
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Decision-Focused Learning and its Applications in Operations Management

Permalink
https://escholarship.org/uc/item/4ws757xv

Author
Liu, Mo

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ws757xv
https://escholarship.org
http://www.cdlib.org/

Decision-Focused Learning and its Applications in Operations Management

By

Mo Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Zuo-Jun (Max) Shen, Chair
Assistant Professor Paul Grigas

Professor Terry Taylor

Spring 2024

Decision-Focused Learning and its Applications in Operations Management

Copyright 2024
by

Mo Liu

1

Abstract

Decision-Focused Learning and its Applications in Operations Management

by

Mo Liu

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun (Max) Shen, Chair

This dissertation studies the data collection and model training problems in decision-focused
learning, with applications in operations management. In Chapter 2, we consider a stochastic
optimization problem with a linear objective function, where the coefficients in the objective
function are treated as labels. The prediction model is built to predict the labels of the samples
based on contextual information. Given unlabeled samples, we study how to sequentially
select samples for labeling to minimize the number of acquired labels, while ensuring that the
decision risk incurred by the prediction model is smaller than a given threshold. This is the
first work to address active label acquisition within the predict-then-optimize framework. We
demonstrate that, by utilizing the margin structure of the predict-then-optimize framework,
our algorithm requires far fewer labeled samples than the naive supervised learning algorithm
when achieving the same level of decision risk. In Chapter 3, we extend this idea of the active
label acquisition algorithm to the personalized assortment optimization problem. When
collecting data to learn customers’ preferences for this problem, we seek to evaluate the
importance of each data point. To quantify the importance of each customer, the expected
marginal contribution to the risk reduction of each customer is defined as the value of
one data point. We provide a feature-dependent upper bound for the value of one data
point and utilize this upper bound to design a personalized incentive policy for acquiring
the feedback of customers in the customer survey process. Both theoretical and numerical
analyses show that our personalized incentive policy can reduce label acquisition costs while
maintaining the same level of revenue from the downstream assortment optimization problem.
In Chapter 4, motivated by the large amount of click data for online retailers, we study how
to efficiently leverage the click transition data for the pricing decisions for multiple products.
To capture the impact of product availability on the pricing decision, we propose a new
dynamic attraction click model based on a Markov chain. This new model allows us to use
click data to estimate customers’ preferences and determine the optimal prices. To exploit the
similarities between products, we leverage the low-rank structure of the transition matrix in
the click model and propose efficient offline and online pricing algorithms. The experiments

2

on the real-world dataset demonstrate the advantage of our click model.

i

To Gengning, Qingyu, and Yue

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Active Learning in the Predict-Then-Optimize Framework 4
2.1 Introduction . 4
2.2 Preliminaries . 10
2.3 Margin-Based Algorithm . 13
2.4 Guarantees and Analysis for the Margin-Based Algorithm 20
2.5 Risk Guarantees and Small Label Complexity Under Low Noise Conditions . 27
2.6 Examples of ϕ Functions and Upper Bound for η 29
2.7 Numerical Experiments . 32
2.8 Conclusions and Future Directions . 41

3 Feature-Dependent Value of One Data Point 42
3.1 Introduction . 42
3.2 Value of One Data Point . 47
3.3 Value of One Data Point in Personalized Product Selection 50
3.4 Value of One Data Point in Assortment Optimization 53
3.5 Active Label Acquisition Algorithms . 56
3.6 Theoretical Guarantees for Active Label Acquisition 62
3.7 Extension to Active Label Acquisition with Contextual Information 66
3.8 Extension to the General RUM Choice Model 69
3.9 Examples of Function Φ(n, ξ, δ) . 70
3.10 Numerical Experiments . 71
3.11 Conclusion . 75

4 Pricing from Click Transition Data 79
4.1 Introduction . 79

iii

4.2 Click Model with Purchase Behavior . 85
4.3 Estimation of MDAC using Click Data . 88
4.4 Pricing from the Click Data . 96
4.5 Numerical Experiments . 103
4.6 Concluding Remarks . 113

Bibliography 116

A Proof for Chapter 1 123

B Proof for Chapter 2 140
B.1 Proofs in Section 3.3 . 140
B.2 Proofs in Section 3.4 . 145
B.3 Proofs in Sections 3.5 and 3.6 . 146
B.4 Proofs in Sections 3.7, 3.8 and 3.9 . 155
B.5 Numerical Experiments: Survey Details . 158

C Proof for Chapter 3 161
C.1 Proofs in Sections 4.3 . 161
C.2 Proofs in Section 4.4 . 171

iv

List of Figures

2.1 Active learning reduces the label complexity, given the same prediction. 14
2.2 The SPO loss function reduces the label complexity, given the same size confidence

region. 15
2.3 Risk on the test set during the training process in 3× 3 grid, and 5× 5 grid. . . 33
2.4 Excess test set risk during the training process in personalized pricing. 35
2.5 Performance under different settings of slackness in MBAL-SPO 36
2.6 Performance under different settings of p̃ . 37
2.7 Excess SPO risk during the training process under different variance of features. 38
2.8 Excess SPO risk during the training process under different noise levels. 39
2.9 Excess SPO risk during the training process under different noise levels. 40

3.1 Personalized Rewards for completing the survey at e-Rewards platform 43
3.2 Value of one data point in active label acquisition 56
3.3 Comprehensive cost of the active label acquisition algorithms with different market

sizes β. 72
3.4 Risk and the total survey cost with different market sizes β. 73
3.5 Comprehensive cost of the active label acquisition algorithms with different market

sizes β. 75
3.6 Comparison between risk and cumulative label cost. 76
3.7 Impacts of market sizes β and probability µ(ξ) on the cumulative label cost. . . 78

4.1 Rank selection. 107
4.2 Predicting error of purchase probability for different estimating methods 108
4.3 Expected revenue under MDAC model using click or click + sales data. 109
4.4 Cumulative regret for the exploration-free online algorithm under different sizes

of the available product set . 111
4.5 Difference of optimal prices vs. the difference of optimal stationary revenue. . . 113
4.6 Optimal stationary revenue vs. ρi0. 114
4.7 Optimal prices vs. Number of the available products 115

v

List of Tables

3.1 Comparison for different incentive policies when achieving the excess risk level of
$5000 . 77

4.1 Sample of dataset . 104

B.1 Questions in survey . 160

vi

Acknowledgments

I would like to express my profound gratitude to my advisor, Professor Zuo-Jun Max Shen,
for his unwavering support throughout my PhD studies. I am incredibly fortunate to have
been introduced to the world of research under his guidance. His encouragement and backing
have been crucial as I navigated complex research challenges and paper revisions. I would also
like to express my heartfelt gratitude to Professor Paul Grigas for his patience and enduring
support, which pivoted my research focus towards decision-focused learning. His creativity,
passion for teaching, and disciplined writing style have significantly shaped my academic
journey. My sincere thanks also go to Professor Junyu Cao for her valuable contributions to
my research papers and ongoing support during my doctoral journey. I would also like to
thank my committee member, Professor Terry Taylor, for his insightful suggestions on my
research and academic job search. I am also deeply grateful to Professor Ilan Adler for his
assistance with my job search and teaching. I would also like to acknowledge my co-authors,
Heyuan Liu and Meng Qi, for their support in our research papers.

I would like to thank all the faculty members at UC Berkeley who have provided generous
support through my job search, including Professors Rhonda Righter, Zeyu Zheng, Anil
Aswani, Ying Cui, Chiwei Yan, Candace Yano, Park Sinchaisri, Luyi Yang, and Rajan Udwani.
Special thanks to my colleagues at IBM Research during my internship, Markus Ettl, Zack
Xue, and Wei Sun, for the enjoyable time we shared.

I am profoundly grateful to my friends at UC Berkeley for their support during the
challenging times of the COVID-19 pandemic and throughout my PhD studies. Thank you
to Haixiang Zhang, Hyungki Im, Jingxu Xu, Ilgin Dogan, Hansheng Jiang, Mengxin Wang,
Yiduo Huang, Shunan Jiang, Tomas Valencia Zuluaga, Tor Nitayanont, Yuhao Ding, Shuo
Sun, Shaochong Lin, Meng Li, Haoting Zhang, Yunkai Zhang, Amy Guo, Donghao Ying,
Ziyang Liu, and Wyame Benslimane, for the joy and companionship that brightened my days.

Lastly, I extend endless gratitude to my family, whose love and support have been my
cornerstone. This dissertation is dedicated to them.

1

Chapter 1

Introduction

In most operations research and operations management (OR/OM) applications, operational
decisions depend on our knowledge or assumptions about the uncertainty. These uncertainties
include future product demand, customer service times, effects of prescriptions on patients,
consumer purchase choices, and so on. With increased data availability, understanding and
predicting these uncertainties has become easier through the power of Machine learning (ML).

ML has demonstrated its great power in predictive analysis, but in practice, when applying
ML to OR/OM applications, the primary concern is the expected cost of operational decisions
implied by these ML models. Importantly, a predictive model with higher accuracy does not
directly translate to a decision with lower expected cost in OR/OM applications. The main
reasons are two-fold:

1. Prediction error metrics may not align with the cost of the decisions in OR/OM
applications.

2. If the true optimal decisions are already determined, a prediction model with a higher
prediction accuracy will still result in the same decisions and expected cost.

The methodology of designing and training ML models that account for decision-making in
downstream optimization problems is termed decision-focused learning, which has been the
focus of this dissertation. Specifically, this dissertation centers around this question:

How do we efficiently use data to ensure that predictive models translate to good decisions
in large-scale OR/OM applications?

In this dissertation, when answering the above question, we examine different applications,
including the shortest-path problem, click behavior modeling, personalized pricing, assortment
optimization, and general linear programming. Different applications have different structures
and thus require different designs of prediction models. However, all these applications can
be described as a stochastic optimization problem with some unknown parameters, where
some contextual information (feature, side information, or covariates) for these unknown
parameters is available.

CHAPTER 1. INTRODUCTION 2

In Chapters 2 and 3, we study the efficient data collection algorithms for decision-making.
In Chapter 4, we consider both data collection and model training processes for the pricing
problem by utilizing some special structure within the purchase model.

Specifically, in Chapter 2, we develop the first active learning method in the predict-then-
optimize framework. Specifically, we develop a learning method that sequentially decides
whether to request the “labels” of feature samples from an unlabeled data stream, where
the labels correspond to the parameters of an optimization model for decision-making. Our
active learning method is the first to be directly informed by the decision error induced by
the predicted parameters, which is referred to as the Smart Predict-then-Optimize (SPO)
loss. Motivated by the structure of the SPO loss, our algorithm adopts a margin-based
criterion utilizing the concept of distance to degeneracy and minimizes a tractable surrogate
of the SPO loss on the collected data. In particular, we develop an efficient active learning
algorithm with both hard and soft rejection variants, each with theoretical excess risk (i.e.,
generalization) guarantees. We further derive bounds on the label complexity, which refers to
the number of samples whose labels are acquired to achieve a desired small level of SPO risk.
Under some natural low-noise conditions, we show that these bounds can be better than the
naive supervised learning approach that labels all samples. Furthermore, when using the
SPO+ loss function, a specialized surrogate of the SPO loss, we derive a significantly smaller
label complexity under separability conditions. We also present numerical evidence showing
the practical value of our proposed algorithms in the settings of personalized pricing and the
shortest path problem.

In Chapter 3, we extend our active label acquisition algorithm to the assortment opti-
mization problem. Predicting customers’ preferences based on their features is crucial for
personalized assortment optimization. When building this prediction model, using informative
data can significantly increase the expected revenue from personalized assortments. This
chapter studies how to sequentially and actively collect informative data to construct this
prediction model. We introduce a novel concept, the ‘value of one data point,’ which evaluates
the marginal contribution of acquiring a specific customer’s preference to the expected revenue
in personalized assortment optimization, given the existing training set. Notably, this value
drops to zero once the optimal assortment for this specific customer is determined. To
estimate this value and identify important customers for acquiring their preferences, we
derive a feature-dependent upper bound. This bound provides significant insights into the
importance of each data point for revenue growth. Based on this upper bound, we develop a
personalized incentive policy for effectively collecting survey data from customers to obtain
their preferences. We provide non-asymptotic guarantees for both the cumulative incentives
and the revenue from the final prediction model. Theoretically, we show that our personalized
incentive policy requires smaller cumulative incentives than any fixed incentive policy to
achieve the same level of revenue. Furthermore, our numerical experiments with real-world
and synthetic datasets validate the effectiveness of our personalized incentive algorithms over
fixed strategies.

In Chapter 4, we study how to utilize random clicking behaviors of customers to optimize
online retailers’ pricing strategies, where product availability is constantly changing due to

CHAPTER 1. INTRODUCTION 3

various factors, including stockouts and the introduction of limited editions. We introduce a
new dynamic attraction click model based on a Markov chain, which describes both purchase
and click behaviors under dynamic product availability. To address the challenge of high-
dimensional click transition data, we propose an efficient data-driven framework for learning
customer’s transition behaviors by exploiting the similarities in click transition patterns across
products. These similar patterns are captured by the low-rank structure of the attraction
matrix in our click model. When considering estimation and pricing decisions simultaneously,
we demonstrate the effectiveness of a greedy online algorithm and derive a sublinear regret
bound under dynamic product availability. Empirical investigations conducted on real-world
data have validated the existence of low-rank structure in the attraction matrix, and shown
that using click data along with purchase data can significantly reduce the prediction error
associated with purchase behaviors, leading to a substantial increase in the anticipated
revenue.

In this dissertation, the term ‘predictive model’ is used interchangeably with ‘predictor,’
which may function as either a regressor or a classifier, depending on its output. To facilitate
readability, each chapter introduces its own set of notations independently. All mathematical
proofs are provided in the appendices.

4

Chapter 2

Active Learning in the
Predict-Then-Optimize Framework

2.1 Introduction

In many applications of operations research, decisions are made by solving optimization
problems that involve some unknown parameters. Typically, machine learning tools are used
to predict these unknown parameters, and then an optimization model is used to generate
the decisions based on the predictions. For example, in the shortest path problem, we need
to predict the cost of each edge in the network and then find the optimal path to route users.
Another example is the personalized pricing problem, where we need to predict the purchase
probability of a given customer at each possible price and then decide the optimal price. In
this predict-then-optimize paradigm, when generating the prediction models, it is natural to
consider the final decision error as a loss function to measure the quality of a model instead
of standard notions of prediction error. The loss function that directly considers the cost of
the decisions induced by the predicted parameters, in contrast to the prediction error of the
parameters, is called the Smart Predict-then-Optimize (SPO) loss as proposed by Elmachtoub
and Grigas (2022). Naturally, prediction models designed based on the SPO loss have the
potential to achieve a lower cost with respect to the ultimate decision error.

In general, for a given feature vector x, calculating the SPO loss requires knowing the
correct (in hindsight) optimal decision associated with the unknown parameters. However, a
full observation of these parameters, also known as a label associated with x, is not always
available. For example, we may not observe the cost of all edges in the graph in the shortest
path problem. In practice, acquiring the label of one feature vector instance could be costly,
and thus acquiring the labels of all feature vectors in a given dataset would be prohibitively
expensive and time-consuming. In such settings, it is essential to actively select the samples
for which label acquisition is worthwhile.

Algorithms that make decisions about label acquisition lie in the area of active learning.
The goal of active learning is to learn a good predictor while requesting a small number

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 5

of labels of the samples, whereby the labels are requested actively and sequentially from
unlabeled samples. Intuitively, if we are very confident about the label of an unlabeled
sample based on our current predictor, then we do not have to request the label of it. Active
learning is most applicable when the cost of acquiring labels is very expensive. Traditionally
in active learning, the selection rules for deciding which samples to acquire labels for are
based on measures of prediction error that ignore the cost of the decisions in the downstream
optimization problem. Considering the SPO loss in active learning can hopefully reduce the
number of labels required while achieving the same cost of decisions, compared to standard
active learning methods that only consider measures of prediction error.

Considering active learning in the predict-then-optimize framework can bridge the gap
between active learning and operational decisions, but there are two major challenges when
designing algorithms to select samples. One is the computational issue due to the non-
convexity and non-Lipschitzness of the SPO loss. When one is concerned with minimizing the
SPO loss, existing active learning algorithms are computationally intractable. For example,
the general importance weighted active learning (IWAL) algorithm proposed by Beygelzimer,
Dasgupta, and Langford (2009) is impractical to implement, since calculating the “weights”
of samples requires a large enumeration of all pairs of predictors. Other active learning
algorithms that are designed for the classification problem cannot be extended to minimize
the SPO loss directly. Another challenge is to derive bounds for the label complexity of the
algorithms and to demonstrate the advantages over supervised learning. Label complexity
refers to the number of labels that must be acquired to ensure that the risk of predictor
is not greater than a desired threshold. To demonstrate the savings from active learning,
label complexity should be smaller than the sample complexity of supervised learning, when
achieving the same risk level with respect to the loss function of interest (in our case SPO).
Kääriäinen (2006) shows that, without additional assumptions on the distributions of features
and noise, active learning algorithms have the same label complexity as supervised learning.
Thus, deriving smaller label complexity for an active learning algorithm under some natural
conditions on the noise and feature distributions is a critical but nontrivial challenge.

In this chapter, we develop the first active learning method in the predict-then-optimize
framework. We consider the standard setting of a downstream linear optimization problem
where the parameters/label correspond to an unknown cost vector that is potentially related
to some feature information. Our proposed algorithm, inspired by margin-based algorithms in
active learning, uses a measure of “confidence” associated with the cost vector prediction of
the current model to decide whether or not to acquire a label for a given feature. Specifically,
the label acquisition decision is based on the notion of distance to degeneracy introduced by
El Balghiti et al. (2022), which precisely measures the distance from the prediction of the
current model to the set of cost vectors that have multiple optimal solutions. Intuitively, the
further away the prediction is from degeneracy, the more confident we are that the associated
decision is actually optimal. Our proposed margin-based active learning (MBAL-SPO)
algorithm has two versions depending on the precise rejection criterion: soft rejection and
hard rejection. Hard rejection generally has a smaller label complexity, whereas soft rejection
is computationally easier. In any case, when building prediction models based on the actively

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 6

selected training set, our algorithm will minimize a generic surrogate of the SPO loss over a
given hypothesis class. For each version, we demonstrate theoretical guarantees by providing
non-asymptotic excess surrogate risk bounds, as well as excess SPO risk bounds, that hold
under a natural consistency assumption.

To analyze the label complexity of our proposed algorithm, we define the near-degeneracy
function, which characterizes the distribution of optimal predictions near the regions of
degeneracy. Based on this definition, we derive upper bounds on the label complexity. We
consider a natural low-noise condition, which intuitively says that the distribution of features
for a given problem is far enough from degeneracy. Indeed, for most practical problems, the
data are expected to be somewhat bounded away from degeneracy. Under these conditions,
we show that the label complexity bounds are smaller than those of the standard supervised
learning approach. In addition to the results for a general surrogate loss, we also demonstrate
improved label complexity results for the SPO+ surrogate loss, proposed by Elmachtoub
and Grigas (2022) to account for the downstream problem, when the distribution satisfies a
separability condition. We also conduct some numerical experiments on instances of shortest
path problems and personalized pricing problems, demonstrating the practical value of our
proposed algorithm above the standard supervised learning approach. Our contributions are
summarized below.

• We are the first work to consider active learning algorithms in the predict-then-optimize
framework. To efficiently acquire labels to train a machine learning model to minimize
the decision cost (SPO loss), we propose a margin-based active learning algorithm that
utilizes a surrogate loss function.

• We analyze the label complexity and derive non-asymptotic surrogate and SPO risk
bounds for our algorithm, under both soft-rejection and hard-rejection settings. Our
analysis applies even when the hypothesis class is misspecified, and we demonstrate
that our algorithms can still achieve a smaller label complexity than supervised learning.
In particular, under some natural consistency assumptions, we develop the following
guarantees.

– In the hard rejection case with general surrogate loss functions, we provide generic
bounds on the label complexity and the non-asymptotic surrogate and SPO risks
in Theorem 2.4.1.

– In the hard rejection case with the SPO+ surrogate loss, we provide a much smaller
non-asymptotic surrogate (and, correspondingly, SPO) risk bound in Theorem
2.4.2 under a separability condition. This demonstrates the advantage of the SPO+
surrogate loss over general surrogate losses.

– In the soft rejection case with a general surrogate loss, which is computationally
easier, we provide generic bounds on the label complexity and the non-asymptotic
surrogate and SPO risks in Theorem 2.4.3.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 7

– For each case above, we characterize sufficient conditions for which we can specialize
the above generic guarantees and demonstrate that the margin-based algorithm
achieves sublinear or even finite label complexity. We provide concrete examples of
these conditions, and we provide different non-asymptotic bounds in cases where
the feasible region of the downstream optimization problem is either a polyhedron
or a strongly convex region. In these situations, and under natural low-noise
conditions, we demonstrate that our algorithm can achieve much smaller label
complexity than the sample complexity of supervised learning.

• We demonstrate the practical value of our algorithm by conducting comprehensive
numerical experiments in two settings. One is the personalized pricing problem, and the
other is the shortest path problem. Both sets of experiments show that our algorithm
achieves a smaller SPO risk than the standard supervised learning algorithm given the
same number of acquired labels.

2.1.1 Example: Personalized Pricing Problem

To further illustrate and motivate the integration of active learning into the predict-then-
optimize setting, we present the following personalized pricing problem as an example.

Example 2.1.1 (Personalized pricing via customer surveys). Suppose that a retailer needs
to decide the prices of J items for each customer, after observing the features (personalized
information) of the customers. The feature vector of a generic customer is x, and the purchase
probability of that customer for item j is dj(p

j), which is a function of the price pj. This
purchase probability dj(p

j) is unknown and corrupted with some noise for each customer.
Suppose the price for each item is selected from a candidate list {p1, p2, ..., pI}, which is sorted
in ascending order. Then, the pricing problem can be formulated as

max
w

E[
J∑

j=1

I∑
i=1

dj(pi)piwi,j|x] (2.1)

s.t.
I∑

i=1

wi,j = 1, j = 1, 2, ..., J, (2.1a)

Aw ≤ b, (2.1b)

wi,j ∈ {0, 1}, i = 1, 2, ..., I, j = 1, 2, ..., J. (2.1c)

Here, w encodes the decision variables with indices in the set I × J, where wi,j is a binary
variable indicating which price for item j is selected. Namely, wi,j = 1 if item j is priced
at pi, and otherwise wi,j = 0. The objective (2.1) is to maximize the expected total revenue
of J items by offering price pi for item j. Constraints (2.1a) require each item to have one
price selected. In constraint (2.1b), A is a matrix with K rows, and b is a vector with K
dimensions. Each row of constraints (2.1b) characterizes one rule for setting prices. For

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 8

example, if the first row of Aw is wi,j −
∑I

i′=i wi′,j+1 and the first entry in b is zero, then this
constraint further requires that if item j is priced at pi, then the price for the item j + 1 must
be no smaller than pi. For another example, if the second row of Aw is

∑i−1
i′=1

∑J
j=1wi′,j, and

the second entry of b is 1, then it means that at most one item can be priced below the price
pi. Thus, constraints (2.1b) can characterize different rules for setting prices for J items.

Traditionally, the conditional expectation of revenue E[dj(pi)pi|x] must be estimated from
the purchasing behavior of the customers. In this example, we consider the possibility that
the retailer can give the customers surveys to investigate their purchase probabilities. By
analyzing the results of the surveys, the retailer can infer the purchase probability dj(pi)|x
for each price point pi and each item j for this customer. Therefore, whenever a survey is
conducted, the retailer acquires a noisy estimate of the revenue, denoted by dj(pi)pi|x, at each
price point pi and item j.

In personalized pricing, first, the retailer would like to build a prediction model to predict
E[dj(pi)pi|x] given the customer’s feature vector x. Then, given the prediction model, the
retailer solves the problem (2.1) to obtain the optimal prices. In practice, when evaluating
the quality of the prediction results of dj(pi)pi|x, the retailer cares more about the expected
revenue from the optimal prices based on this prediction, rather than the direct prediction
error. Therefore, when building the prediction model for dj(pi)pi|x, retailers are expected to
be concerned with minimizing SPO loss, rather than minimizing prediction error.

One property of (2.1) is that the objective is linear and can be further written as
maxw

∑J
j=1

∑K
i=1 E[dj(pi)pi|x]wi,j. By the linearity of the objective, the revenue loss in-

duced by the prediction errors can be written in the form of the SPO loss considered in
Elmachtoub and Grigas (2022). In general, considering the prediction errors when selecting
customers may be inefficient, since smaller prediction errors do not always necessarily lead to
smaller revenue losses, because of the properties of the SPO loss examined by Elmachtoub
and Grigas (2022). □

In Example 2.1.1, in practice, there exists a considerable cost to investigate all customers,
for example, the labor cost to collect the answers and incentives given to customers to fill
out the surveys. Therefore, the retailer would rather intelligently select a limited subset of
customers to investigate. This subset of customers should be ideally selected so that the
retailer can build a prediction model with small SPO loss, using a small number of surveys.

Active learning is essential to help retailers select representative customers and reduce
the number of surveys. Traditional active learning algorithms would select customers to
survey based on model prediction errors, which are different from the final revenue of the
retailer. On the contrary, when considering the SPO loss, the final revenue is integrated into
the learning and survey distribution processes.

2.1.2 Literature Review

In this section, we review existing work in active learning and the predict-then-optimize
framework. To the best of our knowledge, our work is the first work to bridge these two

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 9

streams.

Active learning. There has been substantial prior work in the area of active learning,
focusing essentially exclusively on measures of prediction error. Please refer to Settles (2009)
for a comprehensive review of many active learning algorithms. Cohn, Atlas, and Ladner
(1994) shows that in the noiseless binary classification problem, active learning can achieve a
large improvement in label complexity, compared to supervised learning. It is worth noting
that in the general case, Kääriäinen (2006) provides a lower bound of the label complexity
which matches supervised learning. Therefore, to demonstrate the advantages of active
learning, some further assumptions on the noise and distribution of samples are required.
For the agnostic case where the noise is not zero, many algorithms have also been proposed
in the past few decades, for example, Hanneke (2007), Dasgupta, Hsu, and Monteleoni
(2007),Hanneke (2011), Balcan, Beygelzimer, and Langford (2009), and Balcan, A. Broder,
and T. Zhang (2007). These papers focus on binary or multiclass classification problems.
Balcan, A. Broder, and T. Zhang (2007) proposed a margin-based active learning algorithm,
which is used in the noiseless binary classification problem with a perfect linear separator.
Balcan, A. Broder, and T. Zhang (2007) achieves the label complexity O(ϵ−2α ln(1/ϵ)) under
uniform distribution, where α ∈ (0, 1) is a parameter defined for the low noise condition and ϵ
is the desired error rate. Krishnamurthy et al. (2017) and R. Gao and Saar-Tsechansky (2020)
consider cost-sensitive classification problems in active learning, where the misclassification
cost depends on the true labels of the sample.

The above active learning algorithms in the classification problem do not extend naturally
to real-valued prediction problems. However, the SPO loss is a real-valued function. When
considering real-valued loss functions, Castro, Willett, and Nowak (2005) prove convergence
rates in the regression problem, and Sugiyama and Nakajima (2009) and Cai, M. Zhang,
and Y. Zhang (2016) also consider squared loss as the loss function. Beygelzimer, Das-
gupta, and Langford (2009) propose an importance-weighted algorithm (IWAL) that extends
disagreement-based methods to real-valued loss functions. However, it is intractable to
directly use the IWAL algorithm in the SPO framework. Specifically, it requires solving a
non-convex problem at each iteration, which may have to enumerate all pairs of predictor
candidates even when the hypothesis set is finite.

Predict-then-optimize framework. In recent years, there has been a growing interest in
developing machine learning models that incorporate the downstream optimization problem.
For example, Bertsimas and Kallus (2020), Kao, Roy, and Yan (2009), Elmachtoub and
Grigas (2022), T. Zhu, Xie, and Sim (2022), Donti, Amos, and Kolter (2017) and Ho and
Hanasusanto (2019) propose frameworks that somehow relate the learning problem to the
downstream optimization problem. In our work, we consider the Smart Predict-then-Optimize
(SPO) framework proposed by Elmachtoub and Grigas (2022). Because the SPO loss function
is nonconvex and non-Lipschitz, the computational and statistical properties of the SPO loss
in the fully supervised learning setting have been studied in several recent works. Elmachtoub

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 10

and Grigas (2022) provide a surrogate loss function called SPO+ and show the consistency
of this loss function. Elmachtoub, Liang, and McNellis (2020), Loke, Q. Tang, and Xiao
(2022), Demirovic et al. (2020), Demirović et al. (2019), Mandi and Guns (2020), Mandi,
Stuckey, Guns, et al. (2020), and B. Tang and Khalil (2022) all develop new applications
and computational frameworks for minimizing the SPO loss in various settings. El Balghiti
et al. (2022) consider generalization error bounds of the SPO loss function. Ho-Nguyen and
Kılınç-Karzan (2022), H. Liu and Grigas (2021), and Hu, Kallus, and Mao (2022) further
consider risk bounds of different surrogate loss functions in the SPO setting. There is also a
large body of work more broadly in the area of decision-focused learning, which is largely
concerened with differentiating through the parameters of the optimization problem, as
well as other techniques, for training. See, for example, Amos and Kolter (2017), Wilder,
Dilkina, and Tambe (2019), Berthet et al. (2020), and Chung et al. (2022), the survey paper
Kotary et al. (2021), and the references therein. Recently there has been growing attention
on problems with nonlinear objectives, where estimating the conditional distribution of
parameters is often needed; see, for example, Kallus and Mao (2023) and Grigas, Qi, et al.
(2021) and Elmachtoub, Lam, et al. (2023).

2.1.3 Organization

The remainder of the chapter is organized as follows. In Section 2.2, we introduce preliminary
knowledge on the predict-then-optimize framework and active learning, including the SPO
loss function, label complexity, and the SPO+ surrogate loss function. Then, we present our
active learning algorithm, margin-based active learning (MBAL-SPO), in Section 2.3. We
first present an illustration to motivate the incorporation of the distance to degeneracy in the
active learning algorithm in 2.3.1. Next, we analyze the risk bounds and label complexities
for both hard and soft rejection in Section 2.4. To demonstrate the strength of our algorithm
over supervised learning, we consider natural low-noise conditions and derive sublinear label
complexity in Section 2.5. We demonstrate the advantage of using SPO+ as the surrogate loss
in some cases by providing a smaller label complexity. We further provide concrete examples
of these low-noise conditions. In Section 2.7, we test our algorithm using synthetic data in two
problem settings: the shortest path problem and the personalized pricing problem. Lastly,
we point out some future research directions in Section 2.8. The omitted proofs, sensitivity
analysis of the numerical experiments, and additional numerical results are provided in the
Appendices.

2.2 Preliminaries

We first introduce some preliminaries about active learning and the predict-then-optimize
framework. In particular, we introduce the SPO loss function, we discuss the goals of active
learning in the predict-then-optimize framework, and we review the SPO+ surrogate loss.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 11

2.2.1 Predict-then-Optimize Framework and Active Learning

Let us begin by formally describing the “predict-then-optimize” framework and the “Smart
Predict-then-Optimize (SPO)” loss function. We assume that the downstream optimization
problem has a linear objective, but the cost vector of the objective, c ∈ C ⊆ Rd, is unknown
when the problem is solved to make a decision. Instead, we observe a feature vector,
x ∈ X ⊆ Rp, which provides auxiliary information that can be used to predict the cost
vector. The feature space X and cost vector space C are assumed to be bounded. We assume
there is a fixed but unknown distribution D over pairs (x, c) living in X × C. The marginal
distribution of x is denoted by DX . Let w ∈ S denote the decision variable of the downstream
optimization problem, where the feasible region S ⊆ Rd is a convex and compact set that
is assumed to be fully known to the decision-maker. To avoid trivialities, we also assume
throughout that the set S is not a singleton. Given an observed feature vector x, the ultimate
goal is to solve the contextual stochastic optimization problem:

min
w∈S

Ec[c
Tw|x] = min

w∈S
E[c|x]Tw. (2.2)

From the equivalence in (2.2), observe that the downstream optimization problem in the
predict-then-optimize framework relies on a prediction (otherwise referred to as estimation)
of the conditional expectation Ec[c|x]. Given such a prediction ĉ, a decision is made by then
solving the deterministic version of the downstream optimization problem:

P (ĉ) : min
w∈S

ĉTw. (2.3)

For simplicity, we assume w∗ : Rd → S is an oracle for solving (2.3), whereby w∗(ĉ) is an
optimal solution of P (ĉ).

Our goal is to learn a cost vector predictor function h : X → Rd, so that for any newly
observed feature vector x, we first make prediction h(x) and then solve the optimization
problem P (h(x)) in order to make a decision. This predict-then-optimize paradigm is
prevalent in applications of machine learning to problems in operations research. We assume
the predictor function h is within a compact hypothesis class H of functions on X → Rd. We
say the hypothesis class is well-specified if E[c|x] ∈ H. In our analysis, the well-specification
is not required. The active learning methods we consider herein rely on using a variant of
empirical risk minimization to select h ∈ H by minimizing an appropriately defined loss
function. Our primary loss function of interest in the predict-then-optimize setting is the
SPO loss, introduced by Elmachtoub and Grigas (2022), which characterizes the regret in
decision error due to an incorrect prediction and is formally defined as

ℓSPO(ĉ, c) := cTw∗(ĉ)− cTw∗(c),

for any cost vector prediction ĉ and realized cost vector c. We further define the SPO risk
of a prediction function h ∈ H as RSPO(h) := E(x,c)∼D[ℓSPO(h(x), c)], and the excess risk of
h as RSPO(h)− infh′∈H RSPO(h

′). (Throughout, we typically remove the subscript notation

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 12

from the expectation operator when it is clear from the context.) Notice that a guarantee on
the excess SPO risk implies a guarantee that holds “on average” with respect to x for the
contextual stochastic optimization problem (2.2).

As previously described, in many situations acquiring cost vector data may be costly and
time-consuming. The aim of active learning is to choose which feature samples x to label
sequentially and interactively, in contrast to standard supervised learning which acquires
the labels of all the samples before training the model. In the predict-then-optimize setting,
acquiring a “label” corresponds to collecting the cost vector data c that corresponds to a
given feature vector x. An active learner aims to use a small number of labeled samples to
achieve a small prediction error. In the agnostic case, the noise is nonzero and the smallest
prediction error is the Bayes risk, which is R∗

SPO = infh∈H RSPO(h) > 0. The goal of an active

learning method is to then find a predictor ĥ trained on the data with the minimal number
of labeled samples, such that RSPO(ĥ) ≤ R∗

SPO + ϵ, with high probability and where ϵ > 0 is
a given risk error level. The number of labels acquired to achieve this goal is referred to as
the label complexity.

2.2.2 Surrogate Loss Functions and SPO+

Due to the potential non-convexity and even non-continuity of the SPO loss, a common
approach is to consider surrogate loss functions ℓ that have better computational properties
and are still (ideally) aligned with the original SPO loss. In our work, the surrogate loss
function ℓ : Rd×Rd → R+ is assumed to be continuous. The surrogate risk of a predictor h ∈ H
is denote by Rℓ(h), and the corresponding minimum risk is denoted by R∗

ℓ := minh∈H Rℓ(h).
As a special case of the surrogate loss function ℓ, Elmachtoub and Grigas (2022) proposed

a convex surrogate loss function, called the SPO+ loss, which is defined by

ℓSPO+(ĉ, c) := max
w∈S

{
(c− 2ĉ)Tw

}
+ 2ĉTw∗(c)− cTw∗(c),

and is an upper bound on the SPO loss, i.e., ℓSPO(ĉ, c) ≤ ℓSPO+(ĉ, c) for any ĉ ∈ Ĉ and
c ∈ C. Elmachtoub and Grigas (2022) demonstrate the computational tractability of the
SPO+ surrogate loss, conditions for Fisher consistency of the SPO+ risk with respect to the
true SPO risk, as well as strong numerical evidence of its good performance with respect to
the downstream optimization task. H. Liu and Grigas (2021) further demonstrate sufficient
conditions that imply that when the excess surrogate SPO+ risk of a prediction function
h is small, the excess true SPO risk of a prediction function h is also small. This property
not only holds for the SPO+ loss, but also for other surrogate loss functions, such as the
squared ℓ2 loss (see, for details, Ho-Nguyen and Kılınç-Karzan (2022)). Importantly, the
SPO+ loss still accounts for the downstream optimization problem and the structure of the
feasible region S, in contrast to losses like the ℓ2 loss that focus only on prediction error. As
will be shown in Theorem 2.4.2, compared to the general surrogate loss functions that satisfy
Assumption 2.3.1 in our analysis, the SPO+ loss function achieves a smaller label complexity
by utilizing the structure of the downstream optimization problem.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 13

Notations. Let ∥ · ∥ on w ∈ Rd be a generic norm. Its dual norm is denoted by ∥ · ∥∗,
which is defined by ∥c∥∗ = maxw:∥w∥≤1 c

Tw. We denote the set of extreme points in the
feasible region S by S, and the diameter of the set S ⊂ Rd by DS := supw,w′∈S{∥w − w′∥}.
The “linear optimization gap” of S with respect to cost vector c is defined as ωS(c) :=
maxw∈S{cTw} − minw∈S{cTw}. We further define ωS(C) := supc∈C{ωS(c)} and ρ(C) :=
maxc∈C{∥c∥}, where again C is the domain of possible realizations of cost vectors under
the distribution D. We denote the cost vector space of the prediction range by Ĉ, i.e.,
Ĉ := {c ∈ Rd : c = h(x), h ∈ H, x ∈ X}. For the surrogate loss function ℓ, we define
ωℓ(Ĉ, C) := supĉ∈Ĉ,c∈C{ℓ(ĉ, c)}. We also denote ρ(C, Ĉ) := max{ρ(C), ρ(Ĉ)} for the general

norm. We use N (µ, σ2) to denote the multivariate normal distribution with center µ and
covariance matrix σ2. We use R+ to denote [0,+∞). When conducting the asymptotic
analysis, we adopt the standard notations O(·) and Ω(·). We further use Õ(·) to suppress
the logarithmic dependence. We use I to refer to the indicator function, which outputs 1 if
the argument is true and 0 otherwise.

2.3 Margin-Based Algorithm

In this section, we develop and present the margin-based algorithm in the predict-then-
optimize framework (MBAL-SPO). We first illustrate and motivate the algorithm in the
polyhedral case. Then, we provide some conditions for the noise distribution and surrogate
loss functions for our MBAL-SPO.

2.3.1 Illustration and Algorithm

Let us introduce the idea of the margin-based algorithm with the following two examples,
which illustrate the value of integrating the SPO loss into active learning. Particularly,
given the current training set and predictor, it is very likely that some features will be more
informative and thus more valuable to label than others. In general, the “value” of labeling
a feature depends on the associated prediction error (Figure 2.1) and the location of the
prediction relative to the structure of the feasible region S (Figure 2.2). In Figure 2.1, the
feasible region S is polyhedral and the yellow arrow represents −ĥ(x). Within this example,
for the purpose of illustration, let us assume the hypothesis class is well-specified. Our goal
then is to find a good predictor h from the hypothesis class H, such that h(x) is close to
E[c|x]. However, because c|x is random, the empirical best predictor ĥ in the training set
may not exactly equal the true predictor h∗, where h∗(x) = E[c|x]. Given one feature x, the
prediction is ĉ = ĥ(x), the negative of which is shown in Figures 2.1a and 2.1b. Intuitively,
when the training set gets larger, the empirical best predictor ĥ should get closer to h∗, and
ĥ(x) should get closer to E[c|x]. Thus, we can construct a confidence region around ĥ(x),
such that E[c|x] is within this confidence region with some high probability. Examples of
confidence regions for the estimation of E[c|x] given the current training set are shown in
the green circles in Figure 2.1. The optimal solution w∗(ĉ) is the extreme point indicated in

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 14

Figure 2.1, and the normal cone at w∗(ĉ) illustrates the set of all cost vectors whose optimal
solution is also w∗(ĉ). In addition, those cost vectors that lie on the boundary of the normal
cone are the cost vectors that can lead to multiple optimal decisions (they will be defined as
degenerate cost vectors in Definition 2.3.1 later). In cases when the confidence region is large
(e.g., because the training set is small), as indicated in Figure 2.1a, the green circle intersects
with the degenerate cost vectors, which means that some vectors within the confidence region
for estimating E[c|x] could lead to multiple optimal decisions. When the confidence region is
smaller (e.g., because the training set is larger), as indicated in Figure 2.1b, the green circle
does not intersect with the degenerate cost vectors, which means the optimal decision of
E[c|x] is the same as the optimal decision of ĉ = ĥ(x), w∗(ĉ), with high probability. Thus,
when the confidence region of E[c|x] does not intersect with the degenerate cost vectors, the
optimal decision based on the current estimated cost vector will lead to the correct optimal
decision with high probability, and the SPO loss will be zero. This in turn suggests that
the label corresponding to x is not informative (and we do not have to acquire it), when
the confidence region centered at the prediction ĥ(x) is small enough to not intersect those
degenerate cost vectors. Figure 2.2 further shows that considering the SPO loss function

(a) Confidence region is large (b) Confidence region is small

Figure 2.1: Active learning reduces the label complexity, given the same prediction.

reduces the label complexity when the confidence regions of the cost vector are the same
size. In Figure 2.2, both green circles have the same radius but their locations are different.
In Figure 2.2a, the confidence region for E[c|x] is close to the degenerate cost vectors, and
thus the cost vectors within the confidence region will lead to multiple optimal decisions.
In Figure 2.2b, the confidence region for E[c|x] is far from the degenerate cost vectors, and
therefore acquiring a label for x is less informative, as we are more confident that ĥ(x) leads
to the correct optimal decision due to the more central location of the confidence region.

The above two examples highlight that the confidence associated with a prediction ĥ(x)
is crucial to determine whether it is valuable to acquire a true label c associated with x.
Furthermore, confidence is related to both the size of the confidence region (which is often

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 15

(a) Prediction is close to degenerate cost vectors(b) Prediction is far from degenerate cost vectors

Figure 2.2: The SPO loss function reduces the label complexity, given the same size confidence
region.

dictated by the number of labeled samples we have acquired) and the location of the prediction
relative to the structure of S. El Balghiti et al. (2022) introduced the notion of “distance to
degeneracy,” which precisely measures the distance of a prediction ĥ(x) to those degenerate
cost vectors with multiple optimal solutions and thus provides the correct way to measure
confidence about the location of a prediction. In fact, El Balghiti et al. (2022) argue that
the distance to degeneracy provides a notion of confidence associated with a prediction
that generalizes the notion of “margin” in binary and multiclass classification problems.
El Balghiti et al. (2022) use the distance to degeneracy to provide tighter generalization
guarantees for the SPO loss and its associated margin loss. In our context, we adopt the
distance to degeneracy in order to determine whether or not to acquire labels. It is motivated
by our intuition from the previously discussed examples wherein the labels of samples should
be more informative if their predicted cost vectors are closer to degeneracy. In turn, we
develop a generalization of margin-based active learning algorithms that utilize the distance
to degeneracy as a confidence measure to determine those samples whose labels should (or
should not) be acquired. Definition 2.3.1 reviews the notion of distance to degeneracy as
defined by El Balghiti et al. (2022).

Definition 2.3.1. (Distance to Degeneracy, El Balghiti et al. (2022)). The set of degenerate
cost vector predictions is Co := {ĉ ∈ Rd : P (ĉ) has multiple optimal solutions}. Given a norm
∥ · ∥ on Rd, the distance to degeneracy of the prediction ĉ is νS(ĉ) := infc∈Co{∥c− ĉ∥}. □

The distance to degeneracy can be easily computed in some special cases, for example,
when the feasible region S is strongly convex or in the case of a polyhedral feasible region
with known extreme point representations. El Balghiti et al. (2022) provide the exact
formulas of the distance to degeneracy function in these two special cases. In particular,
in the case of a polyhedral feasible region with extreme points {vj : j = 1, ..., K}, that

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 16

is, S = conv(v1, . . . , vK), Theorem 8 of El Balghiti et al. (2022) says that the distance to
degeneracy of any vector c ∈ Rd satisfies the following equation:

νS(c) = min
j:vj ̸=w∗(c)

{
cT (vj − w∗(c))

∥vj − w∗(c)∥∗

}
. (2.4)

Theorem 7 of El Balghiti et al. (2022), on the other hand, says that νS(c) = ∥c∥ whenever S
is a strongly convex set. As mentioned, the distance to degeneracy νS(ĉ) provides a measure
of “confidence” regarding the cost vector prediction ĉ and its implied decision w∗(ĉ). This
observation motivates us to design a margin-based active learning algorithm, whereby if the
distance to degeneracy νS(ĉ) is greater than some threshold (depending on the number of
iterations and samples acquired so far), then we are confident enough to label it using our
current model without asking for the true label.

Our margin-based method is proposed in Algorithm 1. The idea of the margin-based
algorithm can be explained as follows. At iteration t, we first observe an unlabeled feature
vector xt, which follows distribution DX . Given the current predictor ht−1, we calculate
the distance to the degeneracy νS(ht−1(xt)) of this unlabeled sample xt. If the distance
to degeneracy νS(ht−1(xt)) is greater than the threshold bt−1, then we reject xt with some
probability 1− p̃. If p̃ = 0, this rejection is referred to as a hard rejection; when p̃ > 0, this
rejection is referred to as a soft rejection. If a soft-rejected sample is not ultimately rejected,
we acquire a label (cost vector) ct associated with xt and add the sample (xt, ct) to the set W̃t.
On the other hand, if νS(ht−1(xt)) < bt−1, then we acquire a label (cost vector) ct associated
with xt and add the sample (xt, ct) to the working training set Wt. At each iteration, we
update the predictor ht by computing the best predictor within a subset of the hypothesis
class Ht ⊆ H that minimizes the empirical surrogate risk measured on the labeled samples.
Note that Algorithm 1 maintains two working sets, W̃t and Wt, due to the two different
types of labeling criteria. To ensure that the expectation of empirical loss is equal to the
expectation of the true loss, we need to assign weight 1

p̃
to the soft-rejection samples in the

set W̃t. It is assumed throughout that the sequence (x1, c1), (x2, c2), . . . is an i.i.d. sequence
from the distribution D.

Two versions of the MBAL-SPO have their own advantages. When using hard rejection,
we update the set of predictors Ht according to Line 20 in Algorithm 1, and the value of p̃ is
set to zero. In contrast, in the soft rejection case, we keep Ht as the entire hypothesis class
H for all iterations, and the value of p̃ is non-zero. In comparison, hard rejection can result
in a smaller label complexity because p̃ = 0, while soft rejection can reduce computational
complexity by keeping Ht as the whole hypothesis class H. Please see the discussion in
Sections 2.4.2 and 2.4.4 for further details.

In Algorithm 1, the case where νS(ht−1(xt)) ≥ bt−1 intuitively corresponds to the case
where the confidence region of ht−1(xt) does not intersect with the degenerate cost vectors.
Hence, we are sufficiently confident that the optimal decision w∗(ht(xt)) is equal to w

∗(h∗(xt)),
where h∗ is a model that minimizes the SPO risk. Thus, we do not have to ask for the label
of xt. Lemma 2.3.1 further characterizes the conditions when two predictions lead to the
same decision when the feasible region S is polyhedral.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 17

Lemma 2.3.1 (Conditions for identical decisions in polyhedral feasible regions.). Suppose
that the feasible region S is polyhedral. Given two cost vectors c1, c2 ∈ Rd, if ∥c1 − c2∥ <
max{νS(c1), νS(c2)}, then it holds that w∗(c1) = w∗(c2). In other words, the optimal decisions
for c1 and c2 are the same.

Lemma 2.3.1 implies that given one prediction of the cost vector, when its distance to
degeneracy is larger than the radius of its confidence region, then all the predictions within
this confidence region will lead to the same decision. Moreover, if the optimal prediction is
also within this confidence region, the SPO loss of this prediction is zero.

The computational complexity of Algorithm 1 depends on the choice of the surrogate loss
we use. As discussed earlier, calculating the distance to degeneracy νS(h(x)) is efficient in
some special cases. In general, in the polyhedral case when a convex hull representation is
not available, a reasonable heuristic is to only compute the minimum in (2.4) with respect
to the neighboring extreme points of w∗(c). Alternatively, we observe that the objective
inside the minimum in (2.4) is quasiconcave. Therefore, we can relax the condition that vj
be an extreme point and still recover an extreme point solution. One can solve the resulting
problem with a Frank-Wolfe type method, for example, see Yurtsever and Sra (2022). The
computational complexity of updating ht in Line 19 depends on the choice of hypothesis class
H. In the case of soft rejection, we maintain Ht = H for all t and the update is the same as
performing empirical risk minimization in H, which can be efficiently computed exactly or
approximately for most common choices of H, including linear and nonlinear models. In the
case of hard rejections, Ht is now the intersection of t different level sets. Thus, minh∈Ht ℓ̂

t(h)
is a minimization problem with t level set constraints. The complexity of solving this problem
again depends on the choice of H and can often be solved efficiently. For example, in the
case of linear models or nonlinear models such as neural networks, a viable approach would
be to apply stochastic gradient descent to a penalized version of the problem or to apply a
Lagrangian dual-type algorithm. In practice, since the constraints may be somewhat loose, we
may simply ignore them and still obtain good results. Finally, we note that in both cases of
hard rejection and soft rejection, although we have to solve a different optimization problem
at every iteration, these optimization problems do not change much from one iteration to
the next, and therefore using a warm-start strategy that uses ht−1 as the initialization for
calculating ht will be very effective.

2.3.1.1 Surrogate Loss Function and Noise Distribution

Without further assumptions on the distribution of noise and features, the label complexity of
an active learning algorithm can be the same as the sample complexity of supervised learning,
as shown in Kääriäinen (2006). Therefore, we make several natural assumptions in order to
analyze the convergence and label complexity of our algorithm. Recall that the optimal SPO
and surrogate risk values are defined as:

R∗
SPO := min

h∈H
RSPO(h), and R∗

ℓ := min
h∈H

Rℓ(h).

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 18

Algorithm 1 Margin-Based Active Learning for SPO (MBAL-SPO)

1: Input: Exploration probability p̃, a sequence of cut-off values {bt}, a sequence {rt}, and
a constant ϑ.

2: Initialize the working sets W0 ← ∅, W̃0 ← ∅ and H0 ← H.
3: Arbitrarily pick one h0 ∈ H, n0 ← 0.
4: for t from 1, 2, ..., T do
5: Draw one sample xt from DX .
6: if νS(ht−1(xt)) ≥ bt−1 then
7: Flip a coin with heads-up probability p̃.
8: if the coin gets heads-up then
9: Acquire a “true” label ct of xt.
10: Update working set W̃t ← W̃t−1 ∪ {(xt, ct)}. Set nt ← nt−1 + 1.
11: else
12: Reject xt. Set nt ← nt−1 and W̃t ← W̃t−1.
13: end if
14: else
15: Acquire a “true” label ct of xt.
16: Update working set Wt ← Wt−1 ∪ {(xt, ct)}. Set nt ← nt−1 + 1.
17: end if
18: Let ℓ̂t(h)← 1

t

(∑
(x,c)∈Wt

ℓ(h(x), c) + 1
p̃

∑
(x,c)∈W̃t

ℓ(h(x), c)
)
.

19: Update ht ← argminh∈Ht−1 ℓ̂
t(h) and ℓ̂t,∗ ← minh∈Ht−1 ℓ̂

t(h).

20: Optionally update the confidence set of the predictor Ht by Ht ← {h ∈ Ht−1 : ℓ̂
t(h) ≤

ℓ̂t,∗ + rt +
ϑ
t

∑t−1
i=0 b

2
i }.

21: end for
22: Return hT .

We define H∗ as the set of all optimal predictors for the SPO risk, i.e., H∗ = {h ∈ H :
RSPO(h) ≤ RSPO(h

′), for all h′ ∈ H} and H∗
ℓ as the set of all optimal predictors for the risk

of the surrogate loss, i.e., H∗
ℓ = {h ∈ H : Rℓ(h) ≤ Rℓ(h

′), for all h′ ∈ H}. We also use the
notation R∗

SPO+ and H∗
SPO+ when the surrogate loss ℓ is SPO+. We define the essential sup

norm of a function h : X → Rd as ∥h∥∞ := inf{α ≥ 0 : ∥h(x)∥ ≤ α for almost every x ∈ X},
with respect to the marginal distribution of x and where ∥ ·∥ is the norm defining the distance
to degeneracy (Definition 2.3.1). Given a set H′ ⊆ H, we further define the distance between
a fixed predictor function h and H′ as DistH′(h) := infh′∈H′{∥h− h′∥∞}. Assumption 2.3.1
states our main assumptions on the surrogate loss function ℓ that we work with.

Assumption 2.3.1 (Consistency and error bound condition). The hypothesis class H is a
nonempty compact set w.r.t. to the sup norm, and the surrogate loss function ℓ : Rd×Rd → R+

is continuous and satisfies:

(1) H∗
ℓ ⊆ H∗, i.e., the minimizers of the surrogate risk are also minimizers of the SPO risk.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 19

(2) There exists a non-decreasing function ϕ : R+ → R+ with ϕ(0) = 0 such that for any
h ∈ H, for any ϵ > 0,

Rℓ(h)−R∗
ℓ ≤ ϵ ⇒ DistH∗

ℓ
(h) ≤ ϕ(ϵ).

Assumption 2.3.1.(1) states the consistency of the surrogate loss function. Note that since
H is a nonempty compact set and ℓ is a continuous function, H∗

ℓ is also a nonempty compact
set. On the other hand, the SPO loss is generally discontinuous so H∗ is not necessarily
compact, although the consistency assumption H∗

ℓ ⊆ H∗ ensures that H∗ is nonempty.
Assumption 2.3.1.(2) is a type of error bound condition on the risk of the surrogate loss,
wherein the function ϕ provides an upper bound of the sup norm between the predictor h and
the set of optimal predictors H∗

ℓ whenever the surrogate risk of h is close to the minimum
surrogate risk value. By Assumption 2.3.1.(2), when the excess surrogate risk of h becomes
smaller, h becomes closer to the set H∗

ℓ , which implies that the prediction h(x) also gets closer
to an optimal prediction h∗(x) for any given x. As a consequence, the distance to degeneracy
νS(h(x)) also converges to νS(h

∗(x)) for almost all x ∈ X . This property enables us to
analyze the performance of MBAL-SPO under SPO+ and surrogate loss function respectively
in the next two sections. Assumption 2.3.1 is related to the uniform calibration property
studied in Ho-Nguyen and Kılınç-Karzan (2022) in the SPO context. Next, to measure how
the density of the distribution νS(h

∗(x)) is allocated near the points of degeneracy, we define
the near-degeneracy function Ψ in Definition 2.3.2.

Definition 2.3.2 (Near-degeneracy function). The near-degeneracy function Ψ : R+ → [0, 1]
with respect to the distribution of x ∼ DX is defined as:

Ψ(b) := P
(

inf
h∗∈H∗

{νS(h∗(x))} ≤ b

)
.

□

The near-degeneracy function Ψ measures the probability that the distance to degeneracy
of h∗(x) is smaller than b, when x follows the marginal distribution of x in DX . If H∗ contains
more than one optimal predictor, the near-degeneracy function Ψ considers the distribution
of the smallest distance to degeneracy of all optimal predictors h∗. Intuitively, when Ψ(b) is
smaller, the density allocated near the points of degeneracy becomes smaller, which means
Algorithm 1 has a larger probability to reject samples, and achieves smaller label complexity.
This intuition is characterized in Lemma 2.3.2.

Lemma 2.3.2 (Upper bound on the expected number of acquired labels). Suppose that
Assumption 2.3.1 holds. In Algorithm 1, if ht satisfies DistH∗

ℓ
(ht) ≤ bt for all iterations

t ≥ 0, then the expected number of acquired labels after T total iterations is at most p̃T +∑T
t=1 Ψ(2bt−1).

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 20

Lemma 2.3.2 provides an upper bound for the expected number of acquired labels up to
time t, by utilizing the near-degeneracy function Ψ. Note that in the soft rejection case, if
p̃ > 0 and p̃ is independent of T , Lemma 2.3.2 implies that this upper bound grows linearly
in T . However, if we know the value of T before running the algorithm, then this upper
bound can be reduced to a sublinear order by setting p̃ as a function of T . On the other
hand, if we can set p̃ = 0, i.e., in the hard rejection case, the upper bound in Lemma 2.3.2 is
sublinear if

∑T
t=1 Ψ(2bt) is sublinear. As will be shown later in Proposition 2.5.1, in the hard

rejection case, we achieve a sublinear and sometimes even finite label complexity when the
near-degeneracy function Ψ satisfies certain conditions.

2.4 Guarantees and Analysis for the Margin-Based

Algorithm

In this section, we analyze the convergence and label complexity of MBAL-SPO in various
settings. We first review some preliminary information about generalization error bound in
Section 2.4.1. Next, we analyze the label complexity under hard rejections and soft rejections
in Sections 2.4.2 and 2.4.4, respectively. In both sections, we develop non-asymptotic surrogate
and SPO risk error bounds. We also develop bounds for the label complexity that, under
certain conditions, can be much smaller than supervised learning. In Section 2.4.3, we
further provide tighter SPO+ and SPO risk bounds when using the SPO+ surrogate under a
separability condition. At the end of this section, we discuss how to set the values of the
parameters in practice in MBAL-SPO.

2.4.1 Reweighted loss function

In Algorithm 1, the samples in the training set are not i.i.d., instead, whether to acquire the
label at iteration t depends on the historical label results. One of the challenges in analyzing
the convergence and label complexity of the margin-based algorithm stems from the non i.i.d.
samples. In this section, we review some techniques that characterize the convergence of non
i.i.d. random sequences.

In Algorithm 1, the random variables in one iteration can be written as (xt, ct, d
M
t , qt),

where dMt ∈ {0, 1} represents whether the sample is near degeneracy or not, i.e. if
νS(ht−1(xt)) < bt−1 then dMt = 1, otherwise dMt = 0. The random variable qt ∈ {0, 1} repre-
sents the outcome of the coin flip that determines if we acquire the label of this sample or not, in
the case when dMt = 0. For simplicity, we use random variable zt ∈ Z := X×C×{0, 1}×{0, 1}
to denote the tuple of random variables zt := (xt, ct, d

M
t , qt). Thus, zt depends on z1, ..., zt−1

and the classical convergence results for i.i.d. samples do not apply in the margin-based
algorithm. We define Ft−1 as the σ-field of all random variables until the end of iteration
t − 1 (i.e., {z1, ..., zt−1}). In Algorithm 1, the re-weighted loss function at iteration t is

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 21

ℓrew(h; zt) := dMt ℓ(h(xt), ct) + (1− dMt)qt
I{p̃>0}

p̃
ℓ(h(xt), ct). It is easy to see that ℓrew(h; z) is

upper bounded by ωℓ(Ĉ,C)
p̃I{p̃>0} <∞.

Then, to analyze the uniform convergence of 1
T

∑T
t=1 ℓ

rew(h; zt) to
1
T

∑T
t=1 E[ℓrew(h; zt)|Ft−1],

we assume that the hypothesis class H is discrete and its cardinality |H| is at most N1. In
other words, there are at most N1 candidate predictors within the hypothesis class H. This
assumption simplifies our notations and analysis. However, our analysis can also be extended
to accommodate a hypothesis class with an infinite number of predictors, such as linear models
by using some sequential complexity introduced in Rakhlin, Sridharan, and Tewari, 2015.
Based on this assumption, Proposition 2.4.1 provides an upper bound for the convergence
rate of the reweighted loss.

Proposition 2.4.1 (Generalization error bound for the reweighted loss). Suppose that
|H| ≤ N1. Let {z1, z2, ...zT} be a (non i.i.d.) sequence of random variables. Then, the
following inequality holds:

P

(
sup
h∈H

{∣∣∣∣∣ 1T
T∑
t=1

(E[ℓrew(h; zt)|Ft−1]− ℓrew(h; zt))

∣∣∣∣∣
}
≥ ϵ

)
≤ 2N1 exp

{
−2p̃2I{p̃>0}Tϵ2

ω2
ℓ (Ĉ, C)

}
.

Proposition 2.4.1 shows that 1
T

∑T
t=1 ℓ

rew(h; zt) converges to
1
T

∑T
t=1 E[ℓrew(h; zt)|Ft−1] at

rate Õ(1/
√
T).

2.4.2 MBAL-SPO with Hard Rejections

In this section, we develop excess risk bounds for the surrogate risk and the SPO risk, and
present label complexity results, for MBAL-SPO with hard rejections. Our excess risk bounds
for the surrogate risk hold for general feasible regions S. To develop risk bounds for the
SPO risk, we consider two additional assumptions on S: (i) the case where S satisfies the
strength property, and (ii) the case where S is polyhedral. The strength property, as defined
in El Balghiti et al. (2022), is reviewed below in Definition 2.4.1.

Definition 2.4.1 (Strength Property for the Feasible Region S). The feasible region S
satisfies the strength property with constant µ > 0 if, for all w ∈ S and ĉ ∈ Rd, it holds that

ĉT (w − w∗(ĉ)) ≥ µ · νS(ĉ)
2

∥w − w∗(ĉ)∥2, (2.5)

where νS is the distance to degeneracy function. We refer to µ as the strength parameter. □

The strength property can be interpreted as a variant of strong convexity that bounds
the distance to the optimal solution based on the parameter µ as well as the distance to
degeneracy νS(ĉ). El Balghiti et al. (2022) demonstrate that the strength property holds
when S is polyhedral or a strongly convex set. In addition, for some of the results herein,
we make the following assumption concerning the surrogate loss function, which states the
uniqueness of the surrogate risk minimizer and a relaxation of Hölder continuity.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 22

Assumption 2.4.1 (Unique minimizer and Hölder-like property). There is a unique minimizer
h∗ of the surrogate risk, i.e., the set H∗

ℓ is a singleton, and there exists a constant η > 0 such
that the surrogate loss function ℓ satisfies

|E[ℓ(ĉ, c)− ℓ(h∗(x), c)|x]| ≤ η∥ĉ− h∗(x)∥2 for all x ∈ X , and ĉ ∈ Ĉ.

It is easy to verify that the common squared loss satisfies Assumption 2.4.1 with η = 1
when the hypothesis class is well-specified. In Lemma 2.6.3 in Section 2.6, we further show
that the SPO+ loss satisfies Assumption 2.4.1 under some noise conditions.

Theorem 2.4.1 is our main theorem concerning MBAL-SPO with hard rejections and with
general surrogate losses satisfying Assumption 2.4.1. Theorem 2.4.1 presents bounds on the
excess surrogate and SPO risks as well as the expected label complexity after T iterations.

Theorem 2.4.1 (General surrogate loss, hard rejection). Suppose that |H| ≤ N1, that
Assumptions 2.3.1 and 2.4.1 hold, and that Algorithm 1 sets p̃← 0 and updates the set of
predictors according to the optional update rule in Line 20 with ϑ ← η. Furthermore in

Algorithm 1, for a given δ ∈ (0, 1], let r0 ≥ ωℓ(Ĉ, C), rt ← 2ωℓ(Ĉ, C)
√

ln(2TN1/δ)
T

for t ≥ 1,

b0 ← max{ϕ(r0),
√

r0/η}, and bt ← ϕ(2rt +
2η
t

∑t−1
i=0 b

2
i) for t ≥ 1. Then, the following

guarantees hold simultaneously with probability at least 1− δ for all T ≥ 1:

• (a) The excess surrogate risk satisfies Rℓ(hT)−R∗
ℓ ≤ rT + η

T

∑T−1
t=0 b2t ,

• (b) If the feasible region S satisfies the strength property with parameter µ > 0, then the
excess SPO risk satisfies

RSPO(hT)−R∗
SPO ≤ inf

γT≥2bT

{
2ρ(C)bT
µγT

+Ψ(γT)ωS(C)
}
,

• (c) If the feasible region S is polyhedral, then the excess SPO risk satisfies RSPO(hT)−
R∗

SPO ≤ Ψ(2bT)ωS(C),

• (d) The expectation of the number of labels acquired, E[nT], deterministically satisfies
E[nT] ≤

∑T
t=1Ψ(2bt−1) + δT .

In the polyhedral case, Theorem 2.4.1 indicates that the excess SPO risk of Algorithm 2.4.1
converges to zero at rate O(Ψ(2bT)), and the expectation of the number of acquired labels

grows at rate O
(∑T

t=1Ψ(2bt)
)
for small δ. (Usually, δ ≪ O(1/T).) Note that Theorem 2.4.1

is generic in that the excess risk and label complexity bounds depend on the functions ϕ
and Ψ. In Section 2.6, we give the explicit forms of these functions in some special cases of
interest.

Remark 2.4.1 (Updates of Ht). In Theorem 2.4.1, the set of predictors is updated according
to Line 20 in Algorithm 1. This is a technical requirement for the convergence when setting

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 23

p̃ = 0. This update process means that ht ∈ Ht−1 ⊆ Ht−2... ⊆ H0 = H. By constructing these
shrinking sets Ht of predictors, we are able to utilize the information from previous iterations.
Particularly, Lemma 2.4.2 below shows that these shrinking sets Ht−1 always contain the true
optimal predictor h∗ under certain conditions. □

Remark 2.4.2 (Value of γT). In Theorem 2.4.1, to find the best value of the parameter γT
in part (b) that minimizes the excess SPO risk for sets satisfying the strength property, we
observe that the choice of γT depends on Ψ, ϕ and T . If γT satisfies that (1) bT

γT
→ 0, when

rT → 0, and (2) γT → 0, when T →∞, then the excess SPO risk will converge to zero. For
example, we can set γT = (bT)

κ, where κ ∈ (0, 1). □

Auxiliary Results for the Proof of Theorem 2.4.1. To achieve the risk bound in
part (a) of Theorem 2.4.1, we decompose the excess surrogate risk into three parts. First, we
denote the re-weighted surrogate risk for the features that are far away from degeneracy by
ℓft(h), defined by:

ℓft(h) := E[ℓ(h; zt)I{νS(ht−1(xt)) ≥ bt−1}|Ft−1] = E[ℓ(h; zt)(1− dMt)|Ft−1],

where we use ℓ(h; zt) to denote ℓ(h(xt), ct) and the expectation above is with respect
to zt. Since xt and ct are i.i.d. random variables, and only dMt depends on Ft−1, ℓ

f
t(h)

can further be written as ℓft(h) = E[ℓ(h(xt), ct)|dMt = 0]P(dMt = 0|Ft−1). Note also that,
since p̃ = 0, the re-weighted loss function can be written as ℓrew(h; zt) = ℓ(h(xt), ct)d

M
t =

ℓ(h(xt), ct)I{νS(ht−1(xt)) < bt−1}, for a given h ∈ H. Next, for given h ∈ H and h∗ ∈ H∗
ℓ ,

we denote the discrepancy between the conditional expectation and the realized excess
re-weighted loss of predictor h at time t by Zt

h, i.e., Z
t
h := E[ℓrew(h; zt)− ℓrew(h∗; zt)|Ft−1]−

(ℓrew(h; zt)−ℓrew(h∗; zt)). Lemma 2.4.1 shows that the excess surrogate risk can be decomposed
into three parts.

Lemma 2.4.1 (Decomposition of the excess surrogate risk). In the case of hard rejections,
i.e., p̃ ← 0 in Algorithm 1, for any given h∗ ∈ H∗

ℓ and T ≥ 1, the excess surrogate risk of
any predictor h ∈ H can be decomposed as follows:

Rℓ(h)−Rℓ(h
∗) =

1

T

T∑
t=1

(
ℓft(h)− ℓft(h

∗)
)
+

1

T

T∑
t=1

Zt
h +

1

T

T∑
t=1

(ℓrew(h; zt)− ℓrew(h∗; zt)) .

The first part in Lemma 2.4.1 is the averaged excess surrogate risk for the hard rejected
features at each iteration. Lemma 2.4.2 below further shows that

∣∣ℓft(h)− ℓft(h
∗)
∣∣ is close to

zero when h ∈ HT−1.

Lemma 2.4.2. Suppose that Assumptions 2.3.1 and 2.4.1 hold where h∗ denotes the unique
minimizer of the surrogate risk, and that Algorithm 1 sets p̃ ← 0 and updates the set of
predictors according to the optional update rule in Line 20 with ϑ← η. Furthermore, suppose
that that r0 ≥ ωℓ(Ĉ, C), rt ≥ suph∈H

{∣∣1
t

∑t
i=1 Z

i
h

∣∣} for t ≥ 1, b0 ← max{ϕ(r0),
√
r0/η}, and

bt ← ϕ(2rt +
2η
t

∑t−1
i=0 b

2
i) for t ≥ 1. Then, for all t ≥ 1, it holds that (a) h∗ ∈ Ht−1, and (b)

suph∈Ht−1

{∣∣ℓft(h)− ℓft(h
∗)
∣∣} ≤ ηb2t−1.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 24

With Lemma 2.4.2, we can appropriately bound the first average of terms in Lemma
2.4.1, involving the expected surrogate risk when far from degeneracy. Thus, Lemmas 2.4.1
and 2.4.2 enable us to prove the excess surrogate risk bound in part (a). The proofs of the
remaining parts follow by translating the excess surrogate risk bound to guarantees on the
excess SPO risk and the label complexity.

2.4.3 Refined Bounds for SPO+ Under Separability

Next, we provide a smaller excess risk bound when using SPO+ as the surrogate loss, again
in the case of hard rejections. The SPO+ loss function incorporates the structure of the
downstream optimization problem and, intuitively, the excess SPO+ risk when far away from
degeneracy will be close to zero when the distance DistH∗

ℓ
(h) is small and the distribution

satisfies a separability condition, which we define below.

Assumption 2.4.2 (Strong separability condition). There exist constants ϱ ∈ [0, 1) and
τ ∈ (0, 1] such that, for all h∗ ∈ H∗

SPO+, with probability one over (x, c) ∼ D, it holds that:

• (1) ∥h∗(x)− c∥ ≤ ϱνS(h
∗(x)), and

• (2) νS(h
∗(x)) ≥ τ

(
suph′∈H∗

SPO+
{νS(h′(x))}

)
.

The following proposition shows that the separability condition leads to zero SPO+ and
SPO risk in the polyhedral case. Indeed, the SPO+ loss is a generalization of the hinge
loss and the structured hinge loss in binary and multi-class classification problems and is
expected to achieve zero loss when there is a predictor function h̄ that strictly separates
the cost vectors into different classes corresponding to the extreme points of S Elmachtoub
and Grigas (2022). Assumption 2.4.2 and Proposition 2.4.2 formally define the notion of
separability, wherein the distance between the prediction h̄(x) and the realized cost vector c,
relative to the distance to degeneracy of h̄(x), is controlled.

Proposition 2.4.2 (Zero SPO+ risk in the polyhedral and separable case). Assume that
there exists h̄ ∈ H and a constant ϱ ∈ [0, 1) such that ∥h̄(x)− c∥ ≤ ϱνS(h̄(x)) with probability
one over (x, c) ∼ D. When the feasible region S is polyhedral, it holds that R∗

SPO+ = R∗
SPO = 0

and h̄ is a minimizer for both RSPO+ and RSPO.

As compared to Theorem 2.4.1, Theorem 2.4.2 below presents improved surrogate risk
convergence guarantees for SPO+ under separability in the polyhedral case.

Theorem 2.4.2 (SPO+ surrogate loss, hard rejection, polyhedral and separable case).
Suppose that the feasible region S is polyhedral, that Assumptions 2.3.1 and 2.4.2 hold with
|H| ≤ N1, and that the surrogate loss function is SPO+. Suppose that Algorithm 1 sets p̃← 0
and Ht ← H for all t. Furthermore in Algorithm 1, for a given δ ∈ (0, 1], let r0 ≥ ωℓ(Ĉ, C),
rt ← ωℓ(Ĉ, C)

√
ln(2TN1/δ)

T
for t ≥ 1, b0 ← max{ϕ(r0), ρ(Ĉ)}, and bt ← (1 + 2

τ(1−ρ)
)ϕ(rt) for

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 25

t ≥ 1. Then, the following guarantees hold simultaneously with probability at least 1− δ for
all T ≥ 1:

• (a) The excess SPO+ risk satisfies RSPO+(hT)−R∗
SPO+ = RSPO+(hT) ≤ rT ,

• (b) The excess SPO risk satisfies RSPO(hT)−R∗
SPO = RSPO(hT) ≤ Ψ(2bT)ωS(C),

• (c) The expectation of the number of labels acquired, E[nT], deterministically satisfies
E[nT] ≤

∑T
t=1Ψ(2bt−1) + δT .

Remark 2.4.3 (Benefits of SPO+ Under Separability). When using SPO+ in the separable
case, the bound in part (a) of Theorem 2.4.2 is substantially improved as compared to Theorem
2.4.1. Intuitively, when an optimal predictor h∗(x) is far away from degeneracy and ht(x) and
h∗(x) are close, then the excess SPO+ risk of ht(x) can be shown to be zero. As a result, the
rejection criterion – which compares νS(ht(x)) to a quantity bt that is related to the distance
between ht and h∗ – is “safe” in the sense that whenever ht(x) ≥ bt we can demonstrate that
ht(x) leads to a correct optimal decision with high probability. Thus, when using the SPO+
loss function, we can obtain a smaller excess SPO+ risk bound. Indeed, in Theorem 2.4.2,
the value of rt is determined by the i.i.d. covering number, which implies that this risk bound
is the same as the risk bound of supervised learning that labels all the samples. Furthermore,
another benefit of SPO+ under the separability assumption is that we do not need to update
Ht at each iteration, which simplifies the computation substantially. Finally, Assumption
2.4.1 which assumes the minimizer h∗ is unique is not needed. □

Theorem 2.4.2 shows that the excess SPO+ risk converges to zero at rate Õ(1/
√
T), which

equals the typical learning rate for the excess SPO+ risk in supervised learning. As Algorithm
1 requires much fewer labels, this demonstrates the advantage of active learning. In fact, the
main idea of the proof of Theorem 2.4.2 is to show that hT actually, with high probability,
achieves zero empirical SPO+ risk over all samples (x1, c1), . . . , (xT , cT) – including the cases
where the label is not acquired. Indeed, in the separable case, the rejection criterion is “safe”
and we are able to demonstrate that ℓSPO+(ht(xt), ct) = 0 when νS(ht−1(xt)) ≥ bt−1. This
of course implies that hT is an empirical risk minimizer for SPO+ across T i.i.d. samples
(x1, c1), . . . , (xT , cT) and we are able to conclude part (a).

2.4.4 MBAL-SPO with Soft Rejections

In this section, we analyze the convergence and label complexity of MBAL-SPO with soft
rejection. We return to the setting of a generic surrogate loss function ℓ. Compared to the
hard rejection case in Theorem 2.4.1, this positive p̃ will lead to a larger label complexity
than Theorem 2.4.1. On the other hand, when p̃ is positive, we do not have to construct the
confidence set Ht of the predictors at each iteration. In other words, Ht can be set as H, for
all t as in Theorem 2.4.2. Thus, we do not have to consider t additional constraints when
minimizing the empirical re-weighted risk, which will reduce the computational complexity
significantly. Theorem 2.4.3 is our main theorem for the MBAL-SPO under a general surrogate

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 26

loss, which again provides upper bounds for the excess surrogate and SPO risk and label
complexity of the algorithm.

Theorem 2.4.3 (General surrogate loss, soft rejection). Suppose that Assumption 2.3.1 holds
with |H| ≤ N1, and let δ ∈ (0, 1] and p̃ ∈ (0, 1] be given. In Algorithm 1, set Ht ← H for

all t ≥ 0, r0 ≥ ωℓ(Ĉ, C), rt ← 4ωℓ(Ĉ,C)
p̃

√
ln(2N1/δ)

t
for t ≥ 1, bt ← 2ϕ(rt) for t ≥ 0. Then, the

following guarantees hold simultaneously with probability at least 1− δ for all T ≥ 1:

• (a) The excess surrogate risk satisfies Rℓ(hT)−R∗
ℓ ≤ rT ,

• (b) If the feasible region S satisfies the strength property with parameter µ > 0, then the
excess SPO risk satisfies

RSPO(hT)−R∗
SPO ≤ inf

γT≥2bT

{
2ρ(C)bT
µγT

+Ψ(γT)ωS(C)
}
,

• (c) If the feasible region S is polyhedral, then the excess SPO risk satisfies RSPO(hT)−
R∗

SPO ≤ Ψ(2bT)ωS(C),

• (d) The expectation of the number of labels acquired, E[nT], deterministically satisfies
E[nT] ≤ p̃T +

∑T
t=1Ψ(2bt−1) + δT .

Remark 2.4.4 (Value of bt and p̃). In part (d) of Theorem 2.4.3, E[nT] depends on both
p̃T and

∑T
t=1 Ψ(2bt). When the exploration probability p̃ is large, p̃T in part (d) of Theorem

2.4.3 is large. On the other hand, in Theorem 2.4.3, the value of bt depends on rt, and rt
furthermore is in the order of O(1/p̃). It implies that when the exploration probability p̃ is
small, bt is large, and

∑T
t=1 Ψ(2bt) in part (d) of Theorem 2.4.3 is large. Hence, to minimize

the label complexity, there is a trade-off when choosing the value of p̃. In Proposition 2.5.2,
we will specify the value of p̃ and provide an upper bound for E[nT] which is sublinear in T . □

Although Theorem 2.4.3 does not require Assumptions 2.4.1 or 2.4.2, as will be shown
later, to demonstrate the advantage of the supervised learning algorithm, we need to carefully
select p̃, which will be elaborated in Section 2.5.2.

Setting Parameters in MBAL-SPO. To conclude this section, we discuss the issue
of setting the parameters for MBAL-SPO in practice. Although Theorems 2.4.1 and 2.4.3
provide the theoretical settings for the parameters rt and bt in the MBAL-SPO algorithm,
how to set the scale of these parameters is an important question in practice. The complexity
of the hypothesis class, the noise level and the distribution of features all impact the settings
of these parameters. When the noise level is larger, or the cost vector c is further away from
the degeneracy, the scale of bt for the algorithms should be larger. In addition, to set a proper
scale of the parameters in practice, we need to consider the tradeoff between the budget of
the labels (or the cost to acquire each label) and the efficiency of the learning process. A

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 27

reasonable practical approach is to set a “burn in” period of T̃ iterations where MBAL-SPO
acquires all labels during the first T̃ iterations. One can then use the distribution of values
νS(hT (xt)) for all previous features xt to inform the value of bT . For example, we can set the
scale of bT as some order statistics of the past values νS(hT (xt)) for t ∈ {1, . . . , T̃}, e.g., the
mean or other quantile depending on the practical cost of acquiring labels versus the rate at
which feature vectors are collected. Then, the value of bt for t ≥ T can be updated according
to the value of bT .

2.5 Risk Guarantees and Small Label Complexity

Under Low Noise Conditions

To demonstrate the advantage of MBAL-SPO over supervised learning in Theorems 2.4.1
and 2.4.3, we need to analyze the functions ϕ and Ψ. In Section 2.6, we present some natural
low-noise conditions such that we can provide concrete examples of ϕ under the SPO+ loss. In
these examples, ϕ satisfies that ϕ(ϵ) ∼

√
ϵ. In Section 2.6, we further show that Assumption

2.4.1 holds for SPO+ and derive the upper bound for η under some noise conditions. Given
these results, in this section, we analyze the exact order of the label complexity and the risk
bounds. These results demonstrate the advantages of MBAL-SPO.

2.5.1 Small Label Complexities

In this section, we analyze the order of the label complexity for both hard rejection and soft
rejection. First, we characterize the noise as the level of near degeneracy in Assumption
2.5.1, which is similar in spirit to the low noise condition assumption in Hu, Kallus, and Mao
(2022).

Assumption 2.5.1 (Near-degeneracy condition). There exist constants b0, κ > 0 such that

Ψ(b) = P
(

inf
h∗∈H∗

{νS(h∗(x))} ≤ b

)
≤ (b/b0)

κ.

Assumption 2.5.1 controls the rate at which Ψ(b) – which measures the probability mass
of features with small distance to degeneracy – approaches 0 as b approaches 0. In other
words, for small enough b so that b

b0
< 1, when the parameter κ is larger the probability

near the degeneracy is smaller at a faster rate. When the above near-degeneracy condition
in Assumption 2.5.1 holds and ϕ(ϵ) satisfies that ϕ(ϵ) ∼ O(

√
ϵ), we have the sublinear label

complexity for the hard rejection in the polyhedral cases in Proposition 2.5.1.

Proposition 2.5.1 (Small label complexity for hard rejections). Suppose that Assumptions
2.3.1, 2.4.1, and 2.5.1 hold with |H| ≤ N1. Suppose there exists a constant Cϕ ∈ (0, 1

36η2
) such

that Assumption 2.3.1.(2) holds with ϕ(ϵ) = Cϕ ·
√
ϵ. Under the same setting of Algorithm

1 in Theorem 2.4.1, for a fixed δ ∈ (0, 1], the following guarantees hold simultaneously with
probability at least 1− δ for all T ≥ 1:

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 28

• The excess surrogate risk satisfies Rℓ(hT)−R∗
ℓ ≤ Õ(T−1/2).

• The excess SPO risk satisfies RSPO(hT)−R∗
SPO ≤ Õ(T−κ/4).

• The expectation of the number of labels acquired, conditional on the above guarantee on
the excess surrogate risk, is at most Õ

(
T 1−κ/4

)
for κ ∈ (0, 4), and Õ(1) for κ ∈ [4,∞).

The last claim in Propositon 2.5.1 indicates that the label complexity is sublinear. Notice
that, as compared to Theorem 2.4.1, for simplicity, we state the bound on the label complexity
conditional on the excess SPO+ risk guarantee that holds with probability at least 1 − δ.
When κ > 4, the label complexity is even finite. To compare this label complexity with
supervised learning, we consider the excess SPO risk with respect to the number of labels n.
Let n̄← E[nT] be a fixed value. Under the same assumptions and similar proof procedures,
we can show that the excess SPO risk of the supervised learning is at most Õ(n̄−κ/2). In
comparison, Proposition 2.5.1 indicates that the expected excess SPO risk of MBAL-SPO
is at most Õ(n̄− κ

4−κ). Thus, when κ > 2, MBAL-SPO acquires much fewer labels than the
supervised learning to achieve the same level of SPO risk. This demonstrates the advantage
of MBAL-SPO over supervised learning.

Remark 2.5.1 (Small label complexity under separability condition with SPO+ loss). Under
the same setting as Theorem 2.4.2, obviously, we have that Rℓ(hT) − R∗

ℓ ≤ Õ(T−1/2). If
we further assume ϕ(ϵ) ∼

√
ϵ, then following the same analysis in Proposition 2.5.1, we

can obtain that RSPO(hT)−R∗
SPO ≤ Õ(T−κ/4) and the expected number of labels is at most

Õ(T 1−κ/4) for κ ∈ (0, 4) and Õ(1) for κ ∈ [4,∞).

Similar to the case of MBAL-SPO with hard rejections, when Assumption 2.5.1 and the
condition that ϕ(ϵ) ∼ O(

√
ϵ) hold, we obtain sublinear label complexity of Algorithm 1 with

soft rejections in Proposition 2.5.2.

Proposition 2.5.2 (Small label complexity for soft rejections). Suppose Assumptions 2.3.1
and 2.5.1 hold with |H| ≤ N1. Suppose there exists a constant Cϕ > 0 such that Assumption

2.3.1.(2) holds with ϕ(ϵ) = Cϕ ·
√
ϵ. Set p̃← T− κ

2(κ+2) and Ht ← H for all t, and bt, rt the same
values as Theorem 2.4.3. For a fixed δ ∈ (0, 1], the following guarantees hold simultaneously
with probability at least 1− δ for all T ≥ 1:

• The excess surrogate risk satisfies Rℓ(hT)−R∗
ℓ ≤ Õ

(
T− 1

2(κ+2)

)
.

• The excess SPO risk satisfies RSPO(hT)−R∗
SPO ≤ Õ

(
T− κ

2(κ+2)

)
.

• The expectation of the number of labels acquired, conditional on the above guarantee on

the excess surrogate risk, is at most Õ
(
T 1− κ

2(κ+2)

)
for κ > 0.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 29

In Proposition 2.5.2, the larger the parameter in near-degeneracy condition κ is, the
smaller the label complexity will be. We observe that in Proposition 2.5.2, when p̃ = T− κ

2(κ+2) ,

the excess surrogate risk converges to zero at rate Õ(T− 1
κ+2), which is slower than the typical

learning rate of supervised learning, which is O(T−1/2). In the next section, we demonstrate
that the excess surrogate risk can be reduced to Õ(T−1/2) under some further conditions.

2.5.2 Small Label Complexity with Soft Rejections.

In this section, we show that under certain conditions, the convergence rate of excess surrogate
risk under soft rejection is Õ(T−1/2), which is the same as standard supervised learning
(except for logarithmic factors). To achieve this rate, we allow p̃ to change dynamically,
denoted as p̃t. The soft rejection probability p̃t varies depending on the observed feature xt

at each iteration t. This adaptive approach ensures that the soft-rejection probability is not
fixed to a small value, enabling the active learning algorithm to converge more quickly.

Particularly, we set p̃t = max{T− κ
2(κ+2) , α1∥hT (x) − h∗(x)∥}, where α1 is a constant.

Proposition 2.5.3 shows that the excess surrogate risk of active learning, Rℓ(ht) − Rℓ(h
∗)

converges to zero at rate Õ(T−1/2), when p̃ > 0.

Proposition 2.5.3. Suppose that there exists a constant Cϕ > 0 such that Assumption
2.3.1 holds with ϕ(ϵ) = Cϕ ·

√
ϵ. Suppose Assumption 2.5.1 holds with κ = 1. Sup-

pose that the surrogate loss function ℓ(·, c) is Lipschitz for any given c ∈ C. Let p̃t ←
max{T− κ

2(κ+2) , α1∥hT (x) − h∗(x)∥} for some constant α1 > 0. For some small δ ∈ (0, 1],
consider Algorithm 1 under the same settings as Theorem 2.4.3. Then with probability at

least 1− δ, we have that Rℓ(hT)−R∗
ℓ ≤ Õ(T−1/2) and E[nt] ≤ Õ(T 1−min{κ,1}

2(κ+2)).

Proposition 2.5.3 implies that for the excess risk of the surrogate function, our active
learning algorithm achieves the same order as the supervised learning. However, compared to
supervised learning, active learning algorithms acquire much fewer labels, which is at most

Õ(T 1−min{κ,1}
2(κ+2)). In illustration, when the near-degeneracy condition holds with κ = 1, the

label complexity of MBAL-SPO is Õ(T 5/6) in Proposition 2.5.2. Therefore, the MBAL-SPO
can achieve the same order of surrogate risk with a smaller number of acquired labels.

2.6 Examples of ϕ Functions and Upper Bound for η

The existence of non-trivial ϕ and Ψ depends on the distribution D and the feasible region
S. In this section, we examine the case where we use the SPO+ loss as the surrogate loss
function given the norm ∥ · ∥ as the ℓ2 norm. We first present two special cases, polyhedral
and strongly convex feasible regions, for which we can characterize the function ϕ. We then
present sufficient conditions on the distribution D so that we can ultimately bound the label
complexity. For simplicity, we use P(c|x) to denote the probability density function of c
conditional on x. To study the pointwise error as needed in Assumption 2.3.1, we make a

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 30

recoverability assumption. Assumption 2.6.1 holds for linear hypothesis classes when the
features have nonsingular covariance and for certain decision tree hypothesis classes when
the density of features is bounded below by a positive constant (Hu, Kallus, and Mao, 2022).

Assumption 2.6.1 (Recoverability). There exists κ > 0 such that for all h ∈ H, h∗ ∈ H∗,
and almost all x′ ∈ X , it holds that

∥h(x′)− h∗(x′)∥2 ≤ κ · E
[
∥h(x)− h∗(x)∥2

]
.

Assumption 2.6.1 provides an upper bound of the pointwise error from the bound of the
expected error. It implies that the order of pointwise error is no larger than the order of the
expected error.

Polyhedral feasible region. First, we consider the case where the feasible region S
is a polyhedron. Let Pcont, symm denote the class of joint distributions D such that P(·|x)
is continuous on Rd and is centrally symmetric with respect to its mean for all x ∈ X .
Following Theorem 2 in H. Liu and Grigas (2021), for given parameters M ≥ 1 and α, β > 0,
let PM,α,β denote the set of all D ∈ Pcont, symm such that for all x ∈ X and c̄ = E[c|x],
there exists σ ∈ [0,M] satisfying ∥c̄∥2 ≤ βσ and P(c|x) ≥ α · N (c̄, σ2I) for all c ∈ Rd.
Let DS denote the diameter of S and define a “width constant” dS associated with S by
dS := minv∈Rd:∥v∥2=1

{
maxw∈S v

Tw −minw∈S v
Tw
}
. Notice that dS > 0 whenever S has a

non-empty interior.

Lemma 2.6.1 (Example of ϕ). Given ∥·∥ as the ℓ2 norm, suppose that Assumption 2.6.1 holds

and the feasible region S is a bounded polyhedron. Define ΞS := (1 + 2
√
3DS

dS
)1−d. Suppose the

hypothesis class H is well-specified, i.e., h∗(x) = E[c|x], for all x ∈ X . When the distribution
D ∈ PM,α,β, then it holds that for almost all x ∈ X ,

RSPO+(h)−RSPO+(h
∗) ≤ ϵ⇒ ∥h(x)− h∗(x)∥2 ≤ κ

8
√
2πρ(Ĉ)e

3(1+β2)
2

αΞS

· ϵ.

Lemma 2.6.1 indicates that ϕ(ϵ) ≤ O(
√
ϵ).

Strongly-convex feasible region. Next, we consider the case where the feasible region S
is a level-set of a strongly-convex and smooth function. In the spirit of Definition 4.1 in H. Liu
and Grigas (2021), we consider two related classes of rotationally symmetric distributions
with bounded conditional coefficient of variation. These distribution classes are formally
defined in Definition 2.6.1 below, and include the multi-variate Gaussian, Laplace, and Cauchy
distributions as special cases.

Definition 2.6.1 (Pβ1,β2 distribution). We define Prot symm as the class of joint distributions
D with conditional rotational symmetry in the norm ∥·∥, namely for all x ∈ X and c̄ = E[c|x],

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 31

there exists a function q(·) : [0,∞) → [0,∞) such that P(c|x) = q(∥c− c̄∥). For constants
β1, β2 ∈ (0, 1), define

Pβ1,β2 :=
{
D ∈ Prot symm : For any c1 ∈ Rd,Pc|x(0 ≤ cT c1 ≤ β1∥c1∥∥c∥) ≥ β2

}
.

□

Lemma 2.6.2 provides a bound for the pointwise error for strongly-convex feasible regions
under the class of distributions in Pβ1,β2 specified in Definition 2.6.1.

Lemma 2.6.2 (Example of ϕ). Given ∥ · ∥ as the ℓ2 norm, let f : Rd → R be a µS-strongly
convex and LS-smooth function for some LS ≥ µS > 0. Suppose that the feasible region S is
defined by S = {w ∈ Rd : f(w) ≤ r} for some constant r > fmin := minw f(w). Suppose that
Assumption 2.6.1 holds and that the hypothesis class H is well-specified, i.e., h∗(x) = E[c|x],
for all x ∈ X . When the distribution D ∈ Pβ1,β2, then it holds that for almost all x ∈ X ,

RSPO+(h)−RSPO+(h
∗) ≤ ϵ⇒

∥h(x)− h∗(x)∥2 ≤ κµ2
Sr

1/2

21/2β2L
5/2
S

min

{
2(1− β2

1)

ρ(C, Ĉ)
,

√
17 + 8β1 − 1− 4β1

4ρ(C, Ĉ)

}−1

· ϵ.

Lemma 2.6.2 implies that for the strongly-convex feasible region, if the distribution
D ∈ Pβ1,β2 , we have ϕ(ϵ) ≤ O(

√
ϵ). Since Theorem 2.4.1 also requires Assumption 2.4.1 holds,

in Lemma 2.6.3 below, we provide the conditions that Assumption 2.4.1 holds for the SPO+
loss.

Lemma 2.6.3 (Existence of η for ℓSPO+). Given ∥ · ∥ as the ℓ2 norm, let f : Rd → R be a
µS-strongly convex and LS-smooth function for some LS ≥ µS > 0. Suppose that the feasible
region S is defined by S = {w ∈ Rd : f(w) ≤ r} for some constant r > fmin := minw f(w).
Suppose the hypothesis class H is well-specified, i.e., h∗(x) = E[c|x], for all x ∈ X . Suppose
distribution D ∈

{
D ∈ Prot symm : Pc|x(∥c∥ ≥ β) = 1, for all x ∈ X

}
, for some positive β > 0.

Then, ℓSPO+(·, c) satisfies that for all x ∈ X , c1 ∈ C and h∗ ∈ H∗,

|E[ℓSPO+(c1, c)− ℓSPO+(h
∗(x), c)|x]| ≤ L2

Sρ(C)
√
r − fmin√

2µ1.5
S

4

β
∥c1 − h∗(x)∥2.

Lemma 2.6.3 shows that when the feasible region is strongly convex and the hypothesis
class is well-specified, and when the distribution of cost vectors is separated from the origin
with probability 1, then η in Assumption 2.4.1 is finite for the SPO+ loss.

In conclusion of Section 2.6, it is worth noting that while our analysis in this section
focused on the SPO+ loss function, similar results can be obtained for commonly used loss
functions such as squared ℓ2 norm loss. For example, under some noise conditions, we can
also obtain ϕ(ϵ) ∼

√
ϵ and the upper bound for η under the squared ℓ2 norm loss.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 32

2.7 Numerical Experiments

In this section, we present the results of numerical experiments in which we empirically
examine the performance of our proposed margin-based algorithm (Algorithm 1) under the
SPO+ surrogate loss. We use the shortest path problem and personalized pricing problem as
our exemplary problem classes. For both problems, we use (sub)gradient descent to minimize
the SPO+ loss function in the MBAL-SPO algorithm. We set p̃ ← 10−5 and set Ht ← H
according to Theorem 2.4.3. The norm ∥ · ∥ is set as the ℓ2 norm. In both problems, to
calculate the distance to the degeneracy, we use the result of Theorem 8 in El Balghiti et al.
(2022), which was stated in Equation (2.4). We set the function ϕ as the square root function,
which is used directly in the setting of the sequence {bt}. The numerical experiments were
conducted on a Windows 10 Pro for Workstations system, with an Intel(R) Xeon(R) Silver
4114 CPU @ 2.20GHz 20 cores.

2.7.1 Shortest Path Problem

We first present the numerical results for the shortest path problem. We consider a 3× 3
(later also a 5× 5) grid network, where the goal is to go from the southwest corner to the
northeast corner, and the edges only go north or east. In this case, the feasible region S is
composed of network flow constraints, and the cost vector c encodes the cost of each edge.

Data generation process. Let us now describe the process used to generate the synthetic
experimental data. The dimension of the cost vector d is 12, corresponding to the number of
edges in the 3× 3 grid network. The number of features p is set to 5. The number of distinct
paths is 6. Given a coefficient matrix B ∈ Rd×p, the training data set {(xi, ci)}ni=1 and the
test data set {(x̃i, c̃i)}ntest

i=1 are generated according to the following model.
1. First, we identify six vectors µj ∈ Rp, j = 1, ..., 6, such that the corresponding cost

vector Bµj is far from degeneracy, that is, the distance to the closest degenerate cost vector
νS(Bµj) is greater than some threshold, and the optimal path under the cost vector Bµj is
the path j.

2. Each feature vector xi ∈ Rp is generated from a mixed distribution of six multivariate
Gaussian distributions with equal weights. Each multivariate Gaussian distribution follows
N(µj, σ

2
mIp), where the variance σ2

m is set as 1/9.
3. Then, the cost vector cj is generated according to cj =

[
1 + (1 + bTj xi/

√
p)deg

]
ϵj, for

j = 1, ..., d, where bj is the jth row of the matrix B. The degree parameter deg is set as 1 in
our setting and ϵj is a multiplicative noise term, which is generated independently from a
uniform distribution [1− ϵ̄, 1 + ϵ̄]. Here, ϵ̄ is called the noise level of the labels.

To determine the coefficient matrix B, we generate a random candidate matrix B̃ multiple
times, whose entries follow the Bernoulli distribution (0.5), and pick the first B such that
µj exists in Step 1 for each j = 1, ..., 6. The size of the test data set is 1000 sample points.

In the context of our margin-based algorithm, we set rt =
√

[d× ln(t) + ln(1/δ)]/t, where
t is the iteration counter, d = 12 is the dimension of the cost vector, and δ is set as 10−7.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 33

According to Proposition 2.5.2, we set bt = 0.5
√
rt. The running time for one single run on a

3× 3 grid to acquire 25 labels is about 10 minutes for the margin-based algorithm.
Figure 2.3 shows our results for this experiment. Excess SPO risks during the training

process for MBAL-SPO and supervised learning are shown in the left plot of Fig. 2.3. The
x-axis shows the number of labeled samples and the y-axis shows the log-scaled excess SPO
risk on the test set. The results are from 25 trials, and the error bar in Figure 2.3 is an
85% confidence interval. We observe that as more samples are labeled, the margin-based
algorithm performs better than supervised learning, as expected. Compared to supervised
learning, the margin-based algorithm achieves a significantly lower excess SPO risk when the
number of labeled samples is around 25.

Figure 2.3: Risk on the test set during the training process in 3× 3 grid, and 5× 5 grid.

The margin-based algorithm has good scalability as long as the calculation of the distance
to the degeneracy νS is fast, for example, in the case of relatively simple polyhedral sets. To
further examine the performance of the margin-based algorithm on a larger-scale problem, we
conduct a numerical experiment in a 5× 5 grid network in the right plot of Figure 2.3, again
shown with an 85 % confidence interval. We see that although both algorithms converge to
the same optimal SPO risk level, the margin-based algorithm has a much faster learning rate
than supervised learning and can achieve a lower SPO risk even after 200 labeled samples.

In Section 2.7.3, we further examine the impacts of the scale of parameters, rt and bt, on
the number of labels and the SPO risk during the training process, which demonstrates the
robustness of the SPO risk with respect to the scales of these parameters. In Section 2.7.4,
we include more results in which we change the noise levels and variance of the features when
generating the data. This verifies the advantages of our algorithms under various conditions.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 34

2.7.2 Personalized Pricing Problem

In this section, we present numerical results for the personalized pricing problem. Suppose
that we have three types of items, indexed by j = 1, 2, 3. We have three candidate prices for
these three items, which are $60, $80, and $90. Therefore, in total, we have 33 = 27 possible
combinations of prices. Suppose that the dimension of the features of the customers is p = 6.
When a customer is selected to survey, their answers will reveal the purchase probability for
all three items at all possible prices. These purchase probabilities are generated on the basis
of an exponential function of the form O(e−p). We add additional price constraints between
products, such that the first item has the highest price, and the third item has the lowest
price. Please see the details in Section 2.7.5.

Because there are three items and three candidate prices, the dimension of the cost vector
dj(pi) is 9. Therefore, our predictor h(x) is a mapping from the feature space X ⊆ R6 to the
label space C ⊆ [0, 1]9. We assume that the predictor is a linear function, so the coefficient of
h(x) is a (6 + 1)× 9 matrix, including the intercept. Unlike the shortest path problem which
can be solved efficiently, the personalized pricing problem is NP-hard in general due to the
binary constraints. In our case, since the dimensions of products and prices are only three,
we enumerate all the possible solutions to determine the prices with the highest revenue.

The test set performance is calculated on 1000 samples. In MBAL-SPO, we set rt =
250
√

[d× ln(t) + ln(1/δ)]/t, where t is the iteration counter, d is the dimension of the cost
vector, which is 9, and δ is set as 10−7. According to Proposition 2.5.2, we set bt = 0.5×√rt.
The scales of rt and bt are selected by the rules discussed at the end of Section 2.4.4. The
excess SPO risks of MBAL-SPO and supervised learning on the test set as the number of
acquired labels increases are shown in Figure 2.4. The results are from 25 simulations, and
the error bars in Figure 2.4 represent an 85% confidence interval. Notice that the demand
function is in an exponential form but our hypothesis class is linear, so the hypothesis class
is misspecified. The results in Figure 2.4 show that MBAL-SPO achieves a smaller excess
SPO risk than supervised learning even when the hypothesis class is misspecified.

2.7.3 Setting Parameters in the Algorithm

Here we discuss how to set the values of the parameters rt and bt in margin-based algorithm
in practice. In general, these values depend on D, the budget of the labeled samples, and the
performance that we would like to achieve. Setting rt and bt, to be large numbers makes our
active learning algorithm the same as supervised learning. Setting them as smaller numbers
will make our algorithms less conservative and more sensitive to the first several samples.

To further illustrate the impact of the scale of these values, we run the following experiments
by changing the scales of these parameters. In the margin-based algorithm, we set the value
of rt to

√
[d× ln(t) + ln(1/δ)]/t, where t is the number of samples, d is the dimension

of cost vector, which is 12, and δ is set as 10−7. According to Proposition 2.5.2, we set
bt = slackness×√rt, where slackness a parameter we will tune. The plot on the left of
Figure 2.5 shows the ratio of labeled samples to total samples in the first 30 samples as the

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 35

Figure 2.4: Excess test set risk during the training process in personalized pricing.

slackness value varies. We see that the larger slackness is, the more samples are labeled. The
right plot in Figure 2.5 further shows the value of excess SPO risk as the value of slackness
changes when the number of labeled samples is seven. It shows that the excess SPO risk
is quite robust to the value of slackness. In other words, the value of slackness has little
impact on the excess SPO risk given the same number of labeled samples, though the value
of slackness affects the ratio of the labeled samples.

In practice, to find the set the scale for bt and rt, we can refer to the rules discussed at the
end of Section 2.4.4, where we set a “burn in” period of T̃ iterations that acquires all labels
during the first T̃ iterations. Then, we can use the distribution of values {νS(hT (xt))}T̃t=1

to inform the value of bT . For example, if we want to reduce the number of labels by 50%,
compared to supervised learning, we can set the scale of bT as the median of {νS(hT (xt))}T̃t=1.

We also change the value of the minimum label probability p̃ in the soft rejection to see
its impact on the performance. Figure 2.6 shows the percentage of labeled samples in the
first 30 samples, and the excess SPO risk when the number of labeled samples is 10.

Figure 2.6 shows that the minimum label probability p̃ has no significant impact on the
excess SPO risk. Intuitively, when p̃ is larger, the percentage of labeled samples is larger. In
practice, we can set p̃ as a very small positive number that is close to zero.

2.7.4 Additional Results of Numerical Experiments.

To assess the performance of our active learning algorithm under different noise levels, we
change the variance of features and the noise level of labels when generating the data and
demonstrate the results in Figures 2.7 and 2.8.

Figures 2.7 and 2.8 show that when the variance of the features and the noise level of

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 36

Figure 2.5: Performance under different settings of slackness in MBAL-SPO

the labels are small, both active learning and supervised learning have close performance.
When the variance of features or the noise level of labels is large, our proposed active learning
methods perform better than supervised learning.

Recall that the cost vector is gerenated according to cj =
[
1 + (1 + bTj xi/

√
p)deg

]
ϵj . Next,

we further show the result when changing the degree of the model. When the degree is not
one, the true model is not contained in our hypothesis class. The results in Figure 2.9 show

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 37

Figure 2.6: Performance under different settings of p̃

that when the model has a higher degree, the training process has a higher excess SPO risk
at the beginning of the process.

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 38

Figure 2.7: Excess SPO risk during the training process under different variance of features.

2.7.5 Data Generation for Personalized Pricing

In this section, we provide the parameter values for generating synthetic data in the per-
sonalized pricing experiment. Given a coefficient vector Bj ∈ R5 and Aj ∈ R5, the demand

function for item j is generated as dj(pi) = ϵeB
T
j X+AT

j Xpi . Here, ϵ is a noise term drawn from
a uniform distribution on [1 − ϵ̄, 1 + ϵ̄]. We set ϵ̄ = 0.1. AT

j X can be viewed as the price
elasticity. The customer feature vector is drawn from a mixed Gaussian distribution with
seven different centers µk. The value of these centers µk, k = 1, 2, ..., 7 and the value of Aj

and Bj, j = 1, 2, 3 are carefully chosen so that h∗(X) is not a degenerate cost vector for any
µk, k = 1, 2, ..., 7. Please find the value of these parameters at the end of this section. The
variance of the feature for each Gaussian distribution is set as 0.012, which is on the same
scale as the features.

We further have the following monotone constraints for the prices of these three items. Let
the decision variable wi,j indicate whether price i is selected for item j. Then, the constraints

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 39

Figure 2.8: Excess SPO risk during the training process under different noise levels.

are as follows.

w1,j + w2,j + w3,j ≤ 1, j = 1, 2, 3 (2.5a)

w2,1 ≤ w2,2 + w3,2 (2.5b)

w3,1 ≤ w3,2 (2.5c)

w2,2 ≤ w2,3 + w3,3 (2.5d)

w3,2 ≤ w3,3 (2.5e)

wi,j ∈ {0, 1}, i, j = 1, 2, 3

(2.5a) requires each item can only select one price point. (2.5b) and (2.5c) require that the
price of item 2 be no less than the price of item 1. (2.5d) and (2.5e) require that the price of
item 3 be no less than the price of item 2.

Since the purchase probability is dj(pi) = ϵ exp(BT
j X + AT

j Xpi), we need to specify the
following parameters for generating the purchase probability given the feature X: Aj and

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 40

Figure 2.9: Excess SPO risk during the training process under different noise levels.

Bj, j = 1, 2, 3. The feature vector is from a mixed Gaussian distribution with seven centers.
The optimal prices of three items for these seven centers are ($60, $60, $60), ($60, $80, $90),
($90, $90, $90), ($80, $80, $80), ($60, $60, $80), ($80, $90, $90), and ($60, $60, $90) respectively.
To generate such centers, we consider the following values for X, Aj and Bj. Define
a1 = −0.0202733, b1 = −1.19155, a2 = −0.0133531, b2 = −1.45748, a3 = −0.00540672, b3 =
−1.22819. Then, we set

A1 =

0
0
0
1
0
0

 , A2 =

0
0
0
0
1
0

 , A3 =

0
0
0
0
0
1

 , B1 =

1
0
0
0
0
0

 , B2 =

0
1
0
0
0
0

 , B3 =

0
0
1
0
0
0

 .

CHAPTER 2. ACTIVE LEARNING IN THE PREDICT-THEN-OPTIMIZE
FRAMEWORK 41

We set the centers of Gaussian distribution for the feature vectors as

µ1 =

b1
b1
b1
a1
a1
a1

 , µ2 =

b1
b2
b3
a1
a2
a3

 , µ3 =

b3
b3
b3
a3
a3
a3

 , µ4 =

b2
b2
b2
a2
a2
a2

 , µ5 =

b1
b1
b2
a1
a1
a2

 , µ6 =

b2
b3
b3
a2
a3
a3

 , µ7 =

b1
b1
b3
a1
a1
a3

 .

2.8 Conclusions and Future Directions

Our work develops the first active learning algorithms in the predict-then-optimize framework.
We consider the SPO loss function and its tractable surrogate loss functions and provide a
practical margin-based active learning algorithm (MBAL-SPO). We provide two versions of
MBAL-SPO and develop excess risk guarantees for both versions. Furthermore, we provide
upper bounds on the label complexity of both versions and show that the label complexity
can be better than the supervised learning approach under some natural low-noise conditions.
Our numerical experiments also demonstrate the practical value of our proposed algorithm.
There are several intriguing future directions. Since directly minimizing the SPO loss function
is challenging, one valuable direction is to design active learning algorithms in situations
where we can minimize the SPO loss function approximately. While our work focuses on
stream-based active learning in the predict-then-optimize framework, it is also worthwhile
to consider pool-based active learning, where all feature vectors are revealed at once before
training, in the future.

42

Chapter 3

Feature-Dependent Value of One Data
Point

3.1 Introduction

Understanding customer preferences is a crucial component of operations management.
For example, in assortment optimization, retailers strive to learn customer preferences
in order to tailor the best possible assortment. Customer preferences can be indirectly
gauged by analyzing their purchasing behaviors, but the most straightforward way is through
active inquiry. A well-designed survey can provide valuable information about individual
customer preferences, shedding light on the product utilities (ratings) for each customer. This
information can be used to forecast future preferences. By leveraging these predictive models,
retailers are empowered to make data-driven decisions and strategically create a product
assortment that aligns with each customer’s preferences.

Building such predictive models requires knowledge of the actual preference of customers,
which are referred to as labels for the model. These true preferences are obtained through
survey results at a cost, known as the label cost for each customer. The label cost includes the
rewards given to each customer to fill out the survey, the labor cost to collect answers, and
other expenses. As pointed out by Saar-Tsechansky, Melville, and Provost, 2009, “without
costly incentives, most consumers rarely provide this valuable feedback”. The terms “label cost”
and “incentive” are interchangeably used to denote the cost incurred to uncover a customer’s
true preference. To reduce the label cost when building the prediction model, instead of
providing fixed incentives to all customers for their feedback, the retailer can customize
incentives for each customer. For instance, prominent online retailers like Amazon.com1 may
choose specific representative customers and offer them rewards as an incentive to complete
the survey, in order to learn about customer preferences. Consequently, determining the
appropriate personalized incentive for these representative customers, amidst potentially
millions, becomes a crucial question when distributing surveys.

1https://www.amazon.com/gp/help/customer/display.html?nodeId=G58ZQEGH2H25HAQR

https://www.amazon.com/gp/help/customer/display.html?nodeId=G58ZQEGH2H25HAQR

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 43

Figure 3.1: Personalized Rewards for completing the survey at e-Rewards platform

In our work, we focus on determining personalized incentives in a stream-based setting.
In this process, each iteration starts with a customer’s arrival, and the retailer observes the
customer’s characteristics, referred to as the “type” of this customer. Then the retailer offers
some incentive to this customer for completing the survey. If the customer agrees to take
the survey, she receives the incentive, and the retailer learns products’ true utilities for her.
However, if the customer declines the survey, no incentive is given. This process is referred to
as the active label acquisition process with personalized incentives.

After the active label acquisition process, retailers build a prediction model for the utilities
of all products based on the collected surveys. The evaluation of the prediction model is
centered around our ultimate objective, which is to maximize the revenue generated from
customized assortments. To quantify the performance of the current prediction model, instead
of using the prediction error, we focus on the risk that is defined as the expected revenue loss
when compared to the decisions made from the true model.

The label acquisition process has wide applications in the real world. For example,
e-Rewards 2 is a research and survey platform that offers personalized incentives to customers
for completing surveys. This platform has cooperated with various retailers to conduct market
research.

For example, Figure 3.1 shows the screenshot of e-Rewards website after one customer
completes a survey. It recommends one new available survey on food and beverages, which is
worth 300 points for qualified customers. For the e-Reward platform, a critical question is
how to determine the qualified customers and personalized incentives for each customer.

During the active label acquisition process, when determining the personalized incentive
in the active label acquisition process, there exists a natural tradeoff. When the incentive

2https://www.e-rewards.com/en/

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 44

is insufficient, the customer has little probability of taking the survey and providing her
preference, resulting in scant data. This lack of data may render the prediction model
inaccurate and risky for assortment decisions. Conversely, if the incentive is too large, the
cumulative label cost is large, which is unfavorable especially when the customer has little
contribution to the revenue increase. Therefore, the long-term goal is to build a prediction
model with a reduced risk, while the short-term goal is to minimize the label cost of each
customer. To balance this tradeoff and determine the personalized incentive, a pivotal
question to answer is: Given the current prediction model and a customer’s type,

how much is the potential contribution to the ultimate goal, (i.e., revenue increase for the
assortment optimization), of acquiring the true preference of this particular data point?

The answer to quantify the potential marginal contribution is termed the value of one data
point in this chapter. Intuitively, when the value of one data point becomes smaller, we should
offer a smaller incentive. However, evaluating the value of one data point is a challenging
task because it involves two types of uncertainty. The first type of uncertainty is from the
prediction error of the customer’s preferences. The prediction error for each type depends on
the quality and quantity of the current training set. For example, a higher concentration
of similar types in the training set improves model accuracy for those types, reducing their
value of one data point. The second type of uncertainty stems from the decision-making.
Given the same uncertainty level of preferences, the confidence in distinguishing the optimal
assortment from the sub-optimal assortment may vary. Consequently, the same prediction
errors of the preferences may result in different possible risks. For example, if the model
has enough confidence to distinguish the best assortment from the others, even though the
prediction error of preferences is large, the value of one data point for this customer might
be small.

Although the first type of uncertainty is addressed by most active learning (AL) algorithms
to save the label cost, the second type of uncertainty, which involves regret due to the sub-
optimal decisions (i.e., the possible revenue loss of sub-optimal assortment) is not addressed
by the AL literature. However, it is essential to incorporate the second type of uncertainty
when evaluating the value of one data point for one customer. For instance, if the current
preference model, though not accurate, can already identify the best assortment for a given
customer, improving the prediction accuracy for that customer’s preference is unnecessary.

However, the second type of uncertainty is difficult to measure directly, due to the
nonlinearity of the assortment optimization problem. To address this issue, we first study
a problem with a linear objective, called the product selection problem whose primary
goal is to provide the best personalized product recommendations for each customer to
maximize expected customer satisfaction levels. Next, we utilize it to estimate the value of
one data point in the assortment optimization problem. For both problems, we first consider
a nonparametric model with finite discrete types of customers. Then we extend it to the
cases allowing additional contextual information for each customer within one type.

Considering all these factors when offering personalized incentives, we propose an active
label acquisition algorithm that determines personalized incentives based on the value of
one data point. We demonstrate both theoretically and empirically that our personalized

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 45

incentive policy could achieve a much smaller comprehensive cost than the fixed incentive
policies under various conditions. The contribution of our work is summarized as follows:

1. Formulations: Our work is the first to tackle active label acquisition in the context
of assortment optimization and product selection. Compared to the traditional active
learning algorithm that minimizes the prediction error, the goal of our active label
acquisition algorithm is to minimize the risk that is defined on the objective of the
decision-making problem (e.g., revenue).

2. Concept: To actively select customers to acquire their labels, we define a new concept
called value of one data point, which captures the potential risk reduction of acquiring
the label of one particular customer. We provide a theoretical feature-dependent upper
bound for this term, which is useful in the active label acquisition process.

3. Theory : We derive non-asymptotic bounds for cumulative incentives, the risk of the
model, and the comprehensive cost. By analyzing these bounds, we demonstrate
theoretically that our personalized incentive policy could achieve a much smaller
comprehensive cost than the fixed incentive policy under various settings. In particular,
when the distribution of the utility vector satisfies some low-noise conditions, or the
minimum incentive is positive, our algorithm can achieve a finite label cost.

4. Insights: Our theoretical results reveal some insights about the tradeoff between the
risk of the model and the label cost. Firstly, when the minimum label cost is non-zero,
(for example, there exists a minimum labor cost of collecting and analyzing a survey),
the survey distribution process stops at some point. Secondly, this stop point of the
survey distribution process does not necessarily prevent the risk of the prediction model
from converging to zero. More specifically, when customer’s preference distribution
satisfies some low-noise conditions, the risk can still converge to zero. Thirdly, even if
the minimum label cost is zero, the cumulative label cost does not necessarily go to
infinity. Instead, it can converge to a finite value when the low-noise conditions are
satisfied. Fourthly, if the optimal assortment is easier to distinguish from the suboptimal
assortment, both the cumulative label cost and the risk of the model will get smaller.

5. Numerical performance: Using both real-world and synthetic data, our numerical
experiments on the product selection and assortment optimization problems demonstrate
the advantages of our personalized incentive policy over the fixed incentive policies.
The results show that our personalized incentive policy requires much less label cost
when achieving the same level of risk, compared to the fixed incentive policy.

In this chapter, we first define the value of one data point in Section 3.2. Then, we
consider how to estimate the upper bounds for the value of one data point in the product
selection and the personalized assortment optimization problem in Sections 3.3 and 3.4. We
show that the upper bound for the value of one data point in the personalized assortment

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 46

optimization can be established on the analysis in the personalized product selection. These
upper bounds provide significant insights to the importance of each customer’s preference. To
demonstrate the practical value of our upper bounds, we consider the incentive design problem
during the customer survey process in Section 3.5. For both problems, we demonstrate that
under some natural low-noise conditions, the total survey cost can be reduced significantly,
while achieving the same levels of regret in Section 3.6. Next, in Section 3.7, we extend our
algorithm to the case with additional contextual information within each type. In Section
3.10, we justify the practical performance of our personalized incentive policies using both
real-world and synthetic data.

3.1.1 Literature Review

We summarize three streams of literature that are related to our research: assortment
optimization, active learning, and decision-focused learning problems.

Assortment optimization. The assortment optimization problem studies how to deter-
mine the best set of products to display, in order to maximize the revenue, which plays
an important role in economics, marketing, and operations management. One of the most
popular and earliest choice models is multinomial logit choice (MNL) model. Under this
model, when the parameters of the choice model are known, Talluri and Van Ryzin, 2004
propose an efficient revenue order method to determine the optimal assortment. When
the capacity constraints of the assortment are considered, Qian Liu and Van Ryzin, 2008
provide a linear programming based approach to find the optimal assortment. Rusmevichien-
tong, Shen, and Shmoys, 2010 further provide an efficient and simple algorithm to consider
the capacity constraint. To further solve the large-scale assortment optimization problem
efficiently, Bertsimas and Mǐsić, 2019 propose a mixed-integer optimization formulation
and provide a specialized solution approach. For dynamic assortment problems under the
MNL model with inventory constraints, Aouad, Levi, and Segev, 2018 propose a constant
approximation algorithm. When the parameters of the MNL model need to be learned from
data, Rusmevichientong, Shen, and Shmoys, 2010 propose an adaptive policy to maximize
profit. In the online learning setting, different algorithms have been proposed to address the
trade-off between exploration and exploitation and minimize the regret (e.g., Sauré and Zeevi,
2013; Cheung and Simchi-Levi, 2017; Agrawal et al., 2019; Agrawal et al., 2017; X. Chen and
Yining Wang, 2017; Lei et al., 2022). Aouad, V. Farias, and Levi, 2021 study the assortment
optimization problem under the consider-then-choose choice model. The assortment optimiza-
tion problem under some general choice model, for example, the Markov chain choice model,
has been addressed by J. B. Feldman and Topaloglu, 2017 and the capacity constrained
problem was addressed by Désir, Goyal, Segev, et al., 2020 and S. Li et al., 2022. When
customers can purchase multiple products at one time, Tulabandhula, Sinha, and Patidar,
2020; Lyu et al., 2021 propose different algorithms to find the optimal assortment. Désir,
Goyal, Jagabathula, et al., 2021 further consider the assortment optimization problem under
the mixture of Mallows choice model.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 47

Active learning in customer survey. Following the ideas in the active learning, Zheng
and Padmanabhan, 2006 and Saar-Tsechansky, Melville, and Provost, 2009 propose active
label acquisition algorithms based on customers’ features. However, all these literatures focus
on the accuracy of the prediction model, instead of the cost of the downstream optimization
problem. Krishnamurthy et al. (2017) and R. Gao and Saar-Tsechansky, 2020 consider
cost-sensitive classification problems, where the misclassification cost depends on the true
labels of the sample. Feng, 2020 and Yang and Feng, 2023 consider learning customer
preferences by controlling the displayed products. All the above literature outputs the binary
decisions, specifically, deciding whether to acquire labels. However, our work considers the
personalized incentive, which is a continuous output. To determine the personalized incentive,
our work evaluates the revenue contribution by estimating the potential revenue loss in the
assortment optimization problem.

Decision-focused learning. Our work also contributes to the literature stream of predict-
then-optimize, which incorporates the downstream optimization problem when training a
prediction model. For example, Bertsimas and Kallus, 2020, Kao, Roy, and Yan, 2009,
Elmachtoub and Grigas, 2022, Donti, Amos, and Kolter, 2017, Ho and Hanasusanto, 2019
and T. Zhu, Xie, and Sim, 2022 propose various frameworks to consider the downstream
optimization problem. Particularly, Elmachtoub and Grigas, 2022 propose a smart predict-
then-optimize (SPO) framework where the objective function in the optimization problem is
linear and the uncertainty lies in the linear objective. Minimizing the SPO loss in supervised
learning, which is nonconvex and non-Lipschitz, has been studied in several recent works.
Elmachtoub and Grigas (2022) provides a surrogate loss function SPO+ and shows the
consistency of this loss function. El Balghiti et al., 2019 considers the generalization error
bounds of the SPO loss function. Ho-Nguyen and Kılınç-Karzan, 2022 and H. Liu and
Grigas (2021) further consider the risk bounds of different surrogate loss functions in the
SPO setting. M. Liu et al., 2023 further considers minimizing the SPO loss in the setting of
active learning. However, to the best of our knowledge, in the literature, there is no efficient
algorithm for training a prediction model when the objective function in the downstream
problem is nonlinear. We are the first to solve the predict-then-optimize problem for nonlinear
objectives.

3.2 Value of One Data Point

In this section, we introduce the definition of the value of one data point in the general
setting, which is shared by both product selection and assortment optimization problems.
This concept measures the importance of acquiring one customer’s preference regarding the
expected revenue of downstream decision-making problems. It depends on the feature of
each customer and dynamically changes during the data collection process. Intuitively, it
measures the expected revenue increase of including one specific customer in the training set
before acquiring her preference.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 48

Suppose there are d products and m types of customers. The sets of product and customer
types are denoted by [d] and [m], respectively, i.e., [d] := {1, ..., d} and [m] := {1, ...,m}.
At each iteration t, the preference of customer t for all products is represented by a vector
yt ∈ Y ⊆ Rd, which we call the label of customer t. In particular, the jth entry of yt, denoted
by yj

t , represents the utility of product j for customer t. The type of customer t is represented
by ξt ∈ [m]. The categorization of these types can be determined based on various customer
information, such as their membership status, whether they were referred by a friend, or
their geographic location. In this section, we assume the utility of products for customers
from different types is independent. A general case will be discussed later in Section 3.7.

Since our goal is to build a prediction model that outputs the preference vectors of
customers, the preference vectors are also referred to as the labels. At the beginning of the
data collection process, we assume the labels of customers are unknown. During the data
collection process, we decide whether to acquire the label of each customer sequentially. We
denote the binary space {0, 1} by B. The binary decision vector w ∈ Bd indicates which
products are selected in the offered set. That is, if product j is selected, then the jth entry of
w is one, i.e., wj = 1; otherwise, wj = 0. At iteration t, we assume ξt, the type of customer t,
is generated from a known discrete probability distribution µ(ξt). If there is any type ξ ∈ [m]
that has zero probability to occur, then it will not impact the risk of the predictor or the
cumulative label cost, and we can ignore this type ξ. We use µ > 0 to denote the minimum
positive probability of any type of customer’s arrival; that is, µ := minξ∈[m]{µ(ξ)|µ(ξ) > 0}.
We denote the fixed but unknown joint distribution of (ξt,yt) by D. The unknown distribution
of y conditional on the value of ξ is denoted by Dy|ξ.

Given the utility vector y and the decision vector w, the revenue function for the
retailer is denoted by G(w,y). The retailer’s goal is to maximize the expected revenue
Ey∼Dy|ξ [G(w,y)|ξ] given type ξ. Our study focuses on two specific operations management
problems: personalized product selection and assortment optimization problems with the
MNL choice model. For these two problems, we are able to find another function g(w,y) that
satisfies E[G(w, y)|ξ] = g(w,E[y|ξ]) for any ξ ∈ [m] and any w ∈ Bd, as shown in Sections
3.3 and 3.4. This transformation from G to g indicates that it suffices to predict E[y|ξ] to
estimate the expected cost given our decisions for this assortment optimization.

Given type ξ, we use w∗(E[y|ξ]) to denote the optimal decision given the conditional
distribution of the preference vector Dy|ξ, i.e.,

w∗(E[y|ξ]) = argmax
w

g(w,E[y|ξ]) = argmax
w

E[G(w,y)|ξ].

When multiple optimal decisions exist, we can use any rules to break the tie. Therefore, to find
the best decision for a customer with type ξ, it suffices to estimate the conditional expectation
E[y|ξ], which only requires a point-prediction model for E[y|ξ]. We use h ∈ H : [m] → Y,
to denote the predictor from type ξ to the preference vector y, where H is the family of
predictors. We assume the hypothesis class H is well-specified, i.e., there exists a true optimal
predictor h∗ ∈ H, such that h∗(ξ) = E[y|ξ] for all ξ ∈ [m].

Suppose the prediction of E[y|ξ] is ŷ(ξ). To evaluate the prediction ŷ by the cost of
decision error, we introduce the regret of the prediction in Definition 3.2.1.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 49

Definition 3.2.1 (Regret of prediction ŷ.). The regret of prediction ŷ for type ξ is defined
as:

ℓ(ŷ,E[y|ξ]) = g(w∗(E[y|ξ]),E[y|ξ])− g(w∗(ŷ),E[y|ξ]).

In Definition 3.2.1, the first term g(w∗(E[y|ξ]),E[y|ξ]) is the maximum expected revenue
when E[y|ξ] is known. The second term g(w∗(ŷ),E[y|ξ]) is the expected revenue of the best
decision w∗(ŷ) based on the prediction ŷ. Thus, the regret of prediction measures the excess
expected revenue loss induced by the decision w∗(ŷ). It is obvious that ℓ(ŷ,E[y|ξ]) ≥ 0 and
ℓ(E[y|ξ],E[y|ξ]) = 0. Definition 3.2.1 generalizes the SPO loss defined in Elmachtoub and
Grigas, 2022 to the nonlinear case. When g is a linear function, Definition 3.2.1 reduces
to the SPO loss. By the property of SPO loss, in general, ℓ(ŷ,E[y|ξ]) is discontinuous and
nonconvex with respect to ŷ.

Note that ℓ(h(ξ),E[y|ξ]) measures the regret of predictor h on a single type ξ. The
expected regret over the entire distribution is

Regret(h) := Eξ[ℓ(h(ξ),E[y|ξ])],

where Regret(h) ≥ 0 and Regret(h∗) = 0. Since Regret(h) considers the expected regret for a
single purchase, we normalize it by the market size β > 0 and thereby β · Regret(h) measures
the total expected regret of the entire market, which is referred to as the risk of h.

During the label acquisition process, the customer with type ξ arrives with probability
µ(ξ). Upon observing the type of a customer ξt, the algorithm determines the appropriate
incentive to provide to customer t for participating in the survey.

To determine the proper incentives for each data point, we introduce the notion of value
of one data point in Definition 3.2.2. Define St−1 as the training set before offering incentives
to customer t, i.e., St−1 is the set of (ξi,yi) for all customer i who took the survey before
customer t. We also use St−1(ξ) to denote the subset of St−1 on type ξ. The oracle from the
training set S to the predictor h is denoted by f ; that is, ht = f(St). For example, ht can be
the empirical minimizer of the squared error loss in data set St.

Definition 3.2.2 (Value of one data point). The value of one data point V (ξt;St−1) for
customer t with type ξt is defined as

V (ξt;St−1) := β · Regret(ht−1)− β · Eyt

[
Regret

(
f
(
St−1

⋃
{(ξt,yt)}

)) ∣∣∣ξt] .
The second term in the definition of V (ξt;St−1) is the expected risk that ht can achieve

when yt follows the conditional distribution Dy|ξt . The value of one data point measures the
expected contribution to the risk reduction from customer t, given the current training set
St−1 and the customer type ξt.

In practice, estimating the value of one data point exactly is nontrivial because of the
following reasons. First, the joint distribution of (ξ, y) is unknown so the prediction error
for h(ξ) is unknown. In general, the prediction error of h(ξ) relies on the complexity of the
model class. Secondly, a smaller prediction error does not imply a smaller regret. Thus,

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 50

even if we obtain the exact prediction error for h(ξ), converting this prediction error to the
regret on a single type is nontrivial. Thirdly, since we offer personalized incentives, different
types of customers have different probabilities to take surveys, and consequently, the data
in training set St is not i.i.d. Lastly, the predictor ht = f (St−1

⋃
{(ξt,yt)}) in the second

term is a random function, which involves the distribution of Dyt|ξt . It is difficult to estimate
Regret(ht) for all possible outcomes of ht. Thus, estimating the value of one data point
is challenging. Considering the aforementioned challenges in calculating the value of one
data point, we attempt to find an upper bound for the personalized product selection and
assortment optimization problems.

3.3 Value of One Data Point in Personalized Product

Selection

In personalized product selection, customers have different evaluations on products. We aim
to recommend z products to each customer based on the types of customers. The sum of the
utilities of these recommended products is referred to as the satisfaction level. Our goal is to
select the best recommendations to maximize the satisfaction level. Since we do not have
knowledge of the utility for each product given the type of a customer, we build a model that
predicts the utilities of customers and use this prediction model to recommend personalized
products for each customer.

Personalized product selection is a widespread practice in the real world, exemplified
by platforms like CookUnity3. CookUnity operates as an online meal delivery platform,
tasked with matching customer orders to the local chefs in the neighborhood community. The
objective is to deliver cooked meals that align with customer preferences. Given the inherent
variability in customer tastes and the distinct cooking styles of different chefs, CookUnity
needs to learn the taste and diet requirements of each customer to successfully pair them
with the best chef. To achieve this, CookUnity can employ a strategy of surveying customers
and collecting their feedback. By leveraging this feedback, CookUnity can infer ratings for
each chef and build a prediction model that estimates the preferences of chefs for individual
customers. In what follows, we formulate the product selection problem and provide an exact
expression for U(ξt;St−1).

3.3.1 Formulations for Product Selection Problem

Let us now formally introduce the personalized product selection problem. Recall that the
decision vector w ∈ {0, 1}d indicates which products are selected for the customer and random
vector yt denotes the true utilities for whole products for customer t. We assume that the
utility for each product is finite and we denote its upper bound by ηY , i.e., y

i
t ≤ ηY , ∀i ∈ [d].

3https://www.cookunity.com/

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 51

Given the utility vector yt, the deterministic product selection problem can be written as:

max
w∈Bd

yT
t w (P1)

s.t. wT1 = z. (3.1)

Since (P1) can be viewed as a knapsack problem with unit weights, the optimal solution
to (P1) is the set of z products with top utilities. We define the optimization oracle that
solves (P1) given the utility vector yt by w∗(y) : Rd → Bd, where w∗(y) := argmaxw∈Bd yTw,
subject to constraint (3.1).

In the personalized product selection, when observing customer type ξt, we select z
products by maximizing her expected satisfaction:

max
w∈Bd

E[yT
t w|ξt] (P2)

s.t. wT1 = z.

By the linearity of (P2), the objective function can be rewritten as E[yT
t |ξt]w. This means

that the revenue function g can be written as g(w,y) = yTw and the optimal solution to
Problem (P2) is w∗(E[yT

t |ξt]). Therefore, in the personalized product selection, the regret of
the predicted vector ŷ for customer type ξ (defined in Definition 3.2.1) can be written as

ℓ(ŷ,E[y|ξ]) = E[y|ξ]Tw∗(E[y|ξ])− E[y|ξ]Tw∗(ŷ). (3.2)

In (3.2), the first term E[y|ξ]Tw∗(E[y|ξ]) is the maximal satisfaction of the customer,
assuming that we know the true utility vector E[y|ξ] in hindsight. The second term is
the actual satisfaction of that customer, supposing that we select products w∗(ŷ) based
on our estimation ŷ. The regret in (3.2) is equivalent to the expected SPO loss defined in
(Elmachtoub and Grigas, 2022).

Since the predictions of different customer types ξ are independent, the predictor h(ξt)
is simply the average of historical observations, i.e., ht−1(ξ) =

1
nt−1(ξ)

∑
(·,y)∈St−1(ξ)

y, where

nt−1(ξ) is the cardinality of St−1(ξ).

3.3.2 Upper Bounds for Value of One Data Point

Due to the challenges listed in Section 3.2, estimating the value of one data point accurately
is nontrivial. Thus, in this section, by utilizing the structure of the product selection problem,
we provide an upper bound of value of one data point V (ξt;St−1). Our proposed upper bound
for the value of one data point satisfies the following two properties: (1) Provide useful
insights on which sample is more important to acquire its label. (2) Be close to the true
value under some natural conditions.

When deriving the upper bound U(ξt;St−1), we consider the following three factors. The
first is the prediction error for h(ξt), which is independent across different types. The second
factor is µ(ξt). When µ(ξt) is smaller, the impact of this type ξt will become smaller, and thus

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 52

the value of one data point becomes smaller. The third factor is the location of h(ξt), which is
characterized by the distance to the degeneracy introduced in Elmachtoub and Grigas, 2022.
The set of degenerate cost vector predictions is represented by Yo := {y ∈ Rd : minw : g(w,y)
has multiple optimal solutions}.

Definition 3.3.1 (Distance to degeneracy in general cases). The distance to degeneracy of
the prediction ŷ is νS(ŷ) := infy∈Yo{∥y − ŷ∥} where ∥ · ∥ is the ℓ2 norm.

This definition extends Definition 2.3.1 to the general nonlinear cases. The distance to
degeneracy νS(h(ξ)) captures the proximity of h(ξ) to the closest utility vector that can
result in multiple optimal decisions. When the distance to degeneracy is large, it is easier to
distinguish the optimal decision from sub-optimal decisions. Consequently, the value of one
data point is expected to be small. In the product selection and assortment optimization
problems, we can use Equation (2.4) to calculate the distance to degeneracy. Suppose the set
So := {wo

j : j = 1, ..., K} is the set of all the possible combinations of z products. According
to Equation (2.4), the distance to degeneracy of any vector y ∈ Rd satisfies the following
equation:

νS(y) = min
w∈So:w ̸=w∗(y)

{
yT (w − w∗(y))

∥w − w∗(y)∥

}
. (3.3)

Based on the notion of distance to degeneracy, Theorem 3.3.1 provides a tighter upper
bound for the value of one data point.

Theorem 3.3.1 (Upper bound for the value of one data point). Given customer type ξ ∈ [m],
suppose ∥ht(ξ)− E[y|ξ]∥ ≤ ρt(ξ) for some ρt(ξ) > 0. Then, the value of one data point for
type ξ is no larger than UM(ξ, ht−1(ξ), ρt−1(ξ)), i.e.,

V (ξ;St−1) ≤ UM(ξ, ht−1(ξ), ρt−1(ξ)) ,

where UM(ξ,y, ρ) :=
√
2min{z, d− z}βµ(ξ)ρ · I{νS(y) ≤ ρ}.

Although the upper bound in Theorem 3.3.1 is derived in theory, this upper bound
provides useful practical insights on the importance of each data point. These insights can
be summarized into the following three points:

1. Insights from I{νS(h(ξt) ≤ ρt(ξt)}. When νS(h(ξt)) > ρt(ξt), the distance to degener-
acy of h(ξt) is larger than the prediction error. As demonstrated in the proof, in this
case, the prediction model has enough confidence in identifying the optimal decision
based on the prediction h(ξt), resulting in zero regret. Consequently, acquiring the
label of ξt does not make any improvement at ξt. Thus, the value of one data point
should be zero.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 53

2. Insights from ρt(ξt). The term ρt(ξt) indicates that the value of one data point is
proportional to the prediction error. Intuitively, when the training set contains a lot of
observations of type ξt, then the prediction error for this type of customer ρt(ξt) gets
smaller. It implies the importance of this type gets smaller, and we should collect more
observations of other types.

3. Insights from µ(ξt). The term µ(ξt) indicates that the value of one data point is
proportional to the test set density. Intuitively, when type ξt appears more in the
future, this type becomes more important, and we should acquire more information
about this type of customer.

During the data collection process, as the prediction error converges to zero,
√
2min{z, d− z}

µ(ξt)ρt(ξt) also approaches zero. Thus, in Theorem 3.3.1, the upper bound converges to
zero due to two factors: ρt(ξt) can be smaller than νS(h(ξt), and the prediction error ρt(ξt)
converges to zero.

Next, to demonstrate that our upper bounds for the value of one data point are close to
the true values, Theorem 3.3.2 provides its corresponding lower bound, which has the same
order as our upper bounds.

Theorem 3.3.2 (Matching lower bounds for the value of one data point). For personalized
product selection problem, there exists a distribution D and constant K > 0, such that for
any t,

V (ξt;St−1) ≥ Kβ · µ(ξt)ρt(ξt)I{νS(ht−1(ξt)) ≤ ρt−1(ξt)} ,

where ρt(ξ) := ∥ht(ξ)− E[y|ξ]∥.

Theorem 3.3.2 demonstrates that under some noise distributions, our estimated upper
bounds for the value of one data point have the same order of t as the true value of one data
point. In the next section, we utilize this upper bound to derive an upper bound for the
value of one data point in the personalized assortment optimization problem.

3.4 Value of One Data Point in Assortment

Optimization

In this section, we consider the upper bound for the value of one data point in the context
of assortment optimization. In assortment optimization, the objective is to select at most z
products to display, while also accounting for the possibility of customers choosing not to
make a purchase. The ultimate goal is to maximize the expected revenue, which is impacted
by the individual prices of each product.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 54

3.4.1 Formulations for Assortment Optimization

In the assortment optimization, yt represents the utility vector of customer t, and each entry,
yit, represents the utility of product i for customer t. The utility for the no-purchase option
is denoted by y0t , which is assumed to be fixed for all customers. Customers will purchase
the product (or no-purchase option) with the largest utility in the assortment. Suppose the
results of each survey reveal the true utility vector yt for all products. We denote the set
of recommended products (i.e., assortment) by Z, and define set [d̄] := {0} ∪ [d]. Since the
utility vector is random, the purchase probability of product i given customer type ξ is

P(yit ≥ yjt ,∀j ∈ [d̄], j ̸= i|ξ). (3.4)

In this section, we assume the customer follows the MNL choice model (Ben-Akiva and
Lerman, 1985), so the utility for product i can be written as yit = ȳit + ϵi, where ȳit represents
the expected utility, i.e., ȳit = E[yit], and ϵi is the noise. The noise ϵi is assumed to follow a
Gumbel distribution with variance π2

6
σ2 and mean 0, where the parameter σ controls the noise

level. Recall that w denotes the decision vector. By the property of the Gumbel distribution,
given y, the purchase probability (3.4) can be written as

P(yit > yjt ,∀j ∈ [d̄], j ̸= i|ξ) = eȳ
i
t/σ∑d

j=0 e
ȳjt /σ

.

Without the loss of generality, we assume the mean of the no-purchase option is 0, i.e., ȳ0t = 0
for all t. Then, the cardinality-constrained assortment optimization problem under the MNL
model can be written as:

max
w∈Bd,u∈Rd

∑
i∈[d] uipiwi

1 + uTw
(P3)

s.t. wT1 ≤ z,

ui = eȳ
i
t/σ, ∀i ∈ [d],

where ui = eȳ
i
t/σ is an intermediate variable for convenience.

We denote the objective function of (P3) by g(w, ȳ). Following the definition of regret in
Definition 3.2.1, the regret for a prediction ŷ in the assortment optimization problem can be
written as:

ℓp(ŷ, ȳ) = g(w∗(ȳ), ȳ)− g(w∗(ŷ), ȳ). (3.5)

The regret of the prediction in (3.5) measures the revenue loss based on the current
prediction of the utility vector. Following (3.5), we can obtain the expression of the expected
regret Regret(h) for a predictor h and the value of one data point in the setting of assortment
optimization. Next, we consider how to estimate an upper bound for the value of one data
point.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 55

3.4.2 Upper bound for Value of One Data Point in Assortment
Optimization

In contrast to (P1) whose objective function is linear, the objective function in (P3) is
nonlinear. This introduces additional challenges when estimating the upper bound of the
value of one data point U(ξt;St−1). To address the challenge from the non-linearity of (P3), we
first convert the assortment optimization problem into a similar form of the product selection
problem. For convenience, we denote g(y, w) by ga(u,w) in the assortment optimization
problem, where u ∈ Rd is a vector composed of ui, i ∈ [d̄].

Suppose g∗a(u) is the maximum revenue of (P3). Indicated by Rusmevichientong, Shen,
and Shmoys, 2010, the optimal solution to the capacitated assortment optimization problem
is the set of the products with top z highest positive value of ui(pi − g∗a(u)). In addition,
g∗a(u) satisfies that:

g∗a(u) = max
w

: wiui(pi − g∗a(u)).

Thus, given the optimal revenue g∗a(u) and u, the best assortment in (P3) can be obtained by
solving the following product selection problem:

max
w

: wiui(pi − g∗a(u)) (3.6)

s.t. wT1 ≤ z .

In (3.6), the coefficient ui(pi− ga(u)) can be viewed as the utility in the product selection
problem. Thus, according to the upper bound of the value of one data point in Theorem
3.3.1, to estimate the revenue loss in the assortment, it suffices to control the estimation error
of the coefficient ui(pi − ga(u)) in (3.6), which is shown in Lemma 3.4.1 below.

Lemma 3.4.1. If |ui − u′
i| ≤ ε for any i ∈ [d], then the estimation error of the coefficient in

(3.6) satisfies
|ui(pi − g∗a(u))− u′

i(pi − g∗a(u
′))| ≤ (zηpe

ηY/σ + ηp)ε.

Lemma 3.4.1 implies that the estimation error of the coefficients in (3.6) can be bounded
by the estimation error of u. Recall that yit ≤ ηY , ∀i ∈ [d]. Then, we have that |ui − u′

i| ≤
eηY/σ|yit − yit

′|, ∀i ∈ [d], which means the estimation error of u can be further bounded by the
estimation error of expected utility vector ȳ. Suppose that ρ(ξ) is the confidence interval for
the estimation of yit given type ξ, ∀i ∈ [d]. Then we can conclude that

|ui(pi − g∗a(u))− u′
i(pi − g∗a(u

′))| ≤ (zηpe
ηY/σ + ηp)e

ηY/σ|yit − yit
′| = (zηpe

ηY/σ + ηp)e
ηY/σρ(ξ).

Define a constant κ := (zηpe
ηY/σ + ηp)e

ηY/σ. We can derive an upper bound for the value
of one data point for the assortment optimization in Theorem 3.4.1.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 56

Theorem 3.4.1 (Upper bound for the value of one data point in the assortment optimization).
Suppose Assumption 3.5.1 holds. Assume the current predictor for ξt is ŷ, and the prediction
error bound for h(ξt) is ρt(ξt). The value of one data point can be upper bounded by

V (ξt;St−1) ≤ UA
M(ξt, ŷ, ρt(ξt)) ,

where UA
M(ξ,y, ρ) := min

{
κ
√
2min{z, d− z}µ(ξ)βρI{νS(y) ≤ ρ}, ηp

}
.

In Theorem 3.4.1, the constant κ converts the prediction error of the yi to the estimation
error of the coefficient ui(pi− ga(u)). The second upper bound ηp in Theorem 3.4.1 is because
the maximum revenue loss from one customer is at most ηp. Theorem 3.4.1 demonstrates
that when the prediction error for the expected utility ρt(ξt) is smaller than the distance to
degeneracy of ŷ, then the optimal assortment is identified with high probability and the value
of one data point will drop to zero.

3.5 Active Label Acquisition Algorithms

In this section, we illustrate how to use the upper bound of the value of one data point to
determine personalized incentives during the customer survey process. Intuitively, we offer
more incentives to the customer with higher value of one data point. This procedure of
determining incentives by the value of one data point is illustrated in Figure 3.2.

Figure 3.2: Value of one data point in active label acquisition

In Figure 3.2, at time t, when a new customer with type ξt arrives, the retailer estimates
the value of one data point of this customer. This estimation is performed using the current
prediction model and training set. Subsequently, based on the estimated value of one data

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 57

point, the retailer offers a personalized incentive to this customer. The customer then has a
certain probability of taking the survey, which only depends on the offered incentive. If the
customer takes the survey, the retailer can acquire the true preference yt and add a new data
point (ξt,yt) into the training set St. We propose a general active label acquisition algorithm
that determines personalized incentives sequentially in Algorithm 2.

Recall that there exists a tradeoff between the label cost and the risk associated with the
prediction model when determining the incentives. To capture this tradeoff, we introduce the
concept of the comprehensive cost for the retailer as the weighted sum of the incentives (i.e.,
the cumulative label cost) and the expected regret of the prediction model after the data
acquisition period. We use ct to denote the incentive for customer t and ht to denote the
prediction model used at time t.

Definition 3.5.1 (Comprehensive cost). The comprehensive cost at time T is defined as

C (cT , hT) : =
T∑
t=1

ct · I{Customer t accepts the offer for survey|ct}+ β · Regret(hT).

We assume ct is within some range {0} ∪ [cmin, cmax]. When ct = 0, it means the retailer
does not provide any incentive for this customer or gather feedback from the customer. cmin

refers to the minimum incentive we need to spend on each surveyed customer. For example, it
may include the labor cost for collecting and analyzing answers. cmax refers to the maximum
incentive that can be allocated to one customer. The first term of the comprehensive cost is
the cumulative label cost, which is a non-decreasing term. The second term, β · Regret(hT) is
the risk of the current predictor, which is supposed to be decreasing as more customers are
surveyed. The market size β can be viewed as a hypoparameter that controls the tradeoff
between the cumulative label cost and the regret of the final prediction model. In Section
3.5.1, we provide the connection between β and the Lagrange multiplier when ensuring the
final regret level is smaller than some threshold.

When customer t does not accept the offer, the training set St−1 remains the same and
we have that ht = ht−1. Our objective is to minimize the expectation of the comprehensive
cost C (cT , hT) at time T by judiciously offering personalized incentives.

We provide an algorithm to determine the personalized incentive based on an upper bound
of the value of one data point in Algorithm 2. It follows the idea in Figure 3.2 to determine
the incentive according to the upper bound of the value of one data point. There are two
scenarios. When this upper bound is no less than cmin, the incentive ct is set as any value
between [cmin, cmax]. Otherwise, when its upper bound is less than cmin, the value of one data
point for this customer has been smaller than the minimum incentive cmin. It implies that
offering incentives between [cmin, cmax] to this customer will increase the comprehensive cost.
In this case, we should not offer any incentives.

We use p(c) ∈ [0, 1] to denote the probability of taking the survey given the incentive c.
We make the following assumption on the lowest probability of taking the survey, without
assuming any specific function form of p(c). It is worth noting that the structure of p(c) is
not needed for our active label acquisition algorithm.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 58

Algorithm 2 Active Label Acquisition in Product Selection and Assortment Optimization
problems

Input: An oracle U(ξ;S) that calculates the upper bound of the value of one data point,
the maximum unit label cost cmax and minimum unit label cost cmin, the probability of
taking the survey p(c).
Initialization: Training set S0 ← ∅; Arbitrarily pick predictor h0 ∈ H.
for t from 1, 2, ..., T do
Customer t arrives with type ξt, where ξt follows the probability density µ(ξ).
Calculate the upper bound U(ξt;St−1) of the value of one data point.
if U(ξt;St−1) < cmin then
Do not survey customer t and offer 0 incentive.
St ← St−1, ht ← ht−1.

else
Offer customer t with any incentive ct within [cmin, cmax] for the survey.
if Customer t decides to take the survey then
The retailer gets the true preference vector yt of all products at cost ct.
Update St ← St−1 ∪ {(ξt, yt)}.
Update ht ← f(St).

else
St ← St−1, ht ← ht−1.

end if
end if

end for

Assumption 3.5.1. The probability for the customer to take the survey p(c) is an increasing
function of the offered incentive c. Furthermore, p(cmin) ≥ pmin for some pmin > 0.

In Assumption 3.5.1, we assume that the probability of taking the survey is an increasing
function of the incentive, without assuming other structural information such as concavity or
continuity. The lower bound of p(cmin) is a mild assumption that applies to most incentive
models in practice.

Under Assumption 3.5.1, Theorem 3.5.1 provides a general theoretical upper bound for
the comprehensive cost of Algorithm 2. We denote the risk bound of f at iteration T for
the naive supervised learning by Rs(T). That is, if we passively acquire the labels before
iteration T and hT = f({(ξt, yt)}Tt=1), then βRegret(hT) is bounded by βRs(T). For example,
when the revenue function g is linear, H. Liu and Grigas, 2021 shows that Rs(T) ≤ Õ(T−1/2)
under some conditions, where Õ(·) represents the asymptotic order that ignores the logarithm
dependence.

Theorem 3.5.1 (Weak Guarantees for Algorithm 2). Suppose Assumption 3.5.1 holds and
U(ξt;St−1) is a universal upper bound for all ξt ∈ [m], which satisfies that U(ξt;St−1) ≥

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 59

βRegret(ht−1) and U(ξt;St−1) ≥ U(ξt+1;St) for all t ≥ 1. In Algorithm 2, at iteration T , we
have the following guarantees for the two terms in the comprehensive cost:

(1) With probability at least 1− e−pminT/8, the risk of hT satisfies that

βRegret(hT) ≤ βRs(pminT/2) + cmin.

(2) The incentive ct = 0 for all t ≥ t, where t := inf{t ≥ 1 : U(ξt;St−1) ≤ cmin}. The
cumulative label cost by time t is at most cmaxmin{t, T}.

Remark 3.5.1 (Value of U(ξt;St−1)). The conditions in Theorem 3.5.1 imply that U(ξt;St−1)
can be any non-increasing sequence that is larger than Regret(ht−1) and independent of ξ.
However, when choosing the value of U(ξt;St−1), we should expect that U(ξt;St−1) converges
to zero. Otherwise, if U(ξt;St−1) is always larger than cmin, t in Theorem 3.5.1.(2) does not
exist, which means the bound in Theorem 3.5.1.(2) becomes the naive cmaxT .

Theorem 3.5.1.(1) demonstrates that the risk of hT is at most Rs(pminT/2) + cmin with
high probability. The first term Rs(pminT/2) is in the same order as supervised learning
while the second term cmin is an upper bound for the final risk of the predictor hT when T
tends to infinity. Note that the risk of hT does not necessarily converge to zero due to the
minimum label cost. Theorem 3.5.1.(2) further implies that when U(ξt;St−1) goes below
cmin, we will stop surveying customers and offer zero incentives. Intuitively, considering the
positive minimum incentive, we do not have to push the risk of the predictors to zero. When
t ≥ t, it is not worth continuing labeling customers, because the benefit of risk reduction
is less than the future label cost. If cmin = 0, t does not exist and the upper bound for the
cumulative label cost in Theorem 3.5.1.(2) becomes the naive Tcmax.

The results of Theorem 3.5.1 do not depend on the structure of the assortment optimization
or the product selection problem. The bounds in Theorem 3.5.1 can be improved by utilizing
the upper bounds we derived for the value of one data point. By tailoring U(ξt;St−1) for
different contexts ξt, we further reduce the bound for the cumulative label cost. These results
demonstrate that the active label acquisition algorithm can achieve a smaller comprehensive
cost than simple supervised learning under some natural noise conditions.

Remark 3.5.2 (Tailoring incentives when p(c) is known). In Algorithm 2, we assume p(c) is
unknown, and set the incentive as any value between [cmin, cmax] when we decide to survey that
customer. This allows our theoretical guarantees hold generally under mild assumptions of
customer behaviors. When knowing the exact form of p(c), we can set incentives by minimizing
the comprehensive cost. However, knowing the exact form of p(c) does not improve the order
of the theoretical guarantees of our algorithm. This discussion is provided in detail in Section
3.5.2.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 60

3.5.1 Illustration for Comprehensive Cost during the Active
Label Acquisition

In this section, we illustrate the comprehensive cost by transforming the active label acquisition
algorithm into a constraint optimization problem. When considering a specific regret threshold
R > 0 for the predictor, the goal of the active label acquisition can be formulated as follows.

min :
T∑
t=1

ct · I{Customer t accepts the survey offer|ct}

s.t. Regret(hT) ≤ R.

In this formulation, we want to minimize the total label cost up to time T , while ensuring
that the expected regret Regret(hT) remains below the specified threshold R. In this constraint,
Regret(hT) is the risk of the current predictor, which is supposed to be decreasing as more
customers are surveyed.

Remark 3.5.3 (Illustration of the comprehensive cost). We explain our objective from the
other perspective. When considering a specific regret threshold R > 0 for the predictor, the
minimization of the objective function C (cT , hT)−βR can be regarded as a Lagrangian function
in the following problem: minimize

∑T
t=1 ct ·I{Customer t accepts the survey offer|ct}, subject

to the constraint Regret(hT) ≤ R. In other words, the minimization of the comprehensive cost
can also be interpreted as minimizing the total label cost up to time T , while ensuring that
the expected regret Regret(hT) remains below the specified threshold R. In this context, the
market size β can be seen as the Lagrange multiplier, representing the “shadow price” of the
regret requirement.

To decompose the variation of the comprehensive cost into each customer, let us consider
the difference of the comprehensive cost between time step t− 1 and t. The difference is

ct · I{Customer t accepts the offer for survey|ct}+ β · [Regret(ht)− Regret(ht−1)]. (3.7)

We use p(c) ∈ [0, 1] to denote the probability of taking the survey given the incentive c.
When customer t does not accept the offer, we have that ht = ht−1, and the second term in
(3.7) becomes zero. Thus, the expectation of (3.7) can be written as p(ct) (ct − V (ξt;St−1)).
To minimize the expectation of the comprehensive cost at iteration t, we greedily minimize
this expectation of difference. We can either offer zero incentive to ignore this customer,
or offer some incentive between [cmin, cmax] that minimizes the expectation of the difference.
This minimizer is denoted by c∗(V (ξt;St−1), p), i.e., we have

c∗(V (ξt;St−1), p) := arg min
c∈[cmin,cmax]

{p(c) (c− V (ξt;St−1))} .

Calculating c∗(V (ξt;St−1), p) requires the knowledge of p(c) and the value of one data
point V (ξt;St−1). In Proposition 3.5.1, we demonstrate that if p(c) is a concave function,
then the optimal incentive based on the value of one data point is less than the optimal
incentive based on the upper bound of the value of one data point.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 61

Proposition 3.5.1 (Upper bound for the optimal incentive). Suppose p(c) is a twice-
differentiable increasing concave function, then for any upper bound U(ξt;St−1) of V (ξt;St−1),
we have c∗(V (ξt;St−1), p) ≤ c∗(U(ξt;St−1), p).

In Proposition 3.5.1, the conditions on p(c) are satisfied by a large class of functions. For
example, p(c) can be a logarithmic or linear function. Proposition 3.5.1 implies that, we can
use c∗(U(ξt;St−1), p) as an upper bound for c∗(V (ξt;St−1), p).

In the original algorithm, when we decide to survey a customer, we can offer any incentive
between [cmin, cmax]. If the exact form of p(c) is known, we can use c∗(U(ξt;St−1), p) as the
optimal incentive. All the guarantees about Algorithm 2 throughout the chapter also apply
to both cases. These guarantees do not rely on the specific structure of p(c); they only
necessitate its lower bound, as stipulated in Assumption 3.5.1. In Section 3.5.2, we provide
some examples of p(c) and discuss the solutions of c∗(V (ξt;St−1), p) when V (ξt;St−1) and
function p(c) are known.

3.5.2 Impact of p(c) on Incentives

In this section, we present some examples of the function p(c), and consider setting the
incentive as c∗(U(ξT ;ST−1), p). Note that since c

∗(U(ξT ;ST−1), p) is a smaller and more careful
incentive than U(ξT ;ST−1), the theoretical guarantees in the main body for U(ξT ;ST−1) still
apply to c∗(U(ξT ;ST−1), p). In this section, we provide some insights on the impact of p(c)
on c∗(U(ξT ;ST−1), p). Recall that

c∗(U(ξT ;ST−1), p) = arg min
c∈{0}∪[cmin,cmax]

: {p(c) (c− U(ξT ;ST−1))} .

For simplicity of the expression, we use c∗(U, p) to denote c∗(U(ξT ;ST−1), p) in this section.
Recall that Proposition 3.5.1 indicates that c∗(U, p) is an upper bound for c∗(V, p), where U
is the upper bound of V . To obtain insights, for simplicity, we ignore the bounded constraint
c ∈ {0} ∪ [cmin, cmax]. Then, we have the following insights in Proposition 3.5.2.

Proposition 3.5.2. Suppose p0(c) is a twice-differentiable increasing concave function. Then,
we have the following insights on the relations between c∗(U, p) and p(c).

1. c∗(U, p) will be smaller if p(c) is shifted higher, i.e., suppose that p(c) = p0(c) + k1 for
some k1 > 0. Then, c∗(U, p) is a decreasing function of k1.

2. c∗(U, p) is independent of the scale of p(c), i.e., suppose that p(c) = p0(c) · k1 for some
k1 > 0. Then, c∗(U, p) is the same for all k1 > 0.

Proposition 3.5.2 indicates if the location of p(c) is higher, the incentive should be smaller.
On the other hand, the incentive is independent of the scale of p(c). Next, we consider one
specific example of p(c), where p(c) = k1 + k2c for some k1, k2 > 0. In other words, p(c) is
a linear function that satisfies Proposition 3.5.1 and Assumption 3.5.1. Then, we have the
following properties.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 62

Proposition 3.5.3. Suppose p(c) = k1 + k2c for some k1, k2 > 0. Then, we have c∗(U, p) =
U
2
− k1

2k2
.

Proposition 3.5.3 indicates that for the fixed interception k1, when the slope is larger, the
incentive should be larger. In other words, if customers are more sensitive to the incentives,
then we tend to offer higher incentives. Proposition 3.5.3 further reveals that c∗(U, p) is like
a calibration of U according to the structure of p(c). This calibration does not change the
order of c∗(U, p) from U . Thus, considering the structure of p(c) has little impact on the
order of the incentives, which means that the performance of the active label acquisition
algorithm mostly depends on the U rather than the structure of p(c).

3.6 Theoretical Guarantees for Active Label

Acquisition

In this section, we provide the theoretical performance guarantees for our active label acqui-
sition algorithm in the contexts of personalized product design and assortment optimization
problem. By analyzing its performance guarantees, we demonstrate that our algorithm can
achieve a much smaller comprehensive cost than simple supervised learning under some
low-noise conditions.

3.6.1 Personalized Product Selection

In this section, we consider the active label acquisition in the context of the personalized
product selection.

In order to obtain a more precise bound for the comprehensive cost compared to Theorem
3.5.1, we delve deeper into the density of the distribution of E[y|ξ] near the degeneracy. For
this purpose, we adopt the definition of the near-degeneracy function Ψ in Definition 2.3.2:

Ψ(ρ) := P
(
νS(E[y|ξ]) ≤ ρ

)
.

The near-degeneracy function Ψ(·) quantifies the probability that the distance to degeneracy
of E[y|ξ] is less than ρ, given that ξ follows the distribution µ(ξ). Intuitively, when Ψ is
smaller, the density allocated near the degeneracy becomes smaller. This suggests that
identifying the optimal decisions becomes easier, resulting in a smaller cumulative label cost.

Theorem 3.6.1 provides an upper bound for the first part of the comprehensive cost.

Theorem 3.6.1 (Bound for the risk). Suppose Assumption 3.5.1 holds. In Algorithm 2,
at each iteration, given δ ∈ (0, 1), set U(ξt;St−1) as UM(ξt, h(ξt), ρt(ξt)), where ρt(ξt) =

2ηY

√
d ln(t/δ)
n(ξt)

. For any δ ∈ (0, 1), with probability at least 1−mTe−
µpminT

8 −mTe
−T ln(1

1−pminµ
)−

δ
T 2 , we have the risk of hT is at most βR(T, cmin), where

R(T, cmin) := φ(T) +
cmin

βµ
Ψ
(√

2cmin

βµ
√

min{z, d− z}

)
,

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 63

and φ(T) is defined as

φ(T) := ηY min

{ ∑
ξ∈[m]

4µ(ξ)
√

min{z, d− z}

√
d ln(T/δ)

pminµ(ξ)T
,
√
d
∑
ξ∈[m]

Ψ
(
4ηY

√
2d ln(T/δ)

pminµ(ξ)T

)}
.

Theorem 3.6.1 provides an upper bound for the risk of hT , and this upper bound R(T, cmin)
has two parts. The first part φ(T) represents the upper bound for the non-asymptotic
convergence rate, while the other part is an upper bound for the risk of the predictor when T
tends to infinity. The function φ(T) is the minimum value of two upper bounds, where the
first term is at most Õ(T−1/2), which is in the same order as the typical supervised learning.
The second term in φ(T), which depends on Ψ, can achieve a smaller rate than Õ(T−1/2)
under certain conditions, which will be shown later in Proposition 3.6.1.

The upper bound βR(T, cmin) in Theorem 3.6.1 is smaller than Theorem 3.5.1.(1) in
two ways. First, by considering the near-degeneracy function, the convergence rate φ(T)
can be smaller than Õ(T−1/2). Secondly, the final convergence result of R(T, cmin) can be
smaller than cmin/β of Theorem 3.5.1.(1). Recall that Theorem 3.5.1 indicates that when
the minimum incentive is positive, i.e., cmin > 0, we will stop surveying customers when T
is larger than some threshold, and the final risk of the predictor hT will stop at some value
that is at most cmin. Theorem 3.6.1 further demonstrates that even when cmin > 0, as long

as Ψ
(√

2cmin

βµ
√

min{z,d−z}

)
= 0, the risk of hT will converge to zero. Intuitively, it means that

when E[y|ξ] is allocated far from the degeneracy and the minimum incentive is small, we can
distinguish the optimal products for all type ξ efficiently and the risk of hT will converge to
zero. Theorem 3.6.1 shows that when the near degeneracy function Ψ is smaller (i.e., when
it is easier to distinguish the optimal decisions from the sub-optimal decisions), both the
convergence rate and the final convergence result of the risk get smaller.

Next, we analyze the cumulative label cost, and provide a smaller bound than Theorem
3.5.1.(2). In particular, we want to show that the cumulative label cost is sublinear in T ,
even when cmin = 0.

Theorem 3.6.2 (Bound for the cumulative label cost). Under the same setting of Theorem
3.6.1, after considering T customers, we have the following bounds for the expectation of the
cumulative label cost:

(1) For any cmin ≥ 0, the expectation of the cumulative label cost is at most

cq + 2δ +min

{
8
√
min{z, d− z}ηY

√
dT ln(T/δ)

pminµ
,
√
dηY

T∑
t=1

Ψ
(
4ηY

√
2d ln(t/δ)

pminµt

)}
,

where cq is a constant that is independent of T .

(2) If cmin > 0, then the cumulative label cost is finite.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 64

Theorem 3.6.2 provides two upper bounds for the cumulative label cost up to time t
when cmin ≥ 0. The first term in the minimization implies that, without considering the
near-degeneracy condition, the cumulative label cost is at most Õ(T 1/2). The second term
in the minimization provides another upper bound that depends on the near-degeneracy
function Ψ. The second term can be much smaller than the first term when function Ψ
is small. If the minimum incentive is positive, the proof of Theorem 3.6.2 shows that
we will stop exploiting the customers with type ξ, when the number of labeled samples
n(ξ) ≥ tξ := inf{t : β

√
2min{z, d− z}µ(ξ)ρt(ξ) ≤ cmin}. Thus, the cumulative label cost is

finite and smaller than a constant which is independent of T . This constant is provided in
the proof of Theorem 3.6.2, which is an increasing function of β. It implies that a larger
market size results in a larger cumulative label cost but ends up with a smaller regret.

Combining the insights from Theorem 3.6.1, we conclude that when cmin becomes larger,
the cumulative label cost gets smaller but the final risk gets larger. Thus, when minimizing
the comprehensive cost C (c, g), the value of minimum incentive cmin controls the tradeoff
between the final risk and the cumulative label cost. When cmin becomes larger, i.e., we have
to spend more time or cost to collect and analyze the results of surveys, and we will end
up with a larger final risk with a smaller number of surveys. Theorem 3.6.3 further shows
that this tradeoff in Algorithm 2 results in a smaller comprehensive cost than the simple
supervised learning that offers fixed incentives to all customers.

Theorem 3.6.3 (Comparison with supervised learning). Under the same setting of Theorem
3.6.1, when achieving the same level of risk, we have the following guarantees for the cumulative
label cost:

(1) If cmin = cmax, then at any time T , the comprehensive cost C (c, g) of Algorithm 2 is no
more than the cumulative label cost of the supervised learning algorithm that offers fixed
incentives cmin to all customers.

(2) If cmin = 0 and p(c) is a twice-differentiable increasing concave function, then at any
time T , the expected comprehensive cost C (c, g) of Algorithm 2 is no more than the
expected comprehensive cost of the supervised learning algorithm that offers cmax to all
customers.

(3) If cmin > 0, then there exists a time point Ts > 0: when the time T > Ts, the
comprehensive cost C (c, g) of Algorithm 2 is no more than that of the supervised
learning algorithm that offers a fixed incentive between [cmin, cmax] to all customers.

In Theorem 3.6.3.(1), the personalized incentive problem reduces to the customer selection
problem when cmin = cmax. Theorem 3.6.3.(1) shows that the comprehensive cost of our active
label acquisition algorithm is always smaller than the algorithm that selects all customers. In
Theorem 3.6.3.(2), compared to the supervised learning algorithm that offers cmax incentives
to all customers, Algorithm 2 selects some customers to offer a smaller or zero incentive.
This may increase the risk of the final prediction model because it will reduce the probability

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 65

for customers to take the survey and thereby reduce the number of samples in the training
set. However, Theorem 3.6.3.(2) shows that this increase of risk is smaller than the saved
label cost, so Algorithm 2 has a smaller comprehensive cost. Theorem 3.6.3.(3) further shows
that when cmin > 0, Algorithm 2 can always achieve a smaller comprehensive cost than the
supervised learning that offers any fixed incentive between [cmin, cmax], when the number of
customers considered is larger than some number Ts.

3.6.2 Small Label Complexity Under the Low-noise Condition

Theorem 3.6.2 shows that when cmin > 0, the comprehensive cost is finite. Actually, when
cmin = 0, the comprehensive cost can still be finite when the near-degeneracy function Ψ
satisfies some conditions, which is defined as the low-noise condition in this section.

We characterize the noise level by the degree of near-degeneracy function in Assumption
2.5.1, with parameter κ. Since ρ ≤ ηY , in Assumption 2.5.1, a larger κ implies a smaller Ψ.
By substituting the near-degeneracy function Ψ(·) into Theorems 3.6.1 and 3.6.2 with the
upper bound in Assumption 2.5.1, we have the following upper bounds for the comprehensive
cost.

Proposition 3.6.1 (Bounds under the low-noise condition). Under the same setting of
Theorem 3.6.2, suppose that Assumption 2.5.1 holds with parameter κ, then we have the
following guarantees for Algorithm 2 after T iterations:

1. The expectation of cumulative label cost after considering T customers is no more than
Õ(T 1−κ/2), when κ ≤ 2, and Õ(1), when κ > 2.

2. The risk of the predictor hT is at most Õ(T−κ/2) + cmin

µ
Ψ
(√

2cmin

βµ
√

min{z,d−z}

)
.

Proposition 3.6.1 demonstrates that when κ > 2, the comprehensive cost of Algorithm 2 is
also finite. As a result, when κ > 2 and the number of iterations T is large, the comprehensive
cost of Algorithm 2 is ultimately smaller than the comprehensive cost of the supervised
learning that offers fixed positive incentives to all customers.

3.6.3 Active Label Acquisition in Personalized Assortment
Optimization

Next, following the analysis in the product selection problem, we have the following bounds
for both the risk and cumulative label cost for our active label acquisition algorithm in the
assortment optimization problem.

Theorem 3.6.4 (Guarantees for the assortment optimization problem). Suppose Assumption

3.5.1 holds. Set ρt(ξt) = 2ηY

√
d ln(t/δ)
n(ξt)

. Using UA
M(ξt, ŷ, ρt(ξt)) in Algorithm 2, for the

assortment optimization problem, we have the following guarantees:

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 66

(1) After T iterations, for any δ ∈ (0, 1), with probability at least 1 − mTe−
µpminT

8 −
mTe

−T ln(1
1−pminµ

) − δ
T 2 , we have the risk R(hT) is at most βR(T, cmin), where

R(T, cmin) := φ(T) +
cmin

βµ
Ψ
(√

2cmin

κβµ
√
min{z, d− z}

)
,

and function φ(T) is defined as

φ(T) := min

{
ηYκ

∑
ξ∈[m]

4µ(ξ)
√

min{z, d− z}

√
d ln(T/δ)

pminµ(ξ)T
,

√
dηp

∑
ξ∈[m]

Ψ
(
4ηY

√
2d ln(T/δ)

pminµ(ξ)T

)}
.

(2) After T iterations, the expectation of the cumulative label cost is at most

cq + 2δ +min

{
8
√

min{z, d− z}ηYκ

√
dT ln(T/δ)

pminµ
,
√
dηp

T∑
t=1

Ψ
(
4ηY

√
2d ln(T/δ)

pminµt

)}
,

where cq is a constant that is independent of T . If cmin > 0, then the cumulative label
cost is finite.

(3) Theorem 3.6.3 and Proposition 3.6.1 still hold for the assortment optimization problem.

Theorem 3.6.4 provides upper bounds for the risk of the prediction model and the cumula-
tive label cost, which have the same order as the product selection problem. It demonstrates
that our active label acquisition algorithm can achieve a much smaller comprehensive cost
than the supervised learning algorithm when function Ψ is small.

The results and algorithm in Theorem 3.6.4 can be extended to the general random utility
maximization (RUM) choice model when the retailer recommends only one product in the
assortment. When the choice probability satisfies the Lipschitz continuity, the above analysis
still holds, which will be discussed in Section 3.8.

3.7 Extension to Active Label Acquisition with

Contextual Information

In previous sections, we have assumed that customers are categorized into finite types.
The recommended (or selected) products are the same for the same type of customers. In
this section, we consider an extension of this setting, where we can observe the contextual
information in addition to the customer type. This contextual information can help us

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 67

customize the selected products for the customers within one type. Given this additional
contextual information, we study how to determine the incentive for each customer.

At each iteration t, we observe not only the type of customer t, but also a feature vector
xt. The feature space of xt is denoted by X ξt , which is continuous, bounded and dependent
on type ξt. For example, if a customer type ξ indicates that she has a membership, then X ξ

may include the membership information. If a customer type ξ indicates that she is referred
by a friend, then X ξ may include her friend information as well.

The feature vector x for type ξ comes from a fixed and known distribution whose probability
density at x is denoted by µξ(x). Furthermore, given the side information (ξ, x), the true
model for the utility vector y is assumed to be y = h∗

ξ(x) + ϵ, where ϵ ∈ Rd is the noise term

with zero mean, and h∗
ξ : X ξ → Rd is the true prediction for type ξ. Since h∗

ξ is unknown, we
need to estimate the predictor from a hypothesis class Hξ, where we assume the hypothesis
class is well-specified, i.e., h∗

ξ ∈ Hξ.
At each iteration, customers of the same type share the same incentive, and thus they have

the same probability of being included in the training set. It implies that the samples in the
training set of type ξt, St−1(ξt), are i.i.d. This i.i.d. property enables us to use any supervised
learning oracles to calculate the predictor for type ξ, which is denoted by ht−1,ξ. For example,
given the training set for type ξt, St−1(ξt), we can minimize the empirical squared loss of the
predictors to obtain ht−1,ξt .

One challenge of calculating the upper bound for the value of one data point lies in the
fact that the predictions of different features are correlated. Thus, when calculating the
upper bound of the value of one data point for type ξ, we need to consider all the features
within the space X ξ. Suppose the prediction error for any feature x ∈ X ξ is at most ρ, i.e.,
supx∈X ξ{∥ht−1,ξ(x)− h∗

ξ(x)∥} ≤ ρ. Then, by taking the expectation of the upper bound in
Theorem 3.3.1 over x ∼ µξ(x), we obtain that the upper bound for type ξ can be written as∫

x∈X ξ

µξ(x)
√

2min{z, d− z}βρI {νS(ht−1,ξ(x)) ≤ ρ} dx.

The upper bound for ρ can be obtained by the theoretical guarantees in the supervised
learning, since the samples contained in the training set St−1(ξt) are i.i.d.. We assume that
the prediction error (in terms of the sup norm) of ht−1,ξ shrinks in a certain order, which is
stated in Assumption 3.7.1. Let Z+ denote the set of non-negative integers {0, 1, 2, ...}.

Assumption 3.7.1 (Prediction errors for supervised learning.). There exists a function
Φ(n, ξ, δ) : Z+ × [d] × (0, 1) → R such that, when customers with type ξ have n i.i.d.
observations of (xi, ξ, yi) in the training set St−1(ξ), then supx∈X ξ{∥ht−1,ξ(x) − h∗

ξ(x)∥} ≤
Φ(n, ξ, δ) with probability at least 1− δ.

This function Φ(n, ξ, δ) exists for a broad range of hypothesis classes in supervised learning.
In Section 3.9, we consider Hξ as a class of linear functions, or decision trees, and provide some
conditions for Φ(n, ξ, δ) to be at most Õ(

√
ln(1/δ)/n). Based on this function, Algorithm 3

shows how to calculate the upper bound for the value of one data point for type ξt customer.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 68

Algorithm 3 Calculate incentive U(ξt;St−1) with contextual information

Input: Type of customer t, ξt; training set at iteration t−1, St−1; contextual information
for customer t, xt; confidence level δ ∈ (0, 1).
ρ← Φ(|St−1(ξt)|, ξt, δ).
Return U(ξt;St−1)← µ(ξ)

√
2min{z, d− z}βρPxt∼Dξ

(νS(ht−1(ξ, xt)) ≤ ρ).

To characterize the near-degeneracy condition within each type ξ, we define a near-
degenearcy function for type ξ as Ψξ(ρ) := Px∼µξ(x)

(
νS(h

∗
ξ(x)) ≤ ρ

)
. Based on this function

Ψξ, Theorem 3.7.1 demonstrates the bounds for both parts in the comprehensive cost.

Theorem 3.7.1 (Guarantees for the product selection with contextual information). Suppose
Assumptions 3.5.1 and 3.7.1 hold. Given δ ∈ (0, 1), define ρt := maxξ∈[m]{Φ(⌊0.5pmintµ⌋, ξ, δ)}.
When using Algorithm 3 to calculate the incentive, then for the active label acquisition Algo-
rithm 2 of the product selection problem, we have the following guarantees:

(1) After T iterations, suppose the output predictor is hT . Then, with probability at least
1− δ, we have the risk R(hT)−R(h∗) is at most βR(T, cmin), where

R(T, cmin) := φ(T) +
cmin

β
,

where φ(t) is defined as

φ(T) := min

√2min{z, d− z}ρT ,
√
dηY

∑
ξ∈[m]

µ(ξ)Ψξ(2ρT)

 .

(2) After considering T customers, the expectation of the cumulative label cost is at most

min

{
T∑
t=1

β
√
2min{z, d− z}ρt,

√
dηY

T∑
t=1

Ψ(2ρt)

}
.

If cmin > 0, the cumulative label cost is finite.

(3) Theorem 3.6.3 still holds. When Φ(n, ξ, δ) is at most Õ(
√

ln(1/δ)/n), Proposition 3.6.1
holds as well.

Theorem 3.7.1.(1) demonstrates that convergence rate φ(T) can be bounded in two distinct
ways. The first type of upper bound in φ(T) depends on ρt, whose order is at most Õ(T−1/2)
when the condition Φ(n, ξ, δ) ≤ Õ(

√
ln(1/δ)/n) holds. The second type of upper bound

depends on Ψξ, which can be much smaller Õ(T−1/2) when Ψξ is small. Notably, compared
to Theorem 3.6.4 where φ(T) depends on Ψ, Theorem 3.7.1.(1) delves into the distribution
of h∗

ξ(x) for each type and provides a tighter bound that depends on Ψξ. It implies if h∗
ξ(x) is

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 69

allocated further away from the degeneracy than E[y|ξ], incorporating contextual information
can further improve the convergence rate φ(T). Theorems 3.7.1.(2) and 3.7.1.(3) are similar
to the results in Theorem 3.6.4.

Similar to Section 3.4, the results in Theorem 3.7.1 can be extended to the personalized
assortment optimization problem with the MNL model, if we multiply ρt in Theorem 3.7.1 by
κ and replace the maximum satisfaction level

√
dηY with the maximum revenue loss

√
dηp.

Moreover, the results can further be extended to the assortment optimization problem with
the general RUM choice model and one capacity. Please see the details in Section 3.8.

3.8 Extension to the General RUM Choice Model

In this section, we demonstrate that the results and algorithm in Theorem 3.6.4 can be
extended to the general random utility maximization (RUM) choice model when only one
product is recommended in the assortment.

We consider the case where the choice of customers follows the random utility maximization
(RUM) model, and thus customers pick the recommended product when its utility is larger
than the utility of the no-purchase option. We use ȳ to denote the expectation of the utility
vector.

Then, we use ϕ(i; ȳ) to denote the purchase probability of product i when the expected
utility vector is ȳ and product i is recommended. By this definition, we assume the purchase
probability ϕ(i; ȳ) for product i is a function of the expected utility ȳ when only product i is
in the assortment.

Thus, when the designer would like to maximize the revenue from only one product, the
problem can be re-written in (P4):

max
w∈Bd

∑
i∈[d]

wipiui (P4)

s.t. wT1 = 1

ui = ϕ(i; ȳ), ∀i ∈ [d] (3.8)

Objective (P4) is linear and constraints (3.8) are nonlinear.
Since the retailer only recommends one product in the assortment, obviously, to maximize

the expected revenue, the best assortment is the product with the highest piϕ(i; ȳ).
We assume that the choice probability has the following property.

Assumption 3.8.1. There exists a constant ηb > 0, such that for product i, the choice
probability function ϕ(i; ȳ) satisfies that ϕ(i; ȳ1)− ϕ(i; ȳ2) ≤ ηb|ȳi1 − ȳi2|.

Assumption 3.8.1 holds for the MNL model, NL model, probit model and some other
RUM models. Assumption 3.8.1 means that we can construct a confidence region based on
the confidence region of yit. Then, we can show that the value of one data point for type ξt is

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 70

no more than

V (ξt,St−1) ≤ min
{
ηpηb

√
2min{z, d− z}µ(ξt)ρtI{νS(ŷ) ≤ ρt}, 1

}
(3.9)

.
Thus, we have the following Theorem 3.8.1 for Algorithm 2 in the purchase probability

maximization problem with RUM choice model.

Theorem 3.8.1. Suppose that ηp ≥ 1 and Assumption 3.8.1 holds. If we replace the
parameter κ in Theorem 3.6.4 with ηpηb, then the arguments in the modified theorem hold
for the purchase probability maximization problem with RUM choice model.

When we have additional contextual information within one type, similar to Theorem
3.7.1 in Section 3.7, the results in Theorem 3.8.1 can also be extended to the general RUM
model, by using the similar proofs and multiplying ρt in 3.7.1.(2) by ηbηp.

3.9 Examples of Function Φ(n, ξ, δ)

In this section, we provide an example of Φ(n, ξ, δ) for the linear class. Let us consider one
type of customer, which is denoted by type ξ. Suppose the dimension of X ξ is mξ. Suppose
there exists a preference matrix Θ∗ ∈ Rmξ×d for customers, such that for one type ξ, the true
model is yt = Θ∗xt + ϵt, where ϵt ∈ Rd is the noise term with zero mean. Then, we make the
following assumption on the distribution of µξ(x).

Assumption 3.9.1 (Isometry condition). There exists λ > 0, such that the distribution of x,
µξ(x) satisfies that λmin(E

[
xxT

]
) ≥ 2λ > 0.

We use λmin(·) and λmax(·) to denote the minimum and maximum eigenvalue of a matrix.
We assume the absolute value of each entry in noise vector ϵt = yt − Θ∗xt is less than
σϵ. Intuitively, σϵ controls the noise level. We define Λt :=

∑
(x,·)∈Wt

xxT , and XT
t :=

[x1, x2, ..., xnt]. Thus, we have that Λt = XT
t Xt.

Suppose that the feature space has a bounded set, in other words, ∀x ∈ X , ∥x∥2 ≤ ηX .
Then, we have that λmax(XXT) ≤ η2X , ∀x ∈ X . When the distribution of x satisfies
Assumption 3.9.1, by the matrix Chernoff’s inequality (Theorem 1.1) in Tropp, 2012, we
have that with probability at least 1−

√
2mξe

−λnt/(2η2X),

λmin(Λt) ≥
nt2λ

2
= ntλ.

Next, Lemma 3.9.1 provides an example of Φ(n, ξ, δ) in this case.

Lemma 3.9.1 (Example of Φ(n, ξ, δ)). Suppose Assumption 3.9.1 holds. Then, for any
δ ∈ (0, 1), Φ(n, ξ, δ) satisfies

Φ(n, ξ, δ) ≤ Õ

(√
n ln(

1

δ
)

)
.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 71

3.10 Numerical Experiments

In this section, we evaluate the performance of our proposed active label acquisition algorithms
in two settings. First, we consider the product selection problem and use real-world campus
survey data. Second, we evaluate the assortment optimization applications with MNL choice
model. The results from both settings verify that our algorithms can significantly reduce the
comprehensive cost.

3.10.1 Product Selection Problem

In this experiment, we use a real-world survey dataset that consists of student responses to
the survey on ideal student life 4. The dataset covers various aspects such as student interests
and activities. Our objective is to leverage these survey results to predict students’ potential
interests and provide recommendations about student groups for each individual.

The surveyed students are from 21 different departments, which are used as the type to
predict their interests. There are six interest groups: art and culture, science and technology,
social welfare and diversity, entrepreneurship, sports, and others. The goal is to recommend
two of the six groups to each student, based on their department information, to maximize
their satisfaction level. To illustrate the application of this setting, imagine that we are
the organizers of the student interest group, and we would like to provide some guides
for freshman students based on their department information. Although freshmen may
have limited knowledge about the experiences of each group, we can collect survey results
from students in higher grades. To encourage students to fill out surveys, we need to
provide some incentives. Here, we use the active label acquisition algorithm to decide the
personalized incentives for each student. The incentive we offer is assumed to be within
[cmin, cmax] = [$15, $30]. We can also provide zero incentive for students and not collect their
responses if their ratings are not informative. The probability for one student to fill out the
survey is assumed to be as follows:

p(c) =
c− cmin

cmax − cmin
× 0.6 + 0.2 .

This is a linear function of c between two points (cmin, 0.2) and (cmax, 0.8). The rating of
each group from one student is an integer from 0 to 17. Please refer to Appendix B.5 for the
details on how to obtain the rating of all groups from the answer of one survey. We assume
that when recommending two groups to one student, the satisfaction level of this student is
the sum of his ratings of two groups.

There are 2958 rows in the dataset. We randomly select 30% of them as the test set, and
the rest as the training set. At each iteration of the survey distribution process, we randomly
select one student from the training set to offer some incentive. We either provide some
positive incentive between $15 and $30 for this student or provide zero incentive to skip her
response. We run 20 independent trials for each setting.

4https://www.kaggle.com/datasets/shivamb/ideal-student-life-survey

https://www.kaggle.com/datasets/shivamb/ideal-student-life-survey

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 72

Figure 3.3 shows the comprehensive cost with the 95% confidence intervals during the
survey distribution process. The x-axis represents the number of students considered, which
is denoted by T in the algorithm. The two plots in Figure 3.3 represent market sizes β of 1000
and 500, respectively. The first plot shows that our personalized incentive policy always yields
a lower comprehensive cost compared to the fixed incentive policy, which offers $15, $20, $25,
or $30 to all students, particularly when the number of students is large. By comparing these
two plots, we observe that as the market size β increases from 500 to 1000, the comprehensive
cost of the personalized incentives becomes closer to the fixed incentive policy with $15. In
the second plot, as T increases, our personalized incentive policy eventually achieves a smaller
comprehensive cost compared to the fixed incentive policy.

Figure 3.3: Comprehensive cost of the active label acquisition algorithms with different
market sizes β.

Figure 3.4 further displays the two parts of the comprehensive cost during the survey
process. It shows that as the market size increases (from β = 500 to β = 1000), the expected
regret in the test risk will converge to a smaller value, and the total survey cost becomes
larger. This observation aligns with the insights regarding the tradeoff between the survey
cost and the final risk.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 73

Figure 3.4: Risk and the total survey cost with different market sizes β.

3.10.2 Assortment Optimization

In the second experiment, we consider the assortment optimization problem using synthetic
data. We assume there are 5 different types of customers. Each type of customer has an
8-dimensional feature vector. The goal is to select at most 5 products in the assortment
out of 10 products to maximize the revenue. The utility vector for each type of customer
is generated as follows. For each type, we randomly generate a coefficient matrix Θ∗ whose
dimension is 10 × 8. Specifically, the value of Θ∗ = 1

8000

∑8
i=1 ζ

s
i ζ

p
i
T , where ζsi ∈ R10 and

ζpi ∈ R8 are random vectors whose values follow uniform distribution between [1, 10] and
[10, 20]. For each dimension of the feature, the value follows a uniform distribution between

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 74

[0, 10]. Given feature x, the average utilities for the 10 products are Θ∗x. The realized utilities
for one customer is Θ∗x plus the noise, where the noise follows the Gumbel distribution with
standard deviation σ = 1. The revenue for product i is 5ϵi + 2000, when ϵi follows a normal
distribution. For the distribution of each type of customers, we assume the probability of
encountering type ξ is µ(ξ) = ξ/15, for ξ ∈ [5]. The market sizes are set to be 500, 750, and
1000. For each customer, we can either offer some incentive between $20 and $40 or zero
incentive. The probability of taking the survey is a linear function that goes through two
points (cmin, 0.3) and (cmax, 0.9). The test set is of size 3000.

We implement Algorithm 3 to provide personalized incentives to each type of customer.
When updating the incentives in Algorithm 3, for each customer with side information (ξ, x),
given the estimated Θ̂, we calculate P(νS(Θ̂x) ≤ ρ), which requires the estimation of the
distribution of νS(Θ̂x). This distribution is estimated using the features of the entire training
set, which contains 7000 features. To speed up the algorithm, we update distribution of
νS(Θ̂x), only at iteration t, when t = 2ñ, for some ñ ∈ Z+. For each setting, we run 20
independent random trials. The comprehensive costs during the survey distribution process
with the market size 500 and 1000 are shown in Figure 3.5.

Figure 3.5 illustrates that for both market sizes, as T approaches 1500, our personalized
policy incurs lower comprehensive costs compared to any fixed incentive policy. Furthermore,
in Figure 3.6, we examine the relationship between risk and cumulative label cost. The left
plot presents the minimum cumulative label costs required to achieve the same risk level,
averaged over 20 trials with 95% confidence intervals when β = 1000. The x-axis represents
the risk of the predictor, while the y-axis represents the corresponding cumulative label cost.
As the risk decreases (towards the left side of the x-axis), more label cost is needed. Thus, the
cumulative label cost decreases with the risk of the predictor. The results demonstrate that
our personalized incentive policy requires significantly less label cost than the fixed incentive
policy to achieve the same risk level. This observation aligns with the alternative formulation
of the comprehensive cost introduced in Remark 3.5.3.

The right plot in Figure 3.6 further shows the average risk of the predictor when spending
the same amount of incentives with β = 750. The x-axis represents the cumulative incentives
and the y-axis represents the corresponding risk at that incentive, averaged over 20 trials. It
shows that compared to the fixed incentive policy, our personalized incentive policy achieves
a much smaller risk when spending the same amount of label cost.

Table 3.1 further examines the advantage of our personalized incentive policy over the
fixed incentive policy. It shows that when achieving the same excess risk level ($5000), our
personalized incentive policy can reduce the label cost by over 70%, compared to the fixed
incentive at $20, $30 and $40. Our personalized incentive policy also reduces the size of the
training set by over 80%.

Next, we examine the impacts of market sizes β and probability µ(ξ) on the cumulative
label cost. Similar to the insights from the product selection problem, the left plot in Figure
3.7 shows that when the market size increases, we need to collect more surveys to achieve
a smaller individual risk, which yields a larger survey cost. Recall that there are five types
of customers, and each type of customers receives different incentives. To examine the

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 75

Figure 3.5: Comprehensive cost of the active label acquisition algorithms with different
market sizes β.

distribution of incentives across these customer types, the right plot in Figure 3.7 shows the
cumulative incentives for each type as T increases. It shows that the majority of incentives
are allocated to type 4, while type 0 receives the least incentives. This is because type 4
has the largest probability to occur, while type 0 has the lowest probability to occur. This
observation is consistent with the insights that a higher value of µ(ξ) corresponds to a higher
incentive, as indicated by Theorem 3.3.1.

In summary, by using both real-world and synthetic data, the experiments on active
label acquisition in the setting of product selection and assortment optimization problems
demonstrate the advantages of our proposed personalized incentive algorithms.

3.11 Conclusion

We propose a new concept to quantify the marginal contribution to the revenue increase
when including a new data point into the training set. This concept is called value of

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 76

Figure 3.6: Comparison between risk and cumulative label cost.

one data point. We provide an upper bound for estimating the value of one data point,
which provides a lot of insights for the label acquisition. We further utilize this upper
bound to determine personalized incentives for customers to disclose their preferences in the
assortment optimization problem. For both the product selection and assortment optimization
problems, our active label acquisition algorithm can achieve a smaller comprehensive cost
than supervised learning with fixed incentives under some regularity conditions. When
considering additional contextual information for each type of customers, we further provide
guarantees for the general prediction models. Our numerical experiments on both synthetic
and real-world datasets show that our active label acquisition algorithms can achieve a much
smaller comprehensive cost and require much less label cost to achieve the same level of

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 77

Personalized incentive Fixed $20 Fixed $30 Fixed $40

Required label cost 1088
3668
(-70%)

6295
(-79%)

8262
(-87%)

Required number of
surveyed customers
(Size of training set)

30 184 (-84%) 210 (-86%) 206 (-85%)

Table 3.1: Comparison for different incentive policies when achieving the excess risk level of
$5000

regret.
There are several interesting future research directions. First, it would be intriguing

to study the personalized incentive under more general settings of operations management
problems, such as the pricing problem and the assortment optimization under other choice
models. Secondly, the incentive function p(c) is unknown in practice. It is interesting to
incorporate the estimation of p(c) in the surveying process. For example, retailers can explore
the structure of p(c) at different incentives at the beginning of survey distribution. Lastly, if
customers can strategically decide whether to take surveys to maximize their utility, retailers
need to consider the personalized incentive in a game setting, where offering a high incentive
at the beginning may change the structure of the incentive function in the future.

CHAPTER 3. FEATURE-DEPENDENT VALUE OF ONE DATA POINT 78

Figure 3.7: Impacts of market sizes β and probability µ(ξ) on the cumulative label cost.

79

Chapter 4

Pricing from Click Transition Data

4.1 Introduction

Traditionally, in brick-and-mortar stores, to learn the preference toward products, retailers
have to infer from the purchase behavior of customers. These purchase data are usually
limited and influenced by the availability of products. The transition of retail business
from brick-and-mortar stores to online digital platforms has provided retailers with detailed
clickstream data from individual customers. The clickstream data reveals the search and
selection process of customers before they either make a purchase or leave the system. This
process provides additional information for understanding customer’s preferences. By utilizing
these click data efficiently, online retailers are able to make better decisions, such as pricing.
The finding from the real-world data (in Section 4.5) further demonstrates that incorporating
the random click data can significantly enhance the prediction accuracy of customer purchase
behaviors and increase the revenue of pricing decisions.

However, how to utilize clickstream data efficiently has been a challenge for online retailers.
The reasons are fourfold. First, modeling obstacles arise from the curse of dimensionality
associated with tracking click trajectories. The click model should be able to capture the
dependence of current browsing products, because the click behavior of customers is heavily
influenced by the product they are currently browsing. For instance, if customers like the
product they are currently browsing, they are more likely to click on similar products next.
Conversely, if customers dislike the current product, this may discourage them from clicking
on similar products and even increase the likelihood of leaving the website without making a
purchase. Existing literature often focuses on the click-through rate of each single product,
but these dynamically changing click behaviors are largely overlooked. For the studies on
click trajectory models, such as the cascade model (Craswell et al., 2008; X. Gao et al.,
2022), and the click chain model (Guo et al., 2009), they often assume a fixed sequence of
click behaviors and thus are unable to capture the random back-and-forth click transition
behaviors of customers. To address this first challenge, motivated by the connection between
click transitions of customers and state transitions within a Markov chain, we propose a joint

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 80

click and pricing model, called Markovian Dynamic Attraction Click (MDAC) model. In
MDAC model, each product is treated as a state in a Markov chain, where the transition
probability between each pair of states follows the typical attraction choice model (Luce,
1959). The attractiveness of one product relative to another is characterized by a term
called relative attraction value. This term captures the dependence of click transitions on
the currently browsed product. Such dependence has been modeled in various ways in prior
literature, as exemplified by Besbes, Gur, and Zeevi, 2016; Amaldoss and He, 2018. In our
study, by incorporating the click transition behavior using the MDAC model, we reduce the
prediction error of purchase behavior by approximately 15% in the test set and increase the
expected revenue by around 18% in the real-world dataset.

Given our click model, the second challenge is the scalability issue of learning customer’s
behaviors. The relative attraction values between all products form the attraction matrix.
When the entire product set is large, the attraction matrix between all products has a very
large dimension. With limited click and purchase data from each customer, it is difficult
to efficiently estimate this entire attraction matrix. To address this issue, we utilize the
similarity between products and explore similar click transition patterns. We characterize
these similarities by utilizing the low-rank structure of the attraction matrix, which is further
verified by using a real-world click dataset from JD.com, 2020. By incorporating the low-rank
structure, we can significantly reduce the prediction error for the purchase behavior when
using the same amount of click data.

The third challenge of utilizing clickstream data stems from the dynamic availability of
products. In practice, given a large number of products, not all of them are available for
purchase due to some exogenous factors. These factors include stockouts, limited editions,
discontinuation, customer-set filters, and geographical restrictions. For instance, Carmax, an
online used car platform, buys cars from customers and sells them online. The availability
of each car model is constantly changing, depending on the inflow and outflow of their
inventory. Additionally, when browsing cars to purchase, customers may set some specific
constraints, such as price, location, or functionality. These constraints will reduce the number
of products shown to customers. Some e-commerce sites may gray out or disable the link
to the unavailable products, which means that clickability is associated with purchasability.
Thus, due to the availability constraint, customers may only consider a limited number of
products before making a purchase or leaving the system. Given that online retailers cannot
control the availability of products, to prepare for any possible outcome of availability in the
future, it is crucial for retailers to understand customers’ click and purchase behaviors under
any product availability, necessitating the recovery of the entire attraction matrix.

However, estimating the entire attraction matrix is challenging because different customers
are presented with different available products, leading to varied click transition patterns.
This variation makes it difficult to combine the click data from different customers. To address
this issue, based on our MDAC model, we further propose efficient estimation algorithms
and pricing strategies that smartly integrate the click data across varying availabilities. By
utilizing limited but dynamically changing available product sets, we can effectively recover
the entire attraction matrix and thus optimize the pricing decisions with a small regret.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 81

The fourth challenge is how to efficiently infer pricing decisions from the click data.
Online retailers seek to adjust their pricing decisions timely as new customer data becomes
available. Thus, it is critical to design a computationally efficient and tractable framework
to integrate the pricing decisions into the learning process of the click model for online
retailers. Given that the pricing decision influences the click behaviors of customers, which
in turn affects future data collection and model estimation, the simple greedy pricing policy
is usually suboptimal for the joint pricing and learning problem. The design of the optimal
pricing policy typically involves the balance between exploration and exploitation, which
incurs a huge computational complexity, for example, J. Broder and Rusmevichientong, 2012.
However, in our MDAC model, we surprisingly discover that the greedy pricing policy yields
a low regret with a small computational complexity. This unexpected conclusion is attributed
to the inherent exploration facilitated by the random click behaviors.

4.1.1 Contributions

The contributions of our study are summarized as follows:

1. Formulation: Motivated by the similarity between click transitions and state transitions
in MDAC, this work is, to the best of our knowledge, the first attempt to use a
Markov chain-based model to capture user click trajectories. Compared to other click
models, our MDAC model incorporates high-dimensional click transition behaviors and
the dynamic availability of products. Our proposed model is supported by various
theoretical justifications, and its empirical performance is also validated using real-world
data.

2. Theoretical Contributions:

a) Estimation error bound under the low-rank structure: We propose efficient algo-
rithms to estimate the parameters in MDAC by using both click data and sales
data. To address the scalability issue of estimation, we utilize the similarities
between products and exploit the low-rank structure of the attraction matrix,
which is verified in a real-world dataset. For the estimation of this low-rank matrix,
we introduce a penalty based on the nuclear norm of the attraction matrix. We
demonstrate that leveraging the low-rank structure can reduce the estimation
error bound for the attraction matrix to Õ(

√
r ln(n)), where n and r denote the

number of products and the rank of the attraction matrix, respectively. This error
bound is smaller than the results Õ(

√
rn) in Kallus and Udell, 2020.

To address the estimation problem under dynamic availabilities of products, we
propose an efficient algorithm to integrate the estimation results from different
availabilities. It enables us to recover the entire attraction matrix and has a small
estimation error bound under the dynamic availabilities of products.

b) Offline Pricing Policy : We analyze the relations between the optimal prices and
the attraction matrix. Surprisingly, we found that a higher click-through rate does

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 82

not necessarily lead to a higher optimal price for a particular product. Instead,
whether the optimal price goes up or down depends on the notion of optimal
stationary revenue, which we introduce and define in this chapter.

c) Greedy Online Pricing Strategies and Regret Bounds: We consider the joint
estimation and pricing problem, where our current pricing decisions will influence
the click behaviors of customers and the future estimation of the click model.
Taking advantage of the structure of our click model, we provide an exploration-free
algorithm where we can greedily set optimal prices to maximize revenue from each
customer. We further derive an upper bound for the regret of our online algorithm
under the low-rank structure of the attraction matrix, which leads to a regret
reduction from Õ(n

√
T) to Õ(

√
nrT). We additionally derive regret bounds for

our greedy online pricing algorithms under dynamic availabilities.

3. Numerical Performance:

a) Our investigation of the real-world dataset shows the value and importance of
leveraging the click data. Firstly, our results show that using both the click data
and purchase data in the MDAC will have a much smaller prediction error for
the purchase behavior, compared to the estimation methods that only uses the
purchase data. Secondly, our results reveal that the estimation using both click
and purchase data can lead to better pricing decisions, and hence yields higher
revenue, compared to the estimation that only uses the purchase data.

b) Through extensive numerical experiments on both synthetic and real datasets, we
verify the assumptions regarding click behaviors. First, we verified the assumption
that customers’ currently clicked product can represent their state in the Markov
chain. We also verified the low-rank structure. Subsequently, we tested our online
algorithm using transaction and click data from JD.COM, a leading online retailer
in China. This demonstrates the efficacy and practical value of our greedy pricing
policy.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce our
click model, MDAC model. In Section 4.3, we propose algorithms to estimate the attraction
matrix in the MDAC under dynamic availability of products and characterize the estimation
error bound of the attraction matrix with a low-rank structure. In Section 4.4, we study
the pricing problem in the MDAC, where we first analyze the properties of optimal prices
in the static setting, and then in the online setting, we provide the exploration-free online
algorithm. In Section 4.5, we conduct numerical experiments to show superior performances
of our proposed algorithm.

4.1.2 Literature Review

Our work contributes to a few streams of literature: click models, joint pricing models, online
pricing algorithms, and low-rank matrix estimation.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 83

Click models. Characterizing which products customers will click or buy is a fundamental
problem in web analysis and online marketing. The click models can be naturally viewed
as a discrete choice model. However, the multinomial logit (MNL) model (in (Luce, 1959;
McFadden et al., 1973)) or Consider-Then-Choose (CTC) models (in (Qing Liu and Arora,
2011)) cannot capture the sequential search behavior of customers. Thus, various click models
have been proposed, for example, the Click-based MNL model (Aouad, J. Feldman, et al.,
2019), Engageability model (Besbes, Gur, and Zeevi, 2016), Position-Based model, Cascade
Click model, Dependent Click model and Click Chain model. We refer the reader to Chuklin,
Markov, and Rijke, 2015 for a detailed review. The cascade click model (Craswell et al., 2008;
Z. A. Zhu et al., 2010) is one of the most popular click models. X. Gao et al., 2022 further
propose a general cascade click model and analyze the optimal pricing policy and online
algorithms. However, several strong assumptions in the cascade click model might restrict its
flexibility. For example, the cascade click model assumes that customers click the products
according to a fixed sequence of products one-by-one, and will not return to the previously
clicked products. However, in reality, customers usually click between products back and
forth, to compare products and collect information. Therefore, the no-revisit assumption or
the fixed sequence assumption may not hold in reality. In contrast, in our proposed click
models, customers can randomly click on products back and forth.

Pricing models based on Markov chain. In the literature, some papers study pricing
models based on a Markov chain without click behaviors. For example, in Goutam, Goyal,
and Soret, 2019 and Dong, Simsek, and Topaloglu, 2019, they study the purchase behavior
of customers by a Markov chain, where state transitions are characterized by a transition
matrix. These models are generalizations of the Markov chain choice model (MCCM), a
discrete choice model proposed in Blanchet, Gallego, and Goyal, 2016. The flexibility of
the MCCM makes it more powerful in describing the complex behaviors of customers (See
Berbeglia, Garassino, and Vulcano, 2021; J. B. Feldman and Topaloglu, 2017, Goutam, Goyal,
and Soret, 2019; Dong, Simsek, and Topaloglu, 2019 for examples.) However, at the same
time, it brings higher complexities to the estimation problem. To estimate parameters by the
purchase data, Şimşek and Topaloglu, 2018 use an expectation-maximization algorithm to
estimate the transition matrix and Fu and Ge, 2021 adopt the subgradient descent method.
S. Li et al., 2022 and Gallego and W. Lu, 2021 consider learning the preferences of customers
and deciding assortments at the same time to minimize the regret. These estimation methods
only use sales data, while overlooking the click trajectories of customers. In addition to
the learning problem, Kleywegt and Shao, 2022 considers the joint pricing and assortment
optimization problem under a similar generalized Markov chain choice model.

It should be noted that the choice models in the above literature are not suitable for
modeling click behavior. This is because, in these models, the state transition matrix is
fixed and independent of the assortment. However, the click transition probability should
depend on the availability of products. Indeed, Dong, Simsek, and Topaloglu, 2019 notes
that state transitions in the above models are only conceptual transitions and are not the

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 84

real transitions of customers. Thus, in our study, apart from the above literature, we propose
a novel click model based on a Markov chain that specifically captures customers’ browsing
and purchase behaviors.

Online pricing. Online pricing is a natural setting when the demand function of customers
is unknown and needs to be learned on the fly. Various studies have proposed different
algorithms to minimize the regret, which refers to the cumulative revenue loss compared to the
optimal pricing policy. Suppose T is the length of the period. J. Broder and Rusmevichientong,
2012 shows a lower bound being Ω(

√
T) in the general parametric choice model and provides

a pricing policy matching this bound. Besbes and Zeevi, 2009 study both parametric and
non-parametric cases, and provide the lower bounds of regret in each case. When the
inventory is finite, the lower bound of regret can be reduced to Ω(log T), which is shown in
Boer and Zwart, 2015. Following this work, Qiang and Bayati, 2016 shows that the regret
of a greedy iterative pricing policy (i.e., setting the optimal prices based on the current
least squared estimation of parameters) can achieve the corresponding lower bound, when
the retailers have the extra demand covariates information. Ban and Keskin, 2020 consider
the personalized pricing problem with high-dimensional features and infinite inventories,
and propose algorithms that achieve the near-optimal regret. When the demand function
is time-varying, Keskin and Zeevi, 2017 propose an algorithm to update the estimation of
demand functions and change pricing strategies under some “variation” budget of prices,
whose regret matches the lower bound.

In addition to the single product pricing problem, determining the prices for multiple
items jointly is critical for online platforms when considering the relations between products,
for example, the substitution effect. Dong, Simsek, and Topaloglu, 2019 propose algorithms
to find the optimal prices under the GMCCM, and study the equilibrium of optimal prices
when there are multiple competitors. To solve pricing and assortment jointly and efficiently,
various choice models have been proposed and different efficient algorithms have been studied,
for example, Paul, J. Feldman, and Davis, 2018, Jagabathula and Rusmevichientong, 2017,
Alptekinoğlu and Semple, 2016, Yanqiao Wang and Shen, 2017, Ferreira and Mower, 2022,
P. Gao et al., 2021. N. Chen et al., 2021 propose a model-free assortment pricing algorithm
using the historical transaction data. When the parameters of the choice model are unknown,
the online learning version of the joint pricing and assortment problem has also been studied
recently. X. Gao et al., 2022 consider a general click cascade model, and use the idea of the
upper confidence bound (UCB) to find the optimal pricing and ranking in the online setting.
Miao and X. Chao, 2021 consider the MNL model, and solve the joint pricing and assortment
optimization problem using the idea of Thompson sampling.

Low-rank models. Low-rank matrix structure has made its appearance in many different
domains such as assortment optimization (Kallus and Udell, 2020), causal inference (Athey
et al., 2021; V. F. Farias, A. A. Li, and Peng, 2021; Agarwal et al., 2021), and recommender
systems (Jannach et al., 2010). Facing the exploration-exploitation dilemma, recent studies

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 85

have formulated rank-one bandits (Katariya et al., 2017), bilinear bandits with low-rank
structure (Jun et al., 2019), and low-rank bandits (Yangyi Lu, Meisami, and Tewari, 2021). Z.
Zhu et al., 2021 consider estimating the Markov transition matrix under low-rank structures
in the offline setting, while our work considers the low-rank matrix estimation in the online
setting with pricing decisions. In our work, to estimate the attraction matrix in the MDAC
with a low-rank structure, we extend the offline estimation algorithm in Kallus and Udell,
2020 from exponential cases to linear cases and derive a much smaller error bound. Based
on this novel error bound, we further develop a small regret bound using the proposed
exploration-free online algorithm.

4.2 Click Model with Purchase Behavior

In this section, we incorporate click data into pricing decisions by introducing our Markovian
Dynamic Attraction Click model (MDAC model). This model describes customers’ both
browsing and purchase behavior based on a Markov chain.

In practice, due to stockouts and other exogenous factors, not all products are available for
clicking. Therefore, before introducing our MDAC model, we clarify product availability in
Definition 4.2.1. In this chapter, to simplify the notation, we assume that the set of clickable
products is the same as the set of purchasable products. For instance, products that are out
of stock and thus not available for purchase are not displayed on the e-commerce platform.
If certain products are clickable but not purchasable, we can introduce a separate set for
purchasable products and our analysis would remain valid.

Definition 4.2.1 (Availability of products). If a product is clickable and purchasable, then
we say that this product is available.

The availability of products may vary among customers, resulting in distinct browsing
behaviors and purchase decisions. Given one customer, we assume that the availability of
products remains the same until she leaves the website or purchases one product.

Our Markovian Dynamic Attraction Click model is based on a Markov chain, where the
states of the Markov chain represent different products and the no-purchase alternative. The
product set contains n products, which is denoted by [n] = {1, 2, ..., n}. We use index 0 to
denote the no-purchase option of the customer and [n̄] to denote the set [n] ∪ {0}. We use
S ⊆ [n] to denote the set of available products. We denote the number of available products
by |S|. For simplicity, we define S̄ := S ∪ {0} and |S̄| := |S|+ 1.

The browsing and purchase behaviors of customers in MDAC are as follows. An arriving
customer initially clicks on product i with arrival probability λi for i ∈ [n], where

∑
i∈[n] λi = 1.

After a customer clicks on product i, she has three options: Purchase this product immediately,
click on other products, or leave the platform without any purchase. The probability of
purchasing this product immediately is defined as the instant purchase probability µ(i;p),
where p = {pi}ni=1 is a vector of prices of all products. The instant purchase probability

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 86

µ(i;p) is between [0, 1]. Since customers can only purchase the available products, we have
µ(i;p) = 0 for all i ∈ [n]\S.

If this customer does not purchase product i immediately, she transitions to the state
of other available products or the no-purchase state. Since the click behaviors of customers
depend on the availability of the products, to characterize the probability of click transitions,
given the available product set S, we define a click transition matrix ΘS ∈ R(|S̄|)×(|S̄|). Each
entry ΘS

ij where i, j ∈ S̄, denotes the probability that a customer clicks on product j right
after product i, conditional on the customer not purchasing product i. Thus, the probability
of clicking on product j right after clicking on product i is (1 − µ(i;p))ΘS

ij. Particularly,
(1− µ(i;p))ΘS

i0 denotes the probability that the customer leaves the system after clicking
product i without any purchase. The summation of transition probabilities equal 1; that is,∑

j∈S̄ Θ
S
ij = 1, ∀i ∈ S.

Given the available product set S, the click transition matrix ΘS is specified as follows:

ΘS
ij =

ρij∑
k∈S̄ ρik

, ∀i, j ∈ S̄. (4.1)

Here, ρij is called the relative attraction value of state j with respect to state i, for any
i,j ∈ [n̄]. Intuitively, ρij characterizes the attractiveness of state j after clicking on product i.
When ρij gets larger, the probability of transitioning to state j from state i gets larger. The
click transition probability ΘS

ij in (4.1) can be viewed as the attraction choice model (Luce,
1959) given the attractiveness ρij. The MNL choice model is a special case of the attraction
choice model.

The relative attraction value ρij is a universal parameter that does not depend on product
availability or prices. Since click transition probability in (4.1) is scale-independent of ρij,
without loss of generality, we assume that

∑
j∈[n̄] ρij = 1. We define the attraction matrix

ρ ∈ R(n+1)×(n+1), where each entry is the value of ρij. Since the no-purchase state is an
absorbing state, we have that ρ00 = 1 and ρ0j = 0 for j ̸= 0.

Overall, in the MDAC model, there are three sets of parameters: arrival probability
λ, attraction matrix ρ, and the instant purchase function µ(i;p). In MDAC, customers
continue to transition until they purchase the product in the current state or transition to
a no-purchase state. Thus, all these three sets of parameters jointly impact the purchase
behavior and transition path of one customer.

Our MDAC model is capable of characterizing three important properties for browsing
and purchase behaviors of online customers: relevance between products, limited products
availability, and joint pricing effect. These three properties are elaborated as follows.

Relevance between products. In MDAC model, the click transition probability ΘS
ij

depends on the current browsing product i. This dependence is the main feature that
separates our click models from other click models, including the cascade click model or the
click chain model. In practice, the next product to be clicked on often depends on what
product is currently being browsed. In the example of a used car website, if a customer clicks

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 87

on a very good deal for a specific car brand, she is more likely to click on cars of the same
brand next. Conversely, if she clicks on a bad deal for a brand, she may explore other brands
or leave the website without making any purchase. Thus, the click transition probability
is dependent on the current browsing product. Previous literature, such as Besbes, Gur,
and Zeevi, 2016; Amaldoss and He, 2018, has modeled this dynamic dependence in various
ways. In our MDAC model, then ρij is close to 1, product j is very likely to be clicked next
after product i is clicked. It is worth noting that ρij does not directly capture the similarity
between products i and j. For example, if products i and j are very similar but product i is
a bad deal, then this may discourage customers from clicking on product j, resulting in a
smaller ρij . Generally speaking, if products i and j are very similar, then the ith and jth rows
of attraction matrix ρ will be very similar. Moreover, since the similarities between products
involve multiple attributes, such as brand, model, mileage, and production year, the click
transition probability between products is a joint effect of these attributes. Particularly, the
rank of the attraction matrix ρ further describes the number of potential attributes (latent
factors) that influence the click transition probability, which will be discussed in detail in
Section 4.3.1.

Limited products availability. The click transition probability (4.1) indicates that the
click probability ΘS

ij is proportional to the relative attraction value ρij. This relation is
consistent with observations in practice: If more products become available, customers’
attention to each product will be smaller, and the probability of clicking on each product
(including the no-purchase alternative) will decrease. If there are fewer available products,
then customers are more likely to leave without purchase. Since the product availability
for different customers may vary, the click transition probability and purchase probability
also vary among products. This brings additional challenges in estimating the parameters in
MDAC from dynamic availability. Our MDAC enables a fast algorithm to recover ρ under
dynamic availabilities, which will be discussed in detail in Section 4.3.6. Besides, the dynamic
availability implies that the optimal pricing strategy also varies among customers. Our
MDAC model enables retailers to adapt the optimal pricing strategy to various availability,
which will be further discussed in Section 4.4.

Joint pricing effect. In the MDAC model, for the customer who is currently browsing
product i, she can purchase product i in two ways: She can either purchase this product
immediately, or she can transition back to product i and purchase it after some future
transitions to other states. Thus, the final purchase probability of product i depends on
the instant purchase function µ of all products, not only the price of product i. This
purchase probability is mathematically related to the general Markov chain-based choice
model (GMCCM) in Dong, Simsek, and Topaloglu, 2019; Kleywegt and Shao, 2022; Goutam,
Goyal, and Soret, 2019, when all products in GMCCM are within the assortment. In this case,
the purchase probability of MDAC is the same as the choice probability of GMCCM models,
which means that MDAC is able to describe the joint pricing effect on the purchase behavior.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 88

However, these two models are conceptually different and describe distinct scenarios. The
GMCCM focuses on the final purchase probability of products. Their transition probability is
fixed and independent of the assortment. This independence limits the capability of GMCCM
to characterize click transition behaviors under limited and dynamic availability. On the
other hand, our MDAC focuses on the role of prices and is effectively designed to capture
these click transition behaviors.

Our MDAC model integrates the purchase and click behaviors of customers. It is worth
noting that in our click model, we do not consider the effect of ranking, recommendation, or
limited display on the click behaviors. By (4.1), the click transition probability only depends
on the set of available products and the attraction matrix ρ. Our MDAC is also supported
empirically by the real-world dataset. As shown later in Figure 4.2 in Section 4.5.3, given
the same estimated parameters of ρ, λ, and µ, when utilizing the state information of one
customer revealed by her current clicked product, we can reduce the prediction error for her
final purchase behavior. This shows the benefit of using click data to predict the purchase
probability via real-world data.

4.3 Estimation of MDAC using Click Data

In this section, we propose algorithms to efficiently estimate the parameters in the MDAC
using both the click data and the purchase data. These parameters include the attraction
matrix ρ, the instant purchase probability µ(i;p), and the arrival probability λ. We first
discuss the formulation and algorithm for estimating the attraction matrix ρ under the
MDAC model. Next, we propose algorithms to estimate the instant purchase probability
µ(i;p). We further analyze the generalization error bound for the estimation of the low-rank
attraction matrix. Finally, we provide an efficient algorithm to estimate the attraction matrix
under the dynamic availability of products.

Given the available product set S, the click transition probability ΘS can be estimated
through the click transition data collected under this available product set S. Specifically, if
a customer clicks product j immediately after clicking product i, without purchasing product
i or leaving the platform, the system records a valid click transition pair as (i, j) or (i, 0). In
Section 4.5, we provide more details about how to identify the valid click transition pairs
from the click data. The set of valid click transition pairs under available product set S
is denoted by CS = {(iS1 , jS1), (iS2 , jS2), ..., (iSNS

, jSNS
)}, where NS is the total number of valid

click transition pairs under available product set S. Thus, a simple estimation of ΘS
ij is the

proportion of click transition pairs from i to j within CS. However, this simple estimation
would require a large number of click transition data to obtain a small estimation error,
especially when the number of products is large. Thus, to address the scalability issue, we
explore the similarities among products in the next section.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 89

4.3.1 Similarities Among Products

When the number of products n is large, estimating the attraction matrix ρ accurately is
challenging because there are n× n entries within the matrix. Even if the estimation error
for one entry is small, the cumulative estimation error for the entire attraction matrix can
be very large due to the high dimensionality of products, which may further result in the
sub-optimality of the pricing decisions. To overcome this issue, we realize that some products
may share some common properties or lie in the same categories. Utilizing the potential
similarities between products, we can group the click transition behaviors into several patterns.
The number of patterns can be much smaller than the total number of products. Thus,
by utilizing similarities between products, we can reduce the size of the search space when
estimating the attraction matrix ρ. It can accelerate the estimation process and yield a
smaller estimation error.

To characterize similarities between products, we assume the attraction matrix ρ to be
low-rank. Specifically, the matrix’s rank is at most r, potentially much smaller than n. This
low-rank structure suggests the existence of r latent factor transition patterns influencing the
click transition probability across the product set. The reason is as explained below. The
matrix ρ with rank r can be decomposed as ρ =

∑r
t=1 utv

T
t , where ut, vt ∈ Rn+1 are some

vectors. These vectors ut and vt can be interpreted as follows. Take a used car trading website
as an example, factors influencing click transition probability include car attributes like
mileage, production year, and other latent factors. If there are r such factors, the attraction
matrix’s rank is r. For each factor t, the ith entry in vector ut represents the impact of
product i on the factor t. Intuitively, a superior product with a high value in factor t will
likely encourage customers to click on other products also scoring high in that factor, hence
positively impacting factor t and making ui

t positive. For example, if factor t represents
mileage, and product i is a good car with high mileage, then product i has a positive impact
on the mileage attribute. In this case, ui

t is a positive number. Conversely, if product i is a
low-quality car with a high mileage, then product i has a negative impact on the mileage
attribute, resulting in a negative ui

t. Next, the jth entry in vector vt represents the impact
on the click transition probability to product j from factor t. Intuitively, if product j has a
high value in factor t, then factor t has a large impact on its click probability. For example,
if product j has a higher mileage, then the attribute t has a larger impact on product j,
resulting in a larger vjt . Thus, by summing over all possible attributes, the click transition
probability in the matrix

∑r
t=1 utv

T
t for each product can be described as a linear combination

of effect from these r potential factors. This low-rank structure significantly mitigates the
complexity of estimating the attraction matrix. We verified the low-rank structure of the
attraction matrix ρ using a real-world dataset in Section 4.5.2.

When the rank of the attraction matrix ρ is one, there is only one transition pattern
among products and our MDAC will reduce to the traditional MNL choice model. In this
case, for each click transition, customers will simply resample one product (or no-purchase
option) from the set of available products. When the rank is larger than one, our click model
is able to characterize heterogeneous transition patterns that depend on the current browsing

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 90

product.
Before introducing estimation algorithms, we first provide some additional notations for

the click data. Recall that CS is the set of click transitions under available product set S.
We use Xij to denote the indicator matrix whose entry in the ith row and the jth column is
one while the other entries are all zero. We use A · B to denote the sum of the entrywise
multiplication of two matrices A and B.

4.3.2 Estimating the Attraction Matrix with Low-Rank Structures

To estimate the attraction matrix ρ, we maximize the log-likelihood function of the click
transitions. To address the low-rank structure of the click attraction matrix ρ, we add a
term γ∥ρ∥∗ to the objective function, where ∥ · ∥∗ is the nuclear norm of the matrix and γ is
a positive multiplier for the regularization term. The value of γ will be specified later. In
particular, the formulation for the estimation problem is as follows:

min
ρ

L(ρ) := ℓmle(ρ) + γ∥ρ∥∗ (4.2)

s.t.
∑
j∈[n̄]

ρij = 1, ∀i ∈ [n] (4.2a)

ρij ≥ 0, ∀i ∈ [n], ∀j ∈ [n̄] (4.2b)

ρ00 = 1, ρ0j = 0, ∀j ̸= 0, j ∈ [n̄]. (4.2c)

Constraints (4.2a) and (4.2b) require each row of ρ to be a probability simplex, where
constraints (4.2a) require the sum of each row of ρ to be one. Constraint (4.2c) restricts the
no-purchase alternative to be an absorbing state. In objective function (4.2), ℓmle(ρ) is the
negative log-likelihood function of the click transition data. In the next paragraphs, exact
expressions of ℓmle(ρ) are provided.

Suppose that the clickstream data are collected from various sets of available products.
Under (4.1), for one available product set S, the negative log-likelihood function ℓmle(ρ;S)
can be written as:

ℓmle(ρ;S) =
1

NS

∑
t∈CS

[
ln(
∑
k∈S

Xitk · ρ)− ln(Xitjt · ρ)

]
.

Let St denote the set of available product sets shown by time t. Then, ℓmle(ρ) =
1

|St|
∑

S∈St
ℓmle(ρ;S). The objective L(ρ) is

L(ρ) = 1

|St|
∑
S∈St

ℓmle(ρ;S) + γ∥ρ∥∗. (4.3)

Given one available product set S, the negative log-likelihood function of click transition
matrix ΘS can be reduced to ℓmle(Θ

S) = 1
NS

∑
t∈CS

[
ln
(∑

j∈S Xitj ·ΘS
)
− ln(Xitjt ·ΘS)

]
. In

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 91

this case, the objective function (4.3) regarding to the available product set S is

L(ΘS) = ℓmle(Θ
S) + γ∥ΘS∥∗ =

1

NS

∑
t∈CS

[
ln
(∑

j∈S

Xitj ·ΘS
)
− ln(Xitjt ·ΘS)

]
+ γ∥ΘS∥∗.

(4.4)

Solving Problem (4.2) is non-trivial because although the nuclear norm is convex, ℓmle(ρ)
is not convex; thus, the objective function L(ρ) is not convex. However, L(ρ) is restricted
convex (see Appendix C.1.1), which implies that we can use the subgradient projection
method to solve (4.2). This algorithm is provided in Appendix 4.3.2.1, which is similar to
the gradient projection method in Fu and Ge, 2021. At each iteration, we used subgradient
descent to update ρ and then project ρ to the feasible space. As will be shown later in the
proof of Lemma 4.3.3, L(ρ) in Equation (4.3) is restricted convex in the feasible region, so
Algorithm 4 converges to the global optimal points, e.g., see Gafni, Bertsekas, et al., 1982
and Calamai and Moré, 1987.

4.3.2.1 Subgradient Projection Algorithm for Estimating the Transition Matrix

In this section, we provide the algorithm for solving (4.2) when estimating the transition
matrix. This subgradient projection algorithm is provided in Algorithm 4. The step size in
Algorithm 4 can be chosen according to the generalized version of the Armijo rule in Bertsekas,
1976. The projection step is equivalent to projecting each row of ρ to the probability simplex,
and the projection oracle can follow the procedures in W. Wang and Carreira-Perpinán, 2013.

Algorithm 4 Subgradient projection method for estimating the transition matrix

1: Input: Sequences of click data {Xitjt}t∈CS
. An oracle Proj(ρ) to project ρ to the feasible

region satisfying (4.2a), (4.2b) and (4.2c). Sequences of the step sizes am, the maximum
iteration number Miter, and the tolerance level vtol

2: Initialization: Set ρ(0) as ρij =
1
n̄
, ∀i ∈ [n], j ∈ [n̄]. Set the iteration number miter as 0

3: While (miter ≤Miter):
4: Calculate the subgradient of objective function (4.2) at point ρmiter as ∇Lmiter

5: Let ρmiter+1 ← Proj(ρmiter − amiter
∇Lmiter

)
6: If the improvement of the objective function (4.2) is less than vtol:
7: Break
8: Else:
9: miter ← miter + 1
10: Return ρmiter

The subgradient of the objective (4.2), ∇L(ρ) can be calculated in Lemma 4.3.1. We
denote the subgradient of the nuclear norm ∥ρ∥∗ by ∇∥ρ∥∗.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 92

Lemma 4.3.1. For the MDAC model, L(ρ) is restricted convex in the feasible space. The
subgradient of L(ρ) can be computed by:

∇L(ρ) = 1

|St|
∑
S∈St

1

N

N∑
t=1

[∑
j∈S Xitj∑

j∈S Xitj · ρ
− Xitjt

Xitjt · ρ

]
+ γ∇∥ρ∥∗.

4.3.3 Learning Purchase Behaviors

We next estimate the instant purchase probability µ(i;p) using the purchase data, given
the estimation of the attraction matrix ρ. In our study, we assume the instant purchase
probability µ(i;p) in the MDAC has the following form:

µ(i;p) = e−αipi for all i ∈ S,

where αi is the price elasticity of the instant purchase probability for product i and where pi
is the price of product i. Note that µ(i;p) does not depend on the prices of other products,
which is a commonly adopted assumption in Dong, Simsek, and Topaloglu, 2019 and Kleywegt
and Shao, 2022. To estimate the function µ(i;p), it suffices to estimate the price elasticity
vector α ∈ Rn.

Suppose that NB
i is the total number of click transition pairs starting with product i

when product i is available. Let Wii be the number of times that customers purchase product
i right after clicking product i within these NB

i transitions. Then, the log-likelihood function
of price elasticity αi can be written as

ℓpurchase(αi) = −αipiWii + (NB
i −Wii) ln(1− e−αipi). (4.5)

We can then estimate αi by maximizing the negative log-likelihood function (i.e., α̂i =
argmaxαi

ℓpurchase(αi)). Lemma 4.3.2 shows that ℓpurchase(αi) is concave with respect to αi.

Lemma 4.3.2. The negative log-likelihood function ℓpurchase(αi) is concave with respect to αi.

4.3.4 Estimation of Arrival Probability

In this section, we discuss the methods to estimate arrival probability λi. We use the purchase
data to estimate the arrival probability.

The purchase probability of product i for one customer, given the available product set S
and arrival rate λ can be written as π(λ; i, S) in (4.6) by Goutam, Goyal, and Soret, 2019 as

π(λ; i, S) = λT (In −Diag(1− µ(i;p))ρ)−1Π(S)ei, (4.6)

where

Π(S) =

µ(1;S, p1) 0 ... 0 (1− µ(1;S, p1))ρ10

0 µ(2;S, p2) ... 0 (1− µ(2;S, p2))ρ20
...
0 0 ... µ(n;S, pn) (1− µ(n;S, pn))ρn0

 .

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 93

Suppose the total customer viewing available product set S is KS and within these
customers, the number of customers who purchase product i is wS

i , then the log-likelihood
function is:

Larrival(λ) =
∑
S∈S

∑
i∈S

wS
i ln(π(λ; i, S)) +

∑
S∈S

∑
i∈S

(KS − wS
i) ln(1− π(λ; i, S)). (4.7)

Then, we estimate π(λ; i, S) using

π̂(λ; i, S) = arg max
π(λ;i,S)

Larrival(π(λ; i, S)),

which is a concave function of π(λ; i, S). After having π̂(λ; i, S), we can solve linear equations
(4.6) to get the estimation λ̂.

As will be shown in Section 4.4.1, the estimation of arrival probability λ does not influence
the optimal pricing decisions, so it does not change the revenue or the regret analysis of
online pricing.

4.3.5 Estimation Error Bound with Low-rank Structure

In this section, given the finite size of the training set, we quantify the estimation error bounds
for the parameters in MDAC. These estimation error bounds will prepare us to justify our
greedy pricing policy in Section 4.4. For the estimation error of the instant price elasticity αi,
the estimation error, |α̂i−αi| can be shown to converge to zero at rate O(1/

√
NB

i) (see, e.g.,
Theorem 1 in L. Li, Yu Lu, and Zhou, 2017), when NB

i click transition pairs are collected.
Now, we focus on the estimation error bound for the obtained transition matrix Θ̂S by

solving (4.2). Most literature on low-rank matrix recovery considers cases where the noise of
each entry is independent. In Problem (4.2), however, since customers’ click behavior is a
function of all the entries in one row, when maximizing the likelihood function of customers’
click data, the noise of the entries in one row are correlated. Therefore, the sample complexity
from the cases where the noise is independent is not applicable to our setting.

We use ∥ · ∥F to denote the Frobenius norm of a matrix. We first focus on the availability-
constrained click model under a given available product set. Recall that the objective
function is given in (4.4), and ΘS in (4.4) is a submatrix of ρ. Assumption 4.3.1 assumes the
boundedness of each entry in ΘS. The lower bound of ΘS in Assumption 4.3.1 ensures that
there exists a positive minimum probability for transitioning between any two products. The
upper bound ΘS

ij ≤
β2

|S| basically assumes that the transition probability is upper bounded by

O(1/|S|), which is reasonable since customers’ attention to each product may decrease when
more products become available. The boundedness of transition probability is a common
assumption in the low-rank estimation literature with state transitions (e.g., Theorem 3 in
Kallus and Udell, 2020, and Assumption 1 in Z. Zhu et al., 2021.)

Assumption 4.3.1. There exist constants β0 and β2, such that 0 < β0 ≤ β2 ≤ |S| and
β0 ≤ ΘS

ij ≤
β2

|S| , for all i ∈ S and j ∈ S̄.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 94

For simplicity, we denote min{β0,
1
β2
} by β1, and thus, we have β1 ≤ ΘS

ij ≤ 1
β1|S| , for all

i, j ∈ S̄.
Given any available product set S, Lemma 4.3.3 provides the finite-sample error bound of

the estimator Θ̂S for the MDAC model, where the true value of ΘS is denoted by Θ∗S.

Lemma 4.3.3 (Non-asymptotic error bound with fixed availability). Suppose that Assumption
4.3.1 holds. Given one set of available products S, suppose that there exists a constant c1
such that the number of clicks under this availability satisfies NS ≤ 2c1|S|2

9β2
2

. Then, for any

integer r ≤ |S| and parameter τ ≥ 1, setting γ = 1
2

√
8τ ln(2|S|)

NSβ1
, with probability at least

1− 4(2|S|)−τ/c1, any solution ∥Θ̂S∥to Problem (4.2) satisfies

∥Θ̂S −Θ∗S∥F ≤
128

β2
1

√
2τ r̃ ln(2|S|)

NSβ1

, (4.8)

where r̃ = max{rank(Θ∗S), r}.

When the rank of Θ∗S is r, Lemma 4.3.3 demonstrates that the estimation error in terms
of the Frobenius norm grows in the order of Õ(

√
r ln(|S|)), and converges to zero at rate

Õ(
√

1
NS

). Note that this result is smaller than the order Õ(
√
r|S|) in Kallus and Udell, 2020

and is in the same order as Theorem 1 in Z. Zhu et al., 2021, although our assumptions are
different. In Lemma 4.3.3, we assume NS ≤ O(|S|2), which is a technical requirement of the
proof, (same as Theorem 3 in Kallus and Udell, 2020, Remark 3 in Z. Zhu et al., 2021). When
NS is larger than O(|S|2), the platform has sufficient click data to estimate the transition
matrix, and does not need to consider the low-rank structure of it. In Lemma 4.3.3, τ is a
parameter to control the probability and estimation error. In the setting of online pricing in
Section 4.4.2, we will show how to set the value of τ .

Lemma 4.3.3 provides an error bound for the estimation for a given available product set
S. When the availability of products is dynamically changing, we can still solve Problem
(4.2) to obtain the estimation of the attraction matrix. However, since the click transition
behaviors are different under various availabilities, the derivation of the estimation error
bound is intricate. Thus, in Section 4.3.6, we provide another algorithm that allows us to
derive the error bound under various availabilities, by utilizing the results of Lemma 4.3.3.

4.3.6 Estimation Under Dynamic Availability

In reality, the range of available products is often limited due to exogenous factors such as
stockouts or discontinuation. In response to these uncontrollable external factors, online
retailers strive to adjust to any potential fluctuations in product availability. This adaptation
necessitates understanding the entire attraction matrix, making it crucial for retailers to
estimate this matrix based on the limited and dynamically changing pool of available products.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 95

In this section, we provide the algorithm as well as the error bound for estimating the entire
attraction matrix ρ under various available product sets.

The estimation algorithm for the entire attraction matrix ρ under various availabilities
is stated in Algorithm 5. The basic idea is that we first estimate the transition matrix
under each single available product set to obtain the estimation of submatrix ΘS

ij. Next,
we re-scale each submatrix to combine the results from different availabilities and get the
estimation of the full attraction matrix ρ. In this case, the error bound of the estimation
of the entire attraction matrix ρ can be obtained by combining the error bounds of the
estimated submatrix ΘS of each available product set. To recover the entire attraction matrix,
the variety of product availability should be sufficient to reveal the transition behaviors
between any pair of products. To describe this condition, we define the cover of all products
in Definition 4.3.1.

Definition 4.3.1 (Cover of all products.). We say that a set of available product sets Sc is a
cover of all products, if for any pair of products (i, j), i, j ∈ [n], there exists some available
product set S ∈ Sc such that both products are available, i.e., i ∈ S and j ∈ S.

Proposition 4.3.1 further shows that the cover of all products is a necessary condition to
estimate the entire attraction matrix under various availabilities.

Proposition 4.3.1 (Necessary condition for the estimation under various availabilites.).
Suppose that the click data are collected under a set of available product sets Sc. Under
the MDAC model, a necessary condition for the existence of the unique estimator of entire
attraction matrix ρ by solving Problem (4.2) with γ = 0 is that the set of available product
sets Sc is a cover of all products.

Proposition 4.3.1 shows that when γ = 0, there are multiple estimators for Problem (4.2)
if Sc is not a cover of all products. In this case, when γ > 0, the estimator with the smallest
nuclear norm would minimize objective (4.2), which may not be consistent with the true
attraction matrix ρ. Thus, Proposition 4.3.1 implies that although each available product
set does not have to include all products, the set of available product sets has to be a cover
of all products, in order to estimate the entire attraction matrix. Therefore, in Algorithm
5, to recover the entire attraction matrix, we assume the input is a cover of all products.
Because the numbers of click transition data under different availabilities are varied, the
estimation error bounds for each submatrix are also different. In order to get an estimation
of ρ with a small estimation error, we keep removing the estimation result with the largest
estimation error bound until the remaining available product sets are no longer a cover of all
products. This allows us to identify a cover whose largest error bound is minimized. Then,
we can integrate the estimation of the remaining submatrix and get the estimation of ρ. Let
S denote the set of all possible product available sets S, and the cardinality of S is denoted
by |S|.

Theorem 4.3.1 shows the error bound for Algorithm 5 when estimating the attraction
matrix in the MDAC model. We use errS to denote the estimation error for ΘS using Lemma
4.3.3, given the rank as r.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 96

Algorithm 5 Estimate the attraction matrix under dynamic availability

1: Input: A set of available product sets S which is a cover of all products; the click
transition data under each available product set S, for all S ∈ S; The rank of the
attraction matrix r.

2: For each available product set S ∈ S:
3: Estimate ΘS by solving Problem (4.2).
4: Sc ← S.
5: Sort the available product sets in nonincreasing order according to the value of ln(|S|)/NS.

After sorting, denote the sequence of available product sets by S(1), S(2), ..., S(|S|).
6: For i = 1, 2, ..., |S|:
7: If Sc\{S(i)} is still a cover of all products:
8: Remove S(i) from Set Sc.
9: Else:
10: Break.
11: Solve the following equations to get the estimation of attraction matrix ρ:{

ρij
ρi0

=
ΘS

ij

ΘS
i0
, ∃S ∈ Sc,∀i, j ∈ [n],∑

j∈[n] ρij = 1, ∀i ∈ [n].
(4.9)

12: Return matrix ρ and the cover Sc.

Theorem 4.3.1. Let ρ̂ and Sc be the outputs of Algorithm 5. Under the same setting of
Lemma 4.3.3, with probability at least 1− 4

∑
S∈Sc(2|S|)

−τ/c1, the estimated attraction matrix

ρ̂ satisfies ∥ρ̂− ρ∗∥F ≤
√∑

S∈Sc err
2
S.

Theorem 4.3.1 indicates that the estimation error of ρ can be upper bounded by the
ℓ2-norm of the vector for the estimation error bounds errS within the final cover Sc. The
largest size of output Sc is at most n2, so combining with Lemma 4.3.3, we obtain that the

estimation error is no more than Õ(n
√

r
Nmin

S
), where Nmin

S is the smallest number of clicks

for one available product set in Sc. In reality, to constitute a cover, the size of output Sc does
not need to be as large as n2. For example, if more than half of all products are available
each time, the size of Sc can be as small as n, so the estimation error bound in Theorem 4.3.1

can be in the order of Õ(
√

nr
Nmin

S
). These small error bounds prepare us to demonstrate the

effectiveness of the greedy pricing policy under dynamic availability of products.

4.4 Pricing from the Click Data

In this section, we study how to infer the optimal pricing strategies from the click data. First,
in Section 4.4.1, we reveal some insights on the change of optimal prices when click behaviors

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 97

change. Second, in Section 4.4.2, we propose an online algorithm to learn parameters in
the MDAC while simultaneously maximizing the revenue from pricing decisions. Finally, in
Section 4.4.3, we analyze the regret of our exploration-free online pricing algorithm.

4.4.1 Optimal Static Prices

Given the available product set S and parameters (ρ,α), the optimal prices depend on the
instant purchase probability µ(i;p). Recall in Section 4.3.3, we assume that the instant
purchase probability µ(i;p) = e−αipi for i ∈ S. For simplicity of expression and with a slight
abuse of notation, we use µ(pi) = µ(i;p) to denote the instant purchase probability. Let
R(p) denote the expected revenue from one customer when the price vector of the available
products is p ∈ R|S|. Suppose the cost of product i is ci, and the corresponding cost vector is
c. The expected revenue conditional on the current state i, denoted as ri, can be decomposed
into two parts: the instant revenue and future revenue. The instant revenue is the expected
revenue when customers purchase product i, if product i is available. Since the purchase
probability is µ(pi), this part can be written as µ(pi)(pi − ci). The future revenue refers to
the expected revenue when customers transition to other states, which can be written as(
1− µ(pi)

)∑
j∈[n] ρijrj . Therefore, by summing these two components, the expected revenue

can be expressed as

ri = µ(pi)(pi − ci) +
(
1− µ(pi)

)∑
j∈[n]

ρijrj. (4.10)

Then, the total profit is R(p) =
∑

i∈[n] λiri, where λi is the probability that a customer
entering the system visits product i.

To maximize the total profit R(p), we can utilize the iterative algorithm provided in
Dong, Simsek, and Topaloglu, 2019. They provide an algorithm to compute the optimal
price when the available product set is the entire product set. We extend their idea to a
more general setting in Algorithm 6. The key idea is that at each iteration, for the available
products within S, we set their prices to maximize the expected revenue including both the
instant and future expected revenue. We keep iterating until the difference between two
consecutive iterations ∥rt − rt+1∥2 is less than threshold ϵr.

In Algorithm 6, when achieving the optimal prices, the expected revenue of each product
will achieve the optimal stationary revenue defined in Definition 4.4.1.

Definition 4.4.1 ((Optimal) Stationary Revenue). We call ri(p;ρ,α) the stationary revenue
of product i if {ri(p;ρ,α)}i∈[n] satisfies Equation (4.10). Moreover, given ρ and α, we call
r∗i the optimal stationary revenue of product i, if r∗i satisfies:

r∗i =

max
pi

{
µ(pi)(pi − ci) +

(
1− µ(pi)

)∑
j∈[n]

ρijr
∗
j

}
, if product i is available,

∑
j∈[n]

ρijr
∗
j , otherwise.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 98

Algorithm 6 Optimal pricing in MDAC

1: Initialization: Initialize vector r0 ∈ Rn randomly
2: While (True):
3: For all Product i ∈ [n]:
4: If product i is available:
5: rt+1

i = maxpi{µ(pi)(pi − ci) +
(
1− µ(pi)

)∑
j∈[n] ρijr

t
j}

6: Else:
7: rt+1

i =
∑

j∈[n] ρijr
t
j

8: If ∥rt − rt+1∥2 ≤ ϵr: Break
9: Set pi ← argmax

{
µ(pi)(pi − ci) +

(
1− µ(pi)

)∑
j∈[n] ρijr

t
j

}
, for all i ∈ S

10: Return pi, for all i ∈ S

Furthermore, if r∗i > r∗j , we say that product i is more preferable than product j.

In Appendix C.2, we demonstrate that the adapted algorithm in Dong, Simsek, and
Topaloglu, 2019 converges to the optimal stationary revenue. Using the concepts of the
optimal stationary revenue, we characterize the relationship between optimal prices pi and
attraction matrix ρ in Proposition 4.4.1.

Proposition 4.4.1 (Optimal prices under the change of click transition probability). Given
transition matrices ρ and ρ′, suppose pi and p′i are the optimal prices of product i under
the parameters (ρ,α) and (ρ′,α) respectively. Suppose r∗i is the current optimal stationary
revenue from the customer at product i, under the attraction matrix ρ. Then,

1. If
∑

j∈[n] ρijr
∗
j ≤

∑
j∈[n] ρ

′
ijr

∗
j , for all product i, then we have p′i ≥ pi, ∀i ∈ [n];

2. If
∑

j∈[n] ρijr
∗
j ≥

∑
j∈[n] ρ

′
ijr

∗
j , for all product i, then we have p′i ≤ pi, ∀i ∈ [n].

Proposition 4.4.1 implies that when the attraction matrix changes from ρ to ρ′, the
change of optimal prices depends on the relations between

∑
j∈[n] ρijr

∗
j and

∑
j∈[n] ρ

′
ijr

∗
j . The

condition
∑

j∈[n] ρijr
∗
j ≤

∑
j∈[n] ρ

′
ijr

∗
j implies that customers are more likely to transition to

the products that offer higher optimal stationary revenue under ρ. Proposition 4.4.1 indicates
that if this condition holds for all product i, then after the change from ρ to ρ′, the optimal
prices for all the products are non-decreasing. We note two special cases for Proposition 4.4.1.
For small ϵ > 0:

1. First, suppose that ρ′ik = ρik + ϵ and ρ′i0 = ρi0 − ϵ, for one pair of product i, k ∈ [n];
and the other elements of ρ′ and ρ are the same. Then, by Proposition 4.4.1, we have
that the optimal price p′i ≥ pi, for all i ∈ [n]. This implies that if the probability of
customers’ transitioning to the no-purchase alternative is lower for some products, and
the rest of the attraction matrix remains the same, then the prices for all the products
are non-decreasing.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 99

2. Second, suppose that ρ′ik = ρik + ϵ for one pair of product i, k ∈ [n] and ρ′im = ρim − ϵ
for one pair of product i,m ∈ [n]; the other elements of ρ′ and ρ are the same. Suppose
that product k is more preferable than product m under the attraction matrix ρ. Then,
we have the optimal price p′i ≥ pi, for all i ∈ [n]. This observation implies that if the
probability of transitioning to some products that have higher revenue increases (or
equivalently, if the probability of transitioning to some products that have fewer revenue
decreases), and the rest of the attraction matrix remains the same, then the prices for
all the products are non-decreasing.

Proposition 4.4.2 demonstrates that under some conditions, the optimal prices are inde-
pendent of the transition probability ρij.

Proposition 4.4.2. If the attraction matrix ρ and cost vector c satisfy the following two
conditions:

1. ρi0 = ρj0, ∀i, j ∈ [n];

2. ci = cj, ∀i, j ∈ [n];

Then the optimal prices for all the products are the same.

Proposition 4.4.2 shows that when the transition probabilities to the no-purchase state
are the same for all the products and the costs are the same for all products, the optimal
prices for all the products are the same, which are independent of the transition probability
between the products. It implies that the parameters ρi0 and ci play an important role in
distinguishing the optimal prices between products.

4.4.2 Greedy Online Pricing Policy

In practice, given the constantly increasing amount of click data, the retailer would like to
update their pricing strategy promptly to maximize revenue. To achieve this goal, in this
section, we consider the online pricing problem where we simultaneously optimize the prices
of products and learn the parameters in the MDAC using the click data and purchase data.
Our goal is to minimize the cumulative revenue loss compared to the optimal prices, which is
defined as regret in (4.11).

Suppose the total number of customers is T and the price vector for customer t is pt,
then the regret of the online pricing problem can be written as:

Regret({pt}Tt=1) = T max
p
{R(p)} −

T∑
t=1

R(pt). (4.11)

In the online pricing setting, for each customer, our pricing decisions directly impact her click
and purchase behavior and thereby further impact the data collection process. Thus, optimal
pricing policies should consider not only the revenue from the current customer but also the

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 100

data collection process that will influence future decisions. For example, we might need to
leverage prices to incentivize customers to click on some rare products in the training set, in
order to design better prices in the future. This is referred to as the “exploration-exploitation”
tradeoff in the online learning. How to balance this tradeoff is the crux of designing online
pricing policies.

In our click model, to minimize the regret, one interesting observation is that we do not
need to do the exploration actively. In other words, our online pricing algorithm, Algorithm 7,
is an exploration-free algorithm that selects the best price greedily to maximize the revenue
from each customer.

Algorithm 7 Greedy Online Pricing Algorithm with Click Data

1: Initialization: Initialize the values of prices randomly.
2: For t = 1, ..., T do
3: Customer t arrives.
4: Collect the click transition data and purchase behavior of customer t. Update the set

of click transition pairs CS. Update NB
i and Wii for all products i.

5: Solve Problem (4.2) to update the estimation of attraction matrix ρ̂.
6: Update instant price elasticity α̂i ← argmaxαi

ℓpurchase(αi) in (4.5), ∀i ∈ [n].
7: Given the current availability of products, maximize the expected total revenue to

obtain the optimal price pt, with parameter (ρ̂, α̂).
8: Set price as pt.
9: End For

The basic idea of Algorithm 7 is as follows. For each customer t, we first collect the click
and purchase data from this customer. Then, we update our estimation for the parameters in
MDAC. Based on the new estimation, we optimize the prices to maximize the expected total
revenue. Compared to traditional online pricing algorithms that require actively exploring the
demands of different products at various prices, our online pricing algorithm is computationally
easier. This exploration-free online algorithm also enjoys a small regret bound, which will be
shown in Section 4.4.3.

4.4.3 Regret Analysis for Greedy Pricing Policy

To analyze the regret of Algorithm 7, we first make Assumption 4.4.1 on the boundedness of
the instant purchase probability. Assumption 4.4.1 assumes the boundedness of prices and
instant price elasticity, which is reasonable in practice.

Assumption 4.4.1. The prices for products are bounded by [p, p] where p > 0; The instant
price elasticity αi for all products is bounded by [α, α] where α > 0.

Recall that Assumption 4.3.1 assumes that β2

n
≥ ρij ≥ β1, for all i, j ∈ [n]. When

Assumptions 4.3.1 and 4.4.1 hold, we have that exp(−pαβ2) ≤ µ ≤ exp(−pαn/β1) ≤

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 101

exp(−pα/β1) < 1. For simplicity, we denote the lower and upper bounds for µ by µ and µ,
respectively. We use ∥ · ∥1 to denote the maximum absolute sum of the rows in the matrix,
i.e., ∥ρ∥1 = maxi∈S̄

∑
j∈S̄ |ρij|. We further denote maxi∈S̄ |αi| by ∥α∥∞. Recall ri(p;ρ,α)

denotes the stationary revenue of the customer clicking product i, given the price vector p and
parameters (ρ,α). Before explaining how we derive the regret of our online exploration-free
algorithm, we first show that ri in Algorithm 6 has a Lipschitz property, with respect to the
prediction error of ρ and α.

Lemma 4.4.1. Suppose that Assumptions 4.3.1 and 4.4.1 hold. Assume p1 and p2 are the
optimal price vectors with respect to the parameters (ρ1,α1) and (ρ2,α2), respectively. Then
we have that ri(p1;ρ1,α1)− ri(p2;ρ1,α1) ≤ L1∥ρ1 − ρ2∥1 +L2∥α1 −α2∥∞, for any product

i ∈ [n], where L1 =
2αp2

µ+αp
and L2 =

(1+α3p)p
α(µ+αp)

.

We explain here why exploration-free algorithms work in theory: First, the instant
purchase probability µ is assumed to be upper bounded by µ. It ensures that regardless of
prices, each customer has some positive probability of transiting to any state. This implies
that the amount of click data corresponding to any transition pair grows at least linearly in
terms of the number of customers with high probability. Thus, according to Lemma 4.3.3, the
estimation error of ρ decreases in the order of O(

√
1/T), where T is the number of customers,

irrespective of the prices. Second, the estimation error of the price elasticity αi also decreases
in the order of O(

√
1/T) for all the products by the lower bound of the transition probability.

Hence, the estimation error bounds of both parameters ρ and α decrease in the order of
O(
√

1/T), which are independent of the prices. As shown in Lemma 4.4.1, the one-step
regret can be upper bounded by the sum of the estimation errors of ρ and α. Therefore,
combining all these results, our exploration-free algorithm achieves a regret of order Õ(

√
T).

Lemma 4.4.2 (Regret bound under full availability). Suppose that Assumptions 4.3.1 and
4.4.1 hold. Assume the rank of the attraction matrix is r and all products are available. There
exists a constant C such that when T ≥ C(1 + ln(1

δ
)), with probability 1− 3δ, the regret of

Algorithm 7 is at most

Regret({pt}Tt=1) ≤
(2L2

p
+

c2L1

β2.5
1

√
nr
)√

T ln
(nT

δ

)
,

for some constant c2 > 0.

In Lemma 4.4.2, the regret is in the order of Õ(
√
nrT). The order of T matches the

lower bound of regret of the online pricing problem in J. Broder and Rusmevichientong, 2012.
In the multi-product problem, the naive regret grows in O(n), by treating each product
independently. In our study, by considering and utilizing the low-rank structure of the
attraction matrix, we reduce the regret to Õ(

√
nr), which is a significant reduction.

Next, we consider the case where the availability of products is limited and dynamically
changing, for example, due to stockouts or logistic delays. Note that in order to minimize

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 102

regret, we do not need to recover the entire attraction matrix, especially when the availability
at each time is limited. Thus, we consider a new pricing policy where each available product
set is treated independently. In this case, at each iteration, given the product availability, we
estimate the submatrix of the attraction matrix by using the previous click data collected
under this available product set. Then, we optimize the prices of the available products based
on the estimation of this submatrix. We refer to this pricing policy as the availability-focused
pricing policy. Theorem 4.4.1 shows that in the worst case, for any sequence of product
availabilities, the regret bound of our availability-focused pricing algorithm is sublinear with
respect to the number of customers.

Theorem 4.4.1 (Worst-case regret bound under availability-focused pricing policy). For
any sequences of the available product sets, under the same conditions as Lemma 4.4.2, the
regret of availability-focused pricing policy satisfies that with probability at least 1− 2δ, for
any sequence of available product sets, the cumulative regret is at most(

c2L1

β2.5
1

√
nr2n + 2

L2c1
p(1− µ)

)√
T ln(T/δ).

In Theorem 4.4.1, the regret bound is a square root function of the number of customers
T . Since we consider the worst case of the available product sets, the scale of the regret
bound is O(2n/2).

Note that the availability-focused pricing policy does not recover the entire attraction
matrix. This means that when a specific combination of available products has never appeared
before, the availability-focused pricing policy would perform badly because the data from
other available product sets is not used. To address this issue, retailers need to estimate the
preferences for all the products under dynamic availability. To recover the entire attraction
matrix under the dynamic availability, as indicated by Proposition 4.3.1, the set S must be a
cover of all products. Thus, we next consider a special case of product availability. Particularly,
we assume that for each customer, the available product set is uniformly chosen from a set S.
In this case, the scale of the regret bound can be much smaller than O(2n) in Theorem 4.4.1.
We further denote the maximum number of available products for one customer by Ñ . Then,
Theorem 4.4.2 provides the regret bound under the dynamic availabilities.

Theorem 4.4.2 (Regret bound under dynamic i.i.d. availabilities). Suppose that at each
iteration, the set of available products is uniformly selected from a set S, where S is a cover
of all products. Under the same conditions as Lemma 4.4.2, there exists a constant C such
that when T ≥ C|S|(1 + ln(|S|

δ
)), with probability 1− 4δ, the regret of Algorithm 7 is at most

Regret({pt}Tt=1) ≤
(2L2

p
+

c2L1

β2.5
1

√
Ñr
)√
|S|T ln

(ÑT

δ

)
,

for some constant c2 > 0.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 103

The upper bound in Theorem 4.4.2 shows that our exploration-free online pricing algorithm

achieves the regret in the order of Õ(
√

Ñ |S|rT) under the dynamic availability. We compare

this regret bound with the regret bounds in Lemma 4.4.2 and Theorem 4.4.1 as follows.
Intuitively, when one customer can see at most Ñ available products, then in practice, we
expect that the cardinality of |S| is Õ(n2/Ñ) to constitute a cover of the entire product set.
When |S| ≤ Õ(n2/Ñ) , the order of the regret bound in Theorem 4.4.2 is Õ(n

√
rT), which

is a significant reduction from the worst case in Theorem 4.4.1 and is slightly larger than
the regret bound with full availability. The scale of the regret bound gets larger than the
bound in Lemma 4.4.2 because when the availability of products dynamically changes, we
need a longer time to accumulate the click data under various availabilities to estimate the
entire attraction matrix. However, this regret bound is still sublinear with respect to the
number of customers T . As a special case of Theorem 4.4.2, when Ñ = |S|, i.e., all products
are available, the regret bound reduces to Õ(

√
nrT) with |S| = 1. This result is consistent

with Lemma 4.4.2 under the full availability.

4.5 Numerical Experiments

In this section, we test our estimation algorithms and greedy pricing policies using the
real-world click data. In Sections 4.5.1 - 4.5.4, we explain our use of real-world click data to
demonstrate the effectiveness of our estimation algorithm for Problem (4.2). In Section 4.5.5,
we discuss how we test the performance of our greedy online algorithm, Algorithm 7, using
real-world data. In Section 4.5.6, we use synthetic data to verify the theoretical insights on
the optimal prices and the impact of product availability.

4.5.1 Data Preprocessing For the Real-World Data

In our numerical experiments, we use the public click data in JD.com, 2020 to estimate the
attraction matrix. In the original dataset, we have two tables describing the order information
and click data. Table 4.1 shows one sample of the records in these two tables. In the first
dataset, we have the IDs of items, users, and timestamps of one-click events. In the second
dataset, we have the purchase information of one order, including the IDs of the order, user,
item, prices, and purchase time.

JD.com, 2020 provided click data and purchase data for more than 31,000 products. To
select the proper products for our experiments, we calculated the total number of clicks for all
the products and selected the top 50 products. We then filtered the click data and purchase
data to restrict our dataset to these 50 products, resulting in six million click records and
more than 180,000 purchase records. Note that the first transition pair of each click trajectory
depends on both the arrival probability and the attraction matrix. Thus, when estimating
the transition matrix, for each click trajectory, we drop the first click transition pair, and
add the rest of the click transition pairs into the set CS.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 104

sku ID user ID request time channel

581d5b54c1 9a71d488b4 2018-03-01 01:09:25 mobile

order ID user ID sku ID order time final unit price

d0cf5cc6db 0abe9ef2ce 581d5b54c1 2018-03-01 17:14:25.0 79.0

Table 4.1: Sample of dataset

We connected the click records and purchases by their time and customer ID. To illustrate,
for one customer, we divided the sequence of her click records into multiple click trajectories.
Each click trajectory for this customer showed her entry into the system, her browsing of
the products, and either her departure from the system or a purchase. We identified one
click trajectory for one customer according to the following rules: If we found no click data
for this customer after the last purchase or no click data for this customer during the past
24 hours, the new click record of this customer was set as the starting point for a new click
trajectory. Thus, if we found no click behavior or purchase by a customer within 24 hours
after the last click record, we assumed that this customer left the system without a purchase.
In the MDAC, we assumed that a customer has to transit to the state of product i before she
purchases product i. As a result, customers are assumed to click product i before purchasing
it. However, in the dataset, there are cases in which customers may click product j instead
of i where j ̸= i, before purchasing product i. Therefore, for each purchase record, we added
one click record of the same product at the same time artificially into the click dataset. Then,
within the click trajectory—for example, {i0, i1, i2, i3, ..., it}—we generated the set of click
transition pairs {(i1, i2), (i2, i3)...., (it−1, it)}, where it is the state of no-purchase or purchase.
On average, each customer makes 5.72 clicks before purchasing a product or leaving without
any purchase. These click sequences contain repeated clicks on the same products, which
indicates the back-and-forth click behaviors of customers.

4.5.2 Estimation Methods

In this section, we provide the details of our estimation method and benchmark method.
There are three sets of parameters, The attraction matrix ρ, price elasticity α, and the arrival
probability λ. Since we select 50 products with the top click rate, the attraction matrix ρ is
a R51×51 matrix.

Firstly, we implement the benchmark method (the orange and green curves in Figure
4.2) in the following way. This estimation method only uses the purchase data. Due to
the mathematical relations of the purchase probability between our MDAC model and the
traditional GMCCM model, this benchmark can also be viewed as the estimation method
for the GMCCM with sales data with fixed assortments. In this method, the attraction

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 105

matrix ρ, price elasticity α, and the arrival probability λ are estimated by minimizing
the negative log-likelihood function. However, optimizing these three sets of parameters
jointly is non-trivial since the problem is non-convex. There is no literature that provides
efficient algorithms to estimate these parameters, and it is still an open question to estimate
these parameters jointly in MDAC in general cases. Thus, we adopt a heuristic alternative
optimization algorithm. Particularly, we fixed the other parameters and optimized ρ, α,
and λ in sequence to minimize the negative likelihood function. We repeat iterations until
the reduction is small or the number of iterations exceeds the threshold (which is set as 5).
Within each iteration, we use the gradient descent to optimize ρ, α, and λ. The gradients of
each entry in ρ, α, and λ are calculated as follows. Recall that the purchase probability in
MDAC is given in (4.6). The derivative of the purchase probability for product i with respect
to the attraction matrix ρ is

∂π(ρ; i, S)

∂ρ
= λ(In −Diag(1− µ(i;p))ρ)−1Diag(1− µ(i;p))·

In(In −Diag(1− µ(i;p))ρ)−1([Π(S)]·,i)
T ,

where [Π(S)]·,i represents the ith column of the matrix Π(S). The last column represents the
no-purchase alternative.

The derivative of the no-purchase probability for the no-purchase options with respect to
the attraction matrix ρ is

∂π(λ; i, S)

∂ρ
=
(
λ(In −Diag(1− µ(i;p))ρ)−1

)T
Diag(1− µ(i;p)).

Throughout the experiments, we assume all products share the same αi. When estimating
α and λ, we also use gradient descent to minimize the negative log-likelihood function. In
experiments, we use the numerical approximation to obtain a gradient of α and λ.

Secondly, we implement our proposed estimation method (the blue curve in Figure 4.2)
in the following way. It uses both the purchase and click data. To leverage the click data,
we estimate the attraction matrix ρ by solving Problem (4.2). The click data in the real
world contains a lot of noise and outliers. Thus, we need to clean the data carefully. The
data pre-processing part is the same as that for 50 products in Section 4.5.1 except for the
following few rules:

• The channels of click data contain ‘APP’, ‘PC’, ‘mobile’, and ‘others’. Among all
channels, the click data within the ‘APP’ counts about 85% of the total clicks. Thus,
after selecting ten products with the top click rates, we further restrict the click data
in the channel of ‘APP’. These ten products are the available product set set.

• To select the orders that are related to the clicks in the ‘APP’, we remove the purchase
records that have no click data in ‘APP’ before the purchase. These purchases may
come from ‘PC’ or other channels.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 106

• To avoid the correlations between click data, we select only one click stream from one
customer. In other words, if a customer has multiple purchase behaviors (including
no-purchase) in the dataset, we only select the first click stream.

• We aggregate multiple consecutive clicks on the same products by the same customer
within one minute. The single click without subsequent clicks or purchases is treated
as noise and thus removed.

In the data cleaning process described above, we selected only one of the channels (‘APP’)
and 10 specific products. This makes identifying no-purchase behavior challenging. Customers
might click on products in other channels or on products not among the selected 50. Since
we still record these as no-purchase behaviors in our click data set, the estimation of the
transition probability to the no-purchase state, ρi,0, might be inaccurate. These inaccurate
estimation of ρi,0 may cause bias for the pricing decision and estimation results. Thus, we
re-estimate the transition probability to the no-purchase state in the following way. We
re-estimate the value of ρi,0 based on the solutions of Problem (4.2). Particularly, suppose
wi,j is estimation results by Algorithm 4 of Problem (4.2), j ∈ [n̄] in the training set, then
the value of attraction matrix ρi,j is

ρi,j =

{
(1− ρi,0)

wi,j∑
j∈[n̄] wi,j

, j ̸= 0

ρi,0, j = 0.

ρi,0 are optimized iteratively to minimize the negative likelihood function of the purchase
probability. For α and λ, we adopt the alternative optimization method to update these
values. When updating α, we minimize the likelihood of the clicks in Equation (4.5).

After the data cleaning process, we select 4000 customers in the test set, which counts
about 25% of the total customers. For the rest of the customers, we select 5, 25, 45, .., 125
customers into the training set for each trial. We run 10 independent trials in total. The
85% confidence intervals of the prediction error are shown in Figure 4.3.

When estimating the attraction matrix, since we use the nuclear norm to approximate the
low-rank constraint, the optimal solution of problem (4.2) does not have an exact low-rank
structure. Thus, we use the following rule to transform its output to a low-rank attraction
matrix. Suppose the desired rank is r and the output attraction matrix is ρ̂γ . We use SVD to

decompose ρ̂γ to ρ̂γ = ÛΣ̂V̂ T , where Σ̂ is a diagonal matrix, whose entries are the singular

values of ρ̂γ . Then, we keep the first r largest singular values in Σ̂ and set the others to zero.
This filtered diagonal matrix is denoted by Σr. Then, we obtain a low-rank matrix ρr by
ρr = ÛΣrV̂

T . Then, we renormalize each row of ρr such that the sum of the row is one,
which yields an attraction matrix ρ̂r

low.
The value of the penalty multiplier γ controls the rank of the output attraction matrix.

Given a value of rank r, the value of γ is chosen by a grid search, such that the approximation
error ∥ρ̂γ − ρ̂r

low∥2 is minimized. We initialize randomly and then use gradient descent to
optimize. The step size is chosen adaptively according to Kallus and Udell, 2020. Figure 4.1

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 107

shows the sum of the mean squared error of all rows in the test set, versus the rank of the
matrix. It shows that when the rank is less than 10, the total prediction error benefits from
the increase in rank and that when the rank is larger than 10, the benefit is not much. Thus,
we choose 10 as the rank of the attraction matrix.

Figure 4.1: Rank selection.

In the next section, we demonstrate how to predict the purchase behaviors of each
customer based on the estimation results of the parameters in the MDAC.

4.5.3 Prediction Methods

In this section, we provide the details of how to predict the purchase probability, given
the estimated parameters in MDAC in Section 4.5.2. Additionally, we demonstrate that
incorporating click data can reveal the currently browsed product and reduce prediction error,
as evidenced by the results in Figure 4.2.

In Figures 4.2, the MSE for the prediction error is calculated as follows. Suppose there
are T customers, n products. Customer t made wt clicks in the click stream.

The average prediction error for the orange curve is calculated as:

1

T

1

n

∑
i∈[n̄]

T∑
t=1

(
pi,t −Ni,t

)2
,

where pi,t is the predicted purchase probability for product i, i ∈ [n̄] for customer t.
The prediction error corresponding to the green curve and blue curve in Figure 4.2 and

the blue curve in Figure 4.3 is:

1

T

1

n

1

wt

∑
i∈[n]

T∑
t=1

wt∑
j=1

(
pji,t −Ni,t

)2
,

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 108

where pji,t is the predicted purchase probability for product i for i ∈ [n̄] conditional on that
the current state is the clicked product for click j of customer t.

Figure 4.2: Predicting error of purchase probability for different estimating methods

The orange curve in Figure 4.2 shows the prediction error (mean squared error) of purchase
behavior when the click data is not used in the estimation or prediction process. The blue
and green curves use the same prediction methods but different estimation methods. These
two curves show the prediction errors when utilizing the click data in the prediction process,
by assuming that the current clicked product of one customer represents the state of this
customer in MDAC. In the estimation process, the green curve only uses the sales data to
estimate the parameters in MDAC, which is the same as the orange line, while the blue curve
uses both click and sales data to estimate the parameters in MDAC.

Thus, Figure 4.2 demonstrates the benefit of click data in the following two ways:

• First, by comparing the green and orange curves, we note that these two methods have
the same estimation process of the parameters, but the predictions of the purchase
probability are different, and have different MSE. Thus, we conclude that the prediction
that is conditional on the current clicked products has a lower MSE than the prediction
that does not consider the clicked products. This supports the assumption that the
current clicked product represents the current state of this customer in MDAC.

• Second, by comparing the green curve and blue curves, it shows that using both click
and sales data to estimate the parameters in MDAC has a smaller MSE than the
estimation method that only uses the sales data. This indicates the value of considering
the click data when estimating the parameters in MDAC.

We would like to emphasize that, the estimation methods in Section 4.5.2 show a much
better performance than the benchmarks in Figure 4.2, without utilizing the low-rank structure

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 109

of the transition matrix. When the number of products is large, like 50 products in Section
4.5.1, utilizing the low-rank structure of the attraction matrix could have an even better
performance.

4.5.4 Revenue of Pricing Decisions

To illustrate the practical value of connecting MDAC and click behaviors, we further calculate
the expected revenue of our click model and the benchmark method. In particular, we use
the MDAC model to predict the purchase probability and compare the revenue of the pricing
decisions based on the following two pricing methods:

• In the first method, we only use the sales data to estimate the parameters in MDAC
and predict the purchase probability.

• In the second method, we use both click and sales data to estimate the parameters in
MDAC.

Figure 4.3: Expected revenue under MDAC model using click or click + sales data.

In Figure 4.3, the estimations of the parameters for the orange and blue curves are
the same as Figure 4.2. The optimal prices under each set of parameters are obtained by
Algorithm 6. After obtaining the optimal prices, the expected revenue in the test set is

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 110

calculated by the stationary revenue defined in Definition 4.4.1. The true parameters of
the MDAC model in the test set, are estimated by both the click and purchase data. This
estimation method in the test set is the same as the estimation method of the blue curve in
Figure 4.2.

Our results demonstrate the effectiveness of leveraging click data to improve revenue.
Figure 4.3 shows the expected revenue of the optimal pricing under two estimation methods.
The orange curve represents the revenue from optimal pricing when the parameters are
estimated by the purchase data only; the blue curve represents the revenue when parameters
are estimated by both the purchase and click data. By comparing these two curves, we show
that utilizing the click data can help to find the best prices and increase the revenue by
approximately 18%.

4.5.5 Performance of Online Greedy Algorithms

We examine the performance of our proposed online Algorithm 7 using simulation. To
generate the click transition pairs from the click trajectory, we used the following rules. We
selected 10 products with the highest click rate as the entire product set. We selected the
first 20, 000 click transition pairs as the training set and the following 10, 000 click transition
pairs as the test set. Suppose the true value of the attraction matrix is the transformed
attraction matrix with rank 10 under the training set in Section 4.5.1, which is denoted by ρ∗.
For simplicity, we assume all products share the same αi in the numerical experiments. The
true value of price elasticity αi is also the MLE estimator in the training set, whose value is
α∗
i = 0.0523. The arrivals of customers are generated according to the real-world data in the

training set. The prices of all the products we offer are unchanged for one customer. When
this customer leaves the system, we will update the estimation of parameters in the model,
and update the prices for all the products. The transition behaviors and purchase behaviors
of customers are generated from the simulation under the true parameters (ρ∗,α∗). Since
we cannot observe the cost of the products, the cost is assumed to be c = 0.7× p× (1 + ϵ),
where ϵ follows the standard Gaussian distribution.

As pointed out by Theorem 4.4.2, when the number of available products is limited, the
set of various available product sets should constitute a cover of the entire product. In our
numerical experiment, we change the number of available products from 10 to 8. When all of
ten products are available, then the available product set itself is a cover. When only 9 out
of 10 products are available, in order to constitute a cover, the minimum number of available
product sets is 3, i.e., |S| is at least 3. When 8 products are available, we need at least 6
available product sets to form a cover. To compute the regret of each step, we evaluate R(pt)
by 1

n̄

∑
i∈[n̄] r̂

t
i , where r̂ti are the stationary revenues of product i, given the prices as pt and

the parameters as (ρ∗,α∗). For each setting, we run 20 independent trials and calculate the
mean of one-step regret for 20 trials, which is R(p∗) −R(pt) and p∗ denotes the optimal
prices under true parameters (ρ∗,α∗).

The plot in Figure 4.4 shows the cumulative regret of online algorithms under different
numbers of available products, with 95% confidence intervals. This shows that the regret of

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 111

Figure 4.4: Cumulative regret for the exploration-free online algorithm under different sizes
of the available product set

our exploration-free online learning algorithm achieves a sublinear regret. It further shows
that when the number of available products gets smaller, the scale of regret of our algorithm
gets larger because it needs more time to explore the entire product set. This insight is
consistent with Theorem 4.4.2.

4.5.6 Synthetic Data

As the last part of the numerical experiment, we explain how we validate our proposed models
using synthetic data. With the three sets of numerical experiments, discussed in Section 4.5.6,
we demonstrate how the optimal pricing policies depend on the parameters of the MDAC.

Experimental setup. In the synthetic data set, we generate 50 products indexed by
1, 2, ..., 50, whose costs are all zero. For product i, ρi0 is set as 0.05 + 0.01 × i, so the
transition probability to the no-purchase state increases as the index increases. The transition
probabilities to other states are drawn uniformly for each product. Proposition 4.4.2 indicates
that the optimal stationary revenue and optimal prices highly depend on ρi0. Therefore, this
construction will generate a decreasing list of optimal stationary revenue and a decreasing
list of optimal prices. In other words, product 1 has the highest optimal stationary revenue,
and highest optimal prices. The value of price elasticity αi in µ(·) is set as 0.0523 for all

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 112

product i, which is the empirical maximizer of the likelihood function of purchase in Section
4.5.5. The optimal stationary revenue of product i is denoted by r∗i .

Our first example illustrates the properties developed in Proposition 4.4.1, which indicates
that the optimal prices of one product depend on both the optimal stationary revenue and the
attraction matrix. The second example shows the non-monotonicity of the optimal stationary
revenue with respect to the probability to transit to the no-purchase state. It also shows the
impact of the cost.

4.5.6.1 Verification and insights of Proposition 4.4.1.

To verify Proposition 4.4.1, we change the attraction matrix as follows. We select the products
indexed by 25 and 26, and reduce ρ25,26 by 0.01. For each product m ̸= 26, we increase ρ25,m
by 0.01. Figure 4.5 shows the change of the optimal prices for products 25, 26 and m, with
respect to the change of optimal stationary revenue r∗m − r∗26. The results, shown in different
colors in Figure 4.5, also are shown in different scales. If this difference is positive, customers
are more likely to click the products with higher optimal stationary revenue, after clicking
product 25. Figure 4.5 shows that when customers are more likely to click the products with
higher optimal stationary revenue, rather than the products with less optimal stationary
revenue, the prices for all three products (products 25, 26, and m) would increase. On the
other hand, when the difference is negative, the prices for all three products would decrease,
which is consistent with Proposition 4.4.1. Proposition 4.4.1 further states that the trend of
prices is the same for all the products; it is not limited to products 25, 26 and m. Note that
in Figure 4.5, there is a spike for product m when m = 25. The reason is that when m = 25,
the probability of transitioning to product 25 itself gets increased. Note that this difference
in optimal prices of product 25 is shown in both the orange curve and the blue solid line, but
with different scales.

4.5.6.2 Relations between the optimal stationary revenue and ρi0.

In the second example, we examine the relations between the optimal stationary revenue and
ρi0. In this example, ρi0 is the same as in the basic setting, but the transition probabilities to
other states are generated randomly according to a Gaussian distribution and then rescaled
such that the row sum is one. We select a set of products indexed by 25, 30, 35, 40, and 45
to increase its cost solely by 20 for each instance. The blue dots in Figure 4.6 demonstrate
that there are some products with higher ρi0 having higher optimal stationary revenue, which
means that the optimal stationary revenue is not monotone on ρi0. It also shows that the cost
increase of one product will reduce the optimal prices of other products, which is consistent
with Lemma 4 in Dong, Simsek, and Topaloglu, 2019.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 113

Figure 4.5: Difference of optimal prices vs. the difference of optimal stationary revenue.

4.5.6.3 Relations between the optimal prices and the size of available product
set.

In this example, we examine the relations between the optimal prices and the size of available
products. We consider 50 products in total. The attraction matrix is generated randomly.
The instant price elasticity is the same as the previous setting. The cost for product i is i+5.
We select the first X products as available products, where X is from 5 to 40 products. The
optimal prices are obtained by Algorithm 6. We demonstrate the optimal prices for the first
4 products as examples in Figure 4.7. The x-axis is the number of available products.

Figure 4.7 shows that when more products become available, the prices for the first four
products increase. To intuitively explain this trend, we first claim that when the optimal
stationary revenue of one product decreases, the optimal prices of other products would
decrease. This claim is shown in the proof of Proposition 4.4.1. Moreover, the fewer products
are available, the more products deviate from their optimal prices. Consequently, their
stationary revenue decreases. As a result, the optimal price of products decreases.

4.6 Concluding Remarks

In this chapter, we studied how to use the high-dimensional click transition data of customers
to make pricing decisions for online retailers. We proposed the MDAC model that connects
the click and purchase behaviors. We provided efficient algorithms to solve estimation

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 114

Figure 4.6: Optimal stationary revenue vs. ρi0.

problems under the dynamic availability of products. To address the scalability issue when
estimating the parameters in the MDAC, we utilized the low-rank structure of the attraction
matrix in the MDAC. Moreover, we studied the online pricing problem, and provided an
exploration-free algorithm. We showed that by leveraging the click data, the estimation error
bound and regret can be much smaller than the methods that use sales data only. We also
conducted numerical experiments on the real-world dataset, which verified that our click
models and greedy pricing policy can help retailers reduce the learn customers’ preferences
and increase revenue.

From this work, we see several intriguing directions for future research that are worth
investigating. First, we assume that the instant purchase probability is a function of price
but that the attraction matrix is independent of price. This assumption is consistent with
most studies that incorporate prices into the Markov chain process (e.g., (Dong, Simsek, and
Topaloglu, 2019; Kleywegt and Shao, 2022)). However, a more general scenario in which the
attraction matrix depends on price is worth studying as it adds more model complexity to
the attraction matrix. Secondly, our current model assumes the stationarity and homogeneity
of customers. In future research, a nonstationary preference and personalized pricing strategy
in the MDAC would be worth investigating.

CHAPTER 4. PRICING FROM CLICK TRANSITION DATA 115

Figure 4.7: Optimal prices vs. Number of the available products

116

Bibliography

Agarwal, Anish et al. (2021). “Causal Matrix Completion”. In: arXiv preprint arXiv:2109.15154.
Agrawal, Shipra et al. (2017). “Thompson sampling for the MNL-bandit”. In: arXiv preprint

arXiv:1706.00977.
— (2019). “Mnl-bandit: A dynamic learning approach to assortment selection”. In: Operations

Research 67.5, pp. 1453–1485.
Alptekinoğlu, Aydın and John H Semple (2016). “The exponomial choice model: A new

alternative for assortment and price optimization”. In: Operations Research 64.1, pp. 79–
93.

Amaldoss, Wilfred and Chuan He (2018). “Reference-dependent utility, product variety, and
price competition”. In: Management Science 64.9, pp. 4302–4316.

Amos, Brandon and J Zico Kolter (2017). “Optnet: Differentiable optimization as a layer in
neural networks”. In: International Conference on Machine Learning. PMLR, pp. 136–145.

Aouad, Ali, Vivek Farias, and Retsef Levi (2021). “Assortment optimization under consider-
then-choose choice models”. In: Management Science 67.6, pp. 3368–3386.

Aouad, Ali, Jacob Feldman, et al. (2019). “The Click-Based MNL Model: A Novel Framework
for Modeling Click Data in Assortment Optimization”. In: Available at SSRN 3340620.

Aouad, Ali, Retsef Levi, and Danny Segev (2018). “Greedy-like algorithms for dynamic
assortment planning under multinomial logit preferences”. In: Operations Research 66.5,
pp. 1321–1345.

Athey, Susan et al. (2021). “Matrix completion methods for causal panel data models”. In:
Journal of the American Statistical Association 116.536, pp. 1716–1730.

Balcan, Maria-Florina, Alina Beygelzimer, and John Langford (2009). “Agnostic active
learning”. In: Journal of Computer and System Sciences 75.1, pp. 78–89.

Balcan, Maria-Florina, Andrei Broder, and Tong Zhang (2007). “Margin based active learning”.
In: International Conference on Computational Learning Theory. Springer, pp. 35–50.

Ban, Gah-Yi and N Bora Keskin (2020). “Personalized dynamic pricing with machine learning:
High dimensional features and heterogeneous elasticity”. In: Forthcoming, Management
Science.

Ben-Akiva, Moshe E and Steven R Lerman (1985). Discrete choice analysis: theory and
application to travel demand. Vol. 9. MIT press.

Berbeglia, Gerardo, Agust́ın Garassino, and Gustavo Vulcano (2021). “A comparative empiri-
cal study of discrete choice models in retail operations”. In: Management Science.

BIBLIOGRAPHY 117

Berthet, Quentin et al. (2020). “Learning with differentiable pertubed optimizers”. In:
Advances in neural information processing systems 33, pp. 9508–9519.

Bertsekas, Dimitri P (1976). “On the Goldstein-Levitin-Polyak gradient projection method”.
In: IEEE Transactions on automatic control 21.2, pp. 174–184.

Bertsimas, Dimitris and Nathan Kallus (2020). “From predictive to prescriptive analytics”.
In: Management Science 66.3, pp. 1025–1044.

Bertsimas, Dimitris and Velibor V Mǐsić (2019). “Exact first-choice product line optimization”.
In: Operations Research 67.3, pp. 651–670.

Besbes, Omar, Yonatan Gur, and Assaf Zeevi (2016). “Optimization in online content
recommendation services: Beyond click-through rates”. In: Manufacturing & Service
Operations Management 18.1, pp. 15–33.

Besbes, Omar and Assaf Zeevi (2009). “Dynamic pricing without knowing the demand function:
Risk bounds and near-optimal algorithms”. In: Operations Research 57.6, pp. 1407–1420.

Beygelzimer, Alina, Sanjoy Dasgupta, and John Langford (2009). “Importance weighted
active learning”. In: Proceedings of the 26th annual international conference on machine
learning, pp. 49–56.

Blanchet, Jose, Guillermo Gallego, and Vineet Goyal (2016). “A markov chain approximation
to choice modeling”. In: Operations Research 64.4, pp. 886–905.

Boer, Arnoud V den and Bert Zwart (2015). “Dynamic pricing and learning with finite
inventories”. In: Operations research 63.4, pp. 965–978.

Broder, Josef and Paat Rusmevichientong (2012). “Dynamic pricing under a general para-
metric choice model”. In: Operations Research 60.4, pp. 965–980.

Cai, Wenbin, Muhan Zhang, and Ya Zhang (2016). “Batch mode active learning for regression
with expected model change”. In: IEEE transactions on neural networks and learning
systems 28.7, pp. 1668–1681.

Calamai, Paul H and Jorge J Moré (1987). “Projected gradient methods for linearly constrained
problems”. In: Mathematical programming 39.1, pp. 93–116.

Castro, Rui, Rebecca Willett, and Robert Nowak (2005). “Faster rates in regression via active
learning”. In: NIPS. Vol. 18, pp. 179–186.

Chao, Min-Te and WE Strawderman (1972). “Negative moments of positive random variables”.
In: Journal of the American Statistical Association 67.338, pp. 429–431.

Chen, Ningyuan et al. (2021). “Model-free assortment pricing with transaction data”. In:
arXiv preprint arXiv:2101.02251.

Chen, Xi and Yining Wang (2017). “A Note on a Tight Lower Bound for MNL-Bandit
Assortment Selection Models”. In: arXiv preprint arXiv:1709.06109.

Cheung, Wang Chi and David Simchi-Levi (2017). “Thompson Sampling for Online Person-
alized Assortment Optimization Problems with Multinomial Logit Choice Models”. In:
Available at SSRN 3075658.

Chuklin, Aleksandr, Ilya Markov, and Maarten de Rijke (2015). “Click models for web search”.
In: Synthesis lectures on information concepts, retrieval, and services 7.3, pp. 1–115.

Chung, Tsai-Hsuan et al. (2022). “Decision-Aware Learning for Optimizing Health Supply
Chains”. In: arXiv preprint arXiv:2211.08507.

BIBLIOGRAPHY 118

Cohn, David, Les Atlas, and Richard Ladner (1994). “Improving generalization with active
learning”. In: Machine learning 15.2, pp. 201–221.

Craswell, Nick et al. (2008). “An experimental comparison of click position-bias models”. In:
Proceedings of the 2008 international conference on web search and data mining, pp. 87–94.

Dasgupta, Sanjoy, Daniel J Hsu, and Claire Monteleoni (2007). A general agnostic active
learning algorithm. Citeseer.

Demirovic, Emir et al. (2020). “Dynamic programming for predict+ optimise”. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020. AAAI Press, pp. 1444–1451.

Demirović, Emir et al. (2019). “Predict+ optimise with ranking objectives: Exhaustively
learning linear functions”. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019.
International Joint Conferences on Artificial Intelligence, pp. 1078–1085.

Désir, Antoine, Vineet Goyal, Srikanth Jagabathula, et al. (2021). “Mallows-smoothed dis-
tribution over rankings approach for modeling choice”. In: Operations Research 69.4,
pp. 1206–1227.

Désir, Antoine, Vineet Goyal, Danny Segev, et al. (2020). “Constrained assortment opti-
mization under the Markov chain–based choice model”. In: Management Science 66.2,
pp. 698–721.

Dong, James, A Serdar Simsek, and Huseyin Topaloglu (2019). “Pricing problems under the
markov chain choice model”. In: Production and Operations Management 28.1, pp. 157–
175.

Donti, Priya, Brandon Amos, and J Zico Kolter (2017). “Task-based end-to-end model learning
in stochastic optimization”. In: Advances in neural information processing systems 30.

El Balghiti, Othman et al. (2019). “Generalization bounds in the predict-then-optimize
framework”. In: Advances in neural information processing systems 32.

— (2022). “Generalization bounds in the predict-then-optimize framework”. In: Mathematics
of Operations Research.

Elmachtoub, Adam N and Paul Grigas (2022). “Smart “predict, then optimize””. In: Man-
agement Science 68.1, pp. 9–26.

Elmachtoub, Adam N, Henry Lam, et al. (2023). “Estimate-Then-Optimize Versus Integrated-
Estimation-Optimization: A Stochastic Dominance Perspective”. In: arXiv preprint
arXiv:2304.06833.

Elmachtoub, Adam N, Jason Cheuk Nam Liang, and Ryan McNellis (2020). “Decision trees for
decision-making under the predict-then-optimize framework”. In: International Conference
on Machine Learning. PMLR, pp. 2858–2867.

Farias, Vivek F, Andrew A Li, and Tianyi Peng (2021). “Uncertainty Quantification For
Low-Rank Matrix Completion With Heterogeneous and Sub-Exponential Noise”. In: arXiv
preprint arXiv:2110.12046.

BIBLIOGRAPHY 119

Feldman, Jacob B and Huseyin Topaloglu (2017). “Revenue management under the Markov
chain choice model”. In: Operations Research 65.5, pp. 1322–1342.

Feng, Yifan (2020). “Active Learning in Marketplaces and Online Platforms”. PhD thesis.
The University of Chicago.

Ferreira, Kris Johnson and Emily Mower (2022). “Demand Learning and Pricing for Varying
Assortments”. In: Manufacturing & Service Operations Management.

Fu, Lei and Dong-Dong Ge (2021). “A Gradient Descent Method for Estimating the Markov
Chain Choice Model”. In: Journal of the Operations Research Society of China, pp. 1–11.

Gafni, Eli M, Dimitri P Bertsekas, et al. (1982). Convergence of a gradient projection method.
Laboratory for Information and Decision Systems.

Gallego, Guillermo and Wentao Lu (2021). “An Optimal Greedy Heuristic with Minimal
Learning Regret for the Markov Chain Choice Model”. In: Available at SSRN 3810470.

Gao, Pin et al. (2021). “Assortment optimization and pricing under the multinomial logit
model with impatient customers: Sequential recommendation and selection”. In: Operations
research 69.5, pp. 1509–1532.

Gao, Ruijiang and Maytal Saar-Tsechansky (2020). “Cost-accuracy aware adaptive labeling
for active learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34, pp. 2569–2576.

Gao, Xiangyu et al. (2022). “Joint learning and optimization for multi-product pricing (and
ranking) under a general cascade click model”. In: Management Science.

Goutam, Kumar, Vineet Goyal, and Agathe Soret (2019). “A Generalized Markov Chain
Model to Capture Dynamic Preferences and Choice Overload”. In: arXiv preprint
arXiv:1911.06716.

Grigas, Paul, Meng Qi, et al. (2021). “Integrated conditional estimation-optimization”. In:
arXiv preprint arXiv:2110.12351.

Guo, Fan et al. (2009). “Click chain model in web search”. In: Proceedings of the 18th
international conference on World wide web, pp. 11–20.

Hanneke, Steve (2007). “A bound on the label complexity of agnostic active learning”. In:
Proceedings of the 24th international conference on Machine learning, pp. 353–360.

— (2011). “Rates of convergence in active learning”. In: The Annals of Statistics, pp. 333–361.
Ho, Chin Pang and Grani A Hanasusanto (2019). “On data-driven prescriptive analytics

with side information: A regularized nadaraya-watson approach”. In: URL: http://www.
optimization-online. org/DB FILE/2019/01/7043. pdf.

Hu, Yichun, Nathan Kallus, and Xiaojie Mao (2022). “Fast rates for contextual linear
optimization”. In: Management Science.

Jagabathula, Srikanth and Paat Rusmevichientong (2017). “A nonparametric joint assortment
and price choice model”. In: Management Science 63.9, pp. 3128–3145.

Jannach, Dietmar et al. (2010). Recommender systems: an introduction. Cambridge University
Press.

JD.com (2020). 2020 Data Driven Research Challenge - MSOM Society. url: https://
connect.informs.org/msom/events/datadriven2020 (visited on 03/18/2022).

https://connect.informs.org/msom/events/datadriven2020
https://connect.informs.org/msom/events/datadriven2020

BIBLIOGRAPHY 120

Jun, Kwang-Sung et al. (2019). “Bilinear bandits with low-rank structure”. In: International
Conference on Machine Learning. PMLR, pp. 3163–3172.

Kääriäinen, Matti (2006). “Active learning in the non-realizable case”. In: International
Conference on Algorithmic Learning Theory. Springer, pp. 63–77.

Kallus, Nathan and Xiaojie Mao (2023). “Stochastic optimization forests”. In: Management
Science 69.4, pp. 1975–1994.

Kallus, Nathan and Madeleine Udell (2020). “Dynamic assortment personalization in high
dimensions”. In: Operations Research 68.4, pp. 1020–1037.

Kao, Yi-hao, Benjamin Roy, and Xiang Yan (2009). “Directed regression”. In: Advances in
Neural Information Processing Systems 22.

Katariya, Sumeet et al. (2017). “Bernoulli Rank-1 Bandits for Click Feedback”. In: arXiv
preprint arXiv:1703.06513.

Keskin, N Bora and Assaf Zeevi (2017). “Chasing demand: Learning and earning in a changing
environment”. In: Mathematics of Operations Research 42.2, pp. 277–307.

Kleywegt, Anton J and Hongzhang Shao (2022). “Revenue Management Under the Markov
Chain Choice Model with Joint Price and Assortment Decisions”. In: arXiv preprint
arXiv:2204.04774.

Kotary, James et al. (2021). “End-to-end constrained optimization learning: A survey”. In:
arXiv preprint arXiv:2103.16378.

Krishnamurthy, Akshay et al. (2017). “Active learning for cost-sensitive classification”. In:
International Conference on Machine Learning. PMLR, pp. 1915–1924.

Kuznetsov, Vitaly and Mehryar Mohri (2015). “Learning theory and algorithms for forecasting
non-stationary time series”. In: Advances in neural information processing systems 28.

Lei, Yanzhe et al. (2022). “Joint product framing (display, ranking, pricing) and order
fulfillment under the multinomial logit model for e-commerce retailers”. In: Manufacturing
& Service Operations Management 24.3, pp. 1529–1546.

Li, Lihong, Yu Lu, and Dengyong Zhou (2017). “Provably optimal algorithms for generalized
linear contextual bandits”. In: International Conference on Machine Learning. PMLR,
pp. 2071–2080.

Li, Shukai et al. (2022). “Online Learning for Constrained Assortment Optimization under
Markov Chain Choice Model”. In: Available at SSRN 4079753.

Liu, Heyuan and Paul Grigas (2021). “Risk bounds and calibration for a smart predict-then-
optimize method”. In: Advances in Neural Information Processing Systems 34.

Liu, Mo et al. (2023). “Active Learning in the Predict-then-Optimize Framework: A Margin-
Based Approach”. In: arXiv preprint arXiv:2305.06584.

Liu, Qian and Garrett Van Ryzin (2008). “On the choice-based linear programming model
for network revenue management”. In: Manufacturing & Service Operations Management
10.2, pp. 288–310.

Liu, Qing and Neeraj Arora (2011). “Efficient choice designs for a consider-then-choose
model”. In: Marketing Science 30.2, pp. 321–338.

Loke, Gar Goei, Qinshen Tang, and Yangge Xiao (2022). “Decision-driven regularization: A
blended model for predict-then-optimize”. In: Available at SSRN 3623006.

BIBLIOGRAPHY 121

Lu, Yangyi, Amirhossein Meisami, and Ambuj Tewari (2021). “Low-rank generalized linear
bandit problems”. In: International Conference on Artificial Intelligence and Statistics.
PMLR, pp. 460–468.

Luce, R Duncan (1959). Individual choice behavior. John Wiley.
Lyu, Chengyi et al. (2021). “Assortment Optimization with Multi-Item Basket Purchase

under Multivariate MNL Model”. In: Available at SSRN 3818886.
Mandi, Jayanta and Tias Guns (2020). “Interior Point Solving for LP-based prediction+

optimisation”. In: Advances in Neural Information Processing Systems 33, pp. 7272–7282.
Mandi, Jayanta, Peter J Stuckey, Tias Guns, et al. (2020). “Smart predict-and-optimize for

hard combinatorial optimization problems”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 34-02, pp. 1603–1610.

McFadden, Daniel et al. (1973). Conditional logit analysis of qualitative choice behavior.
Institute of Urban and Regional Development, University of California Oakland.

Miao, Sentao and Xiuli Chao (2021). “Dynamic joint assortment and pricing optimization with
demand learning”. In: Manufacturing & Service Operations Management 23.2, pp. 525–
545.

Ho-Nguyen, Nam and Fatma Kılınç-Karzan (2022). “Risk guarantees for end-to-end prediction
and optimization processes”. In: Management Science.

Paul, Alice, Jacob Feldman, and James Mario Davis (2018). “Assortment optimization and
pricing under a nonparametric tree choice model”. In: Manufacturing & Service Operations
Management 20.3, pp. 550–565.

Puterman, Martin L (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Qiang, Sheng and Mohsen Bayati (2016). “Dynamic pricing with demand covariates”. In:
Available at SSRN 2765257.

Rakhlin, Alexander, Karthik Sridharan, and Ambuj Tewari (2015). “Sequential complexities
and uniform martingale laws of large numbers”. In: Probability theory and related fields
161, pp. 111–153.

Rusmevichientong, Paat, Zuo-Jun Max Shen, and David B Shmoys (2010). “Dynamic assort-
ment optimization with a multinomial logit choice model and capacity constraint”. In:
Operations research 58.6, pp. 1666–1680.

Saar-Tsechansky, Maytal, Prem Melville, and Foster Provost (2009). “Active feature-value
acquisition”. In: Management Science 55.4, pp. 664–684.

Sauré, Denis and Assaf Zeevi (2013). “Optimal dynamic assortment planning with demand
learning”. In: Manufacturing & Service Operations Management 15.3, pp. 387–404.

Settles, Burr (2009). Active learning literature survey. University of Wisconsin-Madison
Department of Computer Sciences.

Şimşek, A Serdar and Huseyin Topaloglu (2018). “An expectation-maximization algorithm
to estimate the parameters of the markov chain choice model”. In: Operations Research
66.3, pp. 748–760.

Sugiyama, Masashi and Shinichi Nakajima (2009). “Pool-based active learning in approximate
linear regression”. In: Machine Learning 75.3, pp. 249–274.

BIBLIOGRAPHY 122

Talluri, Kalyan and Garrett Van Ryzin (2004). “Revenue management under a general discrete
choice model of consumer behavior”. In: Management Science 50.1, pp. 15–33.

Tang, Bo and Elias B Khalil (2022). “PyEPO: A PyTorch-based End-to-End Predict-then-
Optimize Library for Linear and Integer Programming”. In: arXiv preprint arXiv:2206.14234.

Tropp, Joel A (2012). “User-friendly tail bounds for sums of random matrices”. In: Foundations
of computational mathematics 12.4, pp. 389–434.

Tulabandhula, Theja, Deeksha Sinha, and Prasoon Patidar (2020). “Multi-purchase behavior:
Modeling and optimization”. In: Available at SSRN 3626788.

Wang, Weiran and Miguel A Carreira-Perpinán (2013). “Projection onto the probability
simplex: An efficient algorithm with a simple proof, and an application”. In: arXiv preprint
arXiv:1309.1541.

Wang, Yanqiao and Zuo-Jun Max Shen (2017). Joint optimization of capacitated assortment
and pricing problem under the tree logit model. Tech. rep. Technical report, University of
California, Berkeley, CA.

Wilder, Bryan, Bistra Dilkina, and Milind Tambe (2019). “Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33-01, pp. 1658–1665.

Yang, Junwen and Yifan Feng (July 2023). “Nested Elimination: A Simple Algorithm for Best-
Item Identification From Choice-Based Feedback”. In: Proceedings of the 40th International
Conference on Machine Learning. Ed. by Andreas Krause et al. Vol. 202. Proceedings of
Machine Learning Research. PMLR, pp. 39205–39233. url: https://proceedings.mlr.
press/v202/yang23b.html.

Yurtsever, Alp and Suvrit Sra (2022). “CCCP is Frank-Wolfe in disguise”. In: Advances
in Neural Information Processing Systems. Ed. by Alice H. Oh et al. url: https://
openreview.net/forum?id=OGGQs4xFHrr.

Zheng, Zhiqiang and Balaji Padmanabhan (2006). “Selectively acquiring customer information:
A new data acquisition problem and an active learning-based solution”. In: Management
Science 52.5, pp. 697–712.

Zhu, Taozeng, Jingui Xie, and Melvyn Sim (2022). “Joint estimation and robustness opti-
mization”. In: Management Science 68.3, pp. 1659–1677.

Zhu, Zeyuan Allen et al. (2010). “A novel click model and its applications to online advertising”.
In: Proceedings of the third ACM international conference on Web search and data mining,
pp. 321–330.

Zhu, Ziwei et al. (2021). “Learning Markov models via low-rank optimization”. In: Operations
Research.

https://proceedings.mlr.press/v202/yang23b.html
https://proceedings.mlr.press/v202/yang23b.html
https://openreview.net/forum?id=OGGQs4xFHrr
https://openreview.net/forum?id=OGGQs4xFHrr

123

Appendix A

Proof for Chapter 1

A.0.1 Proofs for Section 2.3

Proof of Lemma 2.3.1. Without loss of generality, assume that νS(c1) ≥ νS(c2), i.e.,
we have that 0 ≤ ∥c1 − c2∥ < νS(c1). We also claim that νS(c2) > 0. Indeed, since
νS is a 1-Lipschitz distance function, it holds that νS(c1) − νS(c2) ≤ ∥c1 − c2∥ < νS(c1)
and hence νS(c2) > 0. As above, let {vj : j = 1, ..., K} be the extreme points of S, i.e.,
S = conv(v1, . . . , vK). Since νS(c1) > 0 and νS(c2) > 0, both w∗(c1) and w∗(c2) must be
extreme points solutions, i.e., w∗(c1) = vj1 and w∗(c1) = vj2 for some indices j1 and j2.

We now prove the lemma by contradiction. If w∗(c1) ̸= w∗(c2), then by (2.4), the following
two inequalities hold:

νS(c1) ≤
cT1 (w

∗(c2)− w∗(c1))

∥w∗(c2)− w∗(c1)∥∗
, νS(c2) ≤

cT2 (w
∗(c1)− w∗(c2))

∥w∗(c1)− w∗(c2)∥∗
.

We add up both sides of the above two inequalities, and get

νS(c1) + νS(c2) ≤
(c1 − c2)

T (w∗(c2)− w∗(c1))

∥w∗(c2)− w∗(c1)∥∗
≤ ∥c1 − c2∥∥w∗(c2)− w∗(c1)∥∗

∥w∗(c2)− w∗(c1)∥∗
= ∥c1 − c2∥,

where the second inequality uses Hölder’s inequality. Because ∥c1 − c2∥ < νS(c1), we have
that νS(c1) + νS(c2) ≤ ∥c1 − c2∥ < νS(c1). This implies that νS(c2) < 0, which contradicts
that νS is a non-negative distance function. Thus, we conclude that w∗(c1) = w∗(c2).

Proof of Lemma 2.3.2. Let t ≥ 0 be given. First, we show that, for any given x ∈ X ,
infh∗∈H∗{νS(h∗(x))} ≥ 2bt implies that νS(ht(x)) ≥ bt. Indeed, since νS is a 1-Lipschitz
distance function, we have that |νS(h∗(x)) − νS(ht(x))| ≤ ∥ht(x) − h∗(x)∥ for all h∗ ∈ H∗.
Since H∗

ℓ ⊆ H∗ and DistH∗
ℓ
(ht) ≤ bt, we have that DistH∗(ht) ≤ DistH∗

ℓ
(ht) ≤ bt. Hence, for

any ϵ > 0, there exists h∗ ∈ H∗ satisfying

νS(h
∗(x))− νS(ht(x)) ≤ ∥ht(x)− h∗(x)∥ ≤ ∥ht − h∗∥∞ ≤ bt + ϵ

APPENDIX A. PROOF FOR CHAPTER 1 124

Since the result holds for all ϵ > 0, we conclude that νS(ht(x)) ≥ infh∗∈H∗{νS(h∗(x))} − bt.
Furthermore, since infh∗∈H∗{νS(h∗(x))} ≥ 2bt, it holds that νS(ht(x)) ≥ 2bt − bt = bt.

According to Algorithm 1, a label for xt is always acquired at iteration t ≥ 1 if
νS(ht−1(xt)) < bt−1. Otherwise, if νS(ht−1(xt)) ≥ bt−1, then a label is acquired with probability
p̃. Therefore, using the argument above, the label probability at iteration t is

P(acquire a label for xt) = P(νS(ht−1(xt)) < bt−1) + p̃P(νS(ht−1(xt)) ≥ bt−1)

≤ P(νS(ht−1(xt)) < bt−1) + p̃

≤ P
(

inf
h∗∈H∗

{νS(h∗(xt))} < 2bt−1

)
+ p̃ ≤ Ψ(2bt−1) + p̃

Then, the expected number of acquired labels after T total iterations is at most∑T
t=1 P(acquire a label for xt) ≤ p̃T +

∑T
t=1 Ψ(2bt−1).

A.0.2 Proofs for Section 2.4

Proof of Proposition 2.4.1. Since the reweighted loss ℓrew(h; z) is upper bounded by
ωℓ(Ĉ,C)
p̃I{p̃>0} , Proposition 2.4.1 is an immediate result by Hoeffding’s inequality and by taking the
union bounds for all the predictors with H.

Proof of Lemma 2.4.1. Let t ∈ {1, . . . , T} be fixed. Since p̃ = 0, the re-weighted loss
function can be written as ℓrew(h; zt) = ℓ(h(xt), ct)d

M
t = ℓ(h(xt), ct)I{νS(ht−1(xt)) < bt−1},

where h refers to a generic h ∈ H throughout. Recall that ℓ(h; zt) denotes ℓ(h(xt), ct) and
notice that we have the following simple decomposition:

ℓ(h; zt) = ℓ(h; zt)(1− dMt) + ℓ(h; zt)d
M
t ,

Hence, by the definition of ℓft(h), we have

E[ℓ(h; zt)|Ft−1] = ℓft(h) + E[ℓ(h; zt)dMt |Ft−1] = ℓft(h) + E[ℓrew(h; zt)|Ft−1].

Since (x1, ct), . . . , (xT , cT) are i.i.d. random variables following distribution D, (xt, ct) is
independent of Ft−1 and hence

Rℓ(h) = E[ℓ(h; zt)] = E[ℓ(h; zt)|Ft−1] = ℓft(h) + E[ℓrew(h; zt)|Ft−1]. (A.1)

Consider (A.1) applied to both h ∈ H and h∗ ∈ H∗
ℓ and averaged over t ∈ {1, . . . , T} to yield:

Rℓ(h)−Rℓ(h
∗) =

1

T

T∑
t=1

(
ℓft(h)− ℓft(h

∗)
)
+

1

T

T∑
t=1

(E[ℓrew(h; zt)|Ft−1]− E[ℓrew(h∗; zt)|Ft−1])

(A.2)
Thus, by the definition of Zt

h, (A.2) is equivalently written as:

Rℓ(h)−Rℓ(h
∗) =

1

T

T∑
t=1

(
ℓft(h)− ℓft(h

∗)
)
+
1

T

T∑
t=1

Zt
h+

1

T

T∑
t=1

(ℓrew(h; zt)− ℓrew(h∗; zt)) . (A.3)

APPENDIX A. PROOF FOR CHAPTER 1 125

Proof of Lemma 2.4.2. The proof is by strong induction. For the base case of t = 1, part

(a) follows since H0 = H and part (b) follows since b0 ≥
√

r0/η ≥
√

ωℓ(Ĉ, C)/η, and thus

suph∈H0

{∣∣ℓf1(h)− ℓf1(h
∗)
∣∣} ≤ ωℓ(Ĉ, C) ≤ ηb20.

Now, consider t ≥ 2 and assume that parts (a) and (b) hold for all t̃ ∈ {1, . . . , t − 1}.
Namely, for all t̃ ∈ {1, . . . , t− 1}, the following two conditions hold: (a) h∗ ∈ Ht̃−1, and (b)
suph∈Ht̃−1

{∣∣ℓf
t̃
(h)− ℓf

t̃
(h∗)

∣∣} ≤ ηb2
t̃−1

. Then, our goal is to show that the two claims hold for
t.

First, we prove (a). Recall that h∗ denotes the unique minimizer of the surrogate risk Rℓ,
and ht−1 denotes the predictor from iteration t− 1 of Algorithm 1. By Lemma 2.4.1, we have
that

Rℓ(ht−1)−Rℓ(h
∗) =

1

t− 1

t−1∑
i=1

(
ℓfi(ht−1)− ℓfi(h

∗)
)
+

1

t− 1

t−1∑
i=1

Zi
ht−1

+

1

t− 1

t−1∑
i=1

(ℓrew(ht−1; zi)− ℓrew(h∗; zi)) .

Since Rℓ(ht−1)−Rℓ(h
∗) ≥ 0, we have that

1

t− 1

t−1∑
i=1

(ℓrew(h∗; zi)− ℓrew(ht−1; zi)) ≤
1

t− 1

t−1∑
i=1

(
ℓfi(ht−1)− ℓfi(h

∗)
)
+

1

t− 1

t−1∑
i=1

Zi
ht−1

≤ 1

t− 1

t−1∑
i=1

sup
h∈Hi−1

{∣∣ℓfi(h)− ℓfi(h
∗)
∣∣}+ 1

t− 1

t−1∑
i=1

Zi
ht−1

≤ 1

t− 1

t−1∑
i=1

ηb2i−1 + rt−1,

where the second inequality uses ht−1 ∈ Ht−2 ⊆ Hi−1 for i ∈ {1, . . . , t− 1}, and the third in-
equality uses assumption (b) of induction and the assumption that rt ≥ suph∈H

{∣∣1
t

∑t
i=1 Z

i
h

∣∣}
for t ≥ 1.

Recall from Algorithm 1 that the reweighted loss function at iteration t− 1 is ℓ̂t−1(h) =
1
t

∑
(x,c)∈Wt−1

ℓ(h(x), c) = 1
t−1

∑t−1
i=1 ℓ

rew(h; zi), and ht−1 is the corresponding minimizer over

Ht−2 hence 1
t−1

∑t−1
i=1 ℓ

rew(ht−1; zi) = ℓ̂t−1,∗. By assumption (a) of induction, we have that

h∗ ∈ Ht−2. The above chain of inequalities shows that ℓ̂t−1(h∗) ≤ ℓ̂t−1,∗+ 1
t−1

∑t−1
i=1 ηb

2
i−1 + rt−1,

hence h∗ ∈ Ht−1 by definition in Line 20 of Algorithm 1.
Next, we prove (b) for t. Let h ∈ Ht−1 be fixed. By Assumption 2.3.1.(2) and since h∗

is the unique minimizer in H∗
ℓ , we have that ∥h− h∗∥∞ ≤ ϕ(Rℓ(h)− R∗

ℓ). By Assumption

APPENDIX A. PROOF FOR CHAPTER 1 126

2.4.1, we then have that

|ℓft(h)− ℓft(h
∗)| =

∣∣E[ℓ(h(xt), ct)− ℓ(h∗(xt), ct)|dMt = 0]P(dMt = 0|Ft−1)
∣∣

≤
∣∣E[ℓ(h(xt), ct)− ℓ(h∗(xt), ct)|dMt = 0]

∣∣
≤
∣∣E[E[ℓ(h(xt), ct)− ℓ(h∗(xt), ct)|xt]|dMt = 0]

∣∣
≤ ηE[∥h(xt)− h∗(xt)∥2|dMt = 0]

≤ η (ϕ(Rℓ(h)−R∗
ℓ))

2 . (A.4)

By Lemma 2.4.1, we have that

Rℓ(h)−Rℓ(h
∗) =

1

t− 1

t−1∑
i=1

(
ℓfi(h)− ℓfi(h

∗)
)
+

1

t− 1

t−1∑
i=1

Zi
h +

1

t− 1

t−1∑
i=1

(ℓrew(h; zi)− ℓrew(h∗; zi))

≤ 1

t− 1

t−1∑
i=1

ηb2i−1 + rt−1 +
1

t− 1

t−1∑
i=1

(ℓrew(h; zi)− ℓrew(h∗; zi))

=
1

t− 1

t−1∑
i=1

ηb2i−1 + rt−1 + ℓ̂t−1(h)− ℓ̂t−1(h∗), (A.5)

where the inequality follows by assumption (b) of induction since h ∈ Ht−1 ⊆ Hi−1 for
i ∈ {1, . . . , t − 1} and the assumption that rt ≥ suph∈H

{∣∣1
t

∑t
i=1 Z

i
h

∣∣} for t ∈ {1, . . . , T},
and the equality follows by the definition of the reweighted loss function in Algorithm 1. By
assumption we have that h ∈ Ht−1 and by the proof of part (a), we have that h∗ ∈ Ht−1.
Thus, since ℓ̂t−1,∗ = minh∈Ht−2 ℓ̂

t−1(h) and Ht−1 ⊆ Ht−2, we have that

ℓ̂t−1,∗ ≤ ℓ̂t−1(h) ≤ ℓ̂t−1,∗ + rt−1 +
1

t− 1

t−1∑
i=1

ηb2i−1,

and ℓ̂t−1,∗ ≤ ℓ̂t−1(h∗) ≤ ℓ̂t−1,∗ + rt−1 +
1

t− 1

t−1∑
i=1

ηb2i−1,

hence ℓ̂t−1(h)− ℓ̂t−1(h∗) ≤ rt−1 +
1

t−1

∑t−1
i=1 ηb

2
i−1 and by combining with (A.5) we have

Rℓ(h)−Rℓ(h
∗) ≤ 2η

t− 1

t−1∑
i=1

b2i−1 + 2rt−1.

Combining the above inequality with (A.4) yields

|ℓft(h)− ℓft(h
∗)| ≤ η

(
ϕ

(
2η

t− 1

t−1∑
i=1

b2i−1 + 2rt−1

))2

= ηb2t−1,

using the definition of bt−1. Since h ∈ Ht−1 is arbitrary, the conclusion in part (b) follows.

Proof of Theorem 2.4.1. We provide the proof of each part separately.

APPENDIX A. PROOF FOR CHAPTER 1 127

Part (a). Recall that h∗ is the unique minimizer of the surrogate risk Rℓ under Assumption
2.4.1 and that hT is the predictor from iteration T of Algorithm 1. By Lemma 2.4.1, we have
the following decomposition:

Rℓ(hT)−Rℓ(h
∗) =

1

T

T∑
t=1

(
ℓft(hT)− ℓft(h

∗)
)
+

1

T

T∑
t=1

Zt
hT

+
1

T

T∑
t=1

(ℓrew(hT ; zt)− ℓrew(h∗; zt))

=
1

T

T∑
t=1

(
ℓft(hT)− ℓft(h

∗)
)
+

1

T

T∑
t=1

Zt
hT

+ ℓ̂T (hT)− ℓ̂T (h∗), (A.6)

where we recall that the empirical re-weighted loss in Algorithm 1 is ℓ̂T (h) := 1
T

∑
(x,c)∈WT

ℓ(h(x), c) = 1
T

∑T
t=1 ℓ

rew(h; zt) in this case (since p̃ = 0).

We will show that rt ≥ suph∈H
{∣∣1

t

∑t
i=1 Z

i
h

∣∣} simultaneously for all t ≥ 1 with probability
at least 1− δ in order to apply Lemma 2.4.2, again with probability at least 1− δ. Indeed,
suppose that the conclusions of Lemma 2.4.2 do hold. Then, by part (a), we have h∗ ∈ HT−1

and therefore ℓ̂T (hT) ≤ ℓ̂T (h∗) by the update in Line 19 of Algorithm 1. By the nested
structure of the Ht sets, we have hT ∈ HT−1 ⊆ Ht−1 for all t ∈ {1, . . . , T} and therefore, by
part (b), we have that |ℓft(hT) − ℓft(h

∗)| ≤ ηb2t−1. Thus, combining these inequalities with
(A.6) yields:

Rℓ(hT)−Rℓ(h
∗) ≤ rT +

1

T

T−1∑
t=0

ηb2t ,

which is the result in part (a).

It remains to show that rT ≥ suph∈H

{∣∣∣ 1T ∑T
t=1 Z

t
h

∣∣∣} simultaneously for all T ≥ 1 with

probability at least 1 − δ. For each T ≥ 1, we apply Proposition 2.4.1 and plug in both
h, h∗ ∈ H. Indeed, by considering the two sequences {E[ℓrew(h; zt)|Ft−1] − ℓrew(h; zt)} and
{E[ℓrew(h∗; zt)|Ft−1]− ℓrew(h∗; zt)} and their differences, we have the following bound for any

ϵ > 0 with probability at least 1− 2N1 exp
(
− 2Tϵ2

ω2
ℓ (Ĉ,C)

)
:

sup
h∈H

{∣∣∣∣∣ 1T
T∑
t=1

Zt
h

∣∣∣∣∣
}
≤ 2ϵ.

Considering ϵ = ωℓ(Ĉ, C)
√

ln(2TN1/δ)
T

= rT/2 yields that the above bound holds with

probability at least 1− δ2

2T 2N1
> 1− δ

2T 2 . Finally, applying the union bound over all T ≥ 1,

we obtain that rT ≥ suph∈H

{∣∣∣ 1T ∑T
t=1 Z

t
h

∣∣∣} simultaneously for all T ≥ 1 with probability at

least

1− δ

2

∞∑
T=1

1

T 2
= 1− δπ2

12
> 1− δ.

APPENDIX A. PROOF FOR CHAPTER 1 128

Part (b). In this part of the proof, we do not assume that H∗
ℓ is a singleton as the same

proof will apply later for Theorem 2.4.3. For any h∗ ∈ H∗, the excess SPO risk can be written
as

RSPO(hT)−R∗
SPO = E(x,c)∼D[c

T (w∗(hT (x))− w∗(h∗(x)))]

≤ E(x,c)∼D[∥c∥∥w∗(hT (x))− w∗(h∗(x))∥∗]. (A.7)

We apply the conclusion of part (a), Rℓ(hT) − R∗
ℓ ≤ rT + η

T

∑T−1
t=0 b2t , with probability at

least 1− δ. Specifically, we shall provide a bound on ∆SPOa
T := E[RSPO(hT)−R∗

SPO|Rℓ(hT)−
R∗

ℓ ≤ rT + η
T

∑T−1
t=0 b2t]. If bT = 0, then ϕ(rT) = 0 and Assumption 2.3.1.(2) implies

that hT (x) = h∗(x) almost everywhere and hence ∆SPOa
T = 0. Thus, part (b) follows

immediately. Otherwise, assume that bT > 0. Recall that, by Assumption 2.3.1.(1), we have
that DistH∗(hT) ≤ DistH∗

ℓ
(hT). Then, by combining Assumption 2.3.1.(2) with part (a), with

probability at least 1 − δ, for any ϵ > 0 there exists h∗ ∈ H∗ such that for almost every
x ∈ X ,

∥hT (x)− h∗(x)∥ ≤ ϕ

(
rT +

η

T

T−1∑
t=0

b2t

)
+ ϵ ≤ ϕ

(
2rT +

2η

T

T−1∑
t=0

b2t

)
+ ϵ = bT + ϵ. (A.8)

Since S satisfies the strength property with parameter µ > 0, we apply part (a) of Theorem
3 of El Balghiti et al., 2022 to yield (in our notation) for any h∗ ∈ H∗ and x ∈ X :

∥w∗(hT (x))− w∗(h∗(x))∥∗ ≤
(

1

µmin{νS(hT (x)), νS(h∗(x))}

)
∥hT (x)− h∗(x)∥. (A.9)

Now, let γT ≥ 2bT > 0 be a given parameter. For a given x ∈ X we consider two cases: (i)
νS(h

∗(x)) > γT , and (ii) νS(h
∗(x)) ≤ γT . Under case (i), we have by the 1-Lipschitzness of

νS(·) that νS(hT (x)) ≥ νS(h
∗(x))− ∥hT (x)− h∗(x)∥ > γT − bT ≥ γT − γT/2 = γT/2. Thus,

we have that min{νS(hT (x)), νS(h
∗(x))} ≥ γT/2. For case (i) we will combine together (A.7),

(A.8), and (A.9), and use the fact that ∥c∥ ≤ ρ(C). For case (ii), we apply the worst case
bound RSPO(hT)−R∗

SPO ≤ ωS(C) and note that the probability of case (ii) occurring is at
most P (infh∗∈H∗{νS(h∗(x))} ≤ γT) = Ψ(γT). Overall, we have

∆SPOa
T ≤ ρ(C)∥w∗(hT (x))− w∗(h∗(x))∥∗ +Ψ(γT)ωS(C) ≤

2ρ(C)(bT + ϵ)

µγT
+Ψ(γT)ωS(C).

We take ϵ→ 0, and since γT ≥ bT is arbitrary we take the infimum over γT to yield part (b).

Part (c). Again, in this part of the proof, we do not assume that H∗
ℓ is a singleton as the

same proof will apply later for Theorems 2.4.2 and 2.4.3. Recall that for any h∗ ∈ H∗, the
excess SPO risk can be written as

RSPO(hT)−R∗
SPO = E(x,c)∼D[c

T (w∗(hT (x))− w∗(h∗(x)))].

APPENDIX A. PROOF FOR CHAPTER 1 129

Again, we apply part (a) with probability at least 1− δ. Recall that, by Assumption 2.3.1.(1),
we have that DistH∗(hT) ≤ DistH∗

ℓ
(hT). Then, by combining Assumption 2.3.1.(2) with part

(a), with probability at least 1− δ, for any ϵ > 0 there exists h∗ ∈ H∗ such that for almost
every x ∈ X ,

∥hT (x)− h∗(x)∥ ≤ ϕ

(
rT +

η

T

T−1∑
t=0

b2t

)
+ ϵ ≤ ϕ

(
2rT +

2η

T

T−1∑
t=0

b2t

)
+ ϵ = bT + ϵ. (A.10)

For a given x ∈ X we consider two cases: (i) νS(h
∗(x)) ≥ 2bT , and (ii) νS(h

∗(x)) < 2bT . Under
case (i), we have that max{νS(hT (x)), νS(h

∗(x))} ≥ 2bT > bT + ϵ for ϵ < bT ; thus combining
Lemma 2.3.1 and (A.10) yields that w∗(hT (x)) = w∗(h∗(x)), and hence RSPO(hT)−R∗

SPO = 0,
for almost every x ∈ X under case (i). For case (ii), we also apply the worst case bound
RSPO(hT) − R∗

SPO ≤ ωS(C) and note that the probability of case (ii) occurring is at most
P (infh∗∈H∗{νS(h∗(x))} < 2bT) ≤ Ψ(2bT). Therefore, overall we have with probability at least
1− δ,

RSPO(hT)−R∗
SPO ≤ Ψ(2bT)ωS(C).

Part (d). First note that, by Assumption 2.3.1.(2), we have that DistH∗
ℓ
(h0) ≤ ϕ(Rℓ(h0)−

R∗
ℓ) ≤ ϕ(ωℓ(Ĉ, C)) ≤ ϕ(r0) ≤ b0. Again, we apply part (a) with probability at least 1 − δ.

Indeed, when Rℓ(hT) − R∗
ℓ ≤ rT + η

T

∑T−1
t=0 b2t holds, by Assumption 2.3.1.(2), we have

that DistH∗
ℓ
(hT) ≤ ϕ(Rℓ(hT) − R∗

ℓ) ≤ ϕ(rT + η
T

∑T−1
t=0 b2t) ≤ bT . Thus, part (a) implies

DistH∗
ℓ
(ht) ≤ bt holds simultaneously for all t ≥ 0 with probability at least 1− δ. By Lemma

2.3.2, since p̃ = 0, conditional on part (a), the label complexity is at most
∑T

t=1Ψ(2bt−1).
With probability at most δ, we consider the worst case label complexity T and hence arrive
at the overall label complexity bound of

∑T
t=1 Ψ(2bt−1) + δT .

Proof of Proposition 2.4.2. Let h̄ ∈ H satisfy the conditions in Assumption 2.4.2. We
will show that RSPO+(h̄) = 0 and therefore, since 0 ≤ RSPO(h) ≤ RSPO+(h) for all h ∈ H, we
have that R∗

SPO+ = R∗
SPO = 0 and h̄ is a minimizer for both.

Recall that for prediction ĉ ∈ Rd and realized cost vector c ∈ Rd, the SPO+ satisfies as

ℓSPO+(ĉ, c) := max
w∈S

{
(c− 2ĉ)Tw

}
+ 2ĉTw∗(c)− cTw∗(c)

= −min
w∈S

{
(2ĉ− c)Tw

}
+ 2ĉTw∗(c)− cTw∗(c)

= (c− 2ĉ)Tw∗(2ĉ− c) + 2ĉTw∗(c)− cTw∗(c)

= 2ĉT (w∗(c)− w∗(2ĉ− c)) + cT (w∗(2ĉ− c)− w∗(c)).

Under Assumption 2.4.2 in the polyhedral case, we have by Lemma 2.3.1 that w∗(h̄(x)) = w∗(c)
with probability one over (x, c) ∼ D. Similarly, we have that ∥(2h̄(x)− c)− h̄(x)∥ = ∥h̄(x)−
c∥ ≤ ϱνS(h̄(x)) < νS(h̄(x)), and hence w∗(2h̄(x)− c) = w∗(h̄(x)) = w∗(c), with probability

APPENDIX A. PROOF FOR CHAPTER 1 130

one over (x, c) ∼ D. Therefore, we have that RSPO+(h̄) = E(x,c)∼D[ℓSPO+(h̄(x), c)] = 0 by the
above expression for ℓSPO+(ĉ, c).

Proof of Theorem 2.4.2. We provide the proof of part (a), as the proofs of parts (b) and
(c) are completely analogous to Theorem 2.4.1.

Recall that (x1, c1), (x2, c2), . . . is the sequence of features and corresponding cost vectors of
Algorithm 1. It is assumed that this sequence is an i.i.d. sequence from the distribution D and
note that ct is only observed when we do not reject xt, i.e., when dMt = I(νS(ht−1(xt)) < bt−1) =
1. In a slight abuse of notation, in this proof only, let us define Zt

h := E[ℓSPO+(h(xt), ct)]−
ℓSPO+(h(xt), ct) = RSPO+(h)− ℓSPO+(h(xt), ct). Following the template of Lemma 2.4.2, the
main idea of the proof is to show that, when rt ≥ suph∈H

{∣∣1
t

∑t
i=1 Z

i
h

∣∣} for all t ≥ 1, we
have that:

(A) max
t∈{1,...,T}

{ℓSPO+(hT (xt), ct)} = 0 with probability 1 for all T ≥ 1.

In other words, hT achieves zero SPO+ loss across the entire sequence (x1, c1), . . . , (xT , cT).
In fact, we show a strong result, which is that (A) holds for all minimizers of the empirical
reweighted loss at iteration T . The proof of this is by strong induction, and we defer it to
the end.

Notice that maxt∈{1,...,T} {ℓSPO+(hT (xt), ct)} = 0 implies, of course, that hT achieves zero

(and hence minimizes) empirical risk 1
T

∑T
t=1 ℓSPO+(h(xt), ct).

Thus, using rt ≥ suph∈H
{∣∣1

t

∑t
i=1 Z

i
h

∣∣} for all t ≥ 1, we have that

RSPO+(hT) = RSPO+(hT)−
1

T

T∑
t=1

ℓSPO+(hT (xt), ct) =
1

T

T∑
t=1

Zt
hT
≤ rT ,

which is the result of part (a). To control the probability that rt ≥ suph∈H
{∣∣1

t

∑t
i=1 Z

i
h

∣∣},
we observe that there are at most N1 candidate predictors. As pointed out by Kuznetsov and
Mohri, 2015, in the i.i.d. case, for T ≥ 1 and for any ϵ > 0, we have the same convergence
result as Proposition 2.4.1.

In Proposition 2.4.1, considering ϵ = ωℓ(Ĉ, C)
√

ln(2TN1/δ)
T

= rT and following the same rea-

soning as in the proof of Theorem 2.4.1 yields that rT ≥ suph∈H

{∣∣∣ 1T ∑T
t=1 Z

t
h

∣∣∣} simultaneously

for all T ≥ 1 with probability at least 1− δ.

Proof of Claim (A). It remains to show that (A) holds for all T ≥ 1, which we prove
by strong induction. In fact, we prove a stronger variant of (A) as follows. Recall that
ℓ̂T (h) = 1

T

∑
(x,c)∈WT

ℓSPO+(h(x), c) is the empirical reweighed loss at iteration T . Define

H0
T := {h ∈ H : ℓ̂T (h) = 0} = {h ∈ H : ℓSPO+(h(x), c) = 0 for all (x, c) ∈ WT}. The set

H0
T is exactly the set of minimizers of ℓ̂T (h), with probability 1, since Proposition 2.4.2 (in

APPENDIX A. PROOF FOR CHAPTER 1 131

particular R∗
SPO+ = 0) implies that ℓ̂T (h∗) = 0 with probability 1. Hence, hT ∈ H0

T with
probability 1.

Let us also define H̄0
T := {h ∈ H : ℓSPO+(h(xt), ct) = 0 for all t = 1, . . . , T}. Clearly,

H̄0
T ⊆ H0

T for all T ≥ 1. Note also that both collections of sets are nested, i.e., H0
T ⊆ H0

T−1 ⊆
· · ·H0

1 ⊆ H and H̄0
T ⊆ H̄0

T−1 ⊆ · · · H̄0
1 ⊆ H. Now, we will use strong induction to prove,

when rt ≥ suph∈H
{∣∣1

t

∑t
i=1 Z

i
h

∣∣} for all t ≥ 1, we have that:

(Ā) H0
T = H̄0

T with probability 1 for all T ≥ 1.

Note that (Ā) implies (A) since hT ∈ H0
T with probability 1.

To prove the base case T = 1, we observe that b0 ≥ ρ(Ĉ), and thus, νS(h(x1)) ≤ ∥h(x1)∥ ≤
ρ(Ĉ) ≤ b0 for any h ∈ H and any x1 ∈ X . Thus, we have that dM1 = 1 with probability 1 and
the sample (x1, c1) is added to working set W1. By definition of H0

1 , for h ∈ H0
1 we have that

ℓSPO+(h(x1), c1) = 0. Hence, h ∈ H̄0
1 and so we have proven that H0

1 ⊆ H̄0
1 .

Now, consider T ≥ 2 and assume that (Ā) holds for all T̃ ∈ {1, . . . , T − 1}. We need to
show that H0

T ⊆ H̄0
T , so let h ∈ H0

T be given. By the induction hypothesis, we have that
h ∈ H0

T−1 = H̄0
T−1, and therefore we have ℓSPO+(h(xt), ct) = 0 for all t ∈ {1, . . . , T − 1}.

Thus, to show that h ∈ H̄0
T , it suffices to show that ℓSPO+(h(xT), cT) = 0 with probability 1.

There are two cases to consider. First, if dMT = 1, then the sample (xT , cT) is added to
working set WT and thus, by definition of H0

T , for h ∈ H0
T we have that ℓSPO+(h(xT), cT) = 0.

Hence, h ∈ H̄0
T and so we have proven that H0

T ⊆ H̄0
T .

Second, let us consider the case where dMT = 0 so we do not acquire the label cT . In this case,
we have that WT = WT−1, H

0
T = H0

T−1, and, by the rejection criterion, νS(hT−1(xT)) ≥ bT−1.
For the given h ∈ H0

T , to show that ℓSPO+(h(xT), cT) = 0 with probability 1 recall from
the proof of Proposition 2.4.2 that is suffices to show that w∗(2h(xT)− cT) = w∗(cT) with
probability 1 over cT drawn from the conditional distribution given xT .

To prove this, first note that

RSPO+(h) = RSPO+(h)−
1

T − 1

T−1∑
t=1

ℓSPO+(h(xt), ct) =
1

T − 1

T−1∑
t=1

Zt
h ≤ rT−1,

where the first equality uses that h ∈ H0
T = H0

T−1 = H̄0
T−1 and the inequality uses the

assumption that rt ≥ suph∈H
{∣∣1

t

∑t
i=1 Z

i
h

∣∣} for all t ≥ 1. By similar reasoning, we have that
hT−1 ∈ H0

T−1 = H̄0
T−1 satisfies RSPO+(hT−1) ≤ rT−1. Let ϵ > 0 be fixed. Now, by Assumption

2.3.1 and Proposition 2.4.2, there exists h∗
0 ∈ H∗

SPO+ such that

∥h(xT)− h∗
0(xT)∥ ≤ ϕ(RSPO+(h)) + ϵ ≤ ϕ(rT−1) + ϵ ≤ τ(1− ϱ)

τ(1− ϱ) + 2
bT−1 + ϵ,

and there exists h∗
1 ∈ H∗

SPO+ such that

∥hT−1(xT)− h∗
1(xT)∥ ≤ ϕ(RSPO+(hT−1)) + ϵ ≤ ϕ(rT−1) + ϵ ≤ τ(1− ϱ)

τ(1− ϱ) + 2
bT−1 + ϵ,

APPENDIX A. PROOF FOR CHAPTER 1 132

where we have used bT−1 = (1 + 2
τ(1−ρ)

)ϕ(rT−1) in both inequalities above. Since both

h∗
0, h

∗
1 ∈ H∗

SPO+, according to the proof of Proposition 2.4.2, we have that w∗(2h∗
0(xT)− cT) =

w∗(cT) = w∗(2h∗
1(xT)−cT) with probability 1. By the rejection criterion, νS(hT−1(xT)) ≥ bT−1,

and the 1-Lipschitzness of νS, we have

νS(h
∗
1(xT)) = νS(h

∗
1(xT)− hT−1(xT) + hT−1(xT)) ≥ νS(hT−1(xT))− ∥h∗

1(xT)− hT−1(xT)∥ − ϵ

≥ bT−1 −
τ(1− ϱ)

τ(1− ϱ) + 2
bT−1 − ϵ =

2

τ(1− ϱ) + 2
bT−1 − ϵ.

By the second part of Assumption 2.4.2, we have that

νS(h
∗
0(xT)) ≥ τ

(
sup

h′∈H∗
SPO+

{νS(h′(xT))}

)
≥ τνS(h

∗
1(xT)) ≥

2τ

τ(1− ϱ) + 2
bT−1 − ϵτ.

By viewing 2h(xT)− cT and 2h∗
0(xT)− cT as c1 and c2 in Lemma 2.3.1, we have

∥(2h(xT)− cT)− (2h∗
0(xT)− cT)∥ = 2∥h(xT)− h∗

0(xT)∥ ≤
2τ(1− ϱ)

τ(1− ϱ) + 2
bT−1 + 2ϵ.

By the 1-Lipschitzness of νS and the first part of Assumption 2.4.2, we have

νS(2h
∗
0(xT)− cT) ≥ νS(h

∗
0(xT))− ∥h∗

0(xT)− cT∥ ≥ (1− ϱ)νS(h
∗
0(xT))

≥ (1− ϱ)

(
2τ

τ(1− ϱ) + 2
bT−1 − ϵτ

)
=

2τ(1− ϱ)

τ(1− ϱ) + 2
bT−1 − (1− ϱ)ϵτ.

By taking ϵ → 0 and considering an appropriate convergent subsequence in the compact
set H∗

SPO+, the two inequalities above are satisfied for some h̄∗
0 ∈ H∗

SPO+ with ϵ = 0. In
particular, this implies that the conditions in Lemma 2.3.1 are satisfied and we have that
w∗(2h(xT) − cT) = w∗(2h̄∗

0(xT) − cT) = w∗(cT) with probability 1. Hence, we have shown
that ℓSPO+(h(xT), cT) = 0 with probability 1, and so we have proven that H0

T ⊆ H̄0
T .

Proof of Theorem 2.4.3. We provide the proof of part (a), as the proofs of parts (b), (c),
and (d) are completely analogous to Theorem 2.4.1.

Let us now prove part (a). When T = 0, part (a) holds by the definition of r0 ≥ ωℓ(Ĉ, C).
Otherwise, let T ≥ 1 be given. For any t ∈ {1, . . . , T}, recall that the re-weighted loss function
at iteration t is in this case given by ℓrew(h; zt) := dMt ℓ(h(xt), ct) + (1− dMt)(qt/p̃)ℓ(h(xt), ct).
Since p̃ > 0, and qt is a random variable that independent of xt, ct, and dMt , we condition on
the two possible values of qt ∈ {0, 1} and obtain the following decomposition:

E[ℓrew(h; zt)|Ft−1] = E[ℓ(h(xt), ct)d
M
t |Ft−1] + E[ℓ(h(xt), ct)(1− dMt)|Ft−1]

= E[ℓ(h(xt), ct)|Ft−1] = E[ℓ(h(xt), ct)] = Rℓ(h),

APPENDIX A. PROOF FOR CHAPTER 1 133

where we have also used that (xt, ct) is independent of Ft−1. In other words, the conditional
expectation of re-weighted surrogate loss at iteration t equals the surrogate risk. Consider
the above applied to both h ∈ H and h∗ ∈ H∗

ℓ and averaged over t ∈ {1, . . . , T} to yield:

Rℓ(h)−Rℓ(h
∗) =

1

T

T∑
t=1

(E[ℓrew(h; zt)|Ft−1]− E[ℓrew(h∗; zt)|Ft−1]) (A.11)

As before, we denote the discrepancy between the expectation and the true excess re-
weighted loss of predictor h at time t by Zt

h, i.e., Z
t
h := E[ℓrew(h; zt) − ℓrew(h∗; zt)|Ft−1] −

(ℓrew(h; zt) − ℓrew(h∗; zt)). Recall that the empirical re-weighted loss in Algorithm 1 is

ℓ̂T (h) = 1
T

(∑
(x,c)∈WT

ℓ(h(x), c) + 1
p̃

∑
(x,c)∈W̃T

ℓ(h(x), c)
)
= 1

T

∑T
t=1 ℓ

rew(h; zt). Thus, (A.11)

is equivalently written as:

Rℓ(h)−Rℓ(h
∗) =

1

T

T∑
t=1

Zt
h +

1

T

T∑
t=1

(ℓrew(h; zt)− ℓrew(h∗; zt)) , (A.12)

for any h ∈ H. To bound the term 1
T

∑T
t=1 Z

t
h, we apply Proposition 2.4.1 twice to both h

and h∗, with ϵ← ωℓ(Ĉ,C)
p̃

√
4 ln(2TN1/δ)

T
. Then, by considering their differences using the union

bound we have that

sup
h∈H

∣∣∣∣∣ 1T
T∑
t=1

Zt
h

∣∣∣∣∣ ≤ 2ϵ = rT ,

with probability at least 1 − δ
2T 2 . Since hT is the minimizer of the empirical re-weighted

loss ℓ̂T (h) over H, we have that ℓrew(hT ; zt)− ℓrew(h∗; zt) ≤ 0 in (A.12) and we obtain that
Rℓ(h)−Rℓ(h

∗) ≤ rT with probability at least 1− δ
2T 2 . Finally, applying the union bound over

all T ≥ 1, we obtain that Rℓ(h)−Rℓ(h
∗) ≤ rT simultaneously for all T ≥ 1 with probability

at least 1− δ, which is the result of part (a).

A.0.3 Proofs for Section 2.5

Proof of Proposition 2.5.1. Since ϕ(ϵ) = Cϕ

√
ϵ, and Cϕ ∈ (0, 1

36L2), we set C̄ =
√

r1
5L
.

We use induction to prove that bT ≤ C̄/T−1/4, for all T . For simplicity, we ignore the log
term when analyzing the order, and assume that rt ≤ r1√

t
.

We assume bt ≤ C̄/t−1/4, for 1 ≤ t ≤ T − 1.

APPENDIX A. PROOF FOR CHAPTER 1 134

Then, since bt = 2ϕ(2rt +
2L
t

∑t−1
i=0 b

2
i), we have that when t = T ,

bt = 2Cϕ

√√√√rt +
2L

t

t−1∑
i=0

b2i

≤ 2Cϕ

√√√√ r1√
t
+

2L

t

t−1∑
i=0

b2i

≤ 2Cϕ

√√√√ r1√
t
+

2L

t

t−1∑
i=0

C̄2

√
i

≤ 2Cϕ

√
r1√
t
+

4L

t
C̄
√
t.

The first inequality is by rt ≤ r1√
t
. The last inequality is from the fact that 1

t

∑t−1
i=0 i

−1/2 ≤ 2
√
t.

Then, we plug in the value of C̄, we have that bt ≤ C̄/t−1/4, when t = T . Thus,
RSPO+(hT)−R∗

SPO+ ≤ Õ(T−1/2). Consequently, for the polyhedral case, RSPO(hT)−R∗
SPO ≤

2Ψ(2bT)ωS(C) ≤ Õ(T−κ/4). For the strongly-convex feasible region, we set γT = b, and then
we can obtain the same order Õ(T−κ/4) for the excess SPO risk.

Next, we consider the bound for the label complexity. We set δ as a very small number,
for example, δ ≤ Õ(1/T 3), so we can ignore the last term in the label complexity in part
(d). Then, we have that E[nt] ≤ Õ(2

∑T
t=1Ψ(2bt)). Because bt ≤ Õ(T−κ/4), we have that∑T

t=1Ψ(2bt) ≤ Õ(T 1−κ/4). Then, we can obtain the label complexity in Proposition 2.5.1
depending on the value of κ.

Proof of Proposition 2.5.2. We first consider the label complexity. By the part (d) in
Theorem 2.4.3, the total label complexity E[nt] is at most

p̃T + 2
T∑
t=1

Ψ(2bt) = p̃T +
T∑
t=1

2Ψ

(
2ϕ

(
1

p̃

√
2 ln(t/δ)/t

))

≤ p̃T +
T∑
t=1

C ′ ·
(
1

p̃

)κ
2

(ln(t/δ)/t)κ/4

≤ Õ

(
p̃T +

(
1

p̃

)κ
2

(T lnT)1−κ/4

)
.

The first inequality is because of assumptions 2.6.1 and 2.5.1. The second inequality is

because of the integration. To minimize the order of T , we set p̃ = T− k
2(k+2) . Then, the label

complexity E[nt] is at most Õ
(
T 1− k

2(k+2)

)
for κ > 0.

APPENDIX A. PROOF FOR CHAPTER 1 135

Next, since rT ≤ Õ(1√
T p̃
) = Õ(T− 1

κ+2), we obtain the risk bounds for the surrogate loss.

Since ϕ is a square root function. The SPO risk is at most 2Ψ(2ϕ(rT)) ≤ Õ(T− κ
2(κ+2)). □

Proof of Proposition 2.5.3. The reason why the excess surrogate risk in Proposition
2.5.2 is larger than Õ(T−1/2) is because rT ≤ Õ(1

p̃
√
T
). Indeed, when p̃ ← T− κ

2(κ+2) , then

rT ≤ Õ
(
T (

κ
2(κ+2)

− 1
2)
)
, which is larger than Õ(T−1/2). Moreover, the dependence on p̃ comes

from the bound on the re-weighted loss, since the re-weighted loss is upper-bounded by ωℓ(Ĉ,C)
p̃

.
When T →∞, p̃→ 0, and thus, the re-weighted loss tends to infinity.

Given the output predictor hT at iteration T , recall that Zt
hT

:= E[ℓrew(hT ; zt) −
ℓrew(h∗; zt)|Ft−1] − (ℓrew(hT ; zt) − ℓrew(h∗; zt)). Since E[Zt

hT
] = 0, we have that

∑T
t=1 Z

t
hT

is a martingale.
Thus, if we can further remove the dependence on p̃ and show that Zt

hT
is finite for all

T ≥ 0, then we can apply the Azuma’s Inequality and achieve the convergence rate Õ(T−1/2)
for 1

T

∑T
t=1 Z

t
hT
.

By the Lipschitz property, we have that

|ℓ(hT (x), c)− ℓ(h∗(x), c)| ≤ Lκ∥hT (x)− h∗(x)∥, (A.13)

for all x ∈ X . Recall that ℓrew(h; zt) := dMt ℓ(h(xt), ct) + (1 − dMt) qt
p̃
ℓ(h(xt), ct). Since when

dMt = 1, ℓrew(h; zt) is obviously upper bounded by ωS(Ĉ, C), and thus Zt
hT

is obviously bounded.
Therefore, to show Zt

hT
is bounded, it suffices to consider the case when dMt = 0. When

dMt = 0, we have that ℓrew(h; zt) =
qt
p̃
ℓ(h(xt), ct). Since p̃t ≥ α1∥hT (x)− h∗(x)∥, we have that

qt
p̃
|ℓ(hT (x), c)− ℓ(h∗(x), c)| ≤ 1

p̃
|ℓ(hT (x), c)− ℓ(h∗(x), c)| ≤ Lκ/α1 = Õ(1).

The above implies that Zt
hT

is also bounded when dMt = 0. We denote the upper bound of

Zt
hT

by
√
C1 > 0. Thus, when applying Azuma’s inequality to the sequence

∑T
t=1 Z

t
hT
, and

taking the average, we can remove the dependence on p̃ and have that∣∣∣∣∣ 1T
T∑
t=1

Zt
hT

∣∣∣∣∣ ≤ ϵ,

with probability at least 1− 2N1e
− ϵ2T

2C1 .
Recall that

Rℓ(hT)−Rℓ(h
∗) =

1

T

T∑
t=1

Zt
hT

+
1

T

T∑
t=1

(ℓrew(hT ; zt)− ℓrew(h∗; zt)) .

Since ℓrew(hT ; zt)− ℓrew(h∗; zt) ≤ 0, we conclude that Rℓ(hT)−Rℓ(h
∗) is at most ϵ. Setting

2N1e
− ϵ2T

2C1 = δ, we obtain that Rℓ(hT) − Rℓ(h
∗) ≤ 2

√
2C1 ln(2N1/δ)

T
with probability at least

1− δ. Thus, we conclude that Rℓ(hT)−Rℓ(h
∗) converges to zero at rate Õ(

√
ln(T)/T).

APPENDIX A. PROOF FOR CHAPTER 1 136

Finally, to derive the upper bound for the expected number of acquired labels E[nT], by

Theorem 2.4.3, we have that ∥ht(x)− h∗(x)∥ ≤ ϕ(rt). Since rt ≤ Õ(T− 1
κ+2), we further have

that

E[nT] ≤
T∑
t=1

[∥ht(x)− h∗(x)∥+Ψ(2bt−1)] + δT

≤
T∑
t=1

[ϕ(rt) + Ψ(2bt−1)] + δT

≤
T∑
t=1

[
Õ(T− 1

2(κ+2)) + Õ(T− κ
2(k+2))

]
+ δT

≤ Õ(T 1− 1
2(κ+2)) + Õ(T 1− κ

2(k+2)) + δT.

Thus, we have that E[nt] ≤ Õ(T 1−min{κ,1}
2(κ+2)) when δ ≤ T−2.

A.0.4 Proofs for Section 2.6

Proof of Lemma 2.6.1. For given x ∈ X , let c̄ = E[c|x] and ∆ = h(x)−h∗(x). According
to Theorem 1 in Elmachtoub and Grigas (2022), it holds that

E[ℓSPO+(h(x), c)− ℓSPO+(h
∗(x), c)|x] = E[(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))|x].

Without loss of generality, we assume dS > 0. Otherwise, the constant ΞS will be zero and
the bound will be trivial.

Define the function ι(κ) := κ2

M
for κ ∈ [0, M

2
] and ι(κ) := κ − M

4
for κ ∈ [M

2
,∞), where

M > 1 is a scaler which is larger than σ. Let κ = ∥∆∥2 and A ∈ Rd×d be an orthogonal
matrix such that AT∆ = κ · ed for ed = (0, . . . , 0, 1)T . We implement a change of basis and
let the new basis be A = (a1, . . . , ad). With a slight abuse of notation, we keep the notation
the same after the change of basis, for example, now the vector ∆ equals κ · ed. Rewrite c as
c = (c′, ξ), where c′ ∈ Rd−1 and ξ ∈ R. Define c̄′ := E[c′] and ξ̄′ = E[ξ]. Then by applying
the results in Lemma 7 of H. Liu and Grigas (2021), for any κ̃ ∈ (0, κ], it holds that

E
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))|x

]
≥ ακ̃κe−

3κ̃2+3ξ̄2+∥c̄′∥22
2σ2

4
√
2πσ2

· ΞSdS.

Let κ̃ = min{κ, σ}, it holds that

E[ℓSPO+(h(x), c)− ℓSPO+(h
∗(x), c)|x] ≥ αΞS

4
√
2πe

3(1+β2)
2

·min

{
κ2

M
,κ

}
.

APPENDIX A. PROOF FOR CHAPTER 1 137

Define the function ι(κ) := κ2

M
for κ ∈ [0, M

2
] and ι(κ) := κ− M

4
for κ ∈ [M

2
,∞), we have ι(κ)

is the convex biconjugate of min
{

κ2

M
, κ
}
. By taking the expectation on x, it holds that

E[ℓSPO+(h(x), c)− ℓSPO+(h
∗(x), c)] ≥ αΞS

4
√
2πe

3(1+β2)
2

· Ex[ι(∥h(x)− h∗(x)∥)]

Since M ≥ max{σ, 1}, taking M = 2ρ(Ĉ), we obtain that

RSPO+(h)−RSPO+(h
∗) ≥ αΞS

8
√
2πρ(Ĉ)e

3(1+β2)
2

· Ex[∥h(x)− h∗(x)∥2]

Then, combining the result with Assumption 2.6.1, we obtain Lemma 2.6.1.

Proof of Lemma 2.6.2. For given x ∈ X , let c̄ = E[c|x] and ∆ = h(x) − h∗(x). By
applying the results in Theorem C.2 of H. Liu and Grigas (2021), it holds that

E [ℓSPO+(h(x), c)− ℓSPO+(h
∗(x), c)|x] ≥ µ2

Sr
1/2

21/2L
5/2
S

· Ec|x

[
∥c+ 2∆∥ − cT (c+ 2∆)

∥c∥

]
.

It is easy to verify that ∥c+ 2∆∥ − cT (c+2∆)
∥c∥ ≥ 0, for any c ∈ Rd.

For any ∆, we define a subspace ∆⊥,β1 by ∆⊥,β1 = {c ∈ C : 0 ≤ cT∆ ≤ β1∥∆∥∥c∥}. By
Definition 2.6.1, we have that Pc|x(c ∈ ∆⊥,β1) ≥ β2 > 0, for any x ∈ X .

Thus, we have that

E
[
∥c+ 2∆∥ − cT (c+ 2∆)

∥c∥
|x
]
≥ Pc|x(c ∈ ∆⊥,β1)E

[
∥c+ 2∆∥ − cT (c+ 2∆)

∥c∥

∣∣∣c ∈ ∆⊥,β1

]
≥ β2E

[
∥c+ 2∆∥ − cT (c+ 2∆)

∥c∥

∣∣∣c ∈ ∆⊥,β1

]
= β2E

[
∥c+ 2∆∥ − ∥c∥ − 2cT∆

∥c∥

∣∣∣c ∈ ∆⊥,β1

]
.

Next, we show that E
[
∥c+ 2∆∥ − ∥c∥ − 2cT∆

∥c∥

∣∣∣c ∈ ∆⊥,β1

]
≥ 1

16ρ(C)∥∆∥
2.

Since ∥c∥ ≤ ρ(C), we have that

∥c+ 2∆∥ − ∥c∥ − 2cT∆

∥c∥
=
√
∥c∥2 + 4∥∆∥2 + 4cT∆− ∥c∥ − 2cT∆

∥c∥
≥
√
∥c∥2 + 4∥∆∥2 + 4β1∥c∥∥∆∥ − ∥c∥ − 2β1∥∆∥ (A.14)

≥
√

ρ(C)2 + 4∥∆∥2 + 4β1ρ(C)∥∆∥ − ρ(C)− 2β∥∆∥ (A.15)

Inequality (A.14) is because
√
∥c∥2 + 4∥∆∥2 + 4β1∥c∥∥∆∥ − ∥c∥ − 2β1∥∆∥ is a decreasing

function of β1. Inequality (A.15) is because
√
∥c∥2 + 4∥∆∥2 + 4β1∥c∥∥∆∥ − ∥c∥ − 2β1∥∆∥ is

a decreasing function of ∥c∥ when β1 < 1.

APPENDIX A. PROOF FOR CHAPTER 1 138

Since ∥∆∥ ≤ 2ρ(C, Ĉ), by minimizing function f(x) =

√
ρ(C)2+2β1ρ(C)x+x2−ρ(C)−β1x

x2 over

(0, 2ρ(C, Ĉ)), we have that√
ρ(C)2 + 4∥∆∥2 + 4β1ρ(C)∆− ρ(C)− 2β1∥∆∥

∥∆∥2
> min

{
2(1− β2

1)

ρ(C, Ĉ)
,

√
17 + 8β − 1− 4β1

4ρ(C, Ĉ)

}

Thus, we have that E
[
∥c+ 2∆∥ − ∥c∥

∣∣∣c ∈ ∆⊥,β1

]
≥ min

{
2(1−β2

1)

ρ(C,Ĉ) ,
√
17+8β1−1−4β1

4ρ(C,Ĉ)

}
∥∆∥2.

Thus, we conclude that for all P ∈ Pβ1,β2 , it holds that

∥h(x)− h∗(x)∥2 ≤ µ2
Sr

1/2

21/2β2L
5/2
S

·min

{
2(1− β2

1)

ρ(C, Ĉ)
,

√
17 + 8β1 − 1− 4β1

4ρ(C, Ĉ)

}−1

·

Ec|x [ℓSPO+(h(x), c)− ℓSPO+(h
∗(x), c)] .

Taking the expectation of both sides with x, we obtain that

E[∥h(x)− h∗(x)∥2] ≤ µ2
Sr

1/2

21/2β2L
5/2
S

min

{
2(1− β2

1)

ρ(C, Ĉ)
,

√
17 + 8β1 − 1− 4β1

4ρ(C, Ĉ)

}−1

·

(RSPO+(h)−RSPO+(h
∗)).

Then, combining the result with Assumption 2.6.1, we obtain Lemma 2.6.2.

Proof of Lemma 2.6.3. Since the hypothesis class is well-specified, we denote h∗(x) by
c̄, given x ∈ X . Then, we define ∆ = c1 − c̄. According to Theorem 1 in Elmachtoub and
Grigas (2022), we have that the excess SPO+ risk at x for the prediction c1 is

E[ℓSPO+(c̄+∆, c)− ℓSPO+(c̄, c)|x] = E[(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))|x]

According to Lemmas 1 and 2 in H. Liu and Grigas (2021), we have that for any c1, c2 ∈ C, it
holds that

cT1 (w
∗(c2)− w∗(c1)) ≤

L2
Sρ(C)

√
r − fmin√

2µ1.5
S

∥∥∥∥ c1
∥c1∥

− c2
∥c2∥

∥∥∥∥2 .
Replacing c1 and c2 with c+ 2∆ and c, we obtain that

E[ℓSPO+(c̄+∆, c)− ℓSPO+(c̄, c)|x] ≤
L2
Sρ(C)

√
r − fmin√

2µ1.5
S

E

[∥∥∥∥ c

∥c∥
− c+ 2∆

∥c+ 2∆∥

∥∥∥∥2
]
.

Thus, to prove Lemma 2.6.3, it suffices to show that
∥∥∥ c
∥c∥ −

c+2∆
∥c+2∆∥

∥∥∥ ≤ 4
β
∥∆∥ for any realized

c and any ∆ ∈ Rd.
We consider two cases: (1) ∥2∆∥ ≥ ∥c∥, and (2) ∥2∆∥ ≤ ∥c∥.

APPENDIX A. PROOF FOR CHAPTER 1 139

In the first case, since ∥c∥ ≥ β, we have that ∥2∆∥ ≥ ∥c∥ ≥ β. Since
∥∥∥ c
∥c∥ −

c+2∆
∥c+2∆∥

∥∥∥ ≤ 2,

we have that
∥∥∥ c
∥c∥ −

c+2∆
∥c+2∆∥

∥∥∥ ≤ 4∥∆∥
β

.

In the other case, when ∥2∆∥ ≤ ∥c∥, we have∥∥∥∥ c

∥c∥
− c+ 2∆

∥c+ 2∆∥

∥∥∥∥ =

√
2− 2

cT (c+ 2∆)

∥c∥∥c+ 2∆∥
.

We use θ ∈ [0, π
2
) to denote the angle between c and c+2∆, then, we have

∥∥∥ c
∥c∥ −

c+2∆
∥c+2∆∥

∥∥∥ =√
2− 2 cos(θ) ≤ 2 sin(θ). Since 2∥∆∥ ≥ 2∥c∥ sin(θ), we have that

∥∥∥ c
∥c∥ −

c+2∆
∥c+2∆∥

∥∥∥ ≤ 2∥∆∥
∥c∥ ≤

2
β
∥∆∥. Thus, we obtain Lemma 2.6.3.

140

Appendix B

Proof for Chapter 2

B.1 Proofs in Section 3.3

Proof of Theorem 3.3.1. We denote the predictor f (St−1

⋃
{(ξt,y)}) by hf . By the

definition of the value of one data point, since the predictions for different types are inde-
pendent, so the predictions on ξ ̸= ξt remain the same for ht−1 and hf . Thus, we have that
ℓ(ht−1(ξ),E[y|ξ]) = ℓ(ht−1(ξ),E[y|ξ]), for ξ ̸= ξt. Then, the value of one data point can be
written as

V (ξt;St−1) = β · Regret(ht−1)− β · E
[
Regret

(
f
(
St−1

⋃
{(ξt,y)}

)) ∣∣∣ξt]
= βE[ℓ(ht−1(ξ),E[y|ξ])]− βE[ℓ(hf (ξ),E[y|ξ])]
= µ(ξt)β [ℓ(ht−1(ξt),E[y|ξt])− ℓ(hf (ξt),E[y|ξt])] .

Since ℓ(hf (ξt),E[y|ξt]) ≥ 0, we have that

V (ξt;St−1) ≤ µ(ξt)βℓ(ht−1(ξt),E[y|ξt]) = µ(ξt)βE[yT |ξt](w∗(E[y|ξt])− w∗(ht−1(ξt))). (B.1)

For simplicity, we denote ht−1(ξt) by ŷ and denote the prediction error for ŷ by ρt−1, i.e.,
∥E[yT |ξt]− ŷ∥ ≤ ρt−1, we have the following upper bound for E[yT |ξt](w∗(E[y|ξt]− w∗(ŷ)):

E[yT |ξt](w∗(E[y|ξt]− w∗(ŷ)) ≤ max
y∈Y:∥y−ŷ∥≤ρt−1

: yT (w∗(y)− w∗(ŷ)). (B.2)

For simplicity, we denote the above upper bound by V O
M (ξt, ŷ, ρt−1). Then, we have that the

value of one data point is at most µ(ξt)βV
O
M (ξt, ŷ, ρt−1).

Next, let us consider the upper bound for V O
M (ξt, ŷ, ρt−1). Since ŷT (w∗(ŷ)− w∗(y)) ≥ 0,

for any y, ŷ ∈ Y , we have that

yT (w∗(y)− w∗(ŷ)) ≤ yT (w∗(y)− w∗(ŷ)) + ŷT (w∗(ŷ)− w∗(y)) ≤ ∥y − ŷ∥∥w∗(ŷ)− w∗(y)∥.

Since w∗(ŷ) and w∗(y) are binary vectors with z ones and d − z zeros, we have that
∥w∗(ŷ) − w∗(y)∥ ≤

√
2min{z, d− z}. Together with the fact that ∥y − ŷ∥ ≤ ρt−1(ξ), we

obtain that V O
M (ξt, ŷ, ρt−1) ≤

√
2min{z, d− z}ρt−1.

APPENDIX B. PROOF FOR CHAPTER 2 141

On the other hand, if νS(y) > ρ, by Lemma 1 in M. Liu et al., 2023, we have that
w∗(ŷ) = w∗(E[y|ξt]), and thereby ℓ(ht−1(ξt),E[y|ξt]) and V O

M (ξt, ŷ, ρt−1) are both zero. Thus,
we have that

V O
M (ξt, ŷ, ρt−1) ≤

√
2min{z, d− z}ρt−1I{νS(ŷ) ≤ ρt−1}.

Combining it with (B.1), we obtain the upper bounds of the value of one data point in
Theorem 3.3.1.

Before providing the proof of Theorem 3.6.1, we first provide Lemma B.1.1, which provides
two upper bounds for the sum of the expectation of UM(ξ, ht(ξ), ρt(ξ)).

Lemma B.1.1. Under the same setting as Theorem 3.6.1, suppose at each iteration t, for
any type ξ, UM(ξ, ht−1(ξ), ρt−1(ξ)) ≥ cmin and nt(ξ) > 0. Then, given δ ∈ (0, 1), we have the
following two upper bounds for

∑
ξ∈[m] E [UM(ξ, hT−1(ξ), ρT−1(ξ))|ξ] with probability at least

1−me−
µpmint

8 − δ
t2
,∑

ξ∈[m]

E [UM(ξ, hT−1(ξ), ρT−1(ξ))|ξ] ≤

βmin

∑
ξ∈[m]

4µ(ξ)
√

min{z, d− z}ηY

√
d ln(t/δ)

pminµ(ξ)t
,
√
dηYΨ

(
4ηY

√
2d ln(t/δ)

pminµ(ξ)t

) .

Proof of Lemma B.1.1. Because UM(ξ, ht−1(ξ), ρt−1(ξ)) is a non-increasing sequence for
each ξ, UM (ξ, ht−1(ξ), ρt−1(ξ)) ≥ cmin implies that we offer some incentive between [cmin, cmax]
for all customers before iteration t. Thus, the probability of acquiring the label of any type ξ
at one iteration before t is at least pminµ(ξ) ≥ pminµ. Next, we prove two upper bounds in
Lemma B.1.1 respectively.

First upper bound for
∑

ξ∈[m] E[UM (ξ, ht(ξ), ρt(ξ))|ξ]. Since the radius of Y is at most
2ηY , by Hoeffding’s inequality, when the number of observations up to time t, under type ξ is

nt(ξ), for any δ > 0, with probability at least 1−δ/t2, ∥E[y|ξ]−h(ξ)∥ ≤ 2ηY

√
d ln(t/δ)
nt(ξ)

= ρt(ξ).

Next, we provide an upper bound for E[ρt(ξ)].
Since the probability of taking the survey is at least pminµ(ξ) for any ξ, E[1

1+nt(ξ)
] ≤ E[1

1+Z
],

where Z is a binomial random variable with success probability at least pminµ(ξ) and t trials. By
M.-T. Chao and Strawderman, 1972, we have that E[1

1+Z
] ≤ 1

pminµ(ξ)t
. Besides, 1

nt(ξ)
≤ 2

1+nt(ξ)
,

when nt(ξ) > 0. Therefore, when nt(ξ) > 0, E[1
nt(ξ)

] ≤ E[2
nt(ξ)+1

] ≤ 2
pminµ(ξ)t

.

Therefore, for one given ξ, when nt(ξ) > 0, by Jensen’s inequality, we have that

E[ρt(ξ)|nt(ξ) > 0] ≤ ηY

√
E
[2d ln(t/δ)

nt(ξ)
|nt(ξ) > 0

]
≤ 2ηY

√
2d ln(t/δ)

pminµ(ξ)t
.

APPENDIX B. PROOF FOR CHAPTER 2 142

Therefore, if t < tξ, with probability at least 1 − met ln(1−pminµ) − δ/t2, nt(ξ) > 0, and
thereby,

E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤ βE[
√

2min{z, d− z}µ(ξ)ρt(ξ)I{νS(ŷ) ≤ ρt(ξt)}|ξ]
≤ βE[

√
2min{z, d− z}µ(ξ)ρt(ξ)|ξ]

≤ βµ(ξ)
√
2min{z, d− z}E[ρt(ξ)|ξ]

≤ βµ(ξ)
√
2min{z, d− z}ηY2

√
2d ln(t/δ)

pminµ(ξ)t
.

Therefore, when t < tξ, the first upper bound for
∑

ξ∈[m] E[UM(ξ, ht(ξ), ρt(ξ))|ξ] is:

∑
ξ∈[m]

E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤ β
∑
ξ∈[m]

4µ(ξ)
√
min{z, d− z}ηY ·

√
d ln(t/δ)

pminµ(ξ)t
. (B.3)

This upper bound does not incorporate the information of I{νS(ŷ) ≤ ρt(ξt)}.
Second upper bound for

∑
ξ∈[m] E[UM(ξ, ht(ξ), ρt(ξ))|ξ]. Next, we consider another

upper bound for
∑

ξ∈[m] E[UM(ξ, ht(ξ), ρt(ξ))|ξ] when cmin = 0 that focuses on I{νS(ŷ) ≤
ρt(ξt)}.

E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤ βE[
√
2min{z, d− z}µ(ξ)ρt(ξ)I{νS(ŷ) ≤ ρt(ξ)}|ξ]

≤ βP(νS(ŷ) ≤ ρt(ξ))E[
√

2min{z, d− z}µ(ξ)ρt(ξ)|νS(ŷ) ≤ ρt(ξ)]

≤ βµ(ξ)
√
dηYP(νS(ŷ) ≤ ρt(ξ)). (B.4)

The last inequality is because we relax
√

2min{z, d− z}ρt(ξ) to
√
dηY . Next, we show that

P
(
νS(ŷ) ≤ ρt(ξ)

)
≤ P

(
νS(ȳ(ξ)) ≤ 2ρt(ξ)

)
. When νS(ȳ(ξ)) > 2ρt(ξ), since the distance

function νS is a 1-Lipschitz function, we have that νS(ȳ(ξ)) = νS(ȳ(ξ) − ŷ(ξ) + ŷ(ξ)) ≤
∥ŷ(ξ) − ȳ(ξ)∥ + νS(ŷ(ξ)). Since ∥ŷ(ξ) − ȳ(ξ)∥ ≤ ρt(ξ) with probability at least 1 − δ, we
have that νS(ȳ(ξ)) ≤ ρt(ξ) + νS(ŷ(ξ)). Thus, 2ρt(ξ) < νS(ȳ(ξ)) ≤ ρt(ξ) + νS(ŷ(ξ)), which
implies ρt(ξ) ≤ νS(ŷ(ξ)). Therefore, I{νS(ȳ(ξ)) > 2ρt(ξ)} is true implies I{ρt(ξ) ≤ νS(ŷ(ξ))}
is true. Thus, we have that P

(
νS(ŷ) ≤ ρt(ξ)

)
≤ P

(
νS(ȳ(ξ)) ≤ 2ρt(ξ)

)
.

Then, following (B.4), we have with probability at least 1− δ/t2,

E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤ βµ(ξ)
√
dηYP

(
νS(ȳ(ξ)) ≤ 2ρt(ξ)

)
.

Since I
{
νS(ȳ(ξ)) ≥ 2ρt(ξ)

}
≥ I
{
νS(ȳ(ξ)) ≥ αt, and αt ≥ 2ρt(ξ)

}
, for some constant αt

that is independent of ξ, we have that I
{
νS(ȳ(ξ)) ≤ 2ρt(ξ)

}
≤ I
{
νS(ȳ(ξ)) ≤ αt, or αt ≤

2ρt(ξ)
}
≤ I
{
νS(ȳ(ξ)) ≤ αt

}
+ I
{
αt ≤ 2ρt(ξ)

}
. As a result, for any given ξ, when αt > 2ρt(ξ),

we have

P
(
νS(ȳ(ξ)) ≤ 2ρt(ξ)

)
≤ E

[
I
{
νS(ȳ(ξ)) ≤ αt

}
+ I
{
αt ≤ 2ρt(ξ)

}]
≤ E

[
I
{
νS(ȳ(ξ)) ≤ αt

}]
= I
{
νS(ȳ(ξ)) ≤ αt

}
,

APPENDIX B. PROOF FOR CHAPTER 2 143

where the last equality is because the expectation is regarding the randomness of nt and
there is no randomness in the expectation.

We set αt = 4ηY

√
2d ln(t/δ)
pminµ(ξ)t

. We have that

P
(
αt ≤ 2ρt(ξ)

)
= P

(
4ηY

√
2d ln(t/δ)

pminµ(ξ)t
≤ 2ρt(ξ)

)

= P

(
4ηY

√
2d ln(t/δ)

pminµ(ξ)t
≤ 4ηY

√
d ln(t/δ)

nt(ξ)

)
= P

(
nt(ξ) ≤ 0.5pminµ(ξ)t

)
As shown before, when t ≤ tξ, we have

P
(
nt(ξ) ≤ 0.5pminµ(ξ)t

)
≤ P

(
Z ≤ 0.5pminµ(ξ)t

)
,

where Z is a Binomial random variable with success probability at least pminµ(ξ) and number
of trials t. Thus, by Chernoff’s bound on Z, we have that

P
(
nt(ξ) ≤ 0.5pminµ(ξ)t

)
≤ e−

µ(ξ)pmint

8 ≤ e−
µpmint

8 .

Thus, by the union bound, for all ξ, with probability at least 1 − me−
µpmint

8 − δ/t2,
αt > 2ρt(ξ), and thereby,

P
(
νS(ȳ(ξ)) ≤ 2ρt(ξ)

)
≤ I
{
νS(ȳ(ξ)) ≤ αt

}
.

Then, we have the second upper bound: With probability at least 1−me−
µpmint

8 − δ/t2,∑
ξ∈[m]

E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤ β
∑
ξ∈[m]

√
dµ(ξ)ηYP

(
νS(ȳ(ξ)) ≤ 2ρt(ξ)

)
≤ β

∑
ξ∈[m]

√
dηYµ(ξ)I

{
νS(ȳ(ξ)) ≤ αt

}
= β

∑
ξ∈[m]

√
dηYµ(ξ)I

{
νS(ȳ(ξ)) ≤ αt

}
= β
√
dηYP

(
νS(ȳ(ξ)) ≤ αt

)
≤ β
√
dηYΨ(αt).

The last inequality is by the definition of function Ψ. Replacing αt with 4ηY

√
2d ln(t/δ)
pminµ(ξ)t

, The

second upper bounds can be written as:∑
ξ∈[m]

E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤ β
√
dηYΨ

(
4ηY

√
2d ln(t/δ)

pminµ(ξ)t

)
. (B.5)

APPENDIX B. PROOF FOR CHAPTER 2 144

Proof of Theorem 3.3.2. By the definition of value of one data point, we have V (ξt;St−1) =

β · Regret(ht−1) − β · Eyt

[
Regret (f (St−1

⋃
{(ξt,yt)}))

∣∣∣ξt]. Since we assume the prediction

models for different features are independent, the value of one data point can be reduced to

V (ξt;St−1) = βµ(ξt)ℓ(ht−1(ξt),E[y|ξt])− βµ(ξt) · Eyt [ℓ(ht(ξt),E[y|ξt])] .

In the last term, the randomness stems from possible new predictor ht, which depends on the
possible label outcome yt. Thus, to prove Theorem 3.3.2, it suffices to show that there exists
a distribution D and constant K > 0, such that

ℓ(ht−1(ξt),E[y|ξt])− Eyt [ℓ(ht(ξt),E[y|ξt])] ≥ Kρt(ξt)I{νS(ht−1(ξt)) ≤ ρt−1(ξt)} . (B.6)

For the left-hand side,

ℓ(ht−1(ξt),E[y|ξt])− Eyt [ℓ(ht(ξt),E[y|ξt])]
= E[y|ξt]T (w∗(E[y|ξt])− w∗(ht−1(ξt)))− E[y|ξt]T (w∗(E[y|ξt])− E[w∗(ht(ξt))])

= E[y|ξt]T (E[w∗(ht(ξt))]− w∗(ht−1(ξt))).

We assume that the noise distribution satisfies the separability condition: For any outcome
of ξ and y, the following condition holds:

νS(∥E[y|ξ]− y∥) < νS(E[y|ξ]).

This separability condition is studied in M. Liu et al., 2023 and implies the optimal
Bayesian expected loss of the true predictor is zero. Because the prediction is determined
by the average of the labeled data points, we have that under the separability condition,
E[w∗(ht(ξt))] = w∗(ht(E[y|ξt])).

To prove (B.6), we consider two cases depending on I{νS(ht−1(ξt)) ≤ ρt−1(ξt)}. When
νS(ht−1(ξt)) > ρt−1(ξt), by the upper bounds in Theorems 3.4.1 and 3.3.1, we have that the
left-hand side of (B.6) is

E[y|ξt]T (E[w∗(ht(ξt))]− w∗(ht−1(ξt))) = E[y|ξt]T (E[w∗(E[y|ξt])]− w∗(ht−1(ξt))) = 0.

Thus, both sides of (B.6) are zero.
Next, we consider the case where νS(ht−1(ξt)) ≤ ρt−1(ξt). In this case, we construct the

distribution of E[y|ξ] further satisfies the following condition: There exists K1 > 0, such that
for any ξ ∈ X , w0 ̸= w∗(E[y|ξ]), we have

E[y|ξ]T (w∗(E[y|ξ])− w0) ≥ K1.

Intuitively, K1 represents the minimum revenue gap between the best assortment (recommen-
dation) and the second-best assortment (recommendation) for any feature ξ.

Thus, the left-hand side of (B.6) is no less than K1. Since ρt−1(ξt) ≤ ηY , we have that

E[y|ξt]T (E[w∗(E[y|ξt])]− w∗(ht−1(ξt))) ·
ηY
K1

≥ ρt−1(ξt).

Thus, (B.6) holds, and we obtain Theorem 3.3.2.

APPENDIX B. PROOF FOR CHAPTER 2 145

B.2 Proofs in Section 3.4

Before proving Lemma 3.4.1, we first prove that the optimal revenue ga(u) is lipschitz with u
in Lemma B.2.1.

Lemma B.2.1. If |ui − u′
i| ≤ ε,∀i ∈ [d], then the value |g∗a(u)− g∗a(u

′)| ≤ zηpε.

Proof of Lemma B.2.1. We use w∗(u) to denote argmaxwT 1=z : g(u,w). First, by Lemma
A.3 in Agrawal et al., 2019, for any vector ϵ ≥ 0, we have that ga(u+ ϵ, w∗(u)) ≥ ga(u,w

∗(u)).
Therefore, if 0 ≤ u′

i − ui ≤ ε,∀i ∈ [d], then we have that

g∗a(u
′) ≤ ga(u+ ε, w∗(u))

Considering the right hand side,

ga(u+ ε, w∗(u)) =

∑
i∈[d](ui + ε)piw

∗
i (u)

1 + (u+ ε)Tw

=

∑
i∈[d] uipiw

∗
i (u) + ε

∑
i∈[d] piw

∗
i (u)

1 + uTw + zε

≤
∑

i∈[d] uipiw
∗
i (u) + εzηp

1 + uTw + zε

Since ηp ≥ pi, we have∑
i∈[d] uipiw

∗
i (u)

1 + uTw
≤

ηp
∑

i∈[d] uiw
∗
i (u)

1 + uTw
≤ ηp.

Then, we define a temporary function f(x) = a1+a2x
a3+x

, where a1
a3
≤ a2, a1, a2, a3, x ≥ 0. Then,

f(x) ≤ a1
a3

+ a2x
a3+x

. Then, we have that f(x) ≤ a1
a3

+ a2x
a3

. Returning to our setting, we replace

a1, a2, a3, x with
∑

i∈[d] uipiw
∗
i (u), zηp, 1 + uTw, ε, we have that∑

i∈[d] uipiw
∗
i (u) + εzηp

1 + uTw + zε
≤
∑

i∈[d](ui)piw
∗
i (u)

1 + uTw
+

zηp
1 + uTw

ε = g∗a(u)+
zηp

1 + uTw
ε ≤ g∗a(u)+zηpε.

Thus, we have if 0 ≤ u′
i − ui ≤ ε,∀i ∈ [d],

g∗a(u
′) ≤ ga(u+ ε, w∗(u)) ≤ g∗a(u) + zηpε. (B.7)

Next, we consider the lower bound for g∗a(u
′). Again, by Lemma A.3 in Agrawal et al., 2019,

for any vector ϵ ≥ 0, g∗a(u−ϵ) = ga(u−ϵ, w∗(u−ϵ)) ≤ ga(u,w
∗(u−ϵ)) ≤ ga(u,w

∗(u)) = g∗a(u).
Thus, if −ε ≤ u′

i − ui ≤ 0,∀i ∈ [d], then we have that

g∗a(u
′) ≥ g∗a(u− ε). (B.8)

APPENDIX B. PROOF FOR CHAPTER 2 146

In Equation (B.7), replacing u′ and u with u and u − ε respectively, we have that
g∗a(u) ≤ g∗a(u− ε) + zηpε.

Thus, combining Equation (B.8), we have if −ε ≤ u′
i − ui ≤ 0,∀i ∈ [d], then we have that

g∗a(u
′) ≥ g∗a(u− ε) ≥ g∗a(u)− zηpε.

Therefore, we have if |ui − u′
i| ≤ ε,∀i ∈ [d],

g∗a(u) + zηpε ≥ g∗a(u
′) ≥ g∗a(u)− zηpε. (B.9)

Proof of Lemma 3.4.1. Define ∆g = g∗a(u
′)− g∗a(u), and ∆u = u− u′. When ∥∆u∥ ≤ ε,

by Lemma B.2.1, ∆g ∈ [−zηpε, zηpε]. We use ∆u,i to denote the ith entry of ∆u.

|ui(pi − g∗a(u))− u′
i(pi − g∗a(u

′))| = |ui(pi − g∗a(u))− (ui +∆u,i)(pi −∆g − g∗a(u))|
= | −∆gui −∆u,i(pi −∆g − g∗a(u))|
= |∆gui +∆u,i(pi −∆g − g∗a(u))|
≤ |∆gui + |∆u,i|ηp| (B.10)

≤ |zηpεui + |∆u,i|ηp| (B.11)

≤ |zηpεeηY/σ + εηp| (B.12)

= (zηpe
ηY/σ + ηp)ε.

Inequality (B.10) is because the discounted value pi−∆g−g∗a(u) is less than ηp. Inequality
(B.11) is from the bound of ∆g and inequality (B.12) is from the bound of ∆u.

Proof of Theorem 3.4.1. The proof of Theorem 3.4.1 is from Lemma 3.4.1 and Theorem
3.3.1. By Lemma 3.4.1, when the radius of the confidence region of the utility y is ρt, the
radius of the confidence region of the coefficient in the objective (3.6) is κρt. Since Problem
(3.6) is in the form of a product selection problem, we can directly use the result of Theorem
3.3.1. Since the value of one data point is also upper bounded by the maximum revenue loss,
which is ηp, we obtain the upper bound in Theorem 3.4.1.

B.3 Proofs in Sections 3.5 and 3.6

Proof of Theorem 3.5.1. First, we prove Claim 3.5.1.(1). Since U(ξt;St−1) and p(c) are
universal for all ξ ∈ [m], the offered incentive c∗(U(ξt;St−1), p) at each iteration t is universal
for all types of customers. Hence, the probabilities of taking the survey are the same for all
types. Thus, training set St can be viewed as a data set with i.i.d. samples.

We consider two cases: (1) βRegret(hT) ≥ cmin and (2) βRegret(hT) < cmin. When
βRegret(hT) ≥ cmin, since U(ξT+1;ST) ≥ βRegret(hT), by the non-increasing condition of
U(ξT+1;ST), we have

U(ξT ;ST−1) ≥ U(ξT+1;ST) ≥ βRegret(hT) ≥ cmin.

APPENDIX B. PROOF FOR CHAPTER 2 147

Thus, we offer incentives at least cmin, which means customers take the survey with probability
at least pmin. Since each customer is independent, we can apply Chernoff’s bound, and obtain
that with probability at least 1− e−pminT/8, the size of the training set is at least pminT

2
. with

at least pminT
2

samples. Thus, the risk of hT is at most βRs(pminT/2).
On the other hand, if βRegret(hT) < cmin, we simply use cmin as the upper bound for the

risk of hT . Combining the upper bounds of these two cases, we have that with probability at
least 1− e−pminT/8,

βRegret(hT) ≤ βRs(pminT/2) + cmin.

Next, we prove Claim 3.5.1.(2). Since U(ξt;St−1) is a non-increasing function, when t ≥ t,
U(ξt;St−1) < cmin, which means we offer 0 incentives. Since the maximum incentive we offer
is cmax, the cumulative label cost is at most min{t, T}cmax.

Proof of Proposition 3.5.1. We denote p(c) (c− U) by f(c). Then, we have f′(c) =
p′(c)[c− U] + p(c). We use c̃∗ to denote the minimizer of f(c). By setting f′(c) = 0, we have

that U = c̃∗ + p(c̃∗)
p′(c̃∗)

.

Since f′(c) = p′′(c)[c− U] + 2p′(c) ≥ 0 for all c ≤ U , we have that c̃∗ is the minimizer of

f(c). The derivative of c̃∗ + p(c̃∗)
p′(c̃∗)

is

1 +
(p′(c̃∗))2 − p(c̃∗)p′′(c̃∗)

(p′(c̃∗))2
=

2(p′(c̃∗))2 − p(c̃∗)p′′(c̃∗)

(p′(c̃∗))2
≥ 0

The last inequality is by p′′(c̃∗) ≤ 0. Thus, c̃∗ + p(c̃∗)
p′(c̃∗)

is an increasing function of c̃∗.

Thus, when U increases, c̃∗ should also increase. Thus, we obtain that c∗(V (ξT ;ST−1), p) ≤
c∗(U(ξT ;ST−1), p).

Proof of Propositions 3.5.2 and 3.5.3. We denote p(c) (c− U) by f(c). Then, we have

f′(c) = p′(c)[c− U] + p(c).

Suppose c̃∗ is the minimizer of f(c). By setting f′(c) = 0, we have that

U = c̃∗ +
p(c̃∗)

p′(c̃∗)
.

Since f′′(c) = p′′(c)[c − U] + 2p′(c) ≥ 0 for all c ≤ U , we have that c̃∗ is the minimizer of

f(c). We can further check that c̃∗ + p(c̃∗)
p′(c̃∗)

is an increasing function of c̃∗ by showing that the

derivative of c̃∗ + p(c̃∗)
p′(c̃∗)

is positive.

In the first case of Proposition 3.5.2, we have that U = c̃∗ + p0(c̃∗)+k1
p′(c̃∗)

. Thus, when k1

becomes larger, the right hand side c̃∗ + p0(c̃∗)+k1
p′(c̃∗)

becomes larger. Since the right hand side is
also an increasing function of c̃∗, we have that to keep the right hand side equal U , c̃∗ needs
to be smaller.

APPENDIX B. PROOF FOR CHAPTER 2 148

In the second case of Proposition 3.5.2, it is easy to see that U = c̃∗ + p0(c̃∗)
p′0(c̃

∗)
, which is

independent of k1. Finally, Proposition 3.5.3 can be obtained by solving U = c̃∗ + p(c̃∗)
p′(c̃∗)

directly.

Proof of Theorem 3.6.1. Recall that after considering T customers, the number of sam-
ples for type ξ is nT (ξ). In Algorithm 2, the prediction for ξ is the mean of the observation,
i.e., for product j, the predicted utility is hj(ξ) = 1

nT (ξ)

∑
(·,yjt)∈ST (ξ) y

j
t . Thus, the radius for

the confidence interval at time t is ρt(ξt). Since hT−1 is random, the risk of hT−1 can be
written as

β · Regret(hT−1) = βE[ℓ(hT−1(ξ),E[y|ξ])] =
∑
ξ∈[m]

µ(ξ)βE [ℓ(hT−1(ξ),E[y|ξ])] .

The outer expectation E [ℓ(hT−1(ξ),E[y|ξ])] is taken over the randomness of hT−1. By the
upper bound of V O

M (ξt, ŷ, ρt−1) in the proof of Theorem 3.3.1, we have that for each type ξ,
given hT−1,

µ(ξ)βℓ(hT−1(ξ),E[y|ξ]) ≤ µ(ξ)β
√

2min{z, d− z}ρT−1(ξ)I{νS(hT−1(ξ)) ≤ ρT−1(ξ)}
= UM(ξ, hT−1(ξ), ρT−1(ξ)).

Thus, the risk of hT−1 satisfies:

β · Regret(hT−1) =
∑
ξ∈[m]

µ(ξ)βE [ℓ(hT−1(ξ),E[y|ξ])] ≤
∑
ξ∈[m]

E [UM(ξ, hT−1(ξ), ρT−1(ξ))|ξ] .

Thus, to derive the risk bound for hT−1, it suffices to derive the upper bound for∑
ξ∈[m] E [UM(ξ, hT−1(ξ), ρT−1(ξ))|ξ]. We observe that for a given type ξ, UM(ξ, hT−1(ξ),

ρT−1(ξ)) is a non-increasing sequence.
We define tξ as the time when the incentive UM(ξ, hT−1(ξ), ρT−1(ξ)) decreases below

cmin, i.e., tξ = inft≥0{UM(ξ, ht−1(ξ), ρt−1(ξ)) < cmin}. (In the special case where cmin = 0,
tξ = ∞.) Thus, when t ≥ tξ, we stop providing any incentives for type ξ, and thus the
upper bound for the value of one data point for type ξ, UM(ξ, hT−1(ξ), ρT−1(ξ)) remains at
UM(ξ, htξ−1(ξ), ρtξ−1(ξ)).

First, we consider the case where T < tξ. In this case, we always provide some incentive
to customers, and the customer has a probability at least pmin to take the survey. Since
customers make independent decisions, after T iterations, the probability of nT (ξ) = 0 is at
most

(1− µ(ξ)pmin)
T ≤ (1− µpmin)

T = eT ln(1−pminµ).

Thus, by the union bound, after T iterations, the probability of nT (ξ) > 0 for all ξ ∈ [m] is
at least

1−meT ln(1−pminµ).

APPENDIX B. PROOF FOR CHAPTER 2 149

It implies that with probability 1−meT ln(1−pminµ), the conditions in Lemma B.1.1 are satisfied.
Thus, combining it with the probability in Lemma B.1.1, we obtain that the two upper

bounds in Lemma B.1.1 hold with probability at least 1−me−
µpmint

8 −met ln(1−pminµ) − δ/t2.
Next, we consider the case where t ≥ tξ. In this case, UM(ξ, hT−1(ξ), ρT−1(ξ)) remains at

UM(ξ, htξ−1(ξ), ρtξ−1(ξ)). Its naive upper bound is cmin, and next, we derive a tighter bound
for it by considering the function Ψ.

Recall that UM(ξ, ht(ξ), ρt(ξ)) =
√

2min{z, d− z}βµ(ξ)ρt(ξ)I{νS(ŷ) ≤ ρt(ξ)}. Define

ρτ,1 := max : {ρt(ξ) :
√

2min{z, d− z}µ(ξ)ρt(ξ) ≤ cmin}. Define ρτ,2 := max{ρt(ξ) : νS(ȳ) ≥
2ρt(ξ)}. As shown earlier, νS(ȳ) ≥ 2ρt(ξ) implies νS(ŷ) ≥ ρt(ξ). Thus, ρt(ξ) ≥ max{ρτ,1, ρτ,2},
∀t = 1, 2, 3,

Therefore, if ρτ,1 ≥ ρτ,2, the final risk at ξ is at most cmin. If ρτ,1 ≤ ρτ,2, the final risk at ξ
is 0.

Therefore the final upper bound of value of one data point at ξ is equal to

cminI
{
ρτ,1 ≥ ρτ,2

}
≤ cminI

{ cmin√
2min{z, d− z}µ(ξ)β

≥ νS(ȳ)

2

}
.

Thus, the final risk in total is no more than∑
ξ∈[m]

cminI
{
ρτ,1 ≥ ρτ,2

}
≤ cmin

µ

∑
x∈[m]

µ(ξ)I
{
ρτ,1 ≥ ρτ,2

}
=

cmin

µ
P
(
ρτ,1 ≥ ρτ,2

)
=

cmin

µ
P
(cmin√

2min{z, d− z}µ(ξ)β
≥ νS(ȳ)

2

)
≤ cmin

µ
Ψ
(√

2cmin√
min{z, d− z}µβ

)
.

The inequalities are because µ ≤ µ(ξ), ∀ξ ∈ [m].
Therefore, combining results of the final risk with the upper bounds in Lemma B.1.1, we

have that with probability at least 1−me−
µpmint

8 −met ln(1−pminµ) − δ/t2, the total risk of the
predictor ht, is at most βR(t, cmin), where

R(T, cmin) := φ(T) +
cmin

βµ
Ψ
(√

2cmin√
min{z, d− z}µβ

)
.

The function φ(T) is defined as

φ(T) := ηY min

{ ∑
ξ∈[m]

4µ(ξ)
√
min{z, d− z}

√
d ln(T/δ)

pminµ(ξ)T
,
∑
ξ∈[m]

√
dΨ
(
4ηY

√
2d ln(T/δ)

pminµ(ξ)T

)}
.

Thus, we obtain the result in Theorem 3.6.1.

APPENDIX B. PROOF FOR CHAPTER 2 150

Proof of Theorem 3.6.2. To derive the upper bound for the cumulative incentives, we first
claim that c∗(U(ξT ;ST−1), p) ≤ U(ξT ;ST−1) for all T ≥ 1. To prove this, we observe that by
the proof of Proposition 3.5.1, the minimum value of p(c)(c−U(ξT ;ST−1)) should be negative,
i.e., c∗(U(ξT ;ST−1), p)− U(ξT ;ST−1) < 0. Therefore, we conclude that c∗(U(ξT ;ST−1), p) ≤
U(ξT ;ST−1). Consequently, the incentive at each iteration is at most UM(ξ, ht−1(ξ), ρt−1(ξ)),
the expectation of the label cost at iteration t is at most∑

ξ∈[m]

µ(ξ)UM(ξ, ht−1(ξ), ρt−1(ξ)).

To derive the upper bound for the expected cumulative incentive, we derive upper bounds
for
∑

ξ∈[m] µ(ξ)E[UM(ξ, ht−1(ξ), ρt−1(ξ))|ξ] for each iteration.

In Lemma B.1.1, we have two upper bounds for E[UM(ξ, ht−1(ξ), ρt−1(ξ))|ξ] with some
high probability. To derive the upper bound for the cumulative incentives, let us first consider
the case that (B.3) and (B.5) in Lemma B.1.1 hold for t = 1, ..., T . To begin, let us consider
(B.3), which implies that for all t ≥ 1,

∑
ξ∈[m]

µ(ξ)E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤
∑
ξ∈[m]

4µ2(ξ)
√

min{z, d− z}ηY

√
d ln(t/δ)

pminµ(ξ)t

≤
∑
ξ∈[m]

4µ2(ξ)
√

min{z, d− z}ηY

√
d ln(t/δ)

pminµt

≤ 4
√
min{z, d− z}ηY

√
d ln(t/δ)

pminµt

∑
ξ∈[m]

µ(ξ)

= 4
√

min{z, d− z}ηY

√
d ln(t/δ)

pminµt
.

The second inequality is because µ(ξ) ≥ µ for all ξ and the third inequality is because
µ2(ξ) ≤ µ(ξ). Then, summing this upper bound over t = 1, ..., T , and using the inequality
that

∑T
t=1

√
1/t ≤ 2

√
T , we have that with the same probability, the expected cumulative

incentives are at most

T∑
t=1

∑
ξ∈[m]

µ(ξ)E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤
T∑
t=1

4
√

min{z, d− z}ηY

√
d ln(T/δ)

pminµt

≤ 8
√

min{z, d− z}ηY

√
dT ln(T/δ)

pminµ
.

This is the first upper bound for the cumulative label cost. Next, we consider (B.5), which

APPENDIX B. PROOF FOR CHAPTER 2 151

implies that for all t ≤ T ,

∑
ξ∈[m]

µ(ξ)E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤
∑
ξ∈[m]

µ(ξ)
√
dηYΨ

(
4ηY

√
2d ln(t/δ)

pminµ(ξ)t

)
.

Using the fact that µ(ξ) ≥ µ, this upper bound is no more than

∑
ξ∈[m]

µ(ξ)
√
dηYΨ

(
4ηY

√
2d ln(t/δ)

pminµt

)
=
√
dηYΨ

(
4ηY

√
2d ln(t/δ)

pminµt

) ∑
ξ∈[m]

µ(ξ)

≤
√
dηYΨ

(
4ηY

√
2d ln(t/δ)

pminµt

)
.

Summing this upper bound over t = 1, ..., T , we have that with the same probability, the
expected cumulative incentives are at most

T∑
t=1

∑
ξ∈[m]

µ(ξ)E[UM(ξ, ht(ξ), ρt(ξ))|ξ] ≤
√
dηY

T∑
t=1

Ψ
(
4ηY

√
2d ln(t/δ)

pminµt

)
.

Taking the minimum of these two upper bounds, we have that conditional on (B.3) and
(B.5) are true, the expected cumulative incentive is at most

min

{
8
√

min{z, d− z}ηY

√
dT ln(T/δ)

pminµ
,
√
dηY

T∑
t=1

Ψ
(
4ηY

√
2d ln(T/δ)

pminµt

)}
. (B.13)

If (B.3) or (B.5) is not true for iteration t, then the label cost is at most cmax. The probability

that (B.3) or (B.5) is not true is at most me−
µpmint

8 +met ln(1−pminµ) + δ/t2. Thus, if (B.3) or
(B.5) is not true for some iterations before iteration T , then the cumulative cost is at most

cmax

T∑
t=1

[
me−

µpmint

8 +met ln(1−pminµ) + δ/t2
]
.

The summation of the first and second terms is cmax

∑T
t=1

[
me−

µpmint

8 +met ln(1−pminµ)
]
. As the

integration
∫
t
te−t <∞, it is obvious that this summation is finite. We use a constant cq > 0

to denote the upper bound for cmax

∑T
t=1

[
me−

µpmint

8 +met ln(1−pminµ)
]
. Thus, the cumulative

cost is at most

cq + cmax

T∑
t=1

[
δ/t2

]
≤ cq + cmax

∞∑
t=1

[
δ/t2

]
≤ cq + cmax δ ·

π2

6
≤ cq + 2δ.

APPENDIX B. PROOF FOR CHAPTER 2 152

Finally, combining this bound with the previous bound (B.13), we have that the expectation
of the cumulative incentives at iteration T is at most

cq + 2δ +min

{
8
√

min{z, d− z}ηY

√
dT ln(T/δ)

pminµ
,
√
dηY

T∑
t=1

Ψ
(
4ηY

√
2d ln(T/δ)

pminµt

)}
,

which is the result in Theorem 3.6.2.
Next, we consider the case when cmin > 0. For each type ξ, by utilizing the notations of

tξ in the proof of Theorem 3.6.1, we have that when t ≥ tξ, we stop exploring type ξ and
thus the cumulative label cost is finite. As an interest, we derive an upper bound for this

finite label cost. Since ρT (ξ) = 2ηY

√
d ln(T/δ)
nT (ξ)

, we have

P
(
β
√

2min{z, d− z}µ(ξt)ρT (ξt) ≥ cmin

)
= P

(
2β
√

2min{z, d− z}µ(ξt)ηY

√
d ln(T/δ)

nT (ξt)
≥ cmin

)

= P
(
8β2min{z, d− z}dµ2(ξt)η

2
Y ln(T/δ)

c2min

≥ nT (ξt)

)
=
∑
ξ∈[m]

µ(ξ)P
(
8dβ2min{z, d− z}µ2(ξ)η2Y ln(T/δ)

c2min

≥ nT (ξ)

)
Since the probability of taking the survey is at least pminµ(ξ), by Chernoff’s inequality,

we have that

P
(
8dβ2min{z, d− z}µ2(ξ)η2Y ln(T/δ)

c2min

≥ nT (ξ)

)
≤ e−α(ξ,T)2/(2T),

where α(ξ, T) := max
{
0, pminµ(ξ)T − 8β2min{z, d− z}µ2(ξ)η2Y ln(T/δ)c−2

min

}
.

Thus, when cmin > 0, the cumulative label cost by time t is at most

cmax

T∑
t=1

∑
ξ∈[m]

µ(ξ)P
(
8dβ2min{z, d− z}µ2(ξ)η2Y ln(T/δ)

c2min

≥ nT (ξ)

)

≤ cmax

T∑
t=1

∑
ξ∈[m]

µ(ξ)e−α(ξ,T)2/(2T).

Proof of Theorem 3.6.3. We first prove Theorem 3.6.3.(1) in Theorem 3.6.3. Since
cmin = cmax, our offered incentive is either 0 or cmin. When UM (ξ, ht−1(ξ) ≥ cmin, Algorithm 2
provides cmin to the customer, which is the same as the supervised learning algorithm. Thus,
it suffices to consider the case where UM(ξ, ht−1(ξ) < cmin. In this case, Algorithm 2 does

APPENDIX B. PROOF FOR CHAPTER 2 153

not provide any incentive, so the change of the comprehensive cost is zero. However, for
the supervised learning algorithm, if the customer does not accept the incentive, the change
of the comprehensive cost is zero. If the customer accepts the incentive, the risk reduction
R(ht−1)−R(ht) is at most µ(ξt)βV

O
M (ξt, ŷ, ρt−1), which is defined in the proof of Theorem 3.3.1.

By the proof of Theorem 3.3.1, UM(ξ, ht−1(ξ), ρt−1(ξ)) is no less than µ(ξt)βV
O
M (ξt, ŷ, ρt−1),

so the risk reduction R(ht−1)−R(ht) is smaller than UM(ξ, ht−1(ξ), ρt−1(ξ)). Therefore, the
change of the comprehensive cost is at least cmin − UM(ξ, ht−1(ξ), ρt−1(ξ)) > 0. Thus, by
combining these two cases, the change of the supervised learning algorithm is larger than or
equal to the change of Algorithm 2. Thus, Algorithm 2 always achieves a smaller or equivalent
comprehensive cost than the supervised learning algorithm.

Next, we prove Theorem 3.6.3.(2). We denote p(c) (c− U) by fU(c). By the proof of
Proposition 3.5.2, we have

f′U(c) = p′(c)[c− U] + p(c).

Suppose c̃∗ is the minimizer of fU(c). By setting f′U(c) = 0, we have that

U = c̃∗ +
p(c̃∗)

p′(c̃∗)
.

Since f′′U(c) = p′′(c)[c − U] + 2p′(c) ≥ 0 for all c ≤ U , we have that c̃∗ is the minimizer of
fU(c). Let us consider two cases: (1) c̃∗ ≥ cmax, and (2) c̃∗ < cmax.

In the first case, since f′′U(c) ≥ 0, for any c ∈ [cmin, cmax], we have f′U(c) ≤ f′U(cmax) ≤
f′U(c̃

∗) = 0. Thus, the optimal incentive c∗(UM(ξ, ht−1(ξ), ρt−1(ξ)), p) is cmax. It is the same
as the supervised learning algorithm that offers cmax all the time.

In the second case, by Proposition 3.5.1, we have that c∗(V (ξ, ht−1(ξ), ρt−1(ξ)), p) ≤
c∗(UM(ξ, ht−1(ξ), ρt−1(ξ)), p) ≤ cmax. Since f′V (c) ≥ 0 when c ≥ c∗(V (ξ, ht−1(ξ), ρt−1(ξ)), p),
we have that fV (c

∗(UM (ξ, ht−1(ξ), ρt−1(ξ)), p)) ≤ fV (cmax). Thus, the expected change of the
comprehensive cost of Algorithm 2 is no larger than the supervised learning that offers cmax

all the time.
Combining these two cases, we conclude that the expected comprehensive cost of Algorithm

2 is no larger than the expected comprehensive cost of the fixed incentive at cmax.
Lastly, we prove the third argument. Since cmin > 0, by Theorem 3.6.2, we have that the

cumulative label cost of Algorithm 2 is finite. Thus, the comprehensive cost of Algorithm 2
is finite. In contrast, for the supervised learning, since the designer offers a fixed incentive
between [cmin, cmax], the expectation of cumulative label cost is at least Tpmincmin = O(T).
Thus, there exists a time point Ts > 0: when the time T > Ts, the comprehensive cost C (c, g)
of Algorithm 2 is no more than the cost of supervised learning.

Proof of Proposition 3.6.1. We first prove the bound for the cumulative label cost. By
Theorem 3.6.2, the cumulative label cost after surveying T customers is at most

cq + 2δ +
√
dηY

T∑
t=1

Ψ
(
4ηY

√
2d ln(T/δ)

pminµt

)
.

APPENDIX B. PROOF FOR CHAPTER 2 154

Since Ψ(ρ) ≤ Õ(ρκ), the cumulative label cost is at most

Õ

(
T∑
t=1

Ψ
(
4ηY

√
2d ln(T/δ)

pminµt

))
≤ Õ

(
T∑
t=1

(
4ηY

√
2d ln(t/δ)

pminµt

)κ)
≤ Õ

(
T∑
t=1

t−κ/2

)
.

Since Õ
(∑T

t=1 t
−κ/2

)
≤ Õ

(∫ T

t=1
t−κ/2dt

)
≤ Õ(T 1−κ/2), we obtain that the cumulative label

cost after iteration T is at most Õ(T 1−κ/2).
Next, we prove the bound for the risk of the model. By Theorem 3.6.1, the risk of the

model hT is at most R(T, cmin). When Assumption 2.5.1 holds, we have φ(T) ≤ Õ(Ψ(T−κ/2)).

Thus, we have that R(T, cmin) ≤ Õ(T−κ/2) + cmin

βµ
Ψ
(√

2cmin

βµ
√

min{z,d−z}

)
. Since the risk of the

predictor hT is at most βR(T, cmin), we obtain the upper bound for the risk in Proposition
3.6.1.

Proof of Theorem 3.6.4. First, we prove Theorem 3.6.4.(1). It follows Theorem 3.4.1 and
Theorem 3.6.1. Similar to Theorem 3.6.1, we first consider the case when t ≤ tξ. It suffices to

derive upper bounds for E[UA
M(ξt, ŷ, Ht)|ξt] = E[min

{
κ
√

2min{z, d− z}µ(ξt)ρtI{νS(ŷ) ≤

ρt}, ηp
}
|ξt]. The first upper bound in φ(T) in Theorem 3.6.4.(1) is immediately obtained

when multiplying (B.3) in the proof Theorem 3.6.1 by κ. The second upper bound is obtained
by replacing the maximum decision loss

√
dηY in (B.5) with ηp.

Next, we consider the upper bound of the risk when t > tξ. Similar to Theorem 3.6.1,

since UA
M(ξt, ŷ, Ht) = min

{
κ
√

2min{z, d− z}µ(ξt)ρtI{νS(ŷ) ≤ ρt}, ηp
}
, we define ρτ,1 :=

max : {ρt(ξ) : κ
√

2min{z, d− z}µ(ξ)ρt(ξ) ≤ cmin/β}. Define ρτ,2 := max{ρt(ξ) : νS(ȳ) ≥
2ρt(ξ)}. Recall that νS(ȳ) ≥ 2ρt(ξ) implies νS(ŷ) ≥ ρt(ξ). Thus, ρt(ξ) ≥ max{ρτ,1, ρτ,2},
∀t = 1, 2, 3,

Therefore, if ρτ,1 ≥ ρτ,2, the final risk at ξ is at most cmin/β. If ρτ,1 ≤ ρτ,2, the final risk
at ξ is 0.

Therefore the final risk at ξ is equal to

cmin

β
I
{
ρτ,1 ≥ ρτ,2

}
≤ cmin

β
I
{ cmin√

2min{z, d− z}µ(ξ)β
≥ νS(ȳ)

2

}

APPENDIX B. PROOF FOR CHAPTER 2 155

Thus, the final risk in total is no more than∑
ξ∈[m]

cmin

β
I
{
ρτ,1 ≥ ρτ,2

}
≤ cmin

βµ

∑
x∈[m]

µ(ξ)I
{
ρτ,1 ≥ ρτ,2

}
=

cmin

βµ
P
(
ρτ,1 ≥ ρτ,2

)
=

cmin

βµ
P
(cmin

κ
√

2min{z, d− z}µ(ξ)β
≥ νS(ȳ)

2

)
≤ cmin

βµ
Ψ
(√

2cmin√
min{z, d− z}κµβ

)
.

The inequalities hold because µ ≤ µ(ξ), ∀ξ ∈ [m].
Next, we provide the proof of Theorem 3.6.4.(2). We change (B.13) in the proof of

Theorem 3.6.2 to the setting of the assortment optimization problem. Specifically, since the
upper bound of the value of one data point is multiplied by κ, we multiply the first term
in (B.13) by κ as well. For the second term, we replace the maximum regret

√
dηY with

ηp. Next, by defining the same value of cq and following a similar procedure in the proof of
Theorem 3.6.2, we can obtain the bounds for the expectation of the cumulative label cost in
Theorem 3.6.4.(2).

Finally, to prove Theorem 3.6.4.(3), we observe that the above analysis deviates from the
results in the product selection problem only by a multiplier κ. Thus, Theorem 3.6.3 and
Proposition 3.6.1 still hold for the assortment optimization problem.

B.4 Proofs in Sections 3.7, 3.8 and 3.9

Proof of Theorem 3.7.1. We first prove Theorem 3.7.1.(1).
Recall in Algorithm 3, given one type ξ of customer, we let U(ξ;St−1) ← µ(ξ) ·√
2min{z, d− z} βρPxt∼Dξ

(νS(ht−1(ξ, xt)) ≤ ρ). Thus, we consider two cases: (1) U(ξ;St−1) ≥
µ(ξ)cmin, and (2) U(ξ;St−1) < µ(ξ)cmin.

In the first case, we observe that the incentive in Algorithm 3, U(ξ;St−1), is universal for
all x ∈ X ξ. Thus, at each iteration, given one type ξ, the probability of taking the survey is
the same for all features x ∈ X ξ. Thus, the samples within the training set St−1(ξ) are i.i.d.
Since p(cmin) ≥ pmin, at each iteration, the probability of acquiring the labels of one type
ξ in training set St−1(ξ) is at least µ(ξ)p(cmin) ≥ pminµ. Thus, by Chernoff’s bound, after
t iterations, when U(ξ;St−1) ≥ cmin, the number of samples in training set St−1(ξ) is least

0.5pminµt with probability at least 1− e−
µpmint

8 .
Recall that in Algorithm 3, given one type ξ, we let ρ ← Φ(|St−1(ξ)|, ξ, δ). Since in

Theorem 3.7.1, ρt ← maxξ∈[m]Φ(⌊0.5pminµt⌋, ξ, δ), we have that for any type ξ, we have

ρ ≤ ρt with probability at least 1− e−
µpmint

8 . By the definition of Φ, we have that ρt is the

prediction error for the ht−1(ξ, xt) with probability at least 1− e−
µpmint

8 . In other words, with

APPENDIX B. PROOF FOR CHAPTER 2 156

probability at least 1− e−
µpmint

8 , for any type ξ, we have

sup
x∈X ξ

{∥ht−1,ξ(x)− h∗
ξ(x)∥} ≤ ρt.

We denote ht−1(ξ, xt) by ŷ, then similar to Theorem 3.3.1, the risk at one feature x is at
most UM(ξ,y, ρ) =

√
2min{z, d− z}ρtβI{νS(ŷ) ≤ ρt}. Thus, the risk for all feature x ∈ X ξ

is at most ∫
x∈X ξ

µξ(x)
√
2min{z, d− z}βρtI {νS(ht−1,ξ(x)) ≤ ρt} dx

=
√

2min{z, d− z}βρtP(νS(Θx) ≤ ρt).

Next, we consider the second case U(ξ;St−1) < µ(ξ)cmin. Given a type ξ, if U(ξ;St−1) <
cmin, then we stop exploring type ξ, because U(ξ;St−1) is a non-increasing sequence. Therefore,
the risk for type ξ remains at µ(ξ)cmin.

Combining the upper bounds for these two cases, we have that the risk of hT at type ξ is
at most U(ξt;St−1) + µ(ξ)cmin. Since the predictions across different types are independent,
we have that the risk of hT for all types is at most∑

ξ∈[m]

[U(ξt;St−1) + µ(ξ)cmin] =
∑
ξ∈[m]

[U(ξt;St−1)] + cmin.

To prove the risk bound in Theorem 3.7.1.(1), it suffices to show that 1
β

∑
ξ∈[m] [U(ξt;St−1)]

≤ φ(t).
To prove φ(t) is an upper bound for 1

β
U(ξt;St−1), we first relax Pxt∼Dξ

(νS(ht−1(ξ, xt)) ≤ ρ)
to 1. Then, we obtain

U(ξt;St−1)

β
≤
√

2min{z, d− z}ρT ,

which is the first part of the upper bound in φ(t).
To show that the second part in φ is also an upper bound for 1

β

∑
ξ∈[m] [U(ξt;St−1)], we

relax
√

2min{z, d− z}ρT to
√
dηY , which is the largest possible satisfaction loss. Next, to

derive the upper bound for the risk, we provide an upper bound for P(νS(ht−1(ξ, xt)) ≤ ρt).
Note that this prediction error ρT does not depend on the choice of type ξ, and is

a deterministic value. Hence, by the proof of Theorem 3.6.1, P(νS(ht−1(ξ, xt)) ≤ ρt) ≤
P(νS(h∗

ξ(ξ, xt)) ≤ 2ρt) = Ψξ(2ρt). Thus, we have that

U(ξt;St−1)

β
≤
√
dηY

∑
ξ∈[m]

µ(ξ)Ψξ(2ρt),

which is the second part in ϕ(t).

APPENDIX B. PROOF FOR CHAPTER 2 157

Next, we prove Theorem 3.7.1.(2). Since ρ ≤ ρt, by the definition of U(ξt;St−1), we have
that the maximum incentive at time t is β

√
2min{z, d− z}ρtP(νS(ht−1(ξ, xt)) ≤ ρt). Thus, to

the expectation of the cumulative incentive is at most
∑T

t=1 β
√
2min{z, d− z}ρtP(νS(ht−1(ξ, xt))

≤ ρt). To prove Theorem 3.7.1.(2), it suffices to derive bounds on this summation.
To derive the upper bound in Theorem 3.7.1.(2), we relax P(νS(ht−1(ξ, xt)) ≤ ρt) to 1, so

the upper bound is

T∑
t=1

β
√
2min{z, d− z}ρt.

This is the first part in Theorem 3.7.1.(2).
To obtain the second part in Theorem 3.7.1.(2), we relax

√
2min{z, d− z}ρt to

√
dηY , and

utilize the conclusion in the proof of Theorem 3.7.1.(2) that P(νS(ht−1(ξ, xt)) ≤ ρt) ≤ Ψ(2ρt).
Thus, the expectation of the total incentive is at most:

√
dηY

T∑
t=1

Ψ(2ρt),

which is the second part in Theorem 3.7.1.(2).
Next, we consider the case when cmin > 0. Since the maximum incentive is cmax, the

maximum incentive given at time t is at most cmaxP
(√

2min{z, d− z}ρntP(νS(Θx) ≤ ρnt) ≥
cmin

)
. Thus, when ρnt is small enough such that

√
2min{z, d− z}ρntP(νS(Θx) ≤ ρnt) < cmin,

we will stop providing incentives. Thus, nt cannot go to infinity, and the cumulative label
cost is finite. We can also derive a closed form upper bound for nt with a lengthy proof
similar to the proof of Theorem 3.6.2, but no interesting insights can be drawn.

Lastly, to prove Theorem 3.7.1.(3), we observe that the orders on T in the previous two
arguments are the same as the product selection problem with finite support. Thus, we can
immediately obtain Theorem 3.7.1.(3).

Proof of Theorem 3.8.1. We again notice that the objective function (P4) is a linear
function where the coefficients of the decision are piϕ(i; ȳ). When Assumption 3.8.1 holds
and the prediction errors for ȳ is ρ, the estimation error of the coefficients in (P4) is at most
ηpηbρ. By (3.9), the results of Theorem 3.8.1 can be immediately obtained when we replace
κ in Theorem 3.6.4 with ηpηb.

Proof of Lemma 3.9.1. Since the estimations of different rows in Θ are independent, we
first focus on the estimation of the first row, whose estimation and true value are denoted by
θ̂(1) and θ∗(1) respectively. Since θ̂(1) is the minimizer of the empirical squared loss, we have

that θ̂(1) = Λ−1XT
t Yt.

APPENDIX B. PROOF FOR CHAPTER 2 158

Then, by the fact that Yt = Xtθ
∗
(1) + ϵ, we have that the estimation error is at most

∥θ̂(1) − θ∗(1)∥ = ∥Λ−1
t XT

t Yt − θ∗(1)∥
= ∥Λ−1XT

t ϵ∥
≤ ∥Λ−1

t ∥F∥XT
t ϵ∥

≤
√
mξ

λmin(Λt)
∥XT

t ϵ∥.

Since λmin(Λt) ≥ nt2λ
2

= ntλ with high probability, we have that ∥θ̂(1)− θ∗(1)∥ ≤
√
mξ

λ
∥X

T
t ϵ

nt
∥.

From the standard Gaussian tail bounds, we have that with probability at least 1−2e−
nδ2

2 ,
we have ∥∥∥∥XT

t ϵ

nt

∥∥∥∥ ≤ √d∥∥∥∥XT
t ϵ

nt

∥∥∥∥
∞
≤
√
dηXσϵ(

√
2 ln(d)

nt

+ δ).

Thus, by combining the above results, we have that with probability at least 1 −
√
2mξe

−λnt/(2η2X)−2e−
nδ2

2 , ∥θ̂(1)−θ∗(1)∥ ≤
√
mξ

λ

√
dηXσϵ(

√
2 ln(d)
nt

+δ). Thus, with the same prob-

ability, the prediction error for any θ̂(1)xt on y1 is at most ∥θ̂(1)−θ∗(1)∥ ≤
√
mξ

λ

√
dη2Xσϵ(

√
2 ln(d)
nt

+

δ).
The prediction errors on the other rows have the same bound as the first row, so with

probability at least 1−
√
2dmξe

−λnt/(2η2X) − 2de−
nδ2

2 , the whole prediction error for Θ̂x is at
most √

mξ

λ
dη2Xσϵ(

√
2 ln(d)

nt

+ δ).

Thus, by resetting the probability 1−
√
2dmξe

−λnt/(2η2X)−2de−
nδ2

2 to 1− δ, we can achieve

a function Φ(n, ξ, δ) ≤ Õ
(
n−1/2

√
ln(1

δ
)
)
.

To conclude this section, we provide another example of the Φ function. Suppose we are
considering a decision tree hypothesis class and the density of features is bounded below
by a positive constant. Then, by Hu, Kallus, and Mao, 2022, we can also obtain that

Φ(n, ξ, δ) ≤ Õ
(
n−1/2

√
ln(1

δ
)
)
.

B.5 Numerical Experiments: Survey Details

In this appendix, we provide the details of the campus survey in the numerical experi-
ments. The first 37 columns of the survey are shown in Table B.1. The answer to each
question is Yes or No. We adopt the following rules to relate the columns to the six groups.
The “art and culture” group is related to columns [1,17,26]; “science and tech” group is

APPENDIX B. PROOF FOR CHAPTER 2 159

related to columns [18,19]; The ‘Social welfare and diversity’ group are related to columns
[0,2,3,4,5,8,9,10,23,25,27,28,29,30,33,34,35]; The “entrepreneurship” group is related to col-
umn [22]; The “sports” group is related to column [7,20,32]. The rest of the columns are
related to the “others” group. For each column, if the answer of the student is “Yes”, we
add 1 point to her rating of the related group. Thus, the rating of each group is an integer
number from 0 to 17.

APPENDIX B. PROOF FOR CHAPTER 2 160

Columns index Question

0 Q1-Volunteered For Animal welfare
1 Q1-Volunteered For Arts/Culture/Heritage
2 Q1-Volunteered For Children/Youth
3 Q1-Volunteered For Community building
4 Q1-Volunteered For Diversity & Inclusion
5 Q1-Volunteered For Environmental sustainability
6 Q1-Volunteered For Families
7 Q1-Volunteered For Health/Well-being (e.g ment...
8 Q1-Volunteered For Seniors
9 Q1-Volunteered For Poverty reduction
10 Q1-Volunteered For Education
11 Q1-Volunteered For Others
12 Q2-Participated in Societies and Interest Groups
13 Q2-Participated in Clubs
14 Q2-Participated in Halls, JCRCs and/or Residen...
15 Q2-Participated in University organised events
16 Q2-Participated in Others
17 Q3-Interested in Arts & Culture
18 Q3-Interested in Science & Technology
19 Q3-Interested in Research and independent study
20 Q3-Interested in Sports
21 Q3-Interested in Other competitions (eg case, ...
22 Q3-Interested in Entrepreneurship
23 Q3-Interested in Volunteering
24 Q3-Interested in Others
25 Q4-Passionate about Animal welfare
26 Q4-Passionate about Arts/Culture/Heritage
27 Q4-Passionate about Children/Youth
28 Q4-Passionate about Community building
29 Q4-Passionate about Diversity & Inclusion (e.g...
30 Q4-Passionate about Environmental sustainability
31 Q4-Passionate about Families
32 Q4-Passionate about Health/Well-being (e.g men...
33 Q4-Passionate about Seniors
34 Q4-Passionate about Poverty reduction
35 Q4-Passionate about Education
36 Q4-Passionate about None of the above
37 Q4-Passionate about Others

Table B.1: Questions in survey

161

Appendix C

Proof for Chapter 3

C.1 Proofs in Sections 4.3

Proof of Proposition 4.3.1. Suppose the set of available product sets Sc is not a cover,
then there exists a pair of products (i, j), such that products i and j are not included in
any available product set within Sc. Suppose ρ̂i,k k ̸= j is the estimation result of Problem
(4.2). Thus, for any value of ρ̂i,j between (0, 1), let ρ̂i,k ← (1− ρ̂i,j)ρ̂i,k, the objective value of
Problem (4.2) remains the same, (because the likelihood function in Objective (4.2) does not
depend on the scales). Thus, the estimation of ρ̂ is not unique.

Proof of Theorem 4.3.1. For any S ∈ Sc, |S| ≤ n and Θ∗S
ij ≥ ρij,∀i, j ∈ M . Since ρ̂ is

the solution of equality (4.9), we have (Θ∗S
ij − Θ̂S

ij)
2 ≥ (ρ∗ij − ρ̂ij)

2. Thus, the estimation error
of each entry ρij is no more than the estimation error in the submatrix Θij . Since we recover
each entry ρij by re-scaling Θij, the final error bounds for the squared Frobenius norm is
at most the sum of the squared Frobenius norm under each submatrix. Thus, when each
submatrix satisfies the estimation error bound, the estimation error for the entire matrix

satisfies ∥ρ̂−ρ∗∥F ≤
√∑

S∈Sc err
2
S. Since each estimation error bound holds with probability

at least 1−4(2|S|)−τ/c1 , by the union bound, the estimation error bound for the entire matrix
holds with probability at least 1− 4

∑
S∈Sc(2|S|)

−τ/c1 .

Proof of Lemma 4.3.2. The first order derivative of ℓpurchase(αi) is

−piWii + (NB
i −Wii)

pi
∑

j∈S ρije
−αipi

1− e−αipi
.

The second order derivative of ℓpurchase(αi) is

(NB
i −Wii)

−(pi)2e−αipi

(1− e−αipi)2
< 0.

APPENDIX C. PROOF FOR CHAPTER 3 162

Therefore, the function ℓpurchase(αi) is concave for any product i.

Proof of Lemmas 4.3.1. The gradients of the L(ρ) in this lemma can be verified by the
chain rule and derivative rules.

C.1.1 Proof of Lemma 4.3.3

The proof of Lemma 4.3.3 is inspired by Theorem 3 in Kallus and Udell, 2020. They consider
the estimation of low-rank matrix, where the transition probability is an exponential function
(MNL model) of the entries in each row. In contrast, in our setting, the low-rank matrix
itself is the transition matrix. In their setting, the error bound grows in Õ(n), where n is the
number of products. In our setting, the error bound grows in Õ(ln(n)), which is consistent
with Theorem 1 in Z. Zhu et al., 2021, under some different settings and assumptions.

To begin the proof, we first introduce some necessary notations. Due to the simplicity
of expression, throughout the proof, we neglect the index S for NS and ΘS, and use N and
Θ instead in the proof. Since we consider a given availability S, for the simplicity of proof,
we use n to denote the cardinality |S|. Let el be the lth unit vector, i.e., the lth element
is one while other elements are zero. Let e0 be the vector of all zeros. Suppose there are
n products, then el ∈ Rn. N is the total number of click transitions we observed. Recall
that S denotes the set of available products and S̄ = S ∪ {0}. We use ∥ · ∥max to denote
the maximum absolute value of the entries in the matrix, i.e., ∥∆∥max = maxi,j∈S̄ : |∆i,j|.
The dot product of two matrix A ·B is

∑
i,j∈S̄ AijBij. Recall that in Assumption 4.3.1, we

assume β0 ≤ ΘS
ij ≤

β2

|S| , ∀i ∈ S, j ∈ S̄.
Then, we define:

• The error to bound ∆ = Θ̂−Θ∗. We have that ∥∆∥max ≤ 1.

• The click indicator Xij = eite
T
jt . It means for the tth click transition, it starts from

product it, and click product jt.

• The estimation error of the tth observation Yt(∆) = ∆2
itjt .

Using these notations, the negative log likelihood function, its gradient, and its Hessian

APPENDIX C. PROOF FOR CHAPTER 3 163

matrix can be written as

ℓ(Θ) =
1

N

N∑
t=1

(
ln(
∑
j∈S

Xitj ·Θ)− ln(Xitj ·Θ)
)

(C.1)

∇ℓ(Θ) =
1

N

N∑
t=1

(∑
j∈S Xitj∑

j∈S Xitj ·Θ
− Xitjt

Xitjt ·Θ

)
(C.2)

∇2ℓ(Θ) =
1

N

N∑
t=1

(X⊗2
itjt

(Xitjt ·Θ)2
−

(
∑

j∈S Xitj)
⊗2

(
∑

j∈S Xitj ·Θ)2

)
, (C.3)

where A⊗2 = A⊗ A is the symmetric linear operator on matrices defined by (A⊗ A)(B) =
(A ·B)A.

Then, we first define the Bregman divergence

DΘ∗(∆) = ℓ(Θ∗ +∆)− ℓ(Θ∗)−∇ℓ(Θ∗)∆.

We define the quadratic function

ℓquad(∆) =
1

N

N∑
t=1

Yt(∆) =
1

N

N∑
t=1

∆2
itjt .

The general idea of the proof of Lemma 4.3.3 is as follows. Lemma C.1.1 shows that
ℓquad(∆) provides a lower bound on the Bregman divergence function. Lemma C.1.2 also
shows that the log-likelihood function ℓ(Θ) is restricted convex in the feasible space, and
Lemma C.1.2 is built on Lemma C.1.3. The upper bound in Lemma C.1.4 shows that when
the estimation error ∆ is close to zero, the gradient of the log-likelihood function is also close
to zero. Then, together with the results of Lemma 5 and 6 in Kallus and Udell, 2020, we
show that when the regularization penalty γ is set as a proper value, the Frobenius norm of
estimation error is close to zero.

Lemma C.1.1. For any ∆ := Θ̂−Θ∗, it holds that

DΘ∗(∆) ≥ 1

4
ℓquad(∆).

Proof of Lemma C.1.1. Define vtj = Xitj(Θ
∗+s∆), where s ∈ [0, 1]. Because ∥∆∥max ≤

APPENDIX C. PROOF FOR CHAPTER 3 164

1, we have vtj ≤ 2. By Taylor’s theorem, there is some s ∈ [0, 1] such that

DΘ∗(∆) = ℓ(Θ∗ +∆)− ℓ(Θ∗)−∇ℓ(Θ∗)∆

= ∇2ℓ(Θ∗ + s∆)[∆,∆]

=
1

N

N∑
t=1

((Xtitj∆)2

v2tj
−
(
(
∑

j∈S Xitj)∆
)2

(
∑

j∈S vtj)
2

)
=

1

N

N∑
t=1

(Xtitj∆)2

v2tj

≥ 1

N

N∑
t=1

1

4
(Xtitj∆)2

=
1

N

1

4

N∑
t=1

∆2
itjt =

1

4
ℓquad(∆).

The fourth equality holds because (
∑

j∈S Xitj)∆ = 0. To see why it holds, Constraints (4.2a)

require that
∑

j Θ̂ij = 1, and thus (
∑

j∈S Xitj)∆ = (
∑

j∈S Xitj)(Θ̂−Θ∗) = 0.

Then, we will show that ℓquad(∆) is strongly convex when restricted to the matrices ∆,
with high probability.

Lemma C.1.2. Fix a parameter τ ≥ 1. Let

A∗ =

{
∆ : ∥∆∥max ≤ 1, ∥∆∥∗ ≤

1

(9max{τ, 16})1/4

√
β5
1N

ln(2n)
∥∆∥2F

}
.

We have that

P
(
ℓquad(∆) ≥ β2

1∥∆∥2F ,∀∆ ∈ A∗
)
≥ 1− 3(2n)−τ .

Lemma C.1.2 is built on Lemma C.1.3, which is stated as follows.

Lemma C.1.3. Let AΓ,ν =

{
∆ : ∥∆∥max ≤ 1, ∥∆∥F ≤ Γ, ∥∆∥∗ ≤ νβ2

1

96
√
2

√
3N
ln(n)

Γ2

}
. Define

the maximum deviation from strong convexity

MΓ,ν = sup
∆∈AΓ,ν

(
β2
1∥∆∥2F − ℓquad(∆)

)
.

Then, we have

P
(
MΓ,τ ≥ νβ2

1Γ
2
)
≤ exp

(
− 8

9

Nn2ν2Γ4β4
1

β2
2

)
.

APPENDIX C. PROOF FOR CHAPTER 3 165

Next, we first provide the proof of Lemma C.1.3, and then we prove Lemma C.1.2.

Proof of Lemma C.1.3. Because Θ2
ij ≥ β2

1 , ∀i, j ∈ [n], we have

E[Yt(∆)] = E[∆2
itjt] =

∑
i,j∈[n]

P(i = it, j = ji)∆
2
it,jt ≥ β2

1∥∆∥2F .

Define

M̃Γ,ν = sup
∆∈AΓ,ν

1

N

N∑
t=1

(
E[∆2

it,jt]−∆2
it,jt

)
.

Therefore, we have M̃Γ,ν ≥MΓ,ν . Let ∆
′
i,jt be an iid replicate of ∆i,jt , and let ϵt be the iid

Rademacher random variables. Then, we have

E[M̃Γ,ν] = E

[
sup

∆∈AΓ,ν

1

N

N∑
t=1

(
E[(∆′

it,jt)
2]−∆2

it,jt

)]

≤ E

[
sup

∆∈AΓ,ν

1

N

N∑
t=1

(
(∆′

it,jt)
2 −∆2

it,jt

)]

= E

[
sup

∆∈AΓ,ν

1

N

N∑
t=1

ϵt

(
(∆′

it,jt)
2 −∆2

it,jt

)]

≤ 2E

[
sup

∆∈AΓ,ν

1

N

N∑
t=1

ϵt∆
2
it,jt

]

= 2E

[
sup

∆∈AΓ,ν

1

N

N∑
t=1

ϵt∥eTit∆ejt∥22

]
.

Define Wt = ϵteite
T
jt , where ϵt is the iid Rademacher random variables. By the Lemma 7 of

Bertsimas and Kallus, 2020 and by Holder’s inequality, we have

E[M̃Γ,ν] ≤ 4E
[

sup
∆∈AΓ,ν

1

N

N∑
t=1

Wt∆
]
≤ 4E

[
∥ 1
N

N∑
t=1

Wt∥2
]

sup
∆∈AΓ,ν

∥∆∥∗.

Note that ∥Wt∥2 = 1, E[∥WtW
T
t ∥2] ≤ 1

n
, and E[∥W T

t Wt∥2] ≤ 1
n
. By the matrix Bernstein

inequality, we have that

P
(
∥ 1
N

N∑
t=1

Wt∥2 ≥ δ
)
≤ 2ne

−3Nδ2

6
n+2δ ≤ 2nmax{e−

3δ2nN
8 , e−

3δN
8 }.

Suppose N ≥ 32
3
n ln(n). (In other words, we consider the case that the length of click

trajectories is at least proportional to the number of products, which is the common setting in

APPENDIX C. PROOF FOR CHAPTER 3 166

low-rank estimation, e.g., Kallus and Udell, 2020 and Z. Zhu et al., 2021.) Given δ1 =
√

32 ln(n)
3nN

,

we have e−
3δ2nN

8 ≤ e−
3δN
8 , and thus, P(∥ 1

n

∑N
t=1Wt∥2 ≥ δ1) ≤ 1

n2 . As

∥ 1
N

N∑
t=1

Wt∥2 ≤
∑N

t=1 ∥Wt∥2
N

≤ 1,

we have

E
[
∥ 1
n

N∑
t=1

Wt∥2
]
≤ δ1P

(
∥ 1
n

N∑
t=1

Wt∥2 ≤ δ1

)
+ 1 · P

(
∥ 1
n

N∑
t=1

Wt∥2 ≥ δ1

)
=

√
32 ln(n)

3nN
+

1

n2

≤ 8

√
2 ln(n)

3nN
.

Then, we have

E[M̃Γ,ν] ≤ 32

√
2 ln(n)

3nN

νβ2
1

96
√
2

√
3N

ln(n)
Γ2 ≤ νβ2

1Γ
2

3
.

Let M̃′
Γ,ν be a replicate of M̃Γ,ν , where only it and jt are different. Then the difference

|M̃Γ,ν − M̃′
Γ,ν | is bounded by 1

N
sup∆∈AΓ,ν

(∆2
ij −∆i′j′

2) ≤ 1
N

β2
2

n2 .
Hence, by McDiarmid’s inequality, we have

P(M̃Γ,ν ≥ νβ2
1Γ

2) ≤ P
(
M̃Γ,ν − E[M̃Γ,ν] ≥

2νβ2
1Γ

2

3

)
≤ exp

(
− 8

9
Nn2ν2Γ4β4

1

1

β2
2

)
.

As M̃Γ,ν ≥MΓ,ν , we obtain Lemma C.1.3.

Next, we use Lemma C.1.3 to prove Lemma C.1.2.

Proof of Lemma C.1.2. This proof is similar to the proof of Lemma 3 in Kallus and
Udell, 2020, except that we assign different values to τ ′, η, ν, and κ (κ is denoted by β in

Kallus and Udell, 2020). Particularly, we set τ ′ = max{τ, 16}, η = (9τ ′)1/4
√

ln(2n)

β5
1N

, ν = (τ ′)1/4

and κ =
√
2ν. Since ∥ · ∥∗ ≥ ∥ · ∥F , we have that ∀∆ ∈ A∗, ∥∆∥F ≥ η. Then, we have

τ ′ ≥ 16, ν ≥ 2, and κ ≥ 2 > 1 . Let AlN = A∗ ∩ {ηκ(l−1)N ≤ ∥∆∥F ≤ ηκlN}. Thus, we have
that A∗ = ∪l=1...∞AlN Then, if the event in Lemma C.1.2 is invalid and ∆ ∈ Al, we have

APPENDIX C. PROOF FOR CHAPTER 3 167

ℓquad(∆) ≤ β2
1

2
∥∆∥2F . Then, we have β2

1∥∆∥2F − ℓquad(∆) ≥ β2
1

2
∥∆∥2F ≥

β2
1

2
(ηκ(l−1)N)2. Then,

the probability that the event is invalid is bounded by

min
{
1,

∞∑
l=1

P(MκlNη,1/2 ≥
β2
1

2
(ηκ(l−1)N)2

}
≤min

{
1,

∞∑
l=1

exp(−2

9
Nn2β

4
1

β2
2

(ηκ(l−1)N)4)
}

≤min
{
1, exp(−2

9
Nn2β

4
1

β2
2

η4) +
∞∑
l=2

exp(−2

9
Nn2β

4
1

β2
2

(ηκ(l−1)N)4)
}

=min
{
1, exp(−2

9
Nn2β

4
1

β2
2

η4) +
∞∑
l=1

exp(−2

9
Nn2β

4
1

β2
2

(ηκlN)4)
}
.

Since N ≤ 2c1n2

9β2
2
, we have that

exp
(
− 2

9
Nn2β

4
1

β2
2

η4
)
= exp

(
− 2τ ′n2(ln(2n))2

β6
1β

2
2N

)
≤ exp

(
− 2τ ′(ln(2n))2

c1

)
.

Since κ ≥ 2, we also have that

∞∑
l=1

exp
(
− 2

9
Nn2β

4
1

β2
2

(ηκlN)4
)
≤

∞∑
l=1

exp
(
− 2

9
Nn2β

4
1

β2
2

(η2lN)4
)

≤
∞∑
l=1

exp
(
− 2

9
Nn2β

4
1

β2
2

(ηN2l)4
)

≤
∞∑
l=1

exp
(
− 2

9
Nn2β

4
1

β2
2

η4N4l4
)

≤
∞∑
l=1

exp
(
− 2

9
Nn2β

4
1

β2
2

η4Nl
)

≤
(
exp

(2
9
Nn2β

4
1

β2
2

η4N
)
− 1
)−1

≤ 2 exp
(
− 2

9
Nn2β

4
1

β2
2

η4N
)

= 2 exp
(
− 2τ ′n2((ln(2n))2)

β6
1β

2
2

)
≤ 2 exp

(
− τ ′(ln(2n))2

)
.

APPENDIX C. PROOF FOR CHAPTER 3 168

Since we only require the lower bound of c1, without loss of generality, we assume 1
c1
≤ 1.

Therefore, the probability that the event is invalid is bounded by

min
{
1, exp

(
− 2τ ′(ln(2n))2

c1

)
+ 2 exp

(
− τ ′((ln(2n))2)

)}
≤ min

{
1, 3 exp(−τ ′

c1
((ln(2n))2))

}
≤ 3 exp(−τ ′

c1
(ln(2n))2)

≤ 3(2n)
− τ ′

c1 ≤ 3(2n)−τ/c1 .

Therefore, we conclude that

P
(
ℓquad(∆) ≥ β2

1∥∆∥2F ,∃∆ ∈ A∗
)
≥ 1− 3(2n)−τ/c1 .

Then, Lemma C.1.4 provides an upper bound on the gradient of the log-likelihood function
at ∆∗.

Lemma C.1.4. For a fixed a parameter τ ≥ 1, with probability at least 1− (2n)−τ ,

∥∇ℓ(∆∗)∥2 ≤

√
8τ ln(2n)

Nβ1

.

Proof of Lemma C.1.4. Define

Gt =

∑
j∈S Xitj∑

j∈S XitjΘ
− Xitjt

XitjtΘ
.

Then, ∇ℓ(∆∗) = 1
N

∑N
t=1Gt. Because tj is drawn according to Θ∗, we have E[Gt] = 0. Note

that
∑

j∈S XijΘ = 1,∀i. As 1
Θ2

ij
≤ 1

β2
1
, ∀i, j = 1...n, we have ∥Gt∥2 =

√
λmax(GT

t Gt). Since

each entry of GT
t Gt is less than

max
{
1, 1− 1

Θij

,
(
1− 1

Θij

)2} ≤ 4

β2
1

.

We have that

∥Gt∥2 ≤

√
4n

β2
1

≤ 2
√
n

β1

.

Next, we bound ∥E[GtG
T
t]∥2 and ∥E[GT

t Gt]∥2.
We have

GtG
T
t = eite

T
it

(
n− 1 + (1− 1

Θ2
itjt

)2
)
,

APPENDIX C. PROOF FOR CHAPTER 3 169

so E[GtG
T
t] is a diagonal matrix, and each entry on the diagonal is

Θij

(
n− 1 + (1− 1

Θ2
ij

)2
)
= nΘij +

1

Θij

− 2.

Since Θij ≤ β2

n
, we have that each entry on the diagonal is less than β2 − 2 + 1

β1
. Thus,

∥E[GtG
T
t]∥2 ≤ Θij ≤ β2 − 2 +

1

β1

.

Let ytj = I[j = jt], and we have

GT
t Gt =

∑
j,k=1...n

eje
T
k

(
(1− ytj

1

Θitj

)(1− ytk
1

Θitk

)
)
.

Then, for a given i, for the off-diagonal entries, they are 1 with probability 1−Θij and they
are 1− 1

Θij
with probability Θij. Thus, for the off-diagonal entries in E[GT

t Gt], their value is

1−Θij + (1− 1

Θij

)Θij = 0.

For the entries on the diagonal of E[GT
t Gt], their values are

1−Θij +Θij(1−
1

Θij

)2 =
1

Θij

− 1 ≤ 1

β1

− 1 ≤ 2

β1

.

Therefore, we have,

∥E[GT
t Gt]∥2 ≤

2

β1

.

Thus, by β2 ≤ 1
β1
, we have that

max{∥E[GtG
T
t]∥2, ∥E[GT

t Gt]∥2} ≤ β2 +
2

β1

<
3

β1

.

Therefore, by the matrix Bernstein inequality, we have

P

(
∥ 1
N

N∑
t=1

Gt∥2 ≥ δ

)
≤ 2nmax

{
e−

δ2Nβ1
β , e

− 3δβ1N

16
√
n

}
.

Suppose N satisfies N ≥ 32
9

nτ
β
ln(2n). (In other words, we consider the case that the

length of click trajectories is at least proportional to the number of products.) Then, the first
term in max{·, ·} dominates. We have that with probability at least 1− (2n)−τ , it holds that

∥ 1
N

N∑
t=1

Gt∥2 ≤

√
8τ ln(2n)

Nβ1

.

APPENDIX C. PROOF FOR CHAPTER 3 170

By the Lemma 5 and Lemma 6 in Kallus and Udell, 2020, we have

DΘ∗(∆) ≤ (∥∇ℓ(Θ∗)∥2 + γ)∥∆∥∗,

and if ∥∇ℓ(Θ∗)∥ ≤ γ/2, it holds that

∥∆∥∗ ≤ 16max{
√
r∥∆∥F , ∥Θ̄∗

r∥∗}.

Now, we provide the proof of Lemma 4.3.3.

Proof of Lemma 4.3.3. Setting γ = 1
2

√
8τ ln(2n)

Nβ1
, we have

∥∇ℓ(Θ∗)∥2 ≤ γ/2 ≤ γ,

then
DΘ∗(∆) ≤ 2γ∥∆∥∗.

By Lemma C.1.1 and Lemma C.1.2, we have

β2
1

4
∥∆∥2F ≤ DΘ∗(∆) ≤

√
8τ ln(2n)

Nβ1

∥∆∥∗.

Then, we have

∥∆∥2F ≤
8

β2
1

√
2τ ln(2n)

Nβ1

∥∆∥∗. (C.4)

Next, we show that (C.4) holds even if ∆ ̸∈ A∗. Suppose so, then

∥∆∥∗ >
1

(9max{τ, 16})1/4

√
β5
1N

ln(2n)
∥∆∥2F .

Then, by rewriting both sides and introducing redundant terms greater than 1, we can recover
(C.4). Therefore, for all ∆ ∈ A∗, (C.4) holds with high probability.

Then, if
√
r∥∆∥F ≥ ∥Θ̄∗

r∥∗, we have ∥∆∥∗ ≤ 16
√
r∥∆∥F . Then, we have

∥∆∥F ≤
128

β2
1

√
2τr ln(2n)

Nβ1

.

APPENDIX C. PROOF FOR CHAPTER 3 171

C.2 Proofs in Section 4.4

Proof of Convergence of Algorithm 6. We prove the convergence of Algorithm 6 by
showing that each iteration is a contraction. This proof is in the same vein as the proof of
Lemma 14 in Dong, Simsek, and Topaloglu, 2019.

Define function fi(·) as

fi(r
t) = max

pi

{
µ(pi)(pi − ci) +

(
1− µ(pi)

)∑
j∈[n]

ρijr
t
j

}
.

Then, for any two feasible vectors of stationary revenue rt1, r
t
2 ∈ Rn+1, suppose that pi,1 be

the optimal solution to problem fi(r
t
1). Then, because pi,1 may not be optimal under fi(r

t
2),

we have that
fi(r

t
2) ≥ µ(pi,1)(pi,1 − ci) +

(
1− µ(pi,1)

)∑
j∈[n]

ρijr
t
2,j.

Since
fi(r

t
1) = µ(pi,1)(pi,1 − ci) +

(
1− µ(pi,1)

)∑
j∈[n]

ρijr
t
1,j,

we have that

fi(r
t
1)− fi(r

t
2) ≤

(
1− µ(pi,1)

)∑
j∈[n]

ρij
[
rt1,j − rt2,j

]
≤
∑
j∈[n]

ρij∥rt1 − rt2∥∞.

Because
∑

j∈[n] ρij ≤ 1, we further get fi(r
t
1)− fi(r

t
2) ≤ ∥rt1 − rt2∥∞. Switching the role of rt1

and rt2, we can also get fi(r
t
2)− fi(r

t
1) ≤ ∥rt1 − rt2∥∞. Therefore,

|fi(rt1)− fi(r
t
2)| ≤ ∥rt1 − rt2∥∞,

and thus each iteration of Algorithm 6 is a contraction. By Theorem 6.2.3.a in Puterman,
2014, we have that there exist r∗, such that r∗i = fi(r

∗) for all i ∈ [n]. (The uniqueness of r∗i
is proved in Dong, Simsek, and Topaloglu, 2019.) Therefore, Algorithm 6 converges to the
r∗.

Proof of Proposition 4.4.1. We use ri(t) to denote the value of ri in Algorithm 6 at
iteration t. First, by the conclusion in Dong, Simsek, and Topaloglu, 2019, we have that
argmaxpi{µ(pi)(pi− ci) + (1−µ(pi))

∑
j∈[n] ρijrj} is increasing in

∑
j∈[n] ρijrj . We use ri and

pi to denote the outputs of Algorithm 6 under the transition matrix ρ. Then, to get p′i under
ρ′, we run Algorithm 6 under ρ′, by initializing r′i(0) = ri.

Then, because the previous algorithm converges to the optimal price, we run the algorithm
on transition matrix ρ′ by initializing r′i(0) = ri. Then, we use the induction to prove that
r′i(t+ 1) ≥ r′i(t) for any i.

APPENDIX C. PROOF FOR CHAPTER 3 172

At the first iteration, for i ∈ [K],

r′i(1) = max
pi

µ(pi)(pi − ci) + (1− µ(pi))
∑
j∈[n]

ρ′
ijr

′
j(0)

= max

pi

µ(pi)(pi − ci) + (1− µ(pi))
∑
j∈[n]

ρ′ijrj

≥ max

pi

µ(pi)(pi − ci) + (1− µ(pi))
∑
j∈[n]

ρijrj

 = ri.

For i ̸∈ [K],

r′i(1) =
∑
j∈[n]

ρ′ijr
′
j(0) =

∑
j∈[n]

ρ′ijrj ≥
∑
j∈[n]

ρijrj = ri.

Suppose r′i(t+ 1) ≥ r′i(t), ∀i ∈ [n] and t ≤ t0.
For t = t0 + 1 and i ∈ [K], we have

r′i(t0 + 2) = max
pi

µ(pi)(pi − ci) + (1− µ(pi))
∑
j∈[n]

ρ′ijr
′
j(t0 + 1)

≥ max

pi

µ(pi)(pi − ci) + (1− µ(pi))
∑
j∈[n]

ρ′ijr
′
j(t0)

= r′i(t0 + 1).

For t = t0 + 1 and i ̸∈ [K], we have

r′i(t0 + 2) =
∑
j∈[n]

ρ′ijr
′
j(t0 + 1) ≥

∑
j∈[n]

ρ′ijr
′
j(t0) = r′i(t+ 1).

The inequality is by the assumption of induction. Therefore, r′i(t0 + 2) ≥ r′i(t0 + 1),
∀i ∈ [n]. Then, by induction, we have that r′i(t + 1) ≥ r′i(t), ∀i ∈ [n] and ∀t. Therefore,
taking t to infinity, we have r′i ≥ ri. Therefore,∑

j∈[n]

ρ′ijr
′
j ≥

∑
j∈[n]

ρ′ijrj ≥
∑
j∈[n]

ρijrj, for any product i.

Then, we have p′i ≥ pi, ∀i ∈ [n].

APPENDIX C. PROOF FOR CHAPTER 3 173

Proof of Proposition 4.4.2. Without loss of generality, suppose that ρi0 = ρj0 = ρ0,
∀i, j ∈ [n] and ci = cj = c0, ∀i, j ∈ [n̄].

Let us first consider the optimal price under the attraction matrix ρ̃ where all rows
are the same, and ρ̃i0 = ρ0,∀i ∈ [n]. Suppose the optimal prices under ρ̃ is p̃, and the
stationary revenue when clicking product i is ṽi. Because all the products are the same,
ṽi = ṽj, ∀i, j ∈ [n], which is denoted by ṽ0. Hence, we have that

p̃i = argmax
pi

{
µ(pi)(pi − ci) +

(
1− µ(pi)

)∑
j∈[n]

ρijr
t
j

}
= argmax

p

{
µ(p)(p− c0) +

(
1− µ(p)(1− ρ0)

}
ṽ0,

and
ṽ0 = max

p

{
µ(p)(p− c0) +

(
1− µ(p)(1− ρ0)ṽ0

}
.

Now, let us consider optimizing the price using Algorithm 6 under ρ. We initialize r as
ṽ0. Then, when updating r1i ,

r1i = max
pi

{
µ(pi)(pi − ci) +

(
1− µ(pi)

)∑
j∈[n]

ρij ṽ
0
}

= max
pi

{
µ(p)(p− c0) +

(
1− µ(p)(1− ρ0)

}
ṽ0

= ṽ0.

Therefore, by induction, we have that rti = ṽ0, ∀t. As a result, pti = p̃0, ∀t, ∀i ∈ [n]. Therefore,
Proposition 4.4.2 holds.

Proof of Lemma 4.4.1. Since p1 and p2 are the optimal prices under parameters (ρ1,α1)
and (ρ2,α2) respectively, we know that the iterations in Algorithm 6 stops at p1 and p2 under
parameters (ρ1,α1) and (ρ2,α2) respectively. When the iterations in Algorithm 6 stops, we
have that

ri(pk) = µ(pk,i)(pk,i − ci) + (1− µ(pk,i))
∑
j∈N

ρijrj(pk,j) for k = 1, 2.

Given (ρ1,α1) and (ρ2,α2), suppose i = argmaxj{rj(p1;ρ1,α1)−rj(p2;ρ1,α1)}. Within

APPENDIX C. PROOF FOR CHAPTER 3 174

the proof, we denote ri(·;ρ1,α1) by ri(·) for short. Then, we have that

ri(p1)− ri(p2)

=µ(p1,i)(p1,i − ci)− µ(p2,i)(p2,i − ci) + (1− µ(p1,i))
∑
j∈N

ρijrj(p1,j)− (1− µ(p2,i))
∑
j∈N

ρijrj(p2,j)

=µ(p1,i)(p1,i − ci)− µ(p2,i)(p2,i − ci) + (−µ(p1,i) + µ(p2,i))
∑
j∈N

ρijrj(p1,j)

+ (1− µ(p2,i))
(∑

j∈N

ρijrj(p1,j)−
∑
j∈N

ρijrj(p2,j)
)

≤µ(p1,i)(p1,i − ci)− µ(p2,i)(p2,i − ci) + (−µ(p1,i) + µ(p2,i))
∑
j∈N

ρijrj(p1,j)

+ (1− µ(p2,i))
(
ri(p1)− ri(p2)

)
.

Therefore,

ri(p1)− ri(p2) (C.5)

≤ 1

µ(p2,i)

(
µ(p1,i)(p1,i − ci)− µ(p2,i)(p2,i − ci) + (−µ(p1,i) + µ(p2,i))

∑
j∈N

ρijrj(p1,j)
)

=
1

µ(p2,i)

(
µ(p1,i)(p1,i − p2,i) + (µ(p1,i)− µ(p2,i))(p2,i − ci) + (−µ(p1,i) + µ(p2,i))

∑
j∈N

ρijrj(p1,j)
)

=
1

µ(p2,i)

(
µ(p1,i)(p1,i − p2,i) + (µ(p1,i)− µ(p2,i))

(
p2,i − ci −

∑
j∈N

ρijrj(p1,j)
))

≤ 1

µ(p2,i)

(
µ(p1,i)(p1,i − p2,i) + (µ(p1,i)− µ(p2,i))p

)
. (C.6)

We define ϵ = p1,i − p2,i. Then, we have

1

µ(p2,i)

(
µ(p1,i)(p1,i − p2,i) + (µ(p1,i)− µ(p2,i))p

)
=eα1,ip2,i

(
e−α1,ip1(p1,i − p2,i) + (e−α1,ip1,i − e−α1,ip2,i)p

)
=eα1,i(p2,i−p1,i)(p1,i − p2,i) + eα1,i(p2,i−p1,i)p− p

=eα1,i(p2,i−p1,i)(p1,i − p2,i + p)− p

=e−α1,iϵ(ϵ+ p)− p.

Define function f(ϵ) = e−α1,iϵ(ϵ+p)−p. Then, we have that f ′(ϵ) = e−α1,iϵ(−α1,iϵ−α1,ip+1).
When p > 1

α1,i
, if ϵ ≥ 0, we have that −α1,iϵ− α1,ip+ 1 < 0. Therefore, f ′(ϵ) ≤ 0 when ϵ > 0.

As a result, when ϵ > 0, f(ϵ) ≤ f(0) = 0. Note that although we use the condition p > 1
α1,i

,

APPENDIX C. PROOF FOR CHAPTER 3 175

we can replace p with a large enough number in Equation (C.6) and yield the same result.
Therefore, no additional condition about p is needed.

Then, we have that when p1,i ≥ p2,i, ri(p1) − ri(p2) ≤ f(ϵ) ≤ 0. Therefore, if i =
argmaxj{rj(p1)− rj(p2)}, then, we have p1,i ≤ p2,i.

As a sequence, to prove Lemma 4.4.1, it suffices to consider the case p1,i ≤ p2,i.
In Algorithm 6,

pk,i = argmax
p′i

{µ(p′i)(p′i − ci) + (1− µ(p′i))
∑
j∈N

ρk,ijrj(p
′
k;ρk,αk)}

= argmax
p′i

{µ(p′i)(p′i − ci −
∑
j∈N

ρk,ijrj(p
′
i;ρk,αk))}

= argmax
p′i

{e−αk,ip
′
i(p′i − ci −

∑
j∈N

ρk,ijrj(p
′
i;ρk,αk))}, for k = 1, 2.

By setting the first order derivative as zero, we have that pk,i = ci +
∑

j∈N ρk,ijrj(pk,i;ρk,

αk) +
1

αk,i
. Therefore,

p1,i − p2,i

=
∑
j∈N

ρ1,ijrj(p1;ρ1,α1) +
1

α1,i

−
∑
j∈N

ρ2,ijrj(p2;ρ2,α2)−
1

α2,i

=
∑
j∈N

(ρ1,ij − ρ2,ij)rj(p1;ρ1,α1) +
1

α1,i

− 1

α2,i

+
∑
j∈N

ρ2,ij

(
rj(p1;ρ1,α1)− rj(p2;ρ2,α2)

)
.

We also have that

ri(p2;ρ2,α2)− ri(p1;ρ1,α1)

=ri(p2;ρ2,α2)− ri(p2) + ri(p2)− ri(p1)

=
(
e−α2,ip2,i − e−α1,ip2,i

)
(p2 − ci) +

(
1− e−α2,ip2,i

)∑
j∈[n]

ρ2,ijrj(p2;ρ2,α2)−(
1− e−α1,ip2,i

)∑
j∈[n]

ρ1,ijrj(p2;ρ1,α1) + ri(p2)− ri(p1)

≤α2,i|α1,i − α2,i|p+ ∥ρ1 − ρ2∥1p+ ri(p2)− ri(p1). (C.7)

If p1,i ≤ p2,i, then

ri(p1)− ri(p2) ≤
1

µ(p2,i)
(µ(p1,i)− µ(p2,i))p ≤

1

µl
(µ(p1,i)− µ(p2,i))p.

By the definition of µ(·), we have that

µ(p1,i)− µ(p2,i) = e−α1,ip1,i − e−α1,ip2,i ≤ α1,i(p2,i − p1,i)

= α1,i

(
−
∑
j∈N

(ρ1,ij − ρ2,ij)rj(p1)−
1

α1,i

+
1

α2,i

−
∑
j∈N

ρ2,ij

(
rj(p1)− rj(p2;ρ2,α2)

))
.

APPENDIX C. PROOF FOR CHAPTER 3 176

Combining the result in (C.6) and (C.7), we have that

ri(p1)− ri(p2) ≤
p

µ
(µ(p1,i)− µ(p2,i))

≤ p

µ
α1,i

(
−
∑
j∈N

(ρ1,ij − ρ2,ij)rj(p1)−
1

α1,i

+
1

α2,i

−
∑
j∈N

ρ2,ij

(
rj(p1)− rj(p2;ρ2,α2)

))
≤ pα1,i

µ

(
∥ρ1 − ρ2∥1p+

1

α2,i

− 1

α1,i

+max
j∈[n]

:
(
rj(p2;ρ2,α2)− rj(p1)

))
≤ pα1,i

µ

(
∥ρ1 − ρ2∥1p+

1

α2,i

− 1

α1,i

+max
j∈[n]

: α2,j|α1,j − α2,j|p+ ∥ρ1 − ρ2∥1p+ ri(p2)− ri(p1)
)

=
pα1,i

µ

(
2p∥ρ1 − ρ2∥1 +

1

α2,i

− 1

α1,i

+max
j∈[n]

: α2,j|α1,j − α2,j|p+ ri(p2)− ri(p1)
)
.

Therefore,

(1 +
pα1,i

µ
)
(
ri(p1)− ri(p2)

)
≤ pα1,i

µ

(
2p∥ρ1 − ρ2∥1 +

1

α2,i

− 1

α1,i

+max
j∈[n]

: α2,j|α1,j − α2,j|p
)
.

By the boundedness of pi and αi, we have that

ri(p1)− ri(p2) ≤
αi,ip

µ+ α1,ip

(
2p∥ρ1 − ρ2∥1 +

1

α2,iα1,i

∥α1 −α2∥∞ + αp∥α1 −α2∥∞
)

≤ α1,ip

µ+ α1,ip

(
2p∥ρ1 − ρ2∥1 +

(1

α2
+ αp

)
∥α1 − α2∥∞

)
.

Thus there exist two positive numbers L1 and L2, where L1 =
2αp2

µ+αp
and L2 =

(1+α3p)p
α(µ+αp)

, such

that
ri(p1)− ri(p2) ≤ L1∥ρ1 − ρ2∥1 + L2∥α1 −α2∥∞, for any product i ∈ [n].

Proof of Lemma 4.4.2. We first bound the one-step regret. Since there are three types
of parameters, the analysis of regret has three parts, i.e. low-rank estimation ρ̂, the price
elasticity α̂, and arrival rate λ.

We first claim that we can ignore the error of λ in the analysis, because of the following
two reasons. First, in algorithms 6, the optimal pricing does not depend on the arrival rate
λ, therefore, if the error of ρ and α tends to zero, the price tends to be optimal. Secondly,
because

∑
i λi = 1 and the stationary revenue from one customer is

∑
i λiri, therefore the

error of lambda has limited influence on the revenue, given the price. Then, it suffices to
analyze the error r̂ti − r∗i .

Since r can be written as a function of price p, it suffices to analyze r(pt) − r(p∗). By
Lemma 4.4.1, we have that r(pt)− r(p∗) ≤ L1∥ρ∗ − ρt∥1 + L2∥α1 −α2∥∞.

APPENDIX C. PROOF FOR CHAPTER 3 177

To analyze the error of α̂, we first show that for each product i, the number of collected
transition pairs starting from i grows at least in the order of O(T) with high probability.
To show that, we observe that the transition probability ρij ≥ β1, ∀i, j, and the purchase
probability for any product is at most µ. Hence, the probability to have at least one
transition pair starting from product i for any customer is at least (1− µ)β1. Let U

t
i denote

the collected number of transition pairs starting from product i by customer t, then, by
Chernoff’s inequality, we have, for any δ ∈ (0, 1),

P
(
U t
i ≥ t(1− µ)β1 −

√
t ln(1/δ)

)
≥ 1− δ. (C.8)

Then, to obtain the error of α̂, we use the result in Theorem 1 in L. Li, Yu Lu, and Zhou,
2017, which characterizes the confidence bound for MLE of generalized linear models (GLM).
Since prices and price elasticity are assumed to be within some intervals in Assumption
4.4.1, the conditions in Theorem 1 in L. Li, Yu Lu, and Zhou, 2017 is satisfied when
t ≥ C(1 + ln(1/δ)), for some constant C. By Theorem 1 in L. Li, Yu Lu, and Zhou, 2017, we
have that there exists a constant C, such that when t ≥ C(1 + ln(1/δ)), for any price p′, for
any product i,

p′(α̂i − α∗
i) ≤

1√
U t
i

p

p

√
ln(1/δ).

Setting p′ = p, we have that

|α̂i − α∗
i | ≤

1√
U t
i

1

p

√
ln(1/δ).

Setting δ ← δ
T
, we have that at each time t, the error from αi is less than

L2
1√
U t
i

1

p

√
ln(T/δ).

Combining the result in (C.8), by the union bound for all products, we have with
probability at least 1− nδ,

∥α̂−α∗∥∞ ≤
1√

t(1− µ)β1 −
√
t ln(1/δ)

1

p

√
ln(T/δ). (C.9)

When t ≥ 2 ln(1/δ)
(1−µβ1)

, we have t(1−µ)β1−
√
t ln(1/δ) ≥ 1

2
t(1−µ)β1. Thus, when t ≥ 2 ln(1/δ)

(1−µβ1)
,

we have ∥α̂−α∗∥∞ ≤ L2
1√

t(1−µ)β1

1
p

√
ln(T/δ).

Thus, summing over t = 1...T , by the fact that
∑T

t=1
1√
t
≤ 2
√
T , when t ≥ 2 ln(1/δ)

(1−µβ1)
, we

have that, there exists a constant c1 > 0, the cumulative revenue loss from the second term
is at most 2 L2c1

p(1−µ)

√
T ln(T/δ).

APPENDIX C. PROOF FOR CHAPTER 3 178

We denote the upper bound of ∥Θ̂S −Θ∗S∥F in Lemma 4.3.3 by B(n,N), where n is the
number of products and N is the number of click transitions. Then, the l2-norm of each row
in Θ̂S −Θ∗S is no more than B(n,N).

For the error from ρ, suppose N is the number of click transitions. Then, by the inequality
that ∥X∥1 ≤

√
n∥X∥2, we have that the error of first term ∥ρ∗−ρt∥1 is less than

√
nB(n,N).

By Chernoff’s bound, we have that with probability at least 1− δ,

N ≥ t

µ
−
√

1

t
ln(1/δ). (C.10)

In B(n,N), setting 4(2n)−τ/c1 = δ
T
, we have that τ = c1 ln(

4T
δ
) 1
ln(2n)

, then we have

B(n,N) =
128

β2
1

√
2c1 ln(

4T
δ
)r

NSβ1

. (C.11)

Combining the lower bound in (C.10), we have that with probability at least 1− 2 δ
T
, the

error, ∥ρ∗ − ρt∥1, is less than

128

β2.5
1

√√√√ 2c1 ln(
4T
δ
)nr

t
µ
−
√

1
t
ln(t

δ
)
. (C.12)

Since
∑T

t=1
1√
t
≤ 2
√
T ∈ O(

√
T), we have that when T ≥ C(1 + ln(1

δ
)), with probability

at least 1− 2 δ
T
, the total regret of revenue in the first term is at most c2L1

β2.5
1

√
nrT ln(T

δ
) for

some constant c2.
Then, adding up the regret of the first term and second term and sum over all the products,

with probability at least 1− 3nδ, the total regret is at most:

2L2c1
p(1− µβ1)

√
T ln

(T
δ

)
+

c2L1

β2.5
1

√
nrT ln

(T
δ

)
≤
(2L2c1
p(1− µβ1)

+
c2L1

β2.5
1

√
nr
)√

T ln
(T
δ

)
.

Thus, substituting δ ← δ
n
, we conclude the regret bound in Lemma 4.4.2.

Proof of Theorem 4.4.1. In the availability-focused pricing policy, the training set of
each available product set is independent, so the estimation of the transition submatrix for
each available product set is independent as well. Suppose that after observing T customers,
the set of available product sets, which are shown at least one time, is denoted by S. For each
available product set Si ∈ S, we use NS,i to denote the number of click transition pairs that
are collected under the Si. Then, by (C.11), we have that for each Si ∈ S, with probability
at least 1− δ/T ,

∥Θ̂S,i −Θ∗S,i∥F ≤
128

β2
1

√
2c1 ln(

4T
δ
)r

NS,iβ1

. (C.13)

APPENDIX C. PROOF FOR CHAPTER 3 179

By the fact that
∑T

t=1
1√
t
≤ 2
√
T ∈ O(

√
T), we have that when T ≥ C(1 + ln(1

δ
)), with

probability at least 1− δ
T
, the regret of the revenue in the first term in Lemma 4.4.1 is at

most c2L1

β2.5
1

√
nrNS,i ln(

T
δ
) for some constant c2. By the proof of Lemma 4.4.2, we have that

for any available product set, the regret of the revenue from the second part in Lemma 4.4.1
is at most 2 L2c1

p(1−µ)

√
T ln(T/δ).

Thus, for any given available product set, we have that with probability at least 1− δ,
the cumulative regret is at most

c2L1

β2.5
1

√
nrNS,i ln(

T

δ
) + 2

L2c1
p(1− µ)

√
T ln(T/δ).

Utilizing the Cauchy–Schwarz inequality and the fact that
∑|S|

i=1NS,i = T , we have that

|S|∑
i=1

√
NS,i ≤

√
T |S|. (C.14)

Since |S| ≤ T , we have that with probability at least 1− 2Tδ, the total cumulative regret is
at most

c2L1

β2.5
1

√
nr|S|T ln(

T

δ
) + 2

L2c1
p(1− µ)

√
T ln(T/δ).

In the worst case, |S| ≤ 2n, so we obtain that with probability at least 1 − 2Tδ, for any
sequence of available product sets, the cumulative regret is at most

c2L1

β2.5
1

√
nr2nT ln(

T

δ
) + 2

L2c1
p(1− µ)

√
T ln(T/δ).

By replacing T with T/δ, we obtain the results in Theorem 4.4.1.

Proof of Theorem 4.4.2. We use T̃ S to denote the number of times that available product
set S is shown to customers. Because at each iteration, the available product set is uniformly
drawn from the cover S, the probability of selecting one specific available product set S is
1/|S|. Thus, by Chernoff’s bound, we can obtain the following lower bound for T̃ S with high
probability for any δ ∈ (0, 1):

P
(
T̃ S ≥ T

|S|
−

√
2T

|S|
ln(

1

δ
)
)
≥ 1− δ.

Thus, for any available product set S ∈ S, by the union bound, the probability that

T̃ S ≥ T
|S| −

√
2T
|S| ln(

1
δ
) is at least 1− |S|δ. Redefining δ ← |S|δ, we have that for any available

APPENDIX C. PROOF FOR CHAPTER 3 180

product set S ∈ S,

P
(
T̃ S ≥ T

|S|
−

√
2T

|S|
ln(
|S|
δ
)
)
≥ 1− δ.

When T ≥ 8|S| ln(|S|/δ), we have that T̃ S ≥ T
|S| −

√
2T
|S| ln(

|S|
δ
) ≥ T

2|S| . Thus, when T ≥
8|S| ln(|S|/δ), we have for any available product set S ∈ S,

P
(
T̃ S ≥ T

2|S|

)
≥ 1− δ. (C.15)

According to Algorithm 5, the final estimation of the entire cover matrix is the combination
of the rescaled submatrix under each availability. Thus, for each available product set S ∈ S,
the submatrix is the same as optimal solution ΘS of problem 4.2. Thus, by Equ. (C.12) in
the proof of Lemma 4.4.2, when Equ. (C.15) holds, we have that for any available product
set S ∈ S, with probability at least 1− 2δ/T ,

∥ΘS
T −Θ∗S∥1 ≤

128

β2.5
1

√√√√ 2c1 ln(
4T
δ
)nr

t
|S|µ −

√
|S|
t
ln(t

|S|δ)
.

Next, regarding the estimation error for αi, by (C.9) in the proof of Lemma 4.4.2, when Equ.
(C.15) holds, with probability at least 1− δ/T , the error from αi is less than

∥α̂−α∗∥∞ ≤
1√

t(1− µ)β1 −
√

t ln(1/δ)

1

p

√
|S| ln(T/δ).

Using Lemma 4.4.1, the one-step regret bound for any available product set S can be upper
bounded by L1∥ΘS −Θ∗S∥1 + L2∥α1 −α2∥∞. Finally, to achieve the regret bound for the
cumulative revenue loss, we sum over t from 1 to T and utilize the fact that

∑T
t=1

1√
t
≤ 2
√
T .

This yields that when T ≥ C|S|(1 + ln(|S|
δ
)), with probability 1− 4δ, the regret of Algorithm

7 is at most

Regret({pt}Tt=1) ≤
(2L2

p
+

c2L1

β2.5
1

√
Ñr
)√
|S|T ln

(ÑT

δ

)
,

for some constant c2, C > 0.

	Contents
	List of Figures
	List of Tables
	Introduction
	Active Learning in the Predict-Then-Optimize Framework
	Introduction
	Preliminaries
	Margin-Based Algorithm
	Guarantees and Analysis for the Margin-Based Algorithm
	Risk Guarantees and Small Label Complexity Under Low Noise Conditions
	Examples of Functions and Upper Bound for
	Numerical Experiments
	Conclusions and Future Directions

	Feature-Dependent Value of One Data Point
	Introduction
	Value of One Data Point
	Value of One Data Point in Personalized Product Selection
	Value of One Data Point in Assortment Optimization
	Active Label Acquisition Algorithms
	Theoretical Guarantees for Active Label Acquisition
	Extension to Active Label Acquisition with Contextual Information
	Extension to the General RUM Choice Model
	Examples of Function
	Numerical Experiments
	Conclusion

	Pricing from Click Transition Data
	Introduction
	Click Model with Purchase Behavior
	Estimation of MDAC using Click Data
	Pricing from the Click Data
	Numerical Experiments
	Concluding Remarks

	Bibliography
	Proof for Chapter 1
	Proof for Chapter 2
	Proofs in Section 3.3
	Proofs in Section 3.4
	Proofs in Sections 3.5 and 3.6
	Proofs in Sections 3.7, 3.8 and 3.9
	Numerical Experiments: Survey Details

	Proof for Chapter 3
	Proofs in Sections 4.3
	Proofs in Section 4.4

