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Why does theoretical physics fail to explain and predict
earthquake occurrence?
Yan Y. Kagan?

! Department of Earth and Space Sciences, University of California, Los Angeles, California, USA

Abstract.

Several reasons for the failure can be proposed:

1. The multidimensional character of seismicity: time, space, and earthquake focal mech-
anism need to be modeled. The latter is a symmetric second-rank tensor of a special kind.

2. The intrinsic randomness of earthquake occurrence, necessitating the use of stochas-
tic point processes and appropriate complex statistical techniques.

3. The scale-invariant or fractal properties of earthquake processes; the theory of ran-
dom stable or heavy-tailed variables is significantly more difficult than that of Gaussian
variables and is only now being developed. Earthquake process theory should be capa-
ble of being renormalized.

4. Statistical distributions of earthquake sizes, earthquake temporal interactions, spa-
tial patterns and focal mechanisms are largely universal. The values of major parame-
ters are similar for earthquakes in various tectonic zones. The universality of these dis-
tributions will enable a better foundation for earthquake process theory.

5. The quality of current earthquake data statistical analysis is low. Since little or no
study of random and systematic errors is performed, most published statistical results
are artifacts.

6. During earthquake rupture, propagation focal mechanisms sometimes undergo large
3-D rotations. These rotations require non-commutative algebra (e.g., quaternions and
gauge theory) for accurate models of earthquake occurrence.

7. These phenomenological and theoretical difficulties are not limited to earthquakes:
any fracture of brittle materials, tensile or shear, would encounter similar problems.
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1. Introduction

The difficulties of seismic analysis are obvious. Earth-
quake processes are inherently multidimensional (Kagan,
1994b; Kagan and Vere-Jones, 1996): in addition to
the origin time, 3-D locations, and measures of size for
each earthquake, the orientation of the rupture surface
and its displacement requires for its representation ei-
ther second-rank tensors or quaternions (see more below).
Earthquake occurrence is characterized by extreme ran-
domness; the stochastic nature of seismicity is not re-
ducible by more numerous or more accurate measurements.
Even a cursory inspection of seismological datasets sug-
gests that earthquake occurrence as well as earthquake
fault geometry are scale-invariant or fractal (Mandelbrot,
1983; Kagan, 1994b; Kagan and Vere-Jones, 1996; Tur-
cotte, 1997; Sornette, 2003; see also http://www.esi-
topics.com/earthquakes/interviews/YanYKagan.html).

Adequate mathematical and statistical techniques have
only recently become available for analyzing fractal tempo-
ral, spatial, and tensor patterns of point process data gen-
erally and earthquake data in particular. Such methods are
still in the development stage. Moreover, it is only in the
past 25-30 years that the quality, precision and completeness
of earthquake datasets and the processing power of modern
computers have become sufficient to allow detailed, full-scale
investigation of earthquake occurrence patterns.

After looking at recent publications on earthquake
physics (for example, Lee et al., 2002; Scholz, 2002;
Kanamori and Brodsky, 2004), one gets the impression that
knowledge of earthquake process is still at a rudimentary
level. Why has progress in understanding earthquakes been
so slow? Kagan (1992a) compared the seismicity description
to another problem in physics: turbulence of fluids. Both
phenomena are characterized by multidimensionality and
stochasticity. Their major statistical ingredients are scale-
invariant, and both have hierarchically organized structures.
Moreover, the scale of self-similar structures in seismicity
and turbulence extends over many orders of magnitude. The
size of major structures which control deformation patterns
in turbulence and brittle fracture is comparable to the max-
imum size of the region (see more in Kagan, 1994b).

Yaglom (2001, p. 4) commented that turbulence status
differs from many other complex problems which twentieth
century physics has solved or has considered.

‘[These problems] deal with some very special and complicated
objects and processes relating to some extreme conditions which
are very far from realities of the ordinary life... However, turbu-
lence theory deals with the most ordinary and simple realities of
the everyday life such as, e.g., the jet of water spurting from the
kitchen tap. Therefore, the turbulence is well-deservedly often
called “the last great unsolved problem of the classical physics.”’

Although solving the Navier-Stokes equations, describ-
ing turbulent motion in fluids is one of the seven
mathematical millennium problems for the 21st century
(see http://www.claymath.org/millennium/), the turbu-
lence problem is not among the ten millennium prob-
lems in physics presented by the University of Michigan,
Ann Arbor (see http://feynman.physics.lsa.umich.edu/-
strings2000/millennium.html), or among the 11 problems
by the National Research Council’s board on physics and
astronomy (Haseltine, 2002). In his extensive and wide-
ranging review of current theoretical physics, Penrose (2005)
does not include the turbulence or Navier-Stokes equations
in the book index.

Like fluid turbulence, the brittle fracture of solids is com-
monly encountered in everyday life, but so far there is no real
theory explaining its properties or predicting outcomes of
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the simplest occurrences, such as a glass breaking. Although
computer simulations of brittle fracture (for example, see
O’Brien and Hodgins, 1999) are becoming more realistic,
they cannot yet provide a scientifically faithful representa-
tion. Brittle fracture is a more difficult scientific problem
than turbulence, and while the latter attracted first-class
mathematicians and physicists, no such interest has been
shown in the mathematical theory of fracture and large-scale
deformation of solids.

One sees the degree of difficulty in assessing the effects
of brittle fracture by looking at the investigation results of
the space shuttle Columbia disaster (Columbia Accident In-
vestigation Report, 2003, p. 83). The only way to test the
possible cause of the accident — a breach on the edge of the
shuttle wing — was to conduct a full-scale experiment. No
realistic computation of the breach was possible.

Below we first review the seismological background in-
formation necessary for further discussion as well as basic
models of earthquake occurrence (Section 2). Short Sec-
tion 3 describes the available earthquake catalogs. In Sec-
tions 4-7 evidence for the scale-invariance of earthquake pro-
cess is presented, in particular, marginal distributions for
the multidimensional earthquake process. Fractal distribu-
tions of earthquake size, time intervals, spatial patterns,
focal mechanism, and stress are discussed. Section 8 de-
scribes several multidimensional stochastic models used to
approximate earthquake occurrence. They are all based on
the theory of branching processes; in this case the multidi-
mensional structure of earthquake occurrence is modeled.
In Section 8.3 we discuss the branching model of earth-
quake rupture: a physical multidimensional model based on
random stress interactions. The model uses very few free
parameters and appears to reproduce all the fundamental
statistical properties of earthquake occurrence. Section 8.4
briefly describes the application of statistical models to fore-
cast an earthquake occurrence. The final discussion (Sec-
tion 9) summarizes the results obtained thus far and dis-
cusses problems and challenges still facing seismologists.

2. Seismological background

2.1. Earthquakes

Since this paper is intended for seismologists, physicists,
and mathematicians, we briefly describe earthquakes and
earthquake catalogs as primary objects of the statistical
study. A more complete discussion can be found in Ka-
gan (1994b, pp. 162-165), Bolt (2003), Lee et al. (2002),
Scholz (2002), Kanamori and Brodsky (2004). As a first ap-
proximation, an earthquake may be represented by a sudden
shear failure — the appearance of a large quasi-planar dislo-
cation loop (Aki and Richards, 2002) in rock material.

Fig. 1la shows a fault-plane trace on the surface of the
Earth. Earthquake rupture starts on the fault-plane at a
point called the ‘hypocenter’ (the ‘epicenter’ is a projection
of the hypocenter on the Earth’s surface), and propagates
with a velocity close to that of shear waves (2.5-3.5 km/s).
The ‘centroid’ is in the center of the ruptured area. Its po-
sition is determined by a seismic moment tensor inversion
(Ekstrém et al., 2005, and references therein). As a result of
the rupture, two sides of the fault surface are displaced by
a vector along the fault-plane. For large earthquakes, such
displacement is on the order of a few meters.

The earthquake rupture excites seismic waves which are
registered by seismographic stations. The seismograms are
processed by computer programs to obtain a summary of
the earthquake’s properties. Routinely, these seismogram
inversions characterize earthquakes by their origin times,
hypocenter (centroid) positions, and second-rank symmet-
ric seismic moment tensors.

Fig. lc represents (‘beachball’) the quadrupolar radiation
patterns of earthquakes. The focal plots involve painting on
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a sphere the sense of the first motion of the primary, P-
waves: solid for compressional motion and open for dilata-
tional. Two orthogonal planes separating these areas are the
fault and the auxiliary planes. During the routine determi-
nation of focal mechanisms, it is impossible to distinguish
these planes. Their intersection is the null-axis (N-axis),
the P-axis is in the middle of the open lune, and the T-axis
in the middle of the closed lune. These three axes are called
the ‘principal axes of an earthquake focal mechanism,’ and
their orientation defines the mechanism.

In the system of coordinates of TPN axes, shown in
Fig. 1lc, the seismic moment tensor matrix is

M = M x diag[l,-1,0], (1)

where M is a scalar seismic moment of an earthquake, mea-
sured in Newton-m (Nm). In an arbitrary system of coor-
dinates all entries in 3 x 3 matrix (1) are non-zero. How-
ever, the tensor is always traceless, with a zero determinant.
Hence it has only four degrees of freedom: one for the norm
of the tensor (proportional to the scalar seismic moment)
and three for orientation (they define the focal mechanism
of an earthquake). Another equivalent representation of the
earthquake focus is a quadrupole source of a particular type
(Fig. 1b) known in seismology as a “double-couple” (Bur-
ridge and Knopoff, 1964; Aki and Richards, 2002; Kagan,
2005b). The three representations of focal mechanism shown
in Fig. 1 as well asin (1) are mathematically equivalent; Ka-
gan (2005b) discusses interrelations between these parame-
terizations.

2.2. Description of earthquake catalogs

Modern earthquake catalogs are collections of estimated
earthquake origin times, hypocenter or centroid locations,
measures of earthquake size (scalar seismic moment or ap-
propriate magnitude), and earthquake focal mechanisms or
seismic moment tensors (Aki and Richards, 2002). Such
datasets in a certain sense fully describe each earthquake;
for instance one can compute far-field, low-frequency seismic
radiation using the above information. However, detailed
studies of earthquake occurrences show that this descrip-
tion is far from complete, since each earthquake represents
a process with moment tensor or focal mechanism varying in
extended time-space. Moreover, because earthquakes have
fractal features, even defining an ‘individual’ earthquake is
problematic: earthquake catalog records are the result of a
complex interaction of fault ruptures, seismographic record-
ings, and their interpretations (see Section 5).

Fig. 2 displays a map of the local catalog for southern
California (Kagan et al., 2006). FEarthquake focal mech-
anisms are shown by a stereographic projection (Aki and
Richards, 2002). The focal mechanisms can be character-
ized by a 3-D rotation from a fixed position; an alternative,
more compact representation of each mechanism is a nor-
malized quaternion (Kagan, 1991c; 2005b).

In Fig. 3 we display a map of earthquake centroids in
the global Harvard CMT catalog (Ekstrém et al., 2005, and
references therein). Earthquakes are mostly concentrated at
tectonic plate boundaries. Each earthquake in this catalog
is characterized by a centroid moment tensor solution.

There are many other datasets which characterize earth-
quake processes, such as detailed investigations of earth-
quake rupture for particular events, or earthquake fault
maps and descriptions of certain faults. The unique advan-
tages of an earthquake catalog include relative completeness,
uniformity of coverage, and quantitative estimates of errors.
These properties make catalogs especially suitable for sta-
tistical analysis and modeling. The catalogs can be roughly
subdivided into two categories: global or regional catalogs
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covering large areas (continents or their large parts), and lo-
cal catalogs for particular areas such as southern California
(Fig. 2) and still smaller areas. As we discuss below, each
type has its own properties and problems (Kagan, 2006).

A collection of earthquake occurrences can be represented
as a multidimensional stochastic process (Kagan, 1994b):
Tx R}(=R?x H) x M x SO(3)(= ¥ x §?) (time-space-
size-orientation), where R3 or R? is the Euclidian space, H
is the depth dimension, M is the scalar seismic moment,
and SO(3) is the 3-D special orthogonal (rotation) group.
The latter may be represented as a rotation by the angle
¥ around a rotation pole distributed over the 2-D sphere
§? (Kagan, 1991c). Multiple studies summarized in Ka-
gan (1994b) and Kagan and Vere-Jones (1996) indicate that
marginal earthquake distributions are scale-invariant for all
the above variables. The fractal pattern breaks down for
large size, distance or time intervals. We discuss this in
other sections of the paper.

An important feature of the available earthquake catalogs
is the range of the above variables related to the average er-
ror in estimating them. The ratio of the range to an error
describes roughly the information one can obtain from a
catalog. These ratios are only approximate to one order of
magnitude (see more in Kagan, 2003): a summary is shown
in Table 1.

From Table 1 we see that the temporal structure of earth-
quake occurrences can be detailed with great precision. The
locations of earthquake foci are estimated relatively accu-
rately in the horizontal plane, but vertical errors are often
significantly larger. This effectively reduces available spa-
tial information. The influence of location errors and other
nuisance variables often extends well above a catalog’s re-
ported accuracy values (Kagan and Knopoff, 1980; Kagan,
1991a; 2003). Similarly, boundary effects can be observed
at distances substantially smaller than a region’s total size.
Therefore, the scale-invariant range of the spatial distribu-
tion is likely to be smaller than the 102-10° shown in Table 1.
Focal mechanisms, which have been reliably obtained in only
the last 25 years, have large uncertainties also (Kagan, 2000;
2003).

Catalogs are a major source of information on earthquake
occurrence. Since the late nineteenth century certain statis-
tical features were established: Omori (1894) studied tempo-
ral distribution; Gutenberg and Richter (1944) investigated
size distribution; quantitative investigations of spatial pat-
terns started late (Kagan and Knopoff, 1980).

Kostrov (1974) proposed that earthquake displacement
can be described by a second-rank symmetric tensor.
Gilbert and Dziewonski (1975) were the first to obtain a

Table 1. Information available in earthquake catalogs

# Variable Accuracy (A) Range (R) R/A
1 Origin time, T 0.01-1s 5-25y 10° — 10!
2  Horiz. space, R? 3-10 km 3000 km 10%
2'  Horiz. space, R? 0.5 km 200 km 1025
2" Horiz. space, B2 0.02 km 2-20 km 102 — 108
3  Vert. space, R 5-15 km 50 km 10
3"  Vert. space, R 0.1 km 10 km 102
4 Moment magn., m 0.07 6.0 102
5 Rot. angle, ¥ 120° 3
10° 10
6 Rot. pole, 5?2 360°

2, 3 — global catalogs (Kagan, 2003);

2! — local catalogs;

2", 3" — wave correlation catalogs (e.g., Hauksson and Shearer,
2005; Shearer et al., 2005).
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tensor solution from seismograms. However, statistical in-
vestigations remained largely restricted to time-size-space
regularities. Tensor or focal mechanism analysis is difficult
because we lack appropriate statistical tools to analyze ei-
ther second-rank tensors or quaternions which properly rep-
resent earthquake focal mechanisms (Kagan, 1991c; 2005b).
For example, in two recent special issues of the geophysical
journals dedicated to statistical analysis of seismicity (Pure
Appl. Geoph., 162(6-7), 2005; Tectonophysics, 413(1-2),
2006) no paper analyzed the statistics of the seismic moment
tensor or earthquake focal mechanism. Kagan and Knopoff
(1985a;b) and Kagan (1992b;c; 2000; 2005b) were the first to
investigate the statistical properties of the seismic moment
tensor (Section 7).

2.3. Earthquake temporal occurrence: quasi-periodic,
Poisson, or clustered?

The periodic or quasi-periodic hypothesis of large earth-
quake occurrence has long been held by geoscientists. Simi-
lar hypotheses are called ‘seismic gap’ or ‘seismic cycle’ mod-
els. A seismic gap, according to such a model, is a fault or
a plate segment for which the time since the previous large
earthquake is long enough that stress builds up. Since earth-
quake occurrence is multidimensional and periodicity is a
property of a one-dimensional process, the seismic record
needs to be converted into a temporal series.

The characteristic hypothesis (Schwartz and Copper-
smith, 1984) implies a sequence of recognizably similar
events and provides the logical basis for discussing recur-
rence or quasi-periodicity. Recurrence intervals and their
statistics are meaningless without a clear definition of the
characteristic earthquake (Jackson and Kagan, 2006). A
characteristic earthquake is assumed to release most of the
tectonic deformation on a segment. Other earthquakes are
significantly smaller than the characteristic one and hence
can be ignored when moment release is calculated.

McCann et al. (1979) adopted the gap model and pro-
duced a colored map of “earthquake potential” for close to
a hundred circum-Pacific zones. They assumed that the
seismic potential increases with the absolute time since the
last large earthquake. Nishenko (1991) refined the seismic
gap model so that it could be more rigorously tested. He
specified the geographical boundaries, characteristic magni-
tudes, and recurrence times for each segment. He used a
quasi-periodic, characteristic recurrence model to estimate
conditional earthquake probabilities for 125 plate boundary
segments around the Pacific Rim.

Kagan and Jackson (1991) compared the model of Mc-
Cann et al. (1979) against later earthquakes. They found
that large earthquakes occurred more frequently in the very
zones where McCann et al. had estimated low seismic po-
tential. In other words, they found that large earthquakes
are rather clustered in time. Kagan and Jackson (1995)
also found that earthquakes after 1989 did not support
Nishenko’s (1991) gap model. Rong et al. (2003) concurred:
both predictions were inconsistent with the later earthquake
record.

Bakun and Lindh (1985) proposed that a magnitude 6
earthquake would occur at the Parkfield, California segment
of the San Andreas fault with a 95% probability in the time
window 1985-1993. The prediction model was based largely
on the characteristic, quasi-periodic earthquake hypothesis.
This was the only prediction reviewed and approved by the
U.S. government. However, no such earthquake occurred till
28 September 2004, when an earthquake of magnitude 6.0
struck near Parkfield (Bakun et al., 2005). Meanwhile, a
complicated form of the seismic gap model was applied to
estimate earthquakes probabilities in the San Francisco Bay
region (Working Group, 2003). The Working Group con-
cluded that “there is a 0.62 [0.38-0.85] probability of a ma-
jor, damaging [M > 6.7] earthquake striking the greater San
Francisco Bay Region over the next 30 years (2002-2031).”

Stark and Freedman (2003) argue that the probabilities
defined in such a prediction are meaningless because they
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cannot be validated. They point out that in weather predic-
tions, 50% probability of rain can be tested by counting the
ratio of the number of rainy days to the total having this
predictive value. No such possibility exists for the predic-
tions concerning San Francisco Bay (Working Group, 2003)
or Parkfield. Stark and Freedman (2003) finish their review
of the San Francisco Bay earthquake prediction with the
advice that readers “should largely ignore the USGS prob-
ability forecast.”

This lack of falsifiability and the inability to construct an
improved hypothesis both contradict the fundamental re-
quirements of modern scientific method (Kuhn, 1965; Pop-
per, 1980). After the gap model was formulated in its
present form 20 or 30 years ago (McCann et al., 1979;
Nishenko, 1991; Schwartz and Coppersmith, 1984) the
model proponents did not attempt to verify its fundamental
assumptions with a critical test. The apparent failure of the
predictions (see above) was not extensively analyzed and ex-
plained (see, for example, debate, in the Nature magazine,
1999 or Bakun et al., 2005). Jackson and Kagan (2006) re-
view the implications of the Parkfield 2004 event for earth-
quake prediction, the characteristic earthquake hypothesis,
and the earthquake occurrence in general. They argue that a
simpler null hypothesis based on the Gutenberg-Richter law
(see Section 4) and Poisson time behavior better explains the
Parkfield event sequence. Despite this breakdown of scien-
tific methodology, the potentially incorrect model continued
to be in use for seismic hazard assessment in the U.S. and
many other countries (Jackson and Kagan, 2006).

How could this happen? Geosciences are largely obser-
vational and descriptive disciplines. FEarth scientists are
not trained to formulate falsifiable hypotheses, critically test
them, systematically review possible sources of error, thor-
oughly rule out alternative explanations, and dismiss or im-
prove the models thereafter. Oreskes (1999) discusses how
American earth scientists summarily rejected the theory of
continental drift for decades before the 1960s, though exten-
sive evidence existed in support of it. Suppe (1998) analyzes
logical structure of the arguments by one of the most influen-
tial papers supporting plate tectonics (Morgan, 1968) and
considers critical methods to validate hypotheses. Kagan
(1999) argues that the major challenge facing earthquake
seismology is that new methods for hypothesis verification
need to be developed. These methods should yield repro-
ducible, objective results, and be as effective, for instance,
as double-blind testing in medical research.

2.4. Earthquake faults: one fault, several faults, or
an infinite number of faults?

In Fig. 4a we display the most commonly used geom-
etry of an earthquake fault: a planar boundary between
two rigid blocks. Other block boundaries are usually con-
sidered to be free. When Burridge and Knopoff proposed
this model in 1967, it was the first mathematical treatment
of earthquake rupture and a very important development.
Since then, hundreds of papers have been published using
this model or its variants. We show below why seismology
needs a much more complicated geometrical model to rep-
resent brittle shear earthquake fracture:

o 1. The old model (Fig. 4a) is a closed, isolated system,
whereas tectonic earthquakes occur in an open environment.
This model justifies spurious quasi-periodicity, seismic gaps,
and seismic cycle models (Section 2.3). No rigorous obser-
vational evidence exists for the presence of these features in
earthquake records (see above).
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¢ 2. An earthquake fault in the model (Fig. 4a) is a well-
defined simple geometrical object — a planar surface with
the dimension 2.0. In nature, an earthquake fault system
is a fractal set. This set is not a surface; its dimension is
about 2.2 (Section 6.2).

o 3. Two distinct scales are present in the diagram: irreg-
ularities of the planar surface and block size. Resistance to
block motion due to breakage of microscopical surface inho-
mogeneities is described as a friction force. The friction is an
appropriate model for man-made surfaces, where the scale
of inhomogeneities is limited. In contrast, earthquakes are
scale-invariant. The geometry and mechanical properties of
an earthquake fault zone are the result of self-organization.
They are fractal (Kagan, 1994b; 2006).

e 4. A displacement incompatibility problem is wrongly
circumvented because of the flat plate boundaries. Real
earthquake faults always contain triple junctions (see, for
example, Figs. 2 and 3); further deformation is impossi-
ble without creating new fractures and rotational defects
(disclinations).

e 5. Because the block boundary is planar, stress con-
centrations are practically absent after a major earthquake.
Hence these models have few or no aftershocks.

e 6. All earthquakes in the model have the same focal
mechanism. Any variations in mechanisms obvious during
even a cursory inspection of maps (as in Fig. 2) are not
taken into account.

King (1983), Turcotte (1986) and Andrews (1989) sug-
gested that due to kinematic effects at fault junctions, the
fault geometry of earthquakes may be represented as a scale-
invariant matrix of faults. Gabrielov et al. (1996) developed
a mathematical framework for calculating the kinematic and
geometric incompatibility in a tectonic block system, both
rigid and deformable. They concluded that due to geomet-
ric incompatibilities at fault junctions, new ruptures must be
created to accommodate large plate tectonic deformations.
Indeed, plate tectonic observations indicate that hundreds
of km of deformation occur over the several million years of
plate boundary existence (e.g. the San Andreas fault sys-
tem).

F)ig. 4b,c display a few alternative models of earthquake
faults: a smooth surface boundary and a fractal surface.
Unless the smooth boundary is a surface of rotation, no
large scale block displacement is possible. Similarly, to move
blocks along the fractal boundary, one needs to break the
surface inhomogeneities. In contrast to the model of Fig. 4a,
the largest inhomogeneities are comparable to the block size.

Obviously, if major faults comprising a plate boundary
are not strictly parallel, fault junctions are unavoidable.
The question is whether large deformations can be accom-
modated by a few faults delineating a few tectonic blocks
(see, for example, Ben-Zion and Sammis, 2003), or whether
an infinite number of faults must exist to account for such
deformations.

The above considerations suggest again that the conven-
tional models of tectonic block deformation need complete
revision. If the number of faults and fault junctions is in-
finite, these junctions, as Gabrielov et al. (1996) suggest,
constitute ‘asperities’ and ‘barriers’ for fault rupture prop-
agation. These geometric complexities, not friction, should
control the developing fault system and the stop-and-go fea-
ture of the earthquake rupture propagation. Kagan (1987)
shows that when the earthquake rupture plane rotates, as
in triple junctions, the third-rank seismic moment tensor,
which can be identified with asperities or disclinations, be-
comes non-zero.

In Fig. 4d we show a picture of a fractal boundary zone
between two rigid blocks. In this case, a complex fault pat-
tern cannot be characterized as a surface: it is a fractal set of
dislocations. In Sections 6 and 7 we attempt to characterize
this pattern quantitatively.

2.5. Statistical and physical models of seismicity
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As we mentioned above, hundreds of papers are scattered
in geophysical and physical journals on the statistical prop-
erties of seismicity. They propose physical or phenomeno-
logical models of earthquake occurrence. We will describe
the papers and their results briefly.

Several authors, starting with Bak et al. (2002), at-
tempt to collapse the time-distance-size earthquake distri-
bution into one plot (see also Corral, 2005; Baiesi and
Paczuski, 2005). Such plots prominently demonstrate the
scale-invariant structure of seismicity known previously from
marginal distributions. However, as mentioned earlier, al-
though temporal, spatial, and magnitude distributions are
scale-invariant for small values of pertinent variables, for
larger values the scale-invariant pattern is replaced by finite-
scale effects (Sections 4-6). Moreover, even for small vari-
able values, the distributions are influenced by various ran-
dom and systematic effects. The study of such errors is
difficult in a collapsed multidimensional plot.

There are several groups of physical seismicity mod-
els. Most of them employ the geometrical and mechani-
cal scheme illustrated in Fig. 4a as their major paradigm:
two blocks separated by a planar surface (Dieterich, 1994;
Rice and Ben-Zion, 1996; Langer et al., 1996, see also
Kanamori and Brodsky, 2004). Our earlier discussion of
this model is also valid for these attempts: they ignore
the spatial and mechanical complexity of the earthquake
fault zone. Consequently, the deficiencies listed in the pre-
vious section are present in these models as well. Moreover,
since these paradigms describe only one boundary between
blocks, they do not account for a complex interaction be-
tween other block boundaries and, in particular, triple junc-
tions. Seismic maps (Figs. 2 and 3) convincingly demon-
strate that earthquakes occur mostly at boundaries of rela-
tively rigid blocks. This is a major idea of plate tectonics
(Morgan, 1968; Oreskes, 1999). However, if blocks are rigid,
stress concentrations at other block boundaries and a block’s
triple junctions should influence earthquake patterns at any
boundary. Thus, even after a large earthquake, the stress on
a particular boundary can be restored almost immediately
due to the influence of the block’s other boundaries and its
junctions.

Lyakhovsky et al. (1997; 2005) base their seismicity model
on the damage rheology theory. In this case, where the me-
chanical properties of the rock medium are modeled, even
elementary geometrical properties of a fault system are not
considered. As a result, the fault geometry and earthquake
focal mechanism distribution fall outside their work.

As we mentioned in Section 2.3, theoretical developments
need to be critically tested against observational evidence.
Otherwise, they remain in the realm of speculation. At the
present time, numerical earthquake models have shown no
predictive capability exceeding or comparable to empirical
predictions based on earthquake statistics. Even if a theo-
retical or physical model exhibits some predictive skill, we
should always question whether the predictive power comes
from a deeper theoretical understanding, or from the earth-
quake statistics results imbedded in the model.

The models described above have a large number of ad-
justable parameters, both obvious and hidden, to simulate a
complicated pattern of seismic activity. Dyson (2004) says
that Enrico Fermi advised him

My friend Johnny von Neumann used to say, with four
parameters I can fit an elephant ...

The observational evidence in support of these models
generally consists of particular earthquake in specific re-
gions. In a random process there is always the possibility
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of using a large corpus of data to select a particular series
of events which seem to agree with theoretical predictions.
For the model confirmation to be credible, the criteria for
data selection must be prescribed in advance (Jackson and
Kagan, 2006).

Another possibility for perceived confirmation of theoret-
ical models is publication bias. This bias is caused by the
fact that research with currently fashionable results is poten-
tially more likely to be submitted and published than work
with less appealing outcomes (Duval and Tweedie, 2000).

Therefore, physical models may not have a theoretical
predictive capability. As Section 8.4 reports, although sev-
eral phenomenological models issue a quantitative prediction
of future seismicity, no physical model has yet attempted to
compete in such tests.

2.6. Laboratory and theoretical studies of fracture

In engineering science extensive work has been performed
on the conditions of tensile crack initiation and propagation
(e.g., Anderson, 2005). However, these efforts are concen-
trated on the problem of a single crack: the most important
problem for engineers.

The problem of crack propagation and branching, far
more relevant to earthquakes, has been recently addressed in
several papers. In laboratory experiments, a crack develops
instabilities which make its path and propagation velocity
highly chaotic and unpredictable (Marder, 1998; Sharon and
Fineberg, 1999; Bouchbinder et al., 2005). These instabili-
ties and a sensitive dependence on the initial conditions are
due to crack propagation, especially at a speed close to the
elastic wave velocity. Stress and fracture conditions in lab-
oratory specimens differ significantly from those in earth-
quake fault zones: in the laboratory the boundary effects
are controlled by the researcher. Therefore, fractures can
self-organize only at spatial scales much smaller than those
of the specimen. In fault zones, the stress, rock mechanical
properties, and fault geometry are self-organized as large-
scale self-similar patterns develop.

The calculations of molecular dynamics (Marder, 1998;
Sharon and Fineberg, 1999; Buehler and Gao, 2006) demon-
strate that basic properties of tensile fracture can be effec-
tively derived from simple laws. Similarly, precise labora-
tory measurements of fault propagation demonstrate mul-
tiple branching of fault surfaces. These simulations repro-
duce the fractal character of a fracture. Moreover, calcu-
lating the total energy balance in laboratory fracture ex-
periments (Sharon and Fineberg, 1996; 1999) demonstrates
that almost all elastic energy goes into creating new surface.
Although the conditions during tensile fracture differ from
those of the shear failure in earthquakes, the above result
may be significant for the problem of the heat paradox for
earthquake faults (Scholz, 1996).

3. Modern earthquake catalogs

Detailed modern earthquake catalogs with estimates of
focal mechanism and/or seismic moment tensor were com-
piled beginning in the 1970s. Several extensive catalog
datasets are available at present. Frohlich and Davis (1999)
and Kagan (2003) discuss the properties of global catalogs
and their accuracy.

The global catalog of the centroid moment tensors (CMT)
is compiled by the Harvard group (Ekstrém et al., 2005).
The catalog contains 22,476 solutions over a period from
1976/1/1 to 2004/12/31, see Fig. 3. The Harvard cata-
log includes seismic moment centroid times and locations
as well as estimates of the seismic moment tensor compo-
nents. Fach tensor is constrained to have a zero trace (first
invariant): no isotropic component. Double-couple (DC)
solutions, or solutions with the tensor determinant equal to
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zero, are supplied as well. Almost all earthquake parameters
are accompanied by internal estimates of error.

The PDE worldwide traditional catalog (Preliminary De-
termination of Epicenters, 1999, and references therein) is
published by the USGS. The catalog measures earthquake
size, using several magnitude scales. Body-wave (m3) and
surface-wave (Ms) magnitudes are provided for most mod-
erate and large events since 1965 and 1968, respectively. The
catalog contains more than 50,000 shallow earthquakes with
mp > 5 since 1965.

The problem for almost all catalogs, especially local and
regional, is their inhomogeneity: since any local seismo-
graphic network is bounded, the accuracy and catalog com-
pleteness vary considerably within the catalog area. This
inhomogeneity is especially strong for the seismographic
networks concentrated on island chains. Where stations
represent a quasi-linear array, the location accuracy differs
strongly along the direction of the array as compared to the
orthogonal direction.

4. Earthquake size distribution

The distribution of earthquake sizes is usually invoked
as a first confirmation for virtually any model of seismicity.
Moreover, this distribution is by far the most studied feature
of statistical seismology. Starting with its first discussion by
Ishimoto and lida (1939) and then Gutenberg and Richter
(1944), it has been established that earthquakes increase in
number as a power-law as their sizes decrease. This de-
pendence is usually referred to as the magnitude-frequency
or the Gutenberg-Richter (G-R) relation, and its parame-
ter (see Eq. 4 below) is commonly known as the ‘b-value’.
A very large body of literature exists concerning the size
distribution, its interpretation and possible correlation with
geotectonics, stress, rock properties, etc. For example, a
search of the ISI WEB oF KNOWLEDGE database (isi-
knowledge.com/) for keywords like ‘earthquake* and b-
value’ yields about 110 publications in the last four years.
However, that proliferation has not led to a deeper under-
standing of earthquake generation.

4.1. Magnitude versus seismic moment

Magnitude is an empirical measure of earthquake size
and many different magnitude scales are currently used (see
Castellaro et al., 2006). Several types of errors need to be
investigated in earthquake size measurement. Some of them
are known to be connected with earthquake magnitude de-
termination: saturation of all magnitude scales (Kanamori,
1977), which is explained by the finite seismogram frequency
for a seismographic network. Other types of errors are com-
mon to both magnitude and seismic moment determination
(Kagan, 2003).

Relatively high-frequency seismic waves are used to de-
termine magnitude, the effects of scattering, multipathing,
focussing and unfocussing are stronger as the wave periods
decrease. These effects cause great variations of wave am-
plitude which lead to larger uncertainties and biases in mag-
nitude measurements (cf. Ekstrom and Dziewonski, 1988).

Seismographic networks are limited in detecting weak
earthquakes and their essential parameters such as hypocen-
ter location, origin time and magnitude. This results in an-
other limitation of magnitude distributions: at the lower
magnitude end, progressively larger number of events are
missing from catalogs. Unfortunately, this lower magnitude
cutoff is neither sharp nor uniform over time and space.

In this paper M denotes the scalar seismic moment, and
m denotes the magnitude of an earthquake, b is the param-
eter for magnitude distribution and 8 is the corresponding
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parameter for seismic moment distribution. Earthquake mo-
ment magnitude m,, is related to the scalar seismic moment
M via (Kanamori, 1977; Hanks and Kanamori, 1979)

My = glogloM—C, (2)

where seismic moment M is measured in Newton-m, and C
is usually taken to be between 6.0 and 6.1. Below we use
C = 6.0. Eq. 2 allows us to use the moment magnitude as
a proxy for a physical quantity: seismic moment.

Seismic moment is proportional to the amplitude of seis-
mic waves at zero or close to zero frequency; hence its ac-
curacy is higher than that using magnitudes. Kagan (2003)
estimates that uncertainty in moment magnitude is on the
order of 0.1-0.15 and is by a factor of 2 to 3 smaller than
regular magnitude uncertainties.

Because of saturation and other systematic effects, each
magnitude can only be evaluated over a limited range of
earthquake size. Different magnitude scales are then com-
pared by using a regression relation

m1:C’1—|—C’2m2, (3)

where m; are magnitudes and C; are coeflicients for a linear
regression. Although both magnitudes in (3) usually have
errors of similar size, regular, not orthogonal regression, is
commonly used (Castellaro et al., 2006). This should cause
a significant bias in converting one magnitude into another.
Most earthquake catalogs initially use several magnitudes.
To obtain a common magnitude value, catalog compilers
transform various magnitudes, using variants of (3). Errors
and systematic effects of such calculations should signifi-
cantly shape the estimates of earthquake size.

Inspecting the value of the C; coefficient in (3) in vari-
ous publications, one can see the degree of the problem in
determining magnitudes. C> should be close to 1.0 at the
range of earthquake size where both magnitudes are well-
defined. This is rarely the case: the C;-value often reaches
0.7 or 1.3 (Kagan, 2003, his Fig. 14). These fluctuations
of the conversion coefficient may cause spurious variations
of the b-value. In contrast, when the moment magnitude in
different catalogs is compared, the Cy coeflicient is close to
1.0 (Kagan, 2003, his Fig. 12).

4.2. Seismic moment distribution

Gutenberg and Richter’s (1944) magnitude-frequency re-
lation is usually written as

lgN(m)=a—-bm, 4

where N(m) is the number of earthquakes with magnitude
> m, and a and b are parameters: a characterizes seismic ac-
tivity or earthquake productivity of a region and b parameter
describes the relation between small and large earthquake
numbers, b ~ 1. The expression (4) has been proposed in
the above functional form by Vilfredo Pareto (1897, p. 305,
his Eq. 1) for the financial income distribution.

The original G-R distribution (4) can be transformed into
the Pareto distribution for the scalar seismic moment M

$(M) = BMEM P for M, <M,  (5)
where 3 is the index parameter of the distribution, 8 = %b
(see Eq. 2), and M, is the observational threshold.

Simple consideration of the finiteness of seismic moment
flux or the deformational energy, available for earthquake
generation, requires that the Pareto relation (5) be modi-
fied at the large size end of the moment scale. The distri-
bution density tail must have a decay stronger than M ~1~#
with 8 > 1. This problem is generally solved by introduc-
ing into the distribution an additional parameter called the
mazimum or corner moment (M, or M.).
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The tapered G-R relation has an exponential taper ap-
plied to the cumulative number of events with the seismic
moment larger than M (Vere-Jones et al., 2001; Kagan,
2002a)

$(M) = (Me/M)P exp(%)
for M, <M < oo, (6)

here M. is the parameter that controls the distribution in
the upper ranges of M (‘the corner moment’). Fig. 5 dis-
plays the seismic moment distribution and its approximation
by (6) with a choice of several corner magnitudes (m.) for
the subduction zones (Bird and Kagan, 2004).

Many other displays of the moment-frequency relation for
earthquakes before 2003 can be found at the power-point file
http://moho.ess.ucla.edu/~kagan/Tokyo_Univ.ppt. Up-
dates of the moment distribution parameters after the 2004
great Sumatra earthquake are presented at

http://element.ess.ucla.edu/publications/2004_global_coupling-

2004 _global_coupling.htm.
g g
The corresponding probability density function is

o0 = | 7+ | oy s (M)

The above distribution in both expressions (Eqgs. 6-7) was
proposed by Pareto (1897, pp. 305-306, his Eqs. 2, 2bis,
and 5).

In Fig. 6 we show the result of the maximum likelihood
determination of the (3-values for eight tectonic provinces
(Bird and Kagan, 2004). All 95% confidence limits include
8 ~ 2/3 value. This can be considered a universal parameter
of earthquake size distribution.

The next diagram (Fig. 7) displays the corner moment
values evaluated for the same eight provinces. For conve-
nience they are shown on the map of central America, where
all the provinces are represented. In contrast to the 3-value
result, Bird and Kagan (2004) find that at least four distinct
values of the corner magnitude seem to be required, based
on the 95% confidence limits. These values include Oceanic
Spreading Ridge (normal faulting, corner magnitude range,
m = 5.7 — 6.0); Oceanic Transform Faults (medium and
fast velocities, range, 6.4 — 7.0); all the Continental zones,
Oceanic Transform Faults and slow velocity/Oceanic Con-
vergent Boundary (range, 7.4 — 8.7); and Subduction zone
boundaries (range, 9.1 — o).

Using the earthquake size distribution (6, 7), we can cal-
culate the seismic moment rate (Kagan, 2002c)

B8

DI MITR - p) ®)
where a9 is the annual rate of earthquakes with moment M,
or greater and I' is the gamma function. Subsequently we
can compare it to the tectonic rate evaluated by plate mo-
tion or by geodesy (Kagan, 2002¢, Bird and Kagan, 2004).
Thus, plate tectonic predictions can be quantitatively re-
lated to seismic activity. Below we show that because of
the power-law property of earthquake size distribution, any
naive comparison of the cumulative seismic moment and tec-
tonic deformation yields unreliable results in most cases.

M,

4.3. Seismic moment sum distribution

The global distribution of the seismic moment is well ap-
proximated by a power-law (Pareto) distribution with index
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B ~ 2/3 (5). This is a heavy-tailed distribution: it has the
infinite mean and the standard deviation. Thus, if one uses
the pure Pareto model, the Central Limit Theorem does not
describe the distribution of the sum of seismic moments.
The tapered (Egs. 6-7) or truncated Pareto distribution
appears to eliminate all summation problems. However, a
detailed analysis shows that the Gaussian limit is reached
for only a large number of observations. For a realistic num-
ber of events, the tapered or truncated Pareto still exhibits
all the properties of a heavy-tailed distribution.

The cumulative seismic moment released in a region can
be used as a proxy for total regional deformation of the
Earth surface due to earthquakes. Formally, the strain rate
for the volume of the deforming crust is proportional to
the sum of the tensor moments of individual earthquakes
(Kostrov, 1974). Thus, evaluating observed seismic mo-
ment rates is an important problem connected to the re-
gional earthquake hazard assessment.

Let X;,@ = 1,...,n be independent identically dis-
tributed random variables with a common Pareto distribu-
tion (5), and let S, denote their sum

Snzzn:X,’. (9)

If the exponent 8 of the power-law distributed variable is
less than 2.0, the sum converges to a stable distribution
(Samorodnitsky and Taqqu, 1994; Uchaikin and Zolotarev,
1999) with the probability density function

&(X,8,7,1,0), (10)
where v is a symmetry parameter (for positive variables
v = 1, i.e., the sum is maximally-skewed), and y, o are shift
and width parameters. For the Gaussian distribution (see
Eq. 16 below) only the two last parameters are valid.

An arbitrary quantile z; of the sum S, can be approxi-
mated as (Zaliapin et al., 2005)

Zq N z‘(ll) =n'Pz,Cp + bn, (11)
where z4 solves the equation for the cumulative distribution
Fj3 of the sum
Fg(zq) = q, (12)
and zgl) is a quantile for a maximally asymmetrical
(maximally-skewed) stable distribution. For 8 < 1, b, = 0
an
Cn = [[(1 —B)cos(xB/2)]"" . (13)

Fig. 8 displays an example of simulated sums (Sy) for the
Pareto distribution truncated at y = M./M; = 3.4 x 10%
compared to the stable distribution quantiles. In this ex-
ample we take the threshold moment M; = 107 Nm or
my = 5.33, the threshold of the recent Harvard catalog (Ka-
gan, 2003) and the maximum magnitude m, = 8.35 (Sec-
tion 4.2).

According to (11), quantiles of the stable distribution in-
crease as nl/o'“, thus, for example, the median of the sum
of 40 variables p40 compared to 2 is equal to

pao X 2.86 X pu20 or a0 > 20 + M20 - (14)
This behavior of the stable distribution sums may seem
counter-intuitive, as is that of their other properties.

If the exponent 8 is less than 1.0, the sum of power-law
distributed variables is comparable to the value of the largest
observation M,

E(Sa) = Ma/(1 - ). (15)
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where E is a mathematical expectation sign (Feller, 1971).
Therefore, Eq. 14 means that in a sample of 40 earth-
quakes, there is a higher chance of encountering a large event
which would significantly increase their sum than in a sam-
ple of only 20 earthquakes. Pisarenko (1998) as well as Huil-
let and Raynaud (2001) also note that for the heavy-tailed
distributions, sum quantiles increase non-linearly with n.

The upper quantiles of the Pareto sum generally approach
the stable distribution limit faster than do the lower quan-
tiles (Zaliapin et al., 2005). However, in Fig. 8, the upper
quantiles depart from the theoretical curve for the stable
distribution starting with n = 2 because of the upper limit
truncation. The behavior of the lower quantile is essentially
unaffected by the truncation until n exceeds 10%.

When the number of summands is large, the truncation
point y dominates the behavior of the quantiles. The sum is
then distributed asymptotically according to the Gaussian
law:

lim Fs, (z) =& (m — Ty, 1) , (16)

n—o00 Uy\/ﬁ

where @ is the normal cumulative distribution (17), and the
parameters u, and oy are given by (18), (19).

The standard Gaussian (normal) cdf with expectation u
and standard deviation o is given by

& (z;u,0°) = U\}ﬁ/_ﬂ exp (_ %) dy, (17)

whereas
uy=% (' -1)/(-vP), B£L (19)

and
o? = % (P -1)/(1-y ) —ud, B#2 (19)

are the conditional mean and variance of each summand
(Kagan, 2002a; Zaliapin et al., 2005), given the restriction
on the maximum (X < y).

From the beginning of the plate tectonics hypothesis, it
was assumed that earthquakes are due to plate boundary de-
formation. Calculations for global tectonics and large seis-
mic regions justified such an approach. However, applying
this assumption to smaller regions has usually been incon-
clusive, given the high variability of seismic moment sums.

Holt et al. (2000) compared the observed seismic moment
release with the tectonic release inferred from the joint in-
version of the GPS and the Quaternary rates of strain for
south-east Asia. They also compared strain release with the
earthquake record from 1965-1998. Fig. 9 shows the seis-
mic coupling x (the ratio between observed and predicted
seismic moment) in 4 large regions and 42 subregions. The
coupling is calculated as

1 — .
X = TZM,’/M';CC, (20)
=1

where T is the total catalog time and Mtec is the rate of
tectonic deformation.

Three regimes are clearly seen, depending on the num-
ber of earthquakes in a region. These regimes are perfectly
reproduced by the truncated Pareto model. Fig. 9 approxi-
mately displays the quantiles (upper, middle, lower) for the
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ratio between the sum of n random variables and the cor-
responding mean (which is finite in the truncated model).
Notice that we see the conventional Gaussian picture (the
sum is proportional to the mean) only with a very large
number of events exceeding m;: n > 1000. Thus, the trun-
cated Pareto model explains the non-linear behavior of the
cumulative moment release for small to intermediate num-
bers of earthquakes as a transition between pure power and
pure Gaussian approximations.

5. Temporal earthquake distribution

Omori (1894) showed that the aftershock rate decays ap-
proximately as

(21)

n(t) =
( ) t+c’
where K and c are coefficients, t is the time since the main-
shock origin, and n(t) is the aftershock frequency measured
over a certain interval of time. Presently a more complicated
equation is used to approximate the aftershock rate

n(o) = ¢ K (22)

t+c)p’

This expression with the additional exponent parameter p
is called the ‘modified Omori formula’ (Utsu et al., 1995).

Kagan (2004) and Kagan and Houston (2005) argue that
the observed saturation in the aftershock numbers described
by the “time offset” parameter ¢ in Omori’s law is likely
an artifact due to the under-reporting of small aftershocks.
This under-reporting comes from the difficulty of detecting
large numbers of small aftershocks in the mainshock coda,
as well as other factors (Kagan, 2004). For even smaller
time intervals, close to the rupture time of the mainshock
and aftershocks, the point model of the earthquake process
breaks down, so that Eqgs. 21 and 22 are no longer valid.

Fig. 10 displays the aftershock distribution for the 2004
great Sumatra earthquake. The general time-magnitude af-
tershock pattern is seen in many other aftershock sequences
(Kagan, 2004): larger aftershocks begin early in the se-
quence, and the occurrence rate is progressively delayed for
weaker events. After the aftershocks start in any magnitude
band, they seem to be almost uniformly distributed over the
log time. This pattern would correspond to the aftershock
rate’s decay according to Omori’s law (21).

Two displays in Fig. 10 exhibit an important property of
earthquake catalogs: in the PDE catalog aftershocks start at
about 1072 days after the mainshock, whereas in the CMT
catalog they start at about 10! days. The total number
of aftershocks as well as their magnitude range also signif-
icantly differ in these two diagrams. The main reason is
the frequency range of the seismograms used in compiling
both catalogs: in the PDE catalog the aftershocks are de-
termined using waves with 1 s period, whereas the CMT
catalog uses low frequency (period 50 s and greater) waves.
The magnitude estimates in the PDE catalog saturate at
about mp = 6.0 — 6.5 (Section 4.1): therefore, we see no
large magnitude aftershocks in its display. On the other
hand, long-period coda waves of the mainshock and large
aftershocks in the CMT catalog extend over a longer time.
They make it difficult to discern smaller events in the seis-
mograms. Thus, Fig. 10 as well as the arguments in Kagan
(2004) and Kagan and Houston (2005) demonstrate that the
c-value depends on methods of seismogram interpretation.
It is probably not a physical parameter.

Therefore, depending on the frequency characteristics
of a seismographic network, the number of stations, and
the seismogram processing technique, the same earth-
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quake sequence could be variously identified. In one
catalog it could be identified as one complex earth-
quake with some subevents, but in another as a fore-
shock/mainshock/aftershock sequence with many ‘individ-
ual’ events (Kagan, 2003; 2004). Thus ‘an individual earth-
quake’ results from interpretations and selections made by
catalog compilers. It is not in itself a physical entity, as tac-
itly assumed in most statistical analyses of seismicity. It is
a naming artifact.

Omori’s law has been incorporated in many phenomeno-
logical and physical models of earthquake occurrence. Like
aftershocks, foreshocks also follow the power-law rate in-
crease before a mainshock (Kagan, 1991b; Ogata, 2004).

6. Earthquake location distribution

6.1. Multipoint spatial moments

In the early 1980s, Kagan and Knopoff (1980) and Ka-
gan (1981a;b) investigated the spatial moment structure of
earthquake hypo- and epicenters for global (PDE and oth-
ers) catalogs and several local earthquake catalogs.

The two-, three-, and four-point moment functions were
obtained and analyzed in these studies. The quality and
quantity of the earthquake data were relatively poor at that
time, and computer capacity was sufficient to study only
a small subset of data at a time, especially when comput-
ing the higher moments. However, it became apparent that
the spatial distribution of earthquakes has a scale-invariant
pattern.

Spatial moment functions are basic to the investigation of
hypocentral patterns. The principal quantities of the study
are the proportions of k-tuples (k = 2, 3,4) points from the
catalog (Fig. 11) with the property that the maximum dis-
tance between any two points in the k-tuple does not exceed
r, as a function of r, and the joint density function of the
distances between the points forming such a k-tuple.

We write

au(r) = Nu(r)/ N, (23)
where Ni(r) is the number of k-tuples with the stated prop-
erty, and Ny is the total number of k-tuples from the catalog.
The quantities gi(r) are computed first for the epicenters,
as points in R?, and then for the hypocenters, as points in
R3. This function can be interpreted as the average number
of k-tuples within a distance r of an “average” point of the
catalog.

To overcome the biases in such estimates, which arise
from boundary effects, the ratios gx(r) may be compared
to the corresponding values for simulated Poisson catalogs.
The simulated catalogs are of the same size and extent as
the original catalog, but their epicentral coordinates are uni-
formly distributed over the region, and the depth distribu-
tion is matched to that of the actual catalog.

This results in the ratios

Qu(r) = a(r)/du(r),

where the tilde refers to the simulated catalog. Values of
Qr(r) have been tabulated and graphed in various ways.

The graphs of the ratios Qx(r) against r typically display
three ranges: the initial range, the middle range over which
the 1/r behavior is observed, and the final range, in which
the ratio approaches 1.0, as r approaches the diameter of
the observed region. We interpret the first range as domi-
nated by measurement errors. The second range illustrates
self-similar behavior, and the third range is dominated by
boundary effects. Kagan (2006) provides extensive analysis
of various errors and biases in the 2-point moment evalua-
tion.

(24)



X-10

Thus, our key results can be summarized as follows. The
growth rates of the moment functions are consistent with a
dimensional deficit of approximately 1.0. Within an order of
magnitude over different radial and angular combinations:
o i) the distribution of pairs of points selected at random
from the catalog is consistent with the density inversely pro-
portional to the distance 1/D (Kagan and Knopoff, 1980;
Kagan, 1991a; 2006);

o ii) the distribution of triplets of points selected at ran-
dom from the catalog is consistent with the density inversely
proportional to the area, 1/S (Kagan, 1981a);

e iii) the distribution of quadruplets of points selected at
random from the catalog is (for the hypocenters only) consis-
tent with the density inversely proportional to the volume,

1/V (Kagan, 1981b).

6.2. Correlation dimension

Kagan (1991a; 2006) revisited the two-point moment
problem and was able to more accurately estimate the corre-
lation dimension for shallow (0-70 km depth), intermediate
(70-300 km), and deep (300-700 km) earthquakes. In these
papers the dependence of the moment on the time interval
between earthquakes was also investigated.

To demonstrate the influence of time limits on the corre-
lation dimension, Fig. 12 shows the distribution of distances
between accurately located hypocenters in southern Califor-
nia. The probability density function of distances N3(R) be-
tween these hypocenters, irrespective of the inter-earthquake
time interval, is close to a power-law N3(R) R’ in the
range 0.1 < R < 5 km, where N3(R) is the number of
pairs in the 3-D space. The correlation fractal dimension
(measured by the least-square linear regression of log(R)
and log[N3(R)] for 0.1 < R < 5 km) is §~15 (black lines
in Fig. 12, see also Helmstetter et al., 2005). The faster de-
cay for R < 0.1 km is due to location errors, and the roll-off
for distances R > 5 km is due to the finite thickness of the
seismogenic crust. For larger distances (R > 50 km), the
decrease is caused by catalog boundaries (Kagan, 2006).

For ZV_'}(R, t), the correlation dimension ¢ increases be-
tween § ~ 0 at times ¢ = 5 minutes up to § — 2 for
t = 2500 days. This maximum inter-event time of 2500 days
is long enough that earthquake interactions are relatively
small compared to the tectonic loading. This value § = 2,
measured for ¢ = 2500 days, can thus be interpreted as ap-
proaching the fractal dimension of the active fault network.

In Fig. 13 we display epicentral and hypocentral moments
for earthquakes in the PDE catalog at three depth intervals.
We include all the earthquake pairs without taking the inter-
earthquake time into account. The curves are normalized,
so that the horizontal line corresponds to a self-similar dis-
tribution with § = 2.0. The curves below the horizontal line
have § > 2.0 (the fractal dimension is equal to the tangent
of the slope angle of the curve plus 2.0). Since the epicentral
moments are defined in 2-D, the horizontal line corresponds
to § = 1.0. To show their differences, we combine two types
of curves in one plot: epicentral and hypocentral. Asin Ka-
gan and Knopoff (1980), epicentral moments yield a higher
value of the exponent for distance ranges less than or compa-
rable to the thickness of the appropriate layer. From simple
geometrical arguments, the hypocentral curves are the pre-
ferred data input to calculate the fractal dimension (Kagan,
2006).

Comparing Figs. 12 and 13, we conclude that self-
similarity of earthquake geometry is established up to the
scale length of 0.1 km and less. Since the equations of elas-
ticity lack any intrinsic scale, we expect that the property of
self-similarity can be extended for the brittle fracture of dis-
ordered materials (rocks) up to the scale of a few millimeters:
the size of rock grains. The upper cutoff for scale-invariance
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(2000 km) is connected to the size of major tectonic plates.
The § values in Fig. 13 demonstrate that the dimension
decreases as the depth increases.

Kagan (2006) indicates that evaluating the fractal dimen-
sion for earthquake spatial patterns is difficult and prone to
many errors and biases. This may explain the contrast with
two other classical scale-invariant, universal exponents of
earthquake distribution: unlike the G-R relation (Bird and
Kagan 2004) and Omori’s law (Kagan, 1991b; Kagan and
Houston 2005), here the properties and value of the correla-
tion dimension are not yet firmly established.

In most studies of earthquake spatial distribution, errors
of location and other errors have not been properly consid-
ered (Kagan, 2006). This might explain the high values of
fractal dimensions reported in many publications and the
great variability of these values. Such findings may reflect
not physical and geometrical properties of earthquake frac-
ture, but rather various location and projection errors pe-
culiar to the catalogs studied.

6.3. Spatial scaling

Kagan (2002b) investigated the distribution of aftershock
zones for large earthquakes (scalar seismic moment M >
10'?®* Nm, moment magnitude, m > 7) in global catalogs
(CMT and PDE). The dependence of the aftershock zone
length, ! on the earthquake size was studied for three repre-
sentative focal mechanisms: thrust, normal, and strike-slip.

The regression curves in Fig. 14 show that M « I* depen-
dence continues up to m = 9 earthquakes. Estimated regres-
sion parameters for strike-slip and normal earthquakes are
similar to those of thrust events, supporting the conjecture
that the scaling relation is identical for earthquakes of var-
ious focal mechanisms. No observable scaling break or sat-
uration occurs for the largest earthquakes (M > 10°' Nm,
m > 8). It is natural to assume that the aftershock zone
length [ is equal or proportional to the rupture length L.
Thus, earthquake geometrical focal zone parameters are self-
similar.

Using the derived scaling law and moment-frequency re-
lation, we can derive the distribution of earthquake slip not
only for a region, but also for a specific place on a fault (Ka-
gan, 2005a). This distribution depends on the linear size
of earthquake rupture. For example, if the rupture is rela-
tively short, a particular spot on a fault would be ruptured
less frequently but would have a larger slip.

7. Focal mechanism orientation and stress
distribution

7.1. Focal mechanism distribution

It is difficult to measure the stress tensor itself in the deep
interior of the Earth, but rotations of earthquake focal mech-
anisms may indicate the stress redistribution. Kagan (1982)
introduced the rotational Cauchy distribution to represent
rotations of focal mechanisms of micro-dislocations which
comprise the focal zone of an earthquake. The rotational
Cauchy distribution can be written as (Kagan 1990)

AXxk

2
F(‘I’) = ; arctan(A/l-:) - m ’

(25)

where A = tan(¥/2) and ¥ is the rotation angle. The scale
parameter x of the Cauchy distribution represents the de-
gree of incoherence or complezity of an earthquake fault.
An additional complication in studying the 3-D rota-
tion of earthquake focal mechanisms is the symmetry of the
source: the double-couple earthquake source has the rota-
tional symmetry of a rectangular box with unequal sides.
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Due to this symmetry, the maximum rotation angle for the
earthquake source cannot exceed 120° (Kagan, 1990; 1991c).

Using the correspondence between the group SO(3) and
the group of normalized quaternions, we solved an inverse
problem of a 3-D rotation of double-couple earthquake
sources. For each pair of focal mechanisms, we find a mini-
mum 3-D rotation which transform one mechanism into an-
other (Kagan, 1991c).

In Fig. 15 we display, as an example, the distributions
of rotation angle ¥ for shallow earthquake pairs which are
separated by a distance of less than 50 km and in a dis-
tance range of 400-500 km. We study whether the rotation
of focal mechanisms depends on the location of the second
earthquake in the pair with regard to the first event. Thus,
we measure the rotation angle for hypocenters located in 30°
cones around each principal axis (curves marked the T-, P-,
and N-axes) of the first event (see Fig. 1). The curves in
Fig. 15 for small distances are narrowly clustered, and are
clearly well approximated by the rotational Cauchy distri-
bution.

For large distances the curve corresponding to fault-
planes (the N-axis) is clearly separated from the curves con-
nected with the T- and P-axes. Although the rotation near
the fault-plane is relatively small (k & 0.2), the earthquakes
situated in cones around the T- and P-axes have focal mech-
anisms essentially uncorrelated with the primary event: the
curves are close to the curve corresponding to a completely
random rotation of a double-couple (see formulas in Kagan,
2005b).

Fig. 16 displays a smoothed map of the average ¥ depen-
dence on time and distance intervals for well-constrained
earthquakes in the Harvard catalog (Frohlich and Davis,
1999; Kagan, 2000). The angle increases with distance be-
tween events. The increase with time interval (AT) is much
less pronounced. For earthquake sequences clustered in time
and space, the ¥ difference between focal mechanisms is
small, on the order 10 — 15°. These ¥-values are close to
the minimum uncertainty in ¥ evaluation (Kagan, 2003).

7.2. Random stress tensor

The aim of earthquake seismology is to rigorously de-
scribe the tensor stress field which triggers earthquakes.
Until now, extensive attempts to study stress fields have
been concentrated on stress tensor properties at particular
points, especially at hypocentral locations of potential fu-
ture earthquakes (e.g., Kagan, 1994a; Harris, 1998; Stein,
1999; Steacy et al., 2005). However, if the earthquake spa-
tial distribution is indeed fractal, the stress field must also be
scale-invariant, representing an extremely complicated ma-
trix with critical conditions for earthquake rupture satisfied
in an infinite number of points. This would correspond to
an infinite number of micro-earthquake occurrences, if one
extrapolates the G-R law for earthquake size distribution
(Section 4.2) toward earthquakes of size zero.

While it is apparent that earthquakes are triggered ev-
erywhere in seismic regions, the question remains unsolved
why small earthquake ruptures develop into giant events
which can cause massive destruction. Answering this ques-
tion adequately will require a detailed description of the 3-D
stress field geometry, including its singularities, limit cy-
cles, and possible bifurcations (Gabrielov and Keilis-Borok,
1983). This is an extremely difficult and open problem:
Gabrielov and Keilis-Borok (1983, p. 489) comment that
“The [mathematical] problem of the complete description
[of the topology of the field...] has not as yet been solved.”

The Cauchy distribution is especially important for repre-
senting earthquake geometry. It can be shown by theoretical
arguments (Zolotarev, 1986, pp. 45-46; Kagan, 1990) and
by simulations (Kagan, 1990) that the stress tensor in the
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medium with defects follows this distribution. Kagan (1990)
argues that the Cauchy distribution of the stress should pro-
duce the rotational Cauchy distribution of earthquake focal
mechanisms.

For any point in an elastic medium which is surrounded
by defects, the characteristic function for the random stress
distribution can be written as

oo

log ¢(¢,a) = /[exp(i(ar_s) — 1w (r)r?dr, (26)

0

where v(r) is the density of defects which might depend on r,
the distance of the defect from the reference (measurement)
point, and o is the normalized (for r = 1) stress Green func-
tion of an earthquake; stress decays with distance as r—3.
For the uniform 3-D distribution of defects, v = vo. In this
case (26) yields the Cauchy stress distribution.

Earthquake spatial distribution, as described in Sec-
tion 6.2, is fractal. In (26) we should substitute the fractal
distribution of sources v = 1y TE_D, where D = 3 is the Eu-
clidean dimension of the space, and § is a fractal correlation
dimension of earthquake hypocenters. Then (cf. Zolotarev,
1986, eq. 1.1.16)

log (¢, ) = wo [lexp(iCou) — 1]ul®/ "1 dy

=vI'(—a)|(]%, (27)

with o« = §/3. The above formula means that if § = 3, the
resulting distribution is the Cauchy law (Zolotarev, 1986;
Kagan, 1990), whereas for a fractal spatial distribution of
earthquakes, o < 1.

Analyzing seismic moment and stress tensors has been
basic to earthquake seismology. Although tensors are fun-
damentally important, they have not been sufficiently in-
vestigated or interpreted from a statistical point of view in
the earth sciences, with few exceptions. A linear error prop-
agation was first independently proposed to derive the er-
ror estimate of the principal stresses and their orientations
by Angelier et al. (1982) and Soler and van Gelder (1991).
The correlation study on the invariant quantities of seis-
mic moment tensors was investigated by Kagan and Knopoff
(1985a;b). Kagan (1992b;c; 2000) further extended the cor-
relation results on invariant quantities to analyze earthquake
catalogs and interpret faulting geometry.

The study of random tensors has its root in nuclear
physics (see e.g., Girko, 1990; Mehta, 1991) and multi-
variate statistics (see e.g., Anderson, 1958). For nuclear
physics, a simple rotation-invariant distribution has been
widely investigated. But in multivariate statistics, only a
handful of large sample or asymptotic distribution results
involving such distributions are available. These results, de-
spite their significance, can not be applied directly to the
Earth sciences, because the number of tensors derived from
the same original source is generally small. In particular,
the ratio of signal to noise is not large enough to neglect
the effect of nonlinearity. More importantly, efforts in nu-
clear physics and statistical mathematics have largely been
focused on the principal invariants, namely, the principal
eigenvalues. Very little attention has been paid to random
eigendirections, which are equally important in the Earth
sciences. Moreover, the nonlinearity of the mapping onto
the eigendirections and eigenvalues has been insufficiently
studied. This nonlinearity could strongly affect the esti-
mated eigenvalues and directions if the noise level is high.
Xu (1999; 2002) and Cai et al. (2005, and references therein)
have attempted to develop a probabilistic approach in deal-
ing with random /stochastic tensors in geoscience. The main
new results from such studies include exact distributions for
the random eigenvalues and eigendirections. They also in-
clude accuracy estimates of a higher order and bias compu-
tations.
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8. Stochastic
occurrence

processes and earthquake

Most distributions considered so far have been one-
dimensional marginal distributions of the earthquake point
process. Two enhancements of this picture need to be
presented: multidimensional distributions are to be con-
structed and the point structure of the process needs re-
vision. Fig. 10, for example, shows that earthquake rupture
duration needs to be taken into account when very small
time intervals are considered. In Fig. 12 we show the influ-
ence of inter-earthquake time intervals on the spatial struc-
ture of earthquake distribution. In Section 6.3 we show that
the focal zone of an earthquake, especially a large one, can-
not be regarded as a point.

A more basic way to study the multidimensional structure
of earthquake process is to apply the theory of stochastic
point processes (Daley and Vere-Jones, 2003), not ordinary
statistical methods. The first applications of this theory to
earthquake occurrence were made by Vere-Jones (1970), Ka-
gan (1973a;b), and Ogata (1988). Many researchers (Con-
sole et al., 2003; Helmstetter and Sornette, 2004, and oth-
ers) have recently applied the theory of stochastic point pro-
cesses to analyze earthquake occurrence and clustering. The
major impetus for these investigations is application of sta-
tistical methods for earthquake forecasting, both long- and
short-term. Below we briefly review the available methods
for earthquake occurrence analysis and their application for
earthquake forecasting. We then discuss how these methods
can be improved.

8.1. Earthquake clustering

Almost any earthquake forecast requires proper account-
ing for earthquake clustering, mainly for aftershocks. If
present, foreshocks may be used to calculate a mainshock
probability. Even if we are mainly interested in a long-term
earthquake forecast, the influence of short-term earthquake
clustering on our results should be estimated. Moreover, a
faithful modeling of the earthquake clustering is needed for
any short-term forecast.

Clustering presents a special challenge since modern lo-
cal catalogs have a magnitude range extending over several
units: in California and Japan, the lower magnitude thresh-
old is close to 1.0, whereas the largest earthquake may ex-
ceed 8.0. In such catalogs one should expect the aftershock
numbers approaching or even exceeding millions after a very
strong event. Handling these earthquakes and accounting
for various systematic and random effects both present seri-
ous challenges.

Fig. 17 displays a sketch of earthquake catalog data in the
magnitude-time format. The left part of all the diagrams is
the past for which no information is available, and similarly
for the right or future part. Some earthquakes are detected
below the magnitude threshold, shown as a dashed line.

Aftershock sequences have traditionally been taken into
account by catalog declustering. Declustering can be used
only as a preliminary step in seismicity analysis: it is sub-
jective; and many different techniques are available but they
are not optimized and have not been rigorously tested. We
must use quantitative statistical methods to rigorously de-
scribe earthquake clustering. Only an application of stochas-
tic point process theory can provide a robust solution to the
problem.

However, the multidimensional nature of earthquake oc-
currence, fractal or power-law properties of earthquake sta-
tistical distributions, and inhomogeneities of earthquake dis-
tributions all make it difficult to create and statistically an-
alyze stochastic models. Over the years several such models
of earthquake occurrence have been proposed and all are
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based on the theory of branching processes. Branching is
expected to model the well-known property of primary and
secondary clustering for aftershock sequences: a strong af-
tershock (or foreshock) tends to have its own sequence of
dependent events. These multidimensional models are:

¢ (A) Point process branching along the magnitude axis,
introduced by Kagan (1973a;b) and shown in Fig. 17b.

o (B) Point process branching along the time axis
(Hawkes and Adamopoulos, 1973; Hawkes and Oakes, 1974;
Kagan and Knopoff, 1987b; Ogata, 1988 — called Hawkes
self-exciting process, see Fig. 17c). Hawkes and Tukey (see
discussion section in Kagan, 1973b) debate the difference
between branching in earthquake size and in time.

¢ (C) Continuum-state critical branching process devel-
ops along the time axis (Kagan and Knopoff, 1981; Kagan,
1982; see Section 8.3).

The first two models (A-B) use the Poisson cluster process
to approximate the earthquake occurrence. In these models,
earthquake clusters are assumed to follow the Poisson tem-
poral occurrence. Earthquakes within a cluster are modeled
by a multidimensional branching process which reproduces
a temporal-spatial pattern of dependent events (mostly af-
tershocks) around the initial event of a sequence (Kagan,
1973a;b; Kagan and Knopoff, 1987b; Ogata, 1988; 2004).

These models employ in one form or another the classical
statistical properties of earthquake occurrence: the G-R re-
lation and Omori’s law. Model (A) reproduces the G-R rela-
tion as the result of branching along the magnitude axis and
uses Omori’s law to describe earthquake clustering in time.
Model (B) combines the G-R relation and Omori’s law in a
fairly empirical fashion to approximate seismicity. Physical
model (C) yields the G-R law as the consequence of critical
branching (Vere-Jones, 1976). It applies a version of Omori’s
law to the temporal distribution of micro-dislocations and
simulates the position and orientation of dislocations to re-
produce the entire earthquake process (Section 8.3). As we
discuss below, other models may have certain advantages in
earthquake forecasting and the representation of seismicity.
But phenomenological model (B) is now almost exclusively
used to statistically analyze and simulate earthquake oc-
currence (Kagan and Knopoff, 1987b; Kagan and Jackson,
2000; Ogata, 2004).

Models (A) and (B) can be parameterized to analyze
earthquake catalogs. The optimal parameter values can
then be found by the maximum likelihood method (Kagan,
1991b; Ogata, 1988; 2004). To account for earthquake clus-
tering, one can put the obtained parameter values back into
the model and find the probabilities for each event to be
foreshock/mainshock/aftershock (Kagan and Knopoff, 1976;
Zhuang et al., 2004). If these probabilities are known, a cat-
alog can be either declustered in an objective manner, or
dependent events can be taken into account.

Most of the statistical models for earthquake occurrence
(Ogata, 1988; Kagan, 1991b) treat earthquake catalogs as
a population set, with earthquakes considered as individual
entities. As we discuss in Section 5, ‘an individual earth-
quake’ is not a physical entity. Instead it is the result of
interpretation and selection by catalog compilers. Thus,
extrapolations of observed features toward smaller inter-
earthquake time intervals, smaller size earthquakes, etc.,
may see a model breakdown. Such approximation deteri-
oration is caused not by physical properties of earthquake
occurrence, but by peculiarities of earthquake identification
technique and catalogs. Why is this?

8.2. Several problems and challenges

e 1. Earthquake spatial distribution is very complex: the
depth inhomogeneity, the fractal character of the spatial pat-
tern, and various hypocenter location errors all make model
parameterization difficult and create various biases in esti-
mating parameters. Recent applications of stochastic point



KAGAN : THEORETICAL PHYSICS AND EARTHQUAKE OCCURRENCE

processes for seismicity analysis often yield results which
are incompatible or unstable: slight variations in the data,
assumptions, or processing techniques yield significantly dif-
ferent parameter values (Kagan, 1991b). It is difficult to see
whether these contradictions are caused by biases of analy-
sis, data defects, or differences in parametrization.

e 2. A critical and careful analysis of errors in the earth-
quake catalogs needs to be performed before each statistical
analysis. Otherwise, unless the effect being studied is very
strong, the results are almost surely artifacts. The problem
is that most errors in the earthquake data are caused by
systematic effects, so they are more difficult to identify and
to correct (Kagan, 2003).

e 3. There is no effective statistical tool to select proper
models and check whether they fit the data. Likelihood
methods and the ‘Akaike Information Criterion’ (AIC) de-
pendent on them (see Ogata, 2004; Daley and Vere-Jones,
2004) apparently work only for regular processes: quasi-
Gaussian in a continuous case and quasi-Poisson for dis-
crete (point) processes. However, an earthquake occurrence
is controlled by scale-invariant, fractal distributions, diverg-
ing to infinity. Although these infinities can be regularized
by using renormalization procedures similar to techniques
used in model (C), statistical tests applicable to such distri-
butions have not been developed yet. Calculating the likeli-
hood function for aftershock sequences illustrates this point:
the rate of aftershock occurrence after a strong earthquake
increases by a factor of thousands. Log(1000) = 6.9; hence,
one close aftershock yields a contribution to the likelihood
function analogous to about 7 free parameters.

e 4. What can be done in the present situation to ob-
tain reliable statistical results? The model’s number of de-
grees of freedom should be kept as small as possible: the
new adjustable parameters are to be introduced only if they
are critically tested against the data in various catalogs and
against different tectonic environments.

e 5. Earthquake catalogs are incomplete in a wake of
strong events (Section 5). They are also incomplete gener-
ally for small earthquakes (Section 4.2). Both of these effects
need to be carefully accounted for (Kagan, 2004).

e 6. Until now, only worldwide seismicity or seismic-
ity in certain seismic zones has been analyzed. Several
tectonic provinces have not been investigated sufficiently:
deep earthquakes, oceanic earthquakes, earthquakes in sta-
ble continental areas, and volcanic earthquakes. The de-
pendence of earthquake clustering on the rate of tectonic
deformation should also be investigated: for example, in
continental areas (and specifically in California) aftershock
sequences occur in zones of fast and slow deformation rate.
Are the clustering properties of earthquakes the same in
these conditions? A study of earthquake occurrence in these
tectonic environments should yield important information
on general properties of seismicity.

e 7. Apparently all the statistical models based on
Omori’s law fail to capture the properties of long-term earth-
quake clustering. Kagan and Jackson (1991) argued that, in
addition to short-term clustering which manifests in fore-
shock/mainshock/aftershock shallow event sequences, long-
term clustering also occurs. The latter phenomenon is com-
mon both to shallow and deep earthquakes. Kagan and
Jackson (1991) conjectured that short-term clustering re-
sults from stress redistribution in a brittle crust; long-term
clustering is most likely due to mantle convection.

¢ 8. Earthquake probabilities calculated using model (B)
have a serious defect: if a strong event is preceded by a fore-
shock or a number of foreshocks, this large quake is consid-
ered dependent. Model (A) does not present this difficulty;
the largest event in a cluster is always the mainshock.

¢ 9. Point models by definition provide only a point fore-
cast. Each future earthquake is characterized by its location,
magnitude, time, and possibly its focal mechanism. In re-
ality, earthquakes are spatially extended and they are not
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instantaneous. This is especially important for large events.
Therefore, to compute seismic hazard, a point forecast needs
to be supplemented by an extended source model. In con-
trast with models (A) and (B), model (C) is in principle
a continuum which can simulate realistic, complex rupture
process extended in time, space, and fault orientation.

8.3. Critical continuum-state branching model of
earthquake rupture

Kagan (1982) proposed a model of earthquake rupture
which incorporated results of 2-, 3-, and 4-point moment
studies (Kagan and Knopoff, 1980; Kagan, 1981a;b) and
tried to reproduce the inferred geometrical properties of
hypocenter distributions. The model was based on the prop-
agation (governed by a critical branching process) of in-
finitesimal dislocation loops.

The simulation proceeds in three stages. In the first stage
the branching family trees are started from a number of ini-
tial ancestors as in Fig. 18. The second stage of simulation
involves adding time delays between the appearance of the
parent and the offspring. The delay is power-law distributed
(Fig. 19a)

X(t) o t™' 7™, (28)
For shallow earthquakes Kagan and Knopoff (1981) find that
ur1/2.

Kagan and Knopoff (1987a) show that the distribution
(28) may have a simple explanation: stresses at the end
of an earthquake rupture are below the critical value and
thereafter change randomly according to a one-dimensional
Brownian motion. A new rupture starts when stress reaches
a critical level. The level-set of this motion is a fractal set
with a dimension u = 0.5 (Mandelbrot, 1983). The dis-
tribution of time intervals is Lévy type which has density
(Zaliapin et al., 2005)

fij2(z) = m/% exp (—i) , (29)
and cdf
Fija(e) = 2[1—@(%;0,1)], (30)

where @ is the Gaussian distribution (17).

With this information available, a cumulative plot of the
number of elementary events against time can be obtained.
(In seismological terms, each elementary event is supposed
to contribute a fixed amount to a scalar moment release,
so that cumulative plots can be interpreted as analogues to
the cumulative moment-release plots used in discussing real
earthquake seismograms).

The intense clustering of the near critical process results
in this cumulative plot taking on a self-similar, step-function
appearance. By convoluting the derivative of this cumu-
lative function with a suitably shaped Green’s function, a
record can be obtained which may be compared with the
trace of a seismograph or its envelope in reality (Fig. 20).
By applying similar criteria to those used to identify real,
particular events, Kagan and Knopoff (1981) were able from
the time series record to list simulated ‘events,” each with
its own ‘magnitude’.

In the third stage of modeling, the spatial coordinates
(location of disc center, orientation, and direction) are sim-
ulated according to Fig. 19b. Although in principle dislo-
cations are infinitesimal, in practical simulations the dislo-
cation loops are finite with a disc radius ro. However, this
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radius can be taken to be as small as possible. In such a case
the critical branching process converts into a continuum-
state process (Jirina, 1958).

The rotation of the focal mechanisms follows the 3-D ro-
tational Cauchy distribution (25). Most rotations are in-
finitesimal, though in rare cases large rotations give rise
to fault branching (Kagan, 1982). As we explained above,
the 3-D rotations are described by the group SO(3); hence,
our model is a random branching walk on non-commutative
groups. From the results of this stage, it is possible to ob-
tain a visual picture of the resulting “fractures” by plotting
the intersection of the elementary discs with a fixed plane
(Fig. 21).

It is partly from such pictures that the angular Cauchy
distribution, rather than some other angular analogue of the
stable distributions, has been chosen. As can be seen from
Section 7.2, this distribution also has a simple, physical ex-
planation. The obtained distribution of fault traces looks
like actual earthquake fault maps. The spatial moment func-
tions are also qualitatively similar to those in Fig. 11: the
1/D and 1/V behaviors have been reproduced, although no
rigorous tests have been attempted (Kagan and Vere-Jones,
1996).

By averaging the locations of the elementary dislocations
resulting in such an ‘event’, an approximate location for the
‘hypocenter’ of the event can be determined. The centroid,
representing roughly the center of gravity of the locations of
the elementary events contributing to the cluster (Fig. 1),
can be determined as well. In this way a synthetic seis-
mic catalogue can be produced in which events are listed in
time sequence and associated with a hypocenter, magnitude
and a focal mechanism. Processing the synthetic catalog
through a maximum likelihood procedure similar to that
used for real catalogs (Section 8.1) yields similar values of
basic parameters describing an earthquake occurrence.

For extended rupture, like that shown in Fig. 21, we
can calculate the seismic moment tensor of an earthquake
or earthquake sequence

N
M:Z,u Hqix...xqjx .xg |, (31)
i=0 13

where go is a quaternion corresponding to the initial dis-
location in Fig. 18. The quaternion product, ending with
gi, describes a combination of 3-D rotations at the path &;
in a branching process leading to the i-the dislocation. In a
branching process such a path is unique. Each of the quater-
nion product g; components follows the rotational Cauchy
distribution (25). Thus, the quaternion product in the for-
mula represents the orientation of the i-th dislocation. The
operator u(.) converts the orientation (quaternion) into the
seismic moment tensor (Kagan and Jackson, 1994, their Ap-
pendix).
The quaternion multiplication is non-commutative, i.e.,
in general
G Xq # @Xaq. (32)
Therefore, the resulting probability structure should be
studied by a non-commutative probability theory (e.g.,
Voiculescu, 2000). Moreover, the moment tensor in (31)
should have its smallest eigenvalue as non-zero. Hence
the combined source would not be a double-couple (1), al-
though it will likely only insignificantly differ from a double-
couple (Kagan and Knopoff, 1985a). In this case normalized
quaternions are insufficient to characterize complex moment
tensors as in (31). These tensors, even after normalization,
require four degrees of freedom for representation. Higher-
order seismic moment tensors (Kagan, 1987) can be used to
characterize the complex geometry of a fault rupture. The
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gauge theory of dislocations and disclinations in solids (Ede-
len and Lagoudas, 1988), most likely needs to be employed
to describe complex earthquake rupture fully.

There has been recently renewed interest in the branch-
ing earthquake fault model. In a limited test, Libicki and
Ben-Zion (2005) used a simplified procedure to reproduce
some properties of the Kagan (1982) model.

8.4. Earthquake forecasting attempts

The fractal dimension of the earthquake process is lower
than the embedding dimension: in time (1-D) the fractal di-
mension is 0.5 (28); the correlation dimension in 3-D space
is 2.2 (Section 6.2). This allows us to forecast the spatial
and temporal probability of earthquake occurrence.

8.4.1. Phenomenological branching models and
earthquake hazard estimation

For the phenomenological forecast of seismic activity, we
employed both methods shown in Figs. 17b;c: branching-in-
magnitude and branching-in-time (see Kagan and Knopoff,
1977; Kagan and Knopoff, 1987b, respectively). It is not
currently clear which technique would be more appropriate
for earthquake forecasting. The advantages or drawbacks
may depend on catalog properties or on goals of forecast-
ing. With the first method (A), it is easier to calculate the
earthquake rate at the detection threshold and extend the
forecasts below the threshold. Forecasting in forward time
would involve simulating various cluster probabilities (Ka-
gan and Knopoff, 1977).

The second technique (B) is convenient for calculating the
earthquake rate at the forward time boundary of an avail-
able catalog. This method is currently widely used in earth-
quake prediction efforts (see citations in the beginning of
Section 8). However, to extend the forecast horizon into fu-
ture, simulation is needed (Kagan and Jackson, 2000; Helm-
stetter and Sornette, 2004), since we need to consider earth-
quakes that occur between the end of catalog data and the
prediction time. Similarly, if we want to take into account
past seismicity (as shown in Figs. 17b;c, then simulation is
needed in both models (A-B).

Since 1999 we have been running experimental short- and
long-term forecasts of the west Pacific seismic activity (Ka-
gan and Jackson, 2000). In Fig. 22 we display long-term
forecast maps computed in 2000 for the north-west Pacific
region.

We have tested the long-term forecast by a Monte-
Carlo simulation (Kagan and Jackson 1994; 2000), see also
http://scec.ess.ucla.edu/~ykagan/tests_index.html. The
test involves comparing the forward prediction issued before
the test period with a retrospective prediction optimized af-
ter 2002, when the earthquakes which occurred in 2000-2002
were known. If these two forecasts differ within the 95%
confidence limit estimated by a simulation procedure, we
consider the forward prediction successful. In effect, instead
of competing against a null hypothesis which cannot be ef-
fectively defined for the inhomogeneous spatial distribution
of seismicity, we test our results against the ‘perfect’, ideal
model, specified on the basis of retroactively adjusting the
model parameters. Using a similar technique, we produce a
daily short- and long-term earthquake forecast for southern
California (Helmstetter et al., 2006).

Kagan and Knopoff (1987b) tested the short-term fore-
cast by the maximum likelihood technique for a retrospec-
tive earthquake forecast at the San Andreas fault. Kos-
sobokov (20086) tested our short-term western Pacific fore-
cast and found that “... the achieved statistics are much
better than random guessing.” (However, see also our com-
ment on his paper — Kagan and Jackson, 2006.)

8.4.2. Earthquake fault propagation modeling and
earthquake hazard estimation
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One way of using the continuum-state branching model
of fault propagation (Section 8.3) is to apply it to maps of
geologic faults and past earthquakes to predict the propaga-
tion of future earthquake ruptures. As we discussed earlier
(Section 2.4), geometric compatibility conditions imply that
faults must rupture virgin rock. The model which repro-
duces branching properties of real earthquake faults can be
applied for extrapolation to fault data. Kagan and Knopoff
(1984) made an early attempt to see how such a forecast
could be formulated. They extrapolated the fault traces as
the result of model simulation. In principle, if appropriate
Green’s functions are available, this model can generate a
set of seismograms for each synthetic sequence.

9. Discussion

As we show in this paper, the earthquake process is con-
trolled by scale-invariant, fractal distributions. Thus, math-
ematical “monsters” that were produced more than a hun-
dred years ago (Mandelbrot, 1983; Feferman, 2000) are di-
rectly related to earthquake science and representations of
seismicity.

Now we understand that we see and experience these
monsters when, for example, we pour milk into tea or step
over cracked pavement. Moreover, Section 8.3 proposes that
these scale-invariant distributions can be at least generally
explained by using simple assumptions on random stress
behavior: (i) earthquake time behavior by the Brownian
motion-like history of stress change and (ii) fault geometry
by the Cauchy distribution of stress tensors due to randomly
distributed defects in rock medium. This Cauchy distribu-
tion induces the Cauchy 3-D rotation of focal mechanisms
(25). Such a physical and mathematical explanation is a rel-
atively rare case in the study of fractal distributions (Man-
delbrot, 1983).

However, it has not yet been explored whether simulated
earthquakes (Section 8.3) are faithful representation of seis-
micity. Several reasons complicate the comparison: our ob-
servational data are not sufficiently detailed, especially with
regard to spatial and angular resolution (see Table 1). The
mathematical and logical structure of the stochastic model
needs to be explored to see if it is consistent and can be
extended to the continuum limit.

As we mentioned in several parts of this review paper,
many of the mathematical techniques necessary to describe
earthquake geometry and its occurrence are still being devel-
oped: (i) the theory of stable distributions and their statis-
tics; (ii) statistics of 3-D rotations; (iii) random branching
walk on non-commutative groups; (iv) the gauge theory of
deformation in solids, etc.

But developing a comprehensible theory of earthquake
rupture may encounter serious mathematical difficulties.
Earthquake faults, as shown in Fig. 21, are stochastic frac-
tal objects. The stress at the fractal boundary should be
nowhere a differentiable function. Thus, it is possible that
calculating earthquake rupture criteria for points close to a
‘fault-tip’ cannot be carried out effectively.

For example, for the deterministic Mandelbrot set (Man-
delbrot, 1983, pp. 188-189) it has been shown (Blum et
al., 1998, p. 55) that even if we use real-number arithmetic
operations, no algorithm can decide in a finite number of
steps whether an arbitrary point in a complex plane is in
the set. The reason for the ‘undecidability’ of the Mandel-
brot set and many similar complex mathematical objects
is that their boundary has a fractal Hausdorff dimension.
Thus, it is possible that we cannot effectively calculate the
boundary of earthquake rupture faults (Kagan, 1999).

Even if the above difficulties are resolved, more ‘menac-
ing’ monsters are on the horizon: the Banach-Tarski theo-
rem (French, 1988; Feferman, 2000) states that in a space of
three and more dimensions a ball can be divided into several
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pieces and the pieces rearranged into two balls of the same
size. This paradoxical result may mean that new ideas in
the mathematics foundations may be needed to solve our
problem.

In the introduction we mentioned the similarity of two
major problems in classical physics: turbulence of fluids and
fracture of solids (Kagan, 1992a) and an apparent lack of
interest by theoretical physicists in solving the former prob-
lem. This, most likely, has a simple explanation. Goldstein
(1969, p. 23) remarks:

‘It was at a meeting of the British Association in London in
1932 that I remember that [Horace] Lamb remarked “I am an
old man now, and when I die and go to Heaven there are two
matters on which I hope for enlightenment. One is quantum elec-
trodynamics, and the other is the turbulent motion of fluids. And
about the former I am really rather optimistic.”’

In other, apocryphal, more recent versions of the story
Lamb is replaced by Einstein, von Neumann, Heisenberg,
Feynman, and others (Yaglom, 2001; Gleick, 1987, pp. 121,
329). Does it reflect a general feeling among mathematical
physicists that the turbulence problem may be unsolvable?
The more complex problem of fracture in solids, including
earthquake rupture process, may not be solved either.

This opinion starkly contradicts the optimism expressed
by David Hilbert (1900) who said that any mathematical
problem could be solved (see also comments by Feferman,
1994, p. 14):

‘This conviction of the solvability of every mathematical prob-
lem is a powerful incentive to the worker. We hear within us the
perpetual call: There is the problem. Seek its solution. You can
find it by pure reason, for in mathematics there is no ignora-
bimus [we shall not know].’

If we revisit our question in the title of this paper, the
simple answer is that the theoretical explanation of earth-
quake occurrence is very difficult. It requires applying math-
ematical methods that are unfamiliar to geophysicists and
physicists. For example, many papers and a few monographs
(e.g., Fisher et al., 1987) consider vector and axial statistics
in 2-D and 3-D. However, there are almost no publications,
except for those cited in Section 7, dealing with the statistics
of 3-D rotations. Perhaps, a recent development of statisti-
cal theory for topological manifolds (Small 1996; Kendall et
al. 1999) could be adapted for describing the complex geom-
etry of earthquake faulting, including 3-D rotations of focal
mechanisms.

What can be done? Clearly the level of mathematics em-
ployed in earthquake physics is inadequate. Presently, the
mathematical tools used in seismological research go back
to the 18th or to the first half of 19th century. As we ex-
plained above, the level of mathematics needs to be raised
by the order of a magnitude. Results in the forefront of
modern mathematical research should be employed to de-
scribe earthquake occurrence and the geometry of earth-
quake faults in particular. Mathematical disciplines, such
as tensor analysis, matrix theory, group theory, topology,
and theory of stochastic processes must be involved in the
solution. Otherwise no significant progress is possible.

Although applied and pure mathematicians work in other
geoscience disciplines like atmospheric and plasma physics
or geodynamo theory, until now only statisticians have been
studying earthquake occurrence problems. But if we look at
the development of earthquake science in the U.S., no pro-
fessional statisticians have been involved full time in the re-
search. This situation contrasts with earthquake investiga-
tions in other countries: in Japan, Russia, and New Zealand
statisticians have been involved. It is not surprising that
earthquake prediction efforts in the U.S. have been particu-
larly unsuccessful (see Section 2.3).
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To summarize our discussion, we see that there are ma-
jor, perhaps fundamental difficulties in creating a compre-
hensive physical/mathematical theory of brittle fracture and
earthquake rupture process. On the other hand, develop-
ing quantitative models of earthquake occurrence needed to
evaluate probabilistic seismic hazard is within our reach. It
will require a combined effort of earth scientists, physicists,
statisticians, and pure and applied mathematicians.
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