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Convolutional Neural Network Based Breast Cancer Risk 
Stratification Using a Mammographic Dataset
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Abstract

Rationale and Objectives: We propose a novel convolutional neural network derived pixel-

wise breast cancer risk model using mammographic dataset.

Materials and Methods: An institutional review board approved retrospective case-control 

study of 1474 mammographic images was performed in average risk women. First, 210 patients 

with new incidence of breast cancer were identified. Mammograms from these patients prior to 

developing breast cancer were identified and made up the case group [420 bilateral craniocaudal 

mammograms]. The control group consisted of 527 patients without breast cancer from the same 

time period. Prior mammograms from these patients made up the control group [1054 bilateral 

craniocaudal mammograms]. A convolutional neural network (CNN) architecture was designed 

for pixel-wise breast cancer risk prediction. Briefly, each mammogram was normalized as a map 

of z-scores and resized to an input image size of 256 × 256. Then a contracting and expanding 

fully convolutional CNN architecture was composed entirely of 3 × 3 convolutions, a total of four 

strided convolutions instead of pooling layers, and symmetric residual connections. L2 

regularization and augmentation methods were implemented to prevent overfitting. Cases were 

separated into training (80%) and test sets (20%). A 5-fold cross validation was performed. 

Software code was written in Python using the TensorFlow module on a Linux workstation with 

NVIDIA GTX 1070 Pascal GPU.

Results: The average age of patients between the case and the control groups was not statistically 

different [case: 57.4 years (SD, 10.4) and control: 58.2 years (SD, 10.9), p = 0.33]. Breast Density 

(BD) was significantly higher in the case group [2.39 (SD, 0.7)] than the control group [1.98 (SD, 

0.75), p < 0.0001]. On multivariate logistic regression analysis, both CNN pixel-wise 

mammographic risk model and BD were significant independent predictors of breast cancer risk (p 
< 0.0001). The CNN risk model showed greater predictive potential [OR = 4.42 (95% CI, 3.4–5.7] 

Address correspondence to: R.H. and P.C. rh2616@columbia.edu. 

Work originated from Columbia University Medical Center.

HHS Public Access
Author manuscript
Acad Radiol. Author manuscript; available in PMC 2021 May 12.

Published in final edited form as:
Acad Radiol. 2019 April ; 26(4): 544–549. doi:10.1016/j.acra.2018.06.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared to BD [OR = 1.67 (95% CI, 1.4–1.9). The CNN risk model achieved an overall accuracy 

of 72% (95%CI, 69.8–74.4) in predicting patients in the case group.

Conclusion: Novel pixel-wise mammographic breast evaluation using a CNN architecture can 

stratify breast cancer risk, independent of the BD. Larger dataset will likely improve our model.

Keywords

CNN; breast cancer risk; breast density

INTRODUCTION

Breast cancer is a leading cause of death worldwide and is the second most common cause 

of cancer deaths among women in the United States (1). One in eight women will develop 

breast cancer, however the risk is not homogeneously distributed throughout the population. 

While some risk factors have been established, the majority of women diagnosed with breast 

cancer have no identifiable risk (2). This limits the ability of the medical community to 

determine high versus low risk women.

The greatest evidence for stratifying the risk of developing breast cancer lies in 

mammographic breast density, defined as the proportion of radiopaque epithelial and stromal 

tissue compared to radiolucent fat (3). In 1976, Wolfe was the first to hypothesize breast 

density as a cancer risk factor, with four distinct classifications based on parenchymal 

patterns: primarily fat (N1), ductal prominence involving up to one-fourth of the breast (P1), 

ductal prominence involving more than one-fourth of the breast (P2), and severe ductal 

prominence (DY) (4).

Later studies described more quantitative categorization of breast density as it relates to 

cancer predisposition, such as the Tabar classification (5,6). Analogous to Wolfe’s, the 

American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) 

defines four categories: entirely fatty, scattered fibroglandular densities, heterogeneously 

dense, and extremely dense. Several studies have examined the correlation of breast cancer 

risk and BI-RADS breast density criteria.

A large prospective study by Vacek et al. (7) showed risk to increase with a higher BI-RADS 

category, with heterogeneously dense breasts (BI-RADS 3) 2.8 and extremely dense breasts 

(BI-RADS 4) 4.0 times more likely to develop cancer compared to entirely fatty breasts (BI-

RADS 1) (7). Similarly, Kerlikowske et al. (8) demonstrated an increase in BI-RADS breast 

density to correlate with an increased risk of breast cancer over a 3 year follow up. Beyond 

the correlation of breast density and cancer risk, evidence has shown increased density to be 

an independent risk factor beyond a masking effect, as it represents the amount of stromal 

and epithelial tissue from which breast cancer derives (3).

The current climate of changing breast cancer screening recommendations by the United 

States Preventive Services Task Force and American Cancer Society has demonstrated a 

consistent trend toward later, less frequent screening, unless a woman is considered to be 

high risk. This makes the challenge of defining the high risk group within the general 
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population even more important (9,10). According to the Breast Cancer Surveillance 

Consortium database, almost half (47%) of the population falls into the category of dense 

breasts (BiRADS 3 and 4) and therefore can be classified as high risk (11). Clearly a more 

individualized stratification is needed to appropriately predict breast cancer risk and 

therefore designate the most appropriate screening regimen.

While advances in imaging technology have provided high quality mammograms with 

increased clarity, the question remains: is there something beyond the amount of breast 

density that is not appreciated by the human eye? Recent advances in technology have 

allowed machine learning to address this complex clinical question. Specifically, a subset of 

machine learning through artificial neural network such as convolutional neural network 

(CNN) has shown significant promise in advancing visual tasks. CNN synthetically learns 

from the input image itself through multiple increasingly complex layers. This new 

technology has surpassed traditional machine learning, which relies on human extracted 

pattern-recognition and input (12).

We propose a novel convolutional neural network derived pixel-wise breast cancer risk 

model using mammographic dataset to stratify patients into personalized breast cancer risk 

categories beyond just breast density.

METHODS

An institutional review board approved case-control study was performed retrospectively 

utilizing our institution’s screening mammogram database from 1/2011 to 1/2017. Average 

risk screening women were evaluated by excluding women who have personal history of 

breast cancer, family history of breast cancer, and any known genetic mutation that increases 

the risk for breast cancer. After applying the exclusion criteria, 210 patients were identified 

consecutively with a new first time diagnosis of breast cancer. Mammograms from these 

patients, at least 2 years (median 3.3 years, range 2.0–5.3 years) prior to developing breast 

cancer, were identified and made up the “high risk” case group composed of the bilateral 

craniocaudal mammographic dataset (420 total). The control group consisted of 527 patients 

without breast cancer from the same time period. Prior mammograms from these patients 

made up the “low risk” control group composed of the bilateral craniocaudal mammographic 

dataset (1054 total). These 527 patients in the control group had documented negative 

follow-up mammogram for at least 2 years (median 3.1 years, range 2.0–4.8 years).

From each patient, the age and the BI-RADS mammographic density assessment was 

recorded on a 4-point scale (1-fatty, 2-scattered, 3-heterogeneously dense, and 4-extremely 

dense) by one of five breast fellowship trained radiologists. Mammograms at our institution 

were performed on dedicated mammography units (Senographe Essential, GE Healthcare). 

Of patients who developed breast cancer histologic subtype was recorded based on the 

World Health Organization classification (13). Statistical analysis was performed using the 

IBM SPSS software (version 24).

Originally introduced by Long et al. (14) fully convolutional neural networks are 

implemented by a series of upsampling convolutional transpose operators performed on the 
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deepest network layers, resulting in a dense classification matrix equal in dimension to the 

original image size for each forward pass. Ronneberger et al. (15) elaborated on this 

technique by proposing a symmetric contracting and expanding topology that efficiently 

combines low- and high-level features. This study further adapts these previous approaches 

by replacing concatenation operations with residual connections (and associated projection 

matrices as needed to match feature layer dimensions) (Fig 1). Originally described by He et 

al. (16), residual neural networks are able to stabilize gradients during backpropagation, 

leading to improved optimization and facilitating greater network depth. Furthermore in a 

symmetric contracting and expanding topology, residual connections allow the network to 

learn the appropriate feature depth, as contributions from the deepest, large field-of-view 

feature maps can be selectively eliminated through identity mappings.

The overall network architecture is shown in Figure 2. The CNN is implemented completely 

by series of 3 × 3 convolutional kernels to prevent overfitting (17–20). No pooling layers are 

used; instead downsampling is implemented simply by means of a 3 × 3 convolutional 

kernel with stride length of 2 to decrease the feature maps by 75% in size. All nonlinear 

functions are modeled by the rectified linear unit (17–20). Batch normalization is used 

between the convolutional and rectified linear unit layers to limit drift of layer activations 

during training (21). In successively deeper layers the number of feature channels gradually 

increases from 16, 32, 64, 128, and 256, reflecting increasing representational complexity.

Each mammogram was normalized as a map of z-scores and resized to an input image size 

of 256 × 256. Data augmentation employed by this study involves a number of real-time 

modifications to the source images at the time of training. Specifically, 50% of all images in 

a mini-batch were modified randomly by means of: (1) addition across all pixels of a scalar 

between [¡0.1, 0.1]; (2) random affine transformation of the original mammogram. Given a 

two-dimensional affine matrix,

s1 t1 r1
t2 s2 r2
0 0 1

the random affine transformation was initialized with random uniform distributions of 

interval s1, s2 ∈ [0.8, 1.2], t1, t2 ∈ [−0.3, 0.3] and r1, r2 ∈ [−128, 128].

Training was implemented using the Adam optimizer, an algorithm for first-order gradient-

based optimization of stochastic objective functions, based on adaptive estimates of lower-

order moments (17–20). Parameters are initialized using the heuristic described by He et al. 

(16). L2 regularization is implemented to prevent over-fitting of data by limiting the squared 

magnitude of the kernel weights. To account for training dynamics, the learning rate is 

annealed and the mini-batch size is increased whenever training lost plateaus. Furthermore, a 

normalized gradient algorithm is employed to allow for locally adaptive learning rates that 

adjust according to changes in the input signal (17–20). The overall training time was 6 

hours.
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For statistical analysis, cases were separated into 80% training (590/737) and 20% test sets 

(147/737). A 5-fold cross validation was performed. A final softmax score threshold of 0.5 

from the average of raw logits from each pixel was used for two class classification. 

Software code for this study was written in Python using the TensorFlow module (1.0.0). 

Experiments and CNN training was done on a Linux workstation with NVIDIA GTX 1070 

Pascal GPU with 8 GB on chip memory, i7 CPU, and 32 GB RAM.

This was an institutional review board approved, Health Insurance Portability and 

Accountability Act-compliant study. IRB-AAAR5142 Protocol. Approved on 8/3/2017 by 

our institution.

RESULTS

The average age of patients between the case and the control groups was not statistically 

different [case: 57.4 years (SD, 10.4) and control: 58.2 years (SD, 10.9), p = 0.33]. All 210 

patients had unilateral breast cancers; 69.5% (146/210) had invasive ductal carcinoma; 19% 

(40/210) had ductal carcinoma in situ; 7.1% (15/210) had invasive lobular carcinoma; 4.3% 

(9/210) had mixed lobular and ductal invasive carcinoma, and 17.6% (37/210) of the patients 

had multifocal disease.

Breast Density (BD) was significantly higher in the case group [2.39 (SD, 0.7)] than the 

control group [1.98 (SD, 0.75), p < 0.0001]. On multivariate logistic regression analysis, 

both CNN pixel-wise mammographic risk model and BD were significant independent 

predictors of breast cancer risk (p < 0.0001). The CNN risk model showed greater predictive 

potential [OR = 4.42 (95% CI, 3.4–5.7] compared to BD [OR = 1.67 (95% CI, 1.4–1.9).

Overall there was a strong signification correlation of CNN pixel-wise mammographic risk 

results between the left and right breast (Pearson correlation, r = 0.90, n = 737). In the case 

group, there was a signification correlation between the left and right breast (Pearson 

correlation, r = 0.86, n = 210). In the control group, there was a signification correlation 

between the left and right breast (Pearson correlation, r = 0.86, n = 527).

The CNN risk model achieved an overall accuracy of 72% (95% CI, 69.8–74.4%) in 

predicting patients in the case group. Heat maps were generated by color-coding the final 

softmax scores on a pixel-wise basis (Fig 3). Intuitively these maps can be interpreted as 

subregions within the mammogram that are most commonly encountered in normal (blue) 

and high cancer risk (red) patients.

The CNN was trained for a total of 144,000 iterations (approximately 1170 epochs with a 

batch size of 12) before convergence. A single forward pass through during test time for 

classification of new cases can be achieved in 0.063 seconds.

DISCUSSION

The CNN algorithm in this study applied a novel approach of pixel-wise cancer risk 

assessment using mammogram to define risk on an individual basis. In this preliminary 

study, we achieved an overall accuracy of 72% in predicting high versus low cancer risk 
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mammograms. CNN, a subset of machine learning used in our study, has recently gained 

popularity throughout medicine. The transition from human-extracted pattern recognition to 

synthetic learning from raw input data facilitates analysis of complex visual tasks, such as 

mammographic individualized cancer risk stratification (12).

With ever changing screening guidelines, it is paramount to better define an individual’s risk 

for breast cancer. While mammographic breast density categorization schemes exist, 

accurate identification of who is at high risk remains a challenge. Using heat maps, our 

study illustrates breast cancer risk heterogeneity among mammographic breast density 

categories. For example, not all heterogeneously dense breasts are high risk, with a subset 

demonstrating a stronger resemblance to a low risk pattern. Similarly, not all breasts with the 

scattered fibroglandular density demonstrate a low risk pattern. While approximately half 

the population is categorized as having dense breasts (BI-RADS 3 and 4) (11), our study 

challenges the uniform presumption of associated high cancer risk.

Our CNN algorithm did not show any significant bias toward the cancer side. In addition, we 

observed significant correlation between the two breasts (the side that developed cancer and 

the contralateral noncancer side), indicating that the CNN algorithm in this study predicts 

risk for breast cancer based on features that are largely conserved on an individual basis. The 

red areas on the pixel map (Fig 3) indicate regions within the breast that have the most 

overlapping mammographic features with patients who subsequently developed cancer. The 

overlapping features come from both breasts (the side that developed cancer and the 

contralateral side that never developed cancer). While it is possible that the cancer may arise 

from the red areas, our pixel map was not designed to predict specific areas of breast that 

will develop breast cancer.

Individualized breast cancer risk stratification has the potential to significantly impact 

clinical management. If validated, this risk assessment could be implemented into screening 

guidelines. In the setting of later and less frequent evolving screening guidelines for average 

risk women, accurately categorized high risk women may benefit from earlier and more 

frequent screening.

Previous studies support the results of our investigation of utilizing digital features in 

mammogram to predict breast cancer risk (22–25). However, all of these studies involved 

hand crafted features based on extracted patterns. In contrast, our study utilizes neural 

networks, allowing the computer to automatically construct predictive statistical models, 

tailored to solve a specific problem subset. Instead of laborious task of human engineers 

inputting specific patterns to be recognized, we used CNN to self-optimize and discriminate 

through increasingly complex layers by inputting curated data.

Beyond screening, individualized risk assessment has potential utilization for 

chemoprevention strategies. The American Society of Clinical Oncology, National 

Comprehensive Cancer Network, and United States Preventive Services Task Force 

recommend counseling high risk women above the age of 35 on pharmacologic 

interventions for breast cancer risk reduction (26–28). Two selective estrogen receptor 

modulators, tamoxifen and raloxifene, approved for chemoprevention in the US, show up to 
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a 50% cancer risk reduction. Additionally, two aromatase inhibitors, exemestane and 

anastrozole, not yet approved for use in the US, have shown significant chemopreventive 

potential in preliminary studies (29). Individualized breast cancer risk assessment has 

potential to aid in selection of high risk patients and counseling on chemoprevention.

Our study has a few limitations. It is a retrospective study in a single institution with 

relatively small dataset. Therefore, improved risk stratification is likely to be generated by an 

even larger mammogram dataset. Additionally, long training time is an intrinsic limitation of 

CNN. In comparison to traditional machine learning, increased algorithm complexity of 

CNN requires a long training time, with the benefit of a much shorter testing time. Finally, 

the breast density classification can be subjective and prone to intra and interobserver 

variability, especially if taken from radiology reports (30–32). However, given that the case 

and control groups are randomly distributed with equal likelihood of each radiologist giving 

the breast density assessment, we feel that the potential impact is limited.

In conclusion, our novel pixel-wise mammographic breast evaluation using a CNN 

architecture can stratify breast cancer risk, independent of the mammographic BD. The 

CNN risk model showed greater predictive potential compared to mammographic BD in our 

study. Validation by a prospective randomized study is needed to potentially implement our 

individualized risk stratification scheme into screening and chemoprevention guidelines.
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Figure 1. 
Residual connections implemented by means of a simple addition operation inserted after 

batch normalization and before nonlinearity (ReLU) of the corresponding layer within the 

expanding arm of the symmetric, fully convolutional architecture.
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Figure 2. 
The contracting and expanding fully convolutional CNN architecture is composed entirely of 

3 × 3 convolutions, a total of four strided convolutions (and convolutional transpose 

operations) instead of pooling layers and symmetric residual connections.
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Figure 3. 
Pixel-wise heat maps. Heat maps generated by color-coding the final softmax scores on a 

pixel-wise basis, demonstrating subregions within the mammogram that are most commonly 

encountered in normal (blue) and high cancer risk (red) patients. Mammograms in (A) and 

(B) illustrate similar breast densities (heterogeneously dense) and mammograms in (C) and 

(D) illustrate similar breast densities (scattered) but the corresponding heat maps are 

different with patient A with significantly higher mammographic regions containing red and 

correctly identifying high risk. Similarly, patient C with significantly higher mammographic 

regions containing red and correctly identifying high risk.
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