
UC San Diego
UC San Diego Previously Published Works

Title
Probabilistic Semantic Mapping for Autonomous Driving in Urban Environments

Permalink
https://escholarship.org/uc/item/4ws7q952

Journal
Sensors, 23(14)

ISSN
1424-8220

Authors
Zhang, Hengyuan
Venkatramani, Shashank
Paz, David
et al.

Publication Date
2023

DOI
10.3390/s23146504

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ws7q952
https://escholarship.org/uc/item/4ws7q952#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Citation: Zhang, H.; Venkatramani, S.;

Paz, D.; Li, Q.; Xiang, H.; Christensen,

H.; Probabilistic Semantic Mapping for

Autonomous Driving in Urban

Environments. Sensors 2023, 1, 0.

https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Sensors for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article
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Abstract: Statistical learning techniques and increased computational power have facilitated the 1

development of self-driving car technology. However, a limiting factor has been the high expense of 2

scaling and maintaining high-definition (HD) maps. These maps are a crucial backbone for many 3

approaches to self-driving technology. In response to this challenge, we present an approach that 4

fuses pre-built point cloud map data with images to automatically and accurately identify static 5

landmarks such as roads, sidewalks, and crosswalks. Our pipeline utilizes semantic segmentation 6

of 2D images, associates semantic labels with points in point cloud maps to pinpoint locations 7

in the physical world, and employs a confusion matrix formulation to generate a probabilistic 8

bird’s-eye view semantic map from semantic point clouds. The approach has been tested in an 9

urban area with different segmentation networks to generate a semantic map with road features. 10

The resulting map provides a rich context of the environment that is valuable for downstream 11

tasks such as trajectory generation and intent prediction. Moreover, it has the potential to be 12

extended to automatic generation of HD maps for semantic features. The entire software pipeline is 13

implemented in Robot Operating System (ROS), a widely used robotics framework, and available at: 14

https://github.com/AutonomousVehicleLaboratory/semantic_mapping_v2. 15

Keywords: Autonomous Vehicles; Semantic Mapping; Semantic Segmentation; Fusion 16

1. Introduction 17

Many approaches to design of autonomous vehicles rely on high-definition (HD) maps 18

to model the static parts of the environment. These maps provide crucial information such 19

as centimeter-level definitions of road networks, traffic signs, crosswalks, traffic lights, 20

and speed limits. Due to the dynamic nature of the real world, these maps can quickly 21

become outdated, especially during road network changes or construction. Manually 22

annotating HD maps is a laborious and time-consuming process, and outdated maps can 23

lead to unsafe scenarios when vehicles perform inadequate reference path tracking actions. 24

Extracting semantics and attributes from data are the most challenging aspects of HD map 25

generation [1]. Given this, a method that automates semantic extraction could significantly 26

improve HD map generation, reduce labor costs, and enhance driving safety. 27

Generating centimeter-level semantic labels for a scene is a cumbersome task. Many 28

efforts approach this problem from the perspective of scene understanding. Prior work has 29

used Conditional Random Fields (CRF) to assign semantic labels [2,3]. More recently, deep 30

learning techniques have shown promising results in retrieving semantic information from 31

images [4–6], point clouds [7] or both [8]. However, semantic scene understanding does not 32

account for stitching together individual observations to generate a map representation. 33

Some researchers have also explored methods to create semantic maps of the envi- 34

ronment, including [9–11]. However, these approaches either rely on aerial imagery / 35

high-cost sensors to extract road information, which can limit the availability of data, or 36
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they do not explicitly map lane and crosswalk information, which are crucial for HD map 37

generation. 38

Other work directly generates the lane-level HD map [7,12–15] or topology map [16]. 39

These maps are in sparse vectorized representation that can be valuable for planning. 40

However, these methods are limited by a small set of map elements. For this reason, the 41

generated maps lack the rich context required for urban driving. 42

Our study addresses gaps in the automatic generation of dense probabilistic semantic 43

maps in urban driving environments. To achieve this, we propose a semantic mapping 44

pipeline that creates a Bird’s-Eye View (BEV) semantic map of the environment instead 45

of a single-frame semantic understanding. The pipeline utilizes a confusion matrix to 46

incorporate the uncertainty of the semantic segmentation network into mapping and fuses 47

Light Detection and Ranging (LiDAR) intensity to map lane marks accurately. We leverage 48

dense point maps obtained from a 16-channel LiDAR to reduce the cost and increase 49

data availability. Furthermore, our work builds on state-of-the-art semantic segmentation 50

networks [6,17] that are trained exclusively on publicly available datasets [18], providing 51

rich semantic labels including roads, lane marks, crosswalks, and sidewalks. To evaluate the 52

effectiveness of the proposed model, we compare it with ground truth HD maps generated 53

for our campus, and use data from our autonomous vehicle. The results demonstrate that 54

our model accurately identifies semantic features on the road and can effectively map them 55

with a small error margin. 56

We augmented our initial work [19] by adding new semantic segmentation models, 57

and adding extensive analysis with modified precision and recall, which are more appropri- 58

ate for evaluating mapping performance. We additionally open source the code for running 59

our entire pipeline. 60

The paper is organized with an initial discussion of related work in Section 2. We 61

present the overall methodology in Section 3 and the associated experiments in Section 4. 62

Based on our results, there are a number of issues to consider regarding standard datasets, 63

labeling and evaluation, which are discussed in Section 5 before we summarize in Section 6. 64

2. Related Work 65

In this section we will briefly summarize related work across the areas of segmentation 66

(Sub-section 2.1), mapping (Sub-section 2.2), HD map generation (Sub-section 2.3) and 67

probabilistic maps (Sub-section 2.4). 68

2.1. Semantic Segmentation 69

There has been significant progress in the field of semantic segmentation, which 70

involves assigning semantic labels to each data point (e.g., pixel or voxel). Large-scale 71

datasets like CityScapes [20], CamVid [21], and Mapillary [18] have accelerated this progress 72

in the domain of road scenes. Semantic segmentation algorithms that provide pixel-level 73

information can be particularly useful for building HD maps, which require fine-grained 74

labeling for scene objects. 75

2D semantic segmentation approaches, such as those in [4,5,22], use encoder-decoder 76

architectures to interpret global and local information in images. These models, when 77

trained on the aforementioned large datasets, can effectively segment objects on the road. 78

3D semantic segmentation approaches have utilized Convolutional Neural Networks 79

(CNNs) to classify points in LiDAR point clouds after a transformation into range images, 80

in [23–25] These methods provide promising results, but fail to distinguish objects with 81

textural differences. Full 3D semantic segmentation using voxel-based approaches has also 82

been proposed [26]; however, they require 3D convolutions on dense raw point clouds (32 83

or 64 channel LiDARs), making real-time operation challenging. New transformer-based 84

approaches have shown improvements in evaluation metrics [27], though they require 85

higher computational capabilities for full self-attention. Recent work also tries to directly 86

generate semantic segmentation in BEV from a single image [28] or using the fusion of 87

LiDAR and camera [8]. 88
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2.2. Semantic Mapping 89

The term semantic mapping has taken various meanings in literature [29]. For our 90

purposes, we have chosen to follow the definition provided in [30], which is a map that 91

contains environmental attributes and occupancy metrics. For the task of autonomous 92

vehicles, this encompasses features such as drivable areas and road features. 93

There are alternative methods that utilize CRF-based techniques to achieve high- 94

density semantic mapping [3]. In this instance, an associative hierarchical CRF is utilized 95

for semantic segmentation, while a pairwise CRF is used for mapping. The latter strategy 96

ensures that the output remains smooth. Another approach, detailed in [31], involves 97

using a stereo pair to estimate depth reliably. However, this particular method does not 98

account for the explicit mapping of crosswalks and lanes, both of which are necessary for 99

the creation of HD maps. 100

In a related study, Maturana et al. [9] combine semantic imagery captured by a camera 101

with LiDAR point clouds. They rely on raw point clouds in real-time from a 64-channel 102

LiDAR, which provides more dense real-time information at a higher cost. Our approach, 103

however, can build a map from a relatively cheaper 16-channel LiDAR. Moreover, their 104

research concentrates on off-road environments, whereas our research focuses on urban 105

driving scenarios. In such settings, certain traffic rule-related categories, like crosswalks 106

and lane markings, require higher attention. 107

2.3. HD Map Generation 108

The generation of HD maps has been explored from various perspectives including 109

online and offline mapping. Zhou et al. [12] propose to construct lane-level HD maps for 110

urban environments. They first use cameras and LiDARs for 3D semantic reconstruction, 111

then use the OpenStreetMap (OSM) with a semantic particle filter to generate offline 112

lane-level HD maps for the urban environment. 113

Online methods are gaining popularity. Homayounfar et al. [7] generate a lane-level 114

map for the highway. Facilitated by large-scale open datasets with HD map data such 115

as nuScenes [32], Argoverse 2 [33,34] and OpenLane-V2 [35], a line of work focus on 116

generating online HD map for urban environments. Li et al. [36] propose HDMapNet 117

that generates rasterized maps while Liu et al. [13] propose VectorMapNet to generate 118

vectorized representations directly. MapTR [14] and TopoNet [15] improve mapping 119

performance by using permutation invariant representations and a topology-preserving 120

loss, respectively. Can et al. [16] propose a loss that captures the accuracy in estimating 121

topology. Additionally, HD maps can be built from aerial imagery [37] but the availability 122

of data can present a limitation. These works focus on sparse lane-level representations 123

with predefined map element types. In contrast, our generated dense maps can capture all 124

semantic classes from the semantic segmentation network. 125

2.4. Probabilistic Map 126

Probabilistic mapping builds a map that maximizes the likelihood of the map under 127

the data [38]. Thrun et al. [38] build a probabilistic map by modeling the occupancy proba- 128

bility with expectation maximization. Their work and many other works [39,40] address 129

Simultaneous Localization and Mapping (SLAM) while our work focuses only on the 130

mapping of semantic attributes. Semantic maps have been utilized successfully in the areas 131

of localization [41,42] and prediction of pedestrian motion [43]. This approach is advanta- 132

geous because it enables the representation of inherent distribution information within a 133

discrete space while simultaneously filtering out noise. Our current work builds on this 134

technique by applying it to the creation of semantic maps, while additionally incorporating 135

prior information from LiDAR’s intensity channel. As a result of this integration, we can 136

generate semantic maps that are more stable given potentially noisy semantic images. 137
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3. Materials and Methods 138

Our model consists of three main components: semantic segmentation, semantic 139

association, and semantic mapping. Figure 1 illustrates the overall architecture. To begin, 140

semantic segmentation networks are used to predict semantic labels on 2D images. These 141

labels are then associated with densified 3D point clouds. Finally, a probabilistic mapping 142

process is applied to convert the distribution of observations to a single label on a per- 143

map pixel basis. In the following section, we will provide a detailed description of each 144

component. 145

Semantic 
Segmentation

Semantic 
Association

Semantic 
MappingRGB Image

Semantic Image

Local Point Map Semantic Point Cloud

Semantic Map

Autonomous Vehicle Platforms

3D Dense Point Cloud

XYZI XYZI+S

S

Probabilistic 
occupancy grid 
projection

Camera Data

Vehicle Pose

XYZI

Figure 1. Our semantic mapping pipeline generates semantic labels for images, associates the labels
to the local point cloud, and updates the semantic map in Bird’s-Eye View (BEV) probabilistically.

3.1. Image Semantic Segmentation 146

The first component, semantic segmentation, extracts the semantic labels from 2D 147

images using neural networks. For each pixel in an image with shape W by H, the output is 148

a label c from a set of predefined semantic classes C such as road, lane mark, and sidewalk. 149

We offer two different segmentation network options, DeepLabV3Plus [6] and Hierarchical 150

MultiScale Semantic Segmentation with HRNet+OCR (MScale-HRNet) [17]. At inference 151

time DeepLabV3Plus is faster but noisier, and MScale-HRNet is slower and more memory 152

intensive, but provides higher-quality segmentation. We discuss the tradeoffs of both 153

methods in the context of the final generated semantic map in later sections. 154

For DeepLabV3Plus the feature extraction backbone is a lightweight ResNeXt50 [44] 155

pre-trained on ImageNet [45]. Compared to other backbones like ResNet101 [46], ResNeXt50 156

achieves the same mean Intersection over Union (mIoU) value with fewer parameters and 157

faster inference times. To further improve inference time while preserving performance, we 158

also employ depth-wise separable convolution in our spatial pyramid and decoder layers, 159

inspired by [6,47]. 160

Our DeepLabV3Plus semantic segmentation network is trained on the Mapillary Vistas 161

dataset [18], which contains a large number of pixel-level semantic segmented images with 162

66 different labels in autonomous vehicle scenarios. The Mapillary Vistas dataset was 163

at the start of our study the most comprehensive pixel level labeled dataset, and is still 164

considered a viable basis for training. We reduce the labels to 19 essential classes for our 165

driving environment by removing non-essential labels (e.g. snow) and merging labels with 166

similar semantic meanings (e.g. zebra line and crosswalk). This decision is based on the 167

observation that some classes do not appear in our test environment. The details of label 168

merging are described in Sub-section 4.2. 169

MScale-HRNet uses a much larger HRNet+OCR backbone [48–50] that utilizes object 170

context to achieve higher performance for irregular semantic regions. Additionally, by 171

utilizing multi-scale segmentation with attention [51], the network pulls larger area se- 172

mantic features from smaller scale images, and more refined semantic features from larger 173

scale images. The fusing of different scales is done in a hierarchical manner, enabling the 174

scales used at inference time to be changed without retraining. As such one can modify 175
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the runtime and memory requirement by lowering or increasing the scales used (this does 176

result in changes in model performance). Overall, it achieves better segmentation than 177

DeepLabV3Plus, at the cost of higher computation requirements. 178

From a quantitative standpoint on the cityscapes test set DeepLabV3Plus is capable of 179

attaining an mIoU of 82.10% [6] while MScale-HRNet achieves an mIoU of 85.10% [17]. 180

3.2. Point Cloud Semantic Association 181

The second component, semantic association, reconstructs a 3D scene with semantic la- 182

bels. Given the semantic images from semantic segmentation, this is achieved by assigning 183

depth to the semantic image. However, the depth information is often not readily available. 184

Depth estimation from multi-view geometry relies on salient features, which can be prone 185

to errors on the road or under challenging lighting conditions. Alternatively, LiDAR sensors 186

can capture depth information, but their sparse resolution, typically with only a few optical 187

channels (e.g., 16), can make it difficult to infer the underlying geometry in real time. To 188

overcome this challenge, our method leverages centimeter-level localization [52] to extract 189

small, dense regions from a previously built dense point cloud map. These regions are then 190

projected into the semantically segmented image to retrieve depth information. Building 191

a dense point map can be automated and only requires driving through the area once, 192

making it much less expensive than human labeling. 193

Assuming the vehicle is localized with respect to a point cloud map Pg with coordinate 194

Xv. A local point cloud Pl is extracted within a max distance in each dimension in the 195

local coordinates of the vehicle. The transformation from the local point map to the 196

localizer (Velodyne LiDAR) lTm is given by precise centimeter-level localization. We also 197

calibrate the camera with respect to the LiDAR using a non-iterative method solution for 198

the PnP method [53], to estimate their relative transformation cTl . Therefore, the extrinsic 199

transformation between the camera and the points map frame cTm is known. 200

cTm = (cTl)(
lTm). (1)

Thus semantic information for a point Xm ∈ Pl can be retrieved from the label of its 201

projected points in image coordinates xi. 202

xi = Kπ(cTm)Xm (2)

where K is the camera intrinsic matrix and π = [I|0] is the canonical projection matrix. 203

Finally, we assign the semantic label of pixel xi in the semantic image to the point Xm 204

to form a semantic point cloud. 205

3.3. Semantic Mapping 206

A point cloud with semantic labels is a useful representation of a scene’s 3D geometry, 207

but it can be affected by sensor measurement noise and small semantic label fluctuations. 208

To address this, we use a local or global probabilistic map, where the former provides dense 209

semantic cues around the ego-vehicle, and the latter automates the process of building HD 210

maps. Both local and global maps use semantic occupancy grids, with the main difference 211

being the reference frame. Our comparisons are performed in the global frame. 212

A local probabilistic map is a BEV representation in the body frame (rear-axle) of 213

the ego vehicle. We construct it for a given frame using the semantic point cloud and 214

update it when there is a significant change in the ego-vehicle’s pose. On the other hand, a 215

global probabilistic map operates directly in the global frame without the need for map 216

transformations. A visual comparison of the two is shown in Figure 2. 217
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Figure 2. Top to Bottom, local probabilistic map where blue car is ego vehicle, the same region in a
final generated global map.

The semantic occupancy grid has height H, width W, and channels C, with each 218

channel corresponding to a semantic class of the scene. The channels for a cell in the BEV 219

map model the semantic class probability distribution. When constructing the semantic 220

point cloud, we project it onto the grid using the x and y components. The point will be 221

associated with the nearest cell cij, which covers a d × d square area of the physical world. 222

Then we will update the channels in the cell based on the semantic label of the point. 223

We enhance the robustness of the semantic occupancy grid estimation using a proba- 224

bilistic model that incorporates both the semantic and LiDAR intensity information from 225

the point cloud to reduce the prediction error. We denote the semantic label distribution 226

across all the channels as St, the observed semantic labels as zt, and the observed LiDAR 227

intensity as It. Thus, the task is to estimate St from past observations, i.e., the probability 228

distribution of P(St|z1:t, I1:t). We assume that observed semantic labels and LiDAR inten- 229

sity are conditionally independent given St and follow the Markov assumption to update 230

the semantic probability. 231

P(St|z1:t, I1:t) =
1
Z

P(zt|St)P(It|St)P(St−1|z1:t−1, I1:t−1) (3)

We introduce a normalization factor Z, and assume that P(St|z1:t−1, I1:t−1) is equiva- 232

lent to P(St−1|z1:t−1, I1:t−1). To enable a more precise probabilistic update, we use a 2D 233

confusion matrix M to model P(zt|St), where each element in the matrix represents the 234

probability of label i being predicted as label j. Additionally, we model P(It|St) as a prior 235

function of the intensity of each class in the scene. 236

The confusion matrix models the uncertainty of the model evaluated on a dataset, 237

which describes the prior probability of a label zt being observed when the true class is 238

St. As a result, for any point projected to the cell, all channels in the cell will be updated 239

according to the confusion matrix. To ensure numerical stability, we use the logarithmic 240

form to update the channels. 241

The intensity data collected by LiDAR sensors provides valuable information about 242

different materials in the scene. For instance, the top image in Figure 3 shows a BEV 243

intensity map of a road segment where lane markings appear brighter due to their high 244

reflectivity. We use a threshold value k to segment out the lane markings and employ this 245

information as a prior to better understand the layout of the scene. This approach can be 246

especially helpful when semantic segmentation fails to capture the correct label due to poor 247

lighting conditions. 248
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Figure 3. A visualization of our generated map (bottom left), the ground truth label (bottom right),
and the intensity thresholded LiDAR point cloud map (top).

4. Experiments 249

We perform experiments to verify the effectiveness of the proposed semantic mapping 250

pipeline. We introduce our vehicle platform in Sub-section 4.1. Then we discuss the 251

training, hyperparameter, and result comparison of semantic segmentation networks in Sub- 252

section 4.2. The semantic mapping results with ablation study and analysis are presented 253

in Sub-section 4.3. Lastly, we compare different depth association approaches for semantic 254

mapping in Sub-section 4.4. 255

4.1. Platform 256

We collected our experimental data using one of our autonomous cars, as described 257

in [52]. This car is equipped with a 16-channel LiDAR and six cameras, arranged with two 258

cameras on the front, one on each side, and two on the back, as depicted in Figure 4. We 259

recorded data from the front left camera, LiDAR, and vehicle position by driving through 260

the UC San Diego campus. The camera data was streamed at approximately 13 Hz, while 261

the LiDAR scans were performed at approximately 10 Hz. By driving through the campus, 262

we were able to gather data for various urban driving scenarios, including challenging 263

situations such as navigating steep hills, intersections, and construction sites. 264

Figure 4. Vehicle Sensor Configuration.
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4.2. Image Semantic Segmentation 265

We have two semantic segmentation networks, MScale-HRNet and DeepLabV3Plus. 266

The MScale-HRNet pre-trained model1 produces a high-quality semantic mask with clean 267

edges most of the time. For its high-quality results, we use the straight-out-of-the-box 268

pre-trained 65-class model directly. On the other hand, the DeepLabV3Plus produces much 269

noisier results. Therefore, we reduce the total classes from 65 to 19 and retrain the model. In 270

this subsection, we describe the configuration for MScale-HRNet and the training process 271

for DeepLabV3Plus. 272

4.2.1. MScale HRNet+OCR Configuration 273

MScale-HRNet allows a flexible scale selection during inference time. We chose three 274

scales at 0.25, 0.5, and 1.0 for our experiments. Typical experiments are done with a scale of 275

0.5, 1.0, and 2.0 but require more than 11GB Graphics Processing Unit (GPU) memory for 276

input size 1920x1440. We observe that even with the downsized scales, the network was 277

able to produce much cleaner and more accurate results than DeepLabV3Plus. Testing on 278

our own vehicle data showed good generalization. 279

4.2.2. DeepLabV3Plus Training Dataset 280

Our training dataset consists of 18,000 images, while our validation dataset has 2,000 281

images, both of which are obtained from the Mapillary dataset [18]. To optimize our training 282

process, we merged similar categories such as terrain and vegetation, different types of 283

riders and pedestrians into a single human category, and various types of crosswalks into 284

a unified crosswalk class. We also combined traffic-sign-back and traffic-sign-front into a 285

single traffic-sign category, and merged bridge images into the building category. 286

To further improve the training dataset, we applied several data augmentation tech- 287

niques, including random horizontal flips with a probability of 0.5, random resizing with a 288

scale ranging from 0.5 to 2, and random cropping. Additionally, we normalized the images 289

to a distribution with a mean of (0.485, 0.456, 0.406) and a standard deviation of (0.229, 290

0.224, 0.225). 291

Our experiments indicate that the Mapillary dataset is similar to our driving sce- 292

narios, and the extensive data augmentation during the training process helps improve 293

DeepLabV3Plus generalization. We did not observe a significant drop in performance 294

when testing the DeepLabV3Plus model on the UC San Diego campus. 295

4.2.3. DeepLabV3Plus Hyperparameters 296

To train our DeepLabV3Plus network, we employ synchronized batch normaliza- 297

tion [5] with a batch size of 16. The training process lasts for 200 epochs, utilizing eight 298

2080Ti GPUs with an input image size of 640x640. The network’s output stride is eight. 299

To optimize the training process, we use the Stochastic Gradient Descent (SGD) op- 300

timizer and apply a polynomial learning rate policy [6,54]. Specifically, we set the base 301

learning rate to 0.005 and the power to 0.9, with the learning rate decaying over time 302

according to the formula base_lr × (1 − epoch
max epoch )

power. We set the momentum to 0.9 and 303

the weight decay to 4e−5. 304

4.2.4. Comparison of Semantic Segmentation 305

We use the mIoU metric to assess a network’s performance. In the reduced 19-class 306

Mapillary validation set, ResNeXt50 achieves an mIoU of 68.32%. Although its performance 307

is slightly lower than that of ResNet101, ResNeXt50 requires significantly less memory 308

(from 367MB to 210MB), making it more suitable for our onboard hardware with limited 309

memory. For MScale-HRNet we evaluate it on the 65 class Mapillary validation set, where 310

it achieves an mIoU of 59.71% for 65 classes. 311

1 https://github.com/NVIDIA/semantic-segmentation

https://github.com/NVIDIA/semantic-segmentation
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Figure 5. Semantic Segmentation Comparison (Left to right, AVL Dataset Image, DeepLabV3Plus,
MSCale-HRNet) with labels colored correspondingly.

Qualitatively, as shown in Figure 5 the two semantic segmentation networks perform 312

similarly in close range with only one major difference. MScale-HRNet fills in gaps on the 313

dash lane while DeepLabV3Plus does not do this as consistently. This stems from irregular 314

labeling in the Mapillary dataset, which we discuss further in Sub-section 5.3. For our 315

ground truth labels, we do not fill in dash lanes and that can lead to a performance drop 316

for the MScale-HRNet approach. 317

The DeepLabV3Plus generates noisier results on the edges of the segments. MScale- 318

HRNet outputs are cleaner with smooth edges. For areas further away from the camera, 319

MScale-HRNet results give more details. However, these areas are not utilized since we 320

clip the point cloud with a maximum distance to reduce error (see Sub-section 4.3.4). 321

For an image size of 1920 by 1440, DeepLabV3Plus’ inference time is approximately 322

0.48 s per image and MScale-HRNet’s inference time is approximately 1.23 s per image 323

when running on an NVIDIA GeForce RTX 2080Ti graphics card. 324

4.3. Semantic Mapping 325

We evaluate the quality of our map generation results by selecting a 1.1 km region of 326

the UC San Diego campus, which has been manually annotated with an HD map containing 327

road information, including crosswalks, sidewalks, and lane marks. The semantic map 328

we generate has five channels - road, crosswalk, lane marks, vegetation, and sidewalk - with a 329

resolution of d = 0.2 meters. Generating an accurate HD map requires considerable effort, 330

but it demonstrates the value of automating the process. 331

4.3.1. Metric for Semantic Mapping 332

In our initial work [19] we used mIoU and pixel accuracy as evaluation metrics. 333

However, a direct comparison on IoU for lane marks is very sensitive to localization error. 334

In Figure 6 we show the generated semantic map, ground truth, and disparity between the 335

lane labels in these two maps. It can be seen that there are relatively consistent detections 336

of the lane lines in the generated semantic map, however, when compared to ground truth 337

they are off by 1 to 2 pixels (0.2–0.4m since 1px = 0.2m). Given that the ground truth lane is 338

about 1 to 2 pixels wide, the offset leads to a very low true positive rate. 339
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Figure 6. (From top to bottom) Generated semantic map, Groundtruth, Disparity between lane labels.
Green represents true positive, red represents false positive, and blue represents false negative.

This offset is also egocentrically consistent across the entire generated map, leading 340

us to believe this is a systematic problem unrelated to the semantic mapping approach. 341

The offset can potentially be caused by an error introduced by the calibration between 342

LiDAR and the camera, the asynchronous camera and LiDAR, the BEV conversion, or a 343

discretization error in mapping. 344

For generating HD maps, this offset that is present is non-ideal. There are other tasks, 345

however, which are less sensitive to this offset. An example is to use the map as a prior to 346

provide context for scene understanding. The semantic map can be used in downstream 347

tasks such as trajectory generation or motion prediction. In these scenarios, the existence of 348

the semantic information is more important and centimeter-level mapping requirements 349

may be too strict. 350

Therefore, in addition to IoU, we propose a metric to evaluate the performance of the 351

semantic map that is tolerable to minor offsets. The proposed metric included a modified 352

version of precision and recall. We dilate the ground truth to evaluate the precision of the 353

generated map. We dilate the generated map for each label to evaluate the recall against 354

the original ground truth. Specifically, we used a kernel size of 3, which tolerates a 20 cm 355

error. We notice that these additional metrics match our observation of the performance 356

of the model, thus can better guide our decision in hyperparameter tuning and model 357

comparison. 358

Additionally, it is worth noting that the sparsity of the LiDAR point cloud may 359

influence these metrics since the output may be accurate, but it may contain unclassified 360

cells (holes). We mitigate this problem by using a smoothing kernel to interpolate the 361

missing labels on our map. 362
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Table 1. Quantitative evaluation on our labeled data for road, crosswalk, and lane mark regions.
Refer to Sub-section 4.3 for details.

Network Config Road Crosswalks Lane marks
Preci-
sion*

Re-
call* IoU Preci-

sion*
Re-

call* IoU Preci-
sion*

Re-
call* IoU

DeepLabV3+

Vanilla 0.975 0.786 0.678 0.990 0.687 0.567 0.762 0.498 0.186
Vanilla+I 0.975 0.784 0.674 0.990 0.677 0.552 0.757 0.576 0.213

CFN 0.985 0.760 0.641 0.954 0.745 0.622 0.730 0.833 0.335
CFN+I 0.985 0.759 0.640 0.954 0.741 0.616 0.727 0.835 0.335

MScale-HRNet

Vanilla 0.983 0.771 0.674 0.911 0.658 0.519 0.725 0.451 0.191
Vanilla+I 0.984 0.770 0.670 0.909 0.646 0.502 0.720 0.522 0.207

CFN 0.989 0.758 0.647 0.897 0.697 0.547 0.752 0.807 0.320
CFN+I 0.989 0.757 0.645 0.892 0.690 0.537 0.749 0.810 0.321

* The precision and recall are not in common definition. See Sub-section 4.3.1 for details.

4.3.2. Modeling of Observation Uncertainty 363

To start, we verified the design of the confusion matrix M to model the uncertainty in 364

the semantic segmentation stage. We explored two approaches for this purpose. The first 365

approach, referred to as Vanilla, is defined by µ(I + λ1), where λ is a hyper-parameter and 366

µ is a normalization factor. The second approach is CFN, which is the confusion matrix of 367

the semantic segmentation network in the Mapillary validation data set. During inference, 368

we assigned each cell to the label with the highest probability. We present the quantitative 369

results in Table 1. Our findings reveal that CFN significantly outperforms the Vanilla 370

model in terms of IoU and recall, particularly for crosswalks and lane marks. The result is 371

consistent across both backbone networks. This suggests that utilizing the confusion matrix 372

of the network to model the prediction error in semantic segmentation leads to improved 373

map generation results. 374

4.3.3. Integration with LiDAR Intensity 375

To take advantage of the varying reflectivity of different road materials, we begin by 376

filtering out all intensity data that falls below the normalized threshold value of k = 14, 377

which we manually calibrated for the Velodyne VLP-16 LiDAR (as shown in Figure 3). 378

During the semantic mapping process, when our model predicts the presence of lane marks, 379

we increase the logarithmic probability of that label by a constant factor γ. This suppresses 380

our prediction of other classes and increases our confidence in predicting lane marks. In 381

Table 1, the models that incorporate intensity data are denoted with a "+I" label. Comparing 382

Vanilla+I to Vanilla, we observe improved accuracy and IoU scores for lane marks, but a 383

slight decrease for roads and crosswalks, suggesting the benefit of integrating intensity 384

data for lane mark prediction. However, this trend is not replicated for CFN+I compared 385

to CFN, indicating that a more sophisticated function may be needed to model LiDAR 386

intensity for further improvement. 387

4.3.4. Effect of Clipping Range 388

We conduct experiments in Table 1 by clipping the local dense point maps extracted 389

up to 10 m along the longitudinal axis and −15 to 15 m along the lateral axis of the vehicle, 390

as the semantic segmentation performance decreases significantly beyond this range. The 391

effect of range on the final mapping result can be seen in experiments varying the clipping 392

distance, summarized in Table 2. 393

The result suggests that a shorter distance yields better mapping performance for the 394

most challenging lane mark class. We observed a similar pattern during the hyperparameter 395

tuning for DeepLabV3Plus-based semantic mapping in our initial work [19] and believed 396

that it was caused by a combination of reduced calibration error, and more accurate semantic 397

segmentation for closer ranges. We notice however that MScale-HRNet produces strong 398
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semantic segmentation for longer ranges, but still exhibits the same trend. This leads us to 399

believe that long-range mapping error is mainly related to camera calibration. 400

Table 2. Ablation Study on point map maximum clipping distance.

Range Road Crosswalks Lane marks
Precision*Recall* IoU Precision*Recall* IoU Precision*Recall* IoU

30 0.985 0.847 0.702 0.695 0.760 0.495 0.555 0.567 0.182
15 0.989 0.836 0.706 0.823 0.766 0.560 0.683 0.761 0.270
10 0.989 0.757 0.645 0.892 0.690 0.537 0.750 0.810 0.321

* The precision and recall are not in common definition. See Sub-section 4.3.1 for details.

4.3.5. Mapping Results 401

An example of the global map generated by our CFN+I DeepLabV3Plus model for 402

the entire test region is shown in Figure 7. The figure highlights a region of the map, 403

demonstrating our model’s ability to clearly capture and map the static elements of the 404

road. 405

Figure 7. Generated map of testing data set in BEV, displayed on top of the dense point cloud map.

Figure 8. From top to bottom, results in structured environments, unstructured environments, and
noisy results.

More examples from testing on the UC San Diego campus are shown in Figure 8. The 406

first row shows results on more common environments such as intersections and road 407
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segments. The second row shows results on less structured environments such as parking 408

lots and curved roads. In these cases, the pipeline can generate visually consistent semantic 409

maps. The last row demonstrates noisy results in a construction zone, intersections with 410

worn road markings, and uncommon road structures. Some of the issues can be addressed 411

by leveraging vehicle-to-infrastructure communication [55]. 412

4.4. Comparison with Different Depth Association Approach 413

Alternative methods to associate depth exist. In this section, we compare our approach 414

which leverages the dense point cloud map with two approaches to associate depth, using 415

sparse LiDAR scan and planar assumption. 416

4.4.1. Comparison to Sparse LiDAR Scan 417

A potential alternative to associating semantic images with depth information is to 418

utilize the real-time point cloud data generated by LiDAR. To accomplish this, we follow a 419

similar mapping approach by projecting the point cloud onto the semantic image frame and 420

constructing the semantic map. The real-time performance of this approach is demonstrated 421

in Figure 9. However, due to the sparsity of point cloud scans from the 16-channel LiDAR 422

used, constructing a semantic map at greater distances is challenging, particularly when 423

the vehicle is moving at higher speeds. Therefore, to enable the creation of semantic maps 424

for longer ranges with a sparse LiDAR, a pre-built dense point cloud map is necessary. 425

With the advances in sensing technology, higher resolution or solid-state LiDARs such as a 426

128-channel LiDAR can potentially bridge the gap. 427

Figure 9. Semantic map generated from real-time LiDAR scan (Black denotes areas not covered by
LiDAR).

4.4.2. Comparison to Planar Assumption 428

We also investigated a different approach, which involves back-projecting the 2D 429

semantic image into 3D space using a homography, assuming a flat ground. This method 430

eliminates black holes in the generated map. However, this approach is not suitable for ur- 431

ban driving scenarios with steep hills or road intersections, as illustrated in Figure 10, since 432

the planar assumption fails under these conditions. Consequently, significant distortion 433

occurs at longer ranges. 434

Figure 10. Semantic map generated by back-projecting 2D semantic image with a 3D planar assump-
tion.

5. Discussion 435

We proposed a semantic mapping pipeline that leverages the semantic information 436

from the image and geometric information from the point cloud to generate a probabilistic 437

map in the BEV. 438

Our experiments highlight the benefits of a probabilistic approach that allows us to cap- 439

ture fine details such as lane marks more accurately, in lieu of semantic segmentation noise. 440

We additionally reviewed the appropriateness of mIoU as a mapping performance metric, 441



Version August 17, 2023 submitted to Sensors 14 of 19

and argue that modified recall and precision better characterize pipeline performance 442

(More details in Sub-section 5.1). 443

The semantic map generated by our pipeline can provide a rich context for down- 444

stream tasks. This includes direct use cases for navigation tasks and behavior prediction 445

that require semantic information to understand the underlying road geometry. For exam- 446

ple, in recent work [56,57], a strategy for dynamic trajectory generation for urban driving 447

is proposed. The methods leverage conditional generative models to align coarse global 448

plans to local semantic maps and dynamically regress egocentric trajectories. The semantic 449

features provided by our map can additionally be used as a base for HD Map generation. 450

Combining the dense semantic map from our proposed pipeline with road network topol- 451

ogy from approaches such as TopoNet [15] could provide both context and navigation cues 452

respectively. With these aforementioned potentials, the semantic mapping results can still 453

be improved in many aspects. 454

5.1. IoU and Localization Error 455

Our analysis suggests that mapping IoU is highly sensitive to localization, and even a 456

minor deviation causes the metric to underrepresent our results. As such, we present the 457

results using metrics that are more tolerant to minor offsets in predictions, which are more 458

consistent with our observations. While localization can be improved, since lane marks are 459

typically 10 cm wide 2 even perfect segmentation with 5 cm localization error drops IoU 460

down to 33%. As such, it is necessary to introduce additional metrics to represent results 461

within an offset tolerance. Recent works [7,13–15] using vectorized representations are 462

evaluated with different metrics that aren’t sensitive to localization error. 463

We notice the mapping offset error is consistent in the egocentric frame, which leads 464

us to believe this is a systematic error of our equipment, and not the semantic mapping 465

pipeline. We believe that better calibration and sensor synchronization can improve map- 466

ping results by reducing the offset. 467

5.2. Semantic Segmentation 468

Another challenge is the robustness of semantic segmentation. The semantic segmen- 469

tation model degrades in challenging lighting conditions and unseen environments. For 470

example, as shown in Figure 11, the images may appear over-exposed and trees will cast a 471

shadow on the road on a sunny data. In these scenarios, it is hard to correctly segment the 472

lane marks. Additionally, road constructions and drivable regions that are not well painted 473

compared to the normal road often confuse the network, leading to noisy segmentation. 474

Figure 11. Semantic Segmentation Degradation from challenging lighting conditions. Left to right,
original image, DeepLabV3Plus, MScale-HRNet.

We observe in our ablation study that considering LiDAR intensity values during 475

predictions yields improvements in our performance. VectorMapNet [13] exhibit similar 476

findings, where fusing LiDAR information boosts their performance in challenging envi- 477

ronment conditions (puddles on the road). It is clear that multi-sensor approaches increase 478

robustness. In the case of Figure 11 our multi-sensor approach fails to capture the lane 479

2 https://safety.fhwa.dot.gov/roadway_dept/night_visib/pavement_marking/ch3.cfm

https://safety.fhwa.dot.gov/roadway_dept/night_visib/pavement_marking/ch3.cfm
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mark in the final generated global map. Stronger semantic segmentation modules that 480

consider temporal or spatial context are needed. They should be able to handle visual gaps 481

in lane markings, whether due to wear or lighting conditions. 482

5.3. Mapillary Inconsistency 483

Another notable issue is the consistency of labels across the dataset used for both 484

Semantic Segmentation Networks. As we mentioned in Sub-section 4.3.1, the Mapillary 485

dataset [18] irregularly fills the dash lanes. For example, as shown in Figure 12 we can see 486

dashed lanes being turned into solid lines in the first example, and in the second example a 487

more complicated zebra-style lane region turned into a fully solid lane label. In the third 488

example, however, the dashed line stays dashed. 489

Figure 12. On the left we show images from the Mapillary dataset and on the right the visualized
labels.

We believe that this inconsistency in training data causes the networks to get confused, 490

and be more biased towards filling in gaps between lane marks when it finds appropri- 491

ate. As seen in Figure 5 MScale-HRNet is more consistent in filling in the gaps than 492

DeepLabV3Plus. We hypothesize that MScale-HRNet being a more advanced network has 493

a greater ability to learn to fill in (as biased by Mapillary) over DeepLabV3Plus. 494

This has different ramifications on downstream task performance, as the resulting 495

mapping is affected by the semantic segmentation filling behavior. For navigation tasks, 496

maintaining dashed lanes is important for contextual understanding. Conversely, Zhou 497

et al. [12] use particle filters for road network extraction, where filled lanes would be 498

beneficial. 499

5.4. Disappearing Lanes and Discretization 500

The final major issue we observed is under-representation of semantic labels when 501

mapping. Semantic image outputs (especially for MScale-HRNet) show consistent segmen- 502

tation for lane lines; however, these lines do not necessarily transfer to the final map. By 503

employing a confusion matrix, we account for semantic segmentation error, but we do not 504

account for mapping discretization error. 505
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The experiments ran in this paper were limited to a pixel resolution of 0.2 meters 506

due to memory constraints. This is a large area relative to a lane line’s standard width 507

of 0.1 meters. As such, a 0.2 × 0.2 region that should have been mapped to a lane line 508

may have more road observations that lane line observations. In essence, as a result of 509

our discretization size, this can cause lane line cells to be suppressed by surrounding road 510

observations in the same cell. 511

An obvious fix would be to increase discretization resolution; however, this comes 512

with multiple problems. In addition to increased memory usage, it requires higher density 513

in observations. Our current maps at 0.2 have holes due to the sparsity of a 16-channel 514

LiDAR point cloud at driving speed. Thus, to counteract this either higher channel LiDARs, 515

slower driving speed, or higher interpolation would be required. Potential exploration 516

could be done by observing distributions of lane line points within a cell, to decide if it 517

represents a lane line or noise. Additionally, discretization can be dropped completely 518

by utilizing vector representations [7,13–15] for lanes instead, that are updated by lane 519

observations. 520

6. Summary 521

By incorporating rich information from semantic labels on image frames, our method 522

effectively introduces a statistical approach for identifying road features and mapping 523

them in BEV, as demonstrated by our comparisons to manually annotated maps. This 524

approach can be extended to automate HD map annotation for crosswalks, lane markings, 525

drivable surfaces, and sidewalks, as well as incorporating center lane identifications for 526

path tracking algorithms. 527

To address the scalability drawbacks of HD maps, future work will involve accounting 528

for road network junctions and forks, allowing for the full automation of road network 529

annotations leveraging graphical methods. While a combination of the proposed techniques 530

may address the scalability and maintenance cost associated with dense point cloud maps 531

for localization, it also opens up new areas of research in high-level dynamic planning. 532

By dynamically estimating drivable surfaces, traffic lanes, lane markings, and other road 533

features, centimeter-level localization may become unnecessary as long as immediate 534

actions can be extracted from a high-level planner. In our future work, we plan to seek 535

solutions for fully automating the HD mapping process while exploring the possibility of 536

dynamic planning without a detailed dense point cloud map. 537
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