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Abstract 
 
 
Background 

 

The World Health Organization recommends universal drug susceptibility testing for Mycobacterium 

tuberculosis complex to guide treatment decisions and improve outcomes. We assessed whether DNA 

sequencing can accurately predict antibiotic susceptibility profiles for first-line anti-tuberculosis drugs.  

 

Methods 

 

Whole-genome sequences and associated phenotypes to isoniazid, rifampicin, ethambutol and 

pyrazinamide were obtained for isolates from 16 countries across six continents. For each isolate, 

mutations associated with drug-resistance and drug-susceptibility were identified across nine genes, 

and individual phenotypes were predicted unless mutations of unknown association were also present. 

To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility 

profiles were predicted. These were predicted to be pan-susceptible if predicted susceptible to isoniazid 

and to other drugs, or contained mutations of unknown association in genes affecting these other drugs. 

We simulated how negative predictive value changed with drug-resistance prevalence.  

 

Results 

 

10,209 isolates were analysed. The greatest proportion of phenotypes were predicted for rifampicin 

(9,660/10,130; (95.4%)) and the lowest for ethambutol (8,794/9,794; (89.8%)). Isoniazid, rifampicin, 

ethambutol and pyrazinamide resistance was correctly predicted with 97.1%, 97.5% 94.6% and 91.3% 

sensitivity, and susceptibility with 99.0%, 98.8%, 93.6% and 96.8% specificity, respectively. 5,250 

(89.5%) drug profiles were correctly predicted for 5,865/7,516 (78.0%) isolates with complete 

phenotypic profiles. Among these, 3,952/4,037 (97.9%) predictions of pan-susceptibility were correct. 

The negative predictive value for 97.5% of simulated drug profiles exceeded 95% where the prevalence 

of drug-resistance was below 47.0%. 

 

Conclusions 

 

Phenotypic testing for first-line drugs can be phased down in favour of DNA sequencing to guide anti-

tuberculosis drug therapy.  
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Mycobacterium tuberculosis killed more people than any other pathogen in 2016, when over 

10 million active cases were estimated, and 1.7 million patients died.1 In 2014, the World Health 

Organization (WHO) set a target to ‘END TB’ by 2035, acknowledging that success depends on the 

development of better preventative, diagnostic and therapeutic interventions. The global emergence of 

antimicrobial resistance poses a major challenge. Despite a call for universal access to drug 

susceptibility testing to direct individualised therapies, high costs and skills shortages mean it is 

unavailable in many countries with greatest need. Consequently, only 22% of an estimated 600,000 

patients requiring treatment for multidrug-resistant tuberculosis were diagnosed and treated in 2016,1 

facilitating the onward transmission of multidrug-resistant strains.2 

The Xpert MTB/RIF (Cepheid, Sunnyvale, California, USA) assay has partially eased the global 

diagnostic need. It uses polymerase chain reaction technology to identify both M. tuberculosis complex 

and mutations in the rpoB gene (predictive of multidrug resistance) directly from clinical samples.3 

However, as it targets only a few potential resistance-conferring mutations, antimicrobial susceptibility 

cannot be reliably inferred from a negative result.4 To direct individualised therapies, a diagnostic assay 

is needed to determine which drugs to give, in addition to which to avoid. 

Advances in whole-genome sequencing mean it is now the most promising solution to the need 

for universal drug susceptibility testing. It is faster, more scalable, and likely to become cheaper than 

phenotypic testing.5 As the number of genomic sites whole-genome sequencing covers are virtually 

unrestricted, it should be possible to infer M. tuberculosis antimicrobial susceptibility from the absence 

of resistance-conferring mutations.6 Here we assess how well this performs for first-line anti-

tuberculosis drugs, considering WHO target product profiles for new molecular assays,7 and whether 

whole-genome sequencing can be used to accurately direct anti-tuberculosis therapy.  

 

Methods 

Sample selection 

 Collections of M. tuberculosis complex isolates unenriched for resistance and largely 

sequenced prospectively for routine diagnostic reasons, or for disease surveillance, were included from 

Germany, Italy, the Netherlands and the UK. Collections enriched for antimicrobial resistance, were 

included from across six continents (Table1, Supplement S1). Analyses of both the unenriched and 

complete collection were planned. 
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Sequencing 

 Isolates were sequenced on Illumina platforms and reads processed by the Public Health 

England bioinformatics pipeline at Genomics England,8 as described.6 Reads were mapped to the pan-

susceptible M. tuberculosis reference genome (Genbank NC_000962.2) using Stampy (v.1.0.17)9, with 

repetitive regions masked. SAMtools mpileup10 (v.0.1.18) made variant-calls based on a minimum 

depth of 5X and at least one read on each strand. Mixed-calls were assigned where minority alleles 

composed >10% of read depth. Insertions and deletions were determined using Cortex (v.1.0.5.21).11  

Drug susceptibility testing and prediction 

Phenotypic drug susceptibility testing was performed locally using MGIT 960 (Becton 

Dickinson, New Jersey, USA), 7H10 or Löwenstein-Jensen agar, or by microscopic-observation drug-

susceptibility (MODS), with method-specific critical concentrations for isoniazid (MGIT 0.1-0.2µg/mL; 

Agar 0.2µg/mL; MODS 0.4µg/mL), rifampicin (MGIT 1.0µg/mL; 40µg/mL Agar), ethambutol (MGIT 

5.0µg/mL; Agar 0.2µg/mL), and pyrazinamide (100µg/mL). Not all laboratories routinely tested all 

agents (S1). Genotypic predictions were based on mutations in, or upstream of, genes associated with 

resistance to isoniazid (ahpC, inhA, fabG1, katG), rifampicin (rpoB), ethambutol (embA, embB, embC), 

and pyrazinamide (pncA).6 A knowledgebase of mutations predicting antimicrobial resistance, or not,  

was informed by (i) the molecular targets of WHO-recommended line-probe assays (MTBDRplus, 

MTBDRsl v1.0, HAIN Lifesciences, Germany), (ii) a systematic literature review,12 (iii) the CDC, Atlanta, 

USA, panel and (iv) two recent studies, with no isolates in common with this study (S2),6,13 of which one 

became available after this study commenced.13 

Isolates containing resistance-mutations were predicted phenotypically resistant, whereas 

isolates containing only wild-type sequence, phylogenetic mutations,6 or mutations considered 

consistent with susceptibility, were predicted susceptible. Predictions were withheld for isolates 

containing mutations affecting target genes but of unknown association, or where no nucleotide-call 

could be determined at a resistance-associated site. In these circumstances, the genotype was reported 

‘unknown’ or ‘failed’, respectively. Using phenotypic results as a gold-standard, sensitivity, specificity, 

negative and positive predictive value were calculated for the correct assignment of susceptibility or 

resistance. Primary analyses excluded phenotypes without a prediction. 

Laboratory error was assumed where three or more phenotypes were discordant with an 

isolate’s genotype, or where susceptible phenotypes were recorded despite the presence of high-level 
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resistance katG S315T mutations for isoniazid, or rpoB S450L mutations for rifampicin.14 Such isolates 

were excluded from further analysis. 

Analysis was performed using STATA (Texas, USA, v13.1). No institutional review board 

approval was required except in Thailand, it was granted through Mahidol University (Si029/2557). 

 The study was first designed by TMW,TEAP,DWC, with subsequent contributions from others 

(supplement). Data were gathered at participating centres. Initial analysis was performed by 

TMW,TEAP,ASW,ZI,MH,SL,DW,PF,PM with later input from others (supplement). TMW wrote the first 

draft. TMW vouches for the analysis and had full access to the data; all authors agreed to publication. 

 

Results 

 10,290 isolates were available for the study. 81 (0.8%) were excluded due to likely laboratory 

error. 10,209 isolates remained, for which full first-line phenotypic profiles were available for 7,516 

(73.6%), and partial profiles for the remainder. 4,911 (48.1%) isolates were phenotypically susceptible 

to all drugs (Table 1). 

 For each isolate, the complete sequence of nine genes and their promoter regions was 

interrogated to make genotypic predictions of each available phenotypic result. Predictions could be 

made for 8,405/8,976 (93.6%) resistant and 26,879/28,746 (93.5%) susceptible phenotypes. The 

remainder contained uncharacterised mutations, or missing key nucleotide calls. For isoniazid and 

rifampicin, ethambutol and pyrazinamide, sensitivity (proportion of resistant phenotypes predicted 

resistant) was 97.1%, 97.5%, 94.6% and 91.3%, and specificity (proportion of susceptible phenotypes 

predicted susceptible) was 99.0%, 98.8%, 93.6% and 96.8%, respectively. By comparison, an in-silico 

prediction of the results that would have been obtained from WHO-recommended molecular assays 

(Xpert MTB/RIF, MTBDRplus, MTBDRsl v1.0) had a significantly lower sensitivity than whole-genome 

sequencing for isoniazid, rifampicin and ethambutol (p<0.001), but greater specificity for isoniazid and 

ethambutol (p<0.001) (Table 2a,b). 

The negative predictive value (proportion of concordant susceptible predictions) was over 

98.5% for all four drugs. Although dependent on prevalence, this also varied with isolates’ background 

phenotypic profiles. For example, at 20% prevalence of pyrazinamide resistance, the expected negative 

predictive value for pyrazinamide was 93.6% and 99.0% for isolates susceptible and resistant to the 

other three drugs, respectively (Table 3, S3). 
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As some collections included clustered isolates, the analysis was repeated after randomly 

selecting one representative among genomically indistinguishable isolates, and again from isolates 

within five single nucleotide polymorphisms of another. No significant change in sensitivity or specificity 

was observed for any drugs (p>0.1, S4). 

To reflect the emerging practice of routinely sequencing isolates for clinical care, the analysis 

was repeated for the subset of 4,397 isolates from German, Italian, Dutch and UK collections that were 

not enriched for resistance. Among these isolates, 335 (7.6%) were isoniazid resistant and 125 (2.8%) 

multidrug-resistant. For each drug, specificity and negative predictive values increased, whilst positive 

predictive values (the proportion of concordant resistant predictions) decreased relative to the overall 

results. There was no significant change in sensitivity (Table 2c).  

 

Predicting complete phenotypic profiles 

 For DNA sequencing to help individualise therapy, a minimum requirement is that all first-line 

antimicrobial phenotypes are predicted. Phenotypic profiles were thus predicted for 7,516 isolates with 

phenotypic data available for all first-line drugs (S1&6). ‘Unknown’ or ‘failed’ was reported for at least 

one drug for 1,651 (22.0%) profiles. 5,865 (78.0%) were predicted completely, of which 5,250 (89.5%) 

were predicted correctly (S5). Among the 5,865 profiles, 4,007 were phenotypically pan-susceptible, of 

which 3952 (98.6%) were predicted correctly (Table 4). 

As the proportion of incompletely predicted profiles was substantial (22.0%), we assessed 

whether pan-susceptibility could be accurately predicted for some of these isolates anyway. Because 

isoniazid susceptibility predicts susceptibility to other first-line drugs,15 we maximised confidence in 

isoniazid predictions by conditioning predictions on the absence of ‘unknown’ mutations in isoniazid-

related genes. ‘Unknown’ mutations relevant to other drugs were permitted. Doing this, pan-

susceptibility was correctly predicted for 4,481/4,582 (97.8%) isolates, including 545/1,651 (33.0%)  

previously incompletely predicted profiles (Table 4). Among the collections unenriched for resistance, 

3439/3450 (99.7%) profiles were thereby correctly predicted pan-susceptible (S7). 

To simulate how this approach would perform in settings with differing burdens of antimicrobial 

resistance, we assessed the decline in negative predictive value with increasing prevalence of 

resistance to individual drugs, and with prevalence of any resistance within drug profiles. We randomly 

sub-sampled 1,000 isolates to represent every 1% increment in antimicrobial-resistance prevalence 
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between 10%-90%, repeating this 1,000 times for each drug and for complete drug profiles. Negative 

predictive value declined further for ethambutol and pyrazinamide than for complete drug profiles, but 

declined least for isoniazid and rifampicin. Below 47.0% prevalence of resistance to any drug, the 

simulated negative predictive value remained above 95% for 97.5% of drug profiles (Figure 1). 

 

Discrepancy analyses 

In Australia, eleven ethambutol susceptible isolates containing embB mutations were re-

phenotyped. Three repeat assays failed, but seven of the remaining eight yielded, now consistent, 

resistant phenotypes. In Peru, 10 of 16 repeated assays remained phenotypically susceptible by MODS 

despite fabG1 C-15T or G-17T mutations. In isolates from the Netherlands, six resistant phenotypes 

predicted susceptible were identified as clerical errors, and three susceptible phenotypes predicted 

resistant tested phenotypically resistant by alternative phenotypic assays (S8). Although additional re-

phenotyping was not possible, we conducted a ‘per mutation’ analysis to further assess discrepancies.  

Of the 322 resistant phenotypes predicted susceptible, 290 (90.1%) had no mutations affecting 

targeted genes, and 32 (9.9%) had one or more of 15 mutations per isolate, each previously 

characterised as consistent with antimicrobial susceptibility. Supporting this, across all isolates in which 

these 15 mutations occurred as the sole mutation, they correctly predicted isoniazid susceptibility in 

286/293 (97.6%) isolates and ethambutol susceptibility in 95/119 (79.8%) isolates. The one mutation 

relevant to pyrazinamide was seen in two isolates, both of which were phenotypically resistant. None 

of these mutations were relevant to rifampicin (S9). 

Among 822 susceptible phenotypes predicted resistant, 145 different resistance-conferring 

mutations were found. Of these, 142 (97.9%) featured as the only resistance-conferring mutation in at 

least one isolate in the dataset, allowing assessment of individual predictive performance. They 

correctly predicted resistance to isoniazid in 308/371 (83.0%) isolates, rifampicin in 548/627 (87.4%) 

isolates, ethambutol in 1280/1743 (73.4%) isolates, and pyrazinamide in 459/663 (69.2%) isolates (S9). 

14 of 17 (82.3%) mutations leading to rifampicin resistance predictions in phenotypically susceptible 

isolates were in the genetic region targeted by Xpert MTB/RIF and MTBDRplus.  

Laboratory sample mislabelling probably also contributed discrepant results. This was 

estimated for each collection from the proportion of isolates excluded because of katG S315T or rpoB 

S450L mutations and susceptible phenotypes, the collection’s discrepancy rate, and the prevalence of 
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antimicrobial resistance (S10). Overall, about 43% of isoniazid, and 12% of rifampicin discrepancies 

were thereby attributable to mislabelling. 

 

 Discussion 

 This analysis of over 10,000 M. tuberculosis isolates collected from 16 countries across six 

continents, and representing all major lineages, demonstrates that whole-genome sequencing can now 

characterise susceptible first-line anti-tuberculosis drug profiles sufficiently accurately for clinical use. 

The importance of this is twofold: First, it demonstrates that the genomic approach can be used to tailor 

individual treatment regimens. Extended to all drugs, individualised therapies promise to improve cure 

rates over those achieved by semi-empiric regimens directed by more limited diagnostic tests.1 Second, 

it is now possible to reduce the phenotypic workload where routine whole-genome sequencing is 

performed.  

The WHO’s target product profiles for new molecular assays for M. tuberculosis require over 

90% and 95% sensitivity and specificity, respectively.7 Overall, both these targets were met for all drugs 

with the exception of specificity for ethambutol (93.6%). This is no surprise as phenotyping is an 

imperfect gold standard, in particular for isolates with embB mutations.6,13,16 For the collections 

unenriched for resistance, all drugs did however meet these targets, as did the predictions of pan-

susceptibility in all collections. Only categorical agreement was assessed for complete drug profile 

predictions because of the number of permutations. These met the external quality assurance criteria 

(>80% concordance) for the European TB reference laboratory network.17 

There are three reasons why pan-susceptibility predictions were particularly accurate. First, the 

knowledgebase included both resistance-associated genomic mutations, and mutations compatible 

with phenotypic susceptibility. Second, anti-tuberculosis drug susceptibility phenotypes are not 

independent of one another, allowing the use of isoniazid susceptibility to predict susceptibility to other 

drugs. Third, no predictions were attempted for isolates containing genomic variation of unknown 

association in genes affecting isoniazid. This maximised confidence in isoniazid predictions that were 

made. Consequently, the prediction of drug profiles performed better than the per-drug analysis for 

ethambutol and pyrazinamide, and although there was a slight corresponding decline in performance 

for isoniazid and rifampicin, simulations showed that the prevalence of resistance would have to exceed 
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that seen in most of the worst affected countries in the world before these predictions no longer satisfied 

the WHO targets.1 

Our findings showed substantial improvements over the in-silico predictions for the sensitivity 

of WHO-recommended PCR-based assays because whole-genome sequencing is able to identify many 

more mutations. These additional mutations were however simultaneously responsible for the losses in 

specificity, largely because of the number of mutations for which a minority of isolates did not manifest 

a resistant phenotype. A typical example of such is the rpoB I491F mutation which frequently gives a 

susceptible rifampicin result in liquid culture but has been linked to treatment failure.4,18,19 

The broader discrepancy analysis highlighted the same phenomenon. Whilst the predictive 

performance of individual mutations, whether probed by WHO-recommended assays or not, was good, 

each mutation has an error rate, occasionally leading to an unexpected phenotype in a minority of 

isolates. This is most likely where a mutation elevates the minimum drug concentration required to 

inhibit bacterial growth to close to the concentration above which an isolate is considered resistant. 

Canonical ethambutol mutations are a classic example,20 but there are many others including the 

mutations missed by the MODS assay in Peru.16,21,22 Such phenomena are thus likely to explain the 

majority of isolates that were predicted resistant, yet were phenotypically susceptible. They are also the 

most likely reason why predicting pan-susceptible drug profiles was more accurate than predicting 

profiles apparently resistant to one or more drugs. 

One study limitation is that the scale and cost of repeat sequencing and phenotyping of isolates 

meant that we could not definitively resolve most discrepancies. This was most concerning for 

phenotypically resistant isolates predicted susceptible. For these, possible explanations include 

phenotypic error, resistant minority bacterial populations undetected by sequencing, mechanisms of 

resistance linked to genes we did not interrogate, or laboratory labelling error. 

 More work remains to be done before predictions can be extended to second and third-line 

drugs, and to newer compounds. However, following external review, Public Health England has 

already decided to stop phenotyping isolates predicted pan-susceptible to first-line drugs (personal 

communication, Derrick Crook, Director, National Infection Service). Similar moves are expected in the 

Netherlands (Dick van Soolingen, Rijksinstituut voor Volksgezondheid en Milieu) and New York 

(Kimberlee Musser, Wadsworth Center, New York State Department of Health). For low and middle-

income countries without easy access to phenotyping, there is now the prospect that emerging mobile 



 12 

sequencing platforms could be used to implement sequence-directed therapies, a potential solution to 

the call for universal susceptibility testing. Portable platform sequencing directly from spiked-samples 

has been achieved, although real-world systematic evaluation is still required.23 

Should whole-genome sequencing perform as well for second and third-line drugs as for first-

line, a clinical trial could be needed to assess the performance of individualised over standardized 

treatment regimens in countries with a high drug-resistant disease burden.24 Individualised therapies 

would be expected to reduce the amplification of resistance (to other drugs) in individual patients, side-

effects, likelihood of onward transmission, and to exert a weaker selection pressure on strains at a 

population level, which is key where empiric regimens have been targeted on the basis of very narrow 

data on antimicrobial susceptibility.4 Welcome public health benefits could result from monitoring 

transmission using the very same sequences.2  

The current investment in whole-genome sequencing in high-income countries is likely to help 

accelerate implementation in lower-income, higher-burden countries where the potential benefit is 

greatest.25 These data demonstrate how our understanding of the molecular determinants of resistance 

to first-line anti-tuberculosis drugs is now sufficiently good to start using DNA sequencing to guide 

therapy. Similar performance must now be replicated for the remaining drugs. 
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Table 1: Number of isolates by country and drug resistance profile 
  

Country of 
sample 
origin 

Time period of 
isolation 

Enriched for 
resistance 

Suscepti
ble to all 
4 drugs 

Susceptible 
to 3 drugs, 
with missing 
pyrazinamide 
result 

Isoniazid 
resistant, 
rifampicin 
susceptible 

Isoniazid 
susceptible, 
rifampicin 
resistant 

Isoniazid 
resistant, 
rifampicin 
resistant 

Other 
pattern 

Total 

Australia 2006-2016 Yes 0 0 4 0 38 0 42 

Belgium 2007-2015 Yes 121 0 2 0 97 14 234 

Canada 2003-2014 Yes 11 1,118 164 14 24 12 1343 

China 2009-2012 Yes 0 44 0 0 236 0 280 

Germany 1998-2015 No 248 0 9 1 13 2 273 

Italy 2008-2016 Yes and No* 82 1 9 0 132 2 226 

Netherlands 1993-2016 No 420 42 24 1 149 31 667 

Pakistan 2014-2015 Yes 47 5 11 6 345 1 415 

Peru 1997-2009 Yes 24 12 49 18 199 13 315 

Russia 2008-2010 Yes 282 0 116 15 407 22 842 

Serbia 2008-2014 Yes 0 0 0 0 105 0 105 

South Africa 2012-2014 Yes 593 11 37 69 151 130 991 

Spain 2013-2015 Yes 45 3 5 2 8 1 64 

Swaziland 2009-2010 Yes 2 130 14 4 116 7 273 

Thailand 1998-2013 Yes 0 53 7 4 188 0 252 

UK 2009-2017 Yes and No* 3,036 82 167 6 442 154 3,887 

Total     4911 1501 618 140 2650 389 10209 

 * More than one collection was derived from Italy and the UK, some enriched and some not 
enriched for resistance. See supplement for details. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Prediction of individual drug phenotypes 
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PPV = Positive Predictive Value; NPV = Negative Predictive Value; R=resistant; S=susceptible; U=mutation of unknown association present; F=genotypic prediction failed due to missing data around a genomic resistance 
locus; All % results based on R/S genotypic predictions only, excluding U and F except where * for which denominator includes R, S, U and F. †p≤0.001 , ‡p≤0.01, and §p≤0.05 comparing sensitivity, specificity, NPV and 
PPV for each drug for (b) and (c) against (a), and comparing (d) against (c); p>0.05 for all results not marked †, ‡ or §. In silico predictions of resistance for Xpert and HAIN assays were based on the presence of non-wild 
type sequence within the genomic regions interrogated by these assays. 'F' was reported in the presence of minority alleles at relevant sites, just as for WGS predictions. 

 Resistant phenotype, n (%) Susceptible phenotype, n (%)         

 R S U F Total R S U F Total Sensitivity of 
predictions, 
%(95% CI) 

Specificity of 
predictions, % 
(95% CI) 

PPV, %               
(95% CI) 

NPV, %                 
(95% CI) 

Sensitivity 
(all*),         
% 

Specificity     
(all*),       
% 

No     
genotypic 
prediction 
made, % 

 Resistance 
prevalence 
(all), % 

(a) All isolates 

Isoniazid 3067 90 93 44 3294 65 6313 215 117 6710 97.1 (96.5-97.7) 99.0 (98.7-99.2) 97.9 (97.4-98.4) 98.6 (98.3-98.9) 93.1 94.1 4.7 32.9 

Rifampicin 2743 69 7 84 2903 85 6763 232 147 7227 97.5 (96.9-98.1) 98.8 (98.5-99.0) 97.0 (96.3-97.6) 99.0 (98.7-99.2) 94.5 93.6 4.6 28.7 

Ethambutol 1410 81 94 55 1640 468 6835 781 70 8154 94.6 (93.3-95.7) 93.6 (93.0-94.1) 75.1 (73.0-77.0) 98.8 (98.5-99.1) 86.0 83.8 10.2 16.7 

Pyrazinamide 863 82 117 77 1139 204 6146 197 108 6655 91.3 (89.3-93.0) 96.8 (96.3-97.2) 80.9 (78.4-83.2) 98.7 (98.4-99.0) 75.8 92.4 6.4 14.6 

(b) In silico prediction of performance of MTB/RIF Xpert and HAIN MTBDRplus/MTBDRsl line-probe assays for all isolates 

Isoniazid 2886 355  53 3294 27 6675  8 6710 89.0 (87.9-90.1)† 99.6 (99.4-99.7)† 99.1 (98.7-99.4)† 95.0 (94.4-95.5)†   0.6 32.9 

Rifampicin 2669 143  91 2903 129 6826  272 7227 94.9 (94.0-95.7)† 98.1 (97.8-98.4)‡ 95.4 (94.5-96.1)‡ 97.9 (97.6-98.3)†   3.6 28.7 

Ethambutol 961 641  38 1640 241 7895  18 8154 60.0 (57.5-62.4)† 97.0 (96.6-97.4)† 80.0 (77.6-82.2)‡ 92.5 (91.9-93.0)†   0.6 16.7 

Pyrazinamide                   

(c) Collections from Germany, Italy, the Netherlands and the UK, unenriched for resistance 

Isoniazid 314 8 9 4 335 15 3770 104 90 3979 97.5 (95.2-98.9) 99.6 (99.3-99.8)† 95.4 (92.6-97.4)‡ 99.8 (99.6-99.9)† 93.7 94.7 4.8 7.8 

Rifampicin 126 0 0 9 135 31 3958 103 116 4208 100.0 (97.1-100.0) 99.2 (98.9-99.5)§ 80.3 (73.2-86.2)† 100.0 (99.9-100.0)† 93.3 94.1 5.2 3.1 

Ethambutol 72 1 0 0 73 47 3711 458 36 4252 98.6 (92.6-100.0) 98.7 (98.3-99.1)† 60.5 (51.1-69.3)† 100.0 (99.8-100.0)† 98.6 87.3 11.4 1.7 

Pyrazinamide 109 6 4 6 125 30 4003 14 58 4105 94.8 (89.0-98.1) 99.3 (98.9-99.5)† 78.4 (70.6-84.9) 99.9 (99.7-99.9)† 87.2 97.5 1.9 3.0 

(d) In silico prediction of performance of MTB/RIF Xpert and HAIN MTBDRplus/MTBDRsl line-probe assays for collections unenriched for resistance 

Isoniazid 295 36  4 335 10 3965  4 3979 89.1 (85.3-92.3)† 99.7 (99.5-99.9) 96.7 (94.1-98.4) 99.1 (98.8-99.4)†   0.2  

Rifampicin 114 11  10 135 22 3957  229 4208 91.2 (84.8-95.6)† 99.4 (99.2-99.7) 83.8 (76.5-89.6) 99.7 (99.5-99.9)†   5.5  

Ethambutol 57 16  0 73 29 4220  3 4252 78.1 (66.9-86.9)† 99.3 (99.0-99.5)§ 66.3 (55.3-76.1) 99.6 (99.4-99.8)†   0.1  

Pyrazinamide                   
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Table 3:  Individual drug predictions against different background phenotypic profiles.  

 
 
Phenotypic profiles are listed in the following order: Isoniazid, Rifampicin, Ethambutol, Pyrazinamide. 
'-' under 'Phenotypic profiles' marks the drug phenotype being assessed. PPV = Positive Predictive  
Value; NPV = Negative Predictive Value; R=resistant; S=susceptible; U=mutation of unknown 
association present; F=genotypic prediction failed due to missing data around a genomic resistance 
locus; All % results based on R/S genotypic predictions only, excluding U and F. Expected NPV was 
calculated as follows: specificity x (1-prevlence) / (specificity x (1-prevlence)+(1-sensitivity) x 
prevalence). * indicates that for prevalence <10% or >90%, simulated values are given for 10% and 
90% respectively as simulations were not performed below or above these values.  
 

 

 

 

 

 

 

 

 

 

 

 

  Phenotypic 
profiles R S U F Total R S U F Total 

Prevalence 
of 
resistance 
among 
each of the 
listed drug 
profiles, % 

Sensitivity, 
% 

Specificity, 
% 

PPV,   
% 

NPV, 
% 

Expected 
NPV at 
given 
prevalence 
of 
resistance 
based on 
simulations, 
% (95% 
CI)* 

Calculated NPV 
at 20% 
prevalence of 
resistance, % 
(see table S3) 

Calculated 
NPV at 40% 
prevalence of 
resistance, % 
(see table 
S3) 

Is
on

ia
zi

d 

-SSS 391 30 18 12 451 21 4,653 133 104 4,911 8.4 93 100 95 99.4 99.3-100 98.2 95.4 
-RSS 459 21 20 6 506 7 85 5 1 98 83.8 96 92 98 80.2 83.5-100 98.8 96.9 
-RRS 424 3 13 4 444 2 2 2 0 6 98.7 99 50 100 40.0 73.7-85.6 99.6 99.1 
-SRS 24 4 1 0 29 0 10 1 0 11 72.5 86 100 100 71.4 90.5-95.6 96.6 91.3 
-SSR 24 1 2 1 28 0 95 6 3 104 21.2 96 100 100 99.0 98.5-99.7 99 97.4 
-RRR 662 3 11 4 680 0 0 0 0 0 100.0 100 . 100 0.0 73.7-85.6 n/a n/a 
-RSR 217 3 5 5 230 0 3 0 0 3 98.7 99 100 100 50.0 73.7-85.6 99.7 99.1 
-SRR 13 0 0 2 15 0 0 0 0 0 100.0 100 . 100 . 73.7-85.6 n/a n/a 

                    

R
ifa

m
pi

ci
n 

S-SS 74 16 0 8 98 30 4,632 126 123 4,911 2.0 82 99 71 99.7 99.3-100 95.7 89.3 
S-RS 6 0 0 0 6 1 9 1 0 11 35.3 100 90 86 100.0 97.8-99.5 100 100 
S-SR 1 2 0 0 3 0 100 3 1 104 2.8 33 100 100 98.0 99.3-100 85.7 69.2 
S-RR 0 0 0 0 0 0 0 0 0 0 . . . . . . n/a n/a 
R-SS 464 20 1 21 506 18 424 3 6 451 52.9 96 96 96 95.5 95.8-98.6 98.9 97.2 
R-RS 424 7 2 11 444 4 25 0 0 29 93.9 98 86 99 78.1 76.2-86.6 99.5 98.8 
R-SR 218 4 0 8 230 7 20 0 1 28 89.1 98 74 97 83.3 77.9-87.9 99.4 98.4 
R-RR 665 2 0 13 680 10 3 0 2 15 97.8 100 23 99 60.0 76.2-86.6 99.7 99.1 

                    

Et
ha

m
bu

to
l 

SS-S 1 9 1 0 11 4 4,399 472 36 4,911 0.2 10 100 20 99.8 98.8-99.9 81.6 62.5 
RS-S 21 5 3 0 29 31 376 40 4 451 6.0 81 92 40 98.7 98.8-99.9 95.1 87.8 
SR-S 4 2 0 0 6 1 93 3 1 98 5.8 67 99 80 97.9 98.8-99.9 92.2 81.7 
RR-S 375 20 30 19 444 203 241 48 14 506 46.7 95 54 65 92.3 93.4-96.7 97.7 94.1 
SS-R 0 0 0 0 0 1 81 22 0 104 0.0 . 99 0 100.0 98.8-99.9 n/a n/a 
RS-R 12 2 1 0 15 7 20 1 0 28 34.9 86 74 63 90.9 95.7-98.1 95.4 88.6 
SR-R 0 0 0 0 0 0 3 0 0 3 0.0 . 100 . 100.0 98.8-99.9 n/a n/a 
RR-R 625 9 26 20 680 150 50 25 5 230 74.7 99 25 81 84.7 82.0-88.2 98.6 96.4 

                    

Py
ra

zi
na

m
id

e 

SSS- 74 28 0 2 104 12 4,826 13 60 4,911 2.1 73 100 86 99.4 98.6-99.6 93.6 84.5 
RSS- 13 8 4 3 28 5 431 2 13 451 5.8 62 99 72 98.2 98.6-99.6 91.2 79.6 
RRS- 166 25 22 17 230 49 374 68 15 506 31.3 87 88 77 93.7 95.5-97.7 96.4 91 
SRS- 0 3 0 0 3 0 97 0 1 98 3.0 0 100 . 97.0 98.6-99.6 80 60 
RRR- 532 15 83 50 680 107 216 105 16 444 60.5 97 67 83 93.5 87.3-91.0 99 97.3 
SRR- 0 0 0 0 0 0 6 0 0 6 0.0 . 100 . 100.0 98.6-99.6 n/a n/a 
RSR- 10 2 1 2 15 0 28 0 1 29 34.1 83 100 100 93.3 95.0-97.3 96 90 
SSR- 0 0 0 0 0 0 11 0 0 11 0.0 . 100 . 100.0 98.6-99.6 n/a n/a 
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Table 4: Genotypic drug profile predictions of pan-susceptibility 

Prediction Genotypic drug profile 

Number 
predicted to 

have drug 
profile 

Number 
predicted 
to have 

drug 
profile that 

are 
phenotypic

ally pan-
susceptible 

(%) 
Sensitivity 
% 

Specificity 
% 

PPV 
% 

NPV 
% 

Predictions 
made % 

 

Inh Rif Emb Pza 
 

(a) Predicted 
pan-susceptible 

S S S S 

4,037 
3952 
(97.9) 

     

 

(b) Predicted pan-
susceptible after 
inferring that 'U' 
mutations are 
consistent with 
susceptibility in 
this context 

S S S U 11 11 (100)      

S S U S 410 399 (97.3)      

S S U U 2 2 (100)      

S U S S 93 88 (94.6)      

S U U S 29 29 (100)      
 Total 4,582 4481 

(97.8) 
     

 
(c) Predicted to 

have some 
phenotypic 
resistance 

R S R or S 
397 18 (4.5) 

     

S At least one R, no U or F 
158 36 (22.8)  

    

R R R or S 
1273 1 (0.1) 

     

  Total 
1828 55 (3.0) 

     

 
95.4 98.6 97.0 97.9 78.0 

94.6 98.8 97.0 97.8 85.1 
No prediction 
made (drug 
profile prediction 
incomplete) 

U S or U 
150 126 (84.0) 

     

At least one F, no R 
280 240 (85.7)  

    

At least one R and U, no F 
499 6 (1.2)  

    

At least one R and F, no U 
159 3 (1.9)  

    

 
At least one R, U, and F 18 0 (0.0)  

    

  Total 1106 375 (33.9)      

 

PPV = Positive Predictive Value; NPV = Negative Predictive Value; Inh=Isoniazid; Rif=Rifampicin; 
Emb=Ethambutol; Pza=Pyrazinamide; R=resistant; S=susceptible; U=mutation of unknown 
association present; F=genotypic prediction failed due to missing data around a genomic resistance 
locus. Sensitivity, specificity, NPV and PPV are calculated including and excluding predictions of pan- 
susceptibility for isolates containing a 'U' mutation. 
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Figure 1: Simulated negative predictive values for individual drugs and complete drug profiles 

 

Negative predictive vales shown for individual drugs and complete drug profiles, according to 
simulated prevalence of resistance to each drug, or within each drug profile (‘any resistance’). For 
each percentage prevalence between 10% and 90%, 1,000 isolates were randomly selected, 1,000 
times. Lines indicate the median with shaded areas showing the 95% confidence intervals. 
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