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In-vitro characterization of solute transport in the spinal canal
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Mart́ınez-Bazán5, 6
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USA.
5)Department of Mechanics of Structures and Hydraulic Engineering, University of Granada, 18001 Granada,
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This paper presents results of an experimental investigation of solute transport in a simplified model of the
spinal canal. The work aims at providing increased understanding of the mechanisms responsible for drug
dispersion in intrathecal drug delivery (ITDD) procedures. The model consists of an annular channel bounded
externally by a rigid transparent tube of circular section, representing the dura mater, and internally by an
eccentric cylindrical compliant insert, representing the spinal cord. The tube, closed at one end, is connected
to a rigid acrylic reservoir, representing the cranial cavity. The system is filled with water, whose properties are
almost identical to those of the cerebrospinal fluid. A programmable peristaltic pump is employed to generate
a oscillatory motion at frequencies that are representative of those induced by the cardiac and respiratory
cycles. Laser Induced Fluorescence is used to characterize the dispersion of fluorescent dye along the canal
and into the cranial cavity for different values of the relevant Womersley number and different eccentricities
of the annular section. The present work corroborates experimentally, for the first time, the existence of a
steady bulk flow, associated with the mean Lagrangian motion, which plays a key role in the transport of the
solute along the spinal canal. The measurements of solute dispersion are found to be in excellent agreement
with theoretical predictions obtained using a simplified transport equation derived earlier on the basis of a two-
time scale asymptotic analysis. The experimental results underscore the importance of the eccentricity and its
variations along the canal and identifies changes in the flow topology associated with differences in Womersley
number, with potential implications in guiding future designs of ITDD protocols.

I. INTRODUCTION

The cerebrospinal fluid (CSF) is an ultrafiltrate of plasma that bathes the entire surface of the central nervous system
(CNS). It behaves as a Newtonian fluid with close-to-water physical properties (density ρ = 103 kg/m3 and kinematic
viscosity ν = 0.71 × 10−6 m2/s at body temperature). The total volume of CSF in a healthy adult human is around
140 − 170 ml, distributed between the cerebral ventricles (30 mL), the cerebral subarachnoid space (70 − 80 mL), and
the spinal subarachnoid space (40− 60 mL)1. CSF is mainly secreted in the choroid plexus via the ependymal cells that
line the ventricles of the brain and is reabsorbed through the arachnoid villi, the total volume being renewed every 5
to 6 hours2,3. CSF acts as shock absorber for the brain. Besides, its presence induces a buoyancy force that effectively
reduces the brain weight, thereby limiting the compression on the spinal-cord stem. In addition to these important
mechanical functions, CSF has a number of physiological functions associated with the transport of hormones, nutrients,
and neuroendocrine substances4,5.

Because of its importance in connection with physiological processes and its potential role in the development of
neurological pathologies6,7, the motion of CSF has been the subject of numerous theoretical, numerical, and in-vivo and
in-vitro experimental studies (see, for example, the recent literature reviews given in Refs. 8 and 9). The focus of the
present work will be on the motion occurring in the spinal subarachnoid space (SSAS), a slender, compliant, annular
canal surrounding the spinal cord. As shown in Fig.1, the spinal canal, which is connected to the cranial cavity through
the foramem magnum and is closed at its distant sacral end, is bounded externally by the dura membrane, which
separates it from an outer epidural layer containing fatty tissue and blood vessels, and internally by the pia membrane.
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It is now well established that the CSF velocity in the SSAS, predominantly aligned with the spinal cord, displays
pulsatile components synchronized with the cardiac and respiratory cycles, with peak values on the order of a few
centimeters per second. The cardiac-driven motion, with a typical frequency of 1 Hz, is induced by pressure fluctuations
in the cranial vault associated with the cyclic in-/outflow of arterial/venous blood10. During each cardiac cycle, a small
CSF volume ∆V ' 1− 2 mL is pushed in and out of the spinal canal through the foramen magnun. This stroke volume
is accommodated by the displacement of the dura and pia membranes, with the local CSF pressure fluctuations related
to the local changes in cross-sectional area of the SSAS through a complicated fluid-structure-interaction problem
involving the displacement of venous flow and fatty tissue9. The cardiac-driven oscillatory flow rate is maximum near
the foramen magnum and decays monotonically to zero at the sacrum, with typical peak values of order 5 mL/s in the
upper cervical region and 1 mL/s in the lumbar region10,11.

Unlike the cardiac-driven motion, the flow component synchronized with the respiratory cycle12, which exhibits fre-
quencies on the order of 0.3 Hz, is not driven by the intracranial pressure fluctuations. Instead, its origin is hypothesized
to lie in the pressure variations induced by respiration in the venous plexus, located in the epidural space of the lower
thoracic and upper lumbar spine13. Recent magnetic resonance (MR) measurements performed under normal breathing
conditions have revealed that the associated flow rates are maximum near the thoracolumbar junction (1 − 3 mL/s),
and much smaller in the cervical spine14.

Apart from the aforementioned purely oscillatory motion, CSF also undergoes a slow steady motion characterized by
small velocities on the order of a centimeter per minute. Unlike the oscillatory flow, this ‘bulk motion’ has the ability
to transport solutes along the total distance of the spinal canal, and therefore plays a key role in enabling the numerous
physiological functions attributed to CSF. This bulk motion is also important in connection with the transport of drugs
in intrathecal drug delivery (ITDD) procedures15, a technique used to administer pain, analgesic, and cancer medication
in which the drug is delivered directly into the CSF, typically through a lumbar puncture, thereby circumventing the
blood-brain barrier16. The widespread use of ITDD faces challenges related to underdosing and overdosing, with the
former resulting in reduced therapeutic effects in the case of cancer treatments and the latter leading to permanent nerve
damage in the case of pain medication17. It is evident that a better understanding of the bulk motion of CSF is essential
both to prevent physiological dysfunctions and pathologies of the CNS6 and to enable optimized subject-specific ITDD
protocols.

While the existence of bulk motion has been known since the seminal radiographic observations of Di Chiro18, its
physical origin has been unveiled only relatively recently19. The analysis considered a simplified model of the cardiac-
driven oscillatory flow in agreement with the considerations described before. The associated Eulerian velocity field was
computed using a perturbation analysis involving a small parameter ε representing the ratio ∆V/V � 1 of the stroke
volume ∆V ' 1− 2 mL to the total volume of CSF contained in the SSAS (V ' 40− 60 mL). In the limit ε� 1, the
velocity at leading order was found to be purely oscillatory, with a zero time-averaged value. By way of contrast, the
first-order corrections, associated with the nonlinear convective acceleration, were found to contain a steady-streaming
component that corresponds to the bulk flow observed in in-vivo experiments. The theory was applied to a simplified
geometry, which consisted of an annular doubly slender canal, open at the entrance and closed at the end (this steady
component has also been studied with elliptical cross-section geometries in recent works20). Although complicating
micro-anatomical features such as nerve roots, dentriculate ligaments and trabeculae were not taken into account (see,
for example, Refs. 10,21–27), the model did account for a key feature of the SSAS, namely, the eccentric placement of
the spinal cord within the lumen of the spinal canal. The magnitude of the axial streaming flow was found to depend
critically on the level of eccentricity.

The analysis of Ref. 19 was extended in 28 to show that the mean Lagrangian velocity experienced by a fluid particle
in the spinal canal is the sum of the steady-streaming velocity, determined by time-averaging the Eulerian velocity field,
and the so-called Stokes drift29, a purely kinematic effect associated with the spatial nonuniformity of the pulsatile flow.
One can understand the origin of the Stokes drift by noting that, in the presence of a velocity gradient, a fluid particle
subject to an oscillating velocity field experiences during each oscillatory cycle an instantaneous velocity that differs by a
small amount from that existing at the initial point at corresponding times. As a result, the fluid particle does not return
to its original position at the end of the cycle. The Stokes drift arises as the result of the accumulation of displacements
over subsequent cycles, yielding characteristic velocities that are comparable in magnitude to those of steady streaming.
The asymptotic analysis performed in Ref. 28 also provided a reduced transport equation describing the dispersion of
a solute carried by the CSF, with the mean Lagrangian velocity (i.e. the sum of the steady-streaming and Stokes-drift
velocities) determining the convective transport rate in the long time scale characterizing dispersion along the spinal
canal. The strength of the previous reduced models19,28 lies in the fact that they provide closed-form expressions
for the time-averaged velocity field associated with the bulk motion, as well as simplified transport equations that
describe the slow solute transport, which can be evaluated very efficiently, without the need to solve the flow over thou-
sands of oscillation cycles, as is required in direct numerical simulations targeting solute dispersion along the spinal canal.
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FIG. 1. Anatomy of the spinal subarachnoid space of a healthy human with axial cuts at several locations and the CSF colored
in blue.

As mentioned before, the eccentricity of the spinal canal has an important effect on the Lagrangian motion, and
hence on the transport of solutes in the spinal canal. As shown in Fig. 1, in the human SSAS, this eccentricity changes
longitudinally, as the spinal cord changes its position relative to the dura in the anteroposterior plane. Indeed in healthy
humans, the spinal canal exhibits concavity variations in the sagittal plane stemming from the four main curves of the
spine, i.e. two kyphoses, and two lordosis30, characterized by the Cobb angles31. In adults, the spinal cord located
inside the spinal canal extends cranially from the brain to nearly the end of the L1 region30. The spinal cord’s relative
position inside the SSAS varies along the canal 30,32, as well as with posture33,34, which yields subject-specific spinal
canal eccentricity variations. In particular, the spinal cord is located near the posterior side of the canal in the cervical
region, but close to the anterior side in most of the thoracic region, shifting posteriorly again as it approaches the lumbar
region10,22,25,32,35. This variable eccentricity has an important effect on the spatial structure of the Lagrangian motion,
leading to the emergence of closed recirculating regions. These recirculating Lagrangian vortices have been computed
on theoretical grounds for a realistic patient specific geometry11 and were corroborated in an idealized geometry by
means of direct numerical simulations36. The existence of these Lagrangian recirculating regions can have a strong
clinical impact, since they modulate the rate of transport with which a drug injected intrathecally in the lumbar region
is transported to the cranium. The presence of closed Lagrangian streamlines leads to augmented solute residence times
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in certain regions, thereby possibly increasing the risk of local overdose in ITDD procedures.

Beyond efforts to analytically and numerically model CSF flow and solute transport, a few attempts have recently
been made to address the problem experimentally37–41. In these works, different types of in-vitro models, including an
idealized channel with a simplified flow waveform37 and realistic patient-specific geometries with real CSF flow rates38,39,
have been considered, leading to promising results. However, these studies deal with rigid canals that are open at both
ends, and do not directly address the role of the compliant dura membrane and the associated fluid-structure interaction
problem, an important aspect of the CSF dynamics in the SSAS.

Motivated by the clinical relevance of solute transport in the spinal canal and the lack of a thorough experimental
characterization of the problem, we present here an in-vitro experimental study of the solute transport along a compliant
spinal canal. We begin by giving in section II a description of the experimental facility and experimental techniques
employed in this study. The facility is designed according to the models discussed in our previous works19,28,36, with
consideration given to the case in which the annular canal has constant eccentricity and the more realistic case in which
the eccentricity varies with the distance from its entrance. A brief description of the analytical flow and transport
models developed earlier19,28 is provided in section III. The experiments, reported in section IV, are used to investigate
effects of eccentricity and oscillating frequency. The experimental results are supported by predictions given by the
analytical model. Finally, conclusions are drawn in section V.

II. EXPERIMENTAL FACILITY AND EXPERIMENTAL TECHNIQUES

The experimental facility used in our study, to be described below, enables the quantification of effects of spinal-cord
eccentricity and flow frequency on solute transport in the spinal canal. The experiments were performed in an in-vitro
model of the subarachnoid space, using distilled water of density ρ = 998.2 kg/m3 and kinematic viscosity ν = 10−6

m2/s as working fluid. The model consisted of a 15× 15× 15 cm3 acrylic tank, emulating the cranial vault, connected
to a plexiglass tube of length L = 50 cm, representing the dura mater. To allow for temporal variations of the local
cross-sectional area, needed to accommodate the oscillating flow, a hollow flexible tube of circular section was placed
inside, with its distal end anchored at the closed bottom of the rigid tube and its proximal end connected to a peristaltic
pump, as indicated in Fig. 2(a). The flexible tube, with outer radius Ri = 7 mm and thickness hs = 2 mm, was made up
of rubber (Shore hardness 60A, elastic modulus of approximately Ec = 2.2 MPa and tensile strength of Ts = 11 MPa),
yielding an elastic wave of characteristic wavelength (Ec/ρ)1/2/ω, larger than the tube length L. The deformation of the
inner tube associated with this elastic wave drives the motion in the annular canal. Expressions for the local variation
of the cross-sectional area can be derived, as done in Ref. 36, enabling the elastic wave to be related to the pressure
variations along the canal. Note that the speed of the elastic wave in the experiments (Ec/ρ)1/2 ' 45 m/s is comparable
to, although somewhat larger than, those reported in the literature, with values ranging from 3.5 m/s to 33.8 m/s for
subjects under different conditions42–45.

To explore effects of spinal-cord eccentricity, two different canal geometries were implemented, as indicated in Fig.
2. Most experiments considered the geometry depicted in Fig. 2b, in which the outer tube is a circular cylinder of
inner radius Re = 10.5 mm that lies parallel to the inner tube, so that the resulting canal eccentricity, characterized
by the distance between their axes, e, remains constant along the canal. The eccentricity can be changed using cams
with different eccentricities in the lower and upper parts of the facility, where the flexible tube was anchored. In this
case, the resulting undeformed canal width can be approximated by the expression h̄∗(s) = h∗c [1 − β cos(2πs)], where
h∗c = (Re−Ri)= 3.5 mm is the average canal width, β = e/h∗c < 1 the dimensionless eccentricity, and s is the azimuthal
distance normalized with the perimeter of the inner tube `∗ = 2πRi, with 0 ≤ s ≤ 1 and 2πs being the corresponding
azimuthal angle (see Fig. 2d). A limited set of experiments used the geometrical configuration shown in Fig. 2c,
involving an outer rigid tube with longitudinal curvature, resulting in a canal eccentricity that varies with the distance
from the canal entrance x∗ according to ev = e cos (2πx∗/L) mm, where e = 1.5 mm was fixed. In this case, the
circular section of the outer tube has inner radius Re = 10 mm, so that h∗c= 3 mm and β = e/h∗c = 0.5. In this
case, the canal width varies with both x∗ and s according to h̄∗ = h∗c [1 − β cos(2πx∗/L) cos(2πs)]. A programmable
peristaltic pump was used to generate a flow rate varying harmonically with time t∗ according to Q(t∗) = Qmax sin (ωt∗)
of amplitude Qmax and angular frequency ω, the latter related to the period T and frequency f by ω = 2πf = 2π/T .

The stroke volume that enters and leaves the flexible tube during each cycle, given by ∆V =
∫ π/ω
0

Qdt∗ = 2Qmax/ω,

was chosen to be a small fraction of the volume contained in the annular canal V = πL(R2
e − R2

i ), resulting in values
of ∆V/V ≈ 0.018− 0.084 similar to those observed in the SSAS9. The volume changes induced by the expansions and
contractions of the flexible tube were accommodated in the facility thanks to the presence of a compressible air balloon
placed inside the tank (see Fig. 2a).
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FIG. 2. (a) Schematic representation of the experimental in-vitro facility of the SSAS. (b) Representation of the constant
eccentricity canal and (c) variable eccentricity canal, with cross sections at planes x = x∗/L = 0, 0.5 and 1, showing the
dimensionless curvilinear coordinates (x, s, η) which vary from zero to unity, defined in section III. (d) Schematic view of the
unperturbed canal width and the eccentricity, ev, where ev(x∗) = e in the constant eccentricity canal and ev(x∗) = e cos (2πx∗/L)
in the variable one.

Two types of experiments were performed using Laser Induced Fluorescence techniques (LIF). The first one was used
to determine the transport of a solute concentration along the spinal canal, from an initial position x∗0/L = 0.5 from the
entrance of the canal. In these experiments, the bottom half of the canal (from x∗/L= 0.5 to x∗/L= 1) was carefully
filled with fluorescent dye of sodic fluorescein, of diffusivity κ ≈ 4 × 10−10 m2/s and corresponding Schmidt number
S = ν/κ ≈ 2500, at a concentration C = 1.6 g/cm3 using a syringe pump. The facility was illuminated with UV LED’s
lights and the ascending motion of the solute, induced by the peristaltic pump, was recorded with two synchronized
reflex cameras, placed at two perpendicular planes, i.e. s = 0 and s = 0.25 (see Fig. 3). During the experiments, the
sampling period was adjusted to lie between 2 and 8 times the period of the oscillating flow to assure a minimum of
200 images per test. Thus, we were able to track the front of the filament moving towards the upper reservoir until it
reached the canal entrance. The second type of experiments focused on the evolution of the solute concentration in the
cranial vault, an important aspect for ITDD procedures targeting brain tumors. In these experiments, the tank was
illuminated with a black light and the time evolution of the intensity of the light emitted by the Flourescein reaching
the tank was recorded with a CCD camera, with the sampling period selected to be 30 times the oscillatory period T .
Since the light intensity is proportional to the solute concentration, these measurements provided a useful quantification
of the time evolution of the concentration of solute reaching the cranial vault.

For the two types of experiments described above, the images were processed with a custom MATLAB® routine as
described below. First, a background image was subtracted from all the images to eliminate the external noise induced
by the UV-light. Since the wavelength of light emitted by the fluorescein is λ = 541 nm, corresponding to green color,
only the green component of the RGB image was processed and converted to a grey-scale image. Afterwards, the
minimum value of the intensity of each pixel of the images recorded was subtracted from all the images to enhance the
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FIG. 3. Schematic view of the complete setup: in-vitro model of the subarachnoid space, cameras, programmable peristaltic pump
and UV lighting. The flow rate wave form provided by the pump is also displayed in the figure with Q(t∗) = Qmax sin (ωt∗), and
the corresponding stroke volume, ∆V = 2Qmax/ω,

solute detection process and to avoid the generation of shadows and bright areas, which could be wrongly interpreted as
part of the solute motion. The pre-processed images were subsequently post-processed to determine the motion of the
front of the tracer through application of an image analysis routine based on that developed by38,39,46. For the second
type of experiments, measuring the temporal evolution of the solute concentration in the cranial vault, two windows,
located on both sides of the flexible tube crossing the reservoir, were selected and the time evolution of the averaged
value of the tracer concentration in each region was determined. To be able to compare the results, all the experiments
were performed under the same conditions of light intensity, UV LED light location and initial solute concentration.
This analysis allowed us to obtain not only the time taken for the solute to reach the cranial vault, but also the amount
of solute entering it.

A large number of experiments were performed using the straight configuration depicted in Fig. 2b for different
values of the eccentricity β and the oscillating frequency ω = 2πf , the latter characterized in the following plots by

the associated Womersley number α =
(
h∗2c ω/ν

)1/2
(see Table I). To explore effects of canal eccentricity on solute

transport, three values of β were tested, namely β = 0.14, 0.28 and 0.42, using the straight configuration with α =
4.39. Experiments 1 to 6 in Table I were devoted to the description of the time evolution of the tracer front along
the canal, while experiments 7 to 12 focused on the description of the time evolution of the concentration of solute in
the reservoir (Cranial vault). In addition, to study the effect of the oscillation frequency, a series of experiments was
performed varying α from 3.04 to 11.77 (experiments 13 to 16), for β = 0.42. The variable-eccentricity configuration of
Fig. 2c was used in experiments 17 and 18 for a fixed value of the Womersley number α=4.45. In particular, experiment
17 focuses on the motion of the tracer along the curved SSAS, while experiment 18 aims at describing the evolution of
the tracer concentration in the cranial vault.

III. MATHEMATICAL MODEL

The flow of CSF in the spinal canal fundamentally involves a fluid-structure-interaction problem governed by the
Navier-Stokes equations for an incompressible fluid, together with a constitutive law characterizing the deformable dura
membrane behaviour. In addition, to describe the transport of a solute of molecular diffusivity κ, the species transport
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Experiment β f (Hz) ω (rad/s) α ∆V/V fs (Hz) Configuration Type

1 0.14 0.25 1.571 4.39 0.052 0.03125 Straight SSAS
2 0.14 0.25 1.571 4.39 0.084 0.03125 Straight SSAS
3 0.28 0.25 1.571 4.39 0.052 0.05000 Straight SSAS
4 0.28 0.25 1.571 4.39 0.084 0.05000 Straight SSAS
5 0.42 0.25 1.571 4.39 0.052 0.08333 Straight SSAS
6 0.42 0.25 1.571 4.39 0.084 0.08333 Straight SSAS

7 0.14 0.25 1.571 4.39 0.052 0.00833 Straight Cranial vault
8 0.14 0.25 1.571 4.39 0.084 0.00833 Straight Cranial vault
9 0.28 0.25 1.571 4.39 0.052 0.00833 Straight Cranial vault
10 0.28 0.25 1.571 4.39 0.084 0.00833 Straight Cranial vault
11 0.42 0.25 1.571 4.39 0.052 0.00833 Straight Cranial vault
12 0.42 0.25 1.571 4.39 0.084 0.00833 Straight Cranial vault

13 0.42 0.12 0.754 3.04 0.030 0.04000 Straight SSAS
14 0.42 0.60 3.77 6.80 0.030 0.10000 Straight SSAS
15 0.42 1.20 7.54 9.61 0.024 0.20000 Straight SSAS
16 0.42 1.80 11.31 11.77 0.018 0.20000 Straight SSAS

17 0.50 0.35 2.20 4.45 0.052 0.01750 Curved SSAS

18 0.50 0.35 2.20 4.45 0.052 0.00833 Curved Cranial vault

TABLE I. Experimental conditions of the different sets of experiments performed. Here, β is the relative eccentricity, f is the

oscillatory frequency of the motion, with ω = 2πf , α =
(
h∗2
c ω/ν

)1/2
is the Womersley number, ∆V/V � 1 is the ratio between

the stroke volume and the total volume in the canal, and fs is the data acquisition frequency.

equation should also be solved36. In our previous works19,28, the flow and transport of the CSF along the SSAS was
described in terms of dimensionless curvilinear coordinates, including the normalized axial and azimuthal coordinates
x = x∗/L and s introduced above along with the transverse coordinate η, defined as the transverse distance to the
inner surface normalized with the local width, h∗(x, s, t), so that all coordinates vary from zero to unity (see Fig. 2).
Here, t = t∗ω represents the dimensionless time and the variables with asterisks denote dimensional variables. Since a
detailed derivation of the reduced-order equations is available in previous publications19,28, we shall only give below a
succinct description of the model.

In the analysis, the cranial pressure oscillations are assumed to be harmonic, described by (∆p)c cos(t), with (∆p)c
representing the intracranial pressure-fluctuation amplitude. Since the canal is slender, in that the characteristic values
of the canal length L, spinal-cord perimeter `∗c , and characteristic SSAS width h∗c satisfy L � `∗c � h∗c , terms of order
(`∗c/L)2 and (h∗c/L)2 (and smaller) can be neglected in the conservation equations, as well as those associated with the
small curvature along the spinal canal19. The small local deformations δh∗ of the canal width h∗ = h̄∗ + δh∗, induced
by the local pressure variations δp∗, are described using a linear elastic model δh∗ = γ∗δp∗, where γ∗ measures the
canal compliance10,28,36, spatial variations of which are accounted for by introduction of the dimensionless function
γ(x, s) = γ∗/γ∗c , where γ∗c is the characteristic value of γ∗. The canal compliance is limited, in that

ε =
γ∗c (∆p)c
h∗c

' ∆V

V
≈ ∆L

L
� 1, (1)

where ∆L is the characteristic value of the stroke length.

An order-of-magnitude of the Navier-Stokes equations shows that the convective acceleration, of order u2c/L is ε
smaller than the local acceleration, of order ωuc, where uc ∼ ω∆L ∼ εωL is the characteristic axial flow velocity. The
viscous force per unit mass, of order ucν/h

∗2
c , scales in the dimensionless formulation with the inverse of α2, where

α =

(
h∗2c ω

ν

)1/2

, (2)

is the relevant Womersley number, typically in the range 3 <∼ α <∼ 10. On the other hand, the deformable behaviour of
the dura membrane is characterized by the dimensionless wavenumber

k =
ωL

[(h∗2c γ
∗
c )/ρ]1/2

, (3)

representing the ratio canal length to the characteristic wavelength of the elastic wave.
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In the dimensionless formulation19,28, the geometry of the canal is characterized by the dimensionless functions
`(x) = `∗/`∗c and h(x, s, t) = h∗/h∗c . The limited compliance of the dura membrane leads to small changes of the
canal width h(x, s, t) = h̄(x, s) + εh′(x, s, t), where h̄(x, s) is the unperturbed canal width and h′(x, s, t) represents the
time-dependent radial deformation. The streamwise, azimuthal and traverse components of the velocity were scaled
with their corresponding characteristic values, namely uc = εωL, wc = εω`∗c , and vc = εωh∗c , respectively, to give
(u,w, v). In addition, the streamwise pressure difference from the entrance value was scaled with its characteristic value
ρεω2L2, whereas the small pressure variations around the canal at a fixed value of x, which are necessary to describe
the azimuthal motion, are scaled with its corresponding characteristic value ρεω2`∗2c to give the functions p′(x, t) and
p̂(x, s, t), respectively.

The problem can be solved under the assumptions of canal slenderness L � `∗c � h∗c and small compliance ε � 1,
by introducing regular asymptotic expansions in powers of ε for all variables (i.e. φ = φ0 + εφ1 + ε2φ2 + ..., with φ
representing any unknown function). The nonlinear terms associated with convective acceleration, of order ε, can be
neglected at leading order, leading to a linear unsteady lubrication problem involving a linear elastic law, the solution
of which depends on the specific geometry of the SSAS throught the functions `(x) and h(x, s, t), on the dimensionless
elastic-wave number k and the Womersley number, α, and on the compliance distribution, measured by the function
γ(x, s). The resulting velocity components and wall deformation can be expressed in the harmonic form u0 = Re(iUeit),
w0 = Re(iWeit), v0 = Re(iV eit), and h′0 = Re(H ′eit), where U , W , V , and H ′ are complex functions carrying the
spatial dependence. Since at leading order the time-averaged values are zero, it is the first-order corrections, arising
from the nonlinear effects associated with the convective acceleration and the canal deformation, that induce a nonzero
steady component (uSS , wSS , vSS). This steady-streaming motion47 has longitudinal velocities that are of order ε2ωL,
resulting in residence times in the spinal canal of order ε−2ω−1 � ω−1. Since ε ∼ 1/40, it follows that the residence
time is about half an hour, to be compared with the period of the cardiac cycle (i.e. T ' 1 s).

As shown in Ref. 28, the mean Lagrangian motion following a fluid particle has an additional component arising
from the so-called Stokes drift, whose magnitude is comparable to that of the steady-streaming velocities, so that the
mean Lagrangian velocity determining the slow slow convective transport of the solute in the spinal canal is given
by (uL, vL, wL) = (uSS + uSD, vSS + vSD, wSS + wSD). The dispersion of the solute includes an additional diffusion
contribution that scales with the solute molecular diffusivity κ. The disparity of times scales between the oscillatory
motion of CSF particles, with characteristic time ω−1, and the time-averaged Lagrangian motion, with characteristic
time ε−2ω−1, enables a two-time-scale asymptotic analysis to be performed, leading to a reduced transport equation

∂C

∂τ
+ uL

(
∂C

∂x
− ∂h̄

∂x

η

h̄

∂C

∂η

)
+
vL

h̄

∂C

∂η
+
wL

`

(
∂C

∂s
− ∂h̄

∂s

η

h̄

∂C

∂η

)
=

1

α2ε2Sh̄2
∂2C

∂η2
, (4)

for the solute concentration C(x, s, η, τ) involving the slow time variable τ = ε2t and the Schmidt number S = ν/κ ∼
ε−2 � 1. Note that, since Eq. (4) only accounts for transverse molecular diffusion, the streamwise dispersion of the
solute is driven entirely by convective transport. The above simplified description, whose accuracy was tested in Ref. 36
via comparisons with results of direct numerical simulations, will be used below for generating theoretical predictions,
to be compared with the experimental results.

IV. RESULTS

Effects of eccentricity and pulsation frequency on the dispersion of a solute are to be investigated below using the
in-vitro experiments and mathematical model described above. We begin by presenting in Section IV A the experimental
results obtained with the constant–eccentricity model depicted in Fig. 2(b) for values of β ranging from β = 0.14 to
β = 0.42 and Womersley numbers ranging from α = 3.04 to α = 11.77. The configuration with variable eccentricity
shown in Fig. 2(c) is investigated separately in Section IV B for a Womersley number equal to α = 4.45. The measure-
ments will be compared with predictions from the theoretical analysis, which will also be used to describe the velocity
field along the canal.

Attention will be focused on the evolution of the solute front. In particular, the temporal variation of the front shape
and its advance rate along the canal towards the cranial vault will be registered and compared with predictions obtained
from the model with S ≈ 2500. In presenting the results, the axial coordinate and the time will be expressed in the
dimensionless form x = x∗/L and τ = ε2ω t∗ = ε2 t, respectively, as is consistent with the theoretical model28.
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FIG. 4. Time sequence of the experimental evolution of the solute along the spinal canal for β = 0.42 and α = 4.39 (experimental
set 5 in Table I). The upper and central rows show the experimental frontal and side views, while the bottom row shows the
results obtained from the mathematical model (the red and green boxes represent the frontal and side views, respectively). Here,
W and N indicate the widest and the narrowest sections of the canal.

A. Constant eccentricity configuration: effect of β and α

Let us begin by analyzing the case corresponding to β = 0.42 and α = 4.39, as the reference case. Figure 4 shows
a sequence of snapshots of the temporal evolution of a solute initially filling the tube from x = 0.5 to x = 1. The
frontal view shows the projection on a vertical plane at s = 0.25, where the narrowest section is at the central axis
of the view, while the lateral view shows a projection on a vertical plane at s = 0, where the widest section is on the
left of the image and the narrowest one on the right. Note that, since the experimental images are in fact projections
of a three-dimensional view, the abscissa axes do not really show the variable s. The inner, compliant tube can also
be seen in the images and should not be confused with the light emitted by the fluorescein. Although perturbed, the
ascending motion of the solute is nearly symmetric with respect to the symmetry plane around the narrowest section,
as observed in the frontal view. For this configuration, the solute is observed to move upwards (cranial direction) along
a small region within the narrowest part of the canal, s = 0, whereas it moves towards the distal end (caudal direction)
around the widest part of the canal, s = 0.5. The decrease in the area close to the widest region is not appreciated
in the images because, as previously stated, they show the projection on a plane of a three-dimensional view. Thus,
the liquid in front of the narrowest section, whose level is higher, blocks the view of that area. Furthermore, it can
be inferred from the time sequences that the front advances with a speed that increases as it gets closer to the cranial
vault, as it will be later corroborated. The model predictions show reasonably good agreement with the measurements.
In particular, as displayed in the bottom panel of Fig. 4, the solute exhibits cranial motion along the narrowest region,
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FIG. 5. Distribution of streamwise components of the steady-streaming, Stokes-drift, and Lagrangian velocity fields at different
sections x in first, second and third column, respectively. Streamlines obtained for the width-averaged Lagrangian components∫ 1

0
uLdη and

∫ 1

0
wLdη with distribution of width-averaged Lagrangian velocity magnitude, qL =

[(∫ 1

0
uLdη

)2
+
(∫ 1

0
wLdη

)2]0.5
.

and descends towards the distal end along the widest region. In addition, the transport velocity is also seen to increase
near the canal entrance. The quantitative agreement between the experiments and the model is excellent, as seen by
comparing the time needed for the solute to reach the canal entrance as predicted by the model (τ = 0.48) and by the
experiments (τ ≈ 0.52).

The mathematical model will be used to analyze in detail the experimental results shown in Fig. 4. Unless otherwise
stated, the computations assume a uniform compliance factor γ = 1. Figure 5 shows distributions of the streamwise
components of the steady-streaming, uSS , Stokes-drift, uSD, and Lagrangian velocities, uL, respectively, at different
distances from the entrance, x. As it can be observed, the steady streaming motion is directed towards the distal end
around s = 0.5 (widest section) and towards the canal entrance close to s = 0 (narrowest section), whereas the Stokes
drift shows a downwards movement along s = 0 and upwards along s = 0.5, the latter becoming larger for intermediate
values of s and peaking close to s = ±0.25. The steady-streaming velocity is significantly larger than the Stokes-drift
velocity, so that the resulting distribution of Lagrangian velocity, shown in the third column of Fig. 5, is similar to
that of steady streaming, shown in the first column. The associated induced net convective flow can be characterized

by representing the Lagrangian streamlines of the width-averaged values of the axial and azimuthal velocities
∫ 1

0
uLdη

and
∫ 1

0
wLdη in a s− x plane (see Fig. 5). A net stationary motion is observed entering the channel and moving down

through s = 0.5 at a relatively large velocity, as indicated by the proximity of the streamlines. The motion decelerates
with the distance from the canal entrance, where the fluid moves with an azimuthal component towards s = 0, and
begins to rise towards the cranial vault with a speed that increases as it approaches the entrance of the canal (i.e. as x
decreases).

The effect of the eccentricity on the transport of a solute was further investigated experimentally by varying the
distance between the axes of both cylinders, e, to yield values of β equal to 0.14, 0.28 and 0.42, respectively (see Fig. 2),
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FIG. 6. Distribution of a solute, initially filling the canal from x = 0.5 to x = 1, for β = 0.42, β = 0.28, and β = 0.14, at
τ = 0.48 in the straight configuration, corresponding to experiments 5, 3 and 1 of Table I, respectively. Experimental results are
represented on the left-hand side of the panels while the theoretical predictions obtained integrating Eq. (4) are represented on
the right-hand side. Here, N and W indicate the location of the narrowest and widest sections in the experimental visualizations.

while maintaining a constant value of the Womersley number α = 4.39. Snapshots at τ = 0.48 are shown in Fig. 6 for
the three values of β and compared with the results obtained from the theoretical model. Two volume ratios ∆V/V
were considered, namely 0.052 and 0.084 (Table I), yielding similar results. From the measurements, it can be observed
that, while β hardly affects the flow topology in the range considered, i.e. the solute travels upwards around s = 0 and
downwards around s = 0.5, it has a major impact on the net flow velocity and, thus, the time needed for the solute
to reach the cranial vault. As seen in the snapshots for τ = 0.48, increasing the eccentricity results in larger transport
velocities, so that the front of the solute distribution, initially located at x = 0.5, reaches x ≈ 0.35 for β = 0.14,
x ≈ 0.12 for β = 0.28, and x ' 0 for β = 0.42. The right-hand side of each panel in Fig. 6 shows the corresponding
predictions of the solute distribution given by the theoretical model, yielding results in reasonably good agreement with
the experimental observations.

To better quantify the effect of β, the time evolution of the solute front as it moves towards the canal entrance,
between x = 0.45 and x = 0.05, is shown in Fig. 7 for β = 0.14, 0.28, and 0.42 and a constant value of α = 4.39,
both for the experiments and the theoretical model. As it has been previously mentioned, in the range of eccentricities
considered here, the solute rises faster as β increases. The plots indicate that the increase in dispersion rate is not
linearly proportional to β. For instance, the time needed for the solute to reach the canal entrance is halved when β
increases from 0.14 to 0.28, while it is reduced by approximately only 25% when β is increased from 0.28 to 0.42. It
is also of interest that the slope of the curves, −dx/dτ , increases as x decreases, indicating that the rising velocity
increases as the solute approaches the entrance of the canal. All of these features are also captured by the reduced
model, with results represented by solid curves in Fig. 7.

The model was used to further investigate effects of variations of β, with results given in Fig. 8, including distributions
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FIG. 7. Temporal evolution of the solute along the spinal canal for α = 4.39 and β = 0.14, 0.28 and 0.42 respectively (experiments
1-6 in Table I). Symbols represent the experimental measurements and the solid lines the results given by the theoretical model
with γ = 1.

of the axial component of the Lagrangian velocity, uL, at the entrance of the canal, x = 0, for different values of β
(Fig. 8a), as well as the variation with β of the time that the solute takes to travel from x = 0.45 to x = 0.05 (Fig. 8b).
Peak velocities are seen to initially increase with β, reaching a maximum value at β ' 0.54, for which the associated
time needed to reach x = 0.05 is correspondingly minimum, as shown in Fig. 8(b). For values of β ≥ 0.54 the proximity
of the walls at s = 0 causes the peak velocity to decrease in magnitude, as shown for the case of β = 0.75 in the contours
of velocity displayed in Fig. 8 (a). Similarly, the net flow rate entering/exiting the canal decreases monotonically as β
increases in the range 0 ≤ β ≤ 0.54.

In addition to performing experiments to describe the transport of a solute along the canal, we also characterized the
time evolution of fluorescein concentration at the cranial vault (experimental sets 7-12 in Table I). In these experiments,
the temporal evolution of the light intensity emitted by the fluorescein reaching the measuring windows in the reservoir
was recorded, 〈C〉(τ) = 1/A

∫
A
C dσ. Here, A is the area of the measuring windows and C is the solute concentration,

which is proportional to the light emitted by the fluorescein. Figure 9 displays the temporal evolution of the mean solute
concentration in the interrogation windows in the cranial vault for β = 0.14, 0.28 and 0.42 corresponding to α = 4.39.
In accordance with the results of the solute transport in the spinal canal described above, it can be seen that the time
at which the fluorescein begins to be detected in the region of interest (ROI) increases as β decreases. Note that, such
time does not correspond with τc reported in Fig. 8 since the amount of fluorescein in the ROI must be larger than a
given threshold to be detected in these experiments. Nevertheless, it can be observed that the rate at which the solute
reaches the cranial vault increases with β, since d〈C〉/dτ increases with β. Interestingly, the quasi-asymptotic value of
the concentration that reaches the cranial vault also increases with β. This result is attributable to the existence of
increasing rising velocities at the bottom of the canal for increasing values of β. Quantitative information regarding
dispersion times is important in connection with ITDD processes, especially in the case of drugs of short half-life48.

Effects of the oscillating frequency were investigated in experiments with constant eccentricity β = 0.42 by varying
α from 3.04 to 11.77 (experimental sets 13-16 in Table I). Figure 10 shows the distribution of solute, obtained both
experimentally (left-hand side of the panels), and using the theoretical model (right-hand side of the panels), at dif-
ferent selected times. The results reveal that variations in α lead to markedly different flow topologies and associated
velocities. This strong dependence of the steady streaming on the Womersley number is well-known in oscillatory flows
over obstacles49, but had not previously been demonstrated in connection with the flow in the spinal canal. For the
lowest values of α, i.e. α = 3.04 and α = 4.39, the generated net flow rises up along the narrow part of the canal, s = 0,
along a zone that gets thinner as α increases, while it decreases along the widest region, s = 0.5. However, for larger
values of α the flow also begins to rise around the widest section (see panel corresponding to α = 6.80). Indeed, for
intermediate values of α, i.e. α = 6.80 and α = 9.61, the solute rises along both the narrow and wide regions of the
canal, this movement becoming more important in the wide region for increasing values of α, i.e. 9.61. Finally, for the
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FIG. 8. a) Contours of the axial component of the Lagrangian velocity, uL, at the entrance of the canal, x = 0, for different
values of β, provided by the theoretical model. b) Time taken by the solute to travel from x = 0.45 to x = 0.05 as a function of
β, defined as τc. Symbols correspond to the experimental measurements and the solid line represents the model predictions with
uniform compliance γ = 1.

largest value of α = 11.77, the flow dynamics inverts almost completely and the solute moves upwards mainly along
s = 0.5 (widest section). There is a good qualitative agreement between the model and the experiments, although the
discrepancies are somewhat larger than those previously found when varying β for α = 4.39.

To experimentally quantify the effect of α on solute transport, Fig. 11 includes the temporal evolution of the uppermost
front of a solute initially located at x = 0.5. In all cases, the transport velocities are seen to increase at positions closer
to the canal entrance. The results reveal a non-monotonic behaviour in the ascending velocity of the solute for increasing
values of α, in that the rising velocity displays a pronounced decrease when α is increased from 3.04 to 6.80 but increases
for larger values of α, indicating that the solute transport is less efficient at intermediate values of α, i.e. 3.04 ≤ α ≤ 9.61.

The influence of α is further investigated by evaluating the time τc taken by the solute, initially located at x = 0.5,
to travel from x = 0.45 to x = 0.05, with values represented in Fig. 12 as a function of α. The figure includes
the experimental results, together with predictions obtained with the model using two different compliance functions,
γ(x, s). First, a uniform compliance γ1 = 1, used up to now, has been considered, for which the small deformations of
the canal thickness are axisymmetric. Second, to account for possible experimental asymmetries when the compliant
tube deforms, a compliance function given by γ2(s) = 0.2 − 9.6 (2s2 − s) was also considered, which corresponds to a
canal slightly more compliant at s = ±0.25 than in the symmetry plane s = 0 and s = 0.5. In both cases, three different
regions can be identified in the evolution of τc with α. Initially, for small values of α, for which it has been observed that
the flow rises through the narrowest section of the canal, τc decreases with α. However, for intermediate values of α,
for which the solute rises along both the narrow and wide regions of the canal, τc increases until it reaches a maximum.
Finally, for larger values of α, for which the flow rises through the widest section of the canal, τc decreases again as α
increases. Interestingly, τc barely depends on the compliance factor in the range 0 < α < 5, indicating that the results
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FIG. 9. Experimental measurements of the temporal evolution of the solute concentration in the cranial vault, 〈C〉(τ) =
1/A

∫
A
C dσ, for α = 4.39 and β = 0.14, 0.28 and 0.42 respectively (experiments 7, 9 and 11 in Table I).

FIG. 10. Distribution of a solute, initially filling the canal from x = 0.5 to x = 1, for α = 3.04, 6.80, 9.61 and 11.77 where
β = 0.42 in the straight configuration, corresponding to experiments 13-16 of Table I. Experimental results are represented on
the left-hand side of the panels while the theoretical predictions obtained integrating Eq. (4) are represented on the right-hand
side.
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FIG. 11. Temporal evolution of the solute along the spinal canal for β = 4.2 and α = 3.04, 6.80 and 9.61 and 11.77 respectively
(experiments 13-16 in Table I).

FIG. 12. Dependence of the time taken by the solute, initially located at x = 0.5, to travel from x = 0.45 to x = 0.05,
τc, with α. Symbols represent the experimental measurements and solid lines the model predictions obtained for γ1 = 1 and
γ2(s) = 0.2− 9.6 (2s2 − s), respectively. Here β = 0.42.

presented above for α = 4.39 and varying values of β, where γ = 1, were not affected by the function of γ(x, s) selected.
However, for α > 5 the differences in the values of τc obtained with the two compliance functions become more relevant.
Probably, the most striking difference is the decrease of the local maximum when γ is assumed to depend on s, which
takes place at lower values of α. In fact, the local maximum obtained with γ1 = 1, corresponding to the case α = 9.6, is
τc = 1.79, while for γ2 the maximum, now for α = 7.9, decreases to τc = 0.84. The differences between the experiments
and the model with uniform compliance γ1 are significant, especially for α ≥ 6. Such discrepancies could be explained
by the behavior of the flexible tube used in the experiments, stemming from the difficulties to completely preserve the
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FIG. 13. Time sequence of the evolution of a solute along a curved canal of unperturbed thickness h̄(x, s) = 1−β cos(2πx) cos(2πs),
with β = 0.5, initially filling the canal from x = 0.5 to x = 1,corresponding to experiment 17 of Table I. Experimental results are
represented on the left-hand side of the panels while the theoretical predictions obtained integrating Eq. (4) are represented on
the right-hand side.

eccentricity, the geometric inaccuracies or the asymmetric behavior of the elastic tube deformation, represented by γ2
at large α values. However, the results obtained by implementing the model with a non-uniform compliance function,
γ2, agree fairly well with the experimental ones, which also exhibit a local maximum of τc although at α ≈ 8.

B. Variable eccentricity configuration

As previously discussed, the annular cross-section of the human SSAS displays an eccentricity that varies along the
spinal canal, as the position of the spinal cord relative to the dura mater varies. In previous works, these variations have
been postulated to play a relevant role in the dynamics of the flow of CSF. While Refs. 11 and 36 reported the formation
of closed recirculating Lagrangian vortices in the canal that hampered the transport of a solute, no experimental evidence
corroborating theses results is currently available, thereby motivating the present analysis, which employs the configura-
tion sketched in Fig. 2(c), where h̄(x, s) = 1−β cos(2πx) cos(2πs) with β = 0.5, all experiments performed with α = 4.45.

As shown in Fig. 13, where the experimental/model results are shown in the left-hand/right-hand sides of each panel,
for this value of α a volume of solute initially located at x ≤ 0.5 moves upwards (downwards) around the narrow
(wide) part of the canal. In this configuration, at x = 0.5 the narrowest section corresponds to s = 0.5. Focusing on
the upwards motion, one can observe that, as the solute reaches x ≈ 0.27 (τ ≈ 0.36), it slows down dramatically and
starts moving azimutally from s = 0.5 towards s = 1 due to the change of eccentricity, since the narrow (wide) section
changes from s = 0.5 (s = 0, 1) upstream from that location. This change of eccentricity provokes the formation of
closed recirculating regions along the canal11,36, so that, instead of continuing its progress along the canal, the solute
turns around and moves down through the wide section (see panels at τ = 0.68, 0,82 and 1 in Fig. 13). Only a small
amount of solute is observed to cross the boundary between recirculating regions to rise towards the canal entrance
(see the narrow filament of solute moving upwards in the left side of the flexible tube in the experiments, and at s = 1
at τ = 1 in Fig. 13). As expected, the amount of solute reaching the cranial vault is much smaller than in the case of
the straight configuration and it takes longer to arrive. The comparisons indicate that the theoretical model accurately
predicts the motion of the solute in the canal.

The above results suggest that a variable eccentricity might have a major impact on the flow topology and the
associated transport rate along the SSAS. To further quantify this effect, Fig. 14(a) represents the temporal evolution
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FIG. 14. a) Temporal evolution of the solute along a constant eccentricity canal of β = 0.42 (experiment 5 in Table I), and a
canal whose eccentricity varies with x as β cos (2πx), with β = 0.5 (experiment 17 in Table I), for α ≈ 4.4. Symbols represent
the experimental measurements and the solid lines the results given by the theoretical model with γ(x, s) = 1. b) Experimental
measurements of the temporal evolution of the solute concentration in the cranial vault, 〈C〉(τ) = 1/A

∫
A
C dσ, for the constant

and the variable eccentricity canals (experimental sets 11 and 18 respectively in Table I).

of the axial location of the solute front as it travels towards the canal entrance determined both experimentally and
using the model for the constant and variable eccentricity configurations. It can be observed that, in both cases, the
experimental results and the predictions given by the analytical model agree fairly well. Initially, for x ≤ 0.35, the
evolution is similar in both cases, i.e. increasing transport velocity at higher locations (decreasing values of x). However,
differently from the constant eccentricity case, in the canal of varying eccentricity the solute motion slows down as it
approximates the stagnation point separating the upper and central recirculating regions, located at x ≈ 0.27. At this
position, where the flow turns azimuthally from s = 0.5 towards s = 0, 1, the fluid hardly advances towards the canal
entrance (see the plateau at 0.5 ≤ τ ≤ 1.2 in Fig. 14a), to subsequently move upwards again in that region, which is
now the narrow one, with increasing velocities at locations closer to the cranial vault. As a consequence, the time for
the solute to reach the canal entrance, τc, becomes three times larger than in the constant eccentricity configuration for
the case at hand. Furthermore, not only the advance velocity but also the amount of solute able to reach the entrance
of the canal also decreases, since part of the solute remains trapped in the lower recirculating Lagrangian vortex located
below x ≈ 0.27.

Figure 14(b) displays the comparison of the time evolution of solute concentration in the cranial vault for the constant
and variable eccentricity cases. Note that the rate at which the solute reaches the cranial vault is lower in the case of
variable eccentricity, since d〈C〉/dτ is smaller in this case than in the canal with constant eccentricity, as well as the
quasi-asymptotic value of the concentration that reaches the cranial vault. In view of the above results, it is evident that
the formation of recirculating flow patterns hinders the dispersion of the solute, with important implications concerning
the rate at which a drug injected in the lumbar region can reach target locations at the cervical or cerebral level.

V. CONCLUSIONS

This experimental analysis addresses the motion of CSF in the human SSAS, with attention given to the dispersion
rate of a solute injected at the low thoracic and lumbar regions, a key process in connection with ITDD procedures.
To that aim, we have conducted in-vitro experiments in a simplified annular geometry modelling the SSAS, similar to
that considered in previous theoretical19,28 and numerical36 studies. A programmable pump has been used to induce a
harmonic fluid motion in and out of the compliant canal with a stroke volume ∆V much smaller than the total volume
contained in the canal, that being the relevant limiting case for the flow in the SSAS. The solute motion has been char-
acterized with use of LIF techniques. In particular, the effects of the canal eccentricity and the oscillation frequency, the
latter measured by the Womersley number, have been assessed in a configuration with uniform eccentricity. A modified
geometry allowing for the spatial variation of the cross-section eccentricity, a key feature of the human spinal canal, has
also been considered. The results have been compared with predictions obtained using the analytical model developed
in Refs. 19,28.
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The results corroborate the existence of a slow net transport rate, with characteristic times of order ε−2ω−1 � ω−1,
which is regulated by the convective transport driven by the time-averaged Lagrangian velocity (i.e. the sum of the
Eulerian steady-streaming velocity and the Stokes-drift velocity) and, to a lesser extent, by the action of molecular
diffusion across the SSAS28,36. In the constant-eccentricity configuration, variations of the eccentricity are seen to yield
significant variations in the induced transport velocities and associated amounts of solute reaching the canal entrance,
with the solute transport achieving peak rates for intermediate values of β ∼ 0.5. Variations in the Womersley number
are seen to result in important changes in the flow topology, in addition to the flow velocities. In particular, the
motion of solute was found to occur towards the cranial vault (bottom) in the narrow (wide) region of the canal for
β = 0.42 and α ≈ 3, whereas it occurred in the opposite direction for β = 0.42 and α ≈ 11. On the other hand,
the measurements conducted using a variable eccentricity configuration revealed, for the first time in in-vitro experi-
ments, the formation of recirculatory Lagrangian cells along the canal. As a consequence, part of the solute remained
trapped inside these cells, thus hindering its transport towards the cranial vault. The results of this study are important
in guiding future developments of predictive tools to assist clinicians and to evaluate the effectiveness of ITDD processes.
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