
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Applications of Text Classification to Enterprise Support Documents

Permalink
https://escholarship.org/uc/item/4wt0f4tc

Author
Core, Daniel Bradley

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wt0f4tc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Applications of Text Classification to Enterprise Support Documents

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

TECHNOLOGY AND INFORMATION MANAGEMENT

by

DANIEL CORE

June 2012

The Thesis of DANIEL CORE
is approved:

————————————————–
Professor Kevin Ross, Chair

————————————————–
Professor Patrick Mantey

————————————————–
Professor Brad Smith

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Daniel Core

2012

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

1 Introduction 1

1.1 Contributions . 3

2 Overview of Technology 4

2.1 Unstructured Information Management Architecture(UIMA) 4

2.2 Weka . 5

3 Survey of Methods 6

3.1 Representation of Documents . 6

3.2 Model Generation . 7

3.2.1 Naive Bayes Classification . 7

3.2.2 Decision Trees . 9

3.2.3 K-Nearest Neighbors . 9

3.3 Ensemble Classification . 10

3.4 Evaluation Measures . 10

4 Related Work 11

5 Development Process 14

5.1 Technical Support Documents . 14

5.1.1 Data Set . 14

5.1.2 Classifier . 16

5.1.3 Classification Results . 17

5.2 Customer Service Requests . 19

5.2.1 Data Set . 19

5.2.2 Classifier . 20

iii

5.3 Customer Support Forum Messages 21

5.3.1 Data Set . 21

5.3.2 Classifier . 22

6 Discussion 23

6.1 Evaluation of Classifiers on the Same Tag Set 23

6.2 Combining Classifiers . 24

7 Application of Classifiers 25

7.1 Proof of Concept Interface . 25

7.2 Forum Interface . 27

7.3 REST Interface . 27

8 Future Work 28

9 Conclusions 29

References 29

iv

List of Figures

1 Unstructured Information Management Architecture (UIMA) 4

2 Technical Support Document Tag Counts 15

3 F Measure Vs. Number of Documents in Each Tag 18

4 Forum Classifier Structure . 22

5 Hierarchical Combination of Classifiers 25

6 Proof of Concept . 26

7 Forum Classifier Interface . 27

v

List of Tables

1 Example Text Document . 2

2 Technical Support Document Classifier Results 17

3 Comparison of Single and Multi label Classifiers 17

4 Service Request Results . 20

5 Support Forum Results Using Technical Support Document Tag Set 23

vi

Abstract

Applications of Text Classification to Enterprise Support Documents

by

Daniel Core

In the business world today there is a vast amount of information, and in

order to process this information it must be structured. I develop a set of classifiers

and corresponding user interfaces to assign tags to data that correspond with a

structured framework. The classifiers are applied through a case study in the support

area of a major networking company. The three classifiers provide tags for technical

support documents with an F measure of .585, customer service requests with an F

measure of .706, and customer support forum messages with an F measure of .78.

vii

1 Introduction

In recent years there has been a huge growth in the amount of data available at

corporations [3]. As corporate data grows, it becomes ever more important to find

useful knowledge hidden within this data. By utilizing knowledge management and

data mining techniques to process this data, significant gains in productivity can

be achieved [14]. Much of this data is contained in free form natural language

text documents such as technical support documents, forums, and customer service

requests. Organizing this data becomes a great challenge because of both its volume,

and its unstructured nature. The ability to extract useful information from natural

language is difficult, however it is key to processing this vast resource of data.

In this thesis I develop predictive tagging, which begins by structuring this

data under a common hierarchical tag set. By utilizing an expert-developed tag

set we can provide a structured framework to classify text documents regardless

of where their repositories are. Using a common set of tags developed by subject

matter experts to divide the data into a structured format, it is possible to categorize

corporate data in a meaningful way. In order to tag these documents we utilize

machine learning algorithms to predict the most likely tag for a given document

with a high degree of accuracy. This tag prediction process is effective in allowing

more complex relationships to be found that otherwise would be blocked by having

data in different repositories. The service area of technology corporations is unique,

and through the application of machine learning algorithms we can begin to parse the

relationships that exist in these data sets. We applied machine learning techniques

to the support area of a major networking corporation. An example use case follows.

To predict the tag for a new piece of data, in this case a technical support

document to be published to customers, we treated the tags as classes in the machine

learning sense. One benefit of this predictive tagging approach is a more consistent

method of tagging documents. It gives the option of automatically tagging other

text documents with the same set of tags, thereby making it easier to identify docu-

ments with similar themes, even if the docments have different formats and purposes.

The company we studied has many support documents written by engineers that

1

Title

How to Determine the Type of Supervisor Module That is In-
stalled in Catalyst 6500/6000 Series Switches

Introduction

This document provides some simple checks that an end user
can carry out in order to determine the type of Supervisor En-
gine module that a Catalyst 6000 or 6500 switch uses. The
document describes a procedure to use while the Supervisor
Engine module is still up an running in the chassis and a pro-
cedure to use when the Supervisor Engine module is removed
from the chassis
These procedures apply to Catalyst 6000 and 6500 series
switches that run Catalyst OS software as well as IOS system
software. ...

Primary Tag: Catalyst 6000 Series Switches

Secondary Tag: Catalyst 6500 Series Switches

Table 1: Example Text Document

are tagged through a common metadata framework (MDF). The support documents

are written for the company’s hardware and software products, as well as on gen-

eral interest networking technologies such as internet protocol routing. The general

process followed by the engineers for creating the documents consists of using a web

site to create the documents, and then selecting a set of tags for each document

manually. This process can be made more efficient by automatically suggesting the

tags for the engineers when they are creating the documents. A portion of a sample

document is shown in table 1. The documents are semi-structured through XML,

making it possible to extract sections such as the title and introduction. In the case

of technical documents we are able to predict the primary tag of a document with

an F measure of .6, indicating a high ratio of precision to recall as discussed in 3.4.

After developing classifiers for this application we followed classification models on

customer service request documents, and support forums. For the customer service

request documents we are able to predict the primary tag with an F measure of .706.

2

Additionally, with the support forum messages we were able to predict with average

F measure of .84.

1.1 Contributions

This section summarizes the key contributions from the two main areas of this thesis.

The first is the development of the overall software system and its deployment. The

second area is the theoretical experimentation and discussion of the classification

models.

The following are some of the main contributions of the software system. As

part of this thesis I

• Provided an extendable platform for using predictive tagging of documents in

the enterprise support area

• Developed integration of Weka [10], machine learning package, and Unstruc-

tured Information Management Architecture (UIMA) [6], natural language

processing framework (NLP)

• Developed separate classifiers with a high level of accuracy within their do-

mains

Some of the key contributions to the theoretical experimentation and discus-

sion of the classification models follow. My work in this thesis

• Demonstrated the impact different machine learning algorithms have on the

accuracy of the individual classifiers

• Investigated the most accurate method for combining individual classifiers ei-

ther directly combining the data or utilizing a hierarchical method

• Investigated how the size and quality of the training data effects the final

accuracy of the classifier

3

2 Overview of Technology

In the development of this work various open source tools were utilized, which played

a key role in allowing for rapid development cycles without the high cost associated

with this commercial software. The unstructured information management architec-

ture (UIMA) software provided the overall framework and data parsing, while the

Weka associated packages handled the classification. We are not aware of a previous

open source integration between UIMA and Weka. I developed the integration for

this project.

2.1 Unstructured Information Management Architecture(UIMA)

Figure 1: Unstructured Information Management Architecture (UIMA)

UIMA is a framework for handling NLP based problems [6]. UIMA was

created as a project at IBM, and was showcased through the Watson Jeopardy chal-

lenger [5] for the deep question answering problem that was part of the Jeopardy

quiz television program. The project was then spun off into the open source com-

munity, and is currently managed as an Apache project. The framework has become

an industry standard for natural language components. Figure 1 shows the overall

process that UIMA utilizes. The goal is to provide a framework that provides a

4

bridge between the structured and unstructured worlds. Unstructured data is not

just contained within the enterprise services sector but also with many other areas

that are not limited to text retrieval including audio and video processing. Utilizing

UIMA as a framework for deploying our classifiers provides many advantages.

The goal of the classifier is to provide a basis for future expansion for a uni-

fied method of tagging more enterprise support documents. To allow for the classifier

to be reused and expanded the UIMA framework was used for the deployment [6].

UIMA provides a modular framework that allows for individual analysis engines to

be recombined in different configurations to suit the current need. Analysis engines

are individual processors that add annotations to the data. The type of annotation

can vary from classification predictions to part-of-speech annotations. The analy-

sis engines can be as simple as annotating sentences or applying the classifier and

tagging the document with the proper tag. UIMA also contains a REST interface

that can deploy analysis engines. REST services implement a common set of web

interfaces, allowing for others to make HTTP requests to the system and have the

processing done on a remote machine with the results returned. RESTful services

provide a standard interface for others to interact with the classifier. One of the

contributions of this project is the creation of an analysis engine that provides a

bridge between UIMA and the classification package Weka [10].

2.2 Weka

Weka is a software tool that implements a standard set of machine learning algo-

rithms as well as training, test, and many other capabilities [10]. Weka contains

the major machine learning algorithms including decision trees, bayesian models,

and K-nearest neighbor models. Weka provides both a GUI as well as an API that

can be used from your own code. Weka integrates well within the UIMA frame-

work because it is also java based, and therefore the APIs can be called from within

UIMA. Weka provides the ability to quickly prototype the system by utilizing the

built in classification training, and test facilities. This prepackaged method works

well in our context because the novelty of the work comes from the application to

5

the dataset, and the overall system rather than the development of more advanced

machine learning algorithms. In order to process multi-label data we utilized a

multi-label extension to Weka, MULAN [16]. MULAN is a library-based on Weka,

and provides support for multi-label versions of the standard Weka machine learning

algorithms including binary relevance and powerset methods. The features are more

limited than Weka, only providing programmatic access through an API. However

it still provides training, and test facilities.

3 Survey of Methods

The following section provides an overview of the technical methods used in devel-

oping the various classifiers. The process of classifier development begins with the

preprocessing of the data into a machine usable format. Once in a usable format

the generation of the models can begin. When the models are trained they are then

evaluated using different methods.

3.1 Representation of Documents

In order to classify documents, each document needs to be represented in some man-

ner appropriate to the method being used. Documents can be represented nominally,

with the actual characters being used, or numerically, generally as a variation of a

numeric word vector. We focused on representing the documents as word vectors.

Different aspects of the document can be stored in the vector. The bag-of-words

approach treats each word as a token, and represents its presence in the document

as a binary system. This results in a document set that treats the presence or ab-

sence of each word with equal importance, and records nothing about its frequency

with respect to the document or corpus. The bag-of-words model does not record

any ordering of the words in the document. The lack of order prevents associa-

tions being made as to where in a document words appear. The frequency problem

can be mitigated using term frequency(TF) and inverse document frequency(IDF)

transformations. The term frequency looks at the frequency of the term in the doc-

ument. The more frequently the term appears in the document, the more likely it

6

is to be important. The IDF transformation records the inverse frequency of the

word appearing in the whole corpus. The more frequently a word appears in the

corpus, the less unique it is, and therefore its presence contributes less to the class

of a particular document. We utilized a bag-of-words model, as the accuracy is not

necessarily improved by the transformations, and the process adds complexities to

the system.

3.2 Model Generation

The model generation phase can be made of different types of machine learning mod-

els. These models fall into three general categories: probabilistic models, decision

tree based models, and lazy learners. In this thesis I utilized the naive Bayesian

model, c45 decision tree, and K-nearest neighbors models. They represent a wide

range of methods that can be used in the prediction of classes.

3.2.1 Naive Bayes Classification

Naive Bayesian classification is a relatively simple technique for creating classifi-

cation that, despite its simplicity, is effective in many applications. While there

have been many new and novel techniques developed recently, the naive Bayesian

classifier remains relevant because it performs similarly to new techniques in many

cases [13]. The naive Bayesian classifier utilizes the basic probability rule known as

Bayes’ theorem.

P (ck|x) = P (ck)× P (x|ck)

P (x)
(1)

Equation 1 shows Bayes’ theorem in its original form. This equation can be used

to calculate the probability of a class ck given the probability of a document being

of type x and the likelihood of ck.

P̂ (ck|x) =
P̂ (ck)×

∏d
j=1 P̂ (xj |ck)

P̂ (x)
(2)

The theorem can be simplified to equation 2 where ̂ indicates an estimation, k

indexes the possible document classes, and j indexes the possible document features.

7

It is possible to estimate the probability that a document falls in to a class ck

by utilizing the overall estimate of the probability of ck. This probability is then

multiplied by the product of the joint probability of the documents features xj given

the class ck. In effect the probability of P (x) can be ignored because it will be

the same for all documents. This allows for efficient calculation of the posterior

probability of the class. To allow for this simplification an independence assumption

is utilized [13]. The evidence created from each text feature is used independently

to predict the overall likelihood of a given class.

There are several advantages to using a naive Bayesian classifier. The naive

Bayesian classifier is relatively simple to calculate as compared to other more com-

plex techniques; therefore it utilizes less computational resources. Because there is

little extra analysis in creating the model other than manipulating the counts of

the features in each document the Bayesian classifier is time-efficient to create. The

speed of creation can yield a competitive model in many cases [2]. Because the

Bayesian model is based on counts of features, it is simple to update. The update

process requires updating the overall counts of the word features and the counts of

the word features within the new documents class.

There are many disadvantages to using Bayesian classifiers. Because the

model relies on the strong independence assumption that all features are unrelated

there is a potential for lost information, especially when the theorem is applied

to textual data. In natural language there are clear constructs for writing, and

in theory we should be able to use these for increased prediction accuracy [13].

Although it would seem logical to have gains in accuracy through complex models,

many times the gain in accuracy is negligible given the increase in complexity in the

model. Another disadvantage is document length. The difference in length of two

documents can effect the predicted class significantly. The increased length results

in more words being used, and in the bag-of-words model these are given the same

significance as a single word in a short document. The words in the short document

are more likely to have a higher significance because the document has less length.

It is possible to mitigate the document length problem through normalization.

8

3.2.2 Decision Trees

Decision trees are models that utilize the document vector to create a tree structure

to predict the end class of the document. In this case a Java-based implementation

of the C4.5 tree algorithm was used [10]. The C4.5 creates a tree by splitting up

the training set features by using information gain [15]. The tree is split on the

attributes that create the highest information gain. The tree is split until one of

the following conditions is met: the remaining training data all consists of the same

class; there is no information gained by splitting the tree on the current attribute;

or a new class is encountered causing the tree to create a new node. Once the tree

is built there are many advantages to using a tree based model. The tree based

model provides an efficient means to classify documents. Splitting on attributes is

generally a time efficient method to create the tree, and once the tree is created it

is not computationally expensive to apply.

The disadvantages of the tree based model are that it can over-fit the data

causing inaccurate predictions. This inaccuracy is accounted for in the model train-

ing through pruning the tree branches. Over-fitting is a result of the model using

every feature to create the tree. Pruning the tree reduces this over fitting by elim-

inating branches that do not contribute to the accuracy of the classifier [15]. The

branches containing splits that cause errors are pruned back up the tree, reducing

over fitting. In addition, decision trees suffer when the classes are not distinct. De-

cision trees can be thought to break up the attribute space into smaller subsections,

and if there is significant overlap between sections the tree cannot accurately predict

the outcome. However these dataset related problems are faced with most machine

learning models.

3.2.3 K-Nearest Neighbors

Nearest neighbor based models are simple classifiers that utilize the word vectors of

a document to predict its class. In this model the documents are projected into N

dimensional space,where N is the number of possible attributes, and their proximity

is calculated with the nearest K documents being selected to predict the final class.

9

K is the number of nearest neighbors that are chosen to make the classification.

The final class is very sensitive to the value of K chosen [11]. When training the

model, only the document vector and the training tag are stored. Because there

is little information necessary to make the prediction the training portion of the

model is very short. Therefore the calculation of the neighbors is pushed to run

time; however, the calculation has been highly optimized [1].

3.3 Ensemble Classification

Utilizing many classifiers can increase the overall accuracy of a prediction signifi-

cantly. There are two major methods of ensemble classifiers; bagging and boosting.

Bagging classifiers break the training set up randomly and use the data to train a set

of classifiers. This can increase the classification accuracy because each classifier can

classify a specific section [4]. In boosting, an ensemble of classifiers is trained using

the errors from the previous classifiers in the set. For this project the AdaBoost

method was used [7]. The AdaBoost algorithm is a boosting algorithm that does

adaptive weighting to learn from all iterations of a given classifier [7]. This adaptive

boosting provides higher accuracy.

3.4 Evaluation Measures

If the true positives tp, and false negatives fn are known then the following metrics

can be used to evaluate a classifier.

Recall =
tp

tp + fn
(3)

Precision =
tp

tp + fp
(4)

F = 2× precision× recall

precision + recall
(5)

Evaluation of the classifier was done by using cross validation using the training

set. Cross validation takes the training set and breaks it into a training and test set

randomly. This process is repeated over multiple iterations to create a set of average

10

statistics for the classifier. The statistics calculated include the accuracy which is

both the true and false positives over the total amount of predictions. The precision

indicates the overall quality of the classifier, while recall indicates the quantity of

the documents that are classified correctly. The F measure is the harmonic mean

of precision and recall with a number close to 1 indicating both high precision and

recall. These measures give a good picture of the overall usefulness of the classifier.

The level of effective F measure varies for different data sets. In some data sets

it is more important to have high precision where recall may be lower resulting in

a lower overall F measure. In addition to the cross validation of the classifier we

utilized evaluation on the training set to create an upper bound for the classifier.

We calculated the same metrics when evaluating on the training set. Also because

the classifiers are being used in a business setting we also looked at the subjective

accuracy. The tags predictions must be accurate but more importantly they must

also be useful to the end user.

4 Related Work

There is a significant body of work in the application of classification models to

different datasets from many areas in business applications. Most of the datasets

are not focusted on developing classifiers with consideration to a production system.

One such exception is the work done at IBM by Godbole and Roy where they applied

classifiers to survey feedback data [9]. The IBM system utilizes similar tools to our

system.

The keys to the system are using the UIMA [6] framework for handling the

data processing elements, and WEKA [10] for the development of the classification.

UIMA handled the collection and processing of the data. The system used UIMA

to provide different classification methods for the data. Godbole and Roy utilized

an expert rule based system to classify the low frequency high value classes for

which the training data was insufficient. The rest of the classification was handled

by models developed through WEKA. The key part of their system was the use

of a feedback loop within the process that allowed a review of proposed classes for

11

customer feedback documents.

Our system is similar to Godbole and Roy in that it utilizes similar software

components. However our work differs in its goals, and data used to accomplish

them. The data is relevant because it is from the enterprise support area, and is

unformatted text. The sources for our data differ from Godbole and Roy because

we are using the primary sources text rather than transcripts of phone calls. We

faced similar problems to Godbole and Roy in generating the training data for the

project. Deciding on the classes is a difficult problem that was faced by Godbole

and Roy. Godbole and Roy did not have a predefined set of classes they wished to

use. The metadata framework already in place prior to our project allowed us to

move directly into the training of the classifiers.

Godbole and Roy faced problems with how to create accurate training data

that reflected the true nature of the documents. Repeatability and reproducibility

were issues faced in the development of their classifier, [9]. The repeatability problem

is the consistency of an individual labeling documents over time, and reproducibility

is the consistency of different labelers over the set of training documents. In our

initial test case we did not have these issues because the documents were added

over time, and had been reviewed by domain experts. However, this was an issue

in subsequent training sets where the tags had not been reviewed, and had to be

generated specifically for the purposes of training the classifier.

The Godbole and Roy work differs from ours in the types of classes being

utilized. They were interested in the classification of documents related to customer

satisfaction, which is more sentiment analysis rather than subject identification.

Their goal was to understand what the customer felt, and classify it into a category

such as “improper accent” or “poor voice quality” [9]. Identifying the subject of a

document results in tags such as products or technology names. This difference in

goals leads to more concrete accuracy judgments, and makes it easier to evaluate

the accuracy. Because the goal of our work is subject identification we do not face

as many issues related to repeatability and reproducibility.

In our datasets many of the documents are not exclusive to a single class;

12

therefore we explored the use of multi class classifiers to try and obtain a more

relevant set of tags for each document. Katakis et al. [16] utilized a multipliable

prediction process to recommend tags for a social media bibliography web site. The

process for recommending those tags is very similar to the method we used to create

our suggested tags when considering a multi label problem. Multi label classification

trains data by using many tags for each document. The classifier is most commonly

trained using a binary relevance decision. This means that a classifier, in their case a

naive Bayesian classifier, is trained for each pair of tags, and is then used to produce

the final prediction. Katakis et al. utilized a multi label prediction implementation

in the open source package MULAN. Their work differs from mine in that it uses

a user defined set of tags to learn from rather than a defined set that has been

predetermined. The social aspect of the bibliography web site means that there are

a number of issues associated with the definition of the tags themselves. In addition

because our data contains primary tags the problem can be further simplified to a

single class problem.

Related to this project is the field of tag recommendation in [8]. It seeks to

recommend a tag for a document similar to what we strive to accomplish. However

it is generally approached from the goal of incorporating social networks to inform

the decision on the tag recommendations [8]. The focus of their work is to look at

both the content of the document as well as the content of users. In [8] they utilize a

dataset from the flikr website to recommend tags a new picture uploaded to by the

user. They use the current tags entered combined with knowledge gained from other

similar users to recommend new tags. The recommendations are based on similar

machine learning models as we utilized. This area is rich, and can be explored in

future work where tags can be correlated with forum users. Currently the focus

of the classifiers is on the document content itself but in future work it would be

possible to leverage the user data present in the forums.

13

5 Development Process

We developed predictive tagging systems for different document types used for cus-

tomer support in a major networking company. The following shows the development

process and results for each document type. Three distinct classifiers were devel-

oped for technical support documents containing engineer written content, customer

service requests documenting how customer problems are resolved, and customer

support forums where customers can discuss their problems. The results from these

classifiers demonstrate the high accuracy that can be obtained through the use of

classification in this space, providing advantages for the company.

5.1 Technical Support Documents

Technical support documents are written by engineers at the company for consump-

tion by outside customers. The documents are typically written on support subjects

relating to individual products. The documents are written by internal engineers

who are experts in the products. When creating the documents the engineers give

the document a metadata framework (MDF) tag that can be considered ground

truth because of their expert status. The mapping of the technical support docu-

ments provides a test of the possibilities for classifiers in this space because of the

availability of the ground truth. The key insight gained through the development

process is how to overcome a sparse dataset to create a strong classifier.

5.1.1 Data Set

The training data for the technical service document classifier was taken from the

technical support documents. The technical support document data is sparse in

that there are only a few documents corresponding to each tag. The training set of

5000 documents is spread across 1000 unique tags. This results in an average of 5

documents per tag; however, as shown in shown in figure 2 the tags are both sparse

and unevenly distributed. There are some large categories but the majority of tags

correspond to fewer than 25 documents. Because of the distribution, it is difficult

to have enough data for each tag to make an accurate prediction.

14

Figure 2: Technical Support Document Tag Counts

To combat this sparseness we experimented with different methods including

augmenting the data set with data from product manuals, aggregating the data

using the MDF tree, and utilizing thresholding. The product manuals increased the

document count from 10,000 to 150,000, however this failed to increase the accuracy.

The product manuals contained little variability in the titles of the books and sub

headings. Because there was little variability in the features across the tags it is

difficult to distinguish the tags. We attempted to solve this problem by processing

the product manual titles by hand but this did not significantly improve any of the

evaluation measures.

Another method for mitigating the sparseness problem was aggregating the

tags by the MDF hierarchy. The tags were organized hierarchically and therefore it

was possible to select the lowest relevant level in the hierarchy to reduce the tag set

increasing the number of documents within each tag. To further reduce the tag set

we set a threshold at different levels to take only the tags that had over the threshold

number of documents within them.

Once the training set was processed it was possible to parse the documents

into a format to train them.The documents contained titles as well as content that

can be utilized for training classifiers. The titles were utilized along with selected

text content. The text was parsed into a word vector representation through a

15

whitespace tokenizer. The word vector representation treated the document as a

bag-of-words where order and frequency are not preserved. This preprocessing was

done through two steps. The first was taking the documents out of the database

they were contained in and parsing out the relevant tags and data. In order to

filter and train the classifiers the open source package Weka was used [10]. Weka

contains classes for converting directory structures into the proper format to train

the classifiers, because MULAN [16]is built on top of WEKA [10] the same training

classes can be used.

5.1.2 Classifier

The accuracy of the classifier varied based on the techniques used to develop it.

The most accurate model evaluated on the training set was a boosted Bayesian

model because the features can be assumed to be independent in such a short title.

The boosting significantly increased accuracy on the training set by retraining the

classifier on just the errors from the previous classifier. Theoretically this technique

can create a perfect classifier on the training set. The danger of the boosting process

is that it will over fit the data, and when it is applied to new data the accuracy

decreases. There was some over fitting but the gain in accuracy on the training set

was worth the slight loss in the cross validation tests. The accuracy of all classifiers

was significantly less when evaluated through cross validation. Cross validation

randomly breaks the training set into test and training sets and then iterates. The

statistics for precision and recall are then averaged over the iterations producing

an evaluation that better represents how the classifier would predict for new data.

The reason for the relatively low precision and recall of the classifier lies in the data

used to train it. The data for the training set contained a very high ratio of tags

to total documents. The documents were also represented by their title which is a

relatively short string to classify on. Overall the classifier is highly accurate within

the training set. This high accuracy validates the usefulness of a classifier within

this domain by proving that it is possible to assign tags in a meaningful way, similar

to that of a human expert.

16

5.1.3 Classification Results

Metric Training Cross Validated

F-Measure .88 .585
Precision 0.9 .669
Recall 0.88 .596

Table 2: Technical Support Document Classifier Results

The F-measure in the boosted Bayesian model on the training set was .88,

whereas the F measure on the cross validated boosted Bayesian model was .596. For

titles that are exactly the same the classifier performs well because of the boosting.

As discussed, boosting can result in over fitting of the data, and a loss of accuracy

over a non boosted model, but in this case the effects of the over fitting were minimal.

The cross validated classifier represents how the classifier performs with truly new

data. Given the ratio of the tags to documents the low F-measure for the cross

validated classifier is to be expected. While the cross validated classifier F measure

is low it is still useful as a proof of concept for the tagging process where most of

the subjective validating was done through using the training set. The false positive

rate is very low at .01, meaning that the average ratio of wrong predictions to the

size of the class is low. Increasing the accuracy would be possible as the classifier is

used in production when there are new documents created. However there is a low

frequency of document creation within the technical support document repository,

around 10 documents a year, so there is little to gain in business value through that

process.

Classifier F Measure

Bibtex Multilabel Binary Relevance
with Naive Bayes [12]

0.0942

Multi Label Binary Relevance with
Naive Bayes

0.13

Naive Bayes with Single Classifier 0.606

Table 3: Comparison of Single and Multi label Classifiers

Several tests were conducted on the use of all tags, both primary and sec-

ondary, and the use of the single primary tag. The results shown in table 3 demon-

17

strated the F measure of both. The multi tag method performed better than [12],

however was not as accurate or as high an F measure as the single tag methods. The

multi-tag classifier was still slightly more accurate than the best in [12]. The naive

Bayes model with the single tag classifier was thresholded with only tags that con-

tain more than 50 documents. This resulted in a tag set of 110 of the most frequent

tags. It was possible to simplify the multi tag problem to a single tag in our case

because the engineers denote a primary tag for each document. The F measure in

this case is more a relative measure. The difference between the primary tag method

and the single tag method is large, indicating the primary tag method as the better

method.

Figure 3: F Measure Vs. Number of Documents in Each Tag

The single tag methods utilized only the primary tag of the document. The

accuracy of the classifier was heavily dependent on the number of tags used, as shown

in figure 3. As the number of possible tags increased, the F-measure was reduced.

This decrease can be seen in general for classifiers; however in this case it is more

prevalent due to the ratio of tags to documents, which overall is 6.8 documents per

tag without aggregation. By using aggregation the ratio was increased to an average

of 71 documents per tag. This resulted in increased accuracy as well as usability

because the tags are more relevant. This relevancy comes from using a smaller pool

of tags that correspond to the most useful tags to begin the thresholding process.

Because all tags in this classifier are from the software family, hardware product

series or technology space they only contain meaningful tags.

18

5.2 Customer Service Requests

The customer service request data set is made of service requests from customers

who experience problems with their products, and have service contracts with the

company. This classifier builds on the TacWeb classifier and shows the benefits of

quality training sets over the size of a training set. Also, if expanded, the service

request classifier could provide internal support engineers with an advantage when

looking for similar service requests.

5.2.1 Data Set

The customer service request domain is the next area to which we expanded the

technical support document. The service requests records the full interaction be-

tween a customer who reports a problem, and the engineers that are trying to solve

it. The requests contain a high level of irrelevant and repetitive material. Eliminat-

ing this noisy data programmatically is a difficult challenge currently being worked

on by others. To quickly develop a training set we handpicked representative re-

quests of each tag by using the company’s internal search tool to look up requests

relevant to each tag. By picking the training set by hand we eliminated much of this

extraneous information. This resulted in a training set that was more relevant to

training the classifier. The goal of this classifier is to investigate whether quantity

or quality has a greater impact on the accuracy of the classifier. The quality of this

data is much higher since it is handpicked and the documents contain much more

than a title. The documents range from a sentence to a few pages of data that is

highly relevant to the tag. This eliminates the noise found in the other training

set. It is possible to increase the service request data because there are hundreds of

thousands of unique service requests that could be added to the training set. The

key for this process would be to utilize a programmatic process to do this. Another

test to run would be to see how using the full service requests with the noise would

effect the accuracy. This would simplify the additions. To make the service request

classifier more relevant for business use a new set of tags should be created based

on the current most popular tags. However, the majority of the technical support

19

document data is around ten years old, resulting in much of the tag set being out of

date, and providing classification for products that are no longer in service.

5.2.2 Classifier

Metric Training Cross Validated

F-Measure .99 .706
Precision .99 .717
Recall .99 .71

Table 4: Service Request Results

The service request classifier works on the same software framework as the

technical support document classifier. The classification scheme used is a tree based

model. The tree based model was used in order to increase the accuracy over a

Bayesian model because the data contained features that could easily be branched.

Utilizing a boosted tree created a much stronger overall classifier when evaluated

against both the training set as well as the cross validated set. Much of these were

explicit model names and series that are contained in the training data. Text features

contained in the document such as “catalyst 6500” for the “Catalyst 6500 Switch”

tag make it easier to branch on and then use the rest of the document to further

increase the certainty of the final prediction. The targeted data extraction in the

service request classifier resulted in a stronger training set with less documents. The

classifier had an F-measure of .706 which is higher than than the technical support

document classifier for the same number of tags. This can again be attributed to

the hand selected data set. The false positive rate was slightly higher at .005. This

indicates that the classifier was more likely to identify something with the wrong

class. However this is not a large change, and does not affect the overall performance

of the classifier. The F measure of .706 is high enough that the majority of the time

the predicted tag is correct. The precision and recall are close and because of this

the F measure indicates that not only will the majority of predicted tags be accurate,

but also the majority of the available tags will be tagged.

20

5.3 Customer Support Forum Messages

The customer support forum classifier represents the highest potential for business

gains and impact with customers. As it currently stands, there is no method to

correlate the messages and threads contained in the public support forums to the

internal MDF tags. Correlating the messages to the MDF tags will provide the

ability for customers to be presented with other relevant documents and messages

that would be otherwise difficult to find. By utilizing the same framework as the

other classifiers we were able to implement a multilevel classifier to predict the class

for a given message or thread. The key contributions developed through this classifier

are the generation of the training data by automatically assigning tags through

a keyword based search method and utilizing a multilevel hierarchical system of

classifiers to increase the overall accuracy of the classifier.

5.3.1 Data Set

To develop the training data for the forum classifier we were faced with many chal-

lenges because no tagged data were available. Developing the training data in a time

efficient manner required a unique approach utilizing automation in the training pro-

cess. We utilized an in-house tool with the ability to query the forum repository

with a text string and retrieve forum messages back. We queried the forms with the

MDF text strings and assigned the returned messages the MDF query tag. This au-

tomated process shrank the development time from weeks to days over creating the

training set for the service request classifier, while maintaining accuracy. As shown

in [9] the development of a training set is difficult even when using trained engi-

neers. The effectiveness of the automated process is demonstrated when compared

with other classifiers. Even though the tags were assigned through an automated

process the predictions are highly accurate, and when implemented the continual

updating of the classifier can eliminate much of the inconsistencies in the training

data.

The tag set for the classifier was intended to be as broad as possible. It

incorporates the majority of the software family, product series and technology tags

21

Figure 4: Forum Classifier Structure

that are present in the MDF. The other classifiers developed only incorporate a

small portion of the total MDF because they had limited data available. The forums

contain tens of thousands of unique messages that can be searched for individually.

5.3.2 Classifier

The breadth of coverage of the MDF tree necessitated a unique solution for reducing

the number of tags for the classifier so that it could maintain high levels of accuracy.

In order to create the highest accuracy the classifiers were broken up by their doc-

ument count. As the technical support document classifier results in figure 3 show

the accuracy diminishes as the tag count increases. From the previous experiments

shown in figure 3 the ideal tag count for this type of document is between 100 and

150. Therefore the classifiers were trained on the data whose counts fell into that

range.

The forum classifier structure shown in figure 4 shows how the classifiers

are broken up. The lowest level classifiers are designated by the document counts

they contain. The higher the document count the more accurate the classifier.

The grouping of tags by their document counts was chosen because inherently in

this service document domain the lower the number of training documents the less

accurate the classifier is. To maximize the level of training data, and therefore the

chance of distinguishing the different tags, breaking by the count was chosen. Future

work in this area could include clustering the tags, and creating classifiers on the

22

most similar sets. This could be a method for increasing accuracy. To provide a

base for comparing each type of document, the support forum messages were used

to train a single classifier which was then evaluated against the same tags contained

in the technical support document data set the accuracy of this classifier is as shown

in table 5.

6 Discussion

The individual performance of the classifiers is one aspect of the project. We also

evaluated the different classifiers across datasets. We evaluated the classifier utilizing

the same set of MDF tags to compare the effects of the different datasets on their

accuracy. The datasets differ in both the quantity and quality of the data contained.

The insights gained from this comparison showed that utilizing a larger set of data

containing both a large number of documents and with significant content resulted

in the greatest accuracy. The support forum data was more accurate than the

service request data that contained more content per message as well as the technical

support document data set which contained high numbers of individual documents

but lacked length.

6.1 Evaluation of Classifiers on the Same Tag Set

Classifier F Measure: Training Set F Measure: Cross Validated

Technical Support Document .891 .588
Service Request .902 .592
Forum .93 .78

Table 5: Support Forum Results Using Technical Support Document Tag Set

As shown in table 5 the classifier accuracy improved as more quality data

was introduced. The F measures shown are for unboosted models because they

provide a fair comparison of the actual accuracy of the classifier. The three datasets

were evaluated against the same tag set. The technical support document classifier

was the lowest because of its scattered dataset. The technical support document

set, although labeled by experts, was the least accurate over the test set. Also the

23

technical support document set contained the most documents. The low accuracy

can be explained through the repeatability and consistency issues faced in [9]. When

compared with the small but quality dataset handpicked for the service request

classifier the technical support document classifier cannot compete. This dataset

contained less noisy data and also contained more per document than the technical

support document set. This focused selection of the most relevant part of a document

resulted in higher accuracy. The final dataset the forum classifier was the most

accurate because of both the quantity and quality of the data. The dataset had more

instances than the service request dataset and, although they were not handpicked,

the automated method returned a consistent set that could be used for high accuracy.

The messages in the forums contain more focused information than the technical

support document set, and resemble more of the information in the service request

set.

6.2 Combining Classifiers

In order to increase the usefulness of the classifiers we attempted to combine the

data sets in different ways. The first method was simply combining the data from

the technical support document and service request data. The data was combined

by putting the documents into their corresponding tags regardless of the source.

This resulted in a loss of accuracy with the F measure going to .42. The loss can

be attributed to the difference in the data sets. The service requests are written

by a different set of engineers for an internal engineering audience as opposed to

the technical support document data that is written for customer consumption.

This results in a different point of view as well as more utilization of acronyms for

different products and types. The data sets represent two disjoint sets that benefit

from separate classifiers.

The second method we tried was to take advantage of the accuracy of the

more specific classifiers developed for each data set by utilizing a hierarchical clas-

sifier shown in figure 5. To do this we trained a Bayesian classifier on the binary

classes of service request or technical support document. The differences in the

24

High Level Classifier

Service Request Classifier Technical Support Document Classifier

Figure 5: Hierarchical Combination of Classifiers

word choices of the documents are evident because the classifier had an F-measure

of .98. This is sufficiently high enough to allow this binary classifier to first classify

a document as one of the two types of documents, and then pass them to the other

classifiers to distinguish the tags. Because of the high accuracy of the classifier there

is no loss over hand selecting the document type.

7 Application of Classifiers

One of my key contributions is the use of these classifiers in business applications.

The following use cases show the usefulness of being able to connect data across

repositories. There are currently three methods of interacting with the classifiers.

The following applications all rely on the integration between UIMA and Weka

that I developed. The proof of concept interface allows users to test each classifier

and evaluate its performance on tagging each document. The forum interface is a

practical customer-facing use case. This page simulates the process that a customer

follows when creating a forum post, and can suggest related material to their post.

Additionally programmatic access is provided through a REST interface allowing

other engineers to develop their own projects utilizing the classifiers we developed.

7.1 Proof of Concept Interface

The user interface was developed using a rapid prototyping approach changing over

time in order to meet the needs of the engineering team. By utilizing user interface

components already available at the company, we were able to quickly respond to

changes in the interface. The initial prototype did not contain the graphical rep-

resentation of the different results, or the application of the other analysis engines

developed. The goal of the tagging began with the idea of suggesting tags for en-

25

Figure 6: Proof of Concept

gineers to add to their documents. The focus has since shifted to automatically

tagging the documents if sufficient accuracy is obtained. This automatic tagging is

indicated by the “High Confidence:” message. This can be used in the future to

place these highly confident tags into a repository.

The following are the steps an engineer goes through in utilizing the interface:

1. The engineer enters the text they wish to tag into the text box.

2. The system presents the engineer with the sorted set of tags meeting a mini-

mum prediction confidence level of .001

3. The engineer selects the applicable tags in any amount, however denoting one

as the primary tag

4. If the engineer believes that none of the tags displayed from the classifier are

26

correct they have the option of selecting from an “other” category hat contains

the set of all possible tags

7.2 Forum Interface

Building on the first two interfaces, we developed the forum classifier interface shown

in figure 7. The goal of the forum classifier interface is to provide the end user with

recommendations of related customer support forum messages as well as technical

support documents. When the user enters a question or topic for a post it is then

fed through the forum classifiers through the REST interface, and a class prediction

is returned. The returned value is shown as “I found similar documents to” the

predicted tag. To increase the actual usability of the system the user is presented

with documents and messages that were also tagged with the same MDF tag. This

correlation is made to the other support forum messages as well as technical support

documents.

Figure 7: Forum Classifier Interface

7.3 REST Interface

REST provides programmatic access to the different analysis engines that we have

created in UIMA. The REST functionality is built into UIMA and can be deployed

27

simply. This deployment strategy is effective in allowing the flexibility, and openness

that is necessary to allow expandability in the future. Because the REST interface

is standard, it does not depend on the client system that is accessing the analysis

engine. This increases the overall business impact as other groups can access the

system without needing to have access to the code. The REST interface provides

the back end of the system for the other user interfaces.

8 Future Work

This work can be widely expanded both internally to this company as well as to the

greater community. Because it is built on the modular UIMA platform the expansion

and addition of more classifiers and other natural language processing elements is

very simple. There are many more unstructured data repositories contained within

the company. The more links that can be built among these different repositories the

deeper the insights that can be learned. It is possible to develop further classifiers in

a similar way to the current classifiers. Within the forums there is more interesting

processing that can be done when the data on users is considered. The user data

can be linked to MDF tags providing answers to questions such as which users are

experts in a certain tag or what is the most popular document associated with a

user.

The users can also form a critical part of the system by initiating a feedback

loop. By providing a method for the users to choose whether the predicted tag is

correct the classifier can be improved. The feedback loop continuously improves the

results of the system. To implement this feedback the model must be rebuilt to

accommodate changes. For a Bayesian classification model this is simple because

the counts of the features effected are the only changes that need to be made. When

the classifier is updated the new model is more likely to predict correctly. As shown

in [9] the feedback loop is essential for creating usability. Because the support forums

experience a high volume of traffic the classification can significantly improve.

Another use case can be further sorting the recommendations given for fo-

rums through the use of search. This would provide a ranked list of similar docu-

28

ments as opposed to showing a list of the documents. The unsorted list is useful but

a better correlated list will be more useful to individual problems being experienced

by the user who is creating the post or submitting the text.

Generalizing this approach of utilizing classifiers to unify repositories is also

useful outside of the enterprise services area. Because of the modularity of the

system the framework can be applied anywhere a suitable dataset can be found.

The biggest challenge would be to create the hierarchy of tags. In this case the

tagging system was preexisting. Once the tag system is created the training and

application process is straightforward, and could be applied in various situations.

The types of data that would be suitable could be emails, phone transcripts or other

free form messages that are not part of a system.

9 Conclusions

We have shown through the application of classification to three unique datasets that

it is possible to accurately predict labels across different types of documents. We

have shown that increasing accuracy for classifiers can be accomplished through the

use of hierarchical classification. The difficulties of working with a sparse data set

have been shown, particularly enterprise service data. The results of using classifiers

has enhanced both the search and data mining capabilities of the corporation by

providing the links across different repositories. The interfaces created have the

ability to enhance user experience with the customer support forums by showing

relevant documents that was previously not possible, thereby increasing customer

satisfaction. With increased satisfaction comes increased sales leading to measurable

benefits for the company.

References

[1] Kjersti Aas and Line Eikvil. Text categorisation: A survey.

http://citeseer.nj.nec.com/aas99text.html, 1999.

29

[2] Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. Naive bayes vs decision

trees in intrusion detection systems. In Proceedings of the 2004 ACM symposium

on Applied computing, SAC ’04, pages 420–424, New York, NY, USA, 2004.

ACM.

[3] K Cukier. Data everywhere. The Economist Newspaper Limited, Feb 25th 2010.

[4] Thomas G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomization.

Machine Learning, 40:139–157, 2000. 10.1023/A:1007607513941.

[5] David Ferrucci. Build watson: an overview of deepqa for the jeopardy! chal-

lenge. In Proceedings of the 19th international conference on Parallel architec-

tures and compilation techniques, PACT ’10, pages 1–2, New York, NY, USA,

2010. ACM.

[6] David Ferrucci and Adam Lally. Uima: an architectural approach to unstruc-

tured information processing in the corporate research environment. Nat. Lang.

Eng., 10(3-4):327–348, September 2004.

[7] Yoav Freund and Robert Schapire. A desicion-theoretic generalization of on-line

learning and an application to boosting. In Paul Vitanyi, editor, Computational

Learning Theory, volume 904 of Lecture Notes in Computer Science, pages 23–

37. Springer Berlin Heidelberg, 1995.

[8] Nikhil Garg and Ingmar Weber. Personalized, interactive tag recommendation

for flickr. In Proceedings of the 2008 ACM conference on Recommender systems,

RecSys ’08, pages 67–74, New York, NY, USA, 2008. ACM.

[9] Shantanu Godbole and Shourya Roy. Text classification, business intelligence,

and interactivity: automating c-sat analysis for services industry. In Proceedings

of the 14th ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD ’08, pages 911–919, New York, NY, USA, 2008. ACM.

30

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD

Explor. Newsl., 11(1):10–18, November 2009.

[11] Liangxiao Jiang, Zhihua Cai, Dianhong Wang, and Siwei Jiang. Survey of im-

proving k-nearest-neighbor for classification. In Fuzzy Systems and Knowledge

Discovery, 2007. FSKD 2007. Fourth International Conference on, volume 1,

pages 679 –683, aug. 2007.

[12] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel

Text Classification for Automated Tag Suggestion. In Proceedings of the

ECML/PKDD 2008 Discovery Challenge, 2008.

[13] David Lewis. Naive (bayes) at forty: The independence assumption in infor-

mation retrieval. In Claire Nédellec and Céline Rouveirol, editors, Machine

Learning: ECML-98, volume 1398 of Lecture Notes in Computer Science, pages

4–15. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0026666.

[14] M. and du Plessis. Drivers of knowledge management in the corporate envi-

ronment. International Journal of Information Management, 25(3):193 – 202,

2005.

[15] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[16] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis

Vlahavas. Mulan: A java library for multi-label learning. Journal of Machine

Learning Research, 12:2411–2414, 2011.

31

	List of Figures
	List of Tables
	Abstract
	Introduction
	Contributions

	Overview of Technology
	Unstructured Information Management Architecture(UIMA)
	Weka

	Survey of Methods
	Representation of Documents
	Model Generation
	Naive Bayes Classification
	Decision Trees
	K-Nearest Neighbors

	Ensemble Classification
	Evaluation Measures

	Related Work
	Development Process
	Technical Support Documents
	Data Set
	Classifier
	Classification Results

	Customer Service Requests
	Data Set
	Classifier

	Customer Support Forum Messages
	Data Set
	Classifier

	Discussion
	Evaluation of Classifiers on the Same Tag Set
	Combining Classifiers

	Application of Classifiers
	Proof of Concept Interface
	Forum Interface
	REST Interface

	Future Work
	Conclusions
	References

