like g.14.1 0.22 0.13 0.24 0.25 0.3 0.11 0.19 0.21 

beta-lactamase/ 
transpeptidase-like 

e.3.1 0.29 0.06 0.26 0.1 0.28 0.03 0.26 0.05 

(Phosphotyrosine protein) 
phosphatases II 

c.45.1 0.2 0.13 0.19 0.18 0.07 0.04 0.06 0.05 

FAH d.177.1 0.22 0.07 0.1 0.12 0.34 0.04 0.15 0.07 
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HD-domain/PDEase-like a.211.1 0.17 0.08 0 0 0.79 0.81 0.02 0.04 

Cytidine deaminase-like c.97.1 0.20 0 0.05 0 0.26 0 0.07 0 

Isochorismatase-like 
hydrolases 

c.33.1 0.17 0 0.24 0 0.25 0 0.35 0 

Glutaminase/Asparaginase c.88.1 0.13 0.03 0.06 0.04 0.35 0.11 0.14 0.15 

Caspase-like c.17.1 0.11 0.03 0.08 0.04 0.33 0.11 0.11 0.16 

AraD-like 
aldolase/epimerase 

c.74.1 0.12 0.01 0.02 0.01 0.38 0.01 0.16 0.02 

EGF/Laminin g.3.11 0.04 0 0.04 0 0.06 0 0.06 0 

Arginase/deacetylase c.42.1 0.04 0 0.05 0 0.06 0 0.09 0 

*Metallo-dependent 
hydrolases 

c.1.9 -- -- -- -- 0 0 0 0 

          

 

The distribution of average fc for the set of superfamilies (Figure 3.5) indicates 

that there is a continuum among the superfamilies in how much of the conserved 

substructure is reacting, with superfamilies ranging from having little to having most of 

the conserved substructure participating in the reaction.  This trend is observed regardless 

of whether we use atoms or bonds in our calculations of average fc.  The results also 

show that all superfamilies with a conserved substructure have an average fc above zero, 

indicating that at least part of the conserved substructure is involved in the reaction. 

 

Figure 3.5. Distribution of average fraction of conserved substructure that is reacting.   

For bonds (orange stripe) and for atoms (blue solid) 
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Only one superfamily in our study set, the superfamily defined by SCOP as the 

metallo-dependent hydrolase superfamily, also known as the amidohydrolase superfamily 

(Holm et al. 1997; Gerlt et al. 2003), has substrates so diverse that they do not share a 

common substructure of even a single conserved bond.  Detailed analysis of the 

superfamily, including analysis of differences in the overall functions, how active site 

motifs are used for catalysis, and other factors such as metal ion dependence, suggests 

that this group may be more properly considered as multiple superfamilies (Brown and 

Babbitt, in preparation). 

 

Figure 3.6. Patterns of overlap between reacting and conserved substructures 

A) Scatter plot of average fr versus fc.  Each superfamily is represented by a blue diamond.  The 

plot is colored to orient the reader within the plot and to roughly indicate where the different 

overlap patterns fall.  The regions labeled with Roman numerals correspond to the overlap patterns 

in part B of the figure. B) Five types of overlap patterns.  (I) Completely nonoverlapping (red); (II) 

partially overlapping (green), (III) completely overlapping (orange), (IV) reacting is part of 

conserved substructure (blue), (V) conserved is part of reacting substructure (purple).   
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Plotting fr, the fraction of the reacting substructure that is conserved, against fc 

illustrates the distribution of superfamilies (Figure 3.6A) across different patterns of 

overlap (Figure 3.6B) in the reacting and conserved substructures.  For simplicity, only 

the data calculated using atoms is provided in Figure 3.6A.  The values for each 

superfamily, calculated using both atoms and bonds, are provided in Table 3.1.  The 

different regions in Figure 3.6A are intended merely to orient the reader to the range of 

variation across multiple superfamilies rather than to infer distinct categories implying 

fundamental differences between the superfamilies in different regions.   

Most superfamilies have little variation in how much of the conserved 

substructure is reacting (variation of fc) (Table 3.1, Figure 3.7A).  However, there are a 

few superfamilies with substantial variation in fc.  We also evaluated the level of 

variation in which part of a superfamily’s conserved substructure is used among the 

different reactions (or ∩ c).  A flatter distribution and more variation was observed among 

the superfamilies for the average or ∩ c (Figure 3.7B) than for the standard deviation of fc.  

The superfamilies that rank highest both in variation in fc and or ∩ c include the carbon-

nitrogen hydrolase, metalloproteases ("zincins") (catalytic domain), and the 

thioesterase/thiol ester dehydrase-isomerase superfamilies.  Superfamilies that have low 

variation in fc and or ∩ c include the HD-domain/PDEase-like, dUTPase-like, and 

carbohydrate phosphatase superfamilies. 
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Figure 3.7. A) Variation in the fraction of the conserved substructure that is reacting.  B) Variation 

in which part of conserved substructure is reacting. 

A) Distribution of the observed standard deviation in fc within each superfamily, for bonds 

(orange stripe) and atoms (blue solid).  B)  Average pairwise overlap in the reacting and conserved 

substructure (or ∩ c), for bonds (orange stripe) and atoms (blue solid).  In both plots, superfamilies 

with less variation can be found on the left side of the distributions and those with more variation 

are found on the right. 

 

From these examples of superfamilies with high and low variation in fc and or ∩ c, 

we observe that the superfamilies with high variation tend to have smaller conserved 

substructures while superfamilies with low variation tend to have larger conserved 

substructures, though the correlation is not perfect.  The superfamilies in the low 

variation group have phosphate groups in the conserved substructure.  These tendencies 
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may arise because different superfamilies and different types of reactions have different 

propensities for variation and conservation through evolution.  Alternatively, variation in 

how different superfamilies are defined in SCOP may lead to some of the variation 

observed among these superfamilies.  We also note that the set of reactions surveyed in 

this work represents only a subset of enzyme superfamilies, making it difficult to 

definitively address these hypotheses and questions.  More extensive analyses will be 

required to confirm and further explore these initial observations. 

As new superfamily members are characterized, modifications of these 

substructure conservation patterns may be required.  To provide updates of this 

information, work is underway to incorporate this information into a searchable resource 

within our Structure-Function Linkage Database (http://sfld.rbvi.ucsf.edu/) (Pegg et al. 

2006).  Additional data generated in this study, including reacting substructures and how 

they overlap with conserved substructures for individual superfamily members, are 

available from the authors upon request.  As described below (Section 3.5.2) , our method 

can also be used to determine conserved functional characteristics for superfamilies that 

have not yet been characterized.  Programs and scripts required to perform these analyses 

are also available upon request. 

3.5. Discussion 

Our analysis of the conservation of substrate substructures in enzyme 

superfamilies precisely determines aspects of chemical transformations that are 

conserved during divergent evolution.  As such, it provides a view of conservation and 

divergence different from the view afforded by more common types of studies focused on 

enzyme sequences and structures.   
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3.5.1. Patterns of substrate conservation across many superfamilies 

While our dataset of superfamilies and their associated substrates, products, and 

reactions is large, it is still limited as only single domain and unimolecular enzymes and 

superfamilies with sufficient data available were considered.  Nevertheless, the results 

suggest a continuum in how enzyme superfamilies have evolved, from the reacting 

substructure being mostly conserved to being only slightly conserved (Figure 3.5).  

Moreover, these superfamilies span a wide range in patterns of overlap (Figure 3.6). 

Previously, both large-scale and focused studies of enzyme evolution have 

recognized two primary models of how function is conserved (Section 1.4).  For the most 

part, the previous studies that have classified superfamilies into one or the other of these 

categories have been limited either in their scope (see the review by Glasner et al. for 

examples (Glasner, Gerlt et al. 2006)) or in the type of data used (Todd et al. 1999; Alves 

et al. 2002; Schmidt, Sunyaev et al. 2003; Light et al. 2004).  Although our current work 

cannot be directly compared with these previous analyses because of differences in 

methodologies, our results suggest that the evolution of enzyme function is too complex 

to be described by a few distinct categories.  Instead, we see large variations in the 

patterns of substrate conservation across the set of superfamilies investigated in this 

study.  Also, in these superfamilies, conserved substructures are not entirely reacting nor 

are they entirely non-reacting.  This observation also suggests that the reacting and non-

reacting substructures, the latter often including the part of the substrate that has binding 

interactions with the enzyme, are simultaneously relevant to the evolutionary process and 

should be analyzed together.  Consistent with our observations, a recent network-based 

analysis of the evolution of metabolism concludes that the two models previously used to 
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describe enzyme evolution are not mutually exclusive or independent (Diaz-Mejia et al. 

2007). 

Variations observed within individual superfamilies suggest additional 

complexity in the evolution of function and how conserved substrate substructures are 

used in catalysis.  Although within most of the superfamilies we studied there is little 

variation in the extent to which conserved substructures are involved in the reaction 

(Figure 3.7), the observation of some variation, and in a few cases, considerable 

variation, demonstrates that even members of the same superfamily may not proceed with 

the same pattern of evolution.  

As discussed in the sections below, these results also suggest potentially 

important implications for the analysis of individual superfamilies, functional annotation, 

and value of evolutionary information in providing guidance for enzyme engineering.  

3.5.2. Functional annotation of superfamilies and enzymes 

By automating the analysis of enzyme substrates and reactions, the methodology 

introduced in this work facilitates the analysis of previously unstudied enzyme 

superfamilies.  This effort contrasts with previous analyses of enzyme superfamilies to 

determine patterns of functional conservation that have been highly labor-intensive, 

involving extensive manual analysis of reactions and literature-based curation of 

functional properties (see the SFLD, http://sfld.rbvi.ucsf.edu/, for examples).  The 

substructures conserved among the substrates of all members of a superfamily (Figure 

3.4) provide annotation information that describes how function has been conserved in 

each of these superfamilies.  The certainty of these superfamily annotations will depend, 

however, on how well the range of substrates in each superfamily has been sampled.  
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Thorough substrate sampling may be especially critical for complex superfamilies that 

include many different catalytic functions.  While we have used all available reaction 

information in our analyses, the sampling of superfamily reactions may still be 

incomplete.  As new reactions are discovered through the sequencing of new genomes 

and metagenomes, these results can be updated and improved. 

Despite these limitations, the characterization of superfamily-conserved 

substructures presented here facilitates the annotation of individual sequences on a large 

scale, helping to address the need for new strategies for automated function annotation.  

This issue has become more pressing as the number of sequenced genomes increases and 

the era of metagenomics moves into high gear (Friedberg 2006).  Sequences that can be 

classified into a superfamily but not into a specific family can be annotated with the 

substructure common to all characterized members.  In these cases, often found in 

complex superfamilies exhibiting broad diversity in enzyme function, this may be the 

only level at which accurate annotation can be achieved, as insufficient information may 

be available to support annotation of a specific reaction or substrate specificity. 

While substructure-based annotation does not by itself suggest a specific enzyme 

function, this information can be used as a starting point for additional analyses to 

determine specific function.  For example, many structures have been solved through 

structural genomics efforts, but their functions remain unknown (Gerlt 2007).  We have 

compiled a list of structures that have been classified into the SCOP superfamilies 

analyzed in this study, but have unknown functions.  These structures, many of them 

from structural genomics projects, can be at least minimally annotated with the 

substructure identified here as conserved across that superfamily, illustrated by the 
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examples given in Figure 3.8 (see Table S3 in (Chiang et al. 2008) for the complete list).  

Using this information, characteristics of ligands likely to be bound or turned over by 

these proteins can be inferred, providing guidance for biochemical studies to determine 

specificity.  These data also provide information about classes of small molecules that 

may be useful for co-crystallization trials to aid in solving the structures of these proteins 

or to capture them in functionally relevant conformations.  

The variation found within superfamilies presents a caveat to be considered when 

using these substructures for function annotation.  While most of the superfamilies 

analyzed here have conserved substructures that are used consistently among the different 

superfamily members (Figure 3.7), there are a few superfamilies that have significant 

variation in the degree to which the conserved substructure is used in the reactions.  

These superfamilies can be expected to be more difficult cases for function prediction 

since their variability makes it more difficult to determine conserved aspects of function.  

In contrast, superfamilies with less variation in the degree to which the conserved 

substructure is used in the reaction are expected to be more straightforward cases for 

function prediction. 



  70 

 

Figure 3.8. Protein structures with unknown function can be annotated with superfamily-conserved 

substructures.   

This partial list includes superfamilies with between four and nine proteins of unknown function.  See 

Table S3 in (Chiang et al. 2008) for the full list. 
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3.5.3. Guidance for protein engineering 

Understanding the patterns of functional conservation associated with the 

evolution of functionally diverse enzyme superfamilies can provide useful information 

for guiding enzyme engineering experiments in the laboratory (Glasner et al. 2007).  

Using as a starting template for design or engineering an enzyme that already “knows” 

how to perform a critical partial reaction or how to bind a required substrate substructure 

ensures that some of the machinery required to perform a desired function is already in 

place.  Although still daunting, the task then simplifies to modifying the enzyme to bind 

and turn over a new substrate that contains the substructure consistent with the 

underlying capabilities of the superfamily.  As a corollary, aspects of function that have 

been conserved in all members of a divergent superfamily may be difficult to modify by 

in vitro engineering (O'Loughlin et al. 2006; Glasner et al. 2007).  Using such a strategy 

in a proof-of-concept study, two members of the enolase superfamily were successfully 

engineered to perform the reaction of a third superfamily member (Schmidt et al. 2001).  

As shown in Figure 3.9, the superfamily-conserved substructure and the partial reaction 

associated with that substructure were not changed in these experiments.  Rather, 

engineering the template proteins to perform the target reaction involved changing each 

to accommodate binding the part of the substrate that is unique to the new reaction 

desired.  

To allow for generalization of this approach, our analysis provides for all of the 

superfamilies that we investigated 1) the parts of an enzyme’s substrate and reaction that 

are not conserved among related enzymes, which, provided they can be associated with 

regions of a target structure that interact with them, may point to structural features 
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amenable to engineering, and 2) the parts of the substrates that are conserved across all 

members of a superfamily, which may point to regions of the structure that may not be 

easily changed without loss of function or stability (Nagatani et al. 2007). 

 

Figure 3.9. Enzyme engineering strategy.   

Two previously demonstrated examples using superfamily analysis to guide engineering of enzymes to 

perform new functions (Schmidt, Mundorff et al. 2003).  In the top example, error-prone PCR resulted in a 

single point mutation of muconate lactonizing II (MLE) enzyme, which enabled it to catalyze the o-

succinylbenzoate synthase (OSBS) reaction (kcat/KM (M-1 sec-1) = 2 x 103).  In the lower example, a single 

mutation was rationally designed based on comparison of the active sites of Ala-Glu epimerase (AEE) and 

o-succinyl benzoate synthase (OSBS). The mutant that was generated enabled this enzyme to catalyze the 

OSBS reaction as well (kcat/KM (M-1 sec-1) = 12.5).  In both of these examples, the superfamily conserved 

substrate substructure (blue) and associated partial reaction were not changed during the engineering 

experiment.  The changes in the reaction that were made are in the portion of the substrates that are not 

conserved in the superfamily (black).  The diverse products of the native MLE, OSBS, and AEE reactions 

are also shown (grey). 
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3.5.4. Future directions for substructure analysis 

In this study, requirements for a sufficiently large sample of enzyme reactions for 

a comprehensive analysis restricted us to using only substrates and products.  However, 

enzyme substrates can undergo intermediate changes during catalysis that are not 

adequately captured by looking only at substrates and products.  In some reactions, such 

as those in the enolase superfamily (Gerlt et al. 2005), some portions of the substrate 

change and revert back to their original configuration during the reaction; these types of 

transformations are undetectable in the study described here.  The enolase superfamily 

represents a well-characterized example of chemistry-conserved evolution.  However, 

because our analysis does not currently detect such substrate changes, the average 

fc(atoms) for the enolase superfamily is 0.31 and the average fc(bonds) for the enolase 

superfamily is 0.34, which places this superfamily in the middle of the distribution 

among our superfamilies for these measures of overlap.  Being able to detect the full 

extent to which structures change during a reaction would provide a better picture of 

substructure conservation in superfamilies like the enolase superfamily.  But this will 

require compilation of additional data required to capture all of the partial reactions 

involved in a given overall reaction, including structures of reaction intermediates.  

Emerging data resources, such as MACiE (Holliday et al. 2007) and the SFLD (Pegg et 

al. 2006), currently seek to catalog information about reaction steps and mechanisms.  

However, because this process is labor-intensive and often hampered by disagreement or 

ambiguity in the literature regarding the specific mechanisms of some reactions, these 

data resources are not yet sufficiently populated to support such broader analyses.  As 

these types of resources grow, we are optimistic that the information required to analyze 
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reaction mechanisms more fully will become increasingly available.  Although it is 

beyond the scope of this study, correlating the conservation patterns we see in enzyme 

substrates with the conservation patterns in the sequence and structures of the enzymes 

themselves would also be a valuable extension for these analyses.  

Finally, recent progress has been made in using in silico docking of small 

molecules to enzyme structures to infer molecular function.  In one such study, a library 

of high-energy reaction intermediates was generated and used to predict substrate 

specificity of enzymes in the amidohydrolase superfamily (Hermann et al. 2006).  As 

these methodologies are further developed, incorporation of predicted reaction 

intermediates into substructure analysis could improve prediction of substructures that are 

reacting.  In addition to benefiting from such recent advances in docking, the type of 

analysis presented here may in turn be used to improve applications of docking to 

predicting substrate specificity in enzymes.  Several such studies have recently focused 

on predicting functional specificity in the enolase (Kalyanaraman et al. 2005; Song et al. 

2007) and amidohydrolase (Hermann et al. 2007) superfamilies using knowledge about 

conserved substrate substructures from earlier analyses (Seibert et al. 2005; Pegg et al. 

2006) to construct focused ligand libraries for docking.  We expect that the set of 

conserved substructures generated by our analysis can be used similarly to guide the 

construction of chemical libraries of ligands to improve prediction of substrate specificity 

in other superfamilies. 

3.5.5. Conclusions 

This study presents an automated method for analysis of superfamilies to 

determine the conserved aspects of their functions, represented by patterns of substrate 
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conservation.  Our results show that superfamilies do not fall into discrete and easily 

separable categories describing how their functions may have evolved.  Rather, the 

conserved substructures determined in this analysis define superfamily-specific 

conservation patterns.  These results enable precise prediction of functional 

characteristics at the superfamily level for complex superfamilies whose members 

perform many different but related reactions, even when the evidence is insufficient to 

support more specific annotations of overall reaction and substrate specificity.  For 

applications in enzyme engineering, we expect that the identification of the aspects of 

function that have been most and least conserved during natural evolution will provide 

guidance for identifying the structural elements of a target scaffold that are most and least 

amenable to modification, thereby informing engineering strategies for improved success.  

The following chapter (Chapter 4) describes work to make the results of this work 

available for researchers interested in these applications. 
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Chapter 4  

Substructures for Enzyme Evolution 

and Engineering Resource 

4.1. Introduction 

The goal of the study described in the previous chapter (Chapter 3) was to study 

the evolution of enzyme function in enzyme superfamilies.  We used an automated graph 

isomorphism analysis to determine what substructures are conserved among the 

substrates of a superfamily (Chiang et al. 2008).  Using the results of this analysis, we 

were able to study the evolution of function in multiple superfamilies and determined that 

enzyme evolution suggests more complex patterns of functional divergence than those 

that have been proposed by previous theories of enzyme evolution (Horowitz 1965; 

Babbitt et al. 1997) or that have been considered in previous studies (Todd et al. 1999; 

Schmidt, Sunyaev et al. 2003).  The results of the substructure analyses can also be used 

to improve predictions of function and to guide enzyme engineering.  The following 

sections (Sections 4.1.1, 4.1.2, and 4.1.3) describe how the conserved substructure 

information can be used to develop hypotheses and guide research in these areas. 
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4.1.1. Enzyme evolution and superfamilies 

The conserved substructure is a representation of the conserved function of a 

particular superfamily.  Based on the results of our previous study (Chiang et al. 2008), 

the conserved substructure is likely to be directly involved in or at least adjacent to the 

portion of the substrate undergoing the chemical conversion.  Because the conserved 

substructure is present in all characterized members of a given superfamily, provided the 

diversity of enzyme substrates has been sufficiently characterized, new enzymes with 

unknown function can be expected to catalyze reactions on substrates that also contain 

the conserved substructure.  Therefore, the conserved substructure provides initial 

annotation for the substrate of individual members of the superfamily, especially those 

members that cannot be classified into a specific family.  The initial annotation can be 

confirmed and further explored through additional experiments. 

4.1.2. Computational molecular docking to predict substrate specificity 

Recently, researchers have been starting to apply computational molecular 

docking (Kitchen et al. 2004) methods to predict enzyme substrates (Kalyanaraman et al. 

2005; Hermann et al. 2006; Hermann et al. 2007).  In several of these successful cases, 

the ligand library was filtered for molecules that contained the substructures that were 

known to be conserved among substrates of the particular enzyme superfamily.  Thus, 

during the docking analyses, fewer irrelevant molecules need to be screened and 

computational resources can be devoted to screening molecules that are more likely to be 

substrates.  In these cases, the conserved substrate was determined through prior and 

extensive studies (Babbitt et al. 1996; Seibert et al. 2005).  The results of the automated 
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substructure analysis allow researchers to customize their ligand libraries for enzymes in 

many additional superfamilies. 

4.1.3. Enzyme engineering 

Enzyme engineering can be used to develop new enzymes to catalyze reactions 

useful for biodefense, bioremediation, biofuels, and to facilitate the production of 

molecules important for human health and agriculture.  What was conserved in substrates 

and products during evolution can be used to suggest which parts of the reaction are 

unlikely to be changed during engineering.  Inversely, what has been variable during 

evolution can suggest the parts of the reaction that can be changed during engineering.  

The results of the conserved substructure analyses allow us use this strategy and to select 

enzymes that already partially perform the target reaction and that are likely to be 

changed to perform the target reaction.  There are several criteria that can be used to 

select a superfamily or enzyme as a good starting point for engineering.  For 

superfamilies, it may be advantageous to select those in which the superfamily conserved 

substructure is present in the desired new reaction and in which the range of reactions 

performed is diverse enough to suggest that the desired new reaction is evolvable.  Just as 

it may be advantageous to select superfamilies that are more diverse, it may also be 

advantageous to select enzymes that are more promiscuous, as they are likely to more 

evolvable (Khersonsky et al. 2006). 

4.1.4. Data resource 

To facilitate these goals, we developed a database, the Substructures for Enzyme 

Evolution and Engineering Resource (SEEER), for researchers to access, interact with, 

and develop hypotheses from the data.  This resource is currently available at a temporary 
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location, http://sfldtest.rbvi.ucsf.edu/seeer.  Although the resource is not currently 

publicly available, it will eventually be made public. 

4.2. Methods and Results 

4.2.1. Data 

The foundation of the SEEER is the data from the substrate substructure analysis 

described in the previous chapter (Chapter 3).  The full details of the data and methods 

are described in the methods section of that chapter (Section 3.3).  In summary, we used a 

subset of superfamilies from the Structural Classification of Proteins (SCOP) (Murzin et 

al. 1995) where the enzymes are all single-domain proteins and the reactions catalyzed by 

the enzymes of the superfamily are all unimolecular.  For these 42 superfamilies, we 

found the conserved substrate substructures by extending a maximum common 

substructure algorithm, implemented in the Chemistry Development Kit (CDK) 

(Steinbeck et al. 2003), to find common substructures among more than two molecules at 

a time.  To find the reacting substructures, we used the maximum common substructure 

algorithm; in this case, we found the substructures that differ between the substrate and 

product(s) of each reaction in the superfamilies.  We developed a number of measures to 

describe the overlap between the conserved substructure and the reacting substructure: fc, 

the fraction of the conserved substructure that is reacting, and fr, the fraction of the 

reacting substructure that is conserved. 
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4.2.2. MySQL database structure 

The underlying data is stored as a MySQL database.  The main tables in the 

structure of database (Figure 4.1) describe superfamily, enzyme family, and reaction 

information.  The number of entries in each of these tables are listed in Table 4.1. 

 

Figure 4.1. Summary of database schema.   

Each colored box represents a different table in the MySQL database.  The major fields is also listed in 

each colored box, with the name of the table in bold.  The relationships between the tables are represented 

by lines.  The ends of these lines represent the multiplicity of these relationships: one-to-many relationships 

are represented by the blank ends (one) and ends with “crows’ feet.” (many) 

Table 4.1. Number of Entries in SEEER Tables 

Table Number of Entries 

superfamily 42 

enzyme family 149 

reaction 822 
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4.2.3. Web interface 

As of the date of submission of this thesis, the SEEER is available at 

http://sfldtest.rbvi.ucsf.edu/seeer.  The interface is a combination of HTML pages and 

dynamic pages generated by Python cgi-scripts that query the MySQL database and 

display results.  There are several ways of accessing the data: browsing superfamilies, 

searching by substructure, and searching by enzyme.  

Selecting the option to “Browse by Superfamily” displays a summary table of all 

the superfamilies in the SEEER (Figure 4.2).  For each superfamily, the table includes the 

superfamily’s conserved function (both the conserved substructure and the EC digits 

shared by all members of the superfamily) as well as a summary of the range of reactions 

known to be performed by members of the superfamily (the number of unique EC 

numbers and the number of reactions).  Because many of the enzymes in the SEEER are 

known to catalyze more than one reaction, either in vivo or in vitro, but an enzyme will 

often only be assigned one EC number, the number of reactions in a particular 

superfamily will often be greater than the number of unique EC numbers.  Users may 

select a particular superfamily, which will open up a summary page describing the 

characteristics and reactions of that superfamily.  The superfamily summary pages are 

described in more detail below. 
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Figure 4.2. Database interface – Browse superfamilies.   

To facilitate browsing through the superfamilies in SEEER, superfamilies and their conserved substructures 

as well as other summary information is displayed as a table. 

 

A user interested in engineering an enzyme to perform a particular reaction may 

be interested in finding a superfamily or enzyme that is likely to be a good starting point 

for engineering.  Selecting the “Search by Substructure” option allows the user to query 

the database with a SMILES string for the substrate or product of the desired reaction.  

The SMILES string will be used as a query against the superfamily conserved 

substructures and/or the reacting substructures, depending on which search options are 

selected.  If the superfamily search option is selected, any superfamily whose conserved 

substructure is a substructure of the query SMILES will be returned and summarized in a 
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displayed table.  If the enzyme search option is selected, any enzyme family with 

enzymes that have reacting substructures that are substructures of the query SMILES will 

be displayed as a table.  Because an enzyme family may have multiple different reactions, 

there may be multiple matching reactions for a particular enzyme, but the number of 

matching reactions may only be a fraction of the total number of reactions performed by 

that enzyme.  Therefore, both the number and fraction of matching reactions are reported 

and the results are sorted by the fraction of matching reactions. 

A user may also have a particular enzyme as a starting point for entering the 

database.  Such a user might be interested in exploring the range of reactions performed 

or learning which aspects of that enzymes function are conserved within its superfamily.  

By selecting the “Search by Enzyme” option, a user can enter in the name of the enzyme 

of interest or an EC number of the reaction performed by the enzyme.  If a matching 

enzyme is found in the database, the results will be displayed as an enzyme summary 

table.  From this table, the superfamily and other enzyme families in the superfamily are 

accessible through hypertext links.  This table is discussed in more detail further below. 

For each superfamily, users can view a superfamily summary page (Figure 4.3).  

The top of the page contains a table summarizing the range of reactions catalyzed by 

members of the superfamily and the functions conserved among members of the 

superfamily.  This table also contains a summary of how much the conserved 

substructure and reacting substructures overlap.  Below the summary table, the conserved 

substrate substructure and all of the reactions in the superfamily are displayed.  The 

reactions can be viewed either all on one page (Show all reactions, default view) or by 

scrolling through one reaction at a time (Show one reaction at a time).  Each reaction is 
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labeled with the name of the enzyme that performs that reaction and with the substrate 

and product(s) of the reaction and is linked to the summary pages for each enzyme 

family. 

 

Figure 4.3. Database interface - Superfamily display page.   

Superfamily summary pages display information about the superfamily including the conserved 

substructures, each reaction in the superfamily, the number of unique reactions in the superfamily, and 

measures that describe the overlap between conserved and reacting substructures. 

 

Information for individual enzyme families in SEEER is also displayed in 

summary pages (Figure 4.4).  The top of the page contains a table summarizing the 

canonical enzyme family reaction and the range of reactions catalyzed by this enzyme.  
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This table also contains a summary of how much the conserved substructure of the 

superfamily and the reacting substructures overlap.  Below the summary table, there is a 

table showing all of the reactions catalyzed by members of the enzyme family.  The 

reactions can be viewed either all on one page (Show all reactions, default view) or by 

scrolling through one reaction at a time (Show one reaction at a time).  Each reaction is 

labeled with the substrate and product of the reaction. 

 

Figure 4.4. Database interface - Enzyme display page. 

Enzyme summary pages show the reactions catalyzed by the particular family of enzymes and measures 

that describe the overlap between conserved and reacting substructures. 
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4.3. Conclusion 

By developing this resource to share results of our prior substrate substructure 

analyses, we hope to facilitate the generation of hypotheses relating to enzyme evolution 

and for enzyme engineering.  For researchers interested in a particular enzyme or 

superfamily, the SEEER allows for exploration of the conserved functions as well as the 

diversity of functions.  In addition, the conserved substructures can be used as an initial 

prediction of function for enzymes that can be classified into a superfamily but not into a 

specific family.  That initial prediction serves as a starting point for additional studies to 

determine the full and exact function of the enzyme.  For enzyme engineering, the 

substrate and product of the desired reaction can be used to query the SEEER for 

superfamilies and enzymes that already perform reactions that share substructures with 

the desired reaction.  By selecting such superfamilies and enzymes as starting points for 

evolution, fewer changes need to be made to achieve the desired reaction.  In addition, 

researchers interested in predicting substrates using computational docking 

methodologies can use the conserved the substructure to filter ligand libraries for 

docking.  The SEEER resource will be made publicly available to facilitate researchers 

interested in these goals. 
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Chapter 5  

Target Selection and Annotation for 

the Structural Genomics of the 

Amidohydrolase and Enolase 

Superfamilies 

5.1. Abstract 

To study the physics and evolution of the substrate specificity of enzymes, we use 

the amidohydrolase and enolase superfamilies as model systems. Members of these 

superfamilies share a common TIM barrel fold and catalyze a wide range of chemical 

reactions. Here, we describe our work to maximize the structural coverage of the 

amidohydrolase and enolase superfamilies. Using sequence- and structure-based protein 

comparisons, we first selected 535 target proteins from a variety of genomes for high-

throughput structure determination by X-ray crystallography; 63 of these targets were not 

previously annotated as superfamily members. To date, 20 unique structures in the 

amidohydrolase superfamily and 41 in the enolase superfamily have been determined, 

increasing the fraction of sequences in the two superfamilies that can be modeled based 
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on at least 30% sequence identity from 45% to 73%.  The work in this chapter has been 

submitted for publication.  The primary contributor of the full manuscript is Dr. Ursula 

Pieper.  This chapter contains the sections that are related to my contribution to this work, 

the sequence and modeling analyses for structural genomics target selection. 

5.2. Introduction 

The goal of this work is to predict the substrate specificity of an enzyme based on 

its experimentally determined and/or modeled structure (Gerlt et al. 2001; Todd et al. 

2001; Seibert et al. 2005; Glasner, Gerlt et al. 2006). Computational docking 

methodologies have been successfully used to predict enzyme specificity (Kalyanaraman 

et al. 2005; Hermann et al. 2007; Song et al. 2007).  In the absence of an experimentally 

determined structure, comparative modeling can be used to predict an enzyme’s structure, 

which then can be used for computational docking (McGovern et al. 2003).  The quality 

of the models and the successive docking results depends on the availability of good 

template structures.  Therefore, the successful prediction of enzyme specificity is enabled 

by structural genomics efforts to obtain crystallographic structures that thoroughly cover 

the space of enzyme sequences. 

A particularly attractive opportunity to study the substrate specificity and 

enzymatic mechanisms from the evolutionary and physical perspectives is provided by 

the very large and diverse amidohydrolase and enolase superfamilies. These 

superfamilies are attractive targets because of significant existing knowledge about them, 

while there are still large areas of their sequence space where we don’t have any structure 

or function information. 
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We have previously described the enolase superfamily (Section 2.1.2).  The other 

superfamily central to this study is the amidohydrolase superfamily.  The amidohydrolase 

superfamily members catalyze the hydrolysis of a wide range of substrates bearing amide 

or ester functional groups at carbon and phosphorus centers (Seibert et al. 2005). A 

common feature for this superfamily is a mononuclear or binuclear metal center 

coordinated in a (β/α)8-barrel (TIM barrel) polypeptide chain fold. The active site is 

formed by loops at the C-terminal ends of the β-strands. This superfamily is currently 

organized into 36 named families based on the experimentally verified catalytic reactions. 

The sequences are also clustered into 90 subgroups based on their chemical reaction 

catalyzed and active site similarities and a common sequence identity of at least 40% 

(Pegg et al. 2006). 

NIH guidelines allow for 15% of Protein Structure Initiative (PSI) structures to be 

“community-nominated” targets (Norvell et al. 2007). A substantial fraction of the New 

York Research Center for Structural Genomics (NYSGXRC) community targets are 

members of the amidoydrolase and enolase superfamilies that we have nominated. To 

date, our work has resulted in 25 amidohydrolase superfamily and 50 enolase superfamily 

structures, contributing substantially to the total structures in the Protein Data Bank 

(PDB; 6/16/08) (amidohydrolase: 154 and enolase: 89) (Berman et al. 2007). 

We begin by outlining the data sources and methods used for target selection and 

structure-based functional annotation (Methods, Section 5.3). Then, we present the results 

of the target selection process, the status of the selected targets in the structural genomics 

pipeline, and the improvement in the modeling of the amidohydrolase and enolase 
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superfamilies made possible by the new crystallographic structures (Results and 

Discussion, Section 5.4). 

5.3. Methods 

5.3.1. Target selection 

Target selection begins by identifying known members of the superfamilies (seed 

sequences), followed by filtering to obtain an initial target list. To identify additional 

members, we applied sequence- and structure-based expansion methods, followed by 

filtering for preferred source organisms. Superfamily membership for the additional 

targets was verified by inspecting their sequences for probable catalytic sites.  

Seed sequence sources 

Verified amidohydrolase and enolase superfamily sequences (ie, seed sequences) 

were obtained from the SFLD, which has been described in more detail in Section 2.3.2. 

In June 2005, when our target list was constructed, SFLD contained 3701 sequences for 

the amidohydrolase superfamily and 1795 sequences in the enolase superfamily. 

Filtering of seed sequences 

To select targets that share ~30% or less amino acid sequence identity over at 

least 70% of their length to a known three-dimensional structure, the seed sequences were 

processed using the automated comparative modeling server MODWEB 

(http://salilab.org/modweb) (Eswar et al. 2003). 

Sequence-based expansion of amidohydrolase and enolase superfamily members 

We identified additional potential superfamily sequences that were not present in 

the seed sequence pools.  For each seed sequence, homologous sequences in the 
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UNIPROT database (Wu et al. 2006) were identified by the BUILD_PROFILE routine of 

MODELLER-9 (Eswar et al. 2003). BUILD_PROFILE is an iterative database-searching 

tool that relies on local dynamic programming to generate alignments and a robust 

estimate of their statistical significance. 

Structure-based expansion of amidohydrolase superfamily members 

In addition to the SFLD entries, we also used the known amidohydrolase 

superfamily structures to find additional potential amidohydrolase superfamily members 

(this expansion was not performed for the enolase superfamily). We began by clustering 

100 PDB files (only monomeric structure) containing known amidohydrolase 

superfamily structures (June 2005) at 80% sequence identity. The resulting 48 non-

redundant structures were used for comparative modeling using the automated modeling 

server MODWEB (Eswar et al. 2003).  

For each structure, PSIBLAST (Altschul et al. 1997) was used to find putative 

homologs in UNIPROT, which were modeled using the query structure as a template. 

Known amidohydrolase superfamily members were excluded.  All models were 

deposited in our comprehensive MODBASE database of comparative protein structure 

models (http://salilab.org/modbase/; dataset model set ah_structures) (Pieper et al. 2006). 

To eliminate sequences that are likely members of other superfamilies, the homologs 

were subjected to standard comparative modeling with MODWEB using all non-

redundant chains in the PDB as potential templates.  

Filtering by organism 

While seed sequences could come from any genome, the additional 

amidohydrolase superfamily sequences identified by sequence- and structure-based 
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expansions were filtered for ease of cloning to include only 79 organisms with genomic 

DNA available to NYSGXRC in 2005 and the marine metagenome from the Sargasso 

Sea sequencing project (Venter et al. 2004). 

Verification of catalytic residues 

The resulting putative amidohydrolase superfamily sequences were aligned to 

amidohydrolase superfamily HMMs in SFLD and manually inspected for probable 

catalytic residues. The final target list only includes sequences with at least 70% of the 

catalytic residues present. 

5.3.2. Analysis of the target structures 

The amidohydrolase and enolase superfamilies were annotated using several 

computational tools. Cytoscape clustering gives an overview of how the targets are 

distributed across the superfamily (Shannon et al. 2003). Finally, template-based 

modeling determines how many new sequences can be modeled with the new structural 

information (Eswar et al. 2003).  

Sequence clustering by Cytoscape 

All-by-all BLAST searches were performed for the superfamily members and 

these results were used to construct Cytoscape (Shannon et al. 2003) networks for the 

amidohydrolase superfamily and the mandelate racemase, glucarate dehydratase, 

mannonate dehydratase, and muconate cycloisomerase subgroups of the enolase 

superfamily. A node represents a single sequence and an edge is shown for the most 

significant BLAST e-value connecting two sequences when it is better than an e-value 

cutoff chosen empirically to achieve the best “visual” separation of the clusters (10-10 for 
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the amidohydrolase superfamily, 10-40 for the enolase superfamily). The nodes were 

arranged using the ‘organic’ layout. 

Template-based modeling by MODWEB 

The new NYSGXRC crystallographic structures were submitted to MODWEB 

(Eswar et al. 2003) to serve as templates to model all of the identifiable homologs of the 

input structure in the non-redundant database of protein sequences nr (Wheeler et al. 

2008); these homologs were identified during ten PSI-BLAST iterations of the template 

sequence against nr (e-value cutoff is 0.0001) The results are available at 

http://salilab.org/modbase/models_nysgxrc_latest.html. 

5.4. Results and Discussion 

We first present the results of the target selection procedure. We also describe the 

current snapshot of the progress of the targets through our structural genomics pipeline 

(June 2008). We then indicate how the resulting crystallographic structures are 

distributed across the two superfamilies. Finally, we determine the number of protein 

sequences in the comprehensive sequence databases that are detectably related to these 

protein structures (ie, the modeling leverage). 

5.4.1. Target selection 

Given the capacities of NYSGXRC, the goal was to identify approximately 500 

target sequences, approximately evenly distributed between the two superfamilies. These 

targets were obtained by selecting representatives from previously identified superfamily 

members as well as by identifying new superfamily members in a select set of genomes 

(See Methods, Section 5.3). 
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Targets for the amidohydrolase superfamily 

From the SFLD, we obtained a list of 3701 amidohydrolase superfamily 

members. The first filtering step resulted in 1918 sequences with less than 30% sequence 

identity to a known structure and at least 250 amino acid residues in length, originating 

from 424 organisms. We chose a 30% sequence identity limit because at approximately 

this level of sequence identity, obtaining accurate target-template alignments becomes 

more difficult and homology modeling begins to incur significant errors (Sanchez et al. 

1997; Vitkup et al. 2001).  

These 1918 sequences were further filtered manually to obtain the reduced set of 

224 target sequences. The selected amidohydrolase superfamily members are evenly 

distributed among the various clades of the superfamily, thus representing the diversity 

within the superfamily. 

In addition to the known superfamily members, the sequence- and structure-based 

expansions detected 63 putative amidohydrolase superfamily members that were not 

initially in the SFLD (A table listing all amidohydrolase and enolase superfamily targets 

can be found at http://salilab.org/projects/enspec/target_list.html). These new potential 

targets fall into two categories: (i) divergent sequences that were detected by the 

sequence-based approach (Figure 5.1, blue box) and (ii) divergent sequences that were 

detected by the structure-based approach (Figure 5.1, pink box). Of the 63 putative 

amidohydrolase superfamily sequences, 50 were subsequently verified using the SFLD 

update procedure. The presence of probable catalytic residues for the remaining 13 

targets was verified manually. Nine of these 13 sequences were detected by both the 

sequence- and structure-based approaches, and four sequences were only detected by the 
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structure-based approach. Thus, the sequence- and structure-based approaches yielded 13 

additional targets that could not be identified with previously available protocols as 

amidohydrolase superfamily members (corresponding to 21% of the new putative 

members of the amidohydrolase superfamily). 

 

Figure 5.1. Flowchart of the target expansion strategy 

Sequence-based target expansion (left) and structure-based target expansion (right). 

 

The final amidohydrolase target list, including both previously identified and 

newly identified sequences, comprises 287 sequences from 53 organisms that cover 22 

(61%) named families in the superfamily (Figure 5.2). 



  96 

 

Figure 5.2. Phylogenetic tree of the organisms for the selected amidohydrolase targets 

The numbers in parentheses represent the number of targets for confirmed (first number) and 

putative (second number) amidohydrolase superfamily members. 

 

Targets for the enolase superfamily 

We used a simpler selection scheme for the enolase superfamily members. Of the 

1795 sequences already established as enolase superfamily members, we selected as 

targets the 255 sequences with less than 30% sequence identity to a known structure and 

at least 250 residues in length, originating from 98 organisms. 

A complete list of the selected amidohydrolase and enolase superfamily targets 

can be found at http://salilab.org/projects/enspec/. 
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Structural genomics pipeline attrition 

To date, structure determinations have been attempted for 254 amidohydrolase 

(88%) and 206 enolase (80%) superfamily members by the NYSGXRC/ENSPEC X-ray 

crystallographic structure determination pipeline. Progress to date and attrition rate at 

each stage of the pipeline are documented in Table 5.1 (June 2008). The project has not 

yet been completed, and a number of targets are still progressing through the pipeline. 

Therefore, the final overall success rate should be higher than that presented in Table 5.1. 

Table 5.1. Success rates for the steps in the structural genomics pipeline as of June 2008. 

Amidohydrolase superfamily Enolase superfamily Both superfamilies Step 

Total Fraction [%] Total Fraction [%] Total Fraction [%] 

Selected 279  222  501  

Cloned 254 91 206 93 460 92 

Expressed 225 88 177 86 402 87 

Soluble 167 74 112 63 279 69 

Purified 110 66 67 60 177 63 

Crystallized ~63 ~57 ~44 ~66 ~107 ~60 

Unique Structures 20 ~32 41 ~93 61 ~57 

All Structures 25  50  75  

 

5.4.2. Analysis of the resulting crystallographic structures 

Leverage of new crystallographic structures by modeling 

To determine the impact of a structure on the structural mapping of the protein 

sequence space, we determine how many known protein sequences can be modeled based 

on the structure (ie, the modeling leverage). Each enolase structure is a useful template 

for calculating comparative models for 2500 to 3200 other protein sequences in the 

Genbank nr database; a template is considered useful when the resulting model is based 

on a significant PSI-BLAST E-value (0.0001) or a favorable GA341 model score (>0.7). 

In contrast, the amidohydrolase superfamily structures fall into two categories: most are 
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detectably related to 3000 - 3800 other proteins, but five structures (PDB Codes: 2I5G, 

2Q01, 2Q6E, 2RAG, and 3B40) are related to a significantly smaller number of 

sequences (approximately 300 - 1000).  

The average number of models per structure is significantly higher for the 

amidohydrolase and enolase superfamilies than for all structures determined by 

NYSGXRC (2,681versus 1,964) (as of May 2007) (Table 5.2). This difference reflects 

the relatively large sizes of the amidohydrolase and enolase superfamilies. The number of 

sequences that can be modeled based on target-template sequence identity higher than 

30% is significantly lower for the amidohydrolase and enolase superfamilies structures 

than for the full NYSGXRC structure set (3% versus 11%), due to the relatively high 

diversity in the amidohydrolase and enolase superfamilies. 

Table 5.2. Comparison of template-based modeling statistics for the 63 ENSPEC/NYSGXRC 

structures and all 327 NYSGXRC structures (May 2007). 
An acceptable model is defined to be based on a significant PSI-BLAST E-value (0.0001) or a 

favorable GA341 model score (>0.7). 

 Amidohydrolase and 
enolase superfamily 

members 

All 

Average number of sequences with acceptable 
models 

2681 1964 

Minimum / maximum number of sequences 
with acceptable models 

189/3693 30/6320 

Average number of sequences with >50% 
sequence identity, at least 50% coverage 

15 20 

Average number of sequences with 30-50% 
sequence identity, at least 50% coverage 

59 113 

Average number of sequences with <30% 
sequence identity, at least 50% coverage 

2572 1400 

 

Upon initiation of this effort in June 2005, 45% of all known members of the 

amidohydrolase and enolase superfamilies were related to a known structure with a 
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sequence identity higher than 30%. Due to the increased number of templates contributed 

by our consortia, this number increased to 73% from 45%. 

The total number of unique sequences modeled using the new amidohydrolase 

and enolase superfamily structures is 11,097, approximately 30% more than the number 

of known sequences from the amidohydrolase and enolase superfamilies. Among these 

additional sequences, we expect both currently unidentified members of the 

amidohydrolase and enolase superfamilies as well as members of other superfamilies 

with the TIM barrel fold. 

Distribution of targets over the amidohydrolase and enolase superfamilies 

For large groups of related sequences, such as the amidohydrolase superfamily, a 

“network” visualization of their relationships is helpful in generating hypotheses on how 

various enzymes in the superfamily evolved, and on how closely the subgroups are 

related to each other. We have plotted Cytoscape networks for the amidohydrolase and 

enolase superfamilies, based on clustering by sequence similarity (Figure 5.3).  
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a 

 

b 

 

Figure 5.3. Cytoscape clustering for the amidohydrolase superfamily (a) and enolase superfamily (b). 

Green diamonds: Structures determined prior to the start of the ENSPEC/NYSGXRC project in 

June 2005. Red triangles: Superfamily members in the target list. Blue squares: All other 

structures determined by ENSPEC/NYSGXRC. (a) The most homogeneous subgroups have been 

named. Purple squares: Five divergent structures determined by ENSPEC/NYSGXRC. (b) 

Cytoscape clustering for the enolase superfamily. Subgroup clusters are marked for four 

subgroups.  
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Many subgroups in the large amidohydrolase superfamily, such as the urease-like 

subgroup and the uronate isomerase-like subgroup, are distinctly separated from the other 

superfamily members. For the enolase superfamily, we chose to generate a Cytoscape 

network that represents only four subgroups, containing the majority of the targets. The 

targets were mostly chosen from the mandelate racemase-like subgroup, because it is the 

largest subgroup with little previous structural coverage, and from the more divergent 

muconate cycloisomerase subgroup. The Cytoscape networks illustrate that the targets 

and the resulting structures are indeed concentrated in regions of superfamily sequence 

space that lacked structural characterization prior to the start of the project, as desired for 

our target selection.  

5.5. Conclusion  

We have made significant progress towards characterizing the structures in the 

amidohydrolase and enolase superfamilies. New members of the amidohydrolase 

superfamily have been identified through a combination of sequence- and structure-based 

expansions of the pool of known superfamily members. The structure-based expansion 

was particularly successful in identifying previously unrecognized superfamily members. 

The 63 crystallographic structures from the structural genomics pipeline increased the 

fraction of the sequences in these two superfamilies that can be modeled based on at least 

30% sequence identity from 45% to 73%. This demonstrates the power of combining 

sequence- and structure-based approaches for the structural genomics of two large and 

diverse enzyme superfamilies. 
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Chapter 6  

Conclusion and Future Directions 

This dissertation has presented a body of work to study enzyme evolution by 

focusing on the substrates and products of the enzymes and how they vary over enzyme 

evolution.  Our approaches also include sequence-based and structure-based analyses, 

which due to the interconnectedness of enzyme sequence, structure, and function, are 

closely tied to the primary focus of this work, the analyses of enzyme function.  Using 

computational methods for these analyses ensures that our analyses can be conducted 

systematically and on large sets of data, which facilitates the determination of general 

patterns in enzyme evolution.  In addition, the computational nature of the analyses 

facilitates the application of our results to other areas of research including function 

prediction and enzyme engineering. 

The first studies described in this dissertation (Chapter 2) describe sequence and 

structure-based studies to trace the evolution of enzyme function in a particular 

superfamily.  These two studies demonstrate the potential of phylogenetic, evolutionary 

trace, and structure comparison methods as well as some of their limitations, especially 

when the evolution of function is complicated. 
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The central piece of this body of work, described in Chapter 3, is the study on the 

conservation patterns in the substrates of enzyme superfamilies.  Using newly developed 

automated methods to study many superfamilies, we determined that the previous 

theories of how enzymes evolve were inadequate for describing the range of variation 

seen among superfamilies.  In addition, the results of this substrate substructure analyses 

can be used to improve the precision of protein function prediction and to guide efforts in 

enzyme engineering.  The Substructures for Enzyme Evolution and Engineering 

Resource was developed to facilitate researchers interested in these applications (Chapter 

4).  This resource, which will be publicly accessible, allows researchers to search and 

explore the substrates, products, reactions, and how these are conserved among 

superfamilies and their enzymes.  The resource can also be searched, using the target 

substrate or product, to find superfamilies and enzymes that are promising starting points 

for enzyme engineering. 

Because the SEEER is a new resource, there are currently no examples of 

successful engineering of enzymes that have been based on hypotheses from the SEEER.  

We plan to make this resource available to researchers interested in engineering enzymes 

and hope that the information about how enzyme functions have evolved can be used as a 

model for successful engineering.  In addition to engineering enzymes to perform 

different reactions and/or use different substrates, there are additional engineering 

strategies that can be combined to tightly control the function in biological systems 

(Arkin et al. 2006).  For example, protein-protein interfaces can be engineered to 

modulate the functions of the component proteins (Kortemme et al. 2004).  As progress is 

made in our ability to engineer different individual components of biological systems, we 
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can move toward more challenging engineering involving multiple interdependent 

components. 

The study of enzyme function and evolution is enabled by knowing the functions 

of as many enzymes as possible, which is, in turn, enabled by having many structures.  

Experimentally determined structures can be used to determine how enzymes have 

evolved and thus, how their functions have evolved (For an example, see (Ojha et al. 

2007)).  Computational docking methods to predict enzyme substrates are enabled by 

studies like the one described in Chapter 3 as well as by having many structures.  When 

there are no experimental structures available for docking, comparative modeling can be 

used to predict structures.  For the study described in Chapter 5, the selection of targets 

for structural genomics efforts led to an increase in the number of structures available to 

guide studies to determine the functions.  Additionally, selecting targets that were evenly 

distributed throughout the superfamilies enabled us to maximize the number of additional 

sequences that can be modeled. 

Because the product of one enzyme is the substrate for the next enzyme in the 

pathway, enzymes in the same pathway will share similarities in their substrates.  The 

goal of ongoing work is to leverage this similarity among substrates within pathways to 

improve our ability to predict enzyme substrate specificity (Figure 6.1).  The first step in 

this strategy involves using docking methods to screen ligand libraries for substrates and 

products of multiple members of enzymes coded by a single operon.  This requires either 

a crystal structure of the enzyme or of a homologous enzyme that can be used as a 

template for comparative modeling.  For cases in which the order of the enzymes in the 

pathway is unknown, the SEA method (Keiser et al. 2007) to relate enzymes by ligand 
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list similarity can be used to cluster the enzymes’ docking hit lists to predict whether the 

enzymes in the operon are in the same pathway as well as the likely order of enzymes.  

With the pathway order, substructure-based analyses can be used to find substructures 

that occur frequently in the hit lists of neighboring enzymes of the pathway to further 

enrich the docking results for true substrates and products. 

 

Figure 6.1. Flowchart of the substrate prediction strategy 
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Analysis of conservation in enzyme substrates and products represents an 

important first step in the study of the evolution of function.  There are additional 

strategies that can supplement the initial strategy that we developed.  For example, 

reaction steps can be described and compared to determine how enzyme functions are 

conserved or vary during enzyme evolution (O'Boyle et al. 2007).  This type of 

methodology is currently being further developed and can be combined with the analysis 

of ligand structures to get a more complete view of how enzymes evolve.  By combining 

these orthogonal strategies, we would get closer to a systematic and detailed 

representation of enzyme function that could replace the outdated EC system.   This 

improved representation of enzyme function would facilitate the study, prediction, and 

annotation of enzyme function. 

The more we study enzyme function – both focused and large-scale studies – the 

more we are finding that enzyme function is very complex.  Highly dissimilar enzymes 

can share the same function (Glasner, Fayazmanesh et al. 2006), while highly similar 

enzymes can have differing functions (Seffernick et al. 2001).  How many changes in 

sequence and structure can occur in an enzyme while maintaining the same function?  

Many enzymes are known to be promiscuous for multiple functions (O'Brien et al. 1999) 

and because of limits in our ability to test large ranges of possible functions, many 

additional enzymes are likely to be promiscuous.  What role does promiscuity play in the 

evolution of new functions?  Some case studies suggest that promiscuous proteins more 

likely to evolve different function, but this hypothesis has not been thoroughly tested.  To 

answer these questions about the complex process of enzyme evolution will require more 

data, consistent and accurate database annotations, improved ways of encoding function, 
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and better ways to evaluate promiscuity (Nath et al. 2008).  The work in this dissertation 

provides a foundation for further work in this field that will be necessary to develop 

comprehensive solutions to these challenges 



  108 

References 
Aharoni, A., L. Gaidukov, et al. (2005). "The 'evolvability' of promiscuous protein 

functions." Nat Genet 37(1): 73-6. 
Allen, K. N. and D. Dunaway-Mariano (2004). "Phosphoryl group transfer: evolution of a 

catalytic scaffold." Trends Biochem Sci 29(9): 495-503. 
Altekar, G., S. Dwarkadas, et al. (2004). "Parallel Metropolis coupled Markov chain 

Monte Carlo for Bayesian phylogenetic inference." Bioinformatics 20(3): 407-15. 
Altschul, S. F., W. Gish, et al. (1990). "Basic local alignment search tool." J Mol Biol 

215(3): 403-10. 
Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST and PSI-BLAST: a new 

generation of protein database search programs." Nucleic Acids Res 25(17): 
3389-402. 

Alves, R., R. A. Chaleil, et al. (2002). "Evolution of enzymes in metabolism: a network 
perspective." J Mol Biol 320(4): 751-70. 

Arkin, A. P. and D. A. Fletcher (2006). "Fast, cheap and somewhat in control." Genome 
Biol 7(8): 114. 

Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium." Nat Genet 25(1): 25-9. 

Babbitt, P. C. (2003). "Definitions of enzyme function for the structural genomics era." 
Curr Opin Chem Biol 7(2): 230-7. 

Babbitt, P. C. and J. A. Gerlt (1997). "Understanding enzyme superfamilies. Chemistry 
As the fundamental determinant in the evolution of new catalytic activities." J 
Biol Chem 272(49): 30591-4. 

Babbitt, P. C., M. S. Hasson, et al. (1996). "The enolase superfamily: a general strategy 
for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids." 
Biochemistry 35(51): 16489-501. 

Baker, D. and A. Sali (2001). "Protein structure prediction and structural genomics." 
Science 294(5540): 93-6. 

Barthelmes, J., C. Ebeling, et al. (2007). "BRENDA, AMENDA and FRENDA: the 
enzyme information system in 2007." Nucleic Acids Res 35(Database issue): 
D511-4. 

Bashton, M. and C. Chothia (2007). "The generation of new protein functions by the 
combination of domains." Structure 15(1): 85-99. 

Bergmeyer, H. (1974). Methods of Enzymatic Analysis. New York, NY, Academic Press. 



  109 

Berman, H., K. Henrick, et al. (2007). "The worldwide Protein Data Bank (wwPDB): 
ensuring a single, uniform archive of PDB data." Nucleic Acids Res 35(Database 
issue): D301-3. 

Bessman, M. J., D. N. Frick, et al. (1996). "The MutT proteins or "Nudix" hydrolases, a 
family of versatile, widely distributed, "housecleaning" enzymes." J Biol Chem 
271(41): 25059-62. 

Brenner, S. E. (1999). "Errors in genome annotation." Trends Genet 15(4): 132-3. 
Brenner, S. E., C. Chothia, et al. (1998). "Assessing sequence comparison methods with 

reliable structurally identified distant evolutionary relationships." Proc Natl Acad 
Sci U S A 95(11): 6073-8. 

Briggs, G. E. and J. B. Haldane (1925). "A Note on the Kinetics of Enzyme Action." 
Biochem J 19(2): 338-9. 

Brown, S. D., J. A. Gerlt, et al. (2006). "A gold standard set of mechanistically diverse 
enzyme superfamilies." Genome Biol 7(1): R8. 

Chandonia, J. M. and S. E. Brenner (2006). "The impact of structural genomics: 
expectations and outcomes." Science 311(5759): 347-51. 

Chiang, R. A., A. Sali, et al. (2008). "Evolutionarily conserved substrate substructures for 
automated annotation of enzyme superfamilies." PLoS Comput Biol 4(8): 
e1000142. 

Copley, S. D. (2000). "Evolution of a metabolic pathway for degradation of a toxic 
xenobiotic: the patchwork approach." Trends Biochem Sci 25(6): 261-5. 

Copley, S. D. (2003). "Enzymes with extra talents: moonlighting functions and catalytic 
promiscuity." Curr Opin Chem Biol 7(2): 265-72. 

Davis, F. P. and A. Sali (2005). "PIBASE: a comprehensive database of structurally 
defined protein interfaces." Bioinformatics 21(9): 1901-7. 

Devos, D. and A. Valencia (2000). "Practical limits of function prediction." Proteins 
41(1): 98-107. 

Devos, D. and A. Valencia (2001). "Intrinsic errors in genome annotation." Trends Genet 
17(8): 429-31. 

Diaz-Mejia, J. J., E. Perez-Rueda, et al. (2007). "A network perspective on the evolution 
of metabolism by gene duplication." Genome Biol 8(2): R26. 

Driscoll, J. R. and H. W. Taber (1992). "Sequence organization and regulation of the 
Bacillus subtilis menBE operon." J Bacteriol 174(15): 5063-71. 

Edgar, R. C. (2004). "MUSCLE: multiple sequence alignment with high accuracy and 
high throughput." Nucleic Acids Res 32(5): 1792-7. 

Eswar, N., B. John, et al. (2003). "Tools for comparative protein structure modeling and 
analysis." Nucleic Acids Res 31(13): 3375-80. 

Felsenstein, J. (2004). "PHYLIP (Phylogeny Inference Package) version 3.6." Distributed 
by the author. Department of Genome Sciences, University of Washington, 
Seattle. 

Fersht, A. (1985). Enzyme Structure and Mechanism (2nd ed). New York, W. H. 
Freeman and Co. 

Frazer, K. A., L. Elnitski, et al. (2003). "Cross-species sequence comparisons: a review of 
methods and available resources." Genome Res 13(1): 1-12. 

Friedberg, I. (2006). "Automated protein function prediction--the genomic challenge." 
Brief Bioinform 7(3): 225-42. 



  110 

Gerlt, J. A. (2007). "A Protein Structure (or Function ?) Initiative." Structure 15(11): 
1353-6. 

Gerlt, J. A. and P. C. Babbitt (1998). "Mechanistically diverse enzyme superfamilies: the 
importance of chemistry in the evolution of catalysis." Curr Opin Chem Biol 2(5): 
607-12. 

Gerlt, J. A. and P. C. Babbitt (2001). "Divergent evolution of enzymatic function: 
mechanistically diverse superfamilies and functionally distinct suprafamilies." 
Annu Rev Biochem 70: 209-46. 

Gerlt, J. A., P. C. Babbitt, et al. (2005). "Divergent evolution in the enolase superfamily: 
the interplay of mechanism and specificity." Arch Biochem Biophys 433(1): 59-
70. 

Gerlt, J. A. and F. M. Raushel (2003). "Evolution of function in (beta/alpha)8-barrel 
enzymes." Curr Opin Chem Biol 7(2): 252-64. 

Gilks, W. R., B. Audit, et al. (2002). "Modeling the percolation of annotation errors in a 
database of protein sequences." Bioinformatics 18(12): 1641-9. 

Glasner, M. E., N. Fayazmanesh, et al. (2006). "Evolution of structure and function in the 
o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase 
superfamily." J Mol Biol 360(1): 228-50. 

Glasner, M. E., J. A. Gerlt, et al. (2006). "Evolution of enzyme superfamilies." Curr Opin 
Chem Biol 10(5): 492-7. 

Glasner, M. E., J. A. Gerlt, et al. (2007). "Mechanisms of protein evolution and their 
application to protein engineering." Adv Enzymol Relat Areas Mol Biol 75: 193-
239, xii-xiii. 

Gulick, A. M., B. K. Hubbard, et al. (2000). "Evolution of enzymatic activities in the 
enolase superfamily: crystallographic and mutagenesis studies of the reaction 
catalyzed by D-glucarate dehydratase from Escherichia coli." Biochemistry 
39(16): 4590-602. 

Hegyi, H. and M. Gerstein (1999). "The relationship between protein structure and 
function: a comprehensive survey with application to the yeast genome." J Mol 
Biol 288(1): 147-64. 

Hermann, J. C., E. Ghanem, et al. (2006). "Predicting substrates by docking high-energy 
intermediates to enzyme structures." J Am Chem Soc 128(49): 15882-91. 

Hermann, J. C., R. Marti-Arbona, et al. (2007). "Structure-based activity prediction for an 
enzyme of unknown function." Nature 448(7155): 775-9. 

Holden, H. M., M. M. Benning, et al. (2001). "The crotonase superfamily: divergently 
related enzymes that catalyze different reactions involving acyl coenzyme a 
thioesters." Acc Chem Res 34(2): 145-57. 

Holliday, G. L., D. E. Almonacid, et al. (2007). "MACiE (Mechanism, Annotation and 
Classification in Enzymes): novel tools for searching catalytic mechanisms." 
Nucleic Acids Res 35(Database issue): D515-20. 

Holm, L. and C. Sander (1996). "Mapping the protein universe." Science 273(5275): 595-
603. 

Holm, L. and C. Sander (1997). "An evolutionary treasure: unification of a broad set of 
amidohydrolases related to urease." Proteins 28(1): 72-82. 

Horowitz, N. H. (1945). "On the Evolution of Biochemical Syntheses." Proc Natl Acad 
Sci U S A 31(6): 153-7. 



  111 

Horowitz, N. H. (1965). The evolution of biochemical syntheses - retrospect and 
prospect. Evolving genes and proteins. V. Bryson and H. J. Vogel. New York, 
Academic Press: 15-. 

Hughes, A. L. (1994). "The evolution of functionally novel proteins after gene 
duplication." Proc Biol Sci 256(1346): 119-24. 

James, L. C. and D. S. Tawfik (2003). "Conformational diversity and protein evolution--a 
60-year-old hypothesis revisited." Trends Biochem Sci 28(7): 361-8. 

Jensen, R. A. (1976). "Enzyme recruitment in evolution of new function." Annu Rev 
Microbiol 30: 409-25. 

Jewett, A. I., C. C. Huang, et al. (2003). "MINRMS: an efficient algorithm for 
determining protein structure similarity using root-mean-squared-distance." 
Bioinformatics 19(5): 625-34. 

Johnson, T. W., G. Shen, et al. (2000). "Recruitment of a foreign quinone into the A(1) 
site of photosystem I. I. Genetic and physiological characterization of 
phylloquinone biosynthetic pathway mutants in Synechocystis sp. pcc 6803." J 
Biol Chem 275(12): 8523-30. 

Jones, D. T., W. R. Taylor, et al. (1992). "The rapid generation of mutation data matrices 
from protein sequences." Comput Appl Biosci 8(3): 275-82. 

Kalyanaraman, C., K. Bernacki, et al. (2005). "Virtual screening against highly charged 
active sites: identifying substrates of alpha-beta barrel enzymes." Biochemistry 
44(6): 2059-71. 

Keiser, M. J., B. L. Roth, et al. (2007). "Relating protein pharmacology by ligand 
chemistry." Nat Biotechnol 25(2): 197-206. 

Khersonsky, O., C. Roodveldt, et al. (2006). "Enzyme promiscuity: evolutionary and 
mechanistic aspects." Curr Opin Chem Biol 10(5): 498-508. 

Kitchen, D. B., H. Decornez, et al. (2004). "Docking and scoring in virtual screening for 
drug discovery: methods and applications." Nat Rev Drug Discov 3(11): 935-49. 

Klenchin, V. A., E. A. Taylor Ringia, et al. (2003). "Evolution of enzymatic activity in 
the enolase superfamily: structural and mutagenic studies of the mechanism of the 
reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli." 
Biochemistry 42(49): 14427-33. 

Koike-Takeshita, A., T. Koyama, et al. (1997). "Identification of a novel gene cluster 
participating in menaquinone (vitamin K2) biosynthesis. Cloning and sequence 
determination of the 2-heptaprenyl-1,4-naphthoquinone methyltransferase gene of 
Bacillus stearothermophilus." J Biol Chem 272(19): 12380-3. 

Kortemme, T. and D. Baker (2004). "Computational design of protein-protein 
interactions." Curr Opin Chem Biol 8(1): 91-7. 

Kotera, M., Y. Okuno, et al. (2004). "Computational assignment of the EC numbers for 
genomic-scale analysis of enzymatic reactions." J Am Chem Soc 126(50): 16487-
98. 

Krishnamurthy, N. and K. V. Sjolander (2005). "Basic protein sequence analysis." Curr 
Protoc Mol Biol Chapter 19: Unit 19 5. 

Landro, J. A., J. A. Gerlt, et al. (1994). "The role of lysine 166 in the mechanism of 
mandelate racemase from Pseudomonas putida: mechanistic and crystallographic 
evidence for stereospecific alkylation by (R)-alpha-phenylglycidate." 
Biochemistry 33(3): 635-43. 



  112 

Lebioda, L. and B. Stec (1988). "Crystal structure of enolase indicates that enolase and 
pyruvate kinase evolved from a common ancestor." Nature 333(6174): 683-6. 

Lichtarge, O., H. R. Bourne, et al. (1996). "An evolutionary trace method defines binding 
surfaces common to protein families." J Mol Biol 257(2): 342-58. 

Light, S. and P. Kraulis (2004). "Network analysis of metabolic enzyme evolution in 
Escherichia coli." BMC Bioinformatics 5: 15. 

Lupyan, D., A. Leo-Macias, et al. (2005). "A new progressive-iterative algorithm for 
multiple structure alignment." Bioinformatics 21(15): 3255-63. 

Madabushi, S., A. K. Gross, et al. (2004). "Evolutionary trace of G protein-coupled 
receptors reveals clusters of residues that determine global and class-specific 
functions." J Biol Chem 279(9): 8126-32. 

Madabushi, S., H. Yao, et al. (2002). "Structural clusters of evolutionary trace residues 
are statistically significant and common in proteins." J Mol Biol 316(1): 139-54. 

Marti-Renom, M. A., U. Pieper, et al. (2007). "DBAli tools: mining the protein structure 
space." Nucleic Acids Res 35(Web Server issue): W393-7. 

Matsumura, I. and A. D. Ellington (2001). "In vitro evolution of beta-glucuronidase into 
a beta-galactosidase proceeds through non-specific intermediates." J Mol Biol 
305(2): 331-9. 

McGovern, S. L. and B. K. Shoichet (2003). "Information decay in molecular docking 
screens against holo, apo, and modeled conformations of enzymes." J Med Chem 
46(14): 2895-907. 

Meganathan, R. (2001). "Biosynthesis of menaquinone (vitamin K2) and ubiquinone 
(coenzyme Q): a perspective on enzymatic mechanisms." Vitam Horm 61: 173-
218. 

Meganathan, R., R. Bentley, et al. (1981). "Identification of Bacillus subtilis men mutants 
which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate 
synthase." J Bacteriol 145(1): 328-32. 

Mildvan, A. S., Z. Xia, et al. (2005). "Structures and mechanisms of Nudix hydrolases." 
Arch Biochem Biophys 433(1): 129-43. 

Murzin, A. G., S. E. Brenner, et al. (1995). "SCOP: a structural classification of proteins 
database for the investigation of sequences and structures." J Mol Biol 247(4): 
536-40. 

Nagano, N. (2005). "EzCatDB: the Enzyme Catalytic-mechanism Database." Nucleic 
Acids Res 33(Database issue): D407-12. 

Nagatani, R. A., A. Gonzalez, et al. (2007). "Stability for function trade-offs in the 
enolase superfamily "catalytic module"." Biochemistry 46(23): 6688-95. 

Nath, A. and W. M. Atkins (2008). "A quantitative index of substrate promiscuity." 
Biochemistry 47(1): 157-66. 

Neidhart, D. J., P. L. Howell, et al. (1991). "Mechanism of the reaction catalyzed by 
mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-A 
resolution: identification of the active site and possible catalytic residues." 
Biochemistry 30(38): 9264-73. 

Nobeli, I., R. V. Spriggs, et al. (2005). "A ligand-centric analysis of the diversity and 
evolution of protein-ligand relationships in E.coli." J Mol Biol 347(2): 415-36. 

Norvell, J. C. and J. M. Berg (2007). "Update on the protein structure initiative." 
Structure 15(12): 1519-22. 



  113 

O'Boyle, N. M., G. L. Holliday, et al. (2007). "Using reaction mechanism to measure 
enzyme similarity." J Mol Biol 368(5): 1484-99. 

O'Brien, P. J. and D. Herschlag (1999). "Catalytic promiscuity and the evolution of new 
enzymatic activities." Chem Biol 6(4): R91-R105. 

O'Loughlin, T. L., W. M. Patrick, et al. (2006). "Natural history as a predictor of protein 
evolvability." Protein Eng Des Sel 19(10): 439-42. 

Ojha, S., E. C. Meng, et al. (2007). "Evolution of Function in the "Two Dinucleotide 
Binding Domains" Flavoproteins." PLoS Comput Biol 3(7): e121. 

Overbeek, R., T. Disz, et al. (2004). "The SEED: a peer-to-peer environment for genome 
annotation." Communications of the ACM 47(11): 46-51. 

Palmer, D. R., J. B. Garrett, et al. (1999). "Unexpected divergence of enzyme function 
and sequence: "N-acylamino acid racemase" is o-succinylbenzoate synthase." 
Biochemistry 38(14): 4252-8. 

Pearson, W. R. and M. L. Sierk (2005). "The limits of protein sequence comparison?" 
Curr Opin Struct Biol 15(3): 254-60. 

Pegg, S. C. and P. C. Babbitt (1999). "Shotgun: getting more from sequence similarity 
searches." Bioinformatics 15(9): 729-40. 

Pegg, S. C., S. Brown, et al. (2005). "Representing structure-function relationships in 
mechanistically diverse enzyme superfamilies." Pac Symp Biocomput: 358-69. 

Pegg, S. C., S. D. Brown, et al. (2006). "Leveraging enzyme structure-function 
relationships for functional inference and experimental design: the structure-
function linkage database." Biochemistry 45(8): 2545-55. 

Pettersen, E. F., T. D. Goddard, et al. (2004). "UCSF Chimera--a visualization system for 
exploratory research and analysis." J Comput Chem 25(13): 1605-12. 

Pieper, U., N. Eswar, et al. (2006). "MODBASE: a database of annotated comparative 
protein structure models and associated resources." Nucleic Acids Res 
34(Database issue): D291-5. 

Porter, C. T., G. J. Bartlett, et al. (2004). "The Catalytic Site Atlas: a resource of catalytic 
sites and residues identified in enzymes using structural data." Nucleic Acids Res 
32(Database issue): D129-33. 

Riesenfeld, C. S., P. D. Schloss, et al. (2004). "Metagenomics: genomic analysis of 
microbial communities." Annu Rev Genet 38: 525-52. 

Rison, S. C., T. C. Hodgman, et al. (2000). "Comparison of functional annotation 
schemes for genomes." Funct Integr Genomics 1(1): 56-69. 

Ronquist, F. and J. P. Huelsenbeck (2003). "MrBayes 3: Bayesian phylogenetic inference 
under mixed models." Bioinformatics 19(12): 1572-4. 

Rost, B. (2002). "Enzyme function less conserved than anticipated." J Mol Biol 318(2): 
595-608. 

Rowland, B., K. Hill, et al. (1995). "Structural organization of a Bacillus subtilis operon 
encoding menaquinone biosynthetic enzymes." Gene 167(1-2): 105-9. 

Sanchez, R. and A. Sali (1997). "Evaluation of comparative protein structure modeling 
by MODELLER-3." Proteins Suppl 1: 50-8. 

Sauder, J. M., J. W. Arthur, et al. (2000). "Large-scale comparison of protein sequence 
alignment algorithms with structure alignments." Proteins 40(1): 6-22. 

Schmidt, D. M., B. K. Hubbard, et al. (2001). "Evolution of enzymatic activities in the 
enolase superfamily: functional assignment of unknown proteins in Bacillus 



  114 

subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases." Biochemistry 40(51): 
15707-15. 

Schmidt, D. M., E. C. Mundorff, et al. (2003). "Evolutionary potential of (beta/alpha)8-
barrels: functional promiscuity produced by single substitutions in the enolase 
superfamily." Biochemistry 42(28): 8387-93. 

Schmidt, S., S. Sunyaev, et al. (2003). "Metabolites: a helping hand for pathway 
evolution?" Trends Biochem Sci 28(6): 336-41. 

Schultes, E. A. and D. P. Bartel (2000). "One sequence, two ribozymes: implications for 
the emergence of new ribozyme folds." Science 289(5478): 448-52. 

Seffernick, J. L., M. L. de Souza, et al. (2001). "Melamine deaminase and atrazine 
chlorohydrolase: 98 percent identical but functionally different." J Bacteriol 
183(8): 2405-10. 

Seibert, C. M. and F. M. Raushel (2005). "Structural and catalytic diversity within the 
amidohydrolase superfamily." Biochemistry 44(17): 6383-91. 

Shah, I. and L. Hunter (1997). "Predicting enzyme function from sequence: a systematic 
appraisal." Proc Int Conf Intell Syst Mol Biol 5: 276-83. 

Shannon, P., A. Markiel, et al. (2003). "Cytoscape: a software environment for integrated 
models of biomolecular interaction networks." Genome Res 13(11): 2498-504. 

Shindyalov, I. N. and P. E. Bourne (1998). "Protein structure alignment by incremental 
combinatorial extension (CE) of the optimal path." Protein Eng 11(9): 739-47. 

Song, L., C. Kalyanaraman, et al. (2007). "Prediction and assignment of function for a 
divergent N-succinyl amino acid racemase." Nat Chem Biol 3(8): 486-91. 

Steinbeck, C., Y. Han, et al. (2003). "The Chemistry Development Kit (CDK): an open-
source Java library for Chemo- and Bioinformatics." J Chem Inf Comput Sci 
43(2): 493-500. 

Stuart, A. C., V. A. Ilyin, et al. (2002). "LigBase: a database of families of aligned ligand 
binding sites in known protein sequences and structures." Bioinformatics 18(1): 
200-1. 

Taber, H. W., E. A. Dellers, et al. (1981). "Menaquinone biosynthesis in Bacillus subtilis: 
isolation of men mutants and evidence for clustering of men genes." J Bacteriol 
145(1): 321-7. 

Taylor, E. A., D. R. Palmer, et al. (2001). "The lesser "burden borne" by o-
succinylbenzoate synthase: an "easy" reaction involving a carboxylate carbon 
acid." J Am Chem Soc 123(24): 5824-5. 

Taylor Ringia, E. A., J. B. Garrett, et al. (2004). "Evolution of enzymatic activity in the 
enolase superfamily: functional studies of the promiscuous o-succinylbenzoate 
synthase from Amycolatopsis." Biochemistry 43(1): 224-9. 

Thoden, J. B., E. A. Taylor Ringia, et al. (2004). "Evolution of enzymatic activity in the 
enolase superfamily: structural studies of the promiscuous o-succinylbenzoate 
synthase from Amycolatopsis." Biochemistry 43(19): 5716-27. 

Thompson, T. B., J. B. Garrett, et al. (2000). "Evolution of enzymatic activity in the 
enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia 
coli in complex with Mg2+ and o-succinylbenzoate." Biochemistry 39(35): 
10662-76. 

Tian, W. and J. Skolnick (2003). "How well is enzyme function conserved as a function 
of pairwise sequence identity?" J Mol Biol 333(4): 863-82. 



  115 

Tipton, K. and S. Boyce (2000). "History of the enzyme nomenclature system." 
Bioinformatics 16(1): 34-40. 

Todd, A. E., C. A. Orengo, et al. (1999). "Evolution of protein function, from a structural 
perspective." Curr Opin Chem Biol 3(5): 548-56. 

Todd, A. E., C. A. Orengo, et al. (2001). "Evolution of function in protein superfamilies, 
from a structural perspective." J Mol Biol 307(4): 1113-43. 

Venter, J. C., K. Remington, et al. (2004). "Environmental genome shotgun sequencing 
of the Sargasso Sea." Science 304(5667): 66-74. 

Vitkup, D., E. Melamud, et al. (2001). "Completeness in structural genomics." Nat Struct 
Biol 8(6): 559-66. 

Wedekind, J. E., R. R. Poyner, et al. (1994). "Chelation of serine 39 to Mg2+ latches a 
gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast 
enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A 
resolution." Biochemistry 33(31): 9333-42. 

Weininger, D., A. Weininger, et al. (1989). "SMILES.2. Algorithm for generation of 
unique SMILES notation." Jour. Chem. Info. Comp. Sci. 29: 97-101. 

Weininger, D. J. (1988). "SMILES.1. Introduction and encoding rules." Jour. Chem. Inf. 
Comput. Sci. 28: 31-46. 

Wheeler, D. L., T. Barrett, et al. (2008). "Database resources of the National Center for 
Biotechnology Information." Nucleic Acids Res 36(Database issue): D13-21. 

Whelan, S. and N. Goldman (2001). "A general empirical model of protein evolution 
derived from multiple protein families using a maximum-likelihood approach." 
Mol Biol Evol 18(5): 691-9. 

Wilson, C. A., J. Kreychman, et al. (2000). "Assessing annotation transfer for genomics: 
quantifying the relations between protein sequence, structure and function through 
traditional and probabilistic scores." J Mol Biol 297(1): 233-49. 

Wu, C. H., R. Apweiler, et al. (2006). "The Universal Protein Resource (UniProt): an 
expanding universe of protein information." Nucleic Acids Res 34(Database 
issue): D187-91. 

Ycas, M. (1974). "On earlier states of the biochemical system." J Theor Biol 44(1): 145-
60. 

 
 



  116 

Appendix A. Evolutionary Trace  

A.1.1. Usage 

This section will detail the usage of et.py on the command line to find class-
conserved and class-specific residue positions in a multiple sequence alignment. 
 

Brief command description 

General usage:  et.py --alignment=<alignment file> --classes=<classes 
file> [--cccs=<cc/cs>] [--conservationType=<complete/subs/<integer>> [--
outputFormat=<list/seqsel> 

Example command:  et.py --alignment=msa.fasta --
classes=classes.txt –cccs=cs --conservationType=90 –outputFormat=seqsel 
 
Requirements for running et.py. A version of Python (http://www.python.org/) should be 
installed in order to run this script. 
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Options.  
--alignment=<alignment file> : Specify the file containing the multiple 

sequence alignment in FASTA format. 
--classes=<classes file> : Specify the file containing class memberships 

(See below for file format) 
--cccs=<cc/cs> :  Specify either ‘cc’ to find class-conserved residues or ‘cs’ to 

find class-specific residues 
--conservationType=<complete/subs/<integer>> : Specify the type of 

conservation for the class-conserved or class-specific residues.  Specify ‘complete’ to 
require 100% conservation, ‘subs’ to allow glutamate-aspartate and phenylalanine-
tyrosine substitutions, and an integer to specify the level of conservation required. 

--outputFormat=<list/seqsel> : Optional.  Default is ‘list’ option.  Specify 
the output format.  Specify ‘list’ to output text listing, for each class, residue position and 
amino acid type of class-conserved or class-specific residues.  Specify ‘seqsel’ to output 
the results as a seqsel formatted file.  A description of this file can be found at 
http://www.cgl.ucsf.edu/chimera/1.1700/docs/ContributedSoftware/msfviewer/seqsel.htm
l. Files of this type can be opened in the MultAlignViewer of UCSF’s Chimera program 
(http://www.cgl.ucsf.edu/chimera/) to color the class-conserved or class-specific 
positions in the alignment. 
 
Definitions.  

class-conserved : Positions in the alignment that are conserved within every 
class, but not necessarily with the same amino acid type across different classes. 

class-specific : Positions in the alignment that are conserved within a particular 
class and that may or may not have conservation within other classes. 
 
Input file format – class file. Classes with fewer than 2 members are not used for the 
analysis.  Sequences, which can be in multiple classes, must be listed using the same 
identifier as the identifiers in the alignment file.  If the ‘seqsel’ option is selected, a color 
must be specified for each class in as three integers (0 - 255) in RGB format (i.e. “255 10 
0”).  When opening the seqsel file in MultAlignViewer in Chimera, this color will be 
used to highlight the class-conserved or class-specific residues for that class.  The items 
in the ‘CLASSLEVEL’ and ‘NEWCLASS’ lines are separated by tabs. 

 
CLASSLEVEL <name of class level A> 
NEWCLASS <name of class A1> [RGB color] 
seq_id1 
seq_id2 
NEWCLASS <name of class A2> [255 0 255] 
seq_id3 
CLASSLEVEL <name of class level B> 
NEWCLASS <name of class B1> [0 0 255] 
seq_id4 
... 
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Output file format.  
 
<name of class level A> 
<name of class A1> 
<residue position> <amino acid type> 
<residue position> <amino acid type> 
... 
<name of class A2> 
<residue position> <amino acid type> 
<residue position> <amino acid type> 
... 
<name of class level B> 
<name of class B1> 
<residue position> <amino acid type> 
<residue position> <amino acid type> 
... 
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A.1.2. Script Code 
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Appendix B. Reacting and Common 

Substructures 

B.1.1. Usage 

This section will detail the usage of the Java program RCSubstructures to 
calculate reacting and conserved structures for a single superfamily on the 
command line.   
 

Command description 

General usage: java RCSubstructures <input molfile specification 
file> <output smiles file> > <output summary file> 

Example command: java RCSubstructures a.102.1.mol.txt 
a.102.1.smiles.txt > a.102.1.sssummary.txt 
 
Requirements for running RCSubstructures. A version of Java’s JDK 
(http://java.sun.com/javase/) should be installed in order to compile and run this program.  
In addition, the Chemistry Development Kit (http://sourceforge.net/projects/cdk) should 
be installed. 
 
Requirements for input files. To be useful, multiple reactions should be specified for each 
superfamily.  Reactions must be unimolecular (only one substrate), but multiple products 
can be specified.  Molfiles for all substrates and products must be specified. 
 
Notes about output files. If there are inconsistencies in the substrates and products of the 
specified reactions (i.e. the number of atoms in the substrate doesn’t approximately equal 
the number of atoms in the products or the number of atoms in the substrate is very 
small), those reactions will not be used in the calculation.  The output files only contain 
results for the valid reactions.  To identify the reactions in the input file to which the 
outputted reactions correspond, the index of the reaction in the input file is specified (See 
below). 
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Input file format – Molfile specification file. This file specifies the location of the 
coordinate files for the substrate and products of the reactions in the superfamily.  Each 
line in this file corresponds to one reaction. 

 
<molfile for substrate A> = <molfile for product A> 
<molfile for substrate B> = <molfile for product B1> + <molfile 

for product B2> 
... 

 

Output file format – SMILES file.  After the program is done running, this file will 
contain the SMILES string for the conserved substrate substructure for the superfamily.  
And for each reaction, this file will contain the SMILES strings for the substrate, product, 
reacting and nonreacting substructures, conserved and unconserved substructures, and the 
overlaps between all combinations of these substructures.  The order of the reactions is 
the same as for the other output of RCSubstructures. 

 
<conserved substructure> 
CCCCCCCCCCCCCCC 
<substrate A> 
<product A> 
<reacting substructure A> 
<nonreacting substructure A> 
<conserved substructure A> 
<unconserved substructure A> 
<reacting conserved substructure overlap A> 
<reacting unconserved substructure overlap A> 
<nonreacting conserved substructure overlap A> 
<nonreacting unconserved substructure overlap A> 
CCCCCCCCCCCCCCC 
<substrate B> 
<product B> 
<reacting substructure B> 
<nonreacting substructure B> 
<conserved substructure B> 
<unconserved substructure B> 
<reacting conserved substructure overlap B> 
<reacting unconserved substructure overlap B> 
<nonreacting conserved substructure overlap B> 
<nonreacting unconserved substructure overlap B> 
... 
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Output file format – Summary file.  After the program is done running, this file will 
contain the number of atoms and bonds in the various substructures that have been 
calculated.  For each reaction, this file will contain the name of the substrate and product 
as specified in the molfiles.  In addition, there will be an index that corresponds to the 
order of the reaction in the input file.  The order of the reactions in this ouput is the same 
as the SMILES string output. 

 
<substrate A name> = <product A name> <reaction A index> 
substrate    <# of atoms> <# of bonds> 
product    <# of atoms> <# of bonds> 
reacting    <# of atoms> <# of bonds> 
nonreacting    <# of atoms> <# of bonds> 
conserved    <# of atoms> <# of bonds> 
unconserved    <# of atoms> <# of bonds> 
reacting+conserved  <# of atoms> <# of bonds> 
reacting+unconserved  <# of atoms> <# of bonds> 
nonreacting+conserved  <# of atoms> <# of bonds> 
nonreacting+unconserved  <# of atoms> <# of bonds> 
<substrate B name> = <product B name> <reaction B index> 
substrate    <# of atoms> <# of bonds> 
product    <# of atoms> <# of bonds> 
reacting    <# of atoms> <# of bonds> 
nonreacting    <# of atoms> <# of bonds> 
conserved    <# of atoms> <# of bonds> 
unconserved    <# of atoms> <# of bonds> 
reacting+conserved  <# of atoms> <# of bonds> 
reacting+unconserved  <# of atoms> <# of bonds> 
nonreacting+conserved  <# of atoms> <# of bonds> 
nonreacting+unconserved  <# of atoms> <# of bonds> 
... 
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B.1.2. Program Code 
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